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ABSTRACT OF THE DISSERTATION

Zonal Flows in Planetary Fluid Layers
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Ashna Aggarwal

Doctor of Philosophy in Geophysics and Space Physics

University of California, Los Angeles, 2022

Professor Jonathan M. Aurnou, Chair

Zonal flows are some of the most ubiquitous and pronounced fluid structures observed in the

solar system. They are found in Earth’s atmospheres and oceans, likely Earth’s liquid outer

core, and on the surfaces of the gas giant planets and dwarf stars. They are responsible

for mechanisms such as the transfer of heat and momentum in atmospheres, which can lead

to complex weather systems on Earth and other planets. Though they are essential to the

dynamics of geophysical and astrophysical bodies, their formation, evolution, and breakdown

is not well understood. However, it is known that zonal flows in planetary and stellar fluid

systems are controlled by the complex interplay of convection, rotation, and magnetic forces.

For my dissertation, I have carried out two projects that contribute to our understanding

of how zonal flows, and thus geophysical and astrophysical bodies, are influenced by these

forces.

For the first project, in collaboration with my advisor Jonathan Aurnou and professor

Susanne Horn from Coventry University, I developed and used a novel computational code

to model the mechanism responsible for the damping of the large-scale, azimuthally directed

“jets” observed at Jupiter’s surface which is not well understood. Electromagnetic forces are
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thought to play a role as the planet’s electrical conductivity increases radially with depth. In

order to isolate the jet damping process, we carry out a suite of direct numerical simulations

of quasi-two-dimensional, horizontally periodic Rayleigh-Bénard convection (RBC) with

stress-free boundary conditions in the presence of an external, vertical magnetic field. Without

a magnetic field, jets, punctuated by intermittent convective bursts, develop at Rayleigh

(Ra, ratio of buoyancy to diffusion) numbers beyond 105. Five primary flow regimes are

found by varying 103 ≤ Ra ≤ 1010 and the Chandrasekhar number (Ch, ratio of Lorentz

to viscosity) 0 ≤ Ch ≤ 106: (i) steady convection rolls, (ii) steady magneto-columns, (iii)

unsteady to turbulent magneto-plumes, (iv) horizontally drifting magneto-plumes, and (v)

jets with intermittent turbulent convective bursts. We parse the parameter space using

transition laws derived from the interaction parameter (N , ratio of Lorentz to inertia). The

transition to the regime dominated by jets has the most immediate applications to the

magnetic damping of Jovian jet flows, where the separation between jets and a magnetically

constrained system occurs at a jet-based interaction parameter value of NJ ≈ 1. We conclude

by approximating the value of the Jovian interaction parameter as a function of depth, and

find that the jets may brake at approximately 6, 000 km below the surface, which is deeper

than recent estimates from NASA’s Juno mission. This implies that mechanisms in addition

to electromagnetic forces are likely required to fully truncate the jets.

For the second project, in collaboration with Jonathan Aurnou and previous UCLA

student Taylor Lonner, I developed the theoretical framework for and analyzed the data

from a novel experimental device, which was built and run by Taylor. Through this project,

we seek to increase our understanding of how turbulent fluid motions in Earth’s liquid iron

core sustain the geodynamo. The underlying flow, in which zonal jets may also play a key

role, is influenced by planetary rotation, buoyancy and magnetic forces, and the geometry

of the spherical shell. Recent numerical studies, which aim to characterize the dominant

length and velocity scales in spherical rotating convection models, are limited by the long

integration times required to access laboratory-scale turbulence. Furthermore, core-style
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turbulent convection is difficult to simulate with spherical shell experiments due to friction

from solid container boundaries, and limitations, to date, on container size.

In this project, we take advantage of strong laboratory turbulence by utilizing a cylindrical

laboratory device that incorporates both the effects of boundary curvature, quantified by a

topographic β-effect, and a predominantly cylindrically-radial centrifugal forcing, a proxy

for gravity, to model low-latitude core convection. The experiment is characterized by a

paraboloidal free surface and features a cylindrically-radial temperature gradient to drive

convection. This novel set-up approximates the topographic β profiles in a sphere, thus

providing a meaningful proxy for low-latitude core convection. Three cases of rotating

convection at 35, 50, and 60 RPM were run, with UDV velocity profiles, novel surface

thermography, and basal thermometry for diagnostics. The combination of the topographic

β-effect and convectively driven turbulence leads to the formation of coherent, alternating

prograde-retrograde jets in all three experiments. The analysis in this thesis shows that the

width of the jets closely follows a length scale known as the Rhines scale. The Rhines scale

is expected when the topographic β-effect halts the transfer of energy from small to large

scales that can occur in turbulent, rapidly rotating systems. Several other interesting flow

features are noted here, including topographic and thermal Rossby waves and jet migration

that closely match theoretical predictions. This device, with a paraboloidal free surface and

laterally driven convection, can provide length and velocity scale estimates for the turbulent

dynamics in low-latitude regions of Earth’s outer core, and further elucidate the processes

responsible for the geomagnetic field.
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CHAPTER 1

Introduction to Planetary Scale Fluid Dynamics

Geophysical and astrophysical fluid layers are ubiquitous in nature. Examples include

Earth’s atmospheres, oceans, and liquid metal outer core where the planet’s magnetic field

is ultimately generated and sustained. In addition, all planets in the Solar System are host

to at least one large scale fluid layer. And, as satellite missions explore sub-planetary scale

bodies such as Ganymede and Enceladus, they are finding fluids responsible for phenomena

such as magnetic field generation and polar plumes (Kivelson et al., 1996; Flannery et al.,

2006). Though each system is unique, there are common factors among them. The first is

high inertia, characterized by chaotic motions over a broad range of length and time scales.

The second is strong background rotation, which has a stabilizing effect on the flow. The

combination of these two phenomena, turbulence and rotation, can lead to a broad array of

flow morphologies including domain scale structures. These structures in turn play a crucial

role in planetary scale fluid dynamics (ex., weather patterns and magnetic field generation).

Coherent zonal flows are large-scale structures directed in the azimuthal direction (also

known as jets). They are pervasive in Earth and Jovian atmospheres (Schneider, 2006;

Vasavada and Showman, 2005), and Earth’s oceans with time-averaging (Maximenko et al.,

2005). For the gas giants, Jupiter and Saturn, these hydrodynamic, azimuthally-directed

zonal winds are amongst their most dominant surface features. Fig. 1.1(a) shows an image of

the Jupiter’s surface, overlaid with the zonal profile with latitude. These winds are strongest

near the equator and alternate in direction with varying latitude. Recent measurements of

Jupiter’s gravity field from Juno may hold information of the zonal flow structure with
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depth. Inverting the gravity harmonics to make deductions about interior flow morphology

remains a theoretical challenge (Kong et al., 2017), but this data has thus far has been used

to infer that the zonal winds of Jupiter extend from the weather layer down at least 3,000

km deep into the hydrogen-helium molecular atmosphere (Kaspi et al., 2018). As electrical

conductivity increases radially with depth, the fast-moving jet flow transitions to a slow

moving dynamo flow, which generates the anomalous magnetic field structure seen in Fig.

1.1(b). It is the increasing importance of magnetohydrodynamic processes with depth that

likely may the hydrodynamic zonal winds observed at the surface.

In Chapter 2, we characterize the fundamental process of magnetic damping on large-scale

zonal flows (jets) using a reduced, two-dimensional numerical model of convection with an

imposed magnetic field. We use this computational model, for which I was the lead developer,

to further our understanding of magnetohydrodynamic (MHD) flows, including their ability

to suppress gradients in the flow velocity parallel to the direction of the applied field. We also

find the magnetic field strength relative to inertia required to ultimately damp jets driven

by buoyancy in a two-dimensional system. By using this simplified model, approximate

predictions for the radial location at which the truncation occurs in Jovian systems can

be made, and compared to those truncation depths found by the recent Juno mission. We

discuss the implications of our results on learning which processes ultimately brake the Jovian

jets.

In Chapter 3, we investigate the generation of planetary magnetic fields, which are

intrinsically tied to conducting fluid motions and reveal global-scale features on all planets

with an active dynamo (Bloxham and Gubbins, 1985). For Earth, where the magnetic field

data is of the highest resolution to date, a number of hypotheses have been proposed to

explain the planet’s domain-scale, dipolar magnetic field structure. This dipolar structure

can be observed in Fig. 1.1(c), which shows Earth’s radial magnetic field at the core-mantle

boundary. The list includes the dominance of low wave number modes in core flows, or the

transfer of energy from small to large scales that can occur in constrained, turbulent systems

2



(Aurnou et al., 2015). At present, both laboratory experiments and numerical simulations

are unable to access the vast range of length and time scales required to characterize

Earth’s turbulent, dynamo-generating region. Numerical simulations of the geodynamo are

predominately driven by axially-aligned convective columns, a laminar solution of hydrodynamic

rotating convection. Fig. 1.1(d) shows a schematic of these convective columns. Any

large-scale structures that do indeed develop from turbulent cascades are found exclusively

in plane-layer models of rotating convection with periodic domains, which neglect the effects

boundary curvature (i.e., change in axial fluid layer height with radius) Guervilly and Hughes

(2017); Julien et al. (2018a).

Thus, in Chapter 3, we seek to explain Earth’s magnetic field observations using a novel

laboratory-numerical set up that includes both strong buoyancy forces to drive inertial flows,

and strong boundary curvature. Analysis of the results of this laboratory device reveal

coherent alternating prograde-retrograde jets, and we are able to show that their length scale

is consistent with a key quantity known as the Rhines scale. Our data analysis also reveals

several other interesting features, including topographic Rossby waves that likely excite

the jets, and the radial migration of some jet structures. Finally, we lay the theoretical

groundwork for future paraboloidal quasi-geostrophic computational models. Our results

may indicate the existence of zonal flows in the outer core, which have the ability to convert

components of poloidal fields into toroidal fields and can play an important part in the

dynamo processes,

In the last Chapter, I summarize the work presented here and discuss the broad implications

for planetary scale fluid systems. In particular, I discuss how this work furthers our understanding

of the fundamental processes that influence the formation, evolution, and braking of planetary

scale zonal flows, which in turn play a key role in geophysical and astrophysical fluid systems.

My contributions to each chapter of this thesis are: I wrote the code used for a majority of

the numerical simulations in Chapter 2. For the remaining cases, I modified an open-source

code and ran the simulations on my own. All of the analysis and a majority of the theoretical

3



work for Chapter 2 are also my own. This chapter is modified from a paper which has

undergone one round of revisions in Physical Review E, for which I am the first author. The

experimental data used in Chapter 3 was solely collected by co- first author Taylor Lonner.

I contributed to a majority of the figures and analysis, and led the theoretical and numerical

portion of the study. This chapter is modified from a paper submitted to the Journal of

Geophysical Research: Planets which I am co-first author.
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Figure 1.1: (a) Jupiter (image credit: NASA) and superimposed zonal flow profile varying

with latitude Porco et al. (0003) (b) Jupiter’s radial magnetic field, Br, at ≈ 1 bar. Blue

(red) signifies field lines radially inwards (outwards) ranging from about −5 to 5 microtesla

(figure credit: Moore et al. (2018)). (c) Earth’s radial magnetic field, Br, at the core-mantle

boundary (CMB). Blue (red) signifies field lines radially inwards (outwards) ranging from

about −1000 to 1000 microtesla, (image credit: H. Cao). (d) Schematic of axially-aligned

convective columns found in laminar solutions of rotating convection (figure credit: Aurnou

et al. (2015)).
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CHAPTER 2

Magnetic Braking of Convectively Driven Flows

2.1 Introduction

Turbulent flows in planetary and stellar interiors, often driven by convection, are controlled

by the complex interplay of stratification, rotation, and magnetic forces. One canonical

setup used to understand the fundamental processes behind such flows is Rayleigh-Bénard

convection (RBC), in which a fluid is heated from below and cooled from above. RBC

studies also often include additional forces such as rotation or an applied magnetic field to

gain further insight into geophysical and astrophysical flows (Aurnou and Olson, 2001; King

et al., 2009; Weiss and Proctor, 2014; Ecke and Niemela, 2014; Garaud et al., 2015; Guervilly

and Hughes, 2017; Horn and Aurnou, 2018; Cheng et al., 2020).

Zonal winds, or azimuthally directed large-scale flows (also called “jets”) are one type

of flow structure often observed in planetary and stellar systems, such as at the surfaces of

Jupiter and Saturn (Ingersoll, 1990; Atkinson et al., 1996; Porco et al., 0003; Vasavada and

Showman, 2005). Fig. 2.1 shows an image of Jupiter’s southern hemisphere from NASA

in which one can observe the banded flow structure. Fig. 2.2(a) also shows in image of

Jupiter, but with the zonal wind profile overlaid on the image in a solid black line, which

demonstrates the existence of the alternating jets.

On Jupiter and Saturn the electrical conductivity increases as a function of spherical

radius as the outer hydrodynamic molecular envelope transitions to a liquid metal (Gómez-Pérez

et al., 2010; Heimpel and Gómez Pérez, 2011; French et al., 2012; Duarte et al., 2013; Cao
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Figure 2.1: Figure adapted from NASA. Image of Jupiter’s southern hemisphere taken on

Feb. 17, 2020 in which the alternating bands of prograde and retrograde azimuthally directed

flow (“jets”) are visible.

and Stevenson, 2017). Fig. 2.2(b) gives the electrical conductivity profile as a function

of planetary radius, where the sharp increase in electrical conductivity is highlighted in

yellow. It is this increase in electrical conductivity, and thus electromagnetic effects, that

may act as a resistive brake on the azimuthally-directed zonal flows through a mechanism

known as “magnetic braking.” Fig. 2.2(c) gives a schematic of the three layers of Jupiter

that correspond to this electrical conductivity profile. The hydrodynamic jets (red/blue)

are likely damped in the transition layer (yellow) outside of the liquid metal region (dark

gray). Furthermore, the fundamental question of electromagnetic impact on large-scale flows

is relevant to a variety of other systems, including the solar tachocline (Tobias et al., 2007,

2011; Constantinou and Parker, 2018) and plasmas in tokamaks (Wagner, 2007; Wesson,

2011).

7



Magnetic braking is a magnetohydrodynamic (MHD) phenomenon in which a strong

magnetic field suppresses motions in a conducting fluid (Davidson, 2001). In the braking

process, motion across magnetic field lines induces electric current, which gives rise to Joule

dissipation. In turn, Joule dissipation subtracts from the kinetic energy present in the system,

thus usually damping the flow speed, though the induction of magnetic field can complicate

the damping effect (Pothérat and Klein, 2017). Zonal flow in the conducting regions of

Jupiter and Saturn could also induce current, leading to Joule dissipation and a decrease in

total energy available to the zonal winds (Christensen et al., 1999; Busse, 2002; Wicht, 2002;

Schneider and Liu, 2009; Kirk and Stevenson, 1987). Thus, constraints on the zonal wind

depth have been made (Liu et al., 2008), but are based on a specific and unconfirmed set of

magnetic field and flow configurations (Glatzmaier, 2008).

Spherical shell hydrodynamic models of deep convection that reproduce many of the

key jet characteristics have been carried out (Heimpel and Aurnou, 2007; Gastine et al.,

2012). However, the geometry of each model is truncated at the bottom boundary with a

free-slip condition. This serves as a proxy for MHD drag, but does not apply friction on

the flow as the electromagnetic effects should. Idealized models that include MHD drag

can help quantify the interplay between magnetic forces and jets, which can elucidate the

jet-truncation mechanism on planets, such as Jupiter.

We leverage the work of (Goluskin et al., 2014), where it was shown that two-dimensional,

horizontally periodic Rayleigh-Bénard convection (RBC) with free-slip boundary conditions

can lead to the development of zonal flows, in which the horizontal motion is stronger than

the vertical motion by several orders of magnitude. Similar two-dimensional simulations have

been carried out by (Aubert et al., 2003; Calkins et al., 2012b; Gastine, 2019) in rotating

annuli or by (Scott and Dritschel, 2012a) and (Wang et al., 2020) in a Cartesian domain,

producing zonal flows similar to the ones found here. Three-dimensional, rapidly rotating

convection simulations in periodic boxes resulting in alternating, unidirectional jets have also

been conducted (Favier et al., 2014; Julien et al., 2018b), as well as rotating spherical shell
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Figure 2.2: (a) The zonal wind profile of Jupiter with data from (Tollefson et al., 2017),

superimposed on a full disk image of the planet taken by the Hubble Wide Field Camera.

Figure adapted from (Kaspi et al., 2020). (b) Electrical conductivity, σ, for the interior of

Jupiter in S/m, where rj = 6.9894×107m denotes the mean radius of Jupiter. The red points

give the data from (French et al., 2012), and the black line shows the hyperbolic fit to the data

with the function and fit coefficients following (Jones, 2014) and (Cao and Stevenson, 2017).

The light red-blue shaded region corresponds to the hydrodynamic region in which σ ≈ 10−7

is negligible. The yellow shaded region, relevant to the model discussed in this paper, gives

the transition region, where the electrical conductivity of the fluid increases sharply and MHD

processes may influence the jets. The gray shaded region is then where σ > 103 and the

fluid is fully metallic. (c) Schematic showing the three layers (hydrodynamic, transition, and

metallic) mirroring the electrical conductivity profile in (b). The red dashed line denotes the

radial location of the cylindrical “magnetic tangent cylinder (MTC)” (Heimpel and Gómez

Pérez, 2011; Dietrich and Jones, 2018) which separates the inner magnetic shell from the

outer hydrodynamic shell.
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models with convective bursts (Busse, 1976; Heimpel and Aurnou, 2012).

