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Abstract
A Geometric Approach for Learning Reach Sets

Shadi Haddad

Reachability analysis is a method to guarantee the performance of safety-critical ap-

plications such as automated driving and robotics against dynamic uncertainties. The

main object of study is the reach set, defined as the set of states that a controlled dy-

namical system may reach at a future time, depending on a set-valued evolution of

uncertainties. We develop the theory and algorithms for learning the reach sets of full

state feedback linearizable systems—an important class of nonlinear control systems,

common in vehicular applications such as automobiles and drones. These reach sets,

in very general settings, are compact but nonconvex. The new idea we propose is to

compute these reach sets in the associated Brunovsky normal coordinates, and then

transform the sets back to the original coordinates via known diffeomorphisms. Our

algorithms exploit learning-theoretic ideas to provide probabilistic guarantees on the

computed sets.

As a by-product of our analysis, we uncover the exact geometry of the integrator

reach set with compact set-valued inputs. These exact results include the closed-form

parametric and implicit formulae for the boundaries, volumes, and widths of the inte-

grator reach sets. The exact parametric formula for the boundary admits an integral

representation involving the boundary of the compact input sets. The exact implicit

formula is given by the vanishing of certain Hankel determinants. These results on

integrators should be of independent interest, serving as benchmarks for quantifying

the conservatism in reach set computation algorithms.

Our geometric analysis also helps clarify a taxonomy, i.e., what kind of compact

convex sets can the integrator reach sets be. We show that the integrator reach sets

vii



resulting from arbitrary, time-invariant, compact input sets are zonoids and semialge-

braic, but not spectrahedra. The integrator reach sets resulting from arbitrary, time-

varying, compact input sets are shown to be zonoids but not semialgebraic in general.

We detail how these geometric results enable the semi-analytical computation of

the reach set of any controllable linear time invariant system, as well as the reach sets

of full state feedback linearizable systems.

Leveraging an Isomorphism between compact sets and their support functions, we

also propose a data-driven method for learning any general compact set.

This is useful for learning compact sets such as reach sets, maximal control invari-

ant sets, region-of-attraction that are related to an underlying nonlinear dynamical

system but an analytic model for the dynamical nonlinearities are unavailable. Our

results show that the proposed geometric learning ideas can be efficient when we only

have access to simulated or experimentally observed data. We demonstrate compu-

tational learning of these compact sets by carrying out regression analyses on their

support functions using finite data sets. Finally, we outline the directions for future

research.
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1 | Introduction
In the context of systems control, there exists a substantial literature on estimating

specialized categories of sets that hold computational significance, such as the reach

set [1–6], the region-of-attraction (ROA) [7–9], and the maximal controlled invariant

set (MICS) [10–14]. A reach set is defined as the set of states a controlled dynamical

system may reach at a future time—subject to set-valued uncertainties in initial con-

dition, input and disturbance. A region-of-attraction describes the set of initial states

leading to a stable equilibrium point. In addition, the maximal controlled invariant

set (MCIS), is also known colloquially as a viability kernel: A set C ⊂ Rd is a control-

invariant (CI) for (6.29), if for any initial condition x0 ∈ C, there exist a control tra-

jectory {u(t)}∞t=0 such that dynamic (6.29) stays inside C for all t ≥ 0. The set-valued

framework allows robustness against uncertainty in decision making.

Due to limitations faced by classical methods for computing these sets, recent re-

search endeavors have shifted towards learning-based approaches. Such approaches

aim to approximate these sets through machine learning algorithms and data-driven

techniques [15–20]. Learning a set is of importance in several data-driven decision

making applications, both in and outside systems-control; see e.g., [21–28].

The dissertation at hand aims to contribute to this evolving landscape by develop-

ing a geometric approach for learning compact sets. The initial stage of this research

centers on devising a novel geometric approach for learning the reach set of dynam-

ical systems under set-valued input uncertainties. This foundational work serves as

a stepping stone for the subsequent phase, where the scope broadens to incorporate

learning any general compact set. In particular, we learn a compact set up to the

closure of its convexification, from finite data.

1



Introduction/Reachability Analysis 1.1

1.1 Reachability Analysis

Consider a deterministic, finite dimensional, nonlinear control system given by a con-

trolled ODE initial value problem

ż = f(z,v), z(t = 0) ∈ Rdz , v ∈ V ⊂ Rm, (1.1)

with dz states and m inputs, where the initial state z(t = 0) is given, and the known

input set V is compact. The (forward) reach set Zt of (1.1) is defined as the set of states

the system (1.1) may reach at time t. Specifically,

Zt ∶= ⋃
measurable v(⋅)∈V

{z(t) ∈ Rdz ∣ ż = f(z,v),

z(t = 0) ∈ Rdz , v(τ) ∈ V for all 0 ≤ τ ≤ t}. (1.2)

The research objective of this work is to explore the geometry of the reach set Zt for

certain special classes of the controlled vector field f .

Reach set computation finds broad applicability in safety critical applications, from

biomedical to engineering. Loosely speaking, reachability analysis is performed to en-

sure that the states of a controlled system remain inside certain regions of the state

space that are guaranteed to be safe or to reach a desired target. Motion planning

in biomedical applications such as needle steering [29, 30] and multilumen transo-

ral lung access [31] uses reachability analysis to ensure that operations stay within a

safety margin during medical interventions. Reachability analysis has also been ap-

plied extensively to both autonomous driving [32] and air traffic control [33] to avoid

collisions without sacrificing efficiency. In chemical engineering, reachability analy-

sis is critical for determining the achievable end-point products of complex processes

such as emulsion polymerizations (crystallization, precipitation, and granulation) [34].

The research perspective and the geometric approach we pursue break away from

2



Introduction/Novelty w.r.t. Existing Literature 1.2

existing literature, which is based on a philosophy of generalization, i.e., the design

and analysis of reach set computation algorithms for the most general class of possible

systems. In this work, we instead focus on specificity, i.e., we investigate the geometry

of the true reach set Zt for specific classes of systems. Our research vision is that this

change in disposition, from the generic to the specific, can uncover a new genre of

theory and algorithms for reach sets.

1.2 Novelty w.r.t. Existing Literature

The existing reach set literature, broadly speaking, either provides very generic state-

ments (e.g., some class of reach sets are convex and/or compact) or gives specific nu-

merical algorithms of different types, viz. parametric algorithms, such as ellipsoidal

or zonotopic over-approximation [35, 36]; nonparametric algorithms, such as level

set computation [37]; or semiparametric algorithms, such as sample-based statistical

learning [38, 39].

In a parametric algorithm, the idea is to fix a simple geometric shape primitive

(e.g., “ellipsoid”, “zonotope”, etc.) beforehand and to over-approximate the reach set

within that class. To guarantee safety, one would like to ensure that the true reach

set is always contained in the approximated set, i.e., the computed set should be an

over-approximation. At the same time, it is desired to minimize the conservatism,

i.e., the over-approximation must be “tight”. This naturally leads to an optimization

problem whose decision variables are the parameters of the shape primitive, and the

objective is to minimize a suitable functional (e.g., volume) of the over-approximating

set subject to the constraint that the true reach set is contained in the approximating

set. Two specific implementations of such parametric algorithms are provided by the

ellipsoidal toolbox [35] and the CORA toolbox [36]: The first uses “ellipsoid” while

3



Introduction/Novelty w.r.t. Existing Literature 1.2

the latter uses “zonotope” as the over-approximating shape primitive.

An example of a nonparametric algorithm is the level set toolbox [37], which ex-

ploits the fact that the (forward) reach set Zt in (1.2) can be seen as the zero sublevel

set of the viscosity solution V (t,z) of certain Hamilton-Jacobi-Bellman (HJB) partial

differential equation associated with the controlled dynamics (1.1). Specifically, given

the HJB equation

∂V

∂t
+max

v∈V
⟨
∂V

∂z
, f(z,v) ⟩ = 0,

such that V (t = 0,z) = ∥z − z(t = 0)∥22, (1.3)

the forward reach set (1.2) satisfies

Zt = {z ∈ Rdz ∣ V (t, z) ≤ 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

zero sublevel sets of the solution of (1.3)

}. (1.4)

Semiparametric algorithms such as [38–40] estimate the reach set from the samples

of the trajectory with statistical performance guarantees. The advantage here is that

no explicit dynamical model is needed; only a trajectory generation oracle is assumed

to be available. The disadvantage, however, is that one can only hope to provide guar-

antees about the quality of approximation in batch learning, i.e., in a probably approx-

imately correct (PAC) sense. In particular, the approximating set may no longer be an

over-approximation of the true reach set, i.e., one trades off the number of samples

against a probability of violating safety.

None of the methods mentioned above give any specific algebraic or topological

results about the ground truth, i.e., the geometry of the true reach set that we are

numerically approximating. For instance, even for linear time invariant systems, the

existing literature does not provide the exact gap between the volume of the true reach

set and the volume of the set returned by the approximation oracles.

In the absence of ground truth, given two different over-approximation algorithms,

4



Introduction/Novelty w.r.t. Existing Literature 1.2

we cannot quantify the comparative performance of one algorithm against the other.

Neither the graphical visualizations such as low dimensional projection plots for the

reach set, nor the Monte Carlo algorithms can resolve this issue.

Standing on this research landscape, we investigate the geometry of the reach sets

of full state feedback linearizable systems—a subclass of nonlinear control systems

common in engineering applications. If a system is full state feedback linearizable,

then it is possible to diffeomorphically map the system into a canonical linear control

system known as the Brunovsky normal form. The Brunovsky normal form is a chain

of integrators, where different integrators may have different degrees. We sometimes

refer to the Brunovsky normal form as the “integrator dynamics”.

Since the Brunovsky normal form, a.k.a. the integrator dynamics, is a special linear

time invariant system, a natural question is whether it is possible to get the exact

geometry of the reach set in normal coordinates, and then transform that set back to

the original state coordinates via known diffeomorphism. This is the first technical

approach we have pursued.

Motivated by our geometric approach, we then aim to broaden our focus to un-

derstand the reach set of any general compact set where the underlying dynamics are

either unknown or analytically complex to manage. We introduce a novel represen-

tation for the learning of compact sets, up to the closure of their convexification. We

posit that the key to learn a compact set lies in learning its support function. The

main idea behind the proposed approach is rooted in an isomorphism between the

space of sublinear functions and the space of finite dimensional compact convex sets,

which allows transcribing set operations of system-control interest to exact functional

operations on the corresponding support functions–the latter being computationally

amenable via support function calculus. Given finite data collected from numerical

simulation or from experi- mental measurements, we outline two algorithms to learn

5



Introduction/Technical Contributions 1.3

the associated support functions via convex and nonconvex programming, respec-

tively.

1.3 Technical Contributions

Following the novel geometric approach outlined above for full state feedback lin-

earizable systems, we make the following contributions.

i We derive the closed form parametric as well as the implicit formula for the

boundary of an integrator reach set.

ii We deduce closed form formula for the volume and diameter of an integrator

reach set.

iii We derive scaling laws for the behavior of diameter and volume of the integrator

reach set with respect to time and state space dimension.

iv We establish that the integrator reach set is a zonoid, semialgebraic, and not a

spectrahedron.

v We derive explicit formulas for the support functions and boundaries of the

integrator reach sets subject to time-varying compact set-valued uncertainties

in the inputs. Such uncertainties appear in dynamic state feedback linearizable

systems even when such systems are subjected to time-variant set-valued input

uncertainties.

vi We provide algorithms to detect intersections between multiple integrator reach

sets, thereby allowing intersection detection between the reach sets of the cor-

responding feedback linearizable systems.

6



Introduction/Technical Contributions 1.3

vii We present a semi-analytical method for exact computation of the boundary of

the reach set of a single-input controllable linear time invariant (LTI) system

with given bounds on its input range.

viii We propose a probabilistic learning approach to estimate the reach sets of feed-

back linearizable systems.

ix We consider the problem of computing the (two-sided) Hausdorff distance be-

tween the unit ℓp1 and ℓp2 norm balls in finite dimensional Euclidean space. We

then establish a connection between this particular problem and the problem of

computing the Hausdorff distance between the reach sets of a linear dynamical

system with different unit norm ball-valued input uncertainties.

x We deduce a closed-form formula for the Hausdorff distance between unit ℓp1

and ℓp2 norm balls in Rd for 1 ≤ p1 < p2 ≤ ∞, i.e., a formula for δ (Bd
p1 ,Bd

p2
), and

provide details on the landscape of the corresponding nonconvex optimization

objective.

xi We derive upper bound for Hausdorff distance between the common linear

transforms of the ℓp and ℓq norm balls. We point out a class of linear maps

for which the aforesaid closed-form formula for the Hausdorff distance is re-

covered, thereby broadening the applicability of the formula.

xii Bringing together results from the random matrix theory literature, we provide

upper bounds for the expected Hausdorff distance when the linear map is ran-

dom with independent mean-zero entries for two cases: when the entries have

magnitude less than unity, and when the entries are standard Gaussian.

xiii We provide certain generalization of the aforesaid formulation by considering

the Hausdorff distance between two set-valued integrals.

7
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xiv We propose learning a compact set by learning its support function from the

(possibly noisy) elements of that set available as finite data and discuss how our

approach is computationally more beneficial other set representation alterna-

tives.

xv We present two algorithms to learn the support function via sublinear regres-

sion: convex quadratic programming, and training an input sublinear neural

network that involves nonconvex programming.

1.4 Organization

This dissertation is structured as follows. In Ch. 1.6.1, we provide the requisite back-

grounds on the full state feedback linearizable control systems. We consider both

static and dynamics state feedbacks. We also clarify their connections with the dif-

ferentially flat systems. Within Ch. 1.6, we provide an overview of the fundamental

mathematical concepts that play a role in guiding the entirety of our research. In

Ch. 1.7, we briefly introduce the reach set of the integrator dynamics risen from any

general compact set-valued input uncertainty.

In Ch. 2, we undertake an investigation of the geometry of the integrator reach sets

with time invariant set-valued inputs. After reviewing some preliminary concepts, the

results on the taxonomy and the boundary of these reach sets are provided in Ch. 2.1.

In Ch. 2.1.1, guided by the support function structure, we show that the integrator

reach set is a zonoid, defined as the Hausdorff limiting set of a sequence of zonotopes.

Then, in Ch. 2.1.1, we derive the closed form equations for the boundary. We do so by

exploiting that the Legendre-Fenchel conjugate of the support function, yielding the

indicator function of the set. Exploiting the boundary formula, we show in Ch. 2.1.2

that the reach set is semialgebraic.

8
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The results on the size of the reach set are collected in Ch. 2.2. We obtain the closed

form formulas for the volume and the diameter of the set in Ch. 2.2.1 and Ch. 2.2.2,

respectively. In Sections 2.2.3 and 2.2.4, we discuss the scaling laws governing the be-

havior of the volume and the diameter with respect to time and state space dimension.

The application of these results for benchmarking the reach set over-approximation

algorithms are discussed in Ch. 2.3.

In Chapter 3, we generalize our developments in Chapter 2. In Ch. 2.1, we derive

the explicit formula for the support function and boundaries of the integrator reach

set resulting from time-varying compact set-valued uncertainties in the inputs. These

results, then, become prime movers to enable the computational applications in Chap-

ter. 4, which includes intersections detection between multiple integrator reach sets

(Ch. 4.2), semi-analytical computation of LTI reach sets (Ch. 4.1) and learning the

reachset of the feedback linearizable systems (4.3). Illustrative numerical examples

are interspersed within all 3 sections.

Specifically, in Ch. 4.1, we introduce a semi-analytical approach that enables the

precise computation of the boundary of the reach set for a single-input, controllable

linear time-invariant (LTI) system, taking into account the constraints on its input

range.

Then, in Ch. 4.2, we discuss how building upon the geometric results in Chapter 3,

the intersection between differentially flat systems can be certified or falsified by de-

tecting intersection of their corresponding Brunovsky normal forms. Ch. 4.3 explores

the computation of the forward reach sets for differentially flat nonlinear systems via

estimating the reach set in the corresponding integrator coordinates achieved using

known diffeomorphism.

In Ch. 4.6, we perform a complexity analysis for the learning method introduced

in Ch. 4.3.

9
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In the interest of computational tractability, in most part of this research we as-

sume that the input uncertainty for the integrator reach are box-valued, characterized

by the ℓ∞ norm ball. This is despite the possibility that the true nature of these sets

could adhere to an ℓp norm ball, where 0 < p < ∞. Such approximations in defining

the input uncertainty sets result in an over-estimation of the reach sets, as elabo-

rated in Chapter 2. In this context, measuring the degree of over-approximation is

tantamount to calculating the Hausdorff distance between the respective reach sets.

Driven by this understanding, Chapter 5 focuses on estimating the Hausdorff distance

between the reach set of linear time-invariant systems, which include the integrator,

emerging from different norm-valued input uncertainties. The rest of this paragraph

sheds light on the novel contributions stemming from this particular avenue of our

research.

First, we consider the problem of computing the (two-sided) Hausdorff distance

between the unit ℓp1 and ℓp2 norm balls in finite dimensional Euclidean space for

1 ≤ p1 < p2 ≤ ∞, and derive a closed-form formula for the same (Ch. 5.1). We also

derive a closed-form formula for the Hausdorff distance between the k1 and k2 unitD-

norm balls, which are certain polyhedral norm balls in d dimensions for 1 ≤ k1 < k2 ≤ d

(Ch. 5.1.1). When two different ℓp norm balls are transformed via a common linear

map, we obtain several estimates for the Hausdorff distance between the resulting

convex sets. These estimates upper bound the Hausdorff distance or its expectation,

depending on whether the linear map is arbitrary or random (Ch. 5.2). We then gen-

eralize the developments for the Hausdorff distance between two set-valued integrals

obtained by applying a parametric family of linear maps to different ℓp unit norm balls,

and then taking the Minkowski sums of the resulting sets in a limiting sense. To illus-

trate an application, we show that the problem of computing the Hausdorff distance

between the reach sets of a linear dynamical system with different unit norm ball-

10
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valued input uncertainties, reduces to this set-valued integral setting (Ch. 5.3). The

organization is as follows. In Ch. 5.1, we consider the Hausdorff distance between unit

norm balls for two cases: ℓp norm balls for different p, andD-norm balls parameterized

by different parameter k. We discuss the landscape of the corresponding nonconvex

optimization problem and derive closed-form formula for the Hausdorff distance. Ch.

5.2 considers the Hausdorff distance between the common linear transformation of

different ℓp norm balls, and bounds the same when the linear map is either arbitrary

or random. In Ch. 5.3, we consider an integral version of the problem considered

in Ch. 5.2 and illustrate one application in controlled linear dynamical systems with

set-valued input uncertainties where this structure appears. These results could be of

independent interest.

In chapter (6), we extend our focus from the reach set of LTI systems, to any general

compact set. Utilizing the isomorphism between the space of sublinear functions and

the space of finite dimensional compact convex sets and pose that learning a compact

set (up to the closure of its convexification) it’s equivalent to learning its support func-

tion. We present two algorithms (Ch. 6.1) to learn the support function via sublinear

regression: convex quadratic programming (Ch. 6.1.2), and training an input sublinear

neural network that involves nonconvex programming (Ch. 6.1.3). We demonstrate

the comparative performance of these algorithms via various numerical examples In

Ch. 6.2.

All proofs are deferred to the Appendix. The summary of our research and the

future work directions are provided in Chapter 7.

11
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1.5 Notations

Most notations are introduced in situ. We use JnK ∶= {1,2,⋯, n} to denote the set of

natural numbers from 1 to n. Boldfaced lowercase and boldfaced uppercase letters are

used to denote the vectors and matrices, respectively. The symbol E denotes the math-

ematical expectation, card(⋅) denotes the cardinality of a set, the superscript ⊺ denotes

matrix transpose, and the superscript † denotes the appropriate pseudo-inverse. For

a column vector x ∈ Rd whose components are differentiable with respect to (w.r.t.) a

scalar parameter t, the symbol ẋ denotes componentwise derivative of x w.r.t. t. The

notation ⌊⋅⌋ stands for the floor function that returns the greatest integer less than

or equal to its real argument. The function exp(⋅) with matrix argument denotes the

matrix exponential. The inequality ⪰ is to be understood in Löwner sense; e.g., saying

S is a symmetric positive semidefinite matrix is equivalent to stating S ⪰ 0. Please

also refer to table 1 for the list of some commonly used notations.
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Notation Definition First appeared

z state vector of the original system in Rdz (1.5) and (4.1)

v control vector of the original system (1.5) and (4.1)

x state vector of the integrator system Rd (1.6)

r relative degree vector (1.7b)

ρ augmented states (1.9)

ρ augmented states (1.9)

w compensator states in Rdw (1.9)

ρ augmented states (1.9)

u control vector of the integrator system (1.6)

A Brunovsky normal form state coefficient matrix (1.6)

B Brunovsky normal form input coefficient matrix (1.6)

τ state diffeomorphism z → x (1.9)

τ u input homeomorphism v → u (1.9)

Πz Projection operator into z coordinates (1.9)

eℓ
k kth basis vector of in Rℓ (1.9)

C, d Nonlinear functions describing the input mapping (1.8)

Φ integrator’s state transition matrix (1.8)

hX (y) support function of set X in direction y (1.23)

13
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1.6 Preliminaries

In the following, we summarize some preliminaries which will be useful in the main

body and in the Appendix.

1.6.1 Full state feedback linearizable systems

Consider a continuous time nonlinear control system

ż = f(z,v), z ∈ Rdz , v ∈ V ⊂ Rm, (1.5)

where z is the state vector, and v is the control input vector. System (1.5) is dif-

ferentially flat or equivalently feedback linearizable [41] if there exists a “flat output"

vector y ∈ Rm such that the state z ∈ Rdz and the input v(t) ∈ Rm can be derived

from the flat output y without any integration. A differentially flat control system is

dynamic feedback linearizable on an open dense set [41].

A system is called dynamic feedback linearizable if there exist compensator states

w ∈ Rdw such that the dynamics in the augmented state vector ρ ∶= (z,w) comprising

of the original states and the compensator states, is full state feedback linearizable.

That is to say, there exists a diffeomorphism τ that maps the augmented state-control

pair ρ ∈ Rdz+dw to Brunovsky normal coordinates, x ∈ Rd, known as the integrator

dynamics, given by

ẋ(t) =Ax(t) +Bu(t), x(t) ∈ Rd, u(t) ∈ U(t) ⊂ Rm, (1.6)

where the set U(t) is compact, and

A ∶=blkdiag(A1, ...,Am) , B ∶=blkdiag(b1, ...,bm) , (1.7a)

Aj ∶= (0rj×1 ∣∣∣ e
rj
1 ∣∣∣ e

rj
2 ∣∣∣...∣∣∣ e

rj
rj−1) , bj ∶= e

rj
rj , for j ∈ [m] ∶= {1,⋯,m}. (1.7b)

The relative degree vector r = (r1, r2,⋯, rm)
⊺
∈ Zm

+ is a vector of positive integers
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satisfying r1 + r2 +⋯rm = d. In (1.7a), the symbol blkdiag (⋅) denotes a block diagonal

matrix whose arguments constitute its diagonal blocks. In (1.7b), the notation 0rj×1

stands for the rj × 1 column vector of zeros, and eℓ
k denotes the kth basis (column)

vector in Rℓ for k ≤ ℓ.

The control mapping τ u ∶ (v,z,w, ẇ, ẅ,⋯) ↦ u is guaranteed to be a homeo-

morphism, and can be written explicitly as

u(t) =C (z(t),w(t), ẇ, ẅ,⋯)v(t) + d (z(t),w(t), ẇ, ẅ,⋯) , (1.8a)

ẇ(t) = (z,w,v, v̇, v̈,⋯) , ∀t ≥ 0. (1.8b)

Note that the inverse mapping from the integrator coordinates x to the original co-

ordinate z requires a projection operator Πz that projects the augmented state ρ to

original states z, i.e.,

x
τ−1

Ð→ ρ
Πz
Ð→ z, while u

τ−1u
Ð→ v. (1.9)

Static feedback linearizable systems are a special case of the above where the original

dynamics is full state feedback linearizable without the need for a compensator. In

other words, there exists is a diffeomorphism τ (z) ∶ Rdz ↦ Rd, d = dz , that takes (1.5)

to integrator dynamics (1.6), wherein the input mapping τ u ∶ (z,v) ↦ u follows

u(t) =C (z(t))v(t) + d (z(t)) . (1.10)

Later we will show how the feedback linearization property can be used in esti-

mating the support function of reach set resulting from (1.5). In this thesis, we have

only considered the class of dynamic state feedback linearizable systems for which

the compensator dynamics is affine in control.

Next we will provide some examples to illustrate the ideas outlined so far.
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Example: static state feedback linearizable system with r = (3,2)⊺

Consider the differentially flat system [42, p. 257]

ż1 = z2 + z
2
2 + v1, ż2 = z3 − z1z4 + z4z5 (1.11)

ż3 = z2z4 + z1z5 − z
2
5 + cos(z1 − z5)v1 + v2, ż4 = z5, ż5 = z

2
2 + v2,

where z ∈ R5 and v ∈ V ⊂ R2. System (1.11) is full state static feedback linearizable

and the flat outputs are given by

y1 = z1 − z5, y2 = z4. (1.12)

Setting (x1, x4) = (y1, y2) and differentiating over time t, we find

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

x5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 0

1 0

0 0

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1

u2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.13)

The state mapping τ ∶ z → x, its inverse, τ −1 ∶ x → z, and the input mapping,

τ u ∶ v → u are as follows

x = τ (z) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1 − z5

z2

z3 − z1z4 + z4z5

z4

z5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z = τ −1(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 + x5

x2

x3 + (x1 + x5)x4 − x4x5

x4

x5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(1.14a)
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u = τ u(z,v) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(z1 − z5)v1 + v2

z22 + v2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.14b)

Example: static state feedback linearizable system with r = d = 4

Consider the differentially flat system [43, Example 13.14]

ż1 = z2, ż2 = − sin(z1) − (z1 − z3), ż3 = z4, ż4 = (z1 − z3) + v (1.15)

where z ∈ R4 and v ∈ V ⊂ R. This is a model of single link manipulator with flexible

joints and negligible damping. System (1.15) is full state static feedback linearizable

with the flat output y = z1. Setting x1 = y1 and differentiating over time t, we find

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u. (1.16)

The state mapping τ ∶ z → x, its inverse, τ −1 ∶ x → z, and the input mapping

τ u ∶ v → u are given by

x = τ (z) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1

z2

− sin(z1) − (z1 − z3)

−z2 cos(z1) − (z2 − z4)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z = τ −1(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3 + sin(x1) + x1

x4 + x2 cos(x1) + x2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(1.17a)

u = τ u(z,v) = −(cos(z1) + 2)(− sin(z1) + z3 − z1) + (z
2
2 − 1) sin(z1) + v. (1.17b)
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Example: dynamic state feedback linearizable system

Consider the differentially flat system

ż1 = z2 − v1, ż2 = z4v1, ż3 = v1, ż4 = v2 (1.18)

where z ∈ R4 and v ∈ V ⊂ R2. System (1.18) is dyanamic feedback linearizable. It

can be shown that this system is not static state feedback linearizble. We find the

compensator variable w = z2 − v1, and the flat outputs

y1 = z1, y2 = z1 + z3. (1.19)

Now having (x1, x3) = (y1, y2) and differentiating over time t, we recover the inte-

grator dynamics x ∈ R5,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

x5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

1 0

0 0

0 0

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1

u2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.20)

The state mapping τ ∶ z → x, its inverse, τ −1 ∶ x → z, and the input mapping,

τ u ∶ v → u are as follows

x = τ (z,w) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1

w

z1 + z3

z2

z4(z2 −w)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z = τ −1(x,w) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x4

x3 − x1

x5/(x4 −w)

w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1.21a)

u = τ u(z,w,v) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẇ

v2(z2 −w) + z4(z4v1 − ẇ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.21b)
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1.6.2 State transition matrix

For 0 ≤ s < t, the state transition matrix Φ(t, s) associated with integrator dynamics

(1.6) is

Φ(t, s) ≡ exp(A(t − s))blkdiag (exp(A1(t − s)),⋯, exp(Am(t − s))) ,

with each diagonal block is upper triangular. Specifically, the jth diagonal block of

size rj × rj is written element-wise as

exp(Aj(t − s)) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(t − s)ℓ−k

(ℓ − k)!
for k ≤ ℓ,

0 otherwise,

(1.22)

where k is the row index, ℓ is the column index, and k, ℓ ∈ [rj] for each j ∈ [m]. The

diagonal entries in (1.22) are unity.

1.6.3 Support function

The support function hX (⋅) of a nonempty compact1 set X ⊂ Rd, is given by

hX (y) ∶= sup
x∈X
{⟨y,x⟩ ∣ y ∈ Sd−1}, (1.23)

where ⟨⋅, ⋅⟩ denotes the standard Euclidean inner product, and Sd−1 is the unit sphere

imbedded inRd. Using overline and conv to respectively denote set closure and convex

hull, it is immediate that

hX (y) = hconv(X)(y) ∀y ∈ Sd−1, (1.24)

so the support function of a compact nonconvex set X is understood as that of the

closure of its convex hull. Definition (1.23) being pointwise supremum of linear func-

1We can extend the definition of support function for any nonempty X ⊆ Rd by allowing its range
to be R∪{+∞}. WhenX is bounded, then hX (⋅) is finite everywhere; otherwise hX (⋅)may take value
+∞ but remains lower semi-continuous.
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tions, it follows that hX (y) is a convex function in y.

Geometrically, hX (y) quantifies the signed distance of the supporting hyperplane

of X with outer normal vector y, measured from the origin. This distance is negative

if and only if the unit vector y ∈ Sd−1 points into the open halfspace containing the

origin.

The support function hX (⋅) uniquely determines a compact set X (up to closure

of convexification). This is because the Legendre-Fenchel conjugate of hX (⋅) is the

indicator function [44, Thm. 13.2]

1X (x) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if x ∈ X ,

+∞ otherwise.
(1.25)

This allows thinking and using hX (⋅) as a functional proxy for the set X .

As a function, the support function has additional structure beyond convexity.

A support function is closed2 and sublinear [45, p. 123], i.e., a convex and positive

homogeneous function of degree 1. So for any compact X ⊂ Rd,

hX (ay) = ahX (y), a ∈ R>0, ∀y ∈ Sd−1.

It is well-known [45, Prop. 1.1.3] that a function is sublinear if and only if its epigraph

is a nonempty convex cone. Hence the epigraph of any support function is a nonempty

closed convex cone.

Conversely, any closed sublinear function h ∶ Sd−1 ↦ R, is the support function of

a compact convex set Xh ∶= {x ∈ Rd ∣ ⟨y,x⟩ ≤ h(y) ∀y ∈ Sd−1}; see e.g., [45, Thm.

3.1.1]. Thus, the space of closed sublinear functions has an isomorphism with the

space of finite dimensional compact convex sets.

2A function is closed if its epigraph is a closed set.
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Support function calculus

In this dissertation we will extensively employed the support function calculus. Sup-

port function representation behaves well under common set-valued operations. We

next list a collection of known [46, Ch.V], [47, Ch. 1.7] results to highlight that indeed

there exist equivalence between set-valued operations and functional operations on

the corresponding support functions. In the following, all sets X ,Xi are assumed to

be compact convex w.l.o.g.

1. non-membership3⇔ inequality

x̃ ∉ X ⇔ ∃ y ∈ Sd−1 such that ⟨y, x̃⟩ > hX (y).

2. convergence in Hausdorff topology⇔ pointwise convergence

{Xi} → X ⇔ hXi
(⋅) → hX (⋅).

3. inclusion⇔ inequality

X1 ⊆ X2 ⇔ hX1(y) ≤ hX2(y) ∀y ∈ Sd−1.

4. intersection⇔ infimal convolution

X =
r

⋂
i=1
Xi ⇔ hX (y) = inf

y1+⋯+yr=y
{hX1(y1) +⋯ + hXr(yr)}.

5. affine transformation⇔ composition

X = ΓX0 + γ, Γ ∈ Rd×d′ ,γ ∈ Rd ⇔ hX (y) = ⟨y,γ⟩ + hX0(Γ
⊺y) ∀y ∈ Sd−1.

6. p-sum⇔ p-norm

X = X1 +p⋯+p Xr ⇔ hX (y) = (h
p
X1
(y) +⋯ + hpXr

(y))
1/p
∀y ∈ Sd−1.

6.a. (p = 1) Minkowski sum⇔ sum

X = X1 +⋯ +Xr ⇔ hX (y) = hX1(y) +⋯ + hXr(y) ∀y ∈ Sd−1.

3In fact, stronger equivalence [45, Thm. 2.2.3] holds: we can verify (non-)membership to affine hull,
interior, and relative interior of a compact convex set. So the support function “filters" the affine hull,
the interior, and the relative interior of the set.
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6.b. (p = ∞) union⇔ pointwise maximum

X =
r

⋃
i=1
Xi⇔ hX (y) =max{hX1(y),⋯, hXr(y)} ∀y ∈ Sd−1.

Furthermore, many geometric functionals of interest can be expressed in terms of

the support function. For instance, the width [47, p. 42] of X ⊂ Rd in the direction

y ∈ Sd−1 equals hX (y) + hX (−y), and the diameter is the maximal width:

diam (X) ∶= max
y∈Sd−1

(hX (y) + hX (−y)) .

The (two-sided) Hausdorff distance metric δH between compact convex X1,X2 ⊂ Rd,

can be computed using the corresponding support functions as (Chapter 5)

δH (X1,X2) = sup
y∈Sd−1

∣hX1 (y) − hX2 (y) ∣.

The following Lemmas will be useful (proofs are given in Appendix A.1 and A.2 re-

spectively).

Lemma 1.1. Let {Ki}i∈N be a sequence of compact convex sets in Rd. Then, Ki → K ⇔

hKi
(⋅) → hK(⋅).

Lemma 1.2. Let {Ki}i∈N be a sequence of compact convex sets in Rd. Let vol(⋅) denote

the d-dimensional volume. If Ki → K, then vol (Ki) → vol (K) as i→∞.

Support functions also appear in set duality as presented next.

1.6.4 Polar dual

The polar dual K○ of any non-empty set K ⊂ Rd is given by

K○ ∶= {y ∈ Rd ∣ ⟨y,x⟩ ≤ 1 for all x ∈ K}. (1.26)

From this definition, it is immediate thatK○ contains the origin, and is a closed convex

set. The bipolar (K○)○ = closure (conv (K ∪ {0})). Thus, if K is compact convex and

contains the origin, then we have the involution (K○)○ = K. From (1.23) and (1.26),
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notice that K○ is the unit support function ball, i.e., K○ = {y ∈ Rd ∣ hK(y) ≤ 1}. In Ch.

2.1.4, we will mention some properties of the polar dual of the integrator reach set.

1.6.5 Vector measure

Let F be a σ-field of the subsets of a set. A countably additive mapping µ̃ ∶ F ↦ Rd

is termed a vector measure. Here, “countably additive" means that for any sequence

{Ωi}
∞
i=1 of disjoint sets in F such that their union is in F , we have µ̃ (∪∞i=1Ωi) =

∑
∞
i=1 µ̃ (Ωi) < ∞. Some of the early investigations of vector measures were due to

Liapounoff [48] and Halmos [49]; relatively recent references are [50, 51].

1.6.6 Zonotope

A zonotope Z ⊂ Rd is a finite Minkowski sum of closed line segments or intervals

{Ii}ni=1 where these intervals are imbedded in the ambient Euclidean space Rd. Ex-

plicitly, for some positive integer n, we write

Z ∶= I1+̇⋯+̇In{x ∈ Rd ∣ x =
n

∑
i=1

xi, xi ∈ Ii, i ∈ [n]}.

Thus, a zonotope is the range of an atomic vector measure. Alternatively, a zonotope

can be viewed as the affine image of the unit cube. A compact convex polytope is a

zonotope if and only if all its two dimensional faces are centrally symmetric [47, p.

182]. For instance, the cross polytope {x ∈ Rd ∣ ∥x∥1 ≤ 1}, is not a zonotope. Standard

references on zonotope include [52, 53], [54, Ch. 2.7].

The set of zonotopes is closed under affine image and Minkowski sum, but not

under intersection. In the systems-control literature, a significant body of work exists

on computationally efficient over-approximation of reach sets via zonotopes [55–57]

and its variants such as zonotope bundles [58], constrained zonotopes [59], complex
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zonotopes [60], and polynomial zonotopes [61, 62].

1.6.7 Variety and ideal

Let p1,⋯, pn ∈ R[x1,⋯, xd], the vector space of real-valued d-variate polynomials. The

(affine) variety VR[x1,⋯,xd](p1,⋯, pn) is the set of all solutions of the system

p1(x1, x2,⋯, xd) = ⋯ = pn(x1, x2,⋯, xd) = 0.

Given p1,⋯, pn ∈ R[x1,⋯, xd], the set

I ∶= {
n

∑
i=1
αipi ∣ α1,⋯, αn ∈ R[x1,⋯, xd]}

is called the ideal generated by p1,⋯, pn. We write this symbolically as I =⟨⟨p1,⋯, pn⟩⟩.

Roughly speaking, ⟨⟨p1,⋯, pn⟩⟩ is the set of all polynomial consequences of the given

system of n polynomial equations in d indeterminates. We refer the readers to [63, Ch.

1] for detailed exposition of these concepts.