Furthermore, rotating convection models have been studied extensively to not only

elucidate the process behind planetary zonal flows (Busse, 1994; Christensen, 2001; Schneider

and Liu, 2009; Showman et al., 2011), but also how planetary magnetic fields are generated

and sustained (Simitev and Busse, 2005; Jones and Roberts, 2000; Aubert et al., 2008;

Soderlund et al., 2013; Calkins et al., 2015). To isolate the MHD braking effects, we consider

non-rotating RBC and apply a magnetic field perpendicular to the horizontally directed

zonal flows. Fig. 2.3 shows the set up considered in this study for a case with zonal flows

in the x̂-direction and the magnetic field in the ŷ-direction. The purpose of this simplified

Cartesian model is to investigate the fundamental magnetic damping mechanism in a system

where jets are generated self consistently.

The rest of this chapter is organized as follows: Sec. 2.2 gives the governing equations for

a 3D MHD rotating system such as Jupiter, and demonstrates how our quasi 2D systeml may

be used to model this complex physical system. The governing equations and the numerical

methods are given in Sec. 2.3. Sec. 2.4 gives a theoretical framework to separate the

regimes based on the properties of the Lorentz force and the interaction parameter. In Sec.

2.5, we use flow properties such as length scale, momentum transport, and time-dependence

to distinguish between the differing flow regimes, and in Sec. 2.5.2 we derive interaction

transition laws based on length and velocity data to separate these regimes. We conclude in

Sec. 2.6, and discuss the implications of our results for the depth of zonal winds on Jupiter.

Sec. 2.7 gives the code development process, including discretization methods and steps

taken to validate the solver. App. E gives the main integration routine developed in Fortran

for the numerical simulations.
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Figure 2.3: Instantaneous temperature field for a case with strong zonal jets

(Ra = 108, Ch = 102, P r = 1,Γ = L/H = 2, see Sec. 2.3.3 for parameter definitions).

The domain is periodic in the x̂-direction, and has fixed temperature and stress-free vertical

boundary conditions. Gravity points downwards in the negative ŷ-direction, and a magnetic

field is imposed in positive ŷ-direction, such that B = B0ŷ.

2.2 Reducing the Jovian Equations

The dynamics of Jupiter and Saturn are complex for a number of reasons, including the 3D

spherical geometry, the compressible nature of the flow as density increases with radial depth,

the electrical conductivity behaviour that also increases with radial depth, limited knowledge

of the internal heat flow, and low viscosity values. These physical complexities present

considerable challenges for numerical simulations, and simplifications are necessary when

modeling the gas giants such as excessive viscosity values, axisymmetry, or the Boussinesq

approximation (Christensen et al., 2020).

In our model we particularly leverage the leading order balance between rotation and

pressure, which yields a flow approximately aligned with the rotation axis, allowing us to

reduce the coordinate system from 3D to quasi-2D. Similar assumptions have been made

across the literature when studying the Jovian planets, especially when considering the
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zonal flow profile with depth (Kaspi et al., 2018, 2020). In the following, we step through

the governing equations for a 3D, rotating, MHD system and show how a leading order

balance between rotation and pressure permits us to use a quasi-2D system to model Jovian

jet dynamics.

Consider the rotating, MHD Navier-Stokes and continuity equations given by,

ρ
(∂u
∂t

+ (u · ∇)u
)

+ 2ρ(Ω× u) = −∇P + Fν + ρg + (j ×B), (2.1)

∂ρ

∂t
= −∇ · (ρu). (2.2)

where u is the fluid velocity, P is the pressure, ρ is the fluid density, Ω = Ωẑ where Ω is

the planetary rotation rate, and ẑ is in the direction of the planetary rotation axis and can

be expressed in spherical coordinates as ẑ = cos(θ) · r̂ − sin(θ) · θ̂. In addition, j is the

electrical current density, B is the magnetic field, g = gr̂ is gravitational acceleration, and

κ is the thermal diffusivity. The centrifugal buoyancy term is neglected for simplicity.

Furthermore, Fν is the viscous force which includes the viscous stress tensor and can be

written as,

Fν,i = ∂j[µ(∂jui + ∂iuj −
2

3
δij∇ · u)] (2.3)

where µ is the dynamic viscosity.

In gas giants, the density varies significantly in radius by several orders of magnitude, with

the outer 10% in radius spanning about eight density scale heights (Stanley and Glatzmaier,

2010). Fig. 2.4(a) gives the approximate density variation with radial position for Jupiter,

where the red points give the data from (French et al., 2012), and the blue lines shows the

rational polynomial fit on the data with the function and fit coefficients following (Jones,

2014). Fig. 2.4(b) shows the density scale height Hρ = | ρ
dρ/dr
| with radial position. The scale

height is the lowest near the surface where the most significant density variations occur.

Gastine and Wicht (2012) used convection models that include density stratification

to show that jet characteristics to not change significantly when applying the Boussinesq
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approximation and assuming a constant background density. In addition, (Stanley and

Glatzmaier, 2010) note that the Boussinesq approximation can be applied when the density

scale height is much larger than the depth of the convective zone being considered. In our

system, we use a quasi-2D Cartesian box to model a local slice of the Jovian atmosphere

parallel to the equatorial plane relevant to the depths at which increased magnetic forces

are thought to play a role in jet damping, or between 3000 to 1000km below the surface

(approximately 0.95 to 0.985rj). The inset of Fig. 2.4 shows the variation in density over

this approximate radial scale of 0.95 to 0.985rj. The density increases by about three-fold

in this region. Future versions of this model should include density variations to accurately

model the magnetic jet damping mechanism. However for simplicity, we begin with the

most basic approximation, the Boussinesq approximation, and consider an average density

ρ0 around the local depth of our model effectively omitting fluid compressibility effects.

The Boussinesq approximation states that density variations will be neglected in all terms

except for the buoyancy term. For the treatment of density variations in the buoyancy term,

a Taylor expansion for the density around a reference temperature T = T0 is used, which

leads to,

ρ = ρ0 +
∂ρ

∂T

∣∣∣
T=T0

(T − T0) +O(T − T0)2 (2.4)

where α is the coefficient of isobaric thermal expansion, and is given by,

α = −1

ρ

∂ρ

∂T
. (2.5)

Substituting the definition of the thermal expansion coefficient α (2.6) into 2.4 and dropping

higher order terms gives,

ρ = ρ0(1− α(T − T0)). (2.6)

Next, we define the static u = 0 background Navier-Stokes equation,

0 = −∇P + ρgr̂ (2.7)

and separate the pressure P into its background P0 and dynamic p components, P = P0(r)+
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(a) (b)

Figure 2.4: (a) Density for the interior of Jupiter in kg/m3, where rj = 6.9894×107m denotes

the mean radius of Jupiter. The red points give the data from (French et al., 2012), and the

blue lines shows the rational polynomial fit on the data with the function and fit coefficients

following (Jones, 2014). The thin yellow line shows the approximate location of the model in

the region where increased magnetic forces could brake the jets, between 0.95 and 0.985rj.

The inset shows the density variation over this narrow region. (b) Associated density scale

height Hρ = | ρ
dρ/dr
|, given in km, for the interior of Jupiter.
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p(θ, φ, t). Hydrostatic balance then yields,

dP0

dr
= −∇Φ (2.8)

where Φ = ρgr is the gravitational potential. Then, assuming a constant dynamic viscosity

η and incompressible fluid, the rotating, MHD Navier-Stokes equation can be expressed as,

ρ0

(∂u
∂t

+(u·∇)u
)

+2ρ0(Ω×u) = (−∇P0−∇p)+ρ0gr̂+ρ0α(T−T0)gr̂+ν ρ0∇2u+(j×B),

(2.9)

where ν is the kinematic viscosity. We can use hydrostatic balance to simplify 2.9 and divide

by ρ0 leading to

∂u

∂t
+ (u · ∇)u+ 2(Ω× u) = − 1

ρ0

∇p+ α(T − T0)gr̂ + ν∇2u+
1

ρ0

(j ×B). (2.10)

In the outer molecular envelope to metallic regions of the Jovian planets, a leading

order balance between the Coriolis force and pressure gradients exists, which is known as

geostrophic balance. We can justify this statement by nondimensionalizing. Eq. 2.10 and

calculating the approximate strength of each term. To nondimensionalize Eq. 2.10, we

choose a characteristic length scale L, velocity scale U , time scale L
U

, planetary rotation rate

Ω, magnetic field strength B0, and pressure U2, yielding,

∂u

∂t
+ (u · ∇)u+

1

Ro
(Ω× u) = − 1

ρ0

∇p+
Ra

Re Pe
T r̂ +

1

Re
∇2u+

Ch

Re
(j ×B), (2.11)

where, defining the Reynolds number (ratio of inertia to viscous diffusion, Re),

Re =
UL
ν
, (2.12)

the Peclet number (ratio of inertia to thermal diffusion, Pe),

Pe =
UL
κ
, (2.13)

the Rossby number (ratio of inertia to Coriolis, Ro),

Ro =
U

2ΩL
, (2.14)
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and the Chandrasekhar number (ratio of Lorentz to viscous diffusion, Ch),

Ch =
σB2

0L
ρ0ν

. (2.15)

Estimating Re for the jets with a typical jet velocity of U = 50 m/s, a large-scale jet

width of L = 104km, and a kinematic viscosity of ν = 10−6m2/s, yields Re ≈ 1014. Thus,

the viscous term in 2.11 can be neglected. For the buoyancy term, (Heimpel and Aurnou,

2007) approximate Ra ≈ 1025 and Pr = 0.10, yielding a thermal diffusivity of κ = 10−5m2/s,

resulting in Pe ≈ 1013. The estimates then give a number ≈ 10−2 in front of the buoyancy

term, allowing us to not consider it as leading order. The value of the Lorentz term can

be roughly approximated at the top of the semi-conducting region, at about r = 0.95Rj,

where Rj is Jupiter’s radius. Using an electrical conductivity value of σ = 10−3S/m (French

et al., 2012), a magnetic field strength of B0 = 2mT (Moore et al., 2018), a jet width

L = 104km, a density of 103kg/m3, and a kinetmatic viscosity of ν = 10−6m2/s, gives

Ch ≈ 108. The approximate Ch is several orders of magnitude less than Re, allowing us to

neglect the Lorentz term for the current discussion. However, we note that its role in the

magnetic braking process will grow with depth, as the electrical conductivity and magnetic

field values increase, and the inertia of the zonal winds decrease.

Similarly, the Ro for the jets can be approximated by using a typical jet velocity of

U = 50 m/s, a jet width L = 104km, and Jupiter’s rotation rate Ω = 1.74× 10−4 1/s, giving

Ro ≈ 0.01. Thus, the high-latitude jets are characterized by low Rossby numbers, leaving

the advection terms in Eq. 2.11 negligible. A leading order balance between the Coriolis

force and pressure gradients remains, which is known as geostrophic balance. The governing

momentum equation for a fluid in geostrophic balance is then,

2(Ω× u) = − 1

ρ0

∇p (2.16)

Taking the curl of 2.16 we find,

(Ω ·∇)u = 0 (2.17)
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which is known as the Taylor-Proudman theorem. Thus, the high-latitude jets for which

Coriolis nearly balances pressure gradients, or quasi-geostrophic (QG), then may extend into

the molecular interior with little variation in zonal flow velocity, which is perpendicular to the

rotation axis, in the axial ẑ-direction. In addition, after invoking Taylor-Proudman theorem,

we now use the cylindrical ŝ-direction rather than spherical radial direction. Therefore, the

zonal flow will predominantly contain shears in the cylindrical radial direction. Though

variations in the background density can create changes in uz along the axis of rotation, we

choose to model a slice of the Jovian atmosphere parallel to the equatorial plane using a 2D

Cartesian domain, allowing us to consider the background density constant over a local radial

depth (see yellow box, Fig. 2.4). Thus, we simplify the geometry of the system immensely by

mapping the cylindrical ŝ-direction to a Cartesian ŷ-direction, and the cylindrical θ̂-direction

to a Cartesian x̂-direction. In order to isolate the jet damping mechanism, the Lorentz force

is included in the ŷ-direction to brake the x̂-directed jets. The Lorentz force is parallel to

the temperature gradient in our system, which is used to drive the flows.

2.3 Governing Equations and Numerical Methods

In this section, we present the framework for understanding MHD flows under the presence

of a strong, uniform magnetic field, before introducing the governing equations specific to

the set up used here. Configurations with a strong mean magnetic field have been the focus

of a number of studies (Nakagawa, 1955; Sommeria and Moreau, 1982; Cioni et al., 2000;

Pothérat et al., 2000; Aurnou and Olson, 2001; Chakraborty, 2008; Yan et al., 2019; Vogt

et al., 2021; Zikanov et al., 2021; Xu et al., 2022). A simplification often made is to apply

the quasistatic approximation (QSA), which states that the induced magnetic field, b, is

negligible, and ∂b/∂t ≈ 0 (Roberts, 1967; Davidson, 2001; Knaepen et al., 2004; Knaepen

and Moreau, 2008). QSA is typically invoked when the magnetic Reynolds number

Rm =
UL
η
, (2.18)
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is significantly lower than 1, where U is a characteristic velocity scale, L is a characteristic

length scale, and η the magnetic diffusivity. To demonstrate the effects of QSA, we can turn

to the magnetic induction equation

∂B

∂t
+ (u ·∇)B = B ·∇u+ η∇2B, (2.19)

which is coupled to the Navier-Stokes equation

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p+ ρg + ν∇2u+

1

ρ
(j ×B), (2.20)

where B is the magnetic field, u is the fluid velocity, ρ is the density, g is the gravitational

acceleration vector, ν is the viscosity, and j is the current density. The magnetic field can

be written in terms of the applied and induced components

B = B0 + b, (2.21)

where B0 is the applied field and b is the induced field. Eq. 2.19 can be reduced by

requiring that the applied field is uniform and stationary and that Rm � 1. Adopting the

characteristic scales b ∼ b, u ∼ U , and ∇ ∼ 1/L, and taking the ratio of the nonlinear

terms to the diffusion term in Eq. 2.19 gives

(Ub/L)

(ηb/L2)
=
UL
η

= Rm. (2.22)

Because we assume Rm� 1, Eq. 2.19 becomes

∂b

∂t
= B0 ·∇u+ η∇2b. (2.23)

Eq. 2.23 simplifies, since QSA states the induced field adapts instantaneously to the applied

field or ∂b/∂t = 0, which gives

−B0 ·∇u = η∇2b. (2.24)

Next, we show that the treatment of the Lorentz force in Eq. 2.20

FL = j ×B, (2.25)

can also be simplified through QSA, before turning to the governing equations unique to the

setup considered in this study.
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2.3.1 Equivalence of Quasistatic Potential and Induction Formulations

Simplifying the Lorentz force under QSA has been treated in previous studies two different

ways: using Ohm’s Law to find the current density, which is known as the potential formulation,

or by using the relationship

µj = (∇×B) (2.26)

where µ is the magnetic permeability, which is known as the induction formulation (Zikanov

et al., 2021). We demonstrate here that both frameworks are equivalent, which allows us to

utilize the potential formulation to calculate the Lorentz force in our model. In addition,

we employ the induction formulation to demonstrate the tendency for the Lorentz force

to dampen velocity gradients parallel to the magnetic field. This general MHD formalism

applies to both 3D and 2D set ups with a uniform vertical magnetic field now defined by

B = B0ŷ + b. (2.27)

2.3.1.1 Potential Formulation

The Lorentz force is given by Eq. 2.25. We can use Faraday’s Law to write the electric field

E in terms of the magnetic vector potential A,

∇×E = − ∂

∂t
B =

∂

∂t
(∇×A) = 0, (2.28)

which gives an equation for the electric field

E = −∇φ− ∂

∂t
A. (2.29)

Under QSA, ∂A/∂t = 0. Thus, the electric field can be expressed purely using a scalar

potential, φ

E = −∇φ. (2.30)

Using Ohm’s Law for the current density yields

j = σ(E + u×B) = σ(−∇φ+B0u× ŷ), (2.31)
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where σ is the electrical conductivity. Taking the curl of Eq. 2.31 gives

∇× j = σB0
∂u

∂y
. (2.32)

The Lorentz force can also be expressed through the following vector identity:

∇×∇× FL =∇(∇ · FL)−∇2FL. (2.33)

Substitution of Eq. 2.32 into the curl of the curl of Eq. 2.25 yields,

∇×∇× FL = σB2
0

(∂2u

∂y2

)
. (2.34)

The gradient of the divergence of Eq. 2.25 gives,

∇(∇ · FL) =∇(σB2
0

∂uy
∂y

). (2.35)

Eq. 2.34 and Eq. 2.35 allow us to rewrite Eq. 2.33 as

∇2FL =∇
(
σB2

0

∂uy
∂y

)
− σB2

0

(∂2u

∂y2

)
. (2.36)

2.3.1.2 Induction Formulation

Instead of Ohm’s law to define the current density, we use the induction formulation, given

by Eq. 2.26

j =
1

µ
(∇×B). (2.37)

The Lorentz force density, Eq. 2.25, becomes,

FL =
1

µ
(∇×B ×B) = −∇

( 1

2µ
B2
)

+
1

µ
(B ·∇)B. (2.38)

Eq. 2.38 can be simplified by substituting B = B0ŷ + b,

1

µ
(B ·∇)B =

1

µ

(
B0
∂b

∂y

)
, (2.39)

where terms O(b2) have been neglected. The remaining leading order terms of Eq. 2.38 can

be written as,

−∇
( 1

2µ
B2
)

= −∇
( 1

µ
B0by

)
. (2.40)
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The Lorentz force expressed using Eq. 2.38, Eq. 2.39, and Eq. 2.40 is

FL = −∇
( 1

µ
B0by

)
+

1

µ

(
B0
∂b

∂y

)
. (2.41)

The first term on the right hand side of Eq. 2.41 is irrotational, and represents a magnetic

pressure (Roberts, 1967). The second term is the rotational component of the Lorentz force.