1.6.8 Minkowski difference

Given two compact convex sets P,Q ⊂ Rn, the Minkowski difference

P �Q ∶= {p − q ∣ p ∈ P,q ∈ Q},

and is compact convex. Checking intersection between the setsP,Q is then equivalent

to verifying if the zero vector 0 ∈ Rd belongs to P �Q. This can in turn be related to

conditions on the support function hP�Q(⋅). In particular,

P ∩Q ≠ ∅ ⇔ 0∈P �Q ⇔ ∀y ∈ Sd−1, hP�Q(y) ≥ 0, (1.27a)

P ∩Q = ∅ ⇔ 0∉P �Q ⇔ ∃y ∈ Sd−1 such that hP�Q(y) < 0. (1.27b)
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We refer the readers to [64,65] where these ideas were explored for checking set inter-

sections. We will make use of these ideas in Ch. 4.2 to derive and solve an optimization

problem for certifying the intersections of integrator reach sets.

1.6.9 Induced norm

For 1 ≤ p, q ≤ ∞, matrix M ∈ Rm×n viewed as a linear map M ∶ ℓp (Rn) ↦ ℓq (Rm),

has an associated induced operator norm

∥M∥p→q ∶= sup
x≠0

∥Mx∥q
∥x∥p

= sup
∥x∥p=1

∥Mx∥q, (1.28)

where as usual ∥x∥p ∶= (∑n
i=1 ∣ xi ∣

p)
1/p, ∥Mx∥q ∶= (∑

m
i=1 ∣ (Mx)i ∣q)

1/q for p, q finite,

∥ ⋅ ∥∞ is the sup norm, and (Mx)i denotes the ith component of the vector Mx.

Several special cases of (1.28) are well known: the case p = q is the standard matrix

p norm, the case p = ∞, q = 1 is the Grothendieck problem [66, 67] that features

prominently in combinatorial optimization, and its generalization p ∈ (1,∞), q = 1 is

the ℓp Grothendieck problem [68]. In our development, the operator norm ∥M∥2→q

arises where 1 < q ≤ ∞.

1.7 Integrator Reach Set with Compact Input Set U

In this section we investigate the integrator forward reach set for the general compact

input set U . Let Xt (X0) denote the forward reach set of (1.6) at time t > 0, starting

from a given compact convex set of initial conditions X0 ⊂ Rd, i.e.,

Xt (X0) ∶= ⋃
measurable u∈closure(conv(U))

{x(t) ∈ Rd ∣ (1.6) and (1.7) hold,

x(t = 0) ∈ X0 compact convex, U(s) ⊂ Rm compact for all s ∈ [0, t]}.

(1.29)
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In words, Xt (X0) is the set of all states that the controlled dynamics (1.6)-(1.7) can

reach at time t > 0, starting from the set X0 at t = 0, with measurable control u(⋅) ∈ U

compact. Notice that definition 1.29 inform us that the reach set Xt resulting from

compact U(s) is the same as that resulting from the closure of the convex hull of

U(s), 0 ≤ s ≤ t. Formally, we can write

Xt (X0) = exp(tA)X0+̇ ∫

t

0
exp ((t − τ)A)BU(s) dτ (1.30)

It is straightforward to prove that Xt (X0, t) is a compact convex subset of Rd for

all t > 0. Notice however, that the (space-time) forward reachable tube

X t (X0) ∶= ⋃
0≤τ≤t
Xτ (X0) , (1.31)

where the union symbol denotes a disjoint union, need not be convex in Rd×R>0. The

following Lemmas will be useful for our further developments (proofs in Appendix

A.3).

Lemma 1.3. LetF (⋅) be a point-to-set function that is non-empty on [0, t]. For 0 ≤ s ≤ t,

denote its support function as hF (s) (y) ≡ h(s,y) for any y ∈ Rd. Then,

h∫ t
0 F (s)ds (y) = ∫

t

0
h (s,y)ds.

Remark 1.1. A special case of the above result for continuous-time LTI systems was

derived in [69, Proposition 2]. Compared to the same, both the statement and proof of

Lemma 1.3 are general (valid for any point-to-set function).

Following (1.23) and Lemma 1.3, we deduce Proposition 1.1 stated next (proof in

Appendix A.4).

Proposition 1.1. (Support function for compact U ) For compact convex X0 ⊂ Rd,
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and compact U ⊂ Rm, the support function of the reach set (1.30) is

hXt(X0) (y) = sup
x0∈X0

m

∑
j=1
⟨yj, exp (tAj)xj0⟩

+ ∫

t

0
sup

u∈closure(conv(U))

m

∑
j=1
{⟨yj,ξj(t − s)⟩ uj} ds, (1.32)

where conv(⋅) denotes the convex hull and

ξj(s) ∶= (srj−1/(rj − 1)! srj−2/(rj − 2)! ⋯ s 1)
⊺
, (1.33)

In the following section, we will present a systematic study on the geometry of

integrator reach set.
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2 | Integrator Reach Sets with Time
Invariant Set-Valued Uncertainties
Integrators with bounded controls are ubiquitous in systems-control. Other than

Brunovsky normal forms for the feedback linearizable nonlinear systems which in

turn appear frequently in vehicular dynamics, they are also commonly used as bench-

mark problems to demonstrate the performance of the reach set computation algo-

rithms. Despite their prominence, specific results on the geometry of the integrator

reach sets are not available in the systems-control literature. Broadly speaking, the ex-

isting results come in two flavors. On one hand, very generic statements are known,

e.g., these reach sets are compact convex sets whenever the set of initial conditions is

compact convex, and the controls take values from a compact (not necessarily convex)

set [3]. On the other hand, several numerical toolboxes [35, 70] are available for tight

outer approximation of the reach sets over computationally benign geometric fami-

lies such as ellipsoids and zonotopes. The lack of concrete geometric results imply the

absence of ground truth when comparing the efficacy of different algorithms, and one

has to content with graphical or statistical (e.g., Monte Carlo) comparisons. In this

chapter we systematically study the geometry of integrator reach sets.

In this section, we study the multi-input integrator reach set, when input set is

time invariant box-valued, i.e., U is a hyperrectangle given by

U ∶= [α1, β1] × [α2, β2] × ⋯ × [αm, βm] ⊂ Rm. (2.1)

To assist our memory, we denote this specific integrator reach set via with a box su-

perscript X ◻t (X0)
1 and we can rewrite (1.29) as

X ◻t (X0) = exp(tA)X0+̇ ∫

t

0
exp (sA)BU ds. (2.2)

1For the single input (m = 1) case, we drop the box superscript.
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For X0 ⊂ Rd compact convex, it is well-known [3, Sec. 2] that X ◻t (X0) is a compact

convex set for all t > 0. However, it is not immediate what kind of convex set X ◻t is,

even for singleton X0 ≡ {x0}. To proceed further, we introduce some notations. From

(2.1), αj and βj are defined as the component-wise minimum and maximum of the

input set, respectively, i.e.,

αj ∶=min
u∈U

uj, βj ∶=max
u∈U

uj, j ∈ JmK, (2.3)

Furthermore, let

µj ∶=
βj − αj

2
, νj ∶=

βj + αj

2
, (2.4)

and as in Prop. 1.1, introduce

ξ(s) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

µ1ξ1(s)

⋮

µmξm(s)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ξj(s) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

srj−1/(rj − 1)!

srj−2/(rj − 2)!

⋮

s

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.5)

for j ∈ JmK. Also, let

ζ(t0, t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

µ1ζ1(t0, t)

µ2ζ2(t0, t)

⋮

µmζm(t0, t)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ζj(t0, t) ∶= ∫
t

t0
ξj(t − s) ds ∈ Rrj , (2.6)

for j ∈ JmK. When t0 = 0, we simplify the notations as

ζ(t) ∶= ζ(0, t), ζj(t) ∶= ζj(0, t) for all j ∈ JmK. (2.7)

From (1.7a) we know that the system matrices are block diagonal, so when hav-

ing the input set as (2.1), each of the m single input integrator dynamics with rj
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dimensional state subvectors for j ∈ JmK, are decoupled from each other. Hence

X ◻t (X0) ⊂ Rd is the Cartesian product of these single input integrator reach sets:

Xjt (X0) ⊂ Rrj for j ∈ JmK. However, the “factor sets" in this Cartesian product be-

long to disjoint mutually orthogonal rj dimensional subspaces, j ∈ JmK, which allows

writing this Cartesian product as a Minkowski sum 2, i.e.,

X ◻t = X1t × X2t ×⋯ ×Xmt ≡ X1t +̇ X2t +̇ ⋯ +̇ Xmt (2.8)

Notice that the decoupled dynamics also allows us to write a Minkowski sum decom-

position for the set of initial conditions X0 = X10+̇⋯+̇Xm0, and accordingly, the initial

condition subvectors xj0 ∈ Xj0 ⊂ Rrj for j ∈ JmK. Thus x0 = (x10,⋯,xm0)
⊺.

Since the support function of the Minkowski sum is equal to the sum of the support

functions, we have

hX◻t (X0)(y) =
m

∑
j=1
hXjt(Xj0)(yj). (2.9)

This leads to the following result (proof in Appendix BB.1) which will come in handy

in the ensuing development.

Theorem 2.1. For compact convexX0 ⊂ Rd, and box-valued input uncertainty set given

by (2.1), the support function of the reach set (2.2) is

hX◻t (X0) (y) =
m

∑
j=1
{ sup
xj0∈Xj0

⟨yj, exp (tA)xj0⟩

+ νj⟨yj,ζj(t)⟩ + µj ∫

t

0
∣⟨yj,ξj(t − s)⟩∣ ds}. (2.10)

where µ,ν,ξ and ζ are defined in (2.4)-(2.6).

The formula (2.10) upper bounds (1.32) resulting from the same initial condition

and arbitrary compact U ⊂ Rm with {αj, βj}mj=1 related to U via (2.3). Thus, from

Property 1.6.3 of support functions, the reach set X ◻t with box-valued input uncer-

2In general, the Minkowski sum of a given collection of compact convex sets is not equal to their
Cartesian product.
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tainty will over-approximate the reach set Xt associated with arbitrary compact U , at

any given t > 0, provided {αj, βj}mj=1 are defined as (2.3).

When U is compact but not box-valued, then we can quantify the quality of the

aforesaid over-approximation in terms of the two-sided Hausdorff distance metric dist

between the convex compact sets X ◻t ,Xt ⊂ Rd, expressible [47, Thm. 1.8.11] in terms

of their support functions hX◻t (⋅), hXt(⋅) as

dist (X ◻t ,Xt) = sup
∥y∥2=1

∣hX◻t (y) − hXt(y)∣. (2.11)

Thanks to Property 1.6.3 of support functions, the absolute value in (2.11) can be dis-

pensed since Xt ⊆ X
◻
t with set equality if U is box, in which case hX◻t (⋅) = hXt(⋅) and

dist = 0.

It is known that [71, Prop. 6.1] the setXt (X0) resulting from a linear time invariant

dynamics such as (1.6)-(1.7) remains invariant under the closure of convexification

of the input set U . Therefore, it is possible that Xt = X
◻
t and dist = 0 even when

the compact set U is nonconvex. For instance, the reach set Xt (X0) resulting from

some compact convex X0 ⊂ Rd and dynamics (1.6)-(1.7) with the nonconvex input

uncertainty set {−1,1}m, is identical to X ◻t (X0) resulting from the same X0, same

dynamics, and the box-valued input uncertainty set (2.1) with αj = −1, βj = 1 for all

j ∈ JmK.

Likewise, for the same compact convex X0 ⊂ Rd, the reach set Xt (X0) resulting

from (1.6)-(1.7) with the nonconvex input set {u ∈ Rm ∣ ∥u∥p ≤ 1}, 0 < p < 1, is the

same as that resulting from the cross-polytope {u ∈ Rm ∣ ∥u∥1 ≤ 1}. More generally,

for 0 < p < ∞, suppose X ∥∥pt (X0) results from the unit p norm ball input uncertainty

set {u ∈ Rm ∣ ∥u∥p ≤ 1}. Let M⊺
(τ) ∶= exp (τA)B = blkdiag (ξ1,⋯,ξm). If X ◻t (X0)

results from the same X0, same dynamics, and input uncertainty set (2.1) with αj =

−1, βj = 1 for all j ∈ JmK, then using [72, Thm. 1] and [73] (see Ch. 4.2 and 5.3) (2.11)
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simplifies to

dist(X ◻t ,X
∥∥p
t )= sup

∥y∥2=1
∫

t

0
(∥M(τ)y∥1−∥M(τ)y∥q)dτ (2.12)

where q is the Hölder conjugate of max{1, p}, i.e., 1
max{1,p} +

1
q = 1, and 1 < q ≤ ∞. In

this case, the positive value (2.12) quantifies the quality of strict over-approximation

X
∥∥p
t ⊂ X ◻t for 0 < p < ∞. The objective in (2.12) being positive homogeneous, admits

lossless constraint convexification ∥y∥2 ≤ 1, and the corresponding maximal value3

for moderate dimensions d, can be found by direct numerical search. In chapter. 5, we

will explore in detail the Hausdorff distance between norm balls and their linear maps

as well as the Hausdorff distance between the LTI reach sets under different ℓp-norm

valued input uncertainties.

In the rest of this chapter, we address the unexplored directions: the exact para-

metric and implicit equations for the boundary of X ◻t (X0), the scaling laws for the

volume and diameter of this sets and the classification of these sets.

2.1 Taxonomy and Boundary

In this Section, we examine the question “what type of compact convex set X ◻t ({x0})

is" from several points of view. In doing so, we also derive the equations for the bound-

ary ∂X ◻t ({x0}). Notice that for non-singleton X0, the taxonomy question is not well-

posed since the classification then will depend on X0. Also, setting X0 ≡ {x0} in (2.2),

it is apparent that X ◻t ({x0}) is a translation of the set-valued integral in (2.2). Thus,

classifying X ◻t ({x0}) amounts to classifying the second summand in (2.2).

3As such, (2.12) has a difference of convex objective, and by the Weierstrass extreme value theorem,
the maximum is achieved.
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2.1.1 X ◻t ({x0}) is a Zonoid

Figure 2.1: The “almond-shaped" integrator
reach set X◻t ({x0}) ⊂ R3 with d = 3, m = 1,
x0 = (0.1,0.2,0.3)⊺, U ≡ [α,β] = [−1,1] at
t = 2.1. The wireframes correspond to the up-
per and lower surfaces.

A zonoid is a compact convex set that is

defined as the range of an atom free vec-

tor measure (see Ch. 1.6.5). Affine image

of a zonoid is a zonoid. Minkowski sum

of zonoids is also a zonoid. We refer the

readers to [74–76], [77, Sec. I] for more

details on the properties of a zonoid. By

slight abuse of nomenclature, in this dis-

sertation we use the term zonoid up to

translation, i.e., we refer to the transla-

tion of zonoids as zonoids (instead of us-

ing another term such as “zonoidal trans-

lates"). Let us mention a few examples.

Any compact convex symmetric set in R2 is a zonoid. In dimensions three or more,

all ℓp norm balls for p ≥ 2 are zonoids.

An alternative way to think about the zonoid is to view it as the limiting set (con-

vergence with respect to the two-sided Hausdorff distance, see e.g., [78, Appendix

B]) of the Minkowski sum of line segments, i.e., the limit of a sequence of zono-

topes [52,53,74]. Formally, given a Hausdorff convergent sequence of zonotopes{Zj},

the zonoid Z∞ is Z∞ ∶= limj→∞Zj, where Zj ∶= ∑
n(j)
i=1 [aij,bij] , aij,bij ∈ Rd, for

some aij ≤ bij (element-wise vector inequality), and a suitable mapping n ∶ Z+ ↦ Z+.

Our analysis will make use of this viewpoint in Ch. 2.2.1. Our main result in this

subsection is the following.

Theorem 2.2. The reach set (1.30) with X0 ≡ {x0} is a zonoid.
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To appreciate Theorem 2.2 via the limiting viewpoint mentioned before, let us

write

X ◻t ({x0}) = exp(tA)x0 +
m

∑
j=1
νjζj(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
first term

+̇
m

∑
j=1

lim
n→∞

n

∑
i=0

t

n
µjξj(ti) [−1,1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
second term

, (2.13)

where all summation symbols denote Minkowski sums. The first term in (2.13) denotes

a translation. In the second term, the outer summation over index j arises by writing

the Cartesian product (2.8) as the Minkowski sumX1+̇⋯+̇Xm. Furthermore, uniformly

discretizing [0, t] into n subintervals [(i−1)t/n, it/n), i = 1,⋯, n, we write ∫
t

0 exp((t−

s)Aj)bj[−µj, µj]ds (or its equivalent ∫
t

0 exp(sAj)bj[−µj, µj]ds) as the limit of the

Minkowski sum over index i. Geometrically, the innermost summands in the second

term denote non-uniformly rotated and scaled line intervals in Rj . In other words, the

second term in (2.13) is a Minkowski sum of m sets, each of these sets being the limit

of a sequence of sets {Zn} comprising of zonotopes

Zn ∶=
n

∑
i=0

t

n
µjξj(ti) [−1,1] ,

which are the Minkowski sum of n+1 line segments. Since limn→∞Zn is a zonoid, the

second term in (2.13) is a Minkowski sum of m zonoids, and is therefore a zonoid [74,

Thm. 1.5]. The entire right hand side of (2.13), then, is translation of a zonoid, and

hence a zonoid.

Remark 2.1. If X0 ⊂ Rd is not singleton, but instead a zonoid, then X ◻t (X0) is still a

(translated) zonoid. To see this, notice from (2.2) and (2.10) that

X ◻t (X0) = exp(tA)X0 +̇ X
◻
t ({0}) , (2.14)

and that exp(tA)X0, being linear image of a zonoid, is a zonoid [74, Lemma 1.4]. Thus,

(2.14) being Minkowski sum of zonoids, is a zonoid too [74, Thm. 1.5], up to translation.

In the following, we derive formulae for the boundary (Proposition 2.3 and Ch.
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2.1.3) and volume (Theorem 2.6) of the integrator reach set with X0 = {x0} (singleton

set). From (2.14), it is clear that one cannot expect similar closed form formulae for

arbitrary compact (or even arbitrary compact convex) X0. In this sense, our closed

form formulae are as general as one might hope for. For a specific non-singleton X0,

one can use these formulae to first derive the boundary (resp. volume) of X ◻t ({0}),

and then use (2.14) to get numerical estimates for the boundary (resp. volume) of

X ◻t (X0) (cf. Remark 2.2).

Parametric representation of ∂X ◻t ({x0})

In theorem 2.3 below, we derive a parametric representation of xbdy ∈ ∂X ◻t ({x0}),

the boundary of the reach set. Then we use this representation to establish semialge-

braicity of X ◻t ({x0}) in Theorem 2.5 that follows.

Theorem 2.3. For relative degree vector r = (r1,⋯, rm)⊺, and fixed x0 ∈ Rd comprising

of subvectors xj0 ∈ Rrj where j ∈ JmK, consider the reach set (2.2) with singleton X0 ≡

{x0} and compact U ⊂ Rm. For j ∈ JmK, define µ1,⋯, µm and ν1,⋯, νm as in (2.3)-(2.4).

Let the indicator function 1k≤ℓ ∶= 1 for k ≤ ℓ, and ∶= 0 otherwise. Then the components of

xbdy =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

xbdy
1

xbdy
2

⋮

xbdy
m

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ ∂X ◻t ({x0}) , x
bdy
j ∈ Rrj , j ∈ JmK,

admit parametric representation in terms of the parameters σj = (σ1, σ2,⋯, σrj−1) ∈

Wjt ⊂ Rrj−1 whereWjt is the Weyl chamber:

Wjt ∶= {σ ∈ Rn−1 ∣ 0 ≤ σ1 ≤ σ2 ≤ ⋯ ≤ σrj−1 ≤ t}. (2.15)
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This parameterization is given by

xbdy
j,k (σ) =

rj

∑
ℓ=1

1k≤ℓ
tℓ−k

(ℓ − k)!
xj0,ℓ +

νj trj−k+1

(rj − k + 1)!

±
µj

(rj − k + 1)!
{(−1)rj−1 trj−k+1 + 2

rj−1

∑
q=1
(−1)q+1σ

rj−k+1
q }, (2.16)

wherexbdy
j,k (σj) denotes the kth component of the jth subvectorxbdy

j for k ∈ JrjK archived

for parameter vector σj , and xj0,ℓ is the ℓ-th component of the initial state xj0.

The proof of the above is deferred to Appendix B.3. The following is a consequence

of the ± appearing in (2.16).

Corollary 2.4. The single input integrator reach setXjt ({x0}) ⊂ Rrj has two bounding

surfaces for each j ∈ JmK. In other words, there exist pupper
j , plower

j ∶ Rrj ↦ R such that

Xjt ({x0}) = {x ∈ Rrj ∣ pupper
j (x) ≤ 0, plower

j (x) ≤ 0},

with boundary ∂Xjt ({x0}) = {x ∈ Rrj ∣ pupper
j (x) = 0} ∪ {x ∈ Rrj ∣ plower

j (x) = 0}.

During the proof of Theorem 2.5 stated below, it will turn out that in fact pupper
j ,

plower
j ∈ R [x1,⋯, xrj] for all j ∈ JmK. In words, pupper

j , plower
j are real algebraic hyper-

surfaces for all j ∈ JmK.

Let us exemplify the parameterization (2.16) for the case r = (r1, r2)⊺ = (2,3)⊺. In

this case,

⎛
⎜
⎜
⎜
⎜
⎜
⎝

xbdy
1,1 (σ1)

xbdy
1,1 (σ1)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

x10,1 + tx10,2 + ν1(t2/2) ± µ1 (σ2
1 − t

2/2)

x10,2 + ν1t ± µ1 (2σ1 − t)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (2.17)
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and4

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

xbdy
2,1 (σ2)

xbdy
2,2 (σ2)

xbdy
2,3 (σ2)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x20,1 + tx20,2 + (t2/2)x20,3

+ν2(t3/6) ± µ2 (t3/6 + 2σ3
1/6 − 2σ

3
2/6)

x20,2 + tx20,3 + ν2(t2/2) ± µ2 (t2/2

+2σ2
1/2 − 2σ

2
2/2)

x20,3 + ν2t ± µ2 (t + 2σ1 − 2σ2)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.18)

In (2.17), taking plus (resp. minus) signs in each of component gives the parametric

representation of the curve pupper
1 = 0 (resp. plower

1 = 0). These curves are as in [78, Fig.

1(a)], and their union defines ∂X1t. We note that the parameterization (2.17) appeared

in [79, p. 111].

Likewise, in (2.18), taking plus (resp. minus) signs in each of component gives the

parametric representation of the surface pupper
2 (x) = 0 (resp. plower

2 = 0). The resulting

set X2t is the triple integrator reach set, and is shown in Fig. 2.1.

2.1.2 X ◻t ({x0}) is semialgebraic

A set in Rd is called basic semialgebraic if it can be written as a finite conjunction of

polynomial inequalities and equalities, the polynomials being in R [x1,⋯, xd]. Finite

union of basic semialgebraic sets is called a semialgebraic set. A semialgebraic set need

not be basic semialgebriac; see e.g., [80, Example 2.2].

Semialgebraic sets are closed under finitely many unions and intersections, com-

plement, topological closure, polynomial mapping including projection [81, 82], and

Cartesian product. For details on semialgebraic sets, we refer the readers to [83, Ch.

2]; see [84, Appendix A.4.4] for a short summary.

4As a reminder, We use bold-faced small letters for vectors and bold-faced capital letters for matrices.
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Now we come to the main result of this subsection.

Theorem 2.5. The reach set (2.2) with X0 ≡ {x0} is semialgebraic.

Let us illustrate the bounding curves and surfaces for (2.17) and (2.18) respectively,

in the implicit form. Eliminating the parameter σ1 from (2.17) reveals that pupper
1 , plower

1

are parabolas. In particular,

pupper
1 (xbdy

1,1 ,x
bdy
1,2 ) =

1

4

⎛

⎝

xbdy
1,2 −x10,2 − ν1t

µ1

+ t
⎞

⎠

2

−
xbdy
1,1 −x10,1 − tx10,2 − ν1

t2

2

µ1

−
t2

2
,

(2.19a)

plower
1 (xbdy

1,1 ,x
bdy
1,2 ) = −

1

4

⎛

⎝
−
xbdy
1,2 −x10,2 − ν1t

µ1

+ t
⎞

⎠

2

−
xbdy
1,1 −x10,1 − tx10,2 − ν1

t2

2

µ1

+
t2

2
.

(2.19b)

Similarly, eliminating the parameters σ1, σ2 from (2.18) reveals that pupper
2 , plower

2 are

quartic polynomials. In particular,

pupper
2 (xbdy

2,1 ,x
bdy
2,2 ,x

bdy
2,3 )) =

1

16

⎛

⎝

xbdy
2,3 −x20,3 − ν2t

µ2

− t
⎞

⎠

4

+ 3
⎛

⎝

xbdy
2,2 −x20,2 − tx20,3 − ν2

t2

2

µ2

−
t2

2

⎞

⎠

2

− 6
⎛

⎝

xbdy
2,1 −x20,1 − tx20,2 −

t2

2 x20,3 − ν2
t3

6

µ2

−
t3

6

⎞

⎠
×
⎛

⎝

xbdy
2,3 −x20,3 − ν2t

µ2

− t
⎞

⎠
, (2.20)

and the formula for plower
2 (xbdy

2,1 ,x
bdy
2,2 ,x

bdy
2,3 ) follows mutatis mutandis.

A natural question is whether one can generalize the implicitizations as in (2.19),

(2.20) to arbitrary state dimensions. This is what we address next.

2.1.3 Implicitization of ∂X ◻t ({x0})

To derive the implicit equations for the bounding algebraic hypersurfaces pupper
j , plower

j

∈ R [x1,⋯, xrj] for all j ∈ JmK, we need to eliminate the parameters (σ1, σ2,⋯, σrj−1)
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from (2.16). For this purpose, it is helpful to write (2.16) succinctly as

ρ±j,k =
rj−1

∑
q=1
(−1)q+1 σ

rj−k+1
q , k ∈ JrjK, (2.21)

where

ρ±j,k ∶=
(rj − k + 1)!

2µj

{xbdy
j,k −

rj

∑
ℓ=1

1k≤ℓ
tℓ−k

(ℓ − k)!
xj0,ℓ} −

1

2
{± (−1)rj−1 trj−k+1 +

νj
µj

trj−k+1}.

(2.22)

To simplify the rather unpleasant notation ρ±j,k, we will only address the m = 1 case.

In (2.21), this allows us to replace rj by d, and to drop the subscript j from the ρ’s. This

does not invite any loss of generality in terms of implicitization since post derivation,

we can replaced by rj to recover the respective pj’s.

With slight abuse of notation, we will also drop the superscript ± from the ρ’s in

(2.21). Recall that the plus (resp. minus) superscript in the ρ’s indicates pupper
j (resp.

plower
j ). From (2.22), it is clear that in either case, the ρj,k is affine in xbdy

j,k , which is

the kth coordinate of the boundary point for the jth block. Importantly, for k ∈ JrjK,

the quantity ρj,k does not depend on any other component of the boundary point

than the kth component. Again, the plus-minus superscripts can be added back post

implicitization. Thus, the notationally simplified version of (2.21) that suffices for

implicitization, is

ρk =
d−1
∑
q=1
(−1)q+1 σd−k+1

q , k = 1,⋯, d, (2.23)

which is a system ofd homogeneous polynomials in variables (σ1, σ2,⋯, σd−1). The ob-

jective is to derive the implicitized polynomial ℘(ρ1, ρ2,⋯, ρd) associated with (2.23).

When d = 2, the parameterization (2.23) becomes

ρ1 = σ
2
1, ρ2 = σ1,
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and we get degree 2 implicitized polynomial

℘(ρ1, ρ2) = ρ
2
2 − ρ1 = 0. (2.24)

For k = 1,2, substituting for the ρ1, ρ2 in (2.24) from (2.22) with appropriate plus-minus

signs recovers (2.19). When d = 3, the parameterization (2.23) becomes

ρ1 = σ
3
1 − σ

3
2, ρ2 = σ

2
1 − σ

2
2, ρ3 = σ1 − σ2,

and using elementary algebra, we get degree 4 implicitized polynomial

℘(ρ1, ρ2, ρ3) = ρ
4
3 − 4ρ3ρ1 + 3ρ

2
2 = 0. (2.25)

As before, for k = 1,2,3, substituting for the ρ1, ρ2, ρ3 in (2.25) from (2.22) with appro-

priate plus-minus signs recovers (2.20). However, for d = 4 or higher, it is practically

impossible to derive the implicitization via brute force algebra.

A principled way to implicitize (2.23) is due to G. Zaimi [85], and starts with defin-

ing λk ∶= ρd−k+1 for k = 1,⋯, d. Introduce the sequence Ak(σ1, σ2, . . . , σd−1) via the

generating function (see e.g., [86, Ch. 1])

F (τ) = ∑
k≥0

Akτ
k =
(1 − σ1τ)(1 − σ3τ)⋯

(1 − σ2τ)(1 − σ4τ)⋯
. (2.26)

Taking the logarithmic derivative of (2.26), and then using the generating functions

(1 − σqτ)−1 = ∑k≥0 (σqτ)
k for all q = 1,⋯, d − 1, yields

F ′(τ)

F (τ)
= −σ1∑

k≥0
(σ1τ)

k
+ σ2∑

k≥0
(σ2τ)

k
− σ3∑

k≥0
(σ3τ)

k
+⋯. (2.27)

Integrating (2.27) with respect to τ , we obtain

F (τ) = exp(−
d

∑
k=1

λk
k
τ k) . (2.28)

Equating (2.26) and (2.28) allows us to compute Ak as a degree k polynomial of the

λ’s. On the other hand, since the generating function (2.26) is a rational function

40



Integrator Reach Sets with Time Invariant Set-Valued Uncertainties/Taxonomy and
Boundary 2.1

with denominator polynomial of degree δ ∶= ⌊d−12 ⌋, the following Hankel determinant

vanishes5

det[Ad−2δ+i+j]
δ
i,j=0 = 0. (2.29)

Substituting the Ak’s obtained as degree k polynomials of the λ’s into (2.29) gives an

implicit polynomial in indeterminate (λ1,⋯, λd) of degree (δ + 1)(d − δ). Finally, re-

verting back the λ’s to the ρ’s result in the desired implicit polynomial ℘(ρ1, ρ2,⋯, ρd),

which is also of degree (δ + 1)(d − δ).

For instance, when d = 3, the relation (2.29) becomes

det

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 A2

A2 A3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎠

= 0. (2.30)

In this case, equating (2.26) and (2.28) gives

A1 = −λ1, A2 =
1

2
λ21 −

1

2
λ2, A3 = −

1

6
λ31 +

1

2
λ1λ2 −

1

3
λ3.

Substituting these back in (2.30) yields the quartic polynomial λ41 + 3λ
2
2 − 4λ3λ1 = 0,

which under the mapping (λ1, λ2, λ3) ↦ (ρ3, ρ2, ρ1) recovers (2.25), and thus (2.20).

In summary, (2.29) is the desired implicitization of the bounding hypersurfaces of

the single input integrator reach set (up to the change of variables). The Cartesian

product of these implicit hypersurfaces gives the implicitization in the multi input

case.

2.1.4 Polar dual of X ◻t ({x0})

From convex geometry standpoint, it is natural to ask what kind of characterization

is possible for the polar dual (see Ch. 1.6.4) of the integrator reach set X or X ◻. We

know in general that X ○ will be compact convex. Depending on the choice of x0,U

5This result goes back to Kronecker [87]. See also [88, p. 5, Lemma III].
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and t, the set X ({x0}, t) may not contain the origin, and thus the bipolar

(Xt ({x0}))
○○
= closure (conv (Xt ({x0}) ∪ {0})) ,

that is, we do not have the involution in general.

Furthermore, since Xt ({x0}) is semialgebraic from Ch. 2.1.2, so must be its polar

dual (Xt ({x0}))
○; see e.g., [84, Ch. 5, Sec. 5.2.2].

We also know from Ch. 2.1.1 that X ({x0}, t) is a zonoid. However, the polar of a

zonoid is not a zonoid in general [89, 90], and we should not expect (X ({x0}, t))
○ to

be one. Fig. 2.2 shows X ({x0}, t) and (X ({x0}, t))
○ for the double integrator (d = 2,

m = 1).

2.1.5 Summary of taxonomy

So far we explained that the compact convex set X ◻t ({x0}) is semialgebraic, and a

translated zonoid. Two well-known subclasses of convex semialgebraic sets are the

spectrahedra and the spectrahedral shadows. The spectrahedra, a.k.a. linear matrix in-

equality (LMI) representable sets are affine slices of the symmetric positive semidefinite

cone. The spectrahedral shadows, a.k.a. lifted LMI or semidefinite representable sets are

the projections of spectrahedra. The spectrahedral shadows subsume the class of spec-

trahedra; e.g., the set {(x1, x2) ∈ R2 ∣ x41 + x
4
2 ≤ 1} is a spectrahedral shadow but not a

spectrahedron. The polar duals of spectrahedra are spectrahedral shadows [84, Ch. 5,

Sec. 5.5].

We note that the integrator reach set is not a spectrahedron. To see this, we resort

to the contrapositive of [91, Thm. 3.1]. Specifically, the number of intersections made

by a generic line passing through an interior point of the d-dimensional integrator

reach set with its real algebraic boundary is not equal to the degree of the bounding

algebraic hypersurfaces, the latter we know from Ch. 2.1.3 to be (⌊d−12 ⌋+1)(d−⌊
d−1
2 ⌋).

42



Integrator Reach Sets with Time Invariant Set-Valued Uncertainties/Taxonomy and
Boundary 2.1

(a) Xt with x0 = (0.05,0.05)⊺. (b) X ○t with x0 = (0.05,0.05)⊺.

(c) Xt with x0 = (0.5,0.5)⊺. (d) X ○t with x0 = (0.5,0.5)⊺.

Figure 2.2: The double integrator reach set Xt ({x0}) and its polar dual (Xt ({x0}))○ for
different x0 at t = 2, U ≡ [α,β] = [−1,1]. The curves pupper, plower defining the reach set
boundary (see Corollary 2.4 and the discussion thereafter) are shown too.
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(a) Real algebraic curves pupper, plower for
the double integrator.

(b) Real algebraic surfaces pupper, plower for
the triple integrator.

Figure 2.3: The bounding polynomials for the double and triple integrator reach sets at t = 0.5
with x0 = 0 and µ = 1.

In other words, the integrator reach set is not rigidly convex, see [91, Sec. 3.1 and 3.2].

Fig. 2.3 helps visualize this form = 1. From Fig. 2.3a, we observe that a generic line for

d = 2 has 4 intersections with the bounding real algebraic curves whereas from (2.19),

we know that pupper, plower are degree 2 polynomials. Likewise, Fig. 2.3b reveals that

a generic line for d = 3 has 6 intersections with the bounding real algebraic surfaces

whereas from (2.20), we know that the polynomials pupper, plower in this case, are of

degree 4.

Could the integrator reach set be spectrahedral shadow? Some calculations show

that sufficient conditions as in [92] do not seem to hold. However, this remains far from

conclusive. We summarize our taxonomy results in Fig. 2.4; the highlighted region

shows where the integrator reach set belongs. To answer whether this highlighted

region can be further narrowed down, seems significantly more challenging.
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Rd Compact

and convex

Semialgebraic

Zonoids

Spectrahedra

(lifted LMI representable)

(LMI representable)

Spectrahedral shadow

Figure 2.4: The summary of the taxonomy for the integrator reach set.

2.2 Size of X ◻t ({x0})with Time Invariant Set-Valued

Inputs

We next quantify the “size" of the reach set X ◻t ({x0}) by computing two function-

als: its d-dimensional volume (Ch. 2.2.1), and its diameter or maximum width (Ch.

2.2.2). In Sections 2.2.3 and 2.2.4, we discuss how these functionals scale with the state

dimension d.

2.2.1 Volume

The following result gives the volume formula for the integrator reach set.

Theorem 2.6. Fix x0 ∈ Rd, let X0 ≡ {x0} and compact U ⊂ Rm. Consider the in-

tegrator dynamics (1.6)-(1.7) with d states, m inputs, and relative degree vector r =

(r1, r2, ..., rm)⊺. Define µ1,⋯, µm as in (2.3)-(2.4). Then the d-dimensional volume of
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Figure 2.5: The integrator reach set X◻t=4 ({x0}) with m = 2, r = (2,1)⊺, x0 = (1,1,0)⊺,
[α1, β1] = [−5,5], [α2, β2] = [−3,3].

the integrator reach set (2.2) at time t > 0 is

vol (X ◻t ({x0})) = 2
d

m

∏
j=1
{µ

rj
j t

rj(rj+1)/2
rj−1

∏
k=1

k!

(2k + 1)!
}. (2.31)

For a simple illustration of Theorem 2.6, consider d = 3, m = 2 with r = (2,1)⊺.

The corresponding reach set X ◻t ({x0}) at t = 4 is shown in Fig. 2.5 for x0 = (1,1,0)⊺,

U = [−5 × 5] × [−3,3]. Here µ1 = 5 and µ2 = 3.

This reach set, being a direct product of the double integrator reach set X1t (cf.

Fig. 2.2) and the single integrator reach set X2t = {x0,3}+̇[−µ2t, µ2t], is a cylinder6.