The magnetic induction equation under QSA with a uniform vertical magnetic field reduces

to

B0
∂u

∂y
= −η∇2b, (2.42)

and can be used to simplify Eq. 2.41. Solving Eq. 2.42 for the induced field, b, gives

b = −B0

η
∆−1∂u

∂y
, (2.43)

where ∆−1 is the inverse Laplacian operator. The Lorentz force simplifies to

FL =∇
(B2

0

µη
∆−1∂uy

∂y

)
− B2

0

µη
∆−1∂

2u

∂y2
. (2.44)

Taking the Laplacian of both sides, we find

∇2FL =∇
(
σB2

0

∂uy
∂y

)
− σB2

0

(∂2u

∂y2

)
, (2.45)

where σ = 1/(µη). This is identical to Eq. 2.36, which shows that the potential formulation

and the induction formulation for the current density yield the same Lorentz force. Beyond

demonstrating the equivalence of two formulations commonly used in the literature, we can

observe an important characteristic of the Lorentz force under QSA. Namely, following Eq.

2.44, the Lorentz force tends to dampen velocity gradients parallel to the magnetic field

(Schumann, 1976; Sommeria and Moreau, 1982; Knaepen and Moreau, 2008; Pothérat and

Klein, 2014; Zikanov et al., 2021), and that this holds for both potential and induction

formulations.

2.3.2 Quasi-2D RBC Governing Equations

Next, we turn to the equations considered in this study in which the potential formulation

is used to simplify the Lorentz force term. They are the quasi-2D Cartesian Navier-Stokes
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equations for Rayleigh-Bénard convection (RBC) under the Oberbeck-Boussinesq approximation.

We include a quasistatic magnetic field parallel to the direction of buoyancy. The horizontally

periodic domain has stress-free velocity boundary conditions and fixed temperature boundary

conditions. The dimensional governing equations for the velocity u(x, y, t) and temperature

T (x, y, t) fields are:

∇ · u = 0, (2.46)

∇ ·B = 0, (2.47)

∂u

∂t
+ (u · ∇)u = − 1

ρ0

∇p+ αg(T − T0)ŷ + ν∇2u+
1

ρ0

(j ×B), (2.48)

∂T

∂t
+ (u · ∇)T = κ∇2T, (2.49)

where p is the pressure, ρ0 is the constant mass density, α is the coefficient of thermal

expansion, g is gravitational acceleration, T0 is the reference temperature, ν is the viscosity,

and κ is the thermal diffusivity.

In the quasi-2D configuration, forces are permitted in the third, ẑ-direction, though u

and T remain independent of z. Furthermore, we apply the additional condition, uz = 0.

This allows us to calculate the cross-product of the Lorentz term in Eq.2.48. The Lorentz

force density, fL, is given by

fL =
FL
ρ0

=
1

ρ0

(j ×B). (2.50)

We can again decompose the field into applied and induced components, B = B0ŷ + b.

Following the potential formulation given by Eq. 2.28-Eq. 2.30 yields a Poisson equation

∇2φ =∇ · (u×B). (2.51)

For this quasi-2D setup, the right hand side can be simplified,

∇ · (u×B0ŷ) =
∂

∂z
uxB0 = 0, (2.52)

to obtain a Laplace equation for the electrostatic potential

∇2φ = 0. (2.53)
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Using perfectly insulating ( ∂
∂n
φ = 0), perfectly conducting (φ = 0), or any combination

of these two boundary conditions for the electric field at the wall, gives

∇φ = 0. (2.54)

Using Eq. 2.31 for the current density, and applying the quasistatic approximation, we find

fL =
σ

ρ0

((u×B)×B) =
σ

ρ0

(uxB0ẑ ×B0ŷ) = −σB
2
0

ρ0

uxx̂. (2.55)

Eq. 2.46 - Eq. 2.49, are integrated in the vorticity-stream function formulation. The

vorticity, ω, is defined as the curl of the velocity field, where

ω =∇× u. (2.56)

Because uz = 0 and ∂z = 0, the vorticity vector is

ω =
(∂ux
∂y
− ∂uy

∂x

)
ẑ = ωzẑ. (2.57)

The stream function ψ can be used to reconstruct the velocity, where

ux = − ∂

∂y
ψ, uy =

∂

∂x
ψ. (2.58)

The vorticity is related to the streamfunction with

∇2ψ = −ωz. (2.59)

The vorticity evolution equation is found by taking the curl of Eq. 2.48. Since all the

terms in the vorticity equation are in the z-direction, the scalar vorticity equation for the

ẑ-component is
∂ω

∂t
+ (u · ∇)ω = αg

∂T

∂x
+ ν∇2ω +

σB2
0

ρ0

∂2ψ

∂y2
, (2.60)

where we have set ω ≡ ωz.
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2.3.3 Numerical Method

The approach used to numerically solve the governing equations is given here. First, to

nondimensionalize the system, the length is scaled by the height of the domain, H, time by

the free-fall time scale, τff = H/
√
αg∆T , temperature by the temperature difference from

the hot bottom to the cold top boundary in the static state, ∆T , and magnetic field by B0.

Under these scales, the nondimensional velocity, known as the free-fall velocity, is given by

uff =
√
αg∆TH. (2.61)

The quasi-2D nondimensional equations for quasistatic magnetoconvection in the vorticity-stream

function formulation are

∂ω

∂t
+ (u · ∇)ω =

∂T

∂x
+

√
Pr

Ra
∇2ω +

√
Ch2Pr

Ra

∂2ψ

∂y2
, (2.62)

∂T

∂t
+ (u · ∇)T =

1√
Ra Pr

∇2T, (2.63)

along with 2.59 and 2.58, which are solved using direct numerical simulations (DNS). The

Rayleigh number (Ra, ratio of buoyancy to diffusion) is given by

Ra =
αg∆TH3

νκ
, (2.64)

the Prandtl number (Pr, ratio of viscous to thermal diffusion) by,

Pr =
ν

κ
, (2.65)

and Chandrasekhar number (Ch, ratio of Lorentz to viscosity) by

Ch =
σB2

0H
2

ρ0ν
. (2.66)

The aspect ratio of the domain is defined by Γ = L/H where L is the length and H is the

height. We fix Pr = 1 and Γ = 2 for this study, and vary 103 ≤ Ra ≤ 1010 and 0 ≤ Ch ≤ 106.
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Our main output parameters are the Nusselt number, Nu, which defines the heat transfer

across the layer, and the Reynolds number, Re, which defines the momentum transport. The

equations for each are

Nu = 1 +
H〈uyT 〉x,y
κ∆T

, (2.67)

where 〈〉x,y refers to the area average, and

Rex =
〈|ux|〉x,yH

ν
, Rey =

〈|uy|〉x,yH
ν

. (2.68)

A more general Reynolds number is defined by

Re =
UH

ν
, (2.69)

where U is a characteristic velocity scale. Eq. 2.69 will be used when testing scaling laws

for this system.

To perform a majority of the DNS, we have developed an MPI parallelized, pseudo-spectral

solver that numerically integrates the governing equations 2.62-2.63 at each time step with

the following process: it calculates the linear terms of 2.62 and 2.63, transforms the solution

to physical space to calculate the nonlinear terms, updates the temperature field and vorticity

field, solves the Poisson equation for the streamfunction based on the vorticity field, and

finally updates the velocity field. The code utilizes m Fourier modes in the periodic x

direction, and solves the resulting equations using a second-order accurate finite difference

scheme in y (Glatzmaier, 2014).

The grid-spacing is non-uniform with Chebyshev mapping for finer resolution at the top

and bottom boundaries defined by

yk =
1

2

(
1− cos

(kπ
ny

))
for k = 1, ....ny (2.70)

where yk is vertical location at each grid point k and ny is the total number of vertical grid

points (Glatzmaier, 2014). The nonlinear terms are calculated using a spectral-transform

method, and the solutiond is advanced in time using a second-order Adams-Bashforth time

integration scheme.
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For the most numerically challenging cases with turbulent intermittent convective bursts

(Ra ≥ 109), the simulations are carried out using the DNS code DEDALUS (Burns et al.,

2020). Dedalus is a flexible, open-source pseudo-spectral code that employs MPI parallelization

and multidimensional block distributions when decomposing the spectral domains in parallel.

The domains are can be represented by the direct product of spectral bases, which can be

separable or coupled. The multidimensional parallelization scheme has the advantage of

scaling better on a larger number of cores than the code developed for this study. Both

codes are benchmarked to (Goluskin et al., 2014), as shown in Appendix A.1.

2.3.4 Marginal Stability Analysis

To understand nonlinear magnetoconvection, we first develop predictions for the linear

behaviors. Marginal stability analysis (Glatzmaier, 2014; Chandrasekhar, 1961) can be used

to find Ramar, the marginally unstable Rayleigh number as a function of aspect ratio and

horizontal Fourier mode number, m,

Ramar(m,Ch,Γ) =
(Γ2 +m2)(Ch Γ4π2 + (Γ2 +m2)m4)

Γ4m2
. (2.71)

In doing so, we have assumed that structures that extend from bottom to top of the box are

the most unstable such that the vertical mode number is equal to 1. The critical horizontal

mode number, mc, found by setting the derivative of Eq. 2.71 with respect to m to zero, is

given by

mc = Γ

√
χ4/3 + π4/3 − (πχ)2/3

2(πχ)2/3
. (2.72)

where

χ =
√
Ch+

√
Ch+ π2. (2.73)

It is then possible to substitute Eq. 2.72 into Eq. 2.71 to find the critical Rayleigh number,

Rac(Ch,Γ). If Ch is too large at a given Ra such that Ra < Rac, convection is suppressed,
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and at Ra = Rac magnetoconvection motions begin. Furthermore, in the limit Ch→∞

mc → Γ
(Ch

2π2

)1/6

, (2.74)

and

Rac → π2Ch, (2.75)

in agreement with (Chandrasekhar, 1961; Proctor and Weiss, 1982; Matthews, 1999; Glatzmaier,

2014; Yan et al., 2019). Finally, the critical nondimenisonal horizontal wavelength λc can be

found through the critical horizontal wavenumber

kc =
2πmc

Γ
. (2.76)

Using kc, the critical horizontal wavelength λc is inversely related to mc by

λc =
2π

kc
=

Γ

mc

, (2.77)

which physically represents the horizontal wavelength of the convective structures. The

critical length scale of the convective structures, or half the wavelength, is given by

lc =
Γ

2mc

. (2.78)

In the limit of Ch→∞, l∞c is given by

l∞c =
(1

2

)(Ch
2π2

)−1/6

. (2.79)

Fig. 2.5 shows lc, the critical horizontal length scale following Eq. 2.78 and its asymptotic

behavior as Ch→∞. Length scales found in this study will be compared to these values.

2.4 The Interaction Parameter

The magnetic field modifies convection by changing the dominant perpendicular length scale,

and suppressing flow perpendicular to the applied field. The underlying theory relies on
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Figure 2.5: The critical horizontal length scale lc as predicted by linear theory. The solid

black line gives the length scale following Eq. 2.78, and the solid purple line gives the result

of Eq. 2.78 for Ch = 0, the hydrodynamic case. The black dashed line shows the asymptotic

behavior given by Eq. 2.79.

one of the most notable characteristics of magnetohydrodynamics: the ability for flows to

generate electrical currents. The currents lead to Joule dissipation, which in addition to

viscous dissipation, contributes to the total energy loss in the system (Knaepen and Moreau,

2008; Shishkina et al., 2017).

Joule dissipation plays a key role in the magnetic braking process and has been discussed

at depth in previous studies (Sommeria and Moreau, 1982; Knaepen and Moreau, 2008;

Pothérat and Klein, 2014; Zikanov et al., 2021). In order to demonstrate how the Lorentz

force results in Joule dissipation, we first separate the Lorentz force into rotational and

irrotational components. In systems where gradients parallel to the direction of the magnetic

field are small, the irrotational component of Eq. 2.44 can be neglected, which only leaves

the rotational component of the Lorentz force,

fL,R = −σB
2
0

ρ0

∆−1∂
2u

∂y2
. (2.80)
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The vorticity equation Eq. 3.53 can be rewritten to include the curl of Eq. 2.80,

∂ω

∂t
+ (u · ∇)ω = αg

∂T

∂x
+ ν∇2ω − σB2

0

ρ0

∆−1∂
2ω

∂y2
. (2.81)

Assuming that the viscous and Lorentz terms of Eq. 2.81 are in balance with the unsteady

term, we have
∂ω

∂t
= ν∇2ω − σB2

0

ρ0

∆−1∂
2ω

∂y2
. (2.82)

Local viscous and Joule dissipation timescales can be estimated using Eq. 2.82. To do this,

we can scale the following quantities,

∂2

∂y2
∼ 1

l2‖
,
∂2

∂x2
∼ 1

l2⊥
, (2.83)

where the subscripts ‖,⊥ denote quantities parallel/perpendicular to the direction of the

applied magnetic field respectively. The vorticity ω will then decay on one of two timescales.

The viscous timescale is τν = l2‖/ν according to the first term on the right hand side of Eq.

2.82. The Joule dissipation timescale, τj is given by the second term on the right side of

Eq. 2.82. Thus, for a given eddy of size ∆−1 ∼ l⊥, the Lorentz term can be thought of as

a diffusion term similar to viscosity (Sommeria and Moreau, 1982). The Joule dissipation

timescale can be written as

τj =
ρ0

σB2
0

( l‖
l⊥

)2

, (2.84)

where the dominant term from ∆−1 reduces to l2⊥ under the assumption that gradients

parallel to the magnetic field have been suppressed. Taking the ratio of Eq. 2.84 to an eddy

turnover time, τU = l⊥/U leads to a local interaction parameter

Nl =
τU
τj,l

=
σB2

0 l⊥
ρ0U

( l⊥
l‖

)2

. (2.85)

Eq. 2.85 has been shown to capture the Lorentz force relative to inertia in experimental

studies of MHD channel flows (Sreenivasan and Alboussière, 2002; Pothérat and Klein, 2014).

Rewriting Eq. 2.85 in terms of Ch,Re, which will be utilized in Sec. 2.5.2, gives

Nl =
Ch

Re

( l⊥
H

)3

. (2.86)
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Eq. 2.84 reduces to

τj =
ρ0

σB2
0

, (2.87)

in cases where flow gradients parallel to the magnetic field are not suppressed and l⊥ ∼ l‖.

Comparing this simplified Joule dissipation time to an eddy turnover time leads to the

large-scale interaction parameter

N =
τU
τj

=
σB2

0 l⊥
ρ0U

. (2.88)

Note that writing Eq. 2.88 in terms of nondimensional parameters, Ch and Re, gives

N =
Ch

Re

( l⊥
H

)
. (2.89)

Eqns. 2.86 and 2.89 give two representations of the interaction parameter that can be used

to treat the end-member flows expected in this system. Eq. 2.86 is used for those controlled

by the applied magnetic field, B0, and Eq. 2.89 is used for those with large-scale jets and

strong shear in the direction of the magnetic field.

Fig. 2.6 further demonstrates the importance of the Joule dissipation time scale. In the

diagram, a vertical, uniform magnetic field B = B0ŷ is perpendicular to the flow u = u0x̂ .

The Lorentz force generated through such an interaction is given by

fL =
σ

ρ
((u×B)×B). (2.90)

Simplifying Eq. 2.90 leads to

fL =
σu0B

2
0

ρ
((x̂× ŷ)× ŷ). (2.91)

Carrying out the cross products gives

fL =
σu0B

2
0

ρ
x̂. (2.92)

where u0 is the magnitude of the fluid velocity in the x̂-direction. We see that the Lorentz

force generated from the motion of a conducting fluid perpendicular to the magnetic field
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Figure 2.6: Simplified schematic to demonstrate how a vertical, uniform magnetic field

B = B0ŷ (red arrows) could resist a flow perpendicular to it, u = u0x̂ (black arrow)

through the Lorentz force generated in the −x̂-hat direction (green line). The fluid layer

(blue) is assumed to be conducting.

direction will damp the initial fluid velocity. In addition, we can recast Eq. 2.92 in terms of

the Joule damping time, τj = ρ/σB2
0 (Knaepen and Moreau, 2008), and we find that

fL = −u0

τj
x̂. (2.93)

If B0 is large and τj is small, fL will grow quickly to resist u0 at a timescale governed by τj.

2.5 Regime characteristics and interaction parameter dependence

The regimes in this study are distinguished quantitatively by their length scale, momentum

transport, and time-dependence. The regimes are

1. Steady Convection Rolls,
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(i) (ii)

(iii)(v) (iv)

l
c

Figure 2.7: Instantaneous temperature fields for 104 ≤ Ra ≤ 109 and 10 ≤ Ch ≤ 106.

The grey boxes are sub-critical, while the black lines correspond to regime boundaries. For

some cases in the Burst-Jet regime (v), the left half of the domain shows a snapshot in the

convective burst phase (image truncated at x = Γ/2), and the right half of the domain shows

a snapshot in the jet phase (image truncated at x = Γ/2). The thick black line under each

snapshot gives lc as predicted by 2.78 with mc to the nearest integer.