In [78], we explicitly derived that vol (X1t) =
2
3µ

2
1t

3, and therefore, the volume of this

6Here, the notation x0,3 stands for the third component of vector x0.
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cylindrical set must be equal to “height of the cylinder × cross sectional area", i.e.,

2µ2t ×
2

3
µ2
1t

3 =
4

3
µ2
1µ2t

4.

Indeed, a direct application of the formula (2.31) recovers the above expression.

Remark 2.2. If the initial set X0 is not singleton, then computing the volume of the

reach set (2.2) requires us to compute the volume of a Minkowski sum. Notice that

vol (exp(tA)X0) = ∣det (exp(tA)) ∣vol (X0) = exp (trace (tA))vol (X0)

= exp(
m

∑
j=1

trace (tAj))vol (X0) = vol (X0) ,

since from (1.7b), trace(Aj) = 0 for all j ∈ JmK. Therefore, combining (2.2), (2.31) with

the classical Brunn-Minkowski inequality, we have a bound

(vol (X (X0, t)))
1/d
≥ (vol (X0))

1/d
+ 2(

m

∏
j=1
{µ

rj
j t

rj(rj+1)/2
rj−1

∏
k=1

k!

(2k + 1)!
})

1/d

.

The above bound holds for any compact X0 ⊂ Rd, not necessarily convex.

2.2.2 Diameter

We now focus on another measure of the “size" of the integrator reach set, namely its

diameter, or maximal width.

By definition, the width [47, p. 42] of the reach set X ◻t (X0), is

wX◻t ({x0})(η) ∶= hX◻t (X0) (η) + hX◻t (X0) (−η) , (2.32)

where η ∈ Sd−1 (the unit sphere embedded in Rd), and the support function hX◻t (X0) (⋅)

is given by (2.10). In other words, (2.32) gives the width of the reach set in the direction

η.
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For singleton X0 ≡ {x0}, combining (2.10) and (2.32), we have

wX◻t ({x0})(η) = ∫
t

0
{∣⟨η,ξ(t − s)⟩∣ + ∣⟨−η,ξ(t − s)⟩∣} ds = 2∫

t

0
∣⟨η,ξ(t − s)⟩∣ ds,

(2.33)

where the last equality follows from the fact that ξ(t − s) in (2.5) is component-wise

nonnegative for all 0 ≤ s ≤ t.

The diameter of the reach set is its maximal width:

diam (Xt (X0)) ∶= max
η∈Sd−1

wXt(X0)(η). (2.34)

Notice that (2.33) is a convex function of η; see e.g., [93, p. 79]. Thus, computing

(2.34) amounts to maximizing a convex function over the unit sphere. We next derive

a closed form expression for (2.34).

Theorem 2.7. Fix x0 ∈ Rd, let X0 ≡ {x0} and compact U ⊂ Rm. Consider the in-

tegrator dynamics (1.6)-(1.7) with d states, m inputs, and relative degree vector r =

(r1, r2, ..., rm)⊺. Define µ1,⋯, µm as in (2.3)-(2.4). The diameter of the integrator reach

set (2.2) at time t > 0 is

diam (X ◻t ({x0})) = 2 ∥ ζ(t) ∥2 = 2(
m

∑
j=1
µ2
j∥ζj∥

2)

1/2

, (2.35)

wherein ζ(t) is defined as in Ch. 1.6.3, and the ith component of the subvector ζj(t) ∈ Rrj

is

∫

t

0

σ(rj−i)

(rj − i)!
ds =

trj−i+1

(rj − i + 1)!
, i = 1,2,⋯, rj. (2.36)

To illustrate Theorem 2.7, consider the triple integrator with d = 3 and m = 1. In

this case, U = [α,β], µ ∶= (β − α)/2, and we can parameterize the unit vector η ∈ S2
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as

η ≡

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sin θ cosϕ

sin θ sinϕ

cos θ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, θ ∈ [0, π], ϕ ∈ [0,2π).

Thus (2.34) reduces to

2µ max
θ∈[0,π]
ϕ∈[0,2π)

∫

t

0
∣s2 (sin θ cosϕ) /2 + s sin θ sinϕ + cos θ∣ ds.

Furthermore, ζ(t) = (t3/6, t2/2, t)⊺, and we obtain

ηmax =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sin θmax sinϕmax

sin θmax cosϕmax

cos θmax

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
±1

√
t4 + 9t2 + 36

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t2

3t

6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where ±means that either all components are plus or all minus. Thus, the maximizing

tuples (ϕmax, θmax) ∈ [0, π] × [0,2π) are given by

(ϕmax, θmax)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(arctan (3/t) ,arccos (6/
√
t4 + 9t2 + 36)) ,

(π + arctan (3/t) ,arccos (−6/
√
t4 + 9t2 + 36)) .

(2.37)

Hence, the diameter of the triple integrator reach set at time t is equal to (µt/3)

×
√
t4 + 9t2 + 36.

Fig. 2.6 shows how the width of the integrator reach set for d = 3, m = 1 varies

over (ϕ, θ) ∈ [0, π] × [0,2π), which parameterize the unit sphere S2. The location of

the maximizers are given by (2.37), and are depicted in Fig. 2.6 via filled black circle

and filled black square.

For a visualization of the width and diameter for the double integrator, see [78, Fig.

2].

We now turn to investigate how the volume and the diameter of the integrator

reach set (2.2) scale with time and the state dimension. For clarity, we focus on the
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Figure 2.6: The width (2.33) for the single input triple integrator reach set X◻t=2 ({x0}) is
shown as a function of (ϕ, θ) ∈ [0, π] × [0,2π), which parameterize the unit sphere S2. Here
U = [−1,1] and hence µ = 1. The darker (resp. lighter) hues correspond to the higher (resp.
lower) widths. The filled black circle and the filled black square correspond to the maximizers
(ϕmax, θmax) given by (2.37).

single input case.

2.2.3 Scaling of the volume

Fig. 2.7 plots the volume (2.31) for the single input (m = 1) case against time t for

varying state space dimension d. In this case, U = [α,β], and therefore µ ∶= (β −α)/2.

As expected, the volume of the reach set increases with time for any fixed d.

Let us now focus on the scaling of the volume with respect to the state dimension

d. Form = 1, using the known asymptotic [94] for∏d−1
k=1(2k+1)!/k!, we find the d→∞
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asymptotic for the volume:

vol (X ◻t ({x0})) ∼ (2µ)
dtd(d+1)/2

exp (32d
2 + 1

12
)

c × 2(2d
2− 1

12
) d(d

2+ 1
12
)
,

where c ≈ 1.2824⋯ is the Glaisher-Kinkelin constant [95, Sec. 2.15].

Fig. 2.7 shows that when t is small, the volume of the larger dimensional reach set

stays lower than its smaller dimensional counterpart. In particular, given two state

space dimensions d, δ with d > δ, and all other parameters kept fixed, there exists a

critical time tcr when the volume of the d dimensional reach set overtakes that of the

δ dimensional reach set.

For any d > δ, the critical time tcr satisfies

vol (X ◻tcr
({x0}) ⊂ Rd)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d dimensional volume

= vol (X ◻tcr
({x0}) ⊂ Rδ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δ dimensional volume

,

which together with (2.31) yields

tcr = (2µ)
− 2

d+δ+1 (
d−1
∏
k=δ

(2k + 1)!

k!
)

2
(d−δ)(d+δ+1)

. (2.38)

In particular, for δ = d − 1, we get

tcr = (
1

2µ

(2d − 1)!

(d − 1)!
)

1/d

, d = 2,3,⋯. (2.39)

For instance, when µ = 1, d = 3, δ = 2, we have tcr = (30)1/3 ≈ 3.1072. When µ = 1,

d = 4, δ = 3, we have tcr = (420)1/4 ≈ 4.5270. The dashed vertical lines in Fig. 2.7 show

the critical times given by (2.39).

Applying Stirling’s approximation n! ∼
√
2πn(n/e)n, we obtain the d→∞ asymp-

totic for (2.39): tcr ∼
4
e d µ

− 1
d 2−

3
2d , where ∼ denotes asymptotic equivalence [96, Ch.

1.4], and e is the Euler number.
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Figure 2.7: For single input (m = 1), the volume of the integrator reach set X◻t ({x0})
computed from (2.31) is plotted against time t for state dimensions d = 2,3,⋯,6 with
U = [α,β] = [−1,1], µ ∶= (β − α)/2 = 1. The dashed vertical lines show the critical times
given by (2.39).

2.2.4 Scaling of the diameter

Fig. 2.8 plots the diameter of (2.35) for the single input (m = 1) case against time t for

varying state space dimension d. As earlier, U = [α,β], µ ∶= (β − α)/2. As expected,

the diameter of the reach set increases with time for any fixed d.

As d → ∞, the diameter approaches a limiting curve shown by the dotted line in

Fig. 2.8. To derive this limiting curve, notice that for m = 1, the formula (2.35) gives

lim
d→∞

diam (X ◻t ({x0})) = lim
d→∞

2µ

¿
Á
ÁÀ

d

∑
j=1
(
tj

j!
)

2

. (2.40)

We write the partial sum

d

∑
j=1
(
tj

j!
)

2

=
∞
∑
j=1
(
tj

j!
)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶S1

−
∞
∑

j=d+1
(
tj

j!
)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶S2

, (2.41)
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and by ratio test, note that both the sums S1, S2 converge. In particular, S1 converges

to I0(2t)−1, where I0(⋅) is the zeroth order modified Bessel function of the first kind.

This follows from the very definition of the νth order modified Bessel function of the

first kind, given by

Iν(z) ∶= (z/2)
ν
∞
∑
j=0

(z2/4)
j

j! Γ (ν + j + 1)
, ν ∈ R,

where Γ(⋅) denotes the Gamma function.

On the other hand, using the definition of the generalized hypergeometric func-

tion7

1F2 (a1; b1, b2; z) ∶=
∞
∑
n=0

(a1)n
(b1)n(b2)n

zn

n!
,

we find that

S2 =
t2(d+1) 1F2 (1;d + 2, d + 2; t2)

((d + 1)!)
2 .

Therefore, (2.41) evaluates to

S1−S2 = I0(2t) − 1 −
t2(d+1) 1F2 (1;d + 2, d + 2; t2)

((d + 1)!)
2 . (2.42)

Combining (2.40), (2.41), (2.42), and using the continuity of the square root function

on [0,∞), we deduce that

lim
d→∞

diam (X ◻t ({x0})) = 2µ
√

lim
d→∞
(S1 − S2) = 2µ

√
I0(2t) − 1. (2.43)

That limd→∞ S2 exists and equals to zero, follows from (2.41) and the continuity of the

square:

lim
d→∞

S2 = lim
j→∞
(
tj

j!
)

2

= ( lim
j→∞

tj

j!
)

2

= 0.

To see the last equality, let aj ∶= tj/j!. By the ratio test, lim sup
j→∞

∣aj+1/aj ∣ = lim
j→∞

t/j =

0 < 1, hence {aj} is a Cauchy sequence and lim
j→∞

aj = 0.

7Here, (⋅)n denotes the Pochhammer symbol [97, p. 256] or rising factorial.

53



Integrator Reach Sets with Time Invariant Set-Valued Uncertainties/Benchmarking
Over-approximations of Integrator Reach Sets 2.3

Figure 2.8: For single input (m = 1), the diameter of the integrator reach set Xt ({x0})
computed from (2.35) is plotted against time t for state dimensions d = 2,3,⋯,6 with
U = [α,β] = [−1,1], µ ∶= (β−α)/2 = 1. As d→∞, the diameter converges to 2µ

√
I0(2t) − 1,

shown by the dotted line.

The dotted line in Fig. 2.8 is the curve (2.43).

2.3 Benchmarking Over-approximations of Integra-

tor Reach Sets

In practice, a standard approach for safety and performance verification is to com-

pute “tight" over-approximation of the reach sets of the underlying controlled dy-

namical system. Several numerical toolboxes such as [35, 70] are available which

over-approximate the reach sets using simple geometric shapes such as zonotopes

and ellipsoids. Depending on the interpretation of the qualifier “tight", different opti-

mization problems ensue, e.g., minimum volume outer-approximation [98–105].
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.

1

Figure 2.9: (Top) Zonotopic over-approximations of the double integrator reach sets; (bottom)
the ratio of the volume of the single input integrator reach set Xt and that of its zonotopic
over-approximation Xt,approx for d = 2,3,4, plotted against time t ∈ [0,1]. The results are
computed using the CORA toolbox with µ = 1, X0 = {0}.

One potential application of our results in Ch. 2.2 is to help quantify the conser-

vatism in different over-approximation algorithms by taking the integrator reach set

as a benchmark case. For instance, Fig. 2.9 shows the conservatism in zonotopic

over-approximations Xt,approx of the single input integrator reach sets Xt ({x0}) ⊆

Xt,approx({0}) for d = 2,3,4 with 0 ≤ t ≤ 1 and µ = 1, computed using the CORA

toolbox [36, 70]. To quantify the conservatism, we used the volume formula (2.31) for

computing the ratio of the volumes vol(Xt)/vol(Xt,approx) ∈ [0,1]. The results shown

in Fig. 2.9 were obtained by setting the zonotope order 50 in the CORA toolbox, which

means that the number of zonotopic segments used by CORA for over-approximation
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Figure 2.10: (Top) Ellipsoidal over-approximations of the double integrator reach sets; (bot-
tom) the ratio of the volume (left) and diameter (right) of the single input integrator reach set
Xt and that of its ellipsoidal over-approximation Xt,approx for d = 2,3,4, plotted against time
t ∈ [0,1]. Two different ellipsoidal over-approximations are shown: one (in red) based on the
S procedure, and the other (in blue) obtained by scaling the maximum volume inner ellipsoid
(MVIE) of the intersection of a parameterized family of ellipsoids. The results are computed
for µ = 1, X0 = {0}.

was ≤ 50d. As expected, increasing the zonotope order improves the accuracy at the

expense of computational speed, but among the different dimensional volume ratio

curves, trends similar to Fig. 2.9 remain. It is possible [77, Thm. 1.1, 1.2] to compute

the optimal zonotope order as function of the desired approximation accuracy (i.e.,

desired Hausdorff distance from the zonoid).

For the numerical results shown in Fig. 2.9, we found the diameters of the over-

approximating zonotopes for d = 2,3,4, to be the same as that of the true diameters

given by (2.35) for all times.

Fig. 2.10 depicts the conservatism in ellipsoidal over-approximations Xt,approx of

the single input integrator reach sets Xt({0}) ⊆ Xt,approx({0}) for d = 2,3,4 with 0 ≤
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t ≤ 1 and µ = 1, following the algorithms in ellipsoidal toolbox [35]. Specifically, the

reach set at time t, is over-approximated by the intersection of a carefully constructed

parameterized family of ellipsoids E (q(t),Qℓi(t)(t)) defined as

{x ∈ Rd ∣ (x − q(t)) (Qℓi(t)(t))
−1
(x − q(t))

⊺
≤ 1},

for unit vectors ℓi(0) ∈ Rd, i = 1,⋯,N . The choice of ℓi(0) determines ℓi(t) ∶=

exp(−A⊺t)ℓi(0), which in turn parameterizes the d × d symmetric positive definite

shape matrix Qℓi(t)(t); we refer the readers to [106, Ch. 3.2], [79, Ch. 3] where the

corresponding evolution equations were derived using optimal control. The center

vectors q(t) ∈ Rd, and the shape matrices Qℓi(t)(t) for this parameterized family

of ellipsoids are constructed such that ∩Ni=1E (q(t),Qℓi(t)(t)) is guaranteed to be a

superset of the reach set at time t for any finite N , and for N →∞, recovers the reach

set at that time.

For the results shown in Fig. 2.10, we used N = 20 randomly chosen unit vec-

tors ℓi(0) ∈ Rd. Ideally, one would like to compute the (unique) minimum volume

outer ellipsoid (MVOE), a.k.a. the Löwner-John ellipsoid [107, 108] of the convex set

∩20i=1E (q(t),Qℓi(t)(t)), which is a semi-infinite programming problem [93, Ch. 8.4.1],

and has no known exact semidefinite programming (SDP) reformulation. We com-

puted two different relaxations of this problem: one based on the S procedure [109, Ch.

3.7.2], and the other by homothetic scaling of the maximum volume inner ellipsoid

(MVIE) [107, Thm. III] of the set ∩20i=1E (q(t),Qℓi(t)(t)). Both of these lead to solving

SDP problems, and both are guaranteed to contain the Löwner-John ellipsoid of the

intersection of the parameterized family of ellipsoids. These suboptimal (w.r.t. the

MVOE criterion) solutions, computed using cvx [110], are shown in Fig. 2.10.

Fig. 2.10 shows that the S procedure entail less conservatism compared to the

MVIE scaling, in terms of volume. While the volume ratio trends in Fig. 2.10 are
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similar to that observed in Fig. 2.9, the approximation quality are lower. In light of

the results in Ch. 2.1.1, this is not surprising: the integrator reach sets being zonoids

(i.e., Hausdorff limit of zonotopes), the zonotopic outer-approximations are expected

to perform better than other over-approximating shape primitives.

The main point here is that our results in Ch. 2.2 provide the ground truth for the

size of the integrator reach set, thereby help benchmarking the performance of reach

set approximation algorithms.

In the following section we discuss the geometry of integrator reachset when it is

subjected to time-varying compact set-valued uncertainties in input.
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3 | Integrator Reach Sets with Time
Varying Set-Valued Uncertainties

In this chapter, we generalize our results from Chap. 2 on the exact geometry

of the integrator reach sets for the case that the input u(t) ∈ U(t), where U(t) is a

compact set-valued trajectory. In contrast, the results in Ch. 2 assumed time-invariant

compact set-valued uncertainties, i.e., u(t) ∈ U where the compact set U is constant

w.r.t. time t.

Beyond intrinsic interests, these generalizations are motivated by applications in-

volving differentially flat nonlinear systems, as we elaborate in the ensuing Sections

4.2 and 4.3. In those Sections, we will highlight how computing the reach sets of

differentially flat systems and checking their intersections reduce to analogous ques-

tions in the Brunovsky normal coordinates with time-varying set-valued uncertainties

even when the original inputs have time-invariant set-valued uncertainties. Resolving

these questions, are made possible by our basic geometric results presented next.

3.1 Auxiliary Definitions

As in Ch. 2, we consider d dimensional integrator dynamics with m inputs and a

relative degree vector r = (r1,⋯, rm)⊺ ∈ Nm (i.e., an m× 1 vector of natural numbers)

where r1 +⋯ + rm = d. We let JmK ∶= {1,2,⋯,m}.

The integrator reach set Xt ⊂ Rd at time t starting from an initial set X0 ⊂ Rd,

subject to the integrator dynamics (1.6), is

X ◻t ({X0}) ∶= {x ∈ Rd ∣ ẋ = blkdiag (A1,⋯,Am)x+

blkdiag (b1,⋯,bm)u, x(0) ∈ X0, u(s) ∈ U(s) ⊂ Rm, for all s ∈ [0, t]},

(3.1)
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Where the input set

U(s) ∶= [α1(s), β1(s)] × [α2(s), β2(s)] × ⋯ × [αm(s), βm(s)] ⊂ Rm. (3.2)

As is well known, the reach set (3.1) is compact convex providedX0 is compact convex

(irrespective of whether the input sets U(.) are convex or not). In this dissertation, we

will need to discuss reach sets in different coordinates, and we will sometimes contract

the integrator reach set and the original reach set notations in (3.1) and (1.2) as Xt and

Zt, respectively to help avoid notational clutter. Following a similar logic as in 2.8, we

have Xt = X1t × X2t ×⋯ ×Xmt ≡ X1t +̇ X2t +̇ ⋯ +̇ Xmt.

For any s ∈ [0, t], and j ∈ JmK, define the vector-valued extremum trajectories

αj(s) ∶= min
u(s)∈U(s)

uj(s), βj(s) ∶= min
u(s)∈U(s)

uj(t), (3.3)

which are well-defined since U(.) is compact at all times. Also, for j ∈ JmK, let

µj(s) ∶=(βj(s) − αj(s))/2, νj(s) ∶=(βj(s) + αj(s))/2. (3.4)

Now we have

ξ(s) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

µ1(s)ξ1(s)

⋮

µm(s)ξm(s)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ξj(s) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

srj−1/(rj − 1)!

srj−2/(rj − 2)!

⋮

s

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.5)

Notice that the above definitions resemble the ones defined in (2.3)-(2.5), except that

the variables µ(.) and ν(.) in (3.4) are now trajectories instead of having constant

values over time.
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Now we can rewrite (3.1) as

X ◻t ({x0}) =
m

∏
j=1
{ exp(tAj)X0+̇ ∫

t

0
ξj(t − s) [αj(s), βj(s)]ds}. (3.6)

3.1.1 Support function

In the following theorem, we present the support function of the integrator reach set

under time-varying boxed valued input set (3.2)

Proposition 3.1. For compact convex X0 ⊂ Rd, and compact boxed-valued U(t) ⊂ Rm

as in (3.2), the support function of the reach set (3.1) is

hX◻t ({x0}) =
m

∑
j=1
{hXj0

(exp(tA⊺j )y)

+ ∫

t

0
[νj(s)⟨yj,ξ(t − s)⟩+µj(s) ∣⟨yj,ξj(t − s)⟩ ∣]} ds. (3.7)

The proof of Proposition 3.1 follows a similar logic as the proof of Theorem 2.1

given in Appendix B.1.

3.2 Size of X ◻t ({x0}) with Time Varying Set-Valued

Inputs

Next we discuss how to quantify the size of the reach set (3.1). Specifically, we show

how the volume and the diameter of X(x0, t) can be computed numerically using the

generalized parametric boundary formula (3.9). We will also provide an example to

demonstrate our numerical computation.
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3.2.1 Boundary of X ◻t with time varying set-valued inputs

The parametric equations describing the bounding surfaces of the integrator reachset

with boxed-valued uncertainty as in (3.2), X ◻t ({x0}), is presented in Proposition 3.2.

Proposition 3.2. Consider the integrator reach set (3.6) with time-varying range input

set (3.2) with relative degree vector r = (r1,⋯, rm)⊺, and fixed x0 ∈ Rd comprising of

subvectors xj0 ∈ Rrj where j ∈ JmK.

For k, ℓ ∈ N, let the indicator function 1k≤ℓ ∶= 1 for k ≤ ℓ, and ∶= 0 otherwise. Define

a function χj(t,x0) ∶ R>0 ×Rrj ↦ Rrj , component-wise given by

χj,ℓ ∶=

rj

∑
ℓ=1

1k≤ℓ
tℓ−k

(ℓ − k)!
xj0,ℓ, , for all ℓ ∈ JrjK, (3.8)

where xj0,ℓ denotes the ℓ-th component of the initial state xj0. Then, xbdy
j ∈ ∂Xjt ({xj0})

admits σ-parameterization:

xbdy
j (σj) = χ(t,xj0) + ∫

t

0
νj(s)ξj(t − s)ds ± ∫

σ1

0
µj(s)ξj(t − s)ds

∓ ∫

σ2

σ1

µj(s)ξj(t − s)ds ±⋯ ± (−1)
n
∫

t

σn−1

µj(s)ξ(t − s)ds.

(3.9)

The parameter vector σj = (σ1, σ2,⋯, σrj−1) ∈ Wjt ⊂ Rrj−1 where Wjt is the Weyl

chamber defined in (2.15), and the time varying trajectories µj , νj and ξj are given in

(3.4) and (3.5) respectively.

The proof of proposition 3.2 can be easily deducted from the proof of Theorem 2.3

given in Appendix B.3.

Without loss of generality, for better readability, in the rest of this section we

focus on a single input integrator reach set and simplify the notations by dropping

the subscript "j". The following interesting remarks are the direct consequence of

Proposition 3.2.

Remark 3.1. Each single input (m = 1) integrator reach set Xt (x0) ⊂ Rd has two
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bounding surfaces ∂X Upper and ∂X lower, with parametric representation

∂X (σ) ∶= ∂X upper(σ) ∪ ∂X lower(σ),

where σ ∈ Wt ⊂ Rd−1. The bounding hyper-surfaces ∂X upper(σ) and ∂X lower(σ) can be

obtained by taking the alternating sum in (3.9). For instance, if the third term of the sum

in RHS of (3.9) has plus rather than minus and alternating signs thereafter, we obtain

the ∂X upper(σ), and vice-versa.

Remark 3.2. From (3.9), we notice that the equations of the boundary still only depend

on the extremum curves α(s) and β(s) for 0 ≤ s ≤ t. However, unlike the case of time

independent input set U , the integrator reach setX ◻t is no longer in general semialgebraic

unless these extremum curves are polynomial at all times. Notice that the reach set (3.6)

is still a zonoid.

Remark 3.3. For each single input (m = 1) integrator reach set Xt ⊂ Rd, we say that a

subset of Wt ⊂ Rd−1 is “degenerate" if its d−1 dimensional measure equals to zero. Then,

for d > 2, any parameter vector from either of the degenerate sets

W0
t ∶= {σ ∈ Wt ∣ σ1 = 0}, (3.10a)

W t
t ∶= {σ ∈ Wt ∣ σd−1 = t}, (3.10b)

transforms (3.9) in dimension d into (3.9) of dimension d−1. Another degeneracy occurs

for parameter sets of the form

Wk
t ∶= {σ ∈ Wt∣ σi0 = σi1 = ⋯ = σik , k ∈ Jd − 2K

i0 < i1 < ⋯ < ik, and i0, i1,⋯, ik ∈ Jd − 1K}, (3.11)

for which (3.9) in dimension d will resemble (3.9) in dimension d − 2k + 2. The image of

this degenerate sets has zero measure and does not contribute to the area of ∂Xt. Let us

call the union of degenerate sets asWdgen
t = W0

t ∪W
1
t ∪W

2
t ∪⋯ ∪W

d−2
t ∪W t

t .
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Remark 3.4. The bounding hypersurfaces of a single input integrator reach set (m=1)

∂X upper and ∂X lower touch in the regions of parameter space created by (3.10). Specifi-

cally, ∂X upper with σ1 = 0 sweeps a hypersurface identical to ∂X lower with σn−1 = t, and

vice versa. For instance, in 3 dimensional case with zero initial conditions, when σ1 = 0

in the upper surface and σ2 = t in the lower surface, we get

xupper(σ) = ∫
t

0
ν(τ)ξ(t − τ)dτ − ∫

σ2

0
µ(τ)ξ(t − τ)dτ + ∫

T

σ2

µ(τ)ξ(t − τ)dσ,

xlower(σj) = ∫

t

0
ν(τ)ξ(t − τ)dτ − ∫

σ1

0
µ(τ)ξ(t − τ)dτ + ∫

T

σ1

µ(τ)ξ(t − τ)dτ,

both of which represent the same curve for 0 ≤ σ1 ≤ σ2 ≤ t.

3.2.2 Volume of X ◻t ({x0}) with time varying set-valued inputs

As discussed in earlier sections, having a computational handle on volume is help-

ful in providing ground truth to quantify the conservatism of numerical algorithms

which over-approximate the reach set via simpler geometric shapes such as variants

of ellipsoids [102,104,105,111,112] or variants of zonotopes [55,58,59,62,70,113,114].

Again, first consider the single input case (m=1). We start by noticing that each σ ∈

Wt assigns a pair of points (xupper,xlower) on ∂Xt, one on each bounding hypersurfaces

mentioned in Remark 3.1, i.e., xupper(σ) ∈ ∂X upper(σ) and xlower(σ) ∈ ∂X lower(σ).

Since Xt is convex, each x ∈ Xt can be written as a convex combination of two

points inXt. In the following, we show a stronger result: any point inXt can be written

as a convex combination of a pair (xupper,xlower) evaluated at the same parameter

σ ∈ Wt. This result will find use in volume computation (Thm. 3.2).

Theorem 3.1. For any x ∈ Xt, there exists (σ, λ) ∈ Wt × [0,1] such that

x = π(σ, λ) ∶= λxupper(σ) + (1 − λ)xlower(σ), (3.12)

i.e., the parametric map π ∶ Wt × [0,1] → Xt is surjective.
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The proof of theorem 3.1 is given in Appendix C.1.

Remark 3.5. We clarify here that (3.9) gives a parameterization of ∂Xt, while (3.12)

gives a parameterization of Xt.

Theorem 3.2. The n dimensional Lebesgue volume of the Single input integrator reach

set (m = 1) (3.6) at time t, is

voln (Xt ({x0})) = ∫

1

0
∫
Wt

∣det (Dπ)∣dσdλ (3.13)

where Dπ denotes the Jacobian of π in (3.12), and σ ∈ Wt as in (2.15). In particular,

∣det (Dπ)∣ = µ(σ1)µ(σ2)⋯µ(σd−1)∣(4λ − 2)
d−1∣×

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(t − σ1)d−1

(d − 1)!
⋯
(t − σd−1)d−1

(d − 1)!
ζ1(σ)

⋮ ⋮ ⋮ ⋮

(t − σ1) ⋯ (t − σd−1) ζd−1(σ)

1 ⋯ 1 ζd(σ)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

, (3.14)

where ζ(σ) ∶= xupper(σ) −xlower(σ).

The volume of the multi-input integrator reach set, denoted as X ◻t , is determined by

the product of the volumes of its individual constituent single-input integrator reach sets,

i.e., vol(X ◻t ) = ∏
m
j=1 vol(Xjt).

The proof of theorem 3.2 is given in Appendix C.2. In the upcoming chapter, we

will explore and showcase practical applications stemming from our results.

3.3 Recovering ∂X ◻t for Time Invariant U

In this section, we recover the parametric boundary of the integrator reach set X ◻t for

the time invariant input set given in (2.16), by specializing the parametric boundary

formula for the general time varying boxed valued input uncertainty derived in (3.9).
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Consider the support function expression in (3.7). For the time invariant input set

(2.1), we can rewrite the integral in the RHS of the support function expression (3.7)

as

∫

t

0
[νj(s)⟨yj,ξ(t − s)⟩+µj(s) ∣⟨yj,ξj(t − s)⟩ ∣]} ds (3.15)

= νj ∫
t

0
⟨yj,ξj(s)⟩ds + µj ∫

t

0
∣ ⟨yj,ξj(s)⟩ ∣ } ds. (3.16)

correspondingly, we can rewrite the parametric boundary (3.9) as

xbdy
j (σj) = χ(t,xj0) + νj ∫

t

0
ξj(s)ds ± µj ∫

σ1

0
ξj(s)ds

∓ µj ∫

σ2

σ1

ξj(s)ds ±⋯ ± (−1)
nµj ∫

t

σn−1

ξ(s)ds.

(3.17)

Notice that for the time invariant input set, the extremum trajectories αj , βj , are

constant at all times for j ∈ JmK. Therefore, we can factor νj and µj out of the integral

in the RHS of (3.17). Form (1.33) we have

ξj,k(s) =
srj−k

(rj − k)!
, for k ∈ JrjK, and j ∈ JmK.

Let xbdy
j,k denote the k component of xbdy

j . We simplify each term in the write hand side

of xbdy
j,k given in (3.17) as follows.

+ νj ∫
t

0
ξj,k(s)ds = +

νj trj−k+1

(rj − k + 1)!
, (3.18a)

± µj ∫

σ1

0
ξj,k(s)ds = ±

µjσ
rj−k+1
1

(rj − k + 1)!
, (3.18b)

± µj ∫

σi2

σi1

ξj(s)ds = ±
µj

(rj − k + 1)!
{σ

rj−k+1
i2

− σ
rj−k+1
i1

}, for 1 < i1 < i2 < rj − 1,

(3.18c)

± µj ∫

t

σrj−1

ξj(s)ds = ±
µj

(rj − k + 1)!
{trj−k+1 − σ

rj−k+1
rj−1 }. (3.18d)

By substituting equations (3.18) into (3.17), and also using (3.8), we recover the para-
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metric boundary formula for the time invariant input set given in (2.16)

xbdy
j,k (σ) =

rj

∑
ℓ=1

1k≤ℓ
tℓ−k

(ℓ − k)!
xj0,ℓ +

νj trj−k+1

(rj − k + 1)!

±
µj

(rj − k + 1)!
{(−1)rj−1 trj−k+1 + 2

rj−1

∑
q=1
(−1)q+1σ

rj−k+1
q }.
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4 | Applications
In this chapter, we leverage our results to precisely determine the reach set and the

volume of any controllable single-input LTI system. Subsequently, we demonstrate the

application of our results in detecting intersections among the reach sets of feedback

linearizable systems, and introduce a systematic procedure for learning the reach sets

of the same.

4.1 Exact Computation of LTI Reach Set

Motivated by safety and performance verification of controlled dynamical systems,

a vast body of works in systems-control literature have studied the problem of com-

puting or approximating the reach sets of linear control systems [1, 3, 55, 115–118] in

particular. See [6] for a recent survey on this broad topic.

In this section, we propose a new semi-analytical method to compute the reach set

of a controllable single input LTI system with known bounds on its input range.

We show (Ch. 4.1.1) how certain generalizations of our results form Chapters 3 and

2 (see also [78, 119, 120]) on the exact geometry (e.g., boundary, volume) of integrator

reach sets can enable computing the controllable LTI reach sets with bounded input.

Our results reveal that the controllable canonical form serves as a bridge to transfer

such geometric results from the integrator to the original state coordinates.

4.1.1 Brunovsky normal form and LTI reach set

Consider a controllable single input LTI system

ż = Ãz + b̃v, Ã ∈ Rd×d, b̃ ∈ Rd, vmin ≤ v(⋅) ≤ vmax (4.1)
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with state z ∈ Rd and input v ∈ R. For continuous bounded v, i.e., v(⋅) ∈ C ([0, t]) and

vmin ≤ v(⋅) ≤ vmax, define the LTI reach set

Zt ({z0}) ∶= {z(t) ∈ Rd ∣ (4.1), v(s) ∈ [vmin, vmax]∀s ∈ [0, t]}. (4.2)

Thanks to the Lyapunov convexity theorem [48,49,121,122], the reach set (4.2) is guar-

anteed to be compact, convex [71, Prop. 6.1], [3], and in particular, zonoids (Chapter

2).

In this work, we consider the case that vmin, vmax are constants, i.e., the LTI input

in (4.1) has time-invariant bounds.

Let q⊺ denote the last row of the inverse of its controllability matrix, and define

the nonsingular matrix

M ∶= (q Ã
⊺
q ⋯ (Ã

⊺
)d−1q)

⊺
. (4.3)

As is well-known [123, Sec. 6], the invertible linear map z ↦ x ∶= Mz transforms

(4.1) into a controllable canonical form

ẋ =Aconx + bv, (4.4)

where

Acon ∶=MÃM−1
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 ⋯ 0

0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ 1

−c0 −c1 −c2 ⋯ −cn−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, b ∶=Mb̃ = (0 0 ⋯ 0 1)
⊺
. (4.5)

In particular, Acon is a companion matrix (see e.g., [124, p. 195]) whose last row is in

terms of the (real) coefficients of the monic characteristic polynomial of Ã, given by

p(λ) ∶= λd + cd−1λ
d−1 +⋯ + c1λ + c0. (4.6)
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Letting c ∶= (c0, c1,⋯, cd−1)⊺, we can succinctly write Acon in (4.5) as

Acon =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0(d−1)×1 Id−1

−c⊺

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.7)

Defining a new input

u ∶= −⟨c,x⟩ + v (4.8)

further transforms (4.4) into the Brunovsky normal a.k.a. the nth order integrator

form with state x and input u, given by (1.6).

4.1.2 Semi-analytical algorithm

We propose to use the input correspondence (4.8) for explicitly computing (4.2) in two

steps:

step 1: explicitly compute the (boundary of the compact) integrator reach set Xt for

to-be-determined input range [α(s), β(s)] ∀s ∈ [0, t].

step 2: compute Zt ({z0}) =M
−1
Xt ({Mz0}).

For step 1, notice from (4.8) that even when the original control input range is

time invariant, i.e., vmin, vmax are constants, still the transformed input u has a time-

varying range [α(s), β(s)] ∀s ∈ [0, t]. This is because the input correspondence (4.8)

occurs via time-varying x. Notice that ∀s ∈ [0, t], the linear state dependence in (4.8)

allows us to write

α(s) = −⟨c, esAconMz0⟩ + Imin(s), (4.9a)

β(s) = −⟨c, esAconMz0⟩ + Imax(s), (4.9b)
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where

Imin(s) ∶= inf
v(⋅)∈C([0,s])

I(v), subject to vmin ≤ v(⋅) ≤ vmax, (4.10a)

Imax(s) ∶= sup
v(⋅)∈C([0,s])

I(v), subject to vmin ≤ v(⋅) ≤ vmax, (4.10b)

and

I(v) ∶= v(s) −∫
s

0
f(τ)v(τ)dτ, f(τ) ∶= ⟨c, e(s−τ)Acon b⟩. (4.11)

In Ch. 4.1.3, we semi-analytically determine Imin(⋅), Imax(⋅) from (4.10), and thus

α(⋅) ,β(⋅) from (4.9). Then, from (3.9) we derive ∂Xt of the integrator reach set (3.6)

with time-varying input range. They together complete step 1.

Step 2 amounts to a simple computation: transform Xt via a known linear map to

obtain the desired Zt. This is justified because the map x ↦ z =M−1x is a homeo-

morphism, so the image of the boundary ∂Xt is the boundary of the image Zt.

Remark 4.1. We note that the time-varying input range α(⋅), β(⋅) in (4.9) depends on

both Ã, b̃. In particular, their dependence on b̃ occurs through the matrix M in (4.3),

which itself depends on b̃ via q.