2. Steady Magneto-Columns,

3. Unsteady to Turbulent Magneto-Plumes (“Magneto-Plumes”)

4. Horizontally Drifting Magneto-Plumes (“Drifting Plumes”)

5. Jets with Intermittent Turbulent Convective Bursts (“Burst-Jet”)

Each of the five regimes has distinct morphological behaviors similar to those found in

previous studies of magnetoconvection (Yan et al., 2019; Zürner, 2020) and rotating convection

(Nieves et al., 2014; Stellmach et al., 2014; Horn and Aurnou, 2018; Kunnen, 2021; Madonia

et al., 2021).

Fig. 2.7 presents instantaneous temperature fields for an array of cases between 3×104 ≤
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.8: The left column shows the times series of Nu, and the right column 〈|Rex|〉x,y,

(purple) 〈|Rey|〉x,y (orange). Each row corresponds to Ra = 108, Ch = 10 (Burst-Jet

Regime), Ra = 108, Ch = 102 (Drifting Plumes Regime), and Ra = 108, Ch = 104

(Magneto-Plume Regime) shown in (a,b), (c,d), (e,f) respectively. In the left column, the

green and red markers correspond to points separated into the burst or jet phase based on

2.94. The remaining two regimes, Steady Convection Roll and Steady-Magneto Columns do

not vary time, and are not shown in this figure.33



Ra ≤ 109 and 0 ≤ Ch ≤ 106. Fig. 2.7(i) shows cases in the Steady Convection Roll regime

(i), which have one steady convection roll. The perpendicular length scale of the roll is given

by l⊥ = 1, and in this regime the strength of the magnetic field relative to buoyancy is

small enough such that the weakly nonlinear dynamics characteristic of steady RBC are not

drastically modified (Grossmann and Lohse, 2000; Zürner et al., 2016). Fig. 2.7(ii) shows

those in Steady Magneto-Columns regime (ii). These cases are characterized by a series of

narrow, steady convective columnar structures. The width of these columns closely follows

linear theory, which will be shown further in Sec. 2.5.1. This regime includes cases that are

steady and where l⊥ < 1.

Fig. 2.7(iii) encompasses the Magneto-Plume regime (iii). In this regime, the buoyancy

forcing is strong enough that nonlinearities develop. The convective plumes transfer heat

efficiently and have a classical mushroom-like shape (Hansen et al., 1990; Manga and Weeraratne,

1999; Horn et al., 2013; Cagney et al., 2015). The Lorentz force stabilizes the flow, which

is approximately aligned with the vertical magnetic field. Fig. 2.9(a) gives an additional

instantaneous temperature field for a case with mushroom-like convective plumes at Ra =

1010, Ch = 105. The mushroom-like plumes are outlined in the black boxes. Fig. 2.9(b)

gives a shadowgraph image adapted from UCLA student Arthur Lo and professor Carolina

Lithgow-Bertelloni who carried out convection experiments using corn syrup as working fluid.

The white arrows points to similar mushroom-like convective plumes.

Fig. 2.7(iv) shows cases in the Drifting plume regime (iv). In these cases, asymmetries

exist in the flow field such that convective plumes drift horizontally, though the jets are not

strong enough to completely disperse them. Finally, Fig. 2.7(v) gives cases in the Burst-Jet

regime (v), which are characterized by two distinct phases. Over the evolution of a case,

a period of high heat transport where convective plumes cross the fluid layer (“burst”) are

interrupted by quiet phases of weak heat transport, where strong zonal flows (“jets”) disperse

thermal plumes and inhibit convection (Terry, 2000). The left/right side of the snapshots

corresponds to the burst/jet phases respectively.
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Figure 2.9: (a) Instantaneous temperature field for a case with mushroom-like convective

plumes (Ra = 1010, Ch = 105, P r = 1,Γ = L/H = 2). Examples of the mushroom-like

convective plumes are shown in the black boxes. (b) Shadowgraph image courtesy of UCLA

student Arthur Lo and professor Carolina Lithgow-Bertelloni, who carried out experiments

of convection using corn syrup as a working fluid.
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Fig. 2.8 shows a time series of the Nusselt number Nu (left column) and a time series

of the vertical and horizontal Reynolds numbers, Rey;Rex (right column). It is used to

quantitatively distinguish the regimes from one another. Fig. 2.8(a) shows Nusselt for a

case in the Steady Convection Roll regime at Ra = 3 × 105, Ch = 10 where Nu remains

constant at 16.30. Fig. 2.8(b) shows the Reynolds numbers for the same case, where the

horizontal and vertical Reynolds numbers are nearly equivalent. Fig. 2.8(c) gives Nusselt for

a case in the Steady Magneto-Columns regime at Ra = 7×106, Ch = 105 where Nu remains

constant at 8.42. Fig. 2.8(d) allows us to observe a distinguishing characteristic about this

regime; the vertical Reynolds number exceeds the horizontal Reynolds number, because flows

that are perpendicular to the applied vertical magnetic field damps are damped.

Fig. 2.8(e,f) show the Nusselt number and Reynolds numbers for a case in the Magneto-Plumes

regime at Ra = 108, Ch = 104, where small temporal oscillations in each quantity are

observed. Furthermore, it is clear from Fig. 2.8(f) that the vertical Reynolds number exceeds

the horizontal Reynolds number. Cases are placed in these regime if they are unsteady or

turbulent, and if 〈Rex〉t ≤ 〈Rey〉t. The unsteadiness of the flow is quantified by the variance

of the vertical velocity in time, or var(Rey).

Fig. 2.8(g,h) show the Nusselt number and Reynolds numbers for a case in the Drifting

Plumes regime at Ra = 108, Ch = 102. Oscillations in the parameters are slightly larger than

those in the Magneto-Plumes regime. Fig. 2.8(h) can be used to more explicitly separate the

two. In contrast to the previous regime, the horizontal Reynolds number now exceeds the

vertical Reynolds number. Therefore, one characteristic of this regime is that it is unsteady

or turbulent, and 〈Rex〉t > 〈Rey〉t.

Fig. 2.8(i,j) show the Nusselt number and Reynolds numbers for a case in the Burst-Jet

regime at Ra = 108, Ch = 10, where strong temporal periodicity is observed in each

parameter. We choose to separate the burst and jet phases based on a threshold value
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(i) Steady Convection Roll (ii) Steady Magneto-Columns (iii) Magneto-Plumes

(iv) Drifting Plumes (v) Burst-Jet

(a) (b) (c)

(d) (e)

Figure 2.10: Examples of spectra (T (m)) from each regime that compare the mode numbers

to the spectra peak, mpeak to the critical horizontal mode number, mc. (a) Steady Convection

Roll, (b) Steady Magneto-Columns, (c) Magneto-Plumes, (d) Drifting Plumes, and (e)

Burst-Jet. The measured perpendicular length scale l⊥ is then given by l⊥ = Γ/2mpeak

following 2.78.

of the instantaneous Nusselt number compared to its mean. If

Nu(t)

〈Nu〉t
<

1

2
, (2.94)

the data point is placed in the jet phase; otherwise, it is placed in the burst phase. The

time spent in each phase is averaged for each case, yielding values for tjet/τff = τjet and

tburst/τff = τburst, respectively. Values of τjet > 0 are unique to the Burst-Jet regime.

Therefore, cases are placed in these regime if they are unsteady or turbulent, 〈Rex〉t > 〈Rey〉t,

and τjet > 0. If τjet = 0, it is placed in the prior Drifting Plumes regime. Fig. 2.13(a)

gives Nu versus Ra for different values of Ch and the various regimes. We observe that in

the Steady Convection Rolls regime, Nu increases directly with Ra for a given value of Ch.
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Figure 2.11: Measured perpendicular length scale, l⊥ normalized by the critical length

scale predicted by magnetoconvection linear theory, lc, against all values of Ra,Ch. The

horizontal length scale is measured by inverting the peak wavenumber of the vertically and

temporally averaged temperature fields.
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(a) (b)

(c) (d)

Figure 2.12: Horizontal and vertical flow speeds. (a) Time averaged horizontal Reynolds

number, 〈Rex〉t versus the Rayleigh number. (b) 〈Rex〉t versus Ra/Rac, where the black

dashed line gives the power-law fit of the data. (c) Time averaged vertical Reynolds number,

〈Rey〉t versus the Rayleigh number. (d) 〈Rey〉t versus Ra/Prj, where the black dashed line

gives the power-law fit of the data, and Prj is defined in Sec. 2.5.1.
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(a) (b)

Figure 2.13: Heat transfer compared to buoyancy. (a) Time averaged Nusselt number,

〈Nu〉t versus the Rayleigh number, Ra The colors denote the value of Ch and the markers

give the regime classification. (b) 〈Nu〉t versus Ra/Rac where Rac is the critical Rayleigh

number.

And as Ch is raised, the relative strength of Nu decreases as the strength of the magnetic

field inhibits convection. A similar trend is observed for the the Steady Magneto-Columnar

regime. In the Magneto-Plumes regime, the increase in Nu begins to become shallower

with increasing Ra. In the Drifting Plumes regime, the slope of Nu against Ra becomes so

shallow that for certain cases, Nu is weaker at lower Ch values. This is because the stronger

horizontal flows begin to inhibit convection. Finally in the Burst-Jet regime, there can be a

decline in Nu with increasing Ra as the zonal flows completely suppress convection in the

jet phase.

These same trends are observed in Fig. 2.13(b), which gives Nu versus Ra/Rac. Here,

the cases in the Steady Convection Roll regime are nearly collapsed. Different trends are

only seen in higher values of Ch. Additionally, the dip in Nu with Ra/Rac in the Burst-Jet

regime is even more apparent. This behaviour seems to occur near Ra/Rac ≈ 1000.
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(a) (b) (c)

Figure 2.14: Shows how the scaling laws derived in Sec. 2.4 collapse the quantities used to

separate the regimes. (a) The variance of Rey, which characterizes unsteadiness, against the

scaling law derived for the transition from the Magneto-Columnar to the Magneto-Plume

regime, NMC . Only cases in these two regimes are shown for clarity. (b) The ratio of

the horizontal and vertical velocities 〈Rex〉t and 〈Rey〉t, used to distinguish between the

Magneto-Plumes and Drifting Plumes regime, against the scaling law derived for NMP . (c)

The measured value of τjet, where values greater than 0 are reserved for the Burst-Jet regime,

against the scaling law derived for Nj.
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2.5.1 Measured length and velocity scales

It is necessary to measure perpendicular length scales, l⊥, and velocity scales in order to find

where in (Ra,Ch) parameter space regime transitions occur using interaction parameter

arguments. Fig. 2.10 shows the time average of horizontal spectra where the temperature

field has been vertically averaged (〈T (m)〉y,t), and demonstrates how l⊥ is measured. An

example from each regime is shown. The mode number that corresponds to the spectra peak,

mpeak is used to calculate l⊥ = Γ/(2mpeak).

Fig. 2.10(a) gives the spectra for a case in the Steady Convection Roll regime where

mpeak = 1 corresponding to l⊥ = 1. Fig. 2.10(b) gives an example of a case in the Steady

Magneto-Columns regime where Ch = 106, Ra = 108. The vertical black line denotes the

horizontal mode number predicted by linear theory, mc. The spectral peak, mpeak occurs

close to mc, which shows that the width of the columns is given by l⊥ ∼ Ch−1/6H. A similar

behavior is found for the Magneto-Plume regime as given in Fig. 2.10(c) at Ch = 105, Ra =

109. The spectral peak, mpeak occurs near mc, again demonstrating that the width of the

plumes closely follows l⊥ ∼ Ch−1/6H.

Fig. 2.10(d) gives the spectra for a case in the Drifting Plumes regime at Ch = 103, Ra =

108. A change in the perpendicular length scale behaviour is observed. There is an increase

in mpeak relative to mc. As Ra is increased for a given Ch, the plumes begin to merge and

their horizontal width increases. Finally Fig. 2.10(e) shows the spectra for a case in the

Burst-Jet regime at Ch = 10, Ra = 108, where mpeak is 1 demonstrating that the flow is

dominated by the lowest mode numbers.

Fig. 2.11 shows the measured l⊥ normalized by lc predicted by theory (using mc to

the nearest integer) in colored contour lines versus (Ra,Ch). The symbols correspond to

each case’s regime. This figure allows us to carry out a more systematic discussion of

l⊥. Cases in the Magneto-Columnar regime have l⊥/lc ≈ 1, which is shown by the blue

contour lines. The same holds for the Magneto-Plume regime, where the width of the
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plumes is also well predicted by linear theory. Based on Fig. 2.11, the following behaviour

holds: l⊥/lc ≈ 1, allowing l⊥ ∼ Ch−1/6H for the Magneto-Columnar and Magneto-Plume

regimes. Fig. 2.11 also shows that l⊥/lc begins to increase beyond 1 as plumes merge and

increase in horizontal scale in the Drifting Plumes regime Cases in the Magneto-Columnar

regime (demarcated by triangles) have l⊥/lc ≈ 1 shown in blue. The same holds for the

Magneto-Plume regime (demarcated by crosses), where the width of the spatially localized

magnetoconvection plumes can also be predicted by linear theory. Based on Fig. 2.11, the

following behaviour holds: l⊥/lc ≈ 1, allowing l⊥ ∼ Ch−1/6H for the Magneto-Columnar and

Magneto-Plume regimes. In the Drifting Plumes regime, l⊥/lc begins to increase beyond 1

as plumes merge and increase in horizontal scale.

Fig. 2.12 shows measurements of the velocity, quantified by the time-averaged vertical

and horizontal Reynolds number (〈Rey〉t and 〈Rex〉t respectively) as a function of Ra,Rac

for different values of Ch, denoted by various colors. The symbols correspond to each case’s

regime. Fig. 2.12(a) shows the vertical velocity as a function of Ra. In the Steady Convection

Roll, Steady Magneto-Columns, and Magneto-Plumes regimes, 〈Rey〉t grows with increasing

Ra. However, for the Drifting Plumes and Burst-Jet regimes, the growth of 〈Rey〉t with Ra

slows, and for some cases there is a depression in 〈Rey〉t with increasing Ra. This is due

to the manifestation of strong zonal flows, which limit convective velocities in the vertical

direction.

Fig. 2.12(b) shows 〈Rex〉t versus Ra, and a different trend is found. Each value of Ch has

a slightly lower value of 〈Rex〉t at a given Ra as increasing magnetic field suppresses flows

perpendicular to the field. However, at a fixed value of Ch, 〈Rex〉t grows monotonically with

Ra.

In order to find a scaling law for the velocity in the Steady Magneto-Columns regime,

we follow (Yan et al., 2019) and propose that the Joule dissipation acts as an “effective”

viscosity. The Joule dissipation, when formulated as a viscous term that damps the flow
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Figure 2.15: The Rayleigh and Chandrasekhar number ranges over which we have

found Steady Convection Rolls (green circles), Steady Magneto-Columns (purple triangles),

Unsteady to Turbulent Magneto-Plumes (blue crosses), Drifting Magneto-Plumes (orange

squares), or Jets with Intermittent Turbulent Convective Bursts (red stars). The solid black

line indicates the critical Rayleigh number, and the dotted, dashed, and dash-dot lines give

the interaction parameter transitions between the regimes, discussed further in Sec. 2.4.
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(a) (b) (c)

x

y
-

Figure 2.16: (a) Sketch of two, isolated Jovian jets (blue and red). The inner boundary, Ri,

depicts the radial truncation depth of the axial jets. (b) Top view of the same two, isolated

Jovian jets. (c) Our 2D Cartesian model. A snapshot of temperature is used to visualize

the flow field, where blue and red represent cold and hot fluid respectively, is shown. At

first-order, the model represents a slice of the planet’s atmosphere parallel to the equatorial

plane.

speed, leads to a “Joule-Prandtl” number (Prj),

Prj =
τκ
τj,l
, (2.95)

where τκ = H2/κ and τj,l is given by Eq. 2.84, where again the parallel length scale has been

scaled by H. Substituting these definitions for Prj gives,

Prj =
σB2

0H
2

ρκ

( l⊥
H

)2

, (2.96)

Eq. 2.96 can be simplified using l⊥ ∼ Ch−1/6H, which holds for the Steady Magneto-Columns

regime. This leads to,

Prj = Ch2/3Pr. (2.97)

Using Prj as the “effective” Prandtl number for this system yields a velocity scaling law

relevant to a flow constrained by the imposed field is given by

Re ∼ Ra/Prj. (2.98)
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This is similar to a scaling law found by balancing the viscosity and buoyancy terms of Eq.

2.48, which yields Re ∼ Ra/Pr. In this case, the Joule dissipation, through the Lorentz

force, acts like a viscosity damping the flow.

Fig. 2.12(c) gives 〈Rey〉t versus Ra/Prj. We find a good collapse of the cases in the

Magneto-Columnar regime (denoted by triangles) using Ra/Prj. This agrees with (Yan

et al., 2019), who by balancing the Lorentz force with buoyancy, also found Re ∼ Ra/Prj

for convection constrained by an imposed vertical magnetic field. This scaling, Re ∼ Ra/Prj,

gives us a behaviour that can be used in conjunction with the perpendicular length scale data

for the Steady Magneto-Columns and Magneto-Plume regimes to construct an interaction

parameter-based transition between these two regimes.