4.1.3 Input set in Brunovsky coordinates

To determine the time-varying input range [α(⋅), β(⋅)], we first express the f in (4.11)

as a finite sum involving the eigenvalues of the original state matrix Ã.

Lemma 4.1. Suppose that the original state matrix Ã ∈ Rd×d has d distinct eigenvalues

λ1,⋯, λd ∈ C. Then the function f in (4.11) can be expressed as

f(τ) = −
d

∑
i=1

λdi
∏j≠i(λi − λj)

eλi(s−τ), 0 ≤ τ ≤ s. (4.12)

The proof is provided in Appendix D.1.
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Figure 4.1: The f(τ) (solid line) in (4.12) for Ã = [
6 7 2
−4 −2 1
−5 3 2

], and its four zeros (circular

markers) for τ ∈ [0,2]. Here Ã has one real and two complex conjugate eigenvalues.

Example 4.1. Let d = 2 and λ1,2 = ρe±ιϕ, ι ∶=
√
−1, with ρ,ϕ ≠ 0. Then (4.12) gives

f(τ) = −
ρ

sinϕ
sin(2ϕ + (s − τ)ρ sin(2ϕ)), 0 ≤ τ ≤ s.

Example 4.2. Let n = 3 and λ1 = 1, λ2,3 = ±ι, ι ∶=
√
−1. Then (4.12) gives

f(τ) = −
1

2
(es−τ + cos(s − τ) − sin(s − τ)) , 0 ≤ τ ≤ s.

Theorem 4.1 presented next, shows that the zeros of the continuous function f

become relevant for our purpose. For a fixed s ∈ (0, t], the f in (4.12) may have

multiple (Fig. 4.1), single or no1 zeros in its domain [0, s]. At our level of generality,

it is not possible to bound the number of such zeros in [0, s], and we will numerically

find the same.

Using Lemma 4.1, the following Theorem 4.1 quantifies how α(s), β(s), and con-

sequently the set Zt ({z0}), are determined by the integral of f over its zero sub-level

and super-level sets.

Theorem 4.1. Suppose (Ã, b̃) is a controllable pair and matrix Ã has d distinct eigen-

values. For any 0 ≤ s ≤ t, let L−f (resp. L++f ) denote the zero sublevel (resp. strict super-

1as in Example 4.2, since eθ + cos θ − sin θ has no positive roots.
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level) set of f given by (4.12) over [0, s], i.e.,

L−f ∶= {τ ∈ [0, s] ∣ f(τ) ≤ 0}, (4.13a)

L++f ∶= {τ ∈ [0, s] ∣ f(τ) > 0}. (4.13b)

Then the Imin(⋅), Imax(⋅) in (4.9)-(4.10) can be computed as

Imin(s) = vmin − vmin∫
τ∈L−

f

f(τ)dτ − vmax∫
τ∈L++

f

f(τ)dτ, (4.14a)

Imax(s) = vmax − vmax∫
τ∈L−

f

f(τ)dτ − vmin∫
τ∈L++

f

f(τ)dτ. (4.14b)

Furthermore, the LTI reach set (4.2) with time-invariant input range [vmin, vmax] can be

recovered from the integrator reach set (3.6) with time-varying input range [α(s), β(s)]

given by (4.9), as

Zt ({z0}) =M
−1
Xt ({Mz0}) .

The proof of Theorem 4.1 is provided in Appendix D.2.

Remark 4.2. The d dimensional Lebesgue volume of the LTI reach set (4.2) at time t, is

vol (Zt ({z0})) =
1

∣det(M)∣
vol (Xt ({Mz0})) , (4.15)

where vol (Xt ({Mz0})) is determined via Theorem 3.2.

Having determined the Imin(⋅), Imax(⋅) from (4.14), we now provide an example to

demonstrate our approach presented in Ch. 4.1.2 to determine Zt.
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4.1.4 Example for single input LTI reach set

Consider the LTI reach set Zt in (4.2) at t = 3 with d = 2,z0 = 02×1, for a system of the

form (4.1):

⎛
⎜
⎜
⎝

ż1

ż2

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

0.1 0.2

−0.3 0.1

⎞
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ã

⎛
⎜
⎜
⎝

z1

z2

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

1

2

⎞
⎟
⎟
⎠

±
b̃

v, (4.16)

where the input (v(⋅)) trajectories are in {v(⋅) ∈ C([0, t]) ∣ v(s) ∈ [−0.2,0.2]∀s ∈

[0, t]}. So vmin = −0.2, vmax = 0.2.

To compute Zt, we follow step 1 and step 2 from Ch. 4.1.2. Specifically, we have

M =

⎛
⎜
⎜
⎝

20/11 −10/11

5/11 3/11

⎞
⎟
⎟
⎠

, M−1
=

⎛
⎜
⎜
⎝

3/10 1

−1/2 2

⎞
⎟
⎟
⎠

, (4.17)

and (4.16) transforms to the controllable canonical form

⎛
⎜
⎜
⎝

ẋ1

ẋ2

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

0 1

−0.07 0.20

⎞
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Acon

⎛
⎜
⎜
⎝

x1

x2

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

0

1

⎞
⎟
⎟
⎠

±
b

v, (4.18)

i.e., c ∶= (0.07,−0.20)⊺. We find that A has eigenvalues λ1,2 = ρe±ιϕ, ι ∶=
√
−1, with

ρ = 0.2646, ϕ = 1.1832, and the f in (4.12) is as in Example 4.1.

With this f , we numerically compute Imin(s), Imax(s) from (4.14), and thereby

the extremal trajectories umin(s), umax(s) from (4.9) ∀s ∈ [0, t = 3]. Using these

umin(s), umax(s) and the initial condition x0 =Mz0 = 02×1, we use (2.16) to explicitly

compute ∂Xt ({02×1}). We used trapezoidal approximations with step-size ∆τ = 0.01

for evaluating the integrals in (4.14) and (2.16). This completes the step 1.

In step 2, we map ∂Xt ({02×1}) back to ∂Zt ({02×1}) via the known linear map

xbdy ↦M−1xbdy ∈ ∂Zt.

Fig. 4.2 plots the snapshots of Zt ({02×1}) computed as above, at t = 1,1.5,2,2.5
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Figure 4.2: The reach sets Zt ({02×1}) at t = 1,1.5,2,2.5,3 (grey filled) for Example 4.1.4.
These sets were computed via the proposed two step method in Ch. 4.1.2. The 8 sample state
trajectories shown here correspond to 8 randomly sampled truncated Gaussian process input
paths in {v(⋅) ∈ C([0, t]) ∣ v(s) ∈ [−0.2,0.2]∀s ∈ [0, t]} shown in the left inset plot. The
right inset plot shows the time-varying range [α(s), β(s)].

and 3, together with 8 sample state trajectories of (4.16) with the same zero initial

state. These sample state trajectories correspond to 8 randomly sampled truncated

Gaussian process input paths in {v(⋅) ∈ C([0, t]) ∣ v(s) ∈ [−0.2,0.2]∀s ∈ [0, t]}.

Now we like to determine the the volume of Z2. From (3.14) we have

ζ1 = 2(∫
σ1

0
(t − τ) dτ − ∫

t

σ1

(t − τ) dτ) = t2 − 2(t − σ1)
2,

ζ2 = 2(∫
σ1

0
dτ − ∫

t

σ1

dτ) = 4σ1 − 2t.

Thus (3.14) becomes

∣det (Dπ)∣ = µ(σ1) ∣4λ − 2∣

RRRRRRRRRRRRRRR

det

⎛
⎜
⎜
⎝

t − σ1 t2 − 2(t − σ1)2

1 4σ1 − 2t

⎞
⎟
⎟
⎠

RRRRRRRRRRRRRRR

= µ(σ1) ∣4λ − 2∣ ∣ − σ
2
1 − (t − σ1)

2∣. (4.19)

Using (4.17) and (4.19), formula (4.15) then yields

vol2 (Z3) =
11

10 ∫
1

0
∫

2

σ1

µ(σ1)∣4λ − 2∣ (σ
2
1 + (3 − σ1)

2)dσ1dλ ≈ 0.3043,
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using trapezoidal method with step-size ∆τ = 0.01 to estimate the integral.

4.2 Intersection Detection

Consider two integrator agents labeled as A and B, each with d states, m inputs and

relative degree r = (r1,⋯, rm)⊺. Suppose that we are interested in checking if agents A

and B, starting from respective initial conditions xA
0 ,x

B
0 ∈ Rd, and respective compact

input sets UA(s),UB(s) ⊂ Rm, 0 ≤ s ≤ t, may result in intersecting reach sets X A
t ,X

B
t ⊂

Rd at a given time t. In other words, we would like to certify (or falsify) if X A
t ∩ X

B
t ≠

(=)∅ at a given time t.

Specifically, suppose two static feedback linearizable systems labeled as A and B,

each with d states, m inputs and relative degree r = (r1,⋯, rm)⊺, have identical dy-

namics

żA = f (zA,vA) , żB = f (zB,vB) . (4.20)

The problem of interest is to check whether their reach sets ZA
t ,Z

B
t ⊂ Rd at a given

time t, resulting from respective initial conditions zA0 ,z
B
0 ∈ Rd, and respective compact

input sets VA(s),VB(s) ⊂ Rm, 0 ≤ s ≤ t, intersect or not. Determining so is cumber-

some because ZA
t ,Z

B
t are compact but nonconvex in general. However, checking if

ZA
t ∩Z

B
t ≠ (=)∅, is equivalent to checking if the corresponding zonoidsX A

t ,X
B
t ⊂ Rd in

the Brunovsky normal coordinates, intersect or not. To see why, note that X A
t ,X

B
t are

diffeomorphic transforms (associated with the dynamics in (4.20)) of the sets ZA
t ,Z

B
t ,

i.e., there exists a diffeomorphism τ such that X A
t = τ (ZA

t ) , X
B
t = τ (ZB

t ) , where

X A
t ,X

B
t are integrator reach sets (i.e., zonoids) with geometry as in Ch. 3.1.1, asso-

ciated with initial conditions xA
0 ∶= τ (zA0) ,x

B
0 ∶= τ (zB0), and some suitably trans-

formed compact input sets UA(s),UB(s) ⊂ Rm, 0 ≤ s ≤ t. In Ch. 4.3, we will

76



Applications/Intersection Detection 4.2

detail the computation of such set transforms. For now, it suffices to observe that

ZA
t ∩Z

B
t ≠ (=)∅ ⇔ τ (ZA

t ∩ Z
B
t ) ≠ (=)∅. Being a diffeomorphism, τ is injective, and

we have (see e.g., [125, p. 388]):

τ (ZA
t ∩ Z

B
t ) = τ (Z

A
t ) ∩ τ (Z

B
t ) = X

A
t ∩ X

B
t .

Therefore,

X A
t ∩ X

B
t ≠ (=)∅ ⇔ ZA

t ∩ Z
B
t ≠ (=)∅. (4.21)

Remark 4.3. If the dynamics in (4.20) are dyanmic feedback linearizable, but not static

feedback linearizable, statement (4.21) does not hold anymore, instead we have,

X A
t ∩ X

B
t ≠ ∅ Ô⇒ ZA

t ∩ Z
B
t ≠ ∅, (4.22a)

X A
t ∩ X

B
t = ∅ ⇐Ô ZA

t ∩ Z
B
t = ∅. (4.22b)

since in this case, the diffomorphism mapping, τ is a function of augmented states ρ,

therefore we have z = Πz(ρ), while in the case of static feedback, diffomorphism, τ is

only a function of original states z (please refer to Ch. 1.6.1 for more details).

In the following, we show that our geometric results from Ch. 3 enables exact

verification of X A
t ∩ X

B
t ≠ (=)∅.

4.2.1 Certifying X A
t ∩ X

B
t ≠ (=)∅

One way to check if X A
t ∩ X

B
t ≠ (=)∅ is to compute

dist (A,B) ∶= min
xA∈X A

t ,x
B∈X B

t

∥xA −xB∥22. (4.23)

Clearly, dist (A,B) = (>)0 ⇔ X A
t ∩ X

B
t ≠ (=)∅. However, the parametric formula

in Ch. 3.2.1 suggest that a direct computation of (4.23) is unwieldy in our case. To
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circumvent this difficulty, we take an alternative approach based on the difference set

of X A
t and X B

t , given by the compact convex set

X A
t � X

B
t ∶= {x

A −xB ∣ xA ∈ X A
t ,x

B ∈ X B
t }. (4.24)

Notice that X A
t �X

B
t = X

A
t +̇ (−X

B
t )where +̇ denotes the Minkowski sum, and X A

t �X
B
t

is not the same as the Minkowski a.k.a. Pontryagin difference [47, p. 139], [126].

Checking the intersection between X A
t and X B

t , is then equivalent to verifying if

the zero vector 0 ∈ Rn belongs to the set (4.24). This can in turn be related [64, 65] to

conditions on the support function hX A
t �X B

t
(⋅), because

X A
t ∩ X

B
t ≠ ∅ ⇔ 0∈X A

t � X
B
t ⇔ ∀ y ∈ Sn−1, hX A

t �X B
t
(y) ≥ 0, (4.25a)

X A
t ∩ X

B
t = ∅ ⇔ 0∉X A

t � X
B
t ⇔ ∃ y ∈ Sn−1 such that hX A

t �X B
t
(y) < 0. (4.25b)

Thus motivated, we propose certifying or falsifying the reach set intersection by com-

puting

min
y∈Sd−1

hX A
t �X B

t
(y). (4.26)

Specifically, (4.26) ≥ (<)0 ⇔ X A
t ∩ X

B
t ≠ (=)∅. In other words, (4.26) serves as a

variational oracle to certify or falsify the reach set intersection.

Remark 4.4. In general, which of the two problems (4.23) and (4.26) is computationally

more tractable, depends on the sets X A
t ,X

B
t . For instance, when X A

t ,X
B
t are ellipsoids,

simple algorithms are known (see e.g., [127]) for solving (4.23), but solving (4.26) re-

quires heavier computation [128]. In our context, X A
t ,X

B
t are zonoids, and detecting their

intersection using (4.26) turns out to be computationally more benign than (4.23).

Since support function is distributive over the Minkowski sum, we have

hX A
t �X B

t
(y) = hX A

t
(y) + h−X B

t
(y). (4.27)

78



Applications/Intersection Detection 4.2

From the definition of support function, we also have

h−X B
t
(y) = sup

x∈−X B
t

⟨y,x⟩ = sup
x∈X B

t

⟨y,−x⟩ = sup
x∈X B

t

⟨−y,x⟩ = hX B
t
(−y). (4.28)

Using (4.27) and (4.28), we rewrite (4.26) as

min
∥y∥2=1

hX A
t
(y) + hX B

t
(−y). (4.29)

Recall that a support function is convex in its argument, and convex composed with

affine remains convex. Thus, the objective (4.29) is a sum of convex functions, and

hence convex. Because Sd−1 is compact, by Weirstrass extreme value theorem, (4.29)

admits global minimum. Checking X A
t ∩ X

B
t ≠ (=)∅ reduces to checking the sign of

the minimum in (4.29). We next develop these ideas for two specific choices of time-

varying set-valued input uncertainties: norm bounded (Ch. 4.2.2) and hyperrectangu-

lar uncertainty sets (Ch. 4.2.3).

4.2.2 The case when UA,UB are norm balls

In this section, we consider the time-varying norm-bounded input uncertainty sets

sets as in [38, Sec. 4]

U(s) ∶= {u(s) ∈ Rm ∣ ∥M(s)u(s) + p(s)∥p ≤ 1} (4.30)

where ∥.∥p denotes the p-norm for 1 ≤ p ≤ ∞, and M(s)×p(s) ∶ [0, t]2 ↦ Sm
++×Rm are

given as smooth functions, where Sm
++ represent the space of positive definite matrices.

By specializing (1.32) to this specific setting, we get the following result (proof in

Appendix D.3).

Theorem 4.2. Consider the integrator dynamics with n states, and m inputs. For com-

pact input uncertainty sets U(s) ⊂ Rm given by (4.30) for all 0 ≤ s ≤ t, and initial
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condition x0 ∈ Rd, the support function of the integrator reach set Xt at time t is

hXt (y) =
m

∑
j=1
⟨yj, exp (t)Aj)xj0⟩+ (4.31)

∫

t

0
[⟨y,− exp ((t − s)A)M−1

(s)p(s)⟩ + ∥(exp((t − s)A)BM−1
)⊺y∥q] ds

(4.32)

where q is the Hölder conjugate of p, i.e., 1
p +

1
q = 1.

Remark 4.5. From definition (1.29) we know that the reach set Xt resulting from com-

pact U(⋅) is the same as that resulting from the closure of the convex hull of U(⋅). Conse-

quently, if the p in (4.30) satisfies 0 < p < 1, thus making the input norm balls nonconvex,

then the corresponding reach sets will coincide with that resulting from the p = 1 norm

ball input uncertainty sets. This allows the effective domain of p in (4.33) to be (0,∞].

without lost of generality and to aid the readability, we consider the norm ball to

be symmetric about the origin, and given by

U(s) ∶= {u(s) ∈ Rm ∣ ∥u(s)∥p ≤ ℓ(s)} for all s ∈ [0, t], (4.33)

where ∥.∥p denotes the p-norm for 1 ≤ p ≤ ∞, and ℓ ∶ [0, t] ↦ R>0 is a given smooth

function. For this setting, the support function is simplified to

hXt (y) =
m

∑
j=1
⟨yj, exp (tA)xj0⟩ + ∫

t

0
ℓ(s)∥(exp((t − s)A)B)⊺y∥q ds, (4.34)

A translation of the norm ball does not change the arguments. We next detail how

having analytic handle on the support function of the reach set as in (4.34) can help

detect reach set intersection among integrator agents using (4.29).

Lossless convexification

We suppose that the integrator agents A and B have input uncertainty sets UA(s),

UB(s) as in (4.33) with same p, respective bounds ℓA(s), ℓB(s), and respective initial
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conditions xA
0 , xB

0 ∈ Rd.

The associated problem (4.29) is nonconvex due to the unit sphere constraint ∥y∥2=

1. We convexify the same by relaxing it to the unit ball constraint ∥y∥2 ≤ 1. Since

ℓA(s), ℓB(s) are positive for all 0 ≤ s ≤ t, the convexified version of (4.29) becomes

min
y∈Rn,∥y∥2≤1

⟨c(t),y⟩ + ∫
t

0
∥ (G(s))

⊺
y∥q ds, (4.35)

where

c(t) ∶= exp(tA)(xA
0 −x

B
0) , (4.36a)

G(s) ∶= (ℓA(s) + ℓB(s)) exp((t − s)A)B. (4.36b)

We approximate the integral in (4.35) w.r.t. s via trapezoidal approximation2 with

uniform step-size ∆s > 0. In particular, uniformly discretizing [0, t] into K ∈ N in-

tervals with breakpoints sk = k∆s for k = 0,1,⋯,K , where ∆s ∶= t/K , results in the

trapezoidal approximation

∫

t

0
∥ (G(s))

⊺
y∥q ds ≈

∆s

2

K

∑
k=1
(∥ (G(sk−1))

⊺
y∥q+∥ (G(sk))

⊺
y∥q) . (4.37)

Letting ∥ (G(sk))
⊺
y∥q ≤ θk, and θ ∶= (θ0, θ1,⋯, θK) ∈ RK+1

≥0 , define

η ∶=
⎛
⎜⎜
⎝

y

θ

⎞
⎟⎟
⎠
∈ Rd+K+1, (4.38a)

ω ∶=∆s

⎛
⎜⎜⎜⎜⎜⎜
⎝

1/2

1K−1

1/2

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈ RK+1
>0 , (4.38b)

κ(t) ∶=
⎛
⎜⎜
⎝

c(t)

ω

⎞
⎟⎟
⎠
∈ Rd+K+1 (4.38c)

Mk ∶= (G(sk) 0(1+K)×m)
⊺
∈ Rm×(d+K+1)

(4.38d)

N ∶=( Id 0d×(K+1) ) ∈ R
d×(d+K+1).

(4.38e)

Ñ ∶=( 0(K+1)×d IK+1 ) ∈ R
(K+1)×(d+K+1).

(4.38f)

2The uniform trapezoidal approximation with local truncation errorO((∆s)3)may be replaced by
other approximations such as the three point Simpson’s rule with local truncation error O((∆s)4).
While the accuracy of different numerical approximations for the integral may vary depending on the
choice of approximation but the nature of the resulting optimization problems will remain the same.
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In (4.38), the symbols 1, 0, I respectively denote the array of ones, zeros and iden-

tity matrix of appropriate sizes.

With the above variable definitions, we transcribe (4.35) into the epigraph form

min
η∈Rd+K+1

⟨κ(t),η⟩ (4.39a)

subject to, ∥M kη∥q −⟨e
d+K+1
d+k ,η⟩≤ 0, for all k = 0,⋯,K, (4.39b)

−Ñη ≤ 0, (4.39c)

∥Nη∥2 ≤ 1, (4.39d)

where the vector inequality in (4.39c) is elementwise.

Notice that (4.39d) results from the convexification of the nonconvex constraint

∥y∥2 = 1 in (4.29). Modulo the numerical approximation of the integral, the problem

(4.39) is a convex relaxation of the problem (4.29). As we show next, this relaxation is

exact (i.e., lossless convexification) in the sense that solving (4.39) allows us to certify

X A
t ∩ X

B
t ≠ (=)∅.

Theorem 4.3. Let p∗ be the optimal value of (4.39) with the ≤ in (4.39d) replaced by

equality. In other words, p∗ is the optimal value obtained by solving (4.29) with the

numerical approximations for the integrals stated in (4.37). Let p̃∗ be the optimal value

of (4.39). Then, the following holds:

(i) p̃∗ ≤ 0.

(ii) p̃∗ = 0⇒ 0 ≤ p∗⇔X A
t and X B

t intersect.

(iii) p̃∗ < 0⇒ p̃∗ = p∗ < 0⇔X A
t and X B

t are disjoint.

The proof for Theorem 4.3 is provided in Appendix D.4. The convex problem (4.39)

can be solved numerically using standard interior point algorithms.
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4.2.3 The Case when UA,UB are hyperrectangles

We next consider a generalized version of the ∞-norm bounded input uncertainties

in the sense we allow hyperrectangular or box-valued input uncertainty sets of the

form (3.2) In this setting has been investigated in 3. Define αi(s),βi
(s),µi(s),νi(s)

as in (3.2), associated with respective input sets U i(s) for the agents i ∈ {A,B}, for

all 0 ≤ s ≤ t. Following Proposition 3.1, we then obtain hX A
t
(y) and hX B

t
(y). It then

remains to solve (4.29).

Distributed computation

Instead of directly substituting hX A
t
(y) and hX B

t
(y) in (4.29), we make the observation

that

X A
t ∩ X

B
t = (

m

∏
j=1
X A

jt) ∩ (
m

∏
j=1
X B

jt) =
m

∏
j=1
(X A

jt ∩ X
B
jt) , (4.40)

where ∏ denotes the Cartesian product, and X A
jt,X

B
jt ⊂ Rrj are the respective jth

single input integrator reach sets resulting from their input sets [αAj (s), β
A
j (s)] and

[αBj (s), β
B
j (s)], 0 ≤ s ≤ t. From (4.40), it follows that X A

t ∩ X
B
t = ∅ iff there exists

j ∈ JmK such that X A
jt ∩ X

B
jt = ∅.

Therefore, it suffices to check whether these single input integrator reach sets

X A
jt,X

B
jt intersect or not. Consequently, problem (4.29) can be solved in a distributed

manner, i.e., by separately solving

min
yj∈R

rj ,∥yj∥2=1
hX A

jt
(yj) + hX B

jt
(−yj), (4.41)

for all j ∈ JmK, and then checking the signs of these m minimum values. In summary,

X A
t and X B

t intersect iff (4.41) yields ≥ 0 for all j ∈ JmK. We relax the unit sphere

constraint ∥yj∥2 = 1 to ∥yj∥2 ≤ 1 in subproblems (4.41) with support functions hXjt

given by (3.7). Following the same steps as Ch. 4.2.2, we can rewrite subproblems
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(4.41) for each j ∈ JmK, as SOCP:

min
ηbox
j ∈R

rj+K+1
⟨κbox

j (t),η
box
j ⟩ (4.42a)

subject to M box
j ηbox

j ≤ 0, (4.42b)

∥N box
j ηbox

j ∥2 ≤ 1, (4.42c)

where

cbox
j (t) ∶= exp(tAj) (xAj0 −xBj0) + ∫

t

0
(νAj (s) − νBj (s))ξj(t − s)ds, (4.43a)

γbox
j (s) ∶= (µAj (s) + µBj (s))ξj(t − s). (4.43b)

ηbox
j ∶=

⎛
⎜⎜
⎝

yj

θj

⎞
⎟⎟
⎠
∈ Rrj+K+1, (4.43c) Γbox

j ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

γbox⊺
j (s0)

−γbox⊺
j (s0)

⋮

γbox⊺
j (sK)

−γbox⊺
j (sK)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ R2(K+1)×rj ,

(4.43d)

ωbox
j ∶=∆s

⎛
⎜⎜⎜⎜⎜⎜
⎝

1/2

1K−1

1/2

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈ RK+1
>0 ,

(4.43e)

M box
j ∶=

⎛
⎜⎜
⎝

Γbox
j −IK+1 ⊗ 12

0(K+1)×rj −IK+1

⎞
⎟⎟
⎠
∈ R

3(K+1)×
(rj+K+1),

(4.43f)

κbox
j (t) ∶=

⎛
⎜⎜
⎝

cbox
j (t)

ωbox
j

⎞
⎟⎟
⎠
∈ Rrj+K+1,

(4.43g)

N box
j ∶=( Irj 0rj×(K+1)

) ∈ Rrj×(rj+K+1),

(4.43h)

and the symbol ⊗ denotes the Kronecker product. We observe that (4.42c) results

from the convexification of the nonconvex constraint ∥yj∥2 = 1 in (4.41) for each

j ∈ JmK. As in Ch. 4.2.2, this turns out to be a lossless convexification in the sense that

solving (4.42) allows us to certifyX A
jt∩X

B
jt ≠ (=)∅. We summarize this in the following
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Figure 4.3: The input uncertainties for agent Awith uAj (s) ∈ [αAj (s), βAj (s)], and agent Bwith
uBj (s) ∈ [αBj (s), βBj (s)], where j ∈ {1,2} for the example in Ch. 4.2.4. The controlled dynamics
of the agents are given by (1.13). At each s ∈ [0,2], αi

j(s) and βi
j(s) respectively represent

the minimum and maximum of the jth coordinate of the input set U i(t) for i ∈ {A,B}.

statement whose proof follows the same steps as in Appendix D.4, and is omitted.

Theorem 4.4. For j ∈ JmK, let p∗j be the optimal value of (4.42) with the ≤ in (4.42c)

replaced by equality. Let p̃∗j be the optimal value of (4.42). Then, the following holds:

(i) p̃∗j ≤ 0.

(ii) p̃∗j = 0⇒ 0 ≤ p∗j ⇔X
A
jt and X B

jt intersect.

(iii) p̃∗j < 0⇒ p̃∗j = p
∗
j < 0⇔X

A
jt and X B

jt are disjoint.

Since (4.40) tells us X A
t ∩ X

B
t = ∅ iff there exists j ∈ JmK such that X A

jt ∩ X
B
jt = ∅,

therefore the distributed computation of (4.42) allows certification or falsification of

integrator reach sets subject to box-valued input uncertainties.

In the following, we provide a numerical example to illustrate our results.
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Figure 4.4: Intersection detection between two integrator reach sets X A
t (red) and X B

t (blue)
described in Ch. 4.2.4 with relative degree vectors rA = rB = (3,2)⊺. The agents start from
initial conditions xA0 = (0.5,01×4)⊺ and xB0 = (01×3,5,0)⊺. In this case, X A

t = X A
1t × X A

2t,X B
t =

X B
1t × X B

2t ⊂ R5. Left: Intersection between the sets X A
1t (red) and X B

1t (blue). Right: no inter-
section between the sets X A

2t (red) and X B
2t (blue). These plots are made by generalizing the

parametric boundary formula of the integrator reach sets in [129, proposition 1] to account
for time-varying set-valued uncertainties.

4.2.4 Numerical example for intersection detection

Let us consider two integrator agents A and Bwith relative degrees rA = rB = (3,2)⊺ as

in (1.13), starting from respective initial conditionsxA
0 = (0.5,01×4)⊺, xB

0 = (01×3,5,0)⊺.

Given two box-valued input sets UA(s) = [αA1(s), β
A
1 (s)] ×[α

A
2(s), β

A
2 (s)] and UB(s) =

[αB1(s), β
B
1 (s)] × [α

B
2(s), β

B
2 (s)] shown in Fig. 4.4, we want to check if there is an in-

tersection at time t = 2 between the reach sets of agent A, denoted as X A
t , and that of

agent B, denoted as X B
t .

As explained in Ch. 4.2.3, it suffices to check if there will be an intersection be-

tween each corresponding jth single input reach sets X A
jt and X B

jt, for j ∈ {1,2}.

Using (4.43), we construct the matrices M i,box
j ,N i,box

j and the vector κibox
j for

i ∈ {A,B}. Then, we solve the optimization problems (4.42) for each j ∈ {1,2} via

MATLAB CVX toolbox [110, 130] with ∆s = 0.05. The runtimes are 0.38 s and 0.37
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s for j = 1 and j = 2, respectively. The corresponding optimal values are (p̃∗1, p̃
∗
2) =

(0,−0.54). These optimal values implyX A
1t∩X

B
1t ≠ ∅, and X A

2t∩X
B
2t = ∅. Therefore,

we conclude: X A
t ∩ X

B
t = ∅.

In agreement with Theorem 4.4, for p̃∗1 = 0, CVX returns ∥N 1η1∥2 = 0, while

for p̃∗2 < 0, it returns ∥N 2η2∥2 = 1 demonstrating that the convexification (4.42c) is

lossless. This scenario is illustrated in Fig. 4.4.

In this section, we presented a variational formulation for certifying or falsifying

intersection of the reach sets of integrator agents subject to set-valued input uncer-

tainties. The proposed nonconvex formulation is shown to enjoy lossless convexifi-

cation for time-varying norm bounded as well as generic hyperrectangular input un-

certainties, thus being amenable to convex programming for tractable computation.

4.3 Learning Reach Set for Full State Feedback Lin-

earizable Systems

Consider the a full-state differentially flat system in (1.5) as described in Ch. 1.6.1. We

suppose that V is a known compact convex set, modeling physical actuation bounds.

Thanks to homeomorphism τ u ∶ V → U , the set U(t) is guaranteed to be compact but

not necessarily convex. Furthermore, even if the set V is time-invariant, the set U(t)

will be time-varying due to the state-dependence in (1.8a) and (1.10).

Instead of directly approximatingZt via Monte Carlo, our idea is to make use of the

exact support function, the parametric formula and the knowledge of the diffeomor-

phism τ . Thus, at a conceptual level, we’d like to follow the computational sequence:

V Ð→ U(t) Ð→ ∂X ◻t Ð→ ∂Rt Ð→ ∂Zt.
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In words, our strategy involves the following three steps.

i. (Compute the extremals of the control mapping) Given compact convex V ,

the tensor and vector field pair (C(x),d(x)) ∈ Rm×m×Rm, estimate U(s) from

V
τu
↦ U(s) for all 0 ≤ s ≤ t within the family of p-norm balls.

ii. (Compute the reach set in normal coordinates) Using U(s) for all 0 ≤ s ≤ t

from Step 1, compute X ◻t using our support function or the parametric formula

in Theorems 2.1 and 2.3. Return Xt as the Cartesian product.

iii. (Transform the reach set back in original coordinates) Numerically map

the boundary of X ◻t back to the original state space using the known diffeomor-

phism z = τ −1(x), to over-approximate the reach set Zt in the original state

space.

The main challenge in our algorithm appears in step 1, estimating U(.) from V(.)

via the homeomorphism τ u. Since, estimation ofU(s) amounts to solving a fixed point

problem which is not contractive. For instance for the boxed valued case, evaluation of

the extremals of the set-valued trajectory (U(s))ts=0 i.e., ((α(s)ts=0, (β(s))
t
s=0), leads

to the following fixed point problem

α(t) = Tmin (α(t),β(t)) ∶= min
(z,w)⊺∈τ−1(X◻t )

[C(z,w)v + d(z,w)],

β(t) = Tmax (α(t),β(t)) ∶= max
(z,w)⊺∈τ−1(X◻t )

[C(z,w)v + d(z,w)], (4.44)

The minimization and maximization in (4.44) are component-wise. Since these

minimization and maximization problems involve continuous objectives with com-

pact constraint sets, hence by Weirstrass extreme value theorem, the maps Tmin,Tmax

are unique. Furthermore, since V × X ◻t is compact, and the compact reach set X ◻t is
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continuous in (α(t),β(t)), hence by Berge’s maximum theorem [131, p. 115], the

maps Tmin,Tmax are continuous in (α(t),β(t)).

4.3.1 Approximating feedback linearizable reach set via scenario

optimization

Here we adapt an approach based on scenario optimization (see [132–134]) to estimate

the input set Us via sample random trajectories {u(i)(t)}Ni=1 with probability approxi-

mately correct (PAC) guarantee.

Consider a random variable u(s), drawn from set U via probability density func-

tion (pdf) denoted asPu, where 0 ≤ s ≤ t. In an ideal setting, the support of this random

variable is the input set U , i.e., Pu(u(s) ∈ Us) > 0 for any u(s) inside Us. Any approx-

imated set that partially encompasses the reachable set will possess a probability less

than Pu for any random samples.

Our goal is to derive an approximation of the input set denoted by Us,θ parameter-

ized by θ ∈ Θ ∈ Rnθ , such that given ε ∈ (0,1), it ensures

Pu(u(s) ∈ Us,θ) ≥ 1 − εu, for all 0 ≤ s ≤ t.

This is termed as an ε-accurate approximation w.r.t to the distribution Pu. The set Θ

is compact, convex and represents the domain of the optimization variables.

The probabilistic design problem to determine θ ∈ Θ ⊂ Rnθ solves

argmin
θ

Vol (Us,θ)

subject to Pu (u(s) ∈ Us,θ) ≥ 1 − εu, (4.45)

so the process of approximating the input set is simplified to identifying the design

parameter θ, for all 0 ≤ s ≤ t. Here, we are interested to estimate the integrator input
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set within the family p-norm balls. Reflecting this chance constraints to (4.45) gives

argmin
M ,p

− log det(M)

subject to Pu (∥Mu − p∥p − 1 ≤ 0) ≤ 1 − εu. (4.46)

Problem (4.46) although being convex, still entails an infinite number of constraints

and is categorized as NP-hard. Consider an instance of random i.i.d extraction ∆ =

{ui}
N
i=0 ∼ PN

u , such that PN
u = ∏

N Pu. Instead of dealing with the intractable proba-

bilistic constraint, we consider a randomized optimization problem using independent

random samples known as scenario optimization program

argmin
[Mp]∈S

− log det(M)

subject to Pu (∥Mui − p∥p − 1 ≤ 0) ≤ 1 − εu, (4.47)

where, each ith constraint is enforced by the realization of the random variable ui

known as a scenario. Despite the original design problem (4.46), the scenario opti-

mization has finite number of constraints and is computationally tractable and attains

a unique solution (under the convexity assumption).

Since the value of Pu (∥Mui − p∥p − 1 ≤ 0) depends on the set of random extrac-

tion of {ui}
N
i=0 ∼ PN

u , we qualify these extractions using the confidence parameter

δu ∈ (0,1), in the sense that

Pu (∥Mui − p∥p − 1 ≤ 0) ≥ 1 − εu, w. PN
u ≥ 1 − δu (4.48)

Intuitively, condition (4.48) entails that with confidence (1 − δ), the optimal solution

satisfy the constraints with accuracy 1 − εu. Denote the number of decision variables

nθ = m(m + 1)/2 +m (M is symmetric) for 1 ≤ p ≤ ∞, then conditions (4.48) entails
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that PN
u is the bionomial distribution given by

PN
u =

nθ

∑
i=1

⎛
⎜
⎜
⎝

N

i

⎞
⎟
⎟
⎠

εiu(1 − εu)
N−i, (4.49)

where N is the number of required constraints (scenarios) to satisfy the PAC con-

dition (4.48), also know as the sample complexity. It is noteworthy that the term on

the right-hand side of Equation (4.49) converges to zero rapidly as the number of sce-

narios increases. This observation implies that, for sufficiently large values of N , the

likelihood of obtaining a solution characterized as "undesirable" in terms of violation

probability (i.e., one with a violation exceeding the specified threshold) becomes ex-

ceedingly low [135]. Equation (4.49) can also be inverted to explicitly express the

relationship between N and the desired probability levels, as follows.