Fig. 2.12(d) gives 〈Rex〉t against Ra/Rac. The ratio Ra/Rac can be thought of as the

relative strength of buoyancy given a certain value of Ch. The following collapses the data

well (for Pr = 1),

〈Rex〉t = 5.39± 1.17(Ra/Rac)
0.61±0.01. (2.99)

This fit matches closely with (Wang et al., 2020), who carried out a study in a set up similar

to the one here, namely 2D RBC with free-slip boundary conditions, and found Re ∼ Ra0.60

for jet-dominated flows (with fixed Pr = 10). This scaling law for the velocity will be used

for the Drifting Plumes and Burst-Jet regimes, where the horizontal velocity exceeds the

vertical velocity.
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In the following section, we use the trends found in our data along with the interaction

parameter definitions given in Sec. 2.4 to construct three interaction parameter-based

transition lines which can be used to predict where one regime transitions to the next in

(Ra,Ch) space.

2.5.2 Transition Laws Based on Interaction Parameter Formulations

The two end-member interaction parameter formulations, 2.88 for jet-dominated flows and

2.85 flows where gradients parallel to the applied field have been surpressed, can be utilized

to predict where in parameter space regime transitions may occur. Both versions of the

interaction parameter depend on the flow’s dominant perpendicular length scale and leading

order velocity scale, which were measured and discussed in Sec. 2.5.1. The resulting

transition laws are given here.

2.5.2.1 Predicted transition lines

We use the trends found in our data along with the interaction parameter definitions given

in Sec. 2.4 to construct three interaction parameter-based transition lines which can be used

to predict where one regime transitions to the next in (Ra,Ch) space. Table 2.1 gives a

summary of the five regimes, their main characteristics, and the length and velocity scalings

that will be utilized here.

The first transition line separates the Steady Magneto-Columns regime from the Magneto-Plumes

regime, which are both “magnetically dominated” flows in which gradients parallel to the

applied field are limited. In both regimes, the data revealed l⊥ ∼ Ch−1/6H. To find where

the Magneto-Plumes regime transitions to the Steady Magneto-Columns regime, we note

that only in the latter, inertial effects are neglected to yield the velocity scale Re ∼ Ra/Prj.

The Magneto-Plumes regime then transitions to the Steady Magneto-Columns regime along

an interaction parameter line given by Eq. 2.85 using Re ∼ Ra/Prj, in addition to

48



(a) (b)

Figure 2.17: (a) Value of the Jovian Elsasser number Λ with nondimensional radius given

by 2.118. (b) Value of the interaction parameter based on the Elsasser number, NJov,Λ given

by ??. The black dashed line indicates where NJov,Λ = 1. The purple box indicates the range

of truncation depths from the Juno mission (Kaspi et al., 2020) (c) Estimated zonal flow

decay with nondimensional radius for two functions. Green is based on (Kaspi et al., 2020),

with uzonal(r) = Aer/rj H0 and A a constant to fix the cloud level zonal-flow magnitude to 125

m/s. Blue is an error function which yields a cloud level zonal-flow magnitude of 125 m/s

and decays sharply between 1.0 and 0.90 r/rj. (d) Estimated value of Jupiter’s interaction

parameter, NJov using the zonal flow given in (c), with green and blue corresponding to the

exponential and error functions respectively. The black dashed line indicates where NJov = 1.

The purple box indicates the range of truncation depths from the Juno mission (Kaspi et al.,

2020).
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l⊥ ∼ Ch−1/6H. This substitution yields

NMD =
Ch

Re

( l⊥
H

)3

∼ Ch7/6Pr

Ra
. (2.100)

The second transition is between the two “intermediate” regimes (Magneto-Plumes and

Drifting Plumes) rather than the end-member flows (Steady Magneto-Columns and Burst-Jet).

In the Magneto-Plumes regime, the structures have a perpendicular length scale that, as

previously stated follows l⊥ ∼ Ch−1/6H. The distinguishing characteristic between the these

two regimes is that the horizontal velocity dominates the vertical velocity in the Drifting

Plumes regime, as defined in Sec. 2.5. Therefore, the crossover to the Drifting Plumes regime

from the Magneto-Plumes regime will occur once the velocity follows Re ∼ (Ra/Rac)
0.61 as

found in Sec. 2.5.1. Using Eq. 2.85

NI =
Ch

Re

( l⊥
H

)3

∼ Ch1/2Pr

(Ra/Rac)0.61
. (2.101)

The final transition is between the Drifting Plumes regime and Burst-Jet regime, which

is characterized by strong, domain-filling zonal flows, or jets (J). In such flows, l⊥/H ∼ Γ,

though the velocity scale continues to follow Re ∼ (Ra/Rac)
0.61 . For this transition line,

Eq. 2.88 is used, since the system is not constrained by the magnetic field and strong vertical

shears exist in the flow. The transition to the jet regime is

NJ =
Ch

Re

( l⊥
H

)
∼ Ch Pr Γ

(Ra/Rac)0.61
. (2.102)

Fig. 2.14(a) gives NMD against var(Rey) for cases only in these two regimes, where values

greater than zero are used to separate the Steady Magneto-Columns to the Magneto-Plume

regime. This transition occurs at NMD ≈ 0.01. Fig. 2.14(b) shows NI against 〈Rex〉t/〈Rey〉t,

the ratio that separates the two intermediate regimes (the Magneto-Plume and the Drifting

Plumes) from one another with a transition occurring at NI ≈ 1. Fig. 2.14(c) shows NJ

against τjet, where values greater than zero are used to parse the Drifting Plumes to the

Burst-Jet regime. There is a reasonable collapse of the data at NJ ≈ 0.1− 1.
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Fig. 2.15 outlines the values of (Ra,Ch) over which we have run simulations. The

colors and symbols correspond to regime classifications and the three lines, (dotted, dashed,

dash-dot) give approximate regime transitions, based on Eq. 2.100, Eq. 2.101, and Eq.

2.102. These transition lines provide adequate estimates for where regime transitions occur.

2.6 Geophysical Implications

The quasi-steady azimuthal component of the vorticity equation in cylindrical coordinates

(ŝ, ẑ, φ̂) controlling the dynamics in the bulk of Jupiter’s outer molecular envelope is (Jones,

2000; Sreenivasan and Jones, 2005; Aurnou et al., 2003)(
[u ·∇ω]φ + 2Ω

∂uφ
∂z

)
' αg

∂T

∂s
, (2.103)

where we have simplistically adopted the Boussinesq approximation to treat the density

(Stanley and Glatzmaier, 2010; Gastine and Wicht, 2012). Eq. 2.103, neglecting the first

term on the left hand side, is known as thermal wind balance (Showman et al., 2006; Zhang

et al., 2015; Kong et al., 2018). The left hand side of Eq. 2.103 are the inertial terms in

the system, where the first represents advection and the second represents vortex stretching.

We can take the ratio of these terms to one another, which gives

[u ·∇ω]φ

2Ω
∂uφ
∂z

∼ U

2ΩL
= Ro, (2.104)

whereRo is known as the Rossby number, L is a characteristic length scale, U is a characteristic

velocity scale, and Ω is the planetary rotation rate. We can estimate Ro for Jupiter’s

molecular envelope jets using a typical jet velocity of U = 50 m/s, a large scale jet width

of L = 104 km, and planetary rotation rate of Ω = 1.74 × 10−4 1/s, which gives (Heimpel

et al., 2005)

Ro =
U

2ΩL
∼ 0.01� 1. (2.105)

Furthermore, strong convective turbulence could homogenize the large-scale temperature

anomalies such that ∂T/∂s is small. For the low Rossby jets, this implies that the velocity
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field may vary weakly along the axial coordinate such that ∂uφ/∂z in Eq. 2.103 is also small

(Liu et al., 2013).

Jupiter’s electrical conductivity increases with radius, possibly leading to a larger Lorentz

force at the base of the jets compared to the molecular envelope. Then, the hydrodynamic

thermal wind balance is replaced by the thermomagnetic wind balance (Christensen et al.,

2020) (
[u ·∇ω]φ + 2Ω

∂uφ
∂z

)
' αg

∂T

∂s
+

1

ρ0

[
∇×

(
J ×B

)]
φ
. (2.106)

In the limit of strong thermal mixing, this simplifies to(
[u ·∇ω]φ + 2Ω

∂uφ
∂z

)
≈ 1

ρ0

[
∇×

(
J ×B

)]
φ
. (2.107)

Further, by assuming Rm ≤ 1 at the base of the jets (Heimpel and Gómez Pérez, 2011), we

can use J = σ(u×B) to recast this expression as(
[u ·∇ω]φ + 2Ω

∂uφ
∂z

)
' 1

ρ0

[
∇×

(
σu×B ×B

)]
φ
. (2.108)

The right hand side of Eq. 2.108 can be expanded, leading to

1

ρ0

[
∇×

(
σu×B ×B

)]
φ

=
1

ρ0

[
∇×

((
σu ·B

)
B − (B ·B)

(
σu
))]

φ
. (2.109)

Eq. 2.109 can be simplified by allowing u = u⊥ +u‖, where ⊥, ‖ denote directions relative

to the magnetic field B. Then Eq. 2.108 becomes(
[u ·∇ω]φ + 2Ω

∂uφ
∂z

)
' −|B|

2|
ρ0

[
σ(∇× u⊥) +

(∇σ)× u⊥
]
φ
. (2.110)

We reduce Eq. 2.110 further by allowing u⊥ = usŝ+ uφφ̂+ uzẑ. This gives(
[u ·∇ω]φ + 2Ω

∂uφ
∂z

)
' −|B|2

[σ
ρ

(∂us
∂z
− ∂uz

∂s

)
+

1

ρ

(∂σ
∂z
us − uz

∂σ

∂s

)]
. (2.111)

Noting that velocity field varies weakly along the axial coordinate for low Rossby flows, and

σ only varies in radius gives(
[u ·∇ω]φ + 2Ω

∂uφ
∂z

)
' −|B|

2|
ρ0

[
σ
(∂uz
∂s

)
+
(
uz
∂σ

∂s

)]
. (2.112)
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(a)

(b)

Figure 2.18: (a) Estimated zonal flow decay with nondimensional radius (top axis) or depth

from the surface (bottom axis) for two functions. Green is based on (Kaspi et al., 2020),

with uφ(r̃) = Aer̃/H0 and A a constant to fix the cloud level zonal-flow magnitude to 125

m/s. Blue is an error function which yields a cloud level zonal-flow magnitude of 125 m/s

and decays sharply once σ = 1 demarcated by a black line. (b) Electrical conductivity with

nondimensional radius (top axis) or depth from the surface (bottom axis). The red points

show data from (French et al., 2012) and the purple line shows the polynomial fit to these

points carried out by (Jones, 2014). The black line gives the depth at which σ = 1.
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We can scale both terms on the right hand side of Eq. 2.112, and from left to right they are

B2
0σuz

ρ0Ljet
;
B2

0σuz
ρ0Lσ

(2.113)

where B0 is a characteristic magnetic field strength in the semiconducting region, uz is a

characteristic meridional velocity scale, Ljet is a characteristic jet scale, and

Lσ =
1

σ

∣∣∣∂σ
∂s

∣∣∣−1

(2.114)

is an electrical conductivity scale height. This can be calculated using the results of (French

et al., 2012) and (Jones, 2014). The terms in Eq. 2.113 only differ by the length scales in

their denominators. Comparing the characteristic values Lσ ≈ 350 km and Ljet ≈ 10, 000

km we find

Lσ � Ljet. (2.115)

The second term on the right hand side of Eq. 2.112, controlled by the planet’s radially

increasing electrical conductivity, is the largest term, and we are left with(
[u ·∇ω]φ + 2Ω

∂uφ
∂z

)
' |B|

2

ρ0

(
uz
∂σ

∂s

)
. (2.116)

We can balance the two inertial terms with the Lorentz term in Eq. 2.116 to construct

two interaction parameter functions. For the first, we take the ratio of the Lorentz to the

advection term in Eq. 2.108 and note that ωφ ∼ uz/Ljet to arrive at an interaction parameter

N =
B2

0σ(r̃)L2
jet

uφ(r̃)ρ0 Lσ
, (2.117)

where r̃ = r/rj is radial position normalized by Jupiter radius rj = 69, 894 km, ρ0 is the

mean density averaged over 0.90 < r̃ < 1.0, and σ(r̃) is the electrical conductivity as a

function of nondimensional radial position.

For the second interaction parameter, we take the ratio of the Lorentz to the Coriolis

term in Eq. 2.116, which gives a Coriolis based interaction parameter (also known as the
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Elsasser number, Λ) (Soderlund et al., 2012; King and Aurnou, 2015; Calkins et al., 2015;

Aurnou and King, 2017; Orvedahl et al., 2021)

NΩ = Λ =
B2

0σ(r̃)

2ρ0 Ω

(uz
uφ

)(Ljet
Lσ

)
. (2.118)

Though our simple model differs greatly from the fully 3D, anelastic, spherical Jovian

system, based on Eq. 2.103 the low Rossby jets may extend into the molecular interior with

little variation in the direction of the axis of rotation. Fig. 2.16(a, b, c) shows a schematic

of one pair of alternating prograde-retrograde jets, a top view of the same system, and a

snapshot from our model to demonstrate the location in the low Rossby Jovian atmosphere

that our model may represent. Thus, we choose to extrapolate the transitions found in our

2D model, and naively assume that magnetodamping may slow the jets when the Lorentz

force is greater than inertia, or the depth at which N and NΩ exceed 1.

In order to calculate N and NΩ, we calculate values for σ(r̃), ρ(r̃),Lσ. A radial profile of

electrical conductivity σ is found by employing the results of (French et al., 2012) and (Jones,

2014). In particular, (French et al., 2012) carried out ab initio simulations to determine the

basic thermodynamic and transport properties of hydrogen–helium–water mixtures for the

extreme conditions along Jupiter’s adiabat. (Jones, 2014) then fit these data points using a

hyperbolic fitting formula defined by

η̃ = exp(a+
√
a2 + b) (2.119)

where η̃ = 1/4π × 10−7σ and a and b are coefficients that depend on nondimensional radial

position r̃. The values of a and b are further given by

a =
1

2
[(g1 + g3)r̃ − g2 − g4], (2.120)

and

b = (g1r̃ − g2)(g3r̃ − g4)− g5, (2.121)

where g1, g2, g3, g4, g5 are constants tabulated in (Jones, 2014) (Table 2). We use these

constants to calculate Eq. 2.120 - 2.121, which we then substitute into Eq. 2.119 to find the
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magnetic diffusivity as a function of radial position. Finally, we use η̃ = 1/4π × 10−7σ to

calculate σ(r̃).

A similar process is carried out to find a radial profile of ρ. Again, we rely on the results

of ab initio results of (French et al., 2012) which were fit by (Jones, 2014) using a polynomial

fitting formula. The logarithm of the polynomial fitting formula is defined by

log(ρ) =
r1

4
r̃4 +

r2

3
r̃3 +

r3

2
r̃2 + r4r̃+

f2 log(e1 − r̃) +
f2 − f1

2

(
(r̃ − e2)2 + e3

3

)
+ f3 arctan

( r̃ − e2

e2

)
+ r5. (2.122)

where the constant of integration is determined by the requirement r5 = 4.42× 103 kg m−3

at the core boundary. Furthermore, the coefficients f2 and f3 are calculated using

f2 = f1
(d1 − e1)2 + d2

2

(e1 − e2)2 + e2
3

, (2.123)

f3 =
2f1d1 + e1(f2 − f1)− e2(f2 + f1)

e3

, (2.124)

where f1, d1, d2e1, e2, e3 are constants tabulated in (Jones, 2014) (Table 2). We calculate Eq.

2.122 by first calculating f2 and f3. Then we take the exponential of log(ρ) fo find ρ(r̃).

To find B0 in the semi-conducting region, we employ potential field theory which allows us

to map the surface magnetic field into planet’s interior until the dynamo generating region.

We first construct a full map of the magnetic field using the most recent set of Schmidt

coefficients as measured by Juno and tabulated in (Connerney et al., 2018). The planetary

magnetic field, B(r, θ, φ) can be derived from the gradient of a scalar potential function, V ,

where

V = rj

nmax∑
n1

(rj
d

)n+1

(Pm
n cos(θ)[g

m
n cos(mφ) + hmn sin(mφ)]) (2.125)

where d is the radial depth, θ is the colatitude, φ is the longitude, Pm
n cos(θ) are the Schmidt

quasi-normalized Associated Legendre functions of degree n (up to nmax) and order m. Here,

gmn and hmn are the Schmidt coefficients. Fig. 2.19 gives a contour plot of Jupiter’s magnetic

field magnitude in Gauss and radial location r = 0.98rj. We estimate B0 then by taking the
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Figure 2.19: Contours of the Jovian magnetic field (Gauss) at 0.98 rj using the vector

magnetic field observations from the Juno spacecraft during its fine nine orbits (Connerney

et al., 2018). The horizontal dashed line denotes a latitude of 50 degrees, over which the

average B0 is found to estimate the value of Jupiter’s interaction parameter as a function of

depth and radial location.
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average of the field at 50 degrees latitude, which yields a value of ≈ 7.92 Gauss. Finally,

the meridional velocity scale uz ≈ 1 m/s is found using Cassini spacecraft observation data

(Galperin et al., 2014; Maffei et al., 2019).

We use two different functions for the zonal velocity, uφ(r̃). For the first, we employ the

simple exponential decay model from (Kaspi et al., 2020)

uφ(r̃) = Aer̃/H0 , (2.126)

where A is a constant fixed to yield a sensible cloud-level zonal flow of 125 m/s (Vasavada

and Showman, 2005), and H0 = H/rj is the e-folding depth. According to (Kaspi et al.,

2020), the e-folding depth that yields a best fit to the Juno odd gravity harmonic data is

H = 1471 km. The green curve in Fig. 2.18(a) gives this constructed zonal flow profile in

the semi-conducting region from r̃ ranging from about 0.90 (8, 000 km in depth) to 1.0.