1 − δu ≤
nθ

∑
i=1

⎛
⎜
⎜
⎝

N

i

⎞
⎟
⎟
⎠

εiu(1 − εu)
N−i. (4.50)

Campi [132] has shown that the above upper bounds holds for all convex chance-

constrained optimization problems. The support constraint of problem (4.47) is a con-

straint whose removal changes the solution of (4.47). This problem is fully supported,

since the number of support constraints is equal to the number of design variables

ntheta. Therefore we can replace “≤" with “=". and further simplify (4.50)

N = [
e

εu (e − 1)
(log

1

δu
+ nθ) ]. (4.51)

When approximating Us,θ within a hyper-rectangular as (2.1), nθ = 2m, and the

scenario optimization in (4.47) reduces to finding the extremal curves for j = 1 ∈ JmK

α̂j(s) ∶= min
i=1,⋯,N

u
(i)
j (s) + e

−
j (s), (4.52)

β̂j(s) ∶= max
i=1,⋯,N

u
(i)
j (s) + e

+
j (s), (4.53)
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where e−j (s) ≤ 0 ≤ e
+
j (s) are arbitrary safety margins in estimating U(s). For the rest

of this paper, we consider e−j (s) = e
+
j (s) = 0 for all for 0 ≤ s ≤ t, unless otherwise is

stated. In this case, α̂j, β̂j are respectively the sample minimum and maximum along

the jth control direction in the normal coordinates, at any given time. The inclusion

[α̂j(s), β̂j(s)] ⊆ [αj(s), βj(s)] , (4.54)

holds since the smallest axis-aligned hyperrectangle enclosing all the samples can be

no bigger than the same enclosing all possible realizations of the vector u(s) for 0 ≤

s ≤ t.

Using the sample estimates [α̂j(t), β̂j(t)], for j = 1,⋯,m, we compute the esti-

mated reach set boundary ∂X̂ ◻t in the normal coordinates using our analytical formula

for the integrator reach sets. We then map that boundary via the known diffeomor-

phism τ −1 to compute ∂Ẑt, an estimate for the boundary of the true compact reach

set Zt. The question now becomes: what kind of guarantees can be given for such

estimates?

In the Theorem 4.5 stated next, we show that (4.54), and the computational se-

quence mentioned above, allows us to construct the boundary ∂Ẑt of the compact set

Ẑt such that we have the deterministic under-approximation guarantee: Ẑt ⊆ Zt at any

time t.

Theorem 4.5. LetZt(z0,V) be the reach set of a feedback linearizable dynamic at time

t, with state vector z ∈ Rd and compact input set V ⊂ Rm. There exist a diffeomorphism

mapping of states, τ ∶ Rt → X
◻
t and the homeomorphism mapping of inputs, τ u ∶ V →

U(t), where X ◻t andRt are the reach sets in normal coordinates x ∈ Rd, and augmented

states ρ ∈ Rnw+d, respectively.
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At any time t, we can then guarantee

Ẑt(z0,V) ⊆ Zt(z0,V),

where Ẑt = Πz (R̂t) and R̂t = τ −1 (X̂
◻
t ). Here, Πz is the projection operator into the z co-

ordinates and X̂ ◻t is the estimated integrator reach set using sample pairs (α̂j(t), β̂j(t))

given in (4.53).

The proof of Theorem 4.5 is provided in Appendix D.5.

4.3.2 Probabilistic inclusion

As detailed in Ch. 4.3.1, we start with N sample trajectories bounded in the original

input set V and approximate U(t) within a norm ball, which we use to calculate the

integrator reach set X̂t. Employing the inverse diffeomorphism τ −1, we then estimate

the original reach set at time t, Ẑt = Πz (τ −1(X̂
◻
t )). Assuming condition (4.48) holds,

then we want to know εz, δz such that

P (z(t) ∈ Ẑt) > 1 − εẑ, with probability 1 − δẑ.

In other words, we are interested to know how the probabilistic inclusion changes

during the following nonlinear transformations:

Û
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(εu, δu) Ð→

X̂◻t
³¹¹¹¹·¹¹¹¹µ
(ε, δx) Ð→

R̂t

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
(ερ, δρ) Ð→

Ẑt

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
(εz, δz) .

With e+j (s) = e
+
j (s) = 0 for all j ∈ JmK and s ∈ [0, t], we know that for each

trajectory u(s) ∈ Ûs, we have

exp(tA)x0+̇∫
t

0
exp ((t − s)A)b u(s)ds ∈ X̂ ◻s (Us).
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However there might exist x(t) ∈ X̂t resulting from u(s) ∉ Ûs for s ∈ [0, t], therefore,

P (x(s) ∈ X̂ ◻s ) ≥ Pu (u(s) ∈ Û(s), ) ≥ 1 − εu.

with probability of confidence 1 − δu.

Since the transformations X̂t Ð→ R̂t and R̂t Ð→ Ẑt are deterministic, we can

conclude

(εu, δu) = (εx, δx) = (ερ, δρ)=(εz, δz).

In the following, we will employ the proposed learning approach to estimate the

reach sets of example cases of static state feedback linearizable systems.

4.3.3 Example: learning the reach set of a static state feedback

linearizable system with r = (3,2)⊺

Consider the 5-dimensional (d = 5) static state feedback linearizable system (1.11)

with the relative degree vector r = (3,2)⊺, starting form the initial conditions z0 =

[0 0 0 0 0], and subject to convex compact set-valued uncertainty V , a hyperrectan-

gular defined as V ∶= [[−0.6, 0.6] [−0.5, 0.5].]
⊺

We will follow the steps delineated in Ch.4.3 to learn the reach set of this system

at t = 1 s and t = 2 s.

Setting (ε, δ) = (10−2,10−3) and nθ = 2m = 4 in (4.51), we get the required number

of sample input trajectories, N = 1410.

Employing a constrained Gaussian process, we then generate the corresponding

N random trajectory samples {v(i)(t)}Ni=1 such that each {v(i)(t) ∈ V ⊂ R2. Since V

is a hyperrectangle in R2, we use the truncated multivariate Gaussian distributions

for generating the constrained Gaussian process samples to ensure that the range of

the sampled functions remain in V . We used the Metropolis-Hastings Markov Chain
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Monte Carlo (MCMC) for sampling from the truncated multivariate Gaussian distri-

butions.

We used MATLAB’s ode45 to generate N trajectories {z(i)(t)}Ni=1 in the original

coordinates. Using input map τ u described in (1.14b), we get the inputs in the inte-

grator coordinates, {u(i)1 (t)}
N
i=1 and {u(i)2 (t)}

N
i=1.

The trajectories for the parameters (α̂j(t), β̂j(t)), for j = 1,2 are given by

α̂j(t) ∶= min
i=1,⋯,N

u
(i)
j (t), β̂j(t) ∶= max

i=1,⋯,N
u
(i)
j (t).

The initial condition in the integrator coordinates is given by x0 = τ (z0), where

τ is defined in (1.14a).

Employing the parametric equation of the integrator boundary (3.9), we get the

sample points {x(i)1 (t) ∈ R3}391i=1 and {x(i)2 (t) ∈ R2}40i=1 from ∂X̂1 and ∂X̂2, respectively.

After taking the Minkowski sum of these sets we end up with {z(i)(t) ∈ R5}15640i=1

from ∂X̂ ◻t . Finally, we take the inverse mapping τ −1 given in (1.14a) to get {ẑ(i)(t)

∈ R5}15640i=1 from ∂Ẑt. The reach set ∂Ẑt along with {z(i)(t)}Ni=1 are shown in Fig. 4.5

using the projection of the 5-dimensional space onto each pair of coordinate axes at

t = 1 s and t = 2 s. The serial computational time for estimating Ẑt was 0.94s and

1.13 for t = 1 s and t = 2 s, respectively, prior to optimization and parallelization.

Faster-than-real-time computation is possible by parallelizing the learning algorithm

in Ch. 4.3, which we cover in Ch. 4.6.
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Figure 4.5: The reach set ∂Ẑt of system (sampled in blue) (1.11) along with sample trajectories,
{z(i)(t)}Ni=1 (black) are shown using the projection of the five-dimensional space onto each
pair of coordinate axes at t = 1 s (top) and t = 2 s(bottom) (see (4.3.3) for more details).
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4.3.4 Example: learning the reach set of a static state feedback

linearizable system with r = d = 4

Following the exact same steps as (4.3.3), here, we estimate the reach set of the 4-

dimensional nonlinear system given in (1.15) with initial condition z0 = [0 0 0 0 0] and

input set V = [−1, 1]. To satisfy the accuracy and confidence, (ε, δ) = (10−2,10−3), we

generate the N = 1410 input trajectories, {v(i)(t)}Ni=1, using the constrained Gaussian

process such that each {v(i)(t) ∈ V ⊂ R}(refer to Ch. 4.3.1 and Ch. 4.3.3 for more

details). These input trajectories are fed to MATLAB’s ode45 to propagate the state

trajectories in the original coordinates, {z(i)(t)}Ni=1. Using the input map τ u described

in (1.17b), we get the input trajectories in the integrator coordinates, {u(i)(t)}Ni=1. The

trajectories for the parameters (α̂(t), β̂(t)), are given by

α̂(t) ∶= min
i=1,⋯,N

u(i)(t), β̂(t) ∶= max
i=1,⋯,N

u(i)(t).

The initial condition in the integrator coordinates is given by x0 = τ (z0), where

τ is defined in (1.17a). Employing the parametric equation of the integrator boundary

(3.9), we get the sample points {x(i)(t) ∈ R4}346i=1 from ∂X̂t.

In the last step, we take the inverse mapping τ −1 given in (1.17a) to obtain {ẑ(i)(t)

∈ R5}s46i=1 from ∂Ẑt. The reach set ∂Ẑt along with {z(i)(t)}Ni=1 are shown in Fig. 4.6

using the projection of the five-dimensional space onto each pair of coordinate axes

at t = 1 s and t = 2 s. The serial computational time for estimating Ẑt was 1.13 s and

1.20 s for t = 1 s and t = 2 s, respectively, prior to optimization and parallelization. We

show in Ch. 4.6 how to parralize the learning algorithm in Ch. 4.3 to achieve faster-

than-real-time computation. In the following, we will employ the proposed learning

approach to estimate the reach sets of dynamic feedback linearizable systems given in

(1.18). In doing so, however, we will encounter the problem of calculating the bound-
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ary of the Minkowski sum of X ◻t ({x0}) ⊂ Rd with a line segment ℓ embedded in Rd,

which deserves its own separate subsection, which we now provide.

Figure 4.6: The reach set ∂Ẑt of system (sampled in blue) (1.15) along with sample trajectories,
{z(i)(t)}Ni=1 (black) are shown using the projection of the five-dimensional space onto each
pair of coordinate axes at t = 1 s (top) and t = 2 s(bottom) (see (4.3.4) for more details).
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4.4 Boundary of the Minkowski Sum of X ◻t with a

Line Segment

At a given time t, we want to investigate the boundary of the Minkowski sum of the

set X ◻t ({x0}) with a line segment ℓ embedded in Rd. Without loss of generality, for

the purpose of computing this boundary, we consider a single input (m = 1) integrator

reach set Xt ⊂ Rd.

Consider the parametric representation of the line segment

ℓ(c) = ℓ0 + (ℓ1 − ℓ0) c, 0 ≤ c ≤ 1, (4.55)

where ℓ0, ℓ1 ∈ Rd represent the start and the end points of ℓ, respectively. Also, con-

sider the unit vector

ℓ̂ ∶= (ℓ1 − ℓ0) /∥ℓ1 − ℓ0∥ = (ℓ1, ℓ2,⋯, ℓd). (4.56)

Let us define the parametric surface S (σ) as

S (σ) ∶= ⟨n̂(σ), ℓ̂⟩ = 0, for σ ∈ Wt, (4.57)

where n̂ represents the outward unit normal vector on ∂Xt,Wt is the Weyl chamber

defined in (2.15) andWk
t is the degenerate set of parameter vectors defined in Remark

3.3. In the following, we derive the explicit form of S (σ) = 0. For this purpose, let

the Levi-Civita permutation symbol

ε1,2,⋯,ni1,i2,⋯,in ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if {i1, i2,⋯, in} is an even permutation of {1,2,⋯, n},

−1 if {i1, i2,⋯, in} is an odd permutation of {1,2,⋯, n},

0 otherwise.

(4.58)

Also, for r ∈ N0, let pr denote the rth elementary symmetric polynomials [136, Ch.

2.2] in variables σ1, σ2,⋯, σd−1, with the convention e0 ≡ 1.
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Theorem 4.6. The parametric surface S (σ) defined in (4.57), is given by

{σ ∈ Wt ∣
d

∑
i=1
(d − i)! (−1)d−iℓipi−1 = 0}. (4.59)

The second summation in the RHS is over all of the different permutations of indices

i1, i2,⋯, id−1.

The proof of Theorem 4.6 in Appendix D.6

Remark 4.6. Theorem 4.6 tells that S (σ) is the intersection of Wt ∖W
dgen
t with the

set

{σ ∈ Rd−1 ∣
d

∑
i=1
(d − i)! (−1)d−iℓiei−1 = 0}, (4.60)

and hence S defines a semialgebraic set. In other words, S is the intersection of half-

spaces 0 ≤ σ1 < σ2 < ⋯ < sσd−1 ≤ t with the affine variety (4.60), the latter given

by the set of zeros of certain linear combination of the elementary symmetric poly-

nomials p0,p1,⋯,pd−1. For instance, when d = 3, (4.60) reduces to {(σ1, σ2) ∈ R2 ∣

2ℓ1 − ℓ2(σ1 + σ2) + ℓ3σ1s2 = 0}. Likewise, when d = 4, (4.60) reduces to {(σ1, σ2, σ3) ∈

R3 ∣ −6ℓ1 + 2ℓ2(σ1 + σ2 + σ3) − ℓ3(σ1σ2 + σ2σ3 + σ3σ1) + ℓ4σ1σ2σ3 = 0}.

A consequence of Theorem 4.6 is that the parametric surface S (σ) divides the

parameter spaceWt into two parts: S0 and S1, such that

S0 ∪ S1 ∪S = Wt. (4.61)

We can identify these two sets by assuming S0 is the part that contains

{σ ∈ Wt ∣ σ1 = σ2 = ⋯ = σd−1}.

Let us denote the boundaries of S0 and S1 by ∂S0 and ∂S1, respectively. Let ∆ denote

the symmetric difference of two sets. Recall from chapter 3 that each σ ∈ Wt assigns

a pair of points (xupper,xlower) on ∂Xt, one on each bounding hypersurfaces. Now
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introduce

∂Xcut ∶= {x
upper(σ) ∣ σ ∈ ∂S1} ∆ {x

lower(σ) ∣ σ ∈ ∂S0}. (4.62)

The set ∂Xcut divides the integrator boundary ∂X , into two sets: ∂X≥ and ∂X≤, i.e.,

∂X≥ ∪ ∂X≤ ∪ ∂Xcut = ∂Xt, (4.63)

where

∂X≥ ∶= {x
bdy(σ) ∈ ∂Xt ∣ ⟨n̂(σ), ℓ̂⟩ ≥ 0}, (4.64a)

∂X≤ ∶= {x
bdy(σ) ∈ ∂Xt ∣ ⟨n̂(σ), ℓ̂⟩ ≤ 0}. (4.64b)

Remark 4.7. If there exist no σ ∈ Wt such that (4.57) holds, i.e., if

{σ ∈ Wt ∣ ⟨n̂(σ), ℓ̂⟩ = 0} = ∅,

then S1 is also an empty set. In this case, the sets ∂X≥ and ∂X≤ are simply ∂X upper and

∂X lower respectively, or vice versa, depending on the criteria (4.64).

In the following Theorem, we derive a parametric formula for the boundary of the

Minkowski sum of the reach set Xt at time t with a line segment ℓ given by (4.55). In

other words, we deduce an expression for the boundary ∂ (ℓ+̇Xt) (c,σ) in terms of

the parameter tuple (c,σ) ∈ [0,1]×Wt, which depends on time t becauseWt depends

on the same, by definition (see (2.15)).

Theorem 4.7. For a compact input set U(t) ⊂ R, consider the d dimensional integrator

reach set boundary ∂Xt at time t, with single input u(t) ∈ U(t) and initial condition

x0 ∈ Rd. At any time t, the boundary of the Minkowski sum of the reach set X with the

line segment ℓ in (4.55), is given by

∂ (ℓ+̇Xt) (c,σ) = {ℓ(c)+̇∂Xcut(σ)} ∪ {ℓ1+̇∂X≥} ∪ {ℓ0+̇∂X≤}, (4.65)

101



Applications/Boundary of the Minkowski Sum of X ◻t with a Line Segment 4.4

where 0 ≤ c ≤ 1, and ℓ0 and ℓ1 are the start and the end points of ℓ, respectively. The

parameter vector σ ∈ Rd−1 belongs to the set (2.15). The sets ∂Xcut, ∂X≥, ∂X≤ are defined

in (4.62) and (4.64), respectively.

The proof for Theorem 4.7 is provide in Appendix D.7.

Figure 4.7: (left): This figure shows the integrator reach set X ∈ R2 given in (4.66) along with
the line segment (solid dark grey) described in (4.67). The upper surface, ∂X upper and the lower
surface, ∂X lower are shown in light red and light blue, respectively. (middle) The integrator
surface, ∂X is divided into 3 subsets: ∂X≥ (red), ∂X≤ (blue) and ∂Xcut (dotted green), such that
∂X≥ ∪ ∂X≤ ∪ ∂Xcut = ∂X . (right): The Minkowski sum of the integrator reach set X in (4.66)
and ℓ in (4.67) using the algorithm provided in (4.65): ∂ (ℓ+̇X ) (c,σ) = {ℓ(c)+̇∂Xcut(σ)} ∪
{ℓ1+̇∂X≥}∪{ℓ0+̇∂X≤}, while {ℓ(c)+̇∂Xcut(σ)} is shown by solid grey, {ℓ1+̇∂X≥} in red and
{ℓ0+̇∂X≤} in blue. For verification, the sample based Mikowski sum of ∂X and ℓ is shown in
dotted light grey.

4.4.1 Example: boundary of the Minkowski sum of Xt({x0})

with a line segment embedded in 2D space

We exhibit the application of the proposed algorithm in Ch. 4.4 by finding the bound-

ary of the Minkowski sum of a line segment ℓ with a single input integrator reach set

Xt ⊂ R2 at t = 1 s, starting from initial states x0 = [0 0]. The parametric formula given
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in (3.9) provides the parametric equations for the integrator’s upper surface, ∂X upper,

and the lower surface, ∂X lower as follows:

xupper(σ) = ∫
t

0
ν(s)ξ(t − s)ds + ∫

σ

0
µ(s)ξ(t − s)ds − ∫

t

σ
µ(s)ξ(t − s)ds (4.66)

xlower(σ) = ∫
t

0
ν(s)ξ(t − s)ds − ∫

σ

0
µ(s)ξ(t − s)ds + ∫

t

σ
µ(s)ξ(t − s)ds

where ξ(s) = [s 1]
⊺
.

The line segment ℓ is defined in (4.55), while the parameters ℓ0, ℓ1 and the tangent

vector ℓ̂ are given by

ℓ0 = [5 8] , ℓ1 = [2 10] , ℓ̂ = [3 8] . (4.67)

From (4.59), we obtain the parametric equation of the set σ as

S (σ) ∶= {σ ∈ Wt ⊂ R ∣ σℓ2 − ℓ1 = 0}. (4.68)

So for the 2D integrator, the set σ is either singleton, or empty, such that

S (σ) ∶= {
ℓ1
ℓ2
}, if 0 ≤

ℓ1
ℓ2
≤ t, (4.69)

S (σ) ∶= ∅, otherwise.

From (4.67) and (4.69) we get ∶ = {0.375}, S0 ∶= [0,0.375) and S1 ∶= (0.375, t].

Having S0 and S1, we are now able to construct the sets {xupper(σ) ∣ σ ∈ ∂S1},

{xlower(σ) ∣ σ ∈ ∂S0} and ∂Xcut given in (4.62), as delineated in Fig. 4.7.

Since {xupper(σ) ∣ σ ∈ ∂S1} ∩ {xlower(σ) ∣ σ ∈ ∂S0} = ∅, we have ∂X≥ = {xupper(σ)

∣ σ ∈ ∂S1} and ∂X≤ = {xlower(σ) ∣ σ ∈ ∂S0}, or vise versa, depending on criteria (4.64).

Next, identifying ∂X≥, ∂X≤ and ∂Xcut using criteria (4.64), we can utilize Theorem

4.7 to get the boundary of the Minkowski sum of X in (4.66) with ℓ in (4.67). The

resulting set, ∂ (ℓ+̇X ) along with {ℓ+̇Xt} is depicted are Fig. 4.7.
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4.4.2 Example: Boundary of the Minkowski sum of Xt({x0})

with a line segment embedded in 3D space

We employ our proposed algorithm in Ch. 4.4 to find the boundary of the Minkowski

sum of a line segment ℓ with a single input integrator reach set Xt ⊂ R3 at t = 1 s,

starting from initial states x0 = [0 0 0], with u(t) ∈ [−0.5,1.5]. From (3.9), we write

the parametric equations for the integrator’s upper surface, ∂X upper, and the lower

surface, ∂X lower, as follows:

xupper(σ) =∫
t

0
ν(s)ξ(t − s)ds +∫

σ1

0
µ(s)ξ(t − s)ds −∫

σ2

σ1

µ(s)ξ(t − s)ds +∫
t

σ2

µ(s)ξ(t − s)ds,

(4.70)

xlower(σ) =∫
t

0
ν(s)ξ(t − s)ds −∫

σ1

0
µ(s)ξ(t − s)ds +∫

σ2

σ1

µ(s)ξ(t − s)d −∫
t

σ2

µ(s)ξ(t − s)ds,

where ξ(s) = [ s2
2 s 1]

⊺
. Let us define the line segment ℓ as in (4.55), with parame-

ters ℓ0 and ℓ1 and the tangent vector ℓ̂ given by

ℓ0 = [−0.5 −0.54 −0.80] , ℓ1 = [−0.24 0.22 0.67] , ℓ̂ = [0.16 0.45 0.88] .

(4.71)

From (4.59), we obtain the parametric equation of surface S as

S(σ) ∶= {σ ∈ Wt ⊂ R2 ∣ (σ1 − σ2) ℓ1 − (
σ2
1

2
−
σ2
2

2
) ℓ2 + (

σ2
1σ2
2
−
σ2
2σ1
2
) ℓ3 = 0}.

(4.72)

In Fig. 4.8, we depict the wedge-shape parameter spaceWt given in (2.15) and observe

that S (σ) generates two subsets in S : S0 and S1, such that S0 ∪ S1 ∪S = Wt.
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Figure 4.8: The parameter space (2.15) for Xt ∈ R3 and ℓ ∈ R2, given in (4.70) and (4.71),
respectively. The parametric set S (σ), given in (4.72), is shown by a dotted black line, which
divides the parameter space of X into two parts: S0 (dotted purple) and S1 (dotted orange),
such that S0 ∪ S1 ∪S = S .

Having S0 and S1, we are now able to construct the sets {xupper(σ) ∣ σ ∈ ∂S1}

and {xlower(σ) ∣ σ ∈ ∂S0} as delineated in Fig. 4.9. The next step is finding Xcut using

(4.62) as demonstrated in Fig. 4.10. As pointed out in (4.63), the set Xcut, divides the

integrator boundary into two disjointed parts, such that ∂X≥ ∪ ∂X≤ ∪ ∂Xcut = ∂Xt (see

Fig. 4.10a).
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(a) (b)

(c) (d)

Figure 4.9: Four different views of the sets {xupper(σ)∣σ ∈ ∂S1} in red, and {xlower(σ) ∣ σ ∈
∂S0} in blue. Each view is slightly rotated relative to the previous shot to provide a
consistent 3D spatial view. The boundaries of these sets, ∂ ({xupper(σ)∣σ ∈ ∂S1}) and
∂ ({xlower(σ)∣σ ∈ ∂S0}) are depicted in dotted light red and dotted light blue, respectively.
To provide more geometric intuition on the relative location of these sets, X upper and X lower

are also shown in transparent red and transparent blue, respectively.

Finally, identifying ∂X≥, ∂X≤ and ∂Xcut, we can utilize Theorem 4.7 to get the

boundary of the Minkowski sum of X in (4.70) with ℓ in (4.71). The resulting set is

depicted in Fig. 4.10b.

4.4.3 Example: learning the reach set of a dynamic state feed-

back linearizable system

Consider the 4-dimensional (d = 4) dynamic state feedback linearizable system (1.18),

starting form the initial conditions z0 = [5 0 0 0], and subject to convex compact

set-valued uncertainty V , a hyperrectangular defined as V ∶= [[−1, 1] [−2, 2]]
⊺
.
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(a)

(b)

Figure 4.10: (a): This figure shows the integrator reach set X ∈ R3 given in (4.70) along with
the line segment (solid dark grey) described in (4.71). The integrator surface, ∂X is divided
into 3 subsets: ∂X≥ (red), ∂X≤ (blue) and ∂Xcut (dotted green), such that ∂X≥ ∪ ∂X≤ ∪ ∂Xcut =
∂X (b): The Minkowski sum of the integrator reach set X in (4.70) and ℓ in (4.71) using the
algorithm provided in (4.65): ∂ (ℓ+̇X ) (c,σ) = {ℓ(c)+̇∂Xcut(σ)} ∪ {ℓ1+̇∂X≥} ∪ {ℓ0+̇∂X≤},
while {ℓ(c)+̇∂Xcut(σ)} is shown by solid grey, {ℓ1+̇∂X≥} in red and {ℓ0+̇∂X≤} in blue.

We will follow the steps presented in Ch.4.3 to learn the reach set of this system

at t = 1 s and t = 2 s.

Setting (ε, δ) = (10−2,10−3) and nθ = 2m = 4 in (4.51), we get the required number

of sample input trajectories, N = 1410.

Employing a constrained Gaussian process, we then generate the corresponding

N random trajectory samples {v(i)(t)}Ni=1 such that each {v(i)(t) ∈ V ⊂ R2}. Since

V is a hyperrectangle in R2, we use the truncated multivariate Gaussian distributions

for generating the constrained Gaussian process samples to ensure that the range of

the sampled functions remain in V . We used the Metropolis-Hastings Markov Chain

Monte Carlo (MCMC) for sampling from the truncated multivariate Gaussian distri-
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butions.

We used MATLAB’s ode45 to generate N trajectories {z(i)(t)}Ni=1 in the original

coordinates. Using input map τ u(z,w) described in (1.14b), we get the inputs in the

integrator coordinates, {u(i)1 (t)}
N
i=1 and {u(i)2 (t)}

N
i=1, wherew is the compensator vari-

able (see Ch. 1.6.1 and Ch. 1.6.1).

The trajectories for the parameters (α̂j(t), β̂j(t)), for j = 1,2 are estimated by

α̂j(t) ∶= min
i=1,⋯,N

u
(i)
j (t), β̂j(t) ∶= max

i=1,⋯,N
u
(i)
j (t).

The state mapping τ (z,w) in (1.18) is a function of the compensator variable w,

whilew is a function of the set valued uncertainty, V , a rectangular. As a consequence,

for j = 1,2, the initial conditions in the integrator coordinates must be an interval

instead of a single point, i.e., X01 and X02 are

X01 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z01

w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z01

z02 − [−1, 1]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, X02 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z01 + z03

z02

z04(z02 −w)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z01 + z03

z02

z04[−2, 2]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.73)

As a result, the set valued matrix-vector product exp(Ajt)Xj0 will return a tilted line

segment, ℓj , embedded in Rrj for j = 1,2, given by

ℓ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 t

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z01

z02 − [−2, 2]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z01 + tz02

z02

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−t

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[−1, 1], (4.74)

ℓ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 t t2/2

0 1 t

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z01 + z03

z02

z04[−2, 2]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z01 + z03 + tz02

z02

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2
t2z04

tz04

z04

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[−2, 2].

Assuming zero initial condition (see Remark 2.1), we first use the parametric equation
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of the integrator boundary (3.9) to get X1t({0}) and X2t({0}). Then, utilizing algo-

rithm (4.65) detailed in Ch. 4.4, we obtain the boundary of the Minkowski summation

of Xjt({0}) with ℓj , ∂ (ℓj+̇Xjt({0})), for j = 1,2.

In this example, the sets of points {x(i)1 (t) ∈ R2}126i=1 and {x(i)2 (t) ∈ R3}3561i=1 are

sampled from ∂X̂1 and ∂X̂2, respectively.

After taking the Minkowski sum of these sets, we end up with {x(i)(t) ∈ R5}448686i=1

from ∂X̂t.

Finally, we take the inverse mapping τ −1 given in (1.21a) to obtain {ẑ(i)(t)∈R5}15640i=1 ∈

∂Ẑt. The estimated reach set in the original coordinate, ∂Ẑt along with {z(i)(t)}Ni=1

are shown in Fig. 4.11 using the projection of the five-dimensional space onto each

pair of coordinate axes at t = 1 s and t = 2 s. The serial computational time for estimat-

ing Ẑt was 1.45 s and 3.55 s for t = 1 s and t = 2 s, respectively, prior to optimization

and parallelization. We will show in Ch. 4.6 that our algorithm is highly parallelizable,

promising faster-than-real-time computation.
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Figure 4.11: The reach set ∂Ẑt of system (1.18)(sampled in blue) along with sample trajec-
tories, {z(i)(t)}Ni=1 (black) are shown using the projection of the five-dimensional space onto
each pair of coordinate axes at t = 1 s (top) and t = 2 s (bottom) (see (4.3.3) for more details).
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4.5 A Note on Monte Carlo vs Feedback Lineariza-

tion

The objective of this section is to highlight the advantages of utilizing the feedback

linearizable property for estimating the boundary of the reach set Zt compared to

the direct Monte Carlo method [38]. Firstly, we demonstrate how the former enables

the capture of the nonconvex characteristics inherent in the reach set. Furthermore,

we discuss how the implementation of the feedback linearizable property offers the

advantage of generating a broader range of training data for a data-driven support

function learning algorithm that has been introduced in [137].

Monte Carlo

In this approach, using sample input trajectories {vi(t)}Ni=1, we propagate the dy-

namics for {zi(s)}Ni=1 using (1.5). Next we need to estimate the boundary points

of Zt. One may achieve this by simply finding the vertices of the convex hull of

{zbdy
i (s)}

Ny

i=1. However, without prior knowledge on sample distribution, vertex rep-

resentation of the convex hull can have unbounded complexity [138]. Instead, by

employing the support function formula (1.23), the boundary points can be simply

represented as the support of the convex hull of the set {zi(s)}
Ny

i=1 in arbitrary unit

directions {yi}
Ny

i=1 ∈ Sd−1

zbdy
i = argmax

z∈{z1,z2,⋯,zN}
⟨yi,z⟩, i ∈ JNyK. (4.75)

Feedback linearization property

Here we generate the boundary points by taking the following steps.

Step 1: Employing state diffeomorphism τ we generate {xi(t)}Ni=1.
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Step 2: As in Ch. 4.5 using sample unit directions, {yi}
Ny

i=1 ∈ Sd−1, the support of

the convex hull of {xi(t)}Ni=1 is given by

xbdy
i = argmax

x∈{x1,x2,⋯,xN}
⟨yi,x⟩, i ∈ JNyK. (4.76)

Step 3: The estimated boundary points of Zt are acheived using the inverse diffeo-

morphism zbdy
i = τ

−1(xbdy
i ), for i ∈ JNyK.
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FB

Direct

Figure 4.12: A comparison between reach set boundary of system (4.77) achieved using
feedback linearization (dark red) vs Monte Carlo (green).

A simple demonstration of the above procedure is given in figure 4.12. The light

blue dots represents Monte Carlo sample data of a 2D reach set of the feedback lin-

earizable dynamic,

ẋ1 = x2/2 + x2v1, ẋ2 = 2v1, (4.77)

at t = 2 seconds. The boundary points {zbdy
i (s)}

Ny

i=1 generated using feedback lin-
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earization property (dark red square) capture the nonconvex structure of the reach set

as opposed to the support of the of the convex hull of {zi(s)}Ni=1 (light green circle).

4.6 Parallelization

The learning strategy introduced in Section 4.3 to obtain the reach sets of full-state

feedback linearizable systems allows multiple layers of parallel computation:

[i] (Computing the components of ∂Xjt) The kth componentxbdy
k of each bound-

ary point xbdy
j ∈ ∂Xjt, for k ∈ JrjK and j ∈ JmK can be computed in parallel. In

other words, parallelization is possible between the coordinates of an integrator

boundary point belonging to the same block. This allows parallelization across

coordinates within a given block.

[ii] (Computing ∂Xjt ) Each block of the integrator reach set ∂Xjt can be computed

in parallel for j ∈ JmK. This allows parallelization across blocks.

[iii] (Minkowski sum of integrator blocks ) The elements of the Minkowski sum,

∂Xt = ∂X1t+̇∂X2t+̇ ⋯ +̇∂Xmt, can be computed in parallel independent of other

points.

[iv] (Transforiming ∂Xt back to original coordinates ∂Zt) The inverse map-

ping τ −1(xbdy) can be performed component-wise in parallel, resulting in the

components of z ∈ ∂Zt.

The first opportunity for parallelization occurs in item [i], when computing the

components of xbdy
j of each ∂Xjt for j ∈ JmK. In the following, we investigate the cost

of such computation for the d dimensional single input (m = 1) integrator.
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Consider xbdy
k as the kth component of the integrator boundary given by (3.9)

xbdy
k = exp (tA)xk0 + ∫

t

0
ν(s)ξk(t − s)ds ± ∫

σ1

0
µ(s)ξk(t − s)ds

∓ ∫

σ2

σ1

µ(s)ξk(t − s)ds ±⋯ ± (−1)
d+1
∫

t

σd−1

µ(s)ξk(t − s)ds.
(4.78)

Using definitions of µ(s) and ν(s) given in (3.4), we can break the bounds of the first

integral in the RHS (4.78) into d intervals and rewrite (4.78) as

xbdy
k = exp (tA)xk0 + ∫

σ1

0
β(s)ξk(t − s)ds + ∫

σ2

σ1

α(s)ξk(t − s)ds +⋯ (4.79a)

+ ∫

t

σd−1

(1d%2=1β(s) + 1d%2=0α(s)) ξk(t − s)ds, for xbdy ∈ X upper,

xbdy
k = exp (tA)xk0 + ∫

σ1

0
α(s)ξk(t − s)ds + ∫

σ2

σ1

β(s)ξk(t − s)ds +⋯

+ ∫

t

σd−1

(1d%2=1α(s) + 1d%2=0β(s)) ξk(t − s)ds, for xbdy ∈ X lower, (4.79b)

where % represents the modulo operator and 1d%2=1 is the indicator function de-

fined as
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1d%2=1 ∶= 1 if d%2 = 1

1d%2=1 ∶= 0 otherwise.

The same argument can be used for 1d%2=0.

The parameter vector σ = (σ1, σ2,⋯, σd−1) belongs to the parameter space (2.15),

and ξk represents the kth component of vector ξ given by (2.5).

In the following, we will perform complexity analysis to find the number of float-

ing point operations (FLOPS) for each term in the RHS of (4.79).

[i-i] (# of FLOPS for the kth component of exp(At)x0) We can employ the spe-

cific upper-diagonal structure of matrix A to find the number of FLOPS associ-
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ated with the matrix-vector product exp(As)x0. In particular, we can write

xexp
0 = exp(As)x0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 s s2

2 ⋯ sd−1

(d−1)!

0 1 s ⋯ sd−2

(d−2)!

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x01

x02

⋮

x0d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.80)

The kth component of the vector xexp
0 , xexp

0k , obtained by the matrix-vector prod-

uct (4.80), contains 2∑
d−2
r=k (d − r − 1) FLOPS corresponding to the number of

operations needed to build the kth row of exp(At) and (d − k) FLOPS corre-

sponding to the inner product of the kth row of exp(At)with x0. Alternatively

stated,

# of FLOPS for xexp
0k = 2

d−2
∑
r=k
(d − r − 1) + (d − k) . (4.81)

[i-ii] (# of flops for ξk) The kth component of vector ξ(s), ξk(s) is given by

ξk(s) =
sd−k

(d − k)!
,

which requires (d − k − 1) scalar multiplications in the numerator, (d − k − 2)

scalar multiplications in the denominator. It requires 1 division if k < d − 1,

and zero additional FLOPS for ξd = 1 and ξd−1 = σ, corresponding to k = d and

k = d − 1, respectively. In other words,

# of flop for ξk(s) = 1k<d−1 ((d − k − 1) + (d − k − 2) + 1) = 1k<d−12(d − k − 1),

(4.82)

where 1k≤d−1 is the indicator function defined as

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1k<d−1 ∶= 1 for k < d − 1,

1k<d−1 ∶= 0 otherwise.
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[i-iii] (# of FLOPS for trapzoidal integration) Each integral in the RHS of (4.79)

can be computed numerically using the variable-step size trapezoidal method

such that

∫

τ2

τ1
f(τ) dτ ≈

# of discretizations
in [τ1,τ2]−1
∑
k=1

f(τk+1) − f(τk)

2
∆τk, (4.83)

which has 3 floating point operations (FLOPS), corresponding to each discrete

point τk, viz. 2 multiplications and 1 summation. Also, we need to account for

the number of operations needed to build function f . Therefore,

# of FLOPS for ∫
τ2

τ1
f(τ) dτ = (3 +#of FLOPS for building f)

(# of discretizations) . (4.84)

Suppose each component of the parameter space is discretized into Ns values, i.e.,

σdisc
i ∶= [si1 si2 ⋯ siNs

] such that sin ∈ [0, t] (4.85)

for each i ∈ Jd − 1K, and n ∈ JNsK

is the discretization vector for ith coordinate of the parameter spaceW ⊂ Rd−1. Hence,

from (4.81), (4.82), (4.84) and (4.85), the number of floating point operations incurred

in computing each component of the boundary given in (4.79), is

# of FLOPS for xbdy
k (σ) ∶ n

FLOPS
x

bdy
k

=2
d−2
∑
r=k
(d − r − 1) + (d − k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
# of lops for xexp

0k

(4.86)

+ (4 + 1k<d−12(d − k − 1))Ns
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
# of FLOPS for integrals in RHS of (4.78)

.