However, the exact shape of the zonal flow decay remains ambiguous. We construct

an additional zonal flow profile where uzonal(r̃) only decays after the planet’s electrical

conductivity exceeds 1 S/m. The profile meets the criteria that in the highly conducting

region of Jupiter with electrical conductivity greater than 1000 S/m, the zonal flow is likely

on the order of 1 cm/s or less (Yu et al., 2010; Ridley and Holme, 2016; Cao and Stevenson,

2017) and is defined by

uφ(r̃) = B (1 + erf(C(D + r̃))) (2.127)

where B = 64.0, C = 49.1, D = −0.946 yield a cloud-level zonal flow on the order of 125 m/s.

The blue curve in Fig. 2.18(a) shows this profile. Fig. 2.18(b) shows Jupiter’s estimated

electrical conductivity with radius, and we mark the depth at which σ = 1 with a solid black

line.

Fig. 2.17(a) gives N against nondimensional radius (top axis) and depth from the surface

(bottom axis) using these approximations. A value of N = 1 (black dashed line) corresponds

to a depth at which the jet truncation process may commence at about dT = 3600; 4200 km

for the exponential and error velocity functions respectively (black dash dot line, the average
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between the two is shown).

Fig. 2.17(b) gives NΩ against nondimensional radius (top axis) and depth from the

surface (bottom axis). A value of NΩ = 1 (black dashed line) is not reached until a depth

of about dT = 6000; 6300 km for the exponential and error functions respectively. Recent

studies based on Juno measurements of the odd gravity harmonics have constrained the

zonal flow depth to about 3000 km (Kaspi et al., 2018, 2020).

Extrapolating our 2D results suggests that Lorentz force likely cannot soley brake the jets

on Jupiter, and additional mechanisms are needed to fully truncate them (Liu et al., 2008;

Heimpel and Aurnou, 2012; Cao and Stevenson, 2017). For instance (Christensen et al.,

2020) carried out axisymmetric shell models that included both electromagnetic drag and a

stably stratified layer extending upward into the region of low electrical conductivity, which

may exist on the Gas Giants (Showman et al., 2006; Schöttler and Redmer, 2018; Gastine

and Wicht, 2021). They found that without this stable layer, the Lorentz force could not

truncate the jets. Thus, extrapolation of our 2D modeling results suggests that the exact

braking process of Jovian jets should include mechanisms beyond electromagnetic damping.

2.7 Code Development

To perform the DNS, we use the pseudo-spectral solver developed primarily by myself as

a portion of my thesis. This code, written in Fortan, numerically integrates the governing

equations at each time step with the following process (Glatzmaier, 2014):

1. Finds the time derivatives of of vorticity and temperature based on 2.62 and 2.63

2. Updates the temperature field and vorticity field in time

3. Solves the Poisson equation for the streamfunction based on the vorticity field

4. Uses the updated temperature, vorticity, and velocity fields to calculate output quantities
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5. Writes data out

6. Sets the new time step and repeats process.

Appendix E gives the Fortran code for the main loop of this solver and specifics the steps

above. For the spatial discretization, the code utilizes m Fourier modes in the periodic x

direction where, for example, the temperature (T ) can be written as

T (x, y, t) =
M∑
m=1

Tm(y, t)cos(mπx/Γ) (2.128)

where m is the horizontal mode number, M is the total number of horizontal modes, and

Γ is the aspect ratio of the box (length/height). The resulting equations are solved using a

second-order accurate finite difference scheme in y. Finite-difference methods are obtained

by utilizing a Taylor Series expansion of a variable based on the powers of the grid spacing.

Under the second-order accurate finite difference scheme, the first derivative of a function

such as temperature, T , is (∂T
∂y

)
k

=
Tk+1 − Tk−1

2∆y
, (2.129)

and the second derivative can be computed using(∂2T

∂y2

)
k

=
(Tk+1 − 2Tk + Tk−1)

2∆y2
, (2.130)

where k is the index in the vertical direction and ranges from 1 to ny. The spectral-transform

method is applied to obtain the spectral coefficients for the nonlinear terms in equations 2.62

and 2.63. FFTs, with the FFTW package, are used to make the transform between physical

and spectral space. The solution is dealised at each time step by restricting the number of

Fourier modes to one third of the number of grid points in x.

The grid-spacing in y for the finite-difference method is non-uniform with Chebyshev

mapping for finer resolution at the top and bottom boundaries defined by,

yk =
1

2

(
1− cos(πqk)

)
for k = 1, ....ny, (2.131)
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where 0 ≤ q ≤ 1 and ny is the total number of grid points in y. To solve the Poisson

equation for the streamfunction based on the vorticity, the tridiagonal nature of the resulting

matrix is exploited. A tridiagonal solver based on the Thomas algorithm is applied for each

Fourier mode. An explicit, second-order Adams-Bashforth (AB2) scheme is used for the

time integration. AB2 is easy to implement and efficient, since at teach time step the time

derivatives are required only for the current and previous time steps. The equation to evolve

a variable such as temperature, T , can be written as

Tt+∆t = Tt + ∆t/2(3Gt −Gt−∆t), (2.132)

where G represents ∂T/∂t at a time t+ ∆t/2, and where ∆t is the computational time step.

The time step is restricted by the stability constraints on linear diffusion

∆t <
(∆y)2

4
, (2.133)

and nonlinear advection,

∆t <
∆y

|uy|max
, (2.134)

where equation 2.134 should also be considered for the x direction (Glatzmaier, 2014).

The parallelization, making use of Message Passing Interface (MPI), is implemented

by decomposing the spatial domain in the vertical direction to solve the temperature and

vorticity equations. For the Poisson equation, the parallelization is transposed to the Fourier

modes in the horizontal direction, which allows the Thomas algorithm to remain the method

for the tridiagonal solver.

The datasets produced are stored in a series of netCDF-4/HDF5 snapshot files of the

flow fields, which is particular useful for storing multidimensional scientific data. We also

take advantage of parallel I/O access to these files. In addition, checkpoint files are typically

written a tenth of the frequency of the snapshot files, where each checkpoint file overwrites

the previous file to minimize storage requirements. Python-based analysis scripts produce

the necessary images and calculations from the snapshot files after run-time. If additional
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data is required from the run, the checkpoint file can be used to restart the simulation.

Further, we output several ASCII files that are small in comparison to the snapshot files.

2.7.1 Validating the Code

The code developed for this study was validated throughout the writing process at each

major development. This allowed us to increase the physical complexity of the system

while ensuring that the previous iteration of the code was accurate. First, we developed

the linear, hydrodynamic version of the solver and compared the results to theoretical

predictions derived from linear stability analysis. Then, we added the electromagnetic

term and again, compared the results of the code to theoretical predictions derived from

magnetohydrodynamic linear stability analysis. Next, we added the nonlinear terms and

carried out full models of 2D Rayleigh-Bénard convection and validated the results to

similar studies in the literature. Finally, we included the electromagnetic term for a fully

nonlinear magnotoconvection model, and benchmarked the results to additional studies in

the literature.

2.7.1.1 Benchmarking to Linear Theory

The first and simplest step of the code development process is to solve the linearized governing

equations for hydrodynamic Rayleigh-Bénard convection. The goal of carrying out this linear

stability analysis is to find an analytical expression for the critical value of Ra, or buoyancy

forcing, such that the solution will be convectively unstable and grow in time. Formally,

the process is carried out by dropping the nonlinear terms in the governing equations and

using Fourier expansion to represent all variables of interest, namely the temperature (T ),

vorticity, and stream function ψ.

Expanding these variables with Fourier analysis in the horizontal direction (and noting
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that in our 2D case, the vorticity only has one component in the ŷ-direction) gives

T (x, y, t) =
M∑
m=1

Tm(y, t)cos(mπx/Γ) (2.135)

ω(x, y, t) =
M∑
m=1

ω(y, t)sin(mπx/Γ) (2.136)

ψ(x, y, t) =
M∑
m=1

ψ(y, t)sin(mπx/Γ). (2.137)

where m is the horizontal Fourier mode, M is the total number of horizontal Fourier modes,

and the aspect ratio of the domain is given by

Γ =
Length

Height
=
L

H
. (2.138)

The sine and cosine functions in Eq. 2.135-2.137 are chosen to satisfy the sidewall boundary

conditions.

We can substitute these into Eq. 2.62-2.63 and linearize the equations (but neglecting

the electromagnetic terms), which gives a set of equations for each Fourier mode m

∂Tm
∂t

=
mπ

Γ
ψm +

( 1√
Ra Pr

)(∂2Tm
∂y2

−
(mπ

Γ

)2

Tm

)
(2.139)

∂ωm
∂t

=
mπ

Γ
Tn +

√
Pr

Ra

(∂2ωm
∂y2

−
(mπ

Γ

)2

ωm

)
(2.140)

ωm = −
(∂2ψm
∂y2

−
(mπ

Γ

)2

ψm

)
. (2.141)

For the analytical solution, we expand the temperature, vorticity, and streamfunction in the

vertical direction. Taking note that all variables vanish at the top and bottom boundaries,

we find

Tn(y, t) =
N∑
n=1

Tmn(t)sin(nπy) (2.142)

ωn(y, t) =
N∑
n

ωmn(t)sin(nπy) (2.143)
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ψn(y, t) =
N∑
n=1

ψmn(t)sin(nπy). (2.144)

where n is the vertical mode number and N is the total number of vertical Fourier modes.

Using the function sin(nπy) for the Fourier expansion in the vertical direction is chosen

because it satisfies the vertical boundary conditions at y = 0, 1 of the variables of interest.

Substituting the vertical Fourier expansions into Eq. 2.139-2.141 and noting that (1)

∂/∂t = 0 for the stability problem, and (2) the sin(nπy) factor exists in each term so it

drops off gives

0 =
mπ

Γ
ψn +

( 1√
Ra Pr

)(
(nπ)2Tn −

(mπ
Γ

)2

Tn

)
(2.145)

0 =
mπ

Γ
Tn +

√
Pr

Ra

(
(nπ)2ωn −

(mπ
Γ

)2

ωn

)
(2.146)

ωn = −((nπ)2ψn −
(mπ

Γ

)2

ψn). (2.147)

This is a system of three equations and three unknowns. Tn, ωn, and ψn can be eliminated

through algebra, which is especially possible in this case because of the simple geometry and

boundary conditions.

Thus, we can solve for the critical Rayleigh number Rac, which gives us the value of

buoyancy relative to diffusion at which the solutions remain constant in time. Above above

Rac, the solutions will begin to grow. For RBC, the relationship between Rac, Γ, and the

horizontal and vertical mode numbers is

Rac(n,m,Γ) =
(π

Γ

)4 (m2 + (Γn)2)3

m2
. (2.148)

Next, we make the assumption that the most unstable convective pattern is that in which

the vertical mode number n is 1, or where convective plumes extend from the bottom to top

of the domain.

With this assumption, we can test Eq. 2.148 numerically by running a series of hydrodynamic

and linear cases with the code at a given value of Ra and Γ. We gradually increase Ra and

monitor which horizontal mode number m is the most unstable. This allows us to find the
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Figure 2.20: (a) Testing the RBC dispersion relationship Eq. 2.148 using the linear,

hydrodynamic version of the code. The solid blue line represents the theoretical curve derived

from linear stability analysis, and the red points give Rac found at six different horizontal

wave numbers. (b) Testing the MC dispersion relationship Eq. 2.150 using the linear,

magnetohydrodynamic version of the code. The solid colored lines represent the theoretical

dispersion relationship between Rac, kx, and Ch for four different values of Ch. The points

then represent Rac as a function of kx and Ch as found from linear MC simulations.

critical horizontal wavenumber kx such that the convection instability sets in. The results

of these simulations are shown in Fig. 2.20(a), where the red points show the most unstable

wavenumber kx where

kx =
2πm

Γ
, (2.149)

and its corresponding value of Rac. We find good agreement between our linear code (red

points) and the theoretical marginal stability curve (dark blue line). This validates the

hydrodynamic, linear version of our solver. Thus, we can increase the complexity by adding

a magnetic field.
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A similar analytical process can be carried out for MC linear theory to find a dispersion

relationship for Rac where a quasi-static vertical magnetic field is included in the governing

equations (Davidson, 2001). Since the presence of a magnetic field suppresses convection,

Rac now depends also on Ch. Linearizing Eq. 2.62-2.63 with the electromagnetic term

included, substituting the same Fourier expansions, solving the system of equations, and

assuming the vertical mode number n = 1 is the most unstable gives

Rac(m,Ch,Γ) =
(Γ2 +m2)(Ch Γ4π2 + (Γ2 +m2)m4)

Γ4m2
. (2.150)

To test the efficacy of our linear magnetoconvection model, we again run a series of linear

cases with the code at a given value of Ra and Γ. However, we also run an additional set of

cases at various values of Ch. For each set up input parameters, we gradually increase Ra

and monitor which horizontal mode number is the most unstable, and use this to find the

critical horizontal wavenumber kx such that the convection instability sets in. The results

of these simulations are shown in Fig. 2.20(b), where the red points show the most unstable

wavenumber kx and its corresponding value of Rac. We find good agreement between

our linear code (red points) and the theoretical marginal stability curve (dark blue line).

This validates the hydrodynamic, linear version of our solver. Thus, we can increase the

complexity by adding a magnetic field.

Fig. 2.20(a,b) demonstrate good agreement between both RBC and MC linear stability

analysis and the linear version of the numerical model, which validates the code and methods

chosen. We proceed by including nonlinear terms in our solver and comparing our results to

similar studies.

2.7.1.2 Benchmarking to Fully Nonlinear RBC Code

We return to the hydrodynamic version of the code for the next benchmark. However, we

include the nonlinear terms of Eq. 2.62-2.63 and use a finite difference approach to represent

the variables in the vertical direction. There is no analytical solution for comparison with
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the model results. Rather, we validate our code using (Glatzmaier, 2014), who tabulates a

set of Fourier coefficients Tm, ωm, and ψ for the first 21 horizontal Fourier mode numbers at

a particular set of input parameters.

The suggested benchmark case from (Glatzmaier, 2014) (pg. 46) was run at Ra =

106, P r = 0.3,Γ = 3. The number of grid points in the vertical direction is Ny = 101 and

the number of horizontal Fourier modes is M = 50. At this set of Rayleigh and Prandtl

numbers, we expect the solution to first increase exponentially in time until the nonlinear

terms are large enough to stop the growth. Eventually, the solution should reach steady

state, where d/dt ≈ 0 for all quantities.

Following (Glatzmaier, 2014), the values of Tm(y = 0.32,m), ω(y = 0.32,m), ψ(y =

0.32,m) were recorded after about one million time steps once the solution reached a steady

staet. The values found from the code developed for this study are listed in Table 2.2. These

are nearly identical to t (Glatzmaier, 2014) (Table 4.1), which confirms the accuracy of the

RBC nonlinear code.
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Table 2.2: Results of nonlinear RBC benchmark comparing to (Glatzmaier, 2014) (pg.

46). Table gives the steady state nondimensional values of the coefficients Tm, ωm, ψm

at y = 0.32 for up to the first 21 horizontal mode numbers. The input parameters are

Ra = 106, P r = 0.3,Γ = 3.

m Tm ωn ψm

0 0.5001 0.0000 0.0000

1 2.9144× 10−3 5815.6088 567.8245

2 2.5265× 10−4 -3.5893 -0.6740

3 2.9057× 10−2 1930.6893 103.8976

4 2.8771× 10−4 -6.6099 -0.5361

5 2.8900× 10−2 1149.4034 32.3309

6 3.4964× 10−4 -11.0563 -0.39578

7 2.8701× 10−2 811.2963 13.1672

8 4.7860× 10−4 -14.7794 -0.2838

9 2.8273× 10−2 617.1739 6.3751

10 6.4516× 10−4 -16.9695 -0.2064

11 2.7427× 10−2 488.8297 3.4608

12 8.0751× 10−4 -21.4400 -0.15389

13 2.60558× 10−2 398.4199 2.0308

14 9.7796× 10−4 -26.1548 -0.1167

15 2.4158× 10−2 326.80564 1.2579

16 1.1648× 10−3 -24.6904 −0.08885

17 2.1898× 10−2 264.6190 0.80977

18 1.2858× 10−3 -20.3570 −0.0.7782

19 1.9553× 10−2 216.2080 0.537140

20 1.25455× 10−3 -21.9120 −0.0524029
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Appendix A

Benchmarking to Fully Nonlinear RBC and MC Code

The final step of the code validation process is to compare the results of our fully nonlinear

code to additional studies. Here, we include the flexible, open-source, pseudo-spectral DNS

code DEDALUS (Burns et al., 2020) in the benchmarking process because Dedalus is used

for numerically challenging cases at Ra ≥ 109.

We begin by comparing a set of Ch = 0 (hydrodynamic) cases for the code developed

for this study and Dedalus against the results of (Goluskin et al., 2014). The time-averaged

Nusselt number, 〈Nu〉t was calculated for seven different Rayleigh numbers at Γ = 2, Pr = 1.

Purposefully, we include cases in which jets develop. In addition, the code developed for this

and Dedalus were benchmarked to one another for a set of eight different Ch 6= 0 with varying

Ra. Differences in the three codes yield errors less than 0.15%. Both the code developed

for this study and Dedalus converged to the values listed in the table as the resolution was

increased and the simulations were run for longer periods of time. Table A gives the results.
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Table A.1: Comparison of the time averaged Nusselt number for the code used for this

study (TS), Dedalus (D), and (Goluskin et al., 2014) (G). Each row gives the set of input

parameters, and the time averaged Nusselt number from each code.

Γ Ra Ch 〈Nu〉t(TS) 〈Nu〉t(D) 〈Nu〉t(G).

2 104 0 4.988 4.988 4.993

2 1.75× 104 0 6.184 6.183 6.188

2 2× 104 0 6.505 6.505 6.509

2 105 0 11.740 11.736 11.738

2 5× 105 0 3.553 0 3.530

2 106 0 3.710 0 3.714

2 2.5× 106 0 3.584 0 3.540

2 3× 105 10 16.300 16.299 −

2 3× 105 102 10.293 10.297 −

2 3× 105 104 3.170 3.173 −

2 1× 108 106 14.486 14.478 −

2 3× 106 10 13.169 13.779 −

2 3× 107 102 29.025 28.973 −

2 3× 106 103 13.234 13.250 −

2 1× 108 105 25.983 26.012 −
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Appendix B

Data Tables
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Table B.1: Details of the DNS. Each row gives Ch,Ra, its ratio above onset Ra/Rac, vertical

resolution ny, horizontal resolution nx, the time average of the Nusselt number (〈Nu〉t), and

the area-time averages of the horizontal Reynolds number and vertical Reynolds number

(〈Rex〉t, 〈Rey〉t) respectively.

Ch Ra Ra/Rac ny nx 〈Nu〉t 〈Rex〉x,y,t 〈Rey〉x,y,t

0 3× 103 4.56 96 356 3.08 10.14 9.99

0 7× 103 10.64 96 356 4.34 19.23 18.86

0 3× 104 45.62 96 356 7.57 52.19 51.87

0 7× 104 1.06× 102 96 356 10.32 91.94 91.71

0 3× 105 4.56× 102 120 380 17.31 241.76 241.62

0 7× 105 1.06× 103 120 380 4.33 309.68 35.28

0 3× 106 4.56× 103 132 404 3.46 584.80 36.38

0 7× 106 1.06× 104 132 404 3.58 1030.43 60.53

0 3× 107 4.56× 104 168 452 4.03 2214.02 83.24

0 1× 108 1.52× 105 516 1032 4.73 7030 120.1

0 1× 109 1.52× 106 1024 2048 6.85 25240 251.1

0 1× 1010 1.52× 107 3072 6144 8.61 118270 500.20

10 3× 103 3.25 96 356 2.78 8.39 8.29

10 7× 103 7.58 96 356 3.99 16.34 15.94

10 3× 104 32.5 96 356 7.04 44.42 43.96

10 7× 104 75.8 96 356 9.66 77.88 77.59

10 3× 105 3.25× 102 120 380 16.30 203.76 203.61

10 7× 105 7.58× 102 120 380 9.64 390.77 79.37

10 3× 106 3.25× 103 132 404 13.78 973.89 153.56

10 7× 106 7.58× 103 132 404 8.99 1115.95 115.44

10 3× 107 3.25× 104 168 452 9.06 2295.66 148.98
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Table B.2: Previous table continued.

Ch Ra Ra/Rac ny nx 〈Nu〉t 〈Rex〉x,y,t 〈Rey〉x,y,t

10 1× 108 1.08× 105 360 720 9.14 4656.67 159.79

10 1× 109 1.08× 106 1536 3072 22.3 23497 2200.4

10 1× 1010 1.08× 107 2048 4096 41.2 101131 1347

102 3× 103 1.13 96 356 1.17 1.54 1.54

102 7× 103 2.64 96 356 2.55 7.11 6.96

102 3× 104 11.3 96 356 4.703 14.10 28.22

102 7× 104 26.4 96 356 5.61 35.41 30.35

102 3× 105 1.13× 102 120 380 10.30 96.46 89.38

102 7× 105 2.64× 102 120 380 13.48 168.51 154.96

102 3× 106 1.13× 103 132 404 19.94 441.64 375.33

102 7× 106 2.64× 103 168 452 23.35 754.73 547.60

102 3× 107 1.13× 104 192 500 28.97 1900.81 843.33

102 1× 108 3.77× 104 256 636 32.88 4149.99 758.15

102 1× 109 3.77× 105 768 1536 43.06 15246 1123.95

102 1× 1010 3.77× 106 3072 6144 61.05 59423 2214.6

103 3× 104 1.97 96 356 2.35 4.52 9.23

103 7× 104 4.60 96 356 3.96 10.18 19.99

103 3× 105 19.7 120 380 7.48 23.94 71.96

103 7× 105 46.0 120 380 9.28 49.11 84.79

103 3× 106 1.97× 102 132 404 13.25 123.31 171.07

103 7× 106 4.60× 102 168 452 16.23 218.0 247.99

103 3× 107 1.97× 103 168 452 24.56 576.78 543.45

103 1× 108 6.58× 103 252 636 36.25 1294.93 1199.18

103 1× 109 6.58× 104 984 1964 79.403 6136.48 5936.12

103 1× 1010 6.58× 105 1536 3072 165.22 27012 26218
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Table B.3: Previous table continued.

Ch Ra Ra/Rac ny nx 〈Nu〉t 〈Rex〉x,y,t 〈Rey〉x,y,t

104 3× 105 2.50 120 380 3.17 5.47 23.17

104 7× 105 5.84 120 380 5.78 12.33 50.96

104 3× 106 25.0 132 404 10.30 34.72 131.55

104 7× 106 58.4 192 380 14.48 58.97 205.67

104 3× 107 2.50× 102 192 452 23.61 167.38 471.86

104 1× 108 8.34× 102 216 472 31.09 384.21 775.10

104 1× 109 8.34× 103 576 1172 59.03 1786.98 1988.51

104 1× 1010 8.34× 104 1536 3072 112.7 7924.37 7441.40

105 3× 106 2.78 132 404 4.04 6.45 48.73

105 7× 106 6.49 168 452 8.42 14.06 122.81

105 3× 107 27.8 168 452 16.38 39.03 362.61

105 1× 108 92.73 192 500 26.01 78.90 714.50

105 1× 109 9.27× 102 360 692 58.89 516.79 2112.05

105 1× 1010 9.27× 103 1536 3072 115.50 2520.92 4850.22

106 1× 108 9.72 96 356 14.47 23.49 332.0

106 1× 109 97.2 384 764 38.36 103.37 1689.52

106 1× 1010 9.72× 103 1536 3072 108.34 621.39 5870.90
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CHAPTER 3

Rotating Convective Flows in Paraboloidal Laboratory

Experiments

3.1 Introduction

Planetary magnetic fields, which are typically generated and sustained through conducting

fluid motions, reveal global-scale features on all planets with an active dynamo (Bloxham and

Gubbins, 1985). For Earth, where the magnetic field data is of the highest resolution to date,

a number of hypotheses have been proposed to explain the planet’s domain-scale, dipolar

magnetic field structure. The list includes the dominance of low wave number modes in

core flows, or the transfer of energy from small to large scales that can occur in constrained,

turbulent systems (Aurnou et al., 2015). It is turbulent fluid motions in Earth’s liquid

iron outer core that likely sustain the dynamo generating the large-scale geomagnetic field.

However, the remote nature of core flow precludes the direct measurement of these fluid

motions. Understanding the flow, which is influenced by planetary rotation, buoyancy and

magnetic forces, and the geometry of the spherical shell, among other mechanisms, has been

the focus of a number of recent forward models, which often employ simplifications due to

the complexity of the system (Glatzmaier and Roberts, 1995; Guervilly et al., 2019; Aurnou

et al., 2015).

One such simplification can be made by modeling the outer core as a quasi-geostrophic

system (QG). In the outer core, flows are dominated by rotation and the Coriolis force nearly

balances pressure gradients (Phillips, 1963). As a result, flows tend to align with the axis
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Figure 3.1: Schematic of Earth’s interior below the mantle, with a hot inner core, tangent

cylinder, and gravitational acceleration that is radially inwards. The green curves emphasize

the shape of the sphere’s outer boundary, which plays a crucial role in core fluid dynamics.

of rotation, which leads to two dynamically distinct fluid regions defined by the tangent

cylinder (TC), the axially aligned cylindrical region bisecting the inner core. The first region

is at high latitudes, inside the TC, where radially directed buoyancy forces align with the

axis of rotation. Fig. 3.1 gives a schematic of the core, where the tangent cylinder is denoted

with a pink dashed line. Core flow inside the TC has been studied in King and Aurnou

(2015); Cheng et al. (2015), among others. The second, highlighted with the green line in

Fig. 3.1, describes the area outside the TC at lower latitudes where the curvature of the
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spherical domain becomes large and the buoyancy forces are approximately perpendicular to

the axis of rotation. Buoyancy, originating at the Inner Core Boundary (ICB), is of particular

importance in core dynamics because it likely drives inertial flows through convection (Lister

and Buffett, 1995). Furthermore, this leading order balance between Coriolis and pressure

also allows us to model core flow with a purely hydrodynamic system, where we neglect

electromagnetic forces (Soderlund et al., 2012, 2015; Yadav et al., 2016; Sheyko et al., 2018).

The strongly nonlinear regime of turbulent convection outside the TC has not been

well-characterized to date (Gillet et al., 2007; Aurnou et al., 2015). Though studies have been

done on weakly nonlinear convection in a sphere (Guervilly and Cardin, 2016), the turbulent,

fully 3D regime remains difficult to access experimentally owing primarily to Ekman friction

at the boundaries and limitations on container size (Cardin and Olson, 1994; Aubert et al.,

2001). By forgoing a spherical container, and instead relying on a paraboloidal free surface

for curvature, we minimize Ekman friction while taking advantage of the strong laboratory

turbulence necessary to create analog models of Earth-like core convection. Fig. 3.2(a,b)

emphasizes the similarities in flow morphologies between our paraboloidal free surface device

(left panel) and a computationally expensive 3D spherical shell model of core convection

carried out by Mound et al. (2019) (right panel). In both images, one can observe similarities

in the length scale of convection and alternating bands of retrograde/prograde flow. Our

laboratory device, which is more tractable and flexible than current spherical shell direct

numerical simulations, offers a new method to study turbulent core convection.

Laboratory experiments that utilize a curved free surface have been carried out, but either

have a limited strength of boundary curvature or use hydraulic pumps to force small-scale

turbulence (Matulka et al., 2016; Cabanes et al., 2017; Lemasquerier et al., 2021; Smith

et al., 2014). The device presented in this study is the first, to our knowledge, that leverages

significant curvature from a paraboloidal free surface, generates a heat flux comparable to

that of a spherical shell, and drives the system self-consistently using convection to model

low-latitude core dynamics.
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Figure 3.2: (a) Top view of the laboratory paraboloidal free surface device used in this

study at a rotation rate of Ω = 55 RPM. Dye is used to color the working fluid (water) and

trace fluid motions. The inset at the bottom left shows a comparative thermographic image

from the thermal IR camera, where red corresponds to warmer fluid and blue corresponds

to cooler fluid. (b) Temperature snapshot of an equatorial slice of a spherical shell core

convection model carried out by (Mound et al., 2019). Light colors are used for warmer

fluid, and dark colors are used for cooler fluid.

Boundary curvature can strongly influence core flow outside the TC, as the curvature of

a spherical shell increases towards lower latitudes. The boundary curvature of a rotating

system, where the fluid layer height varies with cylindrical radius, can best be described by

a mechanism known as the topographic β-effect,

β = − 2Ω

h(s)

dh

ds
, (3.1)

where Ω is the global rotation rate, h is the fluid layer height, and s is the cylindrical radius

(Sinha and Richards, 1999).

In this approximately axially-invariant system with geostrophic turbulence, energy can

be transferred from high to low wavenumbers, also known as the inverse energy cascade
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(Kraichnan, 1967). However, the β-effect can anisotropize the QG flow and halt the inverse

energy cascade at a scale known as the Rhines scale (Rhines, 1975), which corresponds to

the wavenumber,

kRh =

√
β

2U
, (3.2)

where U is a characteristic velocity. Jets, whose widths follow this characteristic Rhines

scale, have been observed in several numerical simulations of the Jovian atmosphere (Heimpel

et al., 2005; Scott and Dritschel, 2012b), but could also be prominent large-scale features in

low-latitude core flow (Gastine, 2019; Calkins et al., 2012b; Gillet and Jones, 2006).

Zonal flows are often essential in dynamo processes, providing large-scale shears that can

convert components of poloidal fields into toroidal fields. Fig. 3.3(a) is a schematic depicting

a simplified version of this process, also known as the Ω-effect. Here, a vertical magnetic

field B is sheared by a perpendicular velocity field u, leading to a new B with a horizontal

component. The Ω-effect is the main driver of the dynamo process in astrophysical bodies

like the Sun, where differential rotation winds up an initially poloidal field into a toroidal

field (Stix, 1976; Cameron et al., 2017). Convection can also drive an additional dynamo

process, known as the α-effect, in which a toroidal magnetic field B is twisted into a poloidal

field, directed in r, through helical fluid motions. Therefore, characterizing the formation

and evolution of zonal flows driven by convection in our novel paraboloidal device can further

our understanding of core dynamo processing by elucidating the importance of the Ω-effect.

The rest of this chapter is organized as follows: Sec. 3.1.1 and Sec. 3.1.2 give the

mechanisms through which we drive turbulence in this system, namely centrifugal acceleration

and baroclinic instability. The experimental set up is discussed in Sec. 3.2. Sec. 3.3 compares

key features of the paraboloidal geometry, the topographic β-effect and heat flux, with that

of a spherical shell. In Sec. 3.4 we give the results including Rossby waves, alternating

prograde-retrograde jets that closely follow the Rhines scale, jets that migrate laterally, and

the Stewartson boundary layer. Sec. 3.4.5 lays the groundwork for future quasi-geostrophic
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Figure 3.3: Figure adapted from Roberts (2015). Schematic illustrating the dynamo process.

(a) The Ω-effect in which a vertical magnetic field B is sheared by a perpendicular velocity

field u, leading to a new B with a horizontal component. (b) The α-effect, in which a

toroidal magnetic field B, directed in (θ, φ) is twisted into a poloidal field, directed in r,

through helical fluid motions.

paraboloidal models. We conclude in Sec. 3.5. App. C gives additional work carried out

to fit the jet migration velocity. In App. D we provide a script used to track the radial

migration of a jet core in time.

3.1.1 Governing Equations

The source of turbulence in nature is often convection, an instability driven by a fluid

in an unstable density configuration. The archetype laboratory and numerical set up is

Rayleigh-Bénard convection (RBC), where a fluid is vertically confined between two parallel
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plates, and heated at the bottom boundary and cooled from the top. Further, when

rotation is applied to RBC, typically along the axis parallel to gravity, fluid motions can

be constrained along the axis of rotation. “Geostrophic turbulence” is then a regime where

rotation remains dominant, but less significant due to strongly nonlinear interactions (in this

case driven by convection) (McWilliams, 2006). It has been shown by Guervilly and Hughes

(2017) and Julien et al. (2018a) that domain-scale structures, such as vortices can result

from geostrophic turbulence in rotating RBC with periodic boundary conditions.

For the purposes of simulating core convection outside of the TC, we model buoyancy

that is orthogonal, in addition to parallel, to the rotation axis. The idea of using centrifugal

acceleration as a laboratory proxy for radially directed gravity in the core was proposed

by Busse and Carrigan (1974). A cold source at radius Ri is located at the center of a

rotating tank of fluid total radius Ro. The colder, denser parcels of fluid are pushed radially

outwards, and warmer parcels at the outer boundary are pulled radially inwards with a

centrifugal acceleration, ac = Ω2sŝ, where Ω is the rotation rate.

To understand the control parameters that give the onset of the centrifugally driven

convective instability, we turn to the governing equation of momentum conservation for a

Boussinesq, rotating fluid

ρ
(∂u
∂t

+ (u ·∇)u
)

+ ρ(2Ωẑ × u) = −∇P + ρgẑ − ρΩ2sŝ+ νρ∇2u, (3.3)

where u is the fluid velocity, P is the pressure, ρ is the fluid density, α is the expansivity of

the fluid, g is gravity in the ẑ-direction, ν is the viscosity, and Ω is the rotation rate. The

second to last term on the right hand side of Eq. 3.3 is the centrifugal buoyancy contribution.

The temperature equation is

∂T

∂t
+ (u · ∇)T = κ∇2T, (3.4)

where κ is the thermal diffusivity. We can apply the Boussinesq approximation, where ρ is

equal to the mean density ρ0 in all terms but the buoyancy terms. In the buoyancy terms,
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density variations are related directly to variations in the fluid temperature by

ρ = ρ0(1− α(T − T0)), (3.5)

where α is the thermal expansion coefficient of the fluid and T is the fluid temperature

relative to the mean T0.

We can find hydrostatic balance from the momentum equation. The static state is

recovered when u = 0

∇P = ρgẑ − ρΩ2ŝ. (3.6)

Subtracting this from Eq. 3.3 gives

∂u

∂t
+ (u ·∇)u+ (2Ωẑ × u) = − 1

ρ0

∇p+ α(T − T0)gẑ − α(T − T0)Ω2sŝ+ ν∇2u, (3.7)

where p is now the dynamic pressure.