When Ns is large enough, from (4.86) we get

nFLOPS
x

bdy
k

= O ((4 + 1k<d−12(d − k − 1))Ns) . (4.87)
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Hence, the number of FLOPS for computing the vector xbdy is

nFLOPS
xbdy = O(

d

∑
k=1
[4 + 1k<d−12(d − k − 1)]Ns) . (4.88)

Notice that in the single input case, computing the kth coordinate of a boundary

point in ∂X can be achieved using d − 1 nested for loops, as outlined in Algorithm 1.

Algorithm 1 Integrator Boundary

1: for i1 ← 1 to Ns do

2: for i2 ← i1 to Ns do

3: ⋱

4: for id−1 ← id−2 to Ns do

5: Return xk(s1i1 , s2i1 ,⋯, sd−1i1)

6: end for

7: ⋰

8: end for

9: end for

Let Th denote the Tetrahedral number given by

Th ∶=
Ns

∑
i1=1

Ns

∑
i2=i1
⋯

Ns

∑
id−1=id−2

1 =
1

(d − 1)!
Ns(Ns + 1)⋯(Ns + (d − 1) − 1) = O(

Nd−1
s

(d − 1)!
).

(4.89)

Replacing the symbol d by rj for the multi-input integrator, the number of floating

point operations in computing the kth components of the jth block of the integrator

surface, ∂Xj , given in (3.9), is

Th (2n
FLOPS
x

bdy
k

) = O(
2(4 + 1k<rj−12(rj − k − 1))N

rj
s

(rj − 1)!
) . (4.90)

We have multiplied nflops

x
bdy
k

by 2 in order to account for the number of FLOPS of xbdy
k in

computing both the upper surface, X upper
j and the lower surface, X lower

j , for j ∈ JmK.
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Accordingly, the number of flops for computing the integrator boundary of the jth

block, ∂Xj is

O(2
rj

∑
k=1
[
4 + 1k<rj−12(rj − k − 1)

(rj − 1)!
]N

rj
s ) .

Remark 4.8. In the third layer of parallelization, i.e., item iii, we must work withNd−m
s

concatenations of each combination of vectors from m blocks, i.e., if xbdy,n
j ∈ Rrj repre-

sents the nth sample point of the jth block boundary ∂Xj , the Minkowski sum of all the

m integrator blocks is numerically obtained as

xbdy,n = [xbdy,n1

1 xbdy,n2

2 ⋯ xbdy,nm
m ] , (4.91)

for eachNd−m
s combination of (n1, n2,⋯, nm) such that nj ∈ JN

rj−1
s K for j ∈ JmK. There-

fore, to form a new data structure with each such concatenation, we may expect (Nd−m
s )

operations, but an efficient, lazy, implementation based on different views of a static data

structure is essentially "free", and we do not count such view construction towards the

total number of FLOPS.

Remark 4.9. In the case of a full-state dynamic feedback-linearizable system, the initial

condition will be a set instead of a single point (see Ch. (4.4.3)). Instead of exp(At)x0,

we have a tilted line segment for which we need to calculate each end point. Therefore,

twice the number flops are needed vs. the case of static feedback to compute exp(At)x0.
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In the interest of computational tractability, so far we have made an assumption that

the input uncertainty for the integrator reach are box-valued, characterized by the

ℓ∞ norm ball. This is despite the possibility that the true nature of these sets could

adhere to an ℓp norm ball, where 0 < p < ∞. Such approximations in defining the

input uncertainty sets result in an over-estimation of the reach sets, as elaborated in

Chapter 2. In this context, measuring the degree of over-approximation is tantamount

to calculating the Hausdorff distance between the respective reach sets. Driven by

this understanding, Chapter 5 focuses on estimating the Hausdorff distance between

the reach set of linear time-invariant systems, which include the integrator, emerging

from different norm-valued input uncertainties. The rest of this paragraph sheds light

on the novel contributions stemming from this particular avenue of our research. This

chapter highlights the innovative findings that are byproducts of this specific part of

our research.

In control theory and formal verification literature, it is of interest to investigate

how controlled dynamical systems evolve relative to each other subject to different

set-valued input uncertainties [1–3, 5, 6, 111, 112, 115, 120]. For example, if the con-

trolled dynamical systems model vehicles driving on road, then one practical question

is whether the set of states reachable by one vehicle at a specific time, can intersect

the other set, possibly resulting in a collision. The different set-valued inputs in the

vehicle context, represent respective actuation uncertainties. Then, a natural way to

quantify safety or the lack of it, is by computing the distance between such sets in

terms of the Hausdorff metric.

Given compact K1,K2 ⊂ Rd, the two sided Hausdorff distance δ between them is
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a mapping δ ∶ K1 ×K2 ↦ R≥0 defined as

δ (K1,K2) ∶=max{sup
x∈K1

inf
y∈K2

∥x − y∥2, sup
y∈K2

inf
x∈K1

∥x − y∥2}, (5.1)

where ∥ ⋅ ∥2 is the Euclidean norm with the associated scalar product ⟨⋅, ⋅⟩. Denoting

the unit 2 norm ball in Rd as Bd
2, an equivalent definition of the Hausdorff distance is

δ (K1,K2) ∶= inf{λ ≥ 0 ∣ K1 ⊂ K2+̇λBd
2, Y ⊂ K1+̇λBd

2}, (5.2)

where +̇ denotes the Minkowski sum. As is well-known [47, p. 60-61], δ ≥ 0 is a metric.

The two-sided Hausdorff distance (5.1) between a pair of convex compact sets K1 and

K2 in Rd can be expressed in terms of their respective support functions h1(⋅), h2(⋅)

as

δ (K1,K2) = sup
y∈Sd−1

∣h1(y) − h2(y)∣, (5.3)

where the absolute value in the objective can be dispensed if one set is included in

another1. Thus, computing δ leads to an optimization problem over all unit vectors

y ∈ Sd−1. The support function, by definition, is positive homogeneous of degree one.

Therefore, the unit sphere constraint ∥y∥2 = 1 in (5.3) admits a lossless relaxation

to the unit ball constraint ∥y∥2 ≤ 1. Even so, problem (5.3) is nonconvex because its

objective is nonconvex in general. Please refer to Ch. 1.6.3 for more details no support

functions.

When the controlled dynamical systems are linear, as it is the case for our integra-

tor dynamics, it turns out that the corresponding Hausdorff distance (5.3) takes the

form

sup
∥y∥2=1

(∫

t

0
∥T (τ)y∥q2 − ∥T (τ)y∥q1) dτ, 1 ≤ q2 < q1 ≤ ∞,

which is what we investigate in Ch. 5.3 in this chapter.

1This is because K1 ⊆ K2 if and only if h1(y) ≤ h2(y) for all y ∈ Sd−1.
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We also provide an application Example in Ch. 5.3, where the different reach sets

result from the motion of a satellite subject to ℓ2 and ℓ∞ norm ball-valued uncertain

input sets. In this application, the input components denote the radial and tangential

thrusts, and depending on the actuators installed (e.g., gas jets, reaction wheel), two

different scenarios may arise: one where there are hard bounds on the magnitude of

the thrust components (i.e., ℓ∞ norm ball), and another in which there is bounded

thrust magnitude (i.e., ℓ2 norm ball). So from an engineering perspective, it is natural

to quantify the Hausdorff distance between the reach sets resulting from two different

types of actuation uncertainties.

The Hausdorff distance was introduced by Hausdorff in 1914 [139, p. 293ff], and

can be considered more generally on the set of nonempty closed and bounded subsets

of a metric space (M,dist) by replacing the Euclidean distance ∥ ⋅ ∥2 in (5.1) with

dist(⋅, ⋅). The Hausdorff distance and the associated topology, have found widespread

applications in mathematical economics [140], stochastic geometry [141], set-valued

analysis [142], image processing [143] and pattern recognition [144]. The distance

δ has several useful properties with respect to set operations, see e.g., [145, Lemma

2.2], [146, Lemma A2].

In this study, we consider computing (5.3) for the case when the sets K1,K2 are

different unit norm balls and more generally, linear maps of such norm balls in an

Euclidean space. This can be viewed as quantifying the conservatism in approximating

a norm ball by another in terms of the Hausdorff distance. We show that computing

the associated Hausdorff distances lead to optimizing the difference between norms

over the unit sphere or ellipsoid. While bounds on the difference of norms over the

unit cube have been studied before [147], the optimization problems arising here seem

new, and the techniques in [147] do not apply in our setting.

Related works: There have been several works on designing approximation algo-
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rithms for computing the Hausdorff distance between convex polygons [148], curves

[149], images [143], meshes [150] or point cloud data [151]; see also [152–156]. There

are relatively few [157] known exact formula for the Hausdorff distance between sets.

To the best of the authors’ knowledge, analysis of the Hausdorff distance between

norm balls and their linear maps as pursued here, did not appear in prior literature.

5.1 Hausdorff Distance between Unit Norm Balls

Let us consider the case when in (5.3), the sets K1 ≡ Bd
p1 ,K2 ≡ Bd

p2 , the unit ℓp1 and ℓp2

norm balls in Rd, d ≥ 2, for 1 ≤ p1 < p2 ≤ ∞. Clearly, the Hausdorff distance δ = 0 for

p1 = p2, and δ > 0 otherwise. Then the corresponding support functions h1(⋅), h2(⋅)

are the respective dual norms, i.e.,

h1(y) = ∥y∥q1 , h2(y) = ∥y∥q2 ,
1

p1
+

1

q1
= 1,

1

p2
+

1

q2
= 1,

for 1 ≤ q2 < q1 ≤ ∞. By monotonicity of the norm function, we know that ∥⋅∥q1 ≤ ∥⋅∥q2 .

Therefore, the Hausdorff distance (5.3) in this case becomes

δ (K1,K2) = δ (Bd
p1 ,B

d
p2
) = sup

∥y∥2=1
(∥y∥q2 − ∥y∥q1) (5.4)

which has a difference of convex (DC) objective. In fact, the objective is nonconvex

(the difference of convex functions may or may not be convex in general) because it

admits multiple global maximizers and minimizers.

The objective in (5.4) is invariant under the plus-minus sign permutations among

the components of the unit vector y. There are 2d such permutations feasible in Rd

which implies that the landscape of the objective in (5.4) has 2d fold symmetry. In

other words, the feasible set is subdivided into 2d sub-domains as per the sign permu-

tations among the components of y, and the“sub-landscapes" for these sub-domains

are identical.
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(a) Convex ℓp norm balls in R2. (b) The Hausdorff distance (5.6) for fixed p1 =
1.

Figure 5.1: Understanding the Hausdorff distance δ between the unit ℓp1 and ℓp2 norm
balls in Rd, d ≥ 2, for 1 ≤ p1 < p2 ≤ ∞.

Since ∥y∥q1 ≤ ∥y∥q2 for 1 ≤ q2 < q1 ≤ ∞, hence 0 ≤ δ. The global minimum value

of the objective in (5.4) is zero, which is achieved by any scaled basis vector, i.e., by

ymin ∶= αek ∈ Rd for any k ∈ JdK and arbitrary α ∈ R ∖ {0}. These ymin comprise

uncountably many global minimizers for (5.4).

We can compute the global maximum value achieved in (5.4) using the norm in-

equality

∥ ⋅ ∥q2 ≤ d
1
q2
− 1

q1 ∥ ⋅ ∥q1 , 1 ≤ q2 < q1 ≤ ∞, (5.5)

which follows from the Hölder’s inequality:

d

∑
i=1
∣aibi∣ ≤ (

d

∑
i=1
∣ai∣

r)

1
r

(
d

∑
i=1
∣bi∣

r
r−1)

1− 1
r

a,b ∈ Rd, 1 ≤ r ≤ ∞,

where the exponents r and r
r−1 are Hölder conjugates. Applying this inequality with

∣ai∣ = ∣xi∣q2 , ∣bi∣ = 1, r = q1/q2 > 1, results in (5.5).

In Rd, the constant d1/q2−1/q1 is sharp because the equality in (5.5) is achieved by

any vector in {−1,1}d. Since (5.4) has constraint ∥y∥2 = 1, the corresponding global
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maximum will be achieved by

ymax ∈ Ymax ∶= {u ∈ Sd−1 ∣ u = ρv,v ∈ {−1,1}d, ρ > 0}.

The scalar ρ is determined by the normalization constraint ∥ymax∥2 = 1 as ρ = 1/
√
d.

Thus, we obtain

δ = sup
∥y∥2=1

(∥y∥q2 − ∥y∥q1) , 1 ≤ q2 < q1 ≤ ∞,

= (d
1
q2
− 1

q1 − 1) ∥ymax∥q1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=ρd
1
q1

= d−
1
2 (d

1
q2 − d

1
q1 ) , (5.6)

where in the last line we substituted ρ = 1/
√
d. The cardinality of Ymax equals 2d, i.e.,

there are 2d global maximizers ymax ∈ Sd−1 achieving the value (5.6).

We summarize the above in the following Proposition.

Proposition 5.1. For 1 ≤ p1 < p2 ≤ ∞, we have

δ (Bd
p1 ,B

d
p2
) = d−

1
2 (d

1
q2 − d

1
q1 ) , (5.7)

where qi denotes the Hölder conjugate of pi for i ∈ {1,2}.

Remark 5.1. As the intuition suggests, for a fixed p1, larger p2 results in a larger δ in a

given dimension d ≥ 2; see Fig. 5.1.

Fig. 5.2 shows the contour plot of ∥y∥1−∥y∥2 in the spherical coordinates for d = 3,

i.e., y ∈ S2. As predicted by (5.6), in this case, there are eight maximizers achieving the

global maximum value
√
3 − 1 ≈ 0.7321. The symmetric sub-landscapes mentioned

earlier are also evident in Fig. 5.2.

5.1.1 Hausdorff distance between polyhedral D-norm balls

We next show that similar arguments as above can be used to derive the Hausdorff

distance between other type of norm balls such as theD-norm balls which are certain
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Figure 5.2: The landscape of the objective in (5.4) for d = 3, q1 = 2, and q2 = 1.

polyhedral norm balls. The D-norms and norm balls arise naturally in robust opti-

mization, see e.g., [158, Sec. 2.2], [159]. The D-norm in Rd is parameterized by k,

where 1 ≤ k ≤ d, as defined next.

Definition 5.1. (D-norm) For 1 ≤ k ≤ d, the D-norm of x ∈ Rd is

∥x∥Dk ∶= max
{S∪{t}∣S⊆JdK,card(S)≤⌊k⌋,t∈JdK∖S}

{∑
i∈S
∣xi∣ + (k − ⌊k⌋)∣xt∣} . (5.8)

For k = 1, the norm (5.8) reduces to the ℓ∞ norm, i.e., ∥x∥D1 = ∥x∥∞. For k = d, the

norm (5.8) reduces to the ℓ1 norm, i.e., ∥x∥Dd = ∥x∥1. For 1 < k < d, the norm (5.8) can

be thought of as a polyhedral interpolation between the ℓ∞ and the ℓ1 norms. For a

plot of the unit D-norm balls in R2, we refer the readers to [158, Fig. 2].

A special case of (5.8) is when the parameter k is restricted to be a natural number,

i.e., k ∈ JdK. Then the D-norm reduces to the so-called k largest magnitude norm,

defined next.
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Definition 5.2. For k ∈ JdK, the k largest magnitude norm of x ∈ Rd is

∥x∥[k] ∶= ∣xi1 ∣ + ∣xi2 ∣ + ⋯ + ∣xik ∣, (5.9)

where the inequality ∣xi1 ∣ ≥ ∣xi2 ∣ ≥ ⋯ ≥ ∣xid ∣ denotes the ordering of the magnitudes of

the entries in x.

It is easy to verify that (5.8) (and thus its special case (5.9)) is indeed a norm, and

its dual norm equals [159, Prop. 2]

(∥ ⋅ ∥Dk )
∗
(y) =max{

1

k
∥y∥1, ∥y∥∞}.

For a comparison of theD-norm and its dual with the Euclidean norm, see [159, Prop.

3]. We have the following result (proof in Appendix E.1).

Proposition 5.2. Let 1 ≤ k1 < k2 ≤ d, and let K1,K2 ⊂ Rd denote the unit ∥ ⋅ ∥Dk1 and

∥ ⋅ ∥Dk2 norm balls in Rd, i.e., K1 ≡ Bd
∥⋅∥D

k1

,K2 ≡ Bd
∥⋅∥D

k2

. Also denote the support functions of

K1,K2 as h1(⋅), h2(⋅), respectively. Using the definition of dual norm, we have

h1(y) =max{
1

k1
∥y∥1, ∥y∥∞}, h2(y) =max{

1

k2
∥y∥1, ∥y∥∞}. (5.10)

Then

δ (K1,K2) = δ (Bd
∥⋅∥D

k1

,Bd
∥⋅∥D

k2

) = (
1

k1
−

1

k2
)
√
d. (5.11)

Fig. 5.3 shows the landscape of the objective for computing the Hausdorff dis-

tance between the unit D-norm balls with k1 = 1.7 and k2 = 2.9 in d = 3 dimen-

sions, and as explained in the proof of the proposition above, there are eight global

maximizers given by v/
√
3 for all v ∈ {−1,1}3. In this case, the formula (5.11) gives

δ = 120
√
3/493 ≈ 0.421594517055305 while the direct numerical estimate of δ from

the contours yields 0.421577951149235.
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Figure 5.3: The landscape of the objective in (5.3) with h1, h2 as in (5.10) for d = 3,
k1 = 1.7, and k2 = 2.9.

5.2 Composition with a Linear Map

We next consider a generalized version of (5.4) given by

δ (K1,K2) = sup
∥y∥2=1

(∥Ty∥q2 − ∥Ty∥q1) , 1 ≤ q2 < q1 ≤ ∞, (5.12)

where the matrix T ∈ Rm×d, m ≤ d, has full row rank m. Using Property 1.6.3 of

support functions, we can interpret (5.12) as follows. As before, let p1, p2 denote the

Hölder conjugates of q1, q2, respectively. Then (5.12) computes the Hausdorff distance

between two compact convex sets in Rd obtained as the linear transformations of the

m-dimensional ℓp1 and ℓp2 unit norm balls via T ⊺ ∈ Rd×m, i.e.,

K1 ≡ T
⊺Bd

p1 , K2 ≡ T
⊺Bd

p2 .

Since the right pseudo-inverse T †
= T ⊺ (TT ⊺)

−1, one can equivalently view (5.12) as

that of maximizing the difference between the ℓp1 and ℓp2 norms over them-dimensional

origin-centered ellipsoid with shape matrix TT ⊺.
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As was the case in (5.4), problem (5.12) is a DC programming problem with non-

convex objective. However, unlike (5.4), now there is no obvious symmetry in the

objective’s landscape that can be leveraged because the number and locations of the

local maxima or saddles have sensitive dependence on the matrix parameterT ; see the

first column of Table 5.1. Thus, directly using off-the-shelf solvers such as [160, 161]

or nonconvex search algorithms become difficult for solving (5.12) in practice as the

iterative search may get stuck in a local stationary point.

Remark 5.2. We can also consider the Hausdorff distance between the common linear

transforms of different polyhedral D norm balls discussed earlier. Specifically, if K1,K2

are the unit ∥ ⋅ ∥Dk1 , ∥ ⋅ ∥
D
k2

norm balls for 1 ≤ k1 < k2 ≤ d, then following Property 1.6.3 of

support functions, and the the steps in the proof of Proposition 5.2, the Hausdorff distance

δ between the sets TK1,TK2 equals

δ (TK1,TK2) = (
1

k1
−

1

k2
) sup
∥y∥2=1

∥T ⊺y∥1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶∥T ⊺∥2→1

= (
1

k1
−

1

k2
) ∥T ∥∞→2, (5.13)

where the last equality follows from the relation between the induced norm of an operator

and that of its adjoint.

5.2.1 Estimates for arbitrary T

We next provide an upper bound for (5.12) in terms of the operator norm ∥T ∥2→q1

(proof in Appendix E.2).

Proposition 5.3. Let T ∈ Rm×d. Then for 1 ≤ q2 < q1 ≤ ∞, we have

sup
∥y∥2=1

(∥Ty∥q2 − ∥Ty∥q1) ≤ (m
1
q2
− 1

q1 − 1) ∥T ∥2→q1 . (5.14)

Recall that 1 < q1 ≤ ∞. When 1 ≤ q2 < q1 ≤ 2, the operator norm ∥T ∥2→q1 is, in

general, NP hard to compute [162–164] except in the well-known case q1 = 2 for which
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∥T ∥2→2 = σmax(T ), the maximum singular value of T . When 1 ≤ q2 ≤ 2 < q1 ≤ ∞,

the norm ∥T ∥2→q1 is often referred to as hypercontractive [165], and its computation

for generic T ∈ Rm×d is relatively less explored (see e.g., [165,166]) except for the case

q1 = ∞ for which T 2→∞ = maxi=1,⋯,m ∥T (i, ∶)∥2 (maximum ℓ2 norm of a row). Hy-

percontractive norms and related inequalities find applications in establishing rapid

mixing of random walks as well as several problems of interest in theoretical computer

science [165, 167–169].

Table 5.1 dissertations our numerical experiments to estimate (5.12) with q1 =

2, q2 = 1, for five random realizations of T ∈ R3×3, arranged as the rows of Table

5.1. For visual clarity, the contour plots in the first column of Table 5.1 depict only

four high-magnitude contour levels. These results suggest that the landscape of the

nonconvex objective in (5.12) has sensitive dependence on the mapping T .

We can say more for specific classes of T . For example, notice from (5.14) that if

the mapping T ∶ ℓq(Rd) ↦ ℓq (Rm) is an isometry, i.e., ∥Ty∥q = ∥y∥q, then the upper

bound is achieved by any y ∈ Rd such that
√
dy ∈ {−1,1}d as in Ch. 5.1, and we

recover the exact formula (5.7). We can characterize these isometric maps as follows.

Proposition 5.4. Consider a linear mapping given by T ∶ ℓq(Rd) ↦ ℓq (Rm).

(i) (See e.g., [170, Remark 3.1]) For q = 2, the mapping T ∈ Rm×d is an isometry if and

only if T ⊺T = Id, i.e., T is a column-orthonormal matrix.

(ii) ( [170, Thm. 3.2]) For q ∈ [1,∞) ∖ {2}, the mapping T ∈ Rm×d is an isometry if and

only if there exists a permutation matrix P ∈ Rm×m such that PT = diag(r1,r2,⋯,rd)

and ∥rj∥q = 1 for all j ∈ [d]. In particular, when d =m and q ∈ [1,∞)∖{2}, the mapping

T is isometry if and only if it is a signed permutation matrix [171,172], i.e, a permutation
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Landscape Estimated max. Upper bound
(5.14)

2.318732079842 2.384527280099

1.611342375325 1.722680031455

1.507938701982 1.583409927359

1.824182821725 2.157801577048

1.154650461995 1.303457527919

Table 5.1: Landscapes of ∥Ty∥q2 − ∥Ty∥q1 for q1 = 2, q2 = 1, y ∈ S2 in spherical co-
ordinates for five randomly generated T ∈ R3×3 with independent standard Gaussian
entries. The middle column dissertations the numerically estimated global maxima
from the respective contour data, i.e., the estimated Hausdorff distance (5.12). The last
column shows the corresponding bounds (5.14).
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matrix whose nonzero entries are either all +1 or all −1 or some +1 and the rest −1.

The following is an immediate consequence of this characterization.

Corollary 5.1. For T as in Proposition 5.4, the Hausdorff distance δ in (5.12) equals

(5.7).

An instance in which ∥T ∥2→q1 and hence the bound (5.14) is efficiently computable,

occurs when T ∈ Rm×d is elementwise nonnegative and 1 ≤ q1 < 2. In this case, the

operator norm ∥T ∥2→q1 is known [163, Thm. 3.3] to be equal to the optimal value of

the following convex optimization problem:

OPT ∶=max
X⪰0

√
∥dg (TXT ⊺) ∥ q1

2

subject to ∥dg (X) ∥1 ≤ 1, (5.15)

where dg (⋅) takes a square matrix as its argument and returns the vector comprising

of the diagonal entries of that matrix. To see why problem (5.15) is convex, notice

that X ⪰ 0 has unique (principal) square root, so TXT ⊺ = TX
1
2 (TX

1
2)
⊺
⪰ 0 which

implies dg (TXT ⊺) has nonnegative entries. Consequently, the objective in (5.15) is

concave for 1 ≤ q1 < 2. The non-empty feasible set {X ∈ Rd×d ∣X ⪰ 0, ∥dg (X) ∥1 =

∑
d
i=1Xii ≤ 1} is the intersection of the positive semidefinite cone with a linear in-

equality, hence convex (in fact a spectrahedron).

Then, the right hand side of (5.14) equals (m
1
q2
− 1

q1 − 1)×OPT. For example, when

q1 = 1.5, q2 = 1, T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 6 0

5 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.16)

a numerical solution of (5.15) via cvx [110] gives OPT ≈ 7.425702405524379. As in

Table 1, a direct numerical search over the nonconvex landscape (Fig. 5.4) for this ex-

ample returns the estimated Hausdorff distance ≈ 1.888517738190415 while using the

numerically computed OPT, we find the upper bound (5.14) ≈ 1.930096365450782.
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Figure 5.4: The landscape of the objective in (5.12) depicted in spherical coordinates
for the problem data given in (5.16).

Remark 5.3. We clarify here that for (5.15) to be used in the upper bound (5.14), the

range of q1 is 1 < q1 < 2. That ∥T ∥2→q1 equals to (5.15) holds also for the case q1 = 1.

Indeed, this implies we can compute (5.13) for elementwise nonnegative T by computing

∥T ⊺∥2→1 via convex optimization.

5.2.2 Estimates for random T

for random linear maps T ∶ ℓq(Rd) ↦ ℓq (Rm), it is possible to bound the expected

Hausdorff distance (5.12). We collect two such results in the following proposition

(proof in Appendix E.3).

Proposition 5.5. Let 2 ≤ q1 < ∞.

(i) Let T = (θij)
m,d
i,j=1 have independent (not necessarily identically distributed) mean-zero
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entries with ∣θij ∣ ≤ 1 for all index pair (i, j). Then the Hausdorff distance (5.12) satisfies

E δ ≤ (m
1
q2
− 1

q1 − 1)Cq1 max{m
1
q1 ,
√
d} (5.17)

where the pre-factor Cq1 depends only on q1.

(ii) Let T = (θij)
m,d
i,j=1 have independent standard Gaussian entries. Then the Hausdorff

distance (5.12) satisfies

E δ ≤ C (m
1
q2
− 1

q1 − 1)25/q1 (logm)
1/q1 (γ2 + γq1 Emax

i,j
∣θij ∣) + 2

1/q1γq1 (5.18)

where C > 0 is a constant, and γr ∶= (E∣X ∣r)1/r, r ≥ 1, is the Lr norm of a standard

Gaussian random variable X . In particular, γr ≍
√
r, i.e., there exist positive constants

c1, c2 such that c1
√
r ≤ γr ≤ c2

√
r for all r ≥ 1.

5.3 Integral Version and Application

We now consider a further generalization of (5.12) given by

δ (K1,K2) = sup
∥y∥2=1

∫

t

0
(∥T (τ)y∥q2 − ∥T (τ)y∥q1) dτ, 1 ≤ q2 < q1 ≤ ∞, (5.19)

where for each τ ∈ [0, t], the matrix T (τ) ∈ Rm×d, m ≤ d, is smooth in τ and has full

row rank m.

As before, let p1, p2 denote the Hölder conjugates of q1, q2, respectively. We can

interpret (5.19) as computing the Hausdorff distance between two compact convex

sets in Rd obtained by first taking linear transformations of them-dimensional p1 and

p2 unit norm balls via T ⊺(τ) ∈ Rd×m for fixed τ ∈ [0, t], and then taking respective

Minkowski sums for varying τ and finally passing to the limit. In particular, if we let

Pi ∶= {v ∈ Rm ∣ ∥v∥pi ≤ 1} for i ∈ {1,2}, then (5.19) computes the Hausdorff distance
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between the d dimensional compact convex sets

K1 ≡ ∫

t

0
T ⊺(τ)P1dτ ∶= lim

∆↓0

⌊t/∆⌋
∑
i=0

∆T ⊺(i∆)P1, (5.20a)

K2 ≡ ∫

t

0
T ⊺(τ)P2dτ ∶= lim

∆↓0

⌊t/∆⌋
∑
i=0

∆T ⊺(i∆)P2, (5.20b)

i.e., the sets under consideration are set-valued Aumann integrals [173] and the sym-

bol∑ denotes the Minkowski sum. That the sets in (5.20) are convex is a consequence

of the Lyapunov convexity theorem [48, 49].

Notice that in this case, (5.14) directly yields

δ (K1,K2) ≤ ∫

t

0
sup
∥y∥2=1

(∥T (τ)y∥q2 − ∥T (τ)y∥q1) dτ ≤ (m
1
q2
− 1

q1 − 1)∫
t

0
∥T (τ)∥2→q1 dτ.

(5.21)

A different way to deduce (5.21) is to utilize the definitions (5.20), and then combine

the Hausdorff distance property in [145, Lemma 2.2(ii)] with a limiting argument. This

gives

δ (∫
t

0
T ⊺(τ)P1dτ,∫

t

0
T ⊺(τ)P2dτ) ≤ ∫

t

0
δ (T ⊺(τ)P1,T

⊺
(τ)P2)dτ. (5.22)

For a fixed τ ∈ [0, t], the integrand in the right hand side of (5.22) is precisely (5.12),

hence using Proposition 5.3 we again arrive at (5.21).

As a motivating application, consider two controlled linear dynamical agents with

identical dynamics given by the ordinary differential equation

ẋi(t) =A(t)xi(t) +B(t)ui(t), i ∈ {1,2}, (5.23)

where xi(t) ∈ Rd is the state and ui(t) ∈ Rm is the control input for the ith agent at

time t. Suppose that the system matricesA(t),B(t) are smooth measurable functions

of t, and that the initial conditions for the two agents have the same compact convex

set valued uncertainty, i.e., xi(t = 0) ∈ compact convexX0 ⊂ Rd. Furthermore, suppose
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that the input uncertainty sets for the two systems are given by different unit norm

balls

U i ∶= {ui(τ) ∈ Rm ∣ ∥ui(τ)∥pi ≤ 1 for all τ ∈ [0, t]}, i ∈ {1,2}, (5.24)

such that 1 ≤ p1 < p2 ≤ ∞. Given these set-valued uncertainties, the “reach sets" X i
t ,

i ∈ {1,2}, are defined as the respective set of states each agent may reach at a given

time t > 0. Specifically, for i ∈ {1,2}, and U i given by (5.24), the reach sets are

X i
t ∶= ⋃

measurable ui(⋅)∈Ui

{xi(t) ∈ Rd ∣ ẋi(t) =A(t)xi(t) +B(t)ui(t), i ∈ {1,2},

xi(t = 0) ∈ compact convexX0, ui(τ) ∈ U i for all 0 ≤ τ ≤ t}. (5.25)

As such, there exists a vast literature [1–3, 5, 6, 111, 112, 115, 120] on reach sets and

their numerical approximations. In practice, these sets are of interest because their

separation or intersection often imply safety or the lack of it. It is natural to quantify

the distance between reach sets or their approximations in terms of the Hausdorff

distance [105, 174, 175], and in our context, this amounts to estimating δ (X 1
t ,X

2
t ).

Since 1 ≤ p1 < p2 ≤ ∞, we have the norm ball inclusion U1 ⊂ U2, and consequently

X 1
t ⊂ X

2
t . We next show that δ (X 1

t ,X
2
t ) is exactly of the form (5.19) (proof in Appendix

E.4).

Theorem 5.2. Consider the reach sets (5.25) with input set valued uncertainty (5.24).

For τ ≤ t, let Φ(t, τ) be the state transition matrix (see e.g., [176, Ch. 1.3]) associated with

(5.23). Denote the Hölder conjugate of p1 as q1, and that of p2 as q2, i.e., 1/p1 + 1/q1 = 1

and 1/p2 + 1/q2 = 1. Then 1 ≤ q2 < q1 ≤ ∞, and the Hausdorff distance

δ (X 1
t ,X

2
t ) = sup

∥y∥2=1
∫

t

0
(∥ (Φ(t, τ)B(τ))

⊺
y∥q2 − ∥ (Φ(t, τ)B(τ))

⊺
y∥q1)dτ. (5.26)
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Corollary 5.3. Using the same notations of Theorem 5.2, we have

δ (X 1
t ,X

2
t ) ≤ (m

1
q2
− 1

q1 − 1)∫
t

0
∥Φ(t, τ)B(τ)∥p1→2 dτ. (5.27)

The proof for Corollary 5.3 is given in Appendix E.5.

Remark 5.4. In the special case of a linear time invariant dynamics, the matrices A,B

in (5.23) are constants and Φ(t, τ) = exp((t − τ)A). In that case, Theorem 5.2 and

Corollary 5.3 apply with these additional simplifications.

Remark 5.5. As t increases, we expect the bound (5.21) to become more conservative.

Likewise, the gap between (5.26) and (5.27) is expected to increase with t.

Example. Consider the linearized equation of motion of a satellite [176, p. 14-15] of

the form (5.23) with four states, two control inputs, and constant system matrices

A(t) ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

3ω2 0 0 2ω

0 0 0 1

0 −2ω 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B(t) ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

1 0

0 0

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.28)

for some fixed parameter ω. The input components denote the radial and tangential

thrusts, respectively. We consider two cases: the inputs have set-valued uncertainty

of the form (5.24) with p1 = 2 (unit Euclidean norm-bounded thrust) and with p2 = ∞
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Figure 5.5: The numerically estimated Hausdorff distance (5.26) and the upper bound
(5.27) for the four state, two input linear system given in (5.28).

(unit box-valued thrust). We have [176, p. 41]

Φ(t, τ)B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sin(ω(t − τ))

ω

2(1 − cos(ω(t − τ)))

ω

cos(ω(t − τ)) 2 sin(ω(t − τ))

−
2(1 − cos(ω(t − τ)))

ω

−3ω(t − τ) + 4 sin(ω(t − τ))

ω

−2 sin(ω(t − τ)) −3 + 4 sin(ω(t − τ))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

for 0 ≤ τ < t, and the integrand in the right hand side of (5.27) equals to the maximum

singular value of the above matrix. For ω = 3 and t ∈ [0,2], Fig. 5.5 shows the time

evolution of the numerically estimated Hausdorff distance (5.26) and the upper bound

(5.27) between the reach sets given by (5.25) with the same compact convex initial set

X0 ⊂ R4, i.e., between X 1
t and X 2

t resulting from the unit p1 = 2 and p2 = ∞ norm ball

input sets, respectively.
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In this chapter, motivated by data-driven systems-control applications, we propose

learning the support function of an arbitrary compact set up to closure of convexifi-

cation. We argue that learning the support function representation can be attractive

compared to other set representation alternatives, such as over-approximation by a

geometric primitive fixed a priori, or representing the set of interest as the sub-level

set of a suitable (Lyapunov or value) function.

From Ch. 1.6.3, we know that the support function hX (⋅) is both convex and pos-

itive homogeneous of degree one, and hence a sublinear function. Conversely, any

sublinear function can be viewed as support function of a compact set. The converse

follows from the fact [177, Thm. 8.13] that a positive homogeneous convex function

can be expressed as pointwise supremum of linear function. Thus, to learn a compact

set is to learn its support function.

The main idea behind our proposed approach in this chapter is rooted in this iso-

morphism between the space of sublinear functions and the space of finite dimensional

compact convex sets, which allows transcribing set operations of system-control inter-

est to exact functional operations on the corresponding support functions–the latter

being computationally amenable via support function calculus.

Learning a support function from data leads to sublinear regression as opposed to

the well-known convex regression [178,179]. Given finite data collected from numerical

simulation or from experimental measurements, we outline two learning algorithms:

QP algorithm in Ch. 6.1.2, and ISNN algorithm in Ch. 6.1.3. Both these algorithms

perform sublinear regression to learn the corresponding support function representa-

tion, i.e., account for the fact that the support functions are not only convex, but also
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sublinear (Ch. 1.6.3).

6.1 Learning Algorithms

Following the presented Ideas, we know that learning the support function of a com-

pact set from data results in a sublinear regression problem, i.e., a regression problem

where the to-be-learnt function is constrained to be sublinear. To this end, we next de-

tail the data generation procedure followed by two proposed algorithms for the same.

6.1.1 Data generation

For the compact set X ⊂ Rd of interest, we suppose that we have access to nx i.i.d.

samples {x̂j}
nx
j=1, which are realizations of the random vector

{x̂j}
nx
j=1 = {xj + νj}

nx
j=1 (6.1)

where the deterministic but unknown x ∈ X , and νj are i.i.d. random realizations of

some noise vector ν ∈ Rd with zero mean and finite second moment. For instance, if

the setX of interest is a reach set, then we could obtain {x̂j}
nx
j=1 from a numerical sim-

ulator encompassing differential and difference equations, constraints, and so forth.

In that case, the noise ν could result from numerical round-off errors. We could also

obtain {x̂j}
nx
j=1 from repeated physical experiments, and the noise ν may stem from

the measurement errors.

We proposed to learn the set X via learning its support function hX (y), y ∈ Sd−1,

using the training pair {y, ĥX (y)} estimated by

ĥX (yi) = sup
x̂∈{x̂j}nx

j=1

⟨yi, x̂⟩, ∀i ∈ JnyK. (6.2)

We seek a sublinear function that “well fits" the values (6.2).
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6.1.2 QP algorithm

In this approach, we introduce a regression algorithm that utilizes the standard least

squares method. Specifically, we address an infinite-dimensional variational problem

by solving:

arg inf
{hnx ∶Rd→R∣hnx(⋅) is sublinear}

ny

∑
i=1
(ĥX (yi) − hnx(yi))

2
. (6.3)

The least squares problem (6.3) comes with a consistency guarantee, as stated in the

following theorem (proof in Appendix F.1).

Theorem 6.1. The minimizer of (6.3), hnx(⋅), almost surely converges to the true sup-

port function hX (⋅) as ny, nx →∞.

The least square estimator hnx , is achieved by solving the finite dimensional convex

QP [93, Ch. 6.5.5]

argmin
g1,⋯,gny

∈Rd,h∈Rny

ny

∑
i=1
(ĥX (yi) − hi)

2
, {yi}

ny

i=1

subject to hj ≥ hi + ⟨gi,yj − yi⟩ ∀(i, j) ∈ JnyK × JnyK. (6.4)

where minimization is over the decision variables g1,⋯,gny
∈ Rd andh ∶= (h1,⋯, hny)

∈ Rny . The variables {gi}
ny

i=1 represent the subgradients of the convex estimator hnx ,

and their minimizing value gopt
1 ,⋯gopt

ny from (6.4) provides a piecewise linear (PWL)

estimate

hPWL(⋅) = max
i=1,⋯,ny

{ĥX (yi) + ⟨g
opt
i , ⋅ − yi⟩}. (6.5)

Equation (6.5) represents a convex and degree one positive homogeneous function,

therefore hPWL(⋅) is sublinear.
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6.1.3 ISNN algorithm

Input sublinear neural network (ISNN), i.e a neural network whose output is a sub-

linear function of the network’s input vector, is an alternative tool for performing

sublinear regression to learn the support function of the set X ∈ Rd in the noisy set-

ting described in Ch. 6.1.1.

The ISNN is a subcategory of input convex neural network (ICNN) introduced

by [180], which is guaranteed to fit any convex function [181]. In other words, the

output of an ICNN is convex w.r.t. the input vector y ∈ Rd. For clarity, we briefly

review the architect of an ℓ layers ICNN. Let the width of each layer be {n1,⋯, nℓ},

and let nℓ ∶= 1, n0 ∶= d. For all k ∈ JℓK, the kth layer of the network with width nk has

associated weight matrices W (z)
k ∈ R

nk×nk−1
≥0 , W (y)

k ∈ Rnk×d and bias vector bk ∈ Rnk .

Furthermore, let W (z)
1 ∶= 0 ∈ Rn1×d (zero matrix). Then, for a given input vector

y ∈ Rd, the computation for each layer of ICNN involves:

z1 = σ (W
(y)
1 y + b1) ,

zk+1 = σ (W
(z)
k+1zk +W

(y)
k+1y + bk+1) , k ∈ Jℓ − 2K,

zℓ =W
(z)
ℓ zℓ−1 +W

(y)
ℓ y + bℓ, (6.6)

where the vector mapping σ comprises of element-wise application of the same ac-

tivation function σ(⋅) that is assumed to be convex and non-decreasing. The ICNN

model parameters W (z)
2∶ℓ , W (y)

1∶ℓ and b1∶ℓ are determined during the network’s training.

The convexity of the ICNN output zℓ w.r.t the input y follows from two facts: first,

the summation of convex functions is convex; second, a function composition where

the inner function is convex and the outer function is convex non-decreasing, remains

convex.
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Figure 6.1: Input sublinear neural net-
work (ISNN)

The main distinction between traditional

neural networks and ICNN is that the

latter necessitate the use of a convex

and non-decreasing activation function in

their models. The popular choice for such

activation function is the rectified linear

unit (ReLU) with σ(x) = max(0, x). Fur-

thermore, the weight matrices W (z)
1∶ℓ that connect the feedforward layers must be el-

ementwise non-negative. To compensate for the restriction on non-negative feedfor-

ward weights, supplementary passthrough links are integrated, linking the input layer

to every hidden layer via weight matrices W (y)
1∶ℓ that may incorporate real values. The

bias vectors b1∶ℓ are constituted of real entries.

Theorem 6.2. The neural network (6.6) is an ISNN, i.e., outputs a sublinear function

of a given input vector y ∈ Rd, if b1∶ℓ = 0, and the activation function σ(⋅) is convex,

non-decreasing and positive homogeneous of degree one.

The proof of Theorem 6.2 is provided in Appendix F.2. Activation functions σ(⋅)

satisfying the conditions delineated in Theorem 6.2 encompass rectified linear units

(ReLU), leaky ReLU, and parametric ReLU with a positive parameter. In the numerical

simulations presented herein, ReLU activation is utilized.

For all ISNN implementations, five hidden layers with corresponding neuron counts

of (5,20,50,20,5) are used, with mean squared error as the loss metric. The noncon-

vex training of the ISNN employs the Adam optimization algorithm [182], and the

Adam updates are projected to the nonnegative orthant as follows:

W
(z)
k ↦ ReLU (W

(z)
k ) ∀k ∈ JℓK.
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6.2 Case Studies

In the following, we present numerical examples to illustrate our proposed approach

and draw a comparison with existing algorithms in set estimation. We start with

a simple demonstration in Ch. 6.2.1 to learn the support function of the p-sum of

ellipsoids from noisy samples and then validate the result with ground truth. In Ch.

6.2.2 the support function of the reach set of an uncertain LTV system is estimated

using a sub-linear regressions algorithm. Our results are then tested against a semi-

analytical algorithm that approximates the reach set as the intersection of a finite

number of ellipsoids. We show in Ch. 6.2.3 how our proposed approach can be utilized

in detecting collision between dynamical agents with input uncertainties. In Ch. 6.2.4,

we compare the conservatism of the sublinear regressions in estimating the output set

of a neural network with the probabilistic semi-definite program that fits an ellipsoid

as the output set, proposed by [183]. In our final case study, we learn the region of

attraction of a nonlinear system using sublinear regression and discuss how these

results differ from the Lyapunov-based region of attraction for the same system.

For all ISNN implementations, we use 5 hidden layers with the respective number

of neurons (5,20,50,20,5). The training data in all of the simulations is of cardinality

(nx, ny) = (500,200) unless otherwise is stated, and the unit random vector y ∈ Rd

is drawn uniformly from the unit sphere Sd−1. All computations were performed in a

MacBook Pro with 2.6 GHz 6-Core Intel i7 processor with 16 GB of memory.
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6.2.1 p-Sum of ellipsoids

A nondegenerate ellipsoid of dimesion d, center vector q ∈ Rd and shape matrix Q ∈

Sd
++ is given by

E(q,Q) ∶= {y ∈ Rd ∣ (y − q)⊺Q−1(y − q) ≤ 1} . (6.7)

For simplicity, throughout the rest of this thesis, we sometimes refer to E(qi,Qi) by

Ei. Denote Xp-sum, as the p-sum of two ellipsoids, E1 and E2 with centers at the origin

and shape matrices Q1 = diag (1,14) and Q2 = diag (4,7), respectively. We want

to estimate the support function of Xp-sum via the noisy samples {x̂j}
nx
j=1 using linear

regression algorithms introduced above, ISNN and QP. We consider p = 1 and = ∞,

which are equivalent to the Minkowski sum and the union operations, respectively,

as explained in Prop. 5 (see Fig. 6.2.a). The training data, {(ĥp-sum(yi),yi)}
ny

i=1 are

obtained using (6.2). We then compare the learned support functions h1-sum and h∞-sum

with the analytical solution obtained from Prop. 5.a, and Prop. 5.b, where the support

function of each ellipsoid is given by

hE(q,Q)(y) = y
⊺q + (y⊺Qy)1/2. (6.8)

This comparison is shown in Fig 6.2. We can see a slight overfitting in ISNN (with

30 epochs) which can be reduced by increasing the number of training data, while

QP shows a more robust estimation. However, for the same cardinality (nx, ny), the

training time for QP is considerably higher (approx. 10 times) than it is for ISNN. We

will investigate the training time of different algorithms in more details Ch. 6.2.4.
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Figure 6.2: The p-sum of two ellipses E1 and E2 given in Ch. 6.2.1 (filled gray) are shown for
p = 1,∞. The dashed boundary is the Minkowski sum (p = 1), and the inner solid curve shows
the convex hull of the union (p = ∞) of E1 and E2. (a). The support function of the Minkowski
sum (p = 1) (b), and the union (p = ∞) (c) of two ellipses E1 and E2. The exact support function
in each figure is shown by dashed red. The estimated support function hp-sum(y) via linear
regressions, ISNN and QP are shown with solid and dashed blue, respectively.

6.2.2 Reach sets of linear time-varying (LTV) systems

Consider the forward reach set of a linear time-varying system at time t

XLTV (x0, t) ∶= {x(t) ∈ Rd ∣ẋ =A(t)x +B(t)u +G(t)w ∣

x(0) ∼ N(µx0,Σx0),u ∼ N(µu,Σu),w ∼ N(µw,Σw)},

(6.9)

where N(µ,Σ) represents a normal distribution with mean vector µ and covariance

matrix Σ and the state vector x ∈ Rd, control input u ∈ Rm and unmeasured distur-

bance w ∈ Rp. The system matrices A(t), B(t) and G(t) are continuous in time and

of commensurate dimensions.

We want to estimate the support function of XLTV (x0, t) via approximating the

reach set by the intersection of known ellipsoids. We then compare these results with

h(⋅) obtained via ISNN and QP.

Lemma 6.1. Define Ep as the p-level (p ∈ [0,1]) confidence region of a vector random
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variable x ∈ Rn s.t Pr (x ∈ Ep ≥ p). If x ∼ N(µ,Σ) be an d-dimensional Gaussian

random variable, then

Ep = {x ∣ (x −µ)
⊺Σ−1(x −µ) ≤ χ2

d(p)} , (6.10)

is an p-level confidence set of x, where χ2
d(p) is the quantile function of the chi-squared

distribution with d degrees of freedom [183].

Using lemma 6.1, we construct the p-level confidence ellipsoids, of random vari-

ables x, u and w as E(x0)
p ) (µx0

,X0), E
(u)
p (t) (µu(t),U(t)), E

(w)
p (t) (µw(t),W (t))

respectively.

Following the ellipsoidal outer-approximation procedure as in [35], [79, Ch. 3], we

generate a family of ellipsoids {E (xc(t),X i(t))}
N
i=1 parameterized by unit vectors

ℓi0 ∈ Rn where i = 1, . . . ,N , such that for any finite N ∈ N, we have

XLTV (x0, t) ⊆ X̂
(N)
LTV (X0, t) ∶=

N

⋂
i=1
E (xc(t),X i(t)) , (6.11)

and ⋂∞i=1 E (xc(t),X i(t)) = XLTV (X0, t). Notice that X̂ (N)LTV being an intersection of

ellipsoids, is guaranteed to be convex but not an ellipsoid in general. The center vector

xc(t) solves the initial value problem (IVP)

ẋc =A(t)xc +B(t)µu +G(t)µw, xc(0) = µx0
, (6.12)

and the shape matrices X i(t) solve the IVPs

Ẋ i(t) =A(t)X i(t) +X i(t)(A(t))
⊺ + πi(t)X i(t) +

1

πi(t)
B(t)U(t)B⊺(t)

−X
1/2
i (t)Si(t)G(t)W (t)G

⊺
(t) −G(t)W (t)G⊺(t)S⊺i (t)X

1/2
i (t)

X i(0) =X0 (6.13)

Let ℓ(t) ∶= exp (−(A(t))⊺t) ℓi0, then an n × n orthogonal matrix Si(t) solves

Si(t)v̂2i(t) = v̂1i(t). (6.14)
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where

v̂1i(t) ∶=
X

1/2
i (t)ℓi(t)

∥X
1/2
i (t)ℓi(t)∥2

, v̂2i(t) ∶=
G(t)W (t)G⊺(t)ℓi(t)

∥G(t)W (t)G⊺(t)ℓi(t)∥2
, (6.15)

furthermore

πi(t) ∶= (
ℓ⊺i (t)B(t)U(t)B

⊺
(t)ℓi(t)

ℓ⊺i (t)X i(t)ℓi(t)
)

1/2

. (6.16)

An algorithm to compute Si(t) in (9) is given in [79, Thm. 4.4.4] using O (n2) opera-

tions. The IVP’s (6.12) and (6.13) guarantee XLTV (x0, t) ⊆ X̂
(N)
LTV (X0, t).

A well-known method to estimate the support function of the intersection of a

finite number of outer ellipsoids {E (xc(t),X i(t))}
N
i=1 is to compute the minimum

volume outer ellipsoid, a.k.a the Löwner-John ellipsoid [107, 108], [184, p. 69] con-

taining X̂ (N)LTV (X0, t) and then finding the support function of the same using (6.8).

However, we adopt a more efficient approach here and find the support function of

the intersection directly by utilizing the infimal convolution property, Prop. 4 and

(6.8)

hX̂ (N)LTV
(y) = inf

y1,⋯,yN

N

∑
i=1

y⊺ixc + (y
⊺
iX iyi)

1/2, such that y1 +⋯ + yN = y. (6.17)

To demonstrate the algorithm presented above, we consider the linearized model

of a standard quadrotor dynamics with the 12 × 1 state vector x = (x, y, z , ϕ, θ,ψ, p

, q, r, u , v,w)⊺ comprises of the translational positions (x, y, z) [m], the Euler angles

(ϕ, θ,ψ) [rad], the translational velocities (u, v,w) [m/s], and the rotational velocities

(p, q, r) [rad/s]. Please refer to [112] for the details on model parameters and matrices

A, B and G. We implement a finite horizon LQR controller which acts on imperfect

state estimate x̂(t) with estimation error ξ(t) ∶= x(t) − x̂(t). The closed loop control

is given by

u(⋅, t) =K(t) (⋅) +ufeedforward(t), (6.18)

which tracks the desired path (xd(t), yd(t), zd(t)) ≡ (cos t, sin t, t). The LQR con-
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Figure 6.3: The support function of the projection of the quadrator’s forward reach set in Ch.
6.2.2 into (x, y, z) coordinates over (ϕ, θ) ∈ [0, π]×[0,2π) obtained via ISNN, QP and infimal
convolution of the support functions associated with the over-approximating outer ellipsoids.
The darker (resp. lighter) hues correspond to the higher (resp. lower) widths.

troller acts according to the state cost weight matrixQ = blkdiag(1000I3, diag (1,1,10) ,

I6), the control cost weight matrix R = 0.1I4, and the terminal cost weight matrix

M = blkdiag(1000I3, I9). The feedback gain K(t) = −R−1B⊺P (t) where P (t)

solves the associated well known Riccati matrix ODE. Furthermore, ufeedforward(t) =

R−1B⊺v(t) where v(t) solves a vector ODE with terminal conditions. The closed-

loop dynamics can then be written as the linear time-varying system

ẋ =Acl(t)x +Bclη +Gw, (6.19)

where Acl ∶=A +BK(t), Bcl ∶=BR−1B⊺, η(t) ∶= P (t)ξ(t) + v(t).

We suppose that the initial conditionx0∼N(012×1,diag (0.14,1.91,0.530.36,1.04,

0.28,1.86,1.33,0.19,0.14,1.43,1.37)
⊺. The estimation error ξ ∼ N(012×1,I12) and

the disturbancew(t) ∼ N((cos t, sin t, cos t)⊺ ,0.01I3). Employing lemma 6.1 we con-

struct the corresponding p-level confidence ellipsoids for random variables x0, ξ and

w for p = 0.85. Notice that η(t) ∈ E (v(t),V (t)) with V (t) ∶= P (t)P ⊺(t)/χ2
d(p).

For N = 10 we solve the IVP’s (6.12) and (6.13) for the closed loop dynamic (6.19)

and obtain the over-approximating ellipsoids and their corresponding support func-

tion using (6.8). The infimal convolution (6.17) then is solved via MATLAB, CVX which
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gives hX̂ (N)LTV
(⋅), the support function of X̂

(10)
LTV (X0, t). Using the affine transformation

property of support functions (Property 1.6.3) we obtain the support function of the

projection to the translation states (x, y, z) such that hProj(X̂ (N)LTV )
(Py) = hX̂ (N)LTV

(y),

where y ∈ R12 and the projection matrix P = [I3,03×9] ∈ R3×12.

Now we can visually compare this result with the support function achieved via

ISNN and QP for the identical setting. Notice that in this experiment, {x̂j}
nx
j=1 in (6.2)

corresponds to the states resulting from different feasible input sample paths. We

propagate the trajectories of system (6.19) in 12 dimensional state space and then

project the same into the first three coordinates (x, y, z). The training data for our

learning process {(ĥLTV(yi),yi)}
ny

i=1 is generated using (6.2).

Fig. 6.3 shows the variation of the support function of the forward reach set pro-

jection (6.9) over (ϕ, θ) ∈ [0, π] × [0,2π) for three different estimation algorithms,

ISNN, QP and the infimal convolution of the support functions associated with the

over-approximating ellipsoids. As expected, we observe that for the same setting, the

sublinear regression algorithms provide a considerably tighter estimation of the set

than of infimal convolution algorithm described in this section. Notice that the con-

servatism in infimal algorithm is pre-determined when choosing N , the number of

outer ellipsoids, while the sublinear regression holds no assumptions on the level of

conservatism.

6.2.3 Collision detection

Consider the forward reach set of two dynamical agents as X A
t ,X

B
t ⊂ Rn. We want to

falsify or certify the intersection between these reach sets at a given time t. We use

an intersection oracle, which is based on the support function of the Minkowski sum

of the two reach sets, given by [72]
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opt(t) = min
y∈Sn−1

{hX A
t
(y) + hX B

t
(−y)} ≥ (<)0 ⇐⇒ X A

t ∩ X
B
t ≠ (=)∅. (6.20)

Conditions (6.20) are equivalent to verifying if the zero vector 0 ∈ Rd belongs to the

set of Minkowski difference of X A
t ,X

B
t ⊂ Rn [64, 65] [64, 65] (see Ch. 4.2 for more

details).

In order to show the application of (6.20), we consider two quadrotors, A and

B with identical simulation settings as in Ch. 6.2.2, and different initial conditions

xA,0 ∼ N([15,−20, −3,01×19]⊺, diag(0.62,0.96, 0.03,0.27, 0.42,0.43,0.88,0.62,0.19,

0.17,0.80,0.24)⊺ andxB,0∼N([−10.5,2, 8,01×19]⊺,diag (1,0.77,0.28,0.53, 0.27,0.57,

0.20,0.45,0.35, 0.59,0.63,0.15)⊺. without loss of generality, we ignore the effect of

the unmeasured disturbance vector w in this experiment.

We want to investigate if there will be a collision between the two agents at any

time during [0,3] s. To this end, we propagate the trajectories of system (6.19) in 12

dimensional state space for both agents A and B and then project the same into the

first three coordinates (x, y, z) [m]. We generate the training data using (6.2) and

learn the support functions hProj(X A
t )(⋅), hProj(X B

t )(⋅) via ISNN with 50 epochs and QP

and compute the minimum value of (6.20) for both algorithms at each time instant

{ti}150i=1 over the test unit vectors {yi}
n=900
i . We then also solve (6.20) for the support

functions hProj(X̂ 10,A
LTV )
(⋅), hProj(X̂ 10,B

LTV )
(⋅) estimated via the ellipsoidal over-approximation

technique (followed by infimal convolution) detailed in this section, for p = 0.75.

Figure 6.4 reveals that the infimal convolution provides the most conservative

estimate for the collision time t = 1.04 s. When using ISNN, the first collision be-

tween X A
t , X

B
t ⊂ Rn occurs at t = 1.22 s, however, the optimal value keeps alter-

nating sign afterward from negative to positive at [1.22,1.34,1.48, 2.18,2.22,2.26,

2.32,2.38,2.40,2.46, 2.54,2.62,2.76,2.90,2.980] s time instances, which each indi-
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cates intersection following a separation state of the sets. Finally, we observe that

the intersection for QP happens at t = 2.26 s, and the optimal value remains positive

afterward. The monotone increase of the optimal value of (6.20) when using the in-

fimal convolution and QP algorithm is due to the fact that both the quadrotors track

the same desired trajectory. So as time passes, the two reach sets get closer, and the

intersection region grows larger. However, this growth is considerably faster for the

infimal algorithm as the uncertainty, and consequently, the volume of the outer el-

lipsoids grows with time. Although the ISNN and QP use the same training data, we

do not observe the same monotone growth in the optimal value when using ISNN.

This is due to an important distinction between the two sublinear regresses. While

QP achieves a deterministic trajectory, ISNN training involves randomization both in

Adam algorithm and epochs, which explains the noisy behavior of the ISNN trajectory.

Although ISNN is considerably faster, Fig. 6.4 convinces us that the QP is the best

choice for detecting a collision. The high computational time of solving QP in CVX,

however, motivates us to design a custom algorithm for solving QP in order to cut

down the computation time in our future research.

Notice that in this example, at each time instant, we actually only need to detect the

sign change of the n dimensional vector created by estimating opt(t) for {y)}n=9001 .

If a sign change exists, this process requires less computational time than of finding

the minimum value in (6.20), which is between O(n) and O(log(n)), depending on

the level of parallelization.

6.2.4 Reach set of deep neural network

In the present section, we learn the support function of the reach set of a neural net-

work in a probabilistic setting. In this setting, the input to the network, x ∈ Rd has
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Figure 6.4: Collision detection between the quadrotors A and B in Ch. 6.2.3 over the time
horizon [0,3] s. The vertical axis represents opt(t) = min

y∈Sn−1
{hProj(X A

t )(y) + hProj(X B
t )(−y)}

obtained via infimal convolution (dotted dark green), ISNN (solid maroon) and QP (dashed blue).

Instance ISNN, 30 epochs QP SDP
1 6.80 s 61.38 s 5.03 s
2 6.76 s 60.39 s 4.71 s
3 6.66 s 63.54 s 4.97 s
4 6.73 s 67.02 s 5.48 s
5 6.78 s 66.55 s 5.03 s
6 7.80 s 70.32 s 5.05 s
7 6.76 s 73.82 s 4.97 s
8 6.66 s 73.86 s 4.92 s
9 6.79 s 66.32 s 5.34 s
10 6.65 s 68.73 s 5.00 s

Table 6.1: Computational times [s] incurred by the sublinear regressions ISNN, QP vs the SDP
solver for the example in Ch. 6.2.4 with nl = 30 for 10 different random sampling instances.

random and potentially unbounded uncertainty, and we want to estimate the output

set S of the neural network f(x), such that f(x) ⊆ S .

If Ep is the p-level (p ∈ [0,1]) confidence region of a vector random variable x ∈ Rd,

thenS is a p-level confidence region for the random variable f(x), i.e. Pr (f(x) ∈ S) ≥

p If f (Ep) ⊆ S [183].

Given Ep as in (6.10), Fazylab et al. [183] introduced a SDP relaxation of the nonox-
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Figure 6.5: The estimated support function of the output reach set of NN (6.22) Via SDP (6.26)
(dashed red), QP (dotted green), ISNN with 20 (solid mustard) and 30 (solid blue). All subfigures
are plotted over the polar coordinate θ ∈ (−π,π]. Different number of neurons for the single
hidden layer are indicated in the respective subfigures.

onvex optimization problem

minVol (S) subject to f (Ep) ⊆ S, (6.21)

where S is the safe output ellipsoid of a nl layer feed-forward fully-connected neural

network

x0 = x (6.22a)

xk+1 = σ (W kxk + bk) , k = 0,⋯, l − 1 (6.22b)

f(x) =W lxl + bl, (6.22c)
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Figure 6.6: The support function of the ROA of the stable fixed point x∗ = (0,0) of the
nonlinear system (6.28) using Lyapunov theory (solid red), ISNN (dashed blue) and QP (dashed
green). The estimated ROA via sublinear regressions, ISNN and QP is considerably less con-
servative than the Lyapunv-Based ROA. The height of the peaks of the support function of the
ROA in ISNN, and QP depends on how farther away from the origin the sample data {xj}nx

j=1
are taken (refer to Fig.6.7).

with σ ∶= ReLU.

Lemma 6.2 ( [183]). The ReLU function, σ(x) = max(0,x) ∶ Rd → Rd, satisfies the

QC

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

σ(x)

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺

Q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

σ(x)

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≥ 0 (6.23)

defined by Q where

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q ∣Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 T −ν

T −2T ν + η

−ν⊺ ν⊺ + η⊺ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.24)

Here η,ν ≥ 0 and T ∈ Sd
+ is given by

T =
d

∑
i=1
λieie

⊺
i +

d−1
∑
i=1

d

∑
j>i
λij (ei − ej) (ei − ej)

⊺ (6.25)

where ei is the i-th basis vector in Rd and λij ≥ 0.

Theorem 6.3 ( [183]). Consider a single layer neural network f ∶ Rd → Rnz described
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by the equation

z =W (1)σ (W (0)x + b0) + b(1)

where σ ∶ Rn1 → Rn1 satisfies the quadratic constraint defined by (6.24) and x ∈

E (µx,Σx). Consider the following matrix inequality

M 1 +M 2 +M 3 ⪯ 0, where M 1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W 0⊺ 0 0

0 In1 0

b0
⊺

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W 0 0 b0

0 In1 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M 2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Id 0

0 0

0 1

⎤
⎥
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⎥
⎥
⎥
⎦
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Id 0

0 0

0 1
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺

, M3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

W 1⊺ 0

b⊺ 1
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⎥
⎥
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⎢
⎢
⎣

0 W 1 b1

0 0 1

⎤
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⎥
⎥
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(6.26)

with

P (τ) = τ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Σ−1x Σ−1x µx

µ⊺xΣ
−1
x −µ⊺xΣ

−1
x µx + 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, S(A,b) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A2 Ab

b⊺A b⊺b − 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.27)

If (6.26) is feasible for some (τ,A,Q,b) ∈ R+ × Snz ×Q× Rnz , then z ∈ E (µz,Σz)

with µz = −A
−1b and Σz =A

−2.
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Figure 6.7: The ROA of the stable fixed point x∗ = (0,0) (shown with green dot) of the
nonlinear system (6.28); the solid black lines shows 4 contours for positive c of the function
V (x1, x2) = 1

2
(x21 + x22) − 1

4x
4
1, superimposed with the given vector field. Blue (red) color

denotes region where V is > 0(< 0). The open set D is the infinite vertical strip strictly
inside the dashed green lines x1 = ±1. The Lyapunov estimate for the region of attraction
is (x1, x2) ∈ R2 ∶ V (x1, x2) ≤ c where 0 < c < 1/4 (the "eye-shaped" set inside the solid blue
boundary) which is also the heteroclinic orbit connecting the two saddle points (shown with
red dots). The scattered blue samples form the ROA which is not fully covered by the Lyapunov-
based ROA.

We compare the support function of the output ellipsoid obtained by SDP (6.26)

with the learned support function using regression algorithms QP and ISNN with 20

and then 30 epochs. The same simulation setting as [183] is adopted where µ = (1,1),

σ = diag(1,2) and for p = 0.95. The number of neurons for each layer is {2, nl,2},

respectively and we ran the experiment for nl = 10,30,50. The training data is gener-

ated as (6.2) with (nx, ny) = (10000,200). As expected from the observation made in
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Ch. 6.2.2, Fig. 6.5 reveals that the support function learned by either ISNN and QP pro-

vides a tighter estimation of the output reach set of NN (6.22) compare to the output

ellipsoid given by SDP (6.26). Farther more we see that as the number of epochs for

ISNN increases, the ISNN estimates approach the QP estimate of the support function.

While QP provides a more robust estimate, ISNN is more time efficient. For 10 differ-

ent random sampling instances with fixed cardinality and identical simulation setting,

table 6.1 dissertations a higher (approx. 10 times) training time for the QP than that

of ISNN. The training time for ISNN with 30 epochs is comparable of the computation

time for solving SDP (6.26) while keeping all other simulation settings fixed although

we don’t have probabilistic inclusion guarantee.

6.2.5 ROA of nonlinear systems

The region of attraction (ROA) of a stable fixed point x∗ of a nonlinear system is

defined as an invariant subset of its domain D, such that all the trajectories starting

inside this set will converge (asymptotically) to x∗.

An estimate for the ROA follows from the Lyapunov theorem and LaSalle’s in-

variance principle. Any sublevel sets of the lyapunov function V (x) defined on the

domain around x∗ is an invariant set of the form Ωc = {(x) ∈ Rd ∶ V (x) ≤ c}, where

an upper bound for the level c > 0 gives the largest estimate for the ROA, such that

Ωc is compact, positively invariant, and Ωc ⊂ D.

Consider the nonlinear system

ẋ1 = x2, ẋ2 = −x1 − x2 + x
3
1 (6.28)

The proposed Lyapunov function for the stable fixed point x∗ = (0,0) is V (x1, x2) =

1
2 (x

2
1 + x

2
2) −

1
4x

4
1 which gives 1 < c < 1/4. In Fig. 6.6, we draw attention to the gap

between the support function of the Lyapunov based ROA and those obtained via sub-
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linear regressions, QP and ISNN with (nx, ny) = (385,300). The region of attraction

learned by the sublinear regressions are considerably larger than the one obtained

using Lyapunov theory. We can see an slight overfitting by the ISNN that results in

crossing the Lyapunov ROA, which can be resolved by increasing the training data.

The height of the peaks of the support function of the ROA in ISNN, and QP depends

on how farther away from the origin the sample data {xj}
nx
j=1 are taken such that

in the limit, the two peaks in the support function will stretch out to infinity. This

can be seen intuitively in Fig.6.7. In this experiment first we sample the initial states

x1, x2 ∼ N(0,2) and only keep the samples for which the corresponding trajectory

converge asymptotically to the origin.

6.2.6 Control invariant set

xmin
1

0 1 xmax
1

xmin
2

0

1

xmax
2

Figure 6.8: The MCI set for integra-
tor dynamic (6.30). The boundary of
the exact MCI and the its noisy sam-
ples are shown by solid red and black
circles, respectively.

Consider a controlled dynamical system

ẋ = f(x,u), x ∈ Rd, u ∈ U ⊂ Rm, (6.29)

where U is the set of admissible control. A set

C ⊂ Rd is a control-invariant (CI) for (6.29), if for

any initial condition x0 ∈ C, there exist a con-

trol trajectory {u(t)}∞t=0 such that dynamic (6.29)

stays inside C for all t ≥ 0 [10].

In practical applications, the safety of the sys-

tem is usually guaranteed by adhering to specific

state constraints that define a safe region S ⊂ Rd.

One popular way to achieve this goal is to identify

a control-invariant set such that C ⊂ S .

To minimize system’s conservatism, it is desirable to find the maximum control-
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invariant (MCI) set C̄, that encompasses all other control-invariant sets C ⊂ S .

While determining maximal control-invariant sets for arbitrary systems poses an

intractable challenge, a commonly used approach to represent such sets is through

super-level sets of a function g ∶ Rd → R such that C = {x ∈ Rd ∣ g(x) ≥ 0}. In

this case study, we like to test the performance of sublinear regression algorithms by

identifying the MCI of the 2-dimensional integrator system under boxed-valued input

and state constraints U and E , given by

ẋ1 = x2, ẋ1 = u, (6.30a)

E(x, x) = {xi ∈ Rn ∶ xi ≤ xi ≤ xi, i = 1,2} (6.30b)

U(u, u) = {u ∈ R ∶ u ≤ u ≤ u, u ≤ 0 ≤ u} (6.30c)

We learn the support function of the desired CI using (noisy) samples derived from

simulation, and validate the result via the analytical expression of the double integra-

tor MCI obtained by [185]. For E ([−1,−1], [2,2]) and U (−1, 1) the 2-dimensional

integrator MCI along with noisy samples is depicted in Fig. 6.8. Figure 6.9 shows the

−π −π/2 0 π/2 π

θ

1.0

1.5

2.0

2.5

h

Exact

ISNN

QP

Figure 6.9: The support function of the MCI of the double integrator (6.30) with state and
input constraints E ([−1,−1], [2,2]) and U (−1, 1) over θ ∈ [−π,π]. The (dashed blue) and
(dashed green) curves correspond to the learned support function using ISNN and QP respec-
tively. The (solid red) shows the support function of the exact MCI (refer to Fig.6.8).

support function of the MCI over θ ∈ [−π,π] via ISNN, QP and the analytical solution
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for the double integrator system. We observe that, while having limited access to the

sample data, the sublinear regressions provide a considerably close estimation exact

support function.

160



7 | Summary and Future Work

7.1 Summary

Our research initiates a systematic study on learning the reach sets of full state feed-

back linearizable systems subject to set-valued uncertainties. These reach sets are, in

general, compact but nonconvex. Our learning strategy relies on computing the reach

sets in the associated integrator coordinates, and then transforming the sets back to

the original coordinates via known diffeomorphisms.

To realize the aforesaid research plan, we first investigate the exact geometry of the

integrator reach sets under set-valued uncertainty, which are known to be compact

and convex. We show that under time-invariant set-valued input uncertainty, the

integrator reach set is semialgebraic (Ch. 2.1.2), a zonoid up to translation (Ch. 2.1.1),

but not a spectrahedron (Ch. 2.1.5). We derive the equation of its boundary in both

parametric (Theorem 2.3) and implicit forms (Ch. 2.1.3). We also deduce the closed

form formula for the volume (Ch. 2.2.1) and diameter (Ch. 2.2.2) of these reach sets.

Furthermore, we derive the scaling laws (Ch. 2.2.3 and 2.2.4) for these quantities,

thereby quantifying how the “size” of these sets grow under the combined dependence

on time and the state space dimension. We point out that these results may be used

to benchmark the performance of set over-approximation algorithms (Ch. 2.3).

In Ch. 3, we extend our results to compute integrator reach sets under time-

varying compact set-valued uncertainties in the input. Such uncertainties appear in

differentially flat systems. We derive the explicit formula for the support function

(3.1.1) and boundaries (3.2.1) of the integrator reach sets under time-varying compact

set-valued uncertainties in the inputs.

Based on the previous findings, we introduce a semi-analytical approach for cal-
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culating LTI reach sets (Section 4.1). Additionally, we present an algorithm designed

to either falsify or verify the intersection of multiple integrator reach sets, and conse-

quently, the intersection of reach sets for the corresponding differentially flat systems

(Section 4.2). Finally, we unveil an algorithm for learning the compact, albeit possibly

nonconvex, reach sets for differentially flat systems (Section 4.3).

Finally, we provide a computational complexity analysis (Ch. 4.6) and show that by

parallelizing the learning algorithm proposed in Ch. 4.3, fast numerical computation

can be achieved.

In order to quantify the conservatism in our reach set estimation, we study the

Hausdorff distance between the reach set of LTI systems under different norm ball-

valued input uncertainties. Specifically, we study the Hausdorff distance between two

different norm balls in an Euclidean space and derive closed-form formula for the

same. In d dimensions, we provide results for the ℓp norm balls parameterized by p

where 1 ≤ p ≤ ∞, as well as for the polyhedral D-norm balls parameterized by k

where 1 ≤ k ≤ d. We then investigate a more general setting: the Hausdorff distance

between two convex sets obtained by transforming two different ℓp norm balls via a

given linear map. In this setting, while we do not have a general closed-form formula,

we provide upper bounds for the Hausdorff distance or its expected value depending

on whether the linear map is arbitrary or random. Our results make connections with

the literature on hypercontractive operator norms, and on the norms of random linear

maps. We then focus on a further generalization: the Hausdorff distance between two

set-valued integrals obtained by applying a parametric family of linear maps to the

unit ℓp norm balls, and then taking the Minkowski sums of the resulting sets in a lim-

iting sense. As an illustrative application, we show that the problem of computing the

Hausdorff distance between the reach sets of a linear time-varying dynamical system

with different unit ℓp norm ball-valued input uncertainties, leads to this set-valued
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integral setting.

In Ch. 6, we propose data-driven learning of compact sets in general, and reach

sets in particular, by learning the corresponding support function representations.

We point out an equivalence between the support functions and the class of sublin-

ear functions, and propose leveraging the same for performing sublinear regression.

We numerically demonstrate and compare two approaches: the first involves con-

vex quadratic programming (QP), and the second being ISNN that involves nonconvex

programming. Our numerical experiments reveal that among the two, the ISNN is

numerically faster but the QP solution is more robust and comes with consistency

guarantee. We empirically observe that ISNN with modest number of epochs can be a

practical alternative to QP without incurring as much computational cost as the latter.

7.2 Future Work

For future work, we propose a number of useful and interesting extensions of our

research listed below.

[i] (Generic dynamic state feedback linearizable systems)

In this dissertation, we have only considered a class of dynamic state feedback

linearizable systems, where the compensator dynamics is affine in control. A

relevant extension of the work is analyzing the reach sets of dynamic state feed-

back linearizable systems where the compensator dynamics may also depend on

the time derivatives of the control.

[ii] (Collision avoidance applications) It is of interest to explore how intersec-

tion detection between integrator agents can be utilized in collision avoidance

applications. Specifically, it carries a considerable curiosity to know how our
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results in Ch. 4.2 can be exploited for collision detection in the presence of set-

valued uncertainties, when these integrator dynamics correspond to the normal

forms of differentially flat systems, such as in vehicular dynamics.

[iii] (Partial state feedback linearizable systems) Many control systems of prac-

tical importance are not full state feedback linearizable. However, some of them

can be transformed to two interconnected subsystems [186, page 264]: a lin-

ear subsystem and a nonlinear subsystem called the zero dynamics [43]. This

is known as partial state feedback linearization. Developing an efficient learn-

ing algorithm for estimating the reach sets of partial state feedback linearizable

systems can be a remarkable extension of this work.

[iv] (Hausdorff distance of ℓp norm balls) It will be interesting to explore the

qualitative properties of the nonconvex landscape of the Hausdorff distance be-

tween the ℓp norm balls composed with linear maps (5.12), and to design efficient

algorithms in computing the Hausdorff distance for the same.

[vi] (Customized QP algorithm) In Chapter 6, we tackled the quadratic problem

at hand by employing semi-definite programming (SDP) methods. It should be

possible to design a customized algorithm tailored to solve the given QP in a

more efficient manner.
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A | Proofs for Chapter 1

A.1 Proof of Lemma 1.1

We know that Ki → K iff δH (Ki,K) → 0. From Property 1.6.3 of support functions,

the latter is equivalent to hKi
(⋅) → hK(⋅).

A.2 Proof of Lemma 1.2

Follows from continuity of the volume functional [47, p. 55], and uniform convergence

of the support functions of corresponding sets.

A.3 Proof of Lemma 1.3

For any point-to-set function F (⋅), we define

∫

t

0
F (s)ds ∶= lim

∆↓0

⌊ t
∆
⌋

∑
i=0

∆F (i∆), (A.1)

where the summation symbol Σ stands for the Minkowski sum, and ⌊⋅⌋ is the floor

operator; see e.g., [3]. The, for any y ∈ Rd, we have

h∫ t
0 F (s)ds (y)

(A.1)
= h

lim∆↓0 ∑
⌊
t
∆
⌋

i=0 ∆F (i∆)
(y) = sup

x∈lim∆↓0 ∑
⌊
t
∆
⌋

i=0 ∆F (i∆)

⟨y,x⟩

(Lemma 1.1)
= lim

∆↓0
sup

x∈∑
⌊
t
∆
⌋

i=0 ∆F (i∆)

⟨y,x⟩ = lim
∆↓0

h
∑
⌊
t
∆
⌋

i=0 ∆F (i∆)
(y)

= lim
∆↓0

⌊ t
∆
⌋

∑
i=0

∆h (i∆,y) = ∫
t

0
h (s,y)ds,

wherein the last but one line used the properties (1.6.3)-(1.6.3) for the support function.
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A.4 Proof of Proposition 1.1

Since support function is distributive over sum, we have

hR(X0,t) (y) = sup
x0∈X0

⟨y, exp (tA)x0⟩ + h∫ t
0 exp((t−s)A)BUds(y). (A.2)

The block diagonal structure of the matrix A in (1.7) implies

sup
x0∈X0

⟨y, exp (tA)x0⟩= sup
x0∈X0

m

∑
j=1
⟨yj, exp (tAj)xj0⟩. (A.3)

Following the definition of support function and [78, Proposition 1], we then have

h∫ t
0 exp((t−s)A)B U ds(y) =∫

t

0
hexp(A)B U (y) ds =∫

t

0
sup
u∈U
⟨y, exp((t − s)A)Bu⟩ ds

= ∫

t

0
sup

u∈closure(conv(U))

m

∑
j=1
{⟨yj,ξj(t − s)⟩uj} ds. (A.4)

The last equality in (A.4) follows from (2.5), and from the fact [71, Prop. 6.1] that the

reach set remains invariant under the closure of convexification of the input set U .

Substituting (A.3) and (A.4) in (A.2) yields (1.32).
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B.1 Proof of Theorem 2.1

Since the uncertainties in (2.1) along different input co-ordinate axes are mutually

independent, the support function of the reach set is of the form (2.9). Therefore, in

this case, (1.32) takes the form

hR(X0,t) (y) =
m

∑
j=1
{ sup
xj0∈Xj0

⟨yj, exp (tAj)xj0⟩ + ∫

t

0
sup

uj∈[αj ,βj]
⟨yj,ξj(t − s)⟩ uj ds}.

(B.1)

The optimizer uopt
j of the integrand in the RHS of (B.1), for j ∈ [m], can be written in

terms of the Heaviside unit step function H(⋅) as

uopt
j = αj + (βj − αj)H(⟨yj,ξj⟩) = αj + (βj − αj) ×

1

2
(1 + sgn (⟨yj,ξj⟩)) ,

where sgn(⋅) denotes the signum function. Therefore,

sup
uj∈[αj ,βj]

⟨yj,ξj(t − s)⟩uj = νj⟨yj,ξj(t − s)⟩ + µj ∣⟨yj,ξj(t − s)⟩∣ (B.2)

for 0 ≤ s ≤ t. Substituting (B.2) back in (B.1) and integrating over s completes the

proof.

B.2 Proof of Theorem 2.2

For s ∈ [0, t], let the vector measure µ̃ be defined as dµ̃(s) ∶= ξ(t − s)ds where ξ(s)

is given by (2.5). Then ∫
t

0 ∣⟨y,ξ(t − s)⟩∣ds is exactly in the form of a support function

of a zonoid (see e.g., [74, Ch. 2]). Using the one-to-one correspondence between a

compact convex set and its support function, the corresponding set is a zonoid.

From Property 1.6.3 and (2.10), X ◻t ({x0}) is the translation of a set with support
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function ∫
t

0 ∣⟨y,ξ(t − s)⟩∣ds, i.e., the translation of a zonoid. Thus, we conclude that

X ◻t ({x0}) is a zonoid.

B.3 Proof of Proposition 2.3

From Ch. 1.6.3, the supporting hyperplane at any xbdy ∈ ∂Xt ({x0}) with outward

normal y ∈ Rd is ⟨y,xbdy⟩ = h∂Xt({x0})(y), and the Legendre-Fenchel conjugate

h∗∂Xt({x0}) (x
bdy) = 0. (B.3)

For j ∈ JmK, let y comprise of subvectors yj ∈ Rrj . Since the Cartesian product

(2.8) is equivalent to the Minkowski sum X1t+̇X2t+̇⋯+̇Xmt, and the support function

of Minkowski sum is the sum of support functions of the summand sets [47, p. 48],

we have

hX({x0},t)(y) =
m

∑
j=1
hXjt({x0})(yj) ⇒ h∗X◻t ({x0}) (x

bdy) =
m

∑
j=1
h∗Xjt({x0}) (x

bdy
j ) , (B.4)

wherein the last line follows from the property that the Legendre-Fenchel conjugate

of a separable sum equals to the sum of the Legendre-Fenchel conjugates [93, p. 95].

Therefore, combining (B.3) and (B.4), we obtain

m

∑
j=1

inf
yj∈R

rj
{⟨−xbdy

j + exp (tAj)xj0 + νjζj(t),yj⟩ + µj∫

t

0
∣⟨yj,ξj(t − s)⟩∣ ds} = 0. (B.5)

For j ∈ JmK, since each objective in (B.5) involves an integral of the absolute value of

a polynomial in s of degree rj −1, that polynomial can have at most rj −1 roots in the

interval [0, t], i.e., can have at most rj−1 sign changes in that interval. If all rj−1 roots

of the aforesaid polynomial are in [0, t], we denote these roots as σ1 ≤ σ2 ≤ ⋯ ≤ σrj−1,
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and write

∫

t

0
∣⟨yj,ξj(t − s)⟩∣ ds = ±∫

σ1

0
⟨yj,ξj(t − s)⟩ ds ∓ ∫

σ2

σ1

⟨yj,ξj(t − s)⟩ ds

±⋯ ± (−1)rj−1∫
t

σrj−1

⟨yj,ξj(t − s)⟩ ds

= ⟨yj,±ζj(0, s1) ∓ ζj(σ1, σ2) ±⋯ ± (−1)
rj−1ζj(σrj−1, t)⟩.

(B.6)

Notice that even if the number of roots in [0, t] is strictly less than1 rj − 1, the expres-

sion (B.6) is generic in the sense the corresponding summand integrals become zero.

Thus, combining (B.5) and (B.6), we arrive at

m

∑
j=1

inf
yj∈R

rj
⟨−xbdy

j + exp (tAj)xj0 + νjζj(t) ± µjζj(0, σ1)

∓ µjζj(σ1, σ2) ±⋯ ± µj(−1)
rj−1ζj(σrj−1, t),yj⟩ = 0. (B.7)

The left hand side of (B.7) being the sum of the infimum values of linear functions,

can achieve zero if and only if each of those infimum equals to zero, i.e., if and only if

xbdy
j = exp (tAj)xj0 + νjζj(t) ± µjζj(0, s1) ∓ µjζj(σ1, σ2)

±⋯ ± (−1)rj−1µjζj(σrj−1, t). (B.8)

Using (1.22), (2.5) and (2.6), we simplify (B.8) to (2.16), thereby completing the proof.

B.4 Proof of Corollary 2.4

From (2.16), we get two different parametric representations of xbdy
j in terms of the

parameter vector σ. One parametric representation results from the choice of pos-

1this may happen either because there are repeated roots in [0, t], or because some real roots exist
outside [0, t], or because some roots are complex conjugates, or a combination of the previous three.
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itive sign for the ± appearing in (2.16), and another for the choice of negative sign

for the same. Denoting the implicit representation corresponding to the parametric

representation (2.16) with + (resp. −) sign as pupper
j (x) = 0 (resp. plower

j (x) = 0), the

result follows.

B.5 Proof of Theorem 2.5

We notice that (2.16) gives polynomial parameterizations of the components ofxbdy
j for

all j ∈ JmK. In particular, for each k ∈ {1,⋯, rj}, the right hand side of (2.16) is a homo-

geneous polynomial in rj−1 parameters (σ1, σ2,⋯, σrj−1) of degree rj−k+1. By poly-

nomial implicitization [63, p. 134], the corresponding implicit equations pupper
j (xbdy

j ) =

0 (when fixing plus sign for ± in (2.16)) and plower
j (xbdy

j ) = 0 (when fixing minus sign

for ± in (2.16)), must define affine varieties VR[x1,...,xrj ](p
upper
j ), VR[x1,...,xrj ](p

lower
j ) in

R [x1,⋯, xd]. Specifically, denote the right hand sides of (2.16) as g±1 ,⋯, g±rj for all

j ∈ JmK, where the superscripts indicate that either all g’s are chosen with plus signs,

or all with minus signs. Then write (2.16) as

xbdy
j,1 (σ) = g

±
1 (σ), xbdy

j,2 (σ) = g
±
2 (σ), ⋮ x

bdy
j,rj
(σ) = g±rj(σ).

Now for each j ∈ JmK, consider the ideal

I±j ∶=⟨⟨x
bdy
j,1 − g

±
1 , x

bdy
j,2 − g

±
2 , ⋯, x

bdy
j,rj
− g±rj⟩⟩ ⊆ R[σ1, σ2,⋯, σrj−1, x1, x2,⋯, xrj],

and let I±j,rj−1 ∶= I
±
j ∩R[x1, ..., xrj] be the (rj − 1)th elimination ideal of I±j . Then for

each j ∈ JmK, the variety

V (I+j,rj−1) = VR[x1,...,xrj ](p
upper
j ).

Likewise, the variety V (I−j,rj−1) = VR[x1,...,xrj ](p
lower
j ).

Thus, the algebraic boundary (i.e., the Zariski closure of the Euclidean boundary)
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of Xj is

∂Xj = VR[x1,...,xrj ] (p
upper
j ) ∪ VR[x1,...,xrj ] (p

lower
j ) .

Therefore, Xj ∶= {x ∈ Rrj ∣ pupper
j (x) ≤ 0, plower

j (x) ≤ 0} is semialgebraic for all

j ∈ JmK.

Since the Cartesian product of semialgebraic sets is semialgebraic, the statement

follows from (2.8).

B.6 Proof of Theorem 2.6

We organize the proof in three steps.

Step 1: From (2.8), we have

vol (X ◻t ({x0})) = vol (X1t × X2t ×⋯ ×Xmt) =
m

∏
j=1

vol (Xjt ({x0})) . (B.9)

Step 2: Motivated by (B.9), we focus on deriving the rj-dimensional volume ofXjt({x0}).

For this purpose, we proceed as in [78] by uniformly discretizing the interval [0, t] into

n subintervals

[
(i − 1)t

n
,
it

n
), i = 1,2,⋯, n,

with (n + 1) breakpoints {ti}ni=0, where ti ∶= it/n for i = 0,1,⋯, n.

From (2.13), and the vector ξj defined in (2.5), we then have

vol (Xjt ({x0})) = vol( lim
n→∞

n

∑
i=0

t

n
exp (tiAj)bj[−µj, µj])

= lim
n→∞
(
t

n
)
rj

vol(
n

∑
i=0

exp (tiAj)bj[−µj, µj]) = t
rj lim

n→∞
1

nrj
vol(

n

∑
i=0
µjξj(ti)[−1,1]) .

(B.10)
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At this point, we recognize that the set

n

∑
i=0
µjξj(ti)[−1,1] (B.11)

in (B.10) is a Minkowski sum of n+ 1 intervals, each interval being rotated and scaled

in Rrj via different linear transformations exp(tiAj), i = 0,1,⋯, n. In other words,

the set (B.11) is a zonotope imbedded in Rrj .

Using the formula for the volume of zonotopes [53, eqn. (57)], [187, exercise 7.19],

we can write (B.10) as

vol (Xjt ({x0})) = (2µjt)
rj lim

n→∞
1

nrj
× ∑

0≤i1<i2<⋯<irj≤n
det (ξj(ti1)∣ξj(ti2)∣⋯∣ξj(tirj )) .

(B.12)

To compute the summand determinants in (B.12), let

∆j (i1, i2,⋯, irj) ∶= det (ξj(ti1)∣ξj(ti2)∣⋯∣ξj(tirj )) ,

where 0 ≤ i1 < i2 < ⋯ < irj ≤ n. In the matrix list notation, let us use the vertical bars

∣ ⋅ ∣ to denote the absolute value of determinant. From (2.5), ∆j (i1, i2,⋯, irj) equals

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

(i1t/n)
rj−1

(rj − 1)!

(i2t/n)
rj−1

(rj − 1)!
⋯
(irj t/n)

rj−1

(rj − 1)!

(i1t/n)
rj−2

(rj − 2)!

(i2t/n)
rj−2

(rj − 2)!
⋯
(irj t/n)

rj−2

(rj − 2)!

⋮ ⋮ ⋮ ⋮

1 1 ⋯ 1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

=
(t/n)rj(rj−1)/2

rj−1

∏
k=1

k!

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

1 1 ⋯ 1

⋮ ⋮ ⋮ ⋮

i
rj−2
1 i

rj−2
2 ⋯ i

rj−2
rj

i
rj−1
1 i

rj−1
2 ⋯ i

rj−1
rj

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

,

(B.13)

wherein the last step used the properties of elementary row operations.
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Notice that the determinant appearing in the last step of (B.13) is the well-known

Vandermonde determinant that equals (see e.g., [124, p. 37])

∏
1≤a<b≤rj

(ib − ia) . (B.14)

Combining (B.12), (B.13) and (B.14), we obtain

vol (Xjt ({x0})) =
(2µj)

rj trj(rj+1)/2

rj−1

∏
k=1

k!

lim
n→∞

1

nrj(rj+1)/2
× ∑

0≤i1<i2<⋯<irj≤n
∏

1≤a<b≤rj
(ib − ia) .

(B.15)

Step 3: Our next task is to simplify (B.15) by eliminating the limit and the nested sums.

Observe that the sum

∑
0≤i1<i2<⋯<irj≤n

∏
1≤a<b≤rj

(ib − ia) , (B.16)

returns a polynomial in n of degree rj(rj+1)/2, and hence the limit in (B.15) is always

well-defined. Specifically, the limit extracts the leading coefficient of this polynomial.

Let us denote the leading coefficient of the sum (B.16) as c(rj). By the Euler-

Maclaurin formula [188], [189, Chap. II.10]:

c(rj) = ∫
0≤y1<y2<⋯<yrj≤1

∏
1≤α<β≤rj

(ya − yb) ⋅
rj

∏
a=1

dya. (B.17)

One way to unpack (B.17) is to write it as a sum over the symmetric permutation group

Srj of the finite set {1,2,⋯, rj}, i.e.,

c(rj) = ∑
σ∈Srj

sgn(σ)
1

∏
rj
k=1(σ1 + σ2 + ... + σk)

,

where

sgn(σ) ∶= (−1)ν , ν ∶= {#(i, j) ∣ i < j, σ(i) > σ(j)},
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and # stands for “the number of". We will now prove that

c(rj) =
rj−1

∏
k=1

(k!)
2

(2k + 1)!
. (B.18)

To this end, we write rj! ⋅ c(rj) as an integral over the unit cube [0,1]rj :

rj! ⋅ c(rj) = ∫
[0,1]rj

∏
1≤a<b≤rj

∣ya − yb∣ dy1...dyrj . (B.19)

In 1955, de Bruijn [190, see toward the end of Sec. 9] used certain Pfaffians to evaluate

∫
[0,1]rj

∏
1≤a<b≤rj

∣ya − yb∣ dy1...dyrj
rj! ⋅ {1! × 2! × ... × (rj − 1)!}2

1! × 3! × ... × (2rj − 1)!
, rj = 2,3,⋯,

which upon substitution in (B.19), indeed yields (B.18).

Combining (B.15) and (B.18), we arrive at

vol (Xjt ({x0})) =
(2µj)

rj trj(rj+1)/2

rj−1

∏
k=1

k!

c(rj) = (2µj)
rj trj(rj+1)/2

rj−1

∏
k=1

k!

(2k + 1)!
. (B.20)

Finally, substituting (B.20) in (B.9), and recalling that r1+r2+⋯+rm = d, the expression

(2.31) follows.

B.7 Proof of Theorem 2.7

From (2.5), the subvector ξj(t − s), where j = 1,2,⋯,m, is component-wise nonneg-

ative for all s ∈ [0, t].

Therefore, by triangle inequality, we have

∫

t

0
∣⟨η,ξ(t − s)⟩∣ ds ≤ ∫

t

0

m

∑
j=1
⟨∣ηj ∣, µjξj(t − s)⟩ = ⟨∣η∣,ζ(t)⟩, (B.21)

where ∣ηj ∣ denotes the jth subvector with component-wise absolute values. Let us

call ∣η∣ as the “absolute unit vector".

The upper bound in (B.21) is convex in η, and is maximized by an absolute unit
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vector collinear with ζ(t), or equivalently by η ∈ Sd−1 such that

η = ±
ζ(t)

∥ ζ(t) ∥2
, (B.22)

i.e., the unit vectors associated with ζ(t) up to plus-minus sign permutations among

its components.

Out of the 2d unit vectors given by (B.22), the “all plus" and “all minus" unit vectors

achieve equality in (B.21), and hence must be the maximizers of (2.33). The inequality

(B.21) remains strict for the remaining 2d−2 unit vectors in (B.22), thus are suboptimal

for (2.33).

Therefore, the maximizers in (2.34) are

ηmax = ζ(t)/ ∥ ζ(t) ∥2, −ζ(t)/ ∥ ζ(t) ∥2,

which upon substitution in (2.33), results in (2.35).
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C.1 Proof of Theorem 3.1

Let us denote the summation of the first two constant terms in the right-hand-side of

(3.9) as ηt. W.l.o.g., we prove our claim in a translated coordinate system with origin

at ηt.

Notice that the bounding hypersurfaces in (3.9) have an antipodal property, i.e., for

any fixed σ ∈ Wt, the line segment ℓ(σ) ∶= λxupper(σ) + (1 − λ)xlower(σ) generated

by varying λ ∈ [0,1], will pass through the origin. SinceXt is convex and compact, for

any x̃ ∈ Xt, the line through x̃ and the origin crosses the boundary at the antipodal

points x̃upper = xupper(σ) and x̃lower = xlower(σ) for some σ ∈ Wt. Therefore, x̃ ∈ ℓ(σ).

It follows that π is surjective.

C.2 Proof of Theorem 3.2

Using the parameterization (3.12), we get

d voln (Xt ({0})) = ∣det (Dπ)∣dσ1⋯dσn−1dλ. (C.1)

From (3.12), the map π is C1 (Wt × [0,1]). By Sard’s theorem [191, Sec. 2], the set of

critical values (image of the set of critical points inWt×[0,1]where det (Dπ) = 0) has

n dimensional Lebesgue measure zero. Using (3.9) and Remark 3.1, direct computation

gives

∣det (Dπ)∣ = ∣det(
∂π(σ, λ)

∂σ

∂π(σ, λ)

∂λ
)∣ = (3.14).

This completes the proof.
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D.1 Proof of Lemma 4.1

For convenience, let θ ∶= s− τ . From (4.5), the vector eθAconb equals to the last column

of the matrix exponential of θAcon.

On the other hand, Acon being a companion matrix, each consecutive row of eθAcon

must be the derivative of its previous row w.r.t. θ. Therefore, it suffices to determine

the top right corner (i.e., first row and last column) entry of eθAcon , which we denote

as g(θ).

We have

g(θ) = (1 0 0 ⋯ 0) e
θAcon

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

⋮

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
∞
∑
r=0
(1 0 0 ⋯ 0)

θrAr
con

r!

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

⋮

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
∞
∑
r=0

θr

r!

n

∑
i=1

λri
p′(λi)

, (D.1)

where the second line uses the Taylor series for matrix exponential, p′(⋅) denotes

the derivative of the characteristic polynomial p(⋅) in (4.6), and the third line follows

from a known result due to Dan Kalman [192, equation (9)] that gives a formula for
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the top right corner entry of the rth power of a companion matrix in terms of the

eigenvalues. The latter result in turn comes from a connection between the powers of

the companion matrix and the generalized Fibonacci sequences; see also [193, 194].

Exchanging the order of summation in (D.1), we get

g(θ) =
n

∑
i=1

1

p′(λi)

∞
∑
r=0

(λiθ)
r

r!
=

n

∑
i=1

eλiθ

p′(λi)
. (D.2)

It follows that

eθAcon b =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(θ)

g(1)(θ)

⋮

g(n−1)(θ)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(D.3)

where the parenthetical superscript denotes the order of derivative w.r.t. θ.

Combining (4.11), (D.2) and (D.3), we obtain

⟨c, eθAconb⟩ =
n

∑
i=1

(c0 + c1λi +⋯ + cn−1λn−1i ) e
λiθ

p′(λi)

=
n

∑
i=1

(p (λi) − λni ) e
λiθ

p′(λi)
. (D.4)

By definition, p(λi) = 0. Taking the logarithmic derivative of the characteristic poly-

nomial p(λ) = ∏n
i=1(λ − λi), we have p′(λi) = ∏n

j=1
j≠i
(λi − λj). Substituting these back

in (D.4), and recalling that θ = s − τ , the proof is complete.

D.2 Proof of Theorem 4.1

For a fixed finite s > 0, the function f(τ) in (4.11) is continuous and bounded in τ ∈

[0, s]. So v ↦ I(v) is a continuous functional. Therefore, the infimum and supremum

in (4.10) are achieved. Because the functional I(v) in (4.11) is linear, we can determine
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the respective optimal values in terms of the disjoint union

[0, s] = L−f ∪ L
++
f .

Using (4.10), (4.11) and Lemma 4.1, we arrive at (4.14).

The recovery of the LTI reach set (4.2) from the integrator reach set (3.1) follows

from the input correspondence (4.8) and the subsequent discussion in Ch. 4.1.2.

D.3 Proof of Theorem 4.2

Support function is distributive over sum, so from (2.2) and (1.23) , we obtain

hXt (y) =⟨y, exp (tA)x0⟩ + h∫ t
0 exp((t−s)A)B U(s) ds(y). (D.5)

Using [78, Proposition 1], we rewrite the RHS of (D.5)

∫

t

0
hexp(t−s)A)B U(s) (y) ds = ∫

t

0
sup

u(s)∈U(s)
⟨y, exp((t − s)A)Bu(s)⟩ ds. (D.6)

Let z(s) ∶= (exp((t − s)A)B)⊺y, and ũ = Mu + p, for all 0 ≤ s ≤ t, then, we

rewrite the integrand of the RHS of (D.6)

sup ⟨z,M−1
(ũ − p)⟩

subject to ∥ũ∥p ≤ 1. (D.7)

Recall that ∥ ⋅ ∥q is the dual norm of ∥ ⋅ ∥p for 1
p +

1
q = 1. From the definition of dual

norm, we have

⟨z,M−1
(ũ − p)⟩ = ⟨M−⊺z, ũ⟩ − ⟨M−Tz,p⟩ ≤ ∥M−Tz∥q∥ũ∥p − ⟨M

−Tz,p⟩

(D.7)
≤ ∥M−Tz∥q − ⟨M

−Tz,p⟩

Substituting this supremum in (D.6) and then using (D.5), we arrive at (4.32).
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D.4 Proof of Theorem 4.3

(i) Since 0(n+K+1)×1 is in the feasible set defined by (4.39b)-(4.39d), and the objective

in (4.39a) is linear, we have p̃∗ ≤ 0.

(ii) Since p̃∗ is the optimal value of the convex relaxation of a nonconvex problem

with optimal value p∗, we must have p̃∗ ≤ p∗. Thus, p̃∗ = 0 ⇒ 0 ≤ p∗. That 0 ≤ p∗ is

equivalent to X A
t ∩ X

B
t ≠ ∅, was explained before in Ch. 4.2.1.

(iii) We now show that when p̃∗ < 0, the convexification is in fact lossless, i.e.,

p̃∗ = p∗. Denote the argmin for (4.39) as ηmin. It suffices to prove that ηmin achieves

equality in (4.39d). To this end, suppose if possible, that ∥Nηmin∥2 =∶ ε < 1, i.e.,

0 < ε < 1. Now let η̃ ∶= ηmin/ε, which is clearly feasible w.r.t. (4.39b)-(4.39d). However,

⟨κ(t), η̃⟩ =
1

ε
®
>1

⟨κ(t),ηmin⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

< ⟨κ(t),ηmin⟩,

contradicting the supposition that the argmin achieves strict inequality in (4.39d).

Therefore, if p̃∗ < 0 then p̃∗ = p∗. That p∗ < 0 is equivalent to X A
t ∩ X

B
t = ∅, was

explained before in Ch. 4.2.1.

D.5 Proof of Theorem 4.5

From (4.54) we have αj(s),≤ α̂j(s) < β̂j(s) ≤ βj(s), for j = 1,⋯,m and s ∈ [0, t] using

the support function equation in (2.10) we arrive at

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨yj ,ξj(t − s)⟩ < 0, h(t,yj) = ∫
t

0 ⟨yj ,ξj(t − s)⟩αj(s)ds + ⟨exp(At)xj0,yj⟩

⟨yj ,ξj(t − s)⟩ > 0, h(t,yj) = ∫
t

0 ⟨yj ,ξj(t − s)⟩βj(s)ds + ⟨exp(At)xj0,yj⟩

⟨yj ,ξj(t − s)⟩ = 0, h(t,yj) = ⟨exp(At)xj0,yj⟩

(D.8)

180



Proofs for Chapter 4/Proof of Theorem 4.6 D.6

from which, we conclude

ĥj(t,yj) ≤ hj(t,yj), ∀j = 1,⋯,m ⇐⇒
m

∑
j=1
ĥj(t,yj) ≤

m

∑
j=1
hj(t,yj)

⇐⇒ X̂ ◻t1(x0, Û)+̇⋯+̇X̂
◻
tm(x0, Û) ⊆ Xt1 (x0,U) +̇⋯+̇X

◻
tm(x0,U)

⇐⇒ X̂ ◻t (x0, Û) ⊆ X
◻
t (x0,U) ⇐⇒ R̂t(z0,w0,V) ⊆ Rt(z0,w0,V),

⇐⇒ Ẑt(z0,V) ⊆ Zt(z0,V),

the last but one inequality follows from τ being a diffeomorphism mapping and this

completes the proof.

D.6 Proof of Theorem 4.6

Consider a boundary point x(σ)bdy = (xbdy
1 (σ), x

bdy
2 (σ),..., x

bdy
d (σ)) ∈ ∂X(σ) with

parametric representation (3.9). Using this parametric representation, we rewrite (4.57)

as a determinant equation (see [195, Sec. 14], and [196, 197]),

S (σ) = ⟨n̂(σ), ℓ̂⟩ =

RRRRRRRRRRRRRRR

∂x1
∂σ

∂x2
∂σ

⋯
∂xd
∂σ

ℓ1 ℓ2 ⋯ ℓd

RRRRRRRRRRRRRRR

= (−1)d−12d−1µ(σ1)µ(σ2)⋯µ(σd−1)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

σd−1
1

(d − 1)!

σd−2
1

(d − 2)!
⋯ 1

σd−1
2

(d − 2)!

σd−2
2

(d − 2)!
⋯ 1

⋮ ⋮ ⋮ ⋮

σd−1
d−1

(d − 2)!
−

σd−2
d−1

(d − 2)!
⋯ 1

ℓ1 ℓ2 ⋯ ℓd

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

(D.9a)
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= (−1)d−12d−1µ(σ1)µ(σ2)⋯µ(σd−1)×

d

∑
i=1
ℓi(−1)

1+i
d

∑
i1,i2,⋯,id−1=1

ε1,2,i−1,i+1,⋯,ni1,i2,⋯,id−1

d−1
∏
r=1

σd−ir
r

(d − ir)!
= 0. (D.9b)

In above, we use vertical bars to denote the determinant of matrix represented in array

format. Canceling the prefactor in (D.9b) followed by algebraic simplification gives

(∏
j≠i
(σi − σj))

d

∑
i=1
(d − i)! (−1)d−iℓiei−1 = 0. (D.10)

Following (4.57), we drop the factor∏j≠i (σi − σj) from (D.10), and arrive at (4.59)..

D.7 Proof of Theorem 4.7

Let PX (y) be a supporting hyperplane of set X , specified by the direction vector y ∈

Sd−1 and point pX (y) ∈ X such that

pX (y) = argmax
xbdy∈∂X

⟨xbdy,y⟩. (D.11)

Similarly, we define the supporting hyperplane,Pℓ(y) on ℓ in the directiony, specified

by pℓ(y) ∈ ∂ℓ given by

pℓ(y) = argmax
xℓ∈ℓ

⟨xℓ,y⟩. (D.12)

Since X and ℓ are convex, the supporting hyperplane of ∂ (ℓ+̇Xt) in the direction y,

touches this set for all y ∈ Sd−1 at

p(ℓ+̇Xt)(y) = pX (y) + pℓ(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmax
xbdy∈∂X

⟨xbdy, ŷ⟩ + ℓ1 if ⟨̂ℓ,y⟩ > 0,

argmax
xbdy∈∂X

⟨xbdy,y⟩ + ℓ0 if ⟨̂ℓ,y⟩ < 0,

any point ∈ {Xcut+̇ℓ} if ⟨̂ℓ,y⟩ = 0,

(D.13)
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where

argmax
xbdy∈∂X

⟨xbdy,y⟩ ∈

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

X≥ if ⟨̂ℓ,y⟩ > 0

X≤ if ⟨̂ℓ,y⟩ < 0
(D.14)

and the last equality in (D.13) is achieved using criteria (4.64). From (D.13) we can

recover (4.65) and complete the proof.
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E.1 Proof of Proposition 5.2

Recall that δ relates to h1, h2 via (5.3). Since 1 ≤ k1 < k2 ≤ d, we know that
1

k2
∥y∥1 <

1

k1
∥y∥1. Depending on the value of ∥y∥∞, we need to consider three subsets of unit

vectors.

Specifically, for the unit vectors y satisfying
1

k2
∥y∥1 <

1

k1
∥y∥1 ≤ ∥y∥∞, we have

h1(y) = h2(y) = ∥y∥∞ and h1(y) − h2(y) = 0.

On the other hand, for the unit vectors y satisfying ∥y∥∞ ≤
1

k2
∥y∥1 <

1

k1
∥y∥1,

we have h1(y) =
1

k1
∥y∥1, h2(y) =

1

k2
∥y∥1, hence we obtain that h1(y) − h2(y) =

(1/k1 − 1/k2)∥y∥1, which is always nonnegative.

Finally, for the unit vectors y satisfying
1

k2
∥y∥1 ≤ ∥y∥∞ <

1

k1
∥y∥1, we must have

h1(y) − h2(y) =
1

k1
∥y∥1 − ∥y∥∞ < (1/k1 − 1/k2)∥y∥1.

Therefore, using (5.3) we get

δ (K1,K2) = (
1

k1
−

1

k2
) sup
∥y∥2=1

∥y∥1.

Using the same arguments as in (5.6), we obtain sup
∥y∥2=1

∥y∥1 =
√
d, which is achieved

by 2d vectors of the form v/
√
d for all v ∈ {−1,1}d. This completes the proof.
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E.2 Proof of Proposition 5.3

Proceeding as in Ch. 5.1, for y ∈ Sd−1 we get

∥Ty∥q2 ≤m
1
q2
− 1

q1 ∥Ty∥q1

⇒ ∥Ty∥q2 − ∥Ty∥q1 ≤ (m
1
q2
− 1

q1 − 1) ∥Ty∥q1

≤ (m
1
q2
− 1

q1 − 1) sup
∥y∥2=1

∥Ty∥q1 = (m
1
q2
− 1

q1 − 1) ∥T ∥2→q1

⇒ sup
∥y∥2=1

(∥Ty∥q2 − ∥Ty∥q1) ≤ (m
1
q2
− 1

q1 − 1) ∥T ∥2→q1 .

.

E.3 Proof of Proposition 5.5

(i) Following [198, Thm. 1], we bound the expected operator norm as E∥T ∥2→q1 ≤

Cq1 max{m1/q1 ,
√
d}. Combining this with (5.14), the result follows.

(ii) The expected 2 → q1 operator norm bound, in this case, follows from specializing

more general bound1 given in [199, Thm. 1.1]. Specifically, we get

E∥T ∥2→q1 ≤ C2
5/q1 (logm)

1/q1 (γ2 + γq1 Emax
i,j
∣aij ∣) + 2

1/q1γq1 , (E.1)

where C,γ2, γq1 are as in the statement. Combining (E.1) with (5.14), we obtain (5.18).

1The operator norm bound in [199, Thm. 1.1] is more general on two counts. First, the operator
norm considered there is p∗ → q where 1 ≤ p∗ ≤ 2 ≤ q ≤ ∞. Second, the result therein allows
nonuniform deterministic scaling of the standard Gaussian entries of T .
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E.4 Proof of Theorem 5.2

We have

X i
t =Φ(t,0)X0 +̇ ∫

t

0
Φ(t, τ)B(τ)U i dτ, i ∈ {1,2}, (E.2)

where +̇ denotes the Minkowski sum and the second summand in (E.2) is a set-valued

Aumann integral.

Since the support function is distributive over the Minkowski sum, following [78,

Prop. 1] and (1.23), from (E.2) we find that

hi (y) ∶= hX i
t
(y) = ( sup

x0∈X0

⟨y,Φ(t,0)x0⟩)+∫

t

0
sup

ui(τ)∈Ui

⟨y,Φ(t, τ)B(τ)ui(τ)⟩ dτ,

(E.3)

wherein i ∈ {1,2} and the sets U i are given by (5.24). Next, we follow the same

arguments as in [72, Thm. 1] to simplify (E.3) as

hi (y) = ( sup
x0∈X0

⟨y,Φ(t,0)x0⟩) + ∫

t

0
∥ (Φ(t, τ)B(τ))

⊺
y∥qi dτ, (E.4)

where qi is the Hölder conjugate of pi. Then (5.3) together with (E.4) yield (5.26).

E.5 Proof of Corollary 5.3

From (5.21), we obtain the estimate

δ (X 1
t ,X

2
t ) ≤ (m

1
q2
− 1

q1 − 1)∫
t

0
∥ (Φ(t, τ)B(τ))

⊺
∥2→q1 dτ. (E.5)

Recall that the norm of a linear operator is related to the norm of its adjoint via

∥ (⋅)
⊺
∥α→β = ∥ ⋅ ∥β∗→α∗ ,

where α∗, β∗ are the Hölder conjugates of α,β, respectively. Using this fact in (E.5)

completes the proof.
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F | Proofs for Chapter 6

F.1 Proof of Theorem 6.1

Notice that for i = 1,⋯, ny, we have

dnx,i ∶= ĥX (yi) − hconv({xj)}nx
j=1
(yi) = y

⊺
i ν. (F.1)

Therefore, dnx,i is i.i.d. with E
x,ν
[dnx,i] = 0 and E

x,ν
[d2nx,i

] = 1. As nx → ∞, we have

hconv({xj)}nx
j=1
(⋅) → hX (⋅) and the least squares problem (6.3) becomes identical to the

one investigated in [179], where the proof of consistency for ny →∞ is provided.

F.2 Proof of Theorem 6.2

The computation for each layer of ISNN are represented as follows

z1 = σ (W
(y)
1 y) ,

zk+1 = σ (W
(z)
k+1zk +W

(y)
k+1y) , k ∈ Jℓ − 2K,

zℓ =W
(z)
ℓ zℓ−1 +W

(y)
ℓ y, (F.2)

with elementwise non-negative matrices W (z)
1∶ℓ . Each layer conducts a composition of

non-negative sums of linear functions, succeeded by a convex, non-decreasing map-

ping. The sublinearity with respect to the input vector y ∈ Rd is maintained due to

the positive homogeneity of the function σ(⋅).
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