We can nondimensionalize the equations for momentum and temperature. Length is

scaled by Ro − Ri, temperature is scaled by ∆T⊥,∆T‖ in the radial and vertical directions

respectively, and pressure is scaled by ρ0α∆T⊥Ω(Ro − Ri)
2. Time is scaled by the free fall

time scale, which estimates the time it takes for a buoyant, undamped parcel of fluid to

radially cross the fluid layer

τff⊥ =
(Ro −Ri)√

α∆T⊥Ω2(Ro −Ri)2
. (3.8)

The velocity is scaled by the free fall velocity, which estimates the speed at which a buoyant,

undamped parcel of fluid will radially cross the fluid layer

Uff⊥ =
√
α∆T⊥Ω2(Ro −Ri)2. (3.9)

Using these scales gives

∂u

∂t
+ (u ·∇)u+Ro−1

⊥ (ẑ × u) = −∇P +
γ

Fr
T ẑ − Tsŝ+

√
Pr

Ra⊥
∇2u (3.10)

and
∂T

∂t
+ (u · ∇)T =

1√
Ra⊥Pr

∇2T. (3.11)
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Additional definitions to note are the Coriolis (τΩ), viscous (τν), and thermal diffusion (τκ)

timescales

τΩ =
1

2Ω
; τν =

(Ro −Ri)
2

ν
; τκ =

(Ro −Ri)
2

κ
. (3.12)

The control parameters here are: the perpendicular Rayleigh number that describes the ratio

of centrifugal buoyancy to diffusion

Ra⊥ =
(τff⊥)2

τντκ
=

(α∆T⊥Ω2)(Ro −Ri)
4

νκ
, (3.13)

the centrifugal convective Rossby number that describes the ratio of buoyancy to Coriolis

Ro⊥ =
τΩ

τff⊥
=

√
α∆T⊥Ω2(Ro −Ri)2

2Ω(Ro −Ri)
, (3.14)

the Prandtl number that describes viscous to thermal diffusion

Pr =
τκ
τν

=
ν

κ
, (3.15)

the Froude number, the ratio of centrifugal acceleration to gravitational acceleration,

Fr =
ac
g

=
Ω2(Ro −Ri)

2

g
. (3.16)

and the ratio of vertical to radial temperature gradient

γ =
∆T‖
∆T⊥

. (3.17)

The convective Rossby number can be written as

Ro⊥ =
Ek√
Ra⊥ Pr

, (3.18)

where Ek is the Ekman number that is frequently used as a control parameter in studies of

core convection

Ek =
τΩ

τν
=

ν

Ω(Ro −Ri)2
. (3.19)

Taking the curl of Eq. 3.7 gives the vorticity equation

∂ω

∂t
+ (ω ·∇)u = ((ω +Ro−1

⊥ ẑ) ·∇)u+∇× γ

Fr
T ẑ −∇× Tsŝ+

√
Pr

Ra⊥
∇2ω, (3.20)
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where the first term on the right hand side of Eq. 3.20 is a result of vortex stretching.

The ẑ-component of Eq. 3.20 is

Dω

Dt
= ((ω +Ro−1

⊥ )
∂uz
∂z
− ∂T

∂φ
+

√
Pr

Ra⊥
∇2ω, (3.21)

In the quasigeostrophic limit where Ro−1
⊥ � 1 and viscous effects are neglected, Eq. 3.62

becomes
Dω

∂t
= (Ro−1

⊥ )
∂uz
∂z
− s∂T

∂φ
. (3.22)

We can integrate Eq. 3.22 over the axial z direction from z = 0 to nondimensional height

z = h(s)/(Ro −Ri) which yields

h(s)

Ro −Ri

Dω

Dt
= Ro−1

⊥

∫ h(s)/(Ro−Ri)

0

∂uz
∂z

dz −
( h(s)

Ro −Ri

)∂T
∂φ

. (3.23)

The fluid layer height, h varies with radius, s, which results in

(uzh(s)− uz(s)) =
Dh

Dt
= us

dh

ds
. (3.24)

Using Eq. 3.24 to simplify Eq. 3.23 gives

Dω

Dt
= Ro−1

⊥

((Ro −Ri)

h(s)

dh

ds

)
us +

∂T

∂φ
. (3.25)

The dimensional topographic β effect is defined as

β = − 2Ω

h(s)

dh

ds
. (3.26)

We can nondimensionalize Eq. 3.26 with time scale τff⊥ and length scale Ro − Ri which

gives nondimensional β′

β′ = −Ro−1
⊥

(Ro −Ri

h(s)

)dh
ds
. (3.27)

Substituting Eq. 3.27 into Eq. 3.25, we have

Dω

Dt
= −β′us +

∂T

∂φ
. (3.28)

Thus, the variation of fluid layer height stretches planetary vorticity, and generates local

vorticity in the axial direction. This is quantified through the topographic β effect. In

addition, the system is thermally forced through gradients of T in the azimuthal direction.
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Figure 3.4: The horizontal flow on different isobaric levels in a (a) barotropic atmosphere

compared to a (b) baroclinic (b). The blue portion denotes a cold region while the orange

portion denotes a warm region. This temperature field extends throughout the fluid layer

in the baroclinic case, though it is constrained to the surface in the barotropic case. The

dotted lines give isobaric surfaces. Pink arrows demarcate the direction and amplitude of the

horizontal flow. Only in the baroclinic atmosphere does the horizontal flow vary in height,

which is known as thermal wind. Figure adapted from Wikipedia.

3.1.2 Baroclinic Flows

Though the centrifugal acceleration likely plays a key role in driving turbulence in this

system, there is another mechanism that we consider here: baroclincity. The turbulence in

this system may also be governed by the instability associated with constant density surfaces

that are misaligned with constant pressure surfaces, which can in turn drive baroclinic eddies

(Salmon, 1980; Pierrehumbert, 1984; McWilliams, 2006; Smith et al., 2014). In such a system,

we can examine the vorticity, Eq. 3.20 under the quasigeostrophic limit where Ro⊥ � 1 and

only the buoyancy balances Coriolis

(Ro−1
⊥ ẑ ·∇)u =∇× Tsŝ−∇× γ

Fr
T ẑ. (3.29)
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Retaining only the azimuthal component of Eq. 3.29 yields

∂uφ
∂z

= Ro⊥

( γ

Fr

∂T

∂s
+ s

∂T

∂z

)
, (3.30)

which is also known as thermal wind balance (Cushman-Roisin and Beckers, 2011; McWilliams,

2006). Eq. 3.30 shows that the buoyancy gradients in this system set up a vertical shear of

the zonal velocity, “thermal wind.”

Fig. 3.4(a,b) also demonstrates how a baroclinic system can set up a thermal wind. It

shows a schematic of a barotropic atmosphere compared to a baroclinic atmosphere. In

the baroclinic case, the temperature gradient at the bottom surface extends throughout the

fluid layer, and leads to a tilt in the isobaric surfaces with height. This sets up a horizontal

flow that changes with height. This shear is unstable, and can drive a mechanism known as

baroclinic instability (BCI).

By linearizing the baroclinic, unforced governing equation of momentum and carrying

out linear stability analysis, one can show that the scale of waves which grow most rapidly

is the Rossby deformation radius (McWilliams, 2006)

RD =
NL
2Ω

. (3.31)

where L is a characteristic scale (typically the local height of the fluid layer). In addition,

N is the Brunt-Väisälä frequency,

N =

√
− g

ρ0

∂ρ

∂z
, (3.32)

which characterizes the stability of a fluid to displacements driven by buoyancy.

A system can be forced by both baroclinic and convective instabilities. For example,

Fig. 3.5 shows an image from a demonstration by the DIYnamics team. A tank with

a radius of 18 cm is rotated at 10 RPM while a cold can of ice (radius approximately 4

cm) is placed at the center of the domain. The lateral temperature gradient of about 3◦

C, orthogonal to the vertical pressure gradient, sets up a thermal wind which undergoes
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Figure 3.5: Figure adapted from Spencer Hill. Image of both baroclinic and convective

instabilities in a DIYnamics demonstration. A tank of 18 cm is rotated at 10 RPM, while

a can of ice is placed in the center of the domain. Both baroclinic eddies and rotating

convective columns are observed, which closely match predicted scales. Calculations of RD

and Ek1/3L are shown in the green and yellow lines respectively.

baroclinic instability. We can use Eq. 3.31 to predict the scale of the resulting eddies which

gives RD =
√

(αg∆T⊥(Ro −Ri))/(2Ω2) ≈ 1.94 cm (bright green lines).

The dye used in this demonstration is denser than the water, which causes it to sink.

The width of the columns which arise from rotating convection scale as lc ∼ Ek1/3L where L

is a characteristic length scale (details of this relationship are given in Sec. 3.4.4). Using the

gap width for L gives lc ≈ 0.405 cm (bright pink lines). Both RD and Ek1/3L closely match

the width of structures observed in this demo, which shows that baroclinic and convective

instabilities coexist here.
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3.2 Experimental Setup

Figure 3.6: Figure from T. Lonner. (a) Novel experimental device to simulate low-latitude

convection. Superimposed in the tank is a snapshot of the thermal IR field recorded from

the ImageIR. A base temperature profile is recorded by the labeled thermistor chain, and

the transducers for the Doppler Velocimeter are placed in the UDV holes. (b) The relevant

dimensions of the tank. All values listed are in centimeters. (c) Side view of the tank where

the curvature of the free surface is observable.

The natural convection experiments at three different rotation were performed by previous

UCLA student, Taylor Lonner, using a novel laboratory device shown in Fig. 3.6. The tank

is 1cm-thick acrylic and has an inner diameter of 74.5cm. Centered with this tank is a 3-mm

thick aluminum insert with an outer diameter of 20.4cm. Convection is established by using

hot water in the annulus of the acrylic tank and placing a solid block of ice in the inner

aluminum cylinder. Cold water is added to the cylinder to couple the ice to the aluminum
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and allow for efficient heat transfer. This passive cooling is the main source of turbulence

in the system. As the device rotates, the cold water at the boundary of the inner cylinder

is centrifuged out and the hot water in the bulk moves inward. This centrifugal force works

as a proxy for gravity at low latitudes in geophysical and astrophysical bodies where the

forcing is similarly perpendicular to the axis of rotation (Busse and Carrigan, 1974).

In order to collect data from our system, we employ the use of the DOP 3010 Ultrasonic

Doppler Velocimeter (UDV) from Signal Processing to collect azimuthal velocity profiles,

an ImageIR 8300 from InfraTec for surface thermography, and a custom wireless thermistor

array for additional point temperature measurements at the base of the tank. We use the

UDV to multiplex through two transducers at sub-second frequencies. As shown in Fig.

3.6B, the transducers are placed opposite each other along a chord. The UDV is capable of

reading velocities with 16-bit precision. Given our velocity scale, this equates to a precision

of 0.9µ m/s and an accuracy within 5%. The ImageIR is located on the upper frame of

the device facing a polished aluminum plate, which acts as a mirror for the water’s surface.

The pixel resolution of the camera’s CCD is 640x512 and each pixel provides temperature

reading with a precision of 20 mK. Finally, the wireless thermistor array was developed in-lab

using an Arduino Mega and Xbees for wireless serial data transfer, and custom-calibrated

Ametherm PANE-103395 thermistors. Seven thermistors were placed in a chain from the

inner cylinder to the edge of the tank. The Arduino Mega has 10-bit precision which leads

to thermistor precision around 25 mK.

Each case is run as follows. While the tank is stationary, it is filled to a set point and

heated with a submersible heater to 50◦C. The water is seeded with copolyamide particles

at a density of 0.35 g/L. Once the desired temperature is reached, the ice block is placed

in the aluminum cylinder and the device is slowly spun up to the desired rotation rate over

about 3 minutes. Data collection begins here so we can observe spin-up dynamics if desired.

From the beginning of spin-up, we record data for 40 minutes. We can find how long the

device takes to reach solid-body rotation by formulating an Ekman spin-up time, τEkl for a
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cylindrical apparatus with one solid boundary and a free surface. The spin-up timescale for

a homogenous fluid in a closed, cylindrical container is given by

τEk,closed = (8Ekl)
−1/2Ω−1 (3.33)

where the Ekl = ν/(2Ωh2) is the Ekman number (the ratio of viscosity to Coriolis) (Warn-Varnas

et al., 1978; Greenspan and Howard, 1963). For a cylindrical system with only one boundary,

the timescale for the fluid to reach solid-body rotation will be longer by a factor of two. This

gives,

τEk = ((8Ek)−1/2Ω−1)2 = (2Ek)−1/2Ω−1 = h(νΩ)−1/2. (3.34)

The Ekman number for each case is defined in Table 3.4.4.2, and solid-body rotation is

observed after about 20 minutes. After finishing data collection, initial corrections are made

to the data. For the UDV velocity data, this includes applying a Doppler angle correction

assuming azimuthal flow on average for the transducers. Given the length of the chord, L,

the depth from the transducer, d, and the radius of the aluminum cylinder, Ri, the Doppler

angle can be calculated as

θ (d)dop = tan−1

(
L/2− d
Ri + 2cm

)
. (3.35)

The 2cm adjustment in the denominator of 3.35 is due to the position of the chord relative

to the inner cylinder as shown in Fig 3.6(b). To translate from Doppler velocity to azimuthal

velocity, we merely apply a projection as follows at each depth from the transducer:

uφ =
udop

cos(θdop)
(3.36)

In addition to the Doppler angle correction, we remove a surface wave from the UDV data.

Since our system is slightly imbalanced, a surface wave with an angular frequency that

matches the rotational frequency is present. However, we are able to characterize this wave,

fit it, and subtract it from the velocity data.

For thermography, the IR camera assumes the surface is flat, rather than paraboloidal.

Therefore, additional corrections must be made to the thermographic data. Calibration cases
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were taken prior to running experiments where the water was room temperature and there

was no ice in the aluminum cylinder. These uniform-temperature cases are used to fit the

temperature read by the IR camera to the temperature measured by the thermistors using

Lambert’s Cosine Law as follows:

T0 =
a (θL)T

cos (θL)
+ b. (3.37)

For 3.37, T0 is the temperature measured by the thermistors, a is an adjustment coefficient

which is approximately 1, θL is the angle between the surface normal and the axis of rotation,

T is the temperature measured by the IR camera, and b is an offset used to match the IR

camera’s accuracy to that of the thermistors. Thermography data was sampled strategically

at one image per rotation to remove the effects of the surface wave.

The thermographic data provides a method of extrapolating the velocity field. This can

be shown by examining the equation for the evolution of temperature

∂T

∂t
+ u ·∇T = κ∇2T, (3.38)

The thermal diffusivity of water is κ = 1.4 × 10−7 m2/s. Considering two snapshots of the

surface thermal field taken one second apart, the small-scale structures show little thermal

diffusion. Therefore, it is possible to relate the evolution of the temperature field over time

with the advection of the velocity field.

3.3 Theoretical Comparison Between Paraboloid and Sphere

3.3.1 Topographic β

The paraboloid also serves as a quantitative proxy to the topographic β effect resulting from

a sphere. The shape of the paraboloidal free surface is controlled by the rotation rate and is

described by the following equation

h(s)para = h0 +
Ω2s2

2g
=

Ω2s2 + 2gh0

2g
, (3.39)
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(a) (b)

Figure 3.7: (a) Cross section of paraboloidal free surfaces, where the black solid line gives

the location and height of the inner cylinder. (b) Comparing the paraboloidal free surfaces

with that of a sphere. The x-axis for both plots is the lateral position across the tank where

s is cylindrical radius and φ is the azimuthal position.

where h0 is the theoretical minimum layer depth when s = 0, and g is the acceleration due

to gravity.

Fig. 3.7(a) gives the height of the free surface for the three experimental cases as well

as the position of the aluminum inner cylinder. This figure serves as a cross section of what

the system will look like at each rotation rate. Fig. 3.7(b) then compares the paraboloidal

shape to that of a sphere. Taking the derivative of 3.39 with respect to s, we find

dh

ds
=

Ω2s

g0

, (3.40)

From 3.39 and 3.40, we can determine the topographic β-effect for a paraboloid given by

βpara = −2Ω

h

(dh
ds

)
=

−2Ω

h0 + Ω2s2

2g

Ω2s

g

= − 2Ω
gh0
Ω2 + s2

2

=
2Ωs

4R′D|2h0 + s2

2

(3.41)
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(a) (b)

Figure 3.8: (a) Nondimensional topographic beta for paraboloids and sphere. (b) Normalized

head flux for paraboloids and sphere.

In 3.41, R′D =
√
gh0/2Ω is a version of the Rossby deformation radius which describes the

scale at which the effects of rotation and inertia near the inner boundary are approximately

balanced. Eq. 3.41 can be nondimensionalized by multiplying Ro/2Ω where Ro is the radius

of the tank. This gives a nondimensional β∗ that is related to Eq. 3.27 by the relationship

β∗ = ζRo⊥β
′ (3.42)
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where ζ = Ro/(Ro −Ri). Using β∗ to recast the paraboloidal Eq. 3.41 gives

β∗para = − 2Ωs

4R′D|2h0 + s2

2

Ro

2Ω

=
sRo

4R′D|2h0 + s2

2

= −
s
Ro

4R′D|
2
h0

R2
o

+ s2

2R2
o

= − χ

Bu2 + χ2/2

(3.43)

where χ = s/Ro is a normalized radius and Bu = R′D/Ro is the Burger number.

The same procedure above can be used to determine the topographic β-effect of a sphere,

resulting in the following equation for layer depth:

h(s)sph = 2
√
R2
o − s2. (3.44)

Using Eq. 3.44, the topographic β-effect of a sphere is

βsph =
2Ωs

R2
o − s2

. (3.45)

We can nondimensionalize eq. 3.45 by multiplying it by Ro/2Ω which gives

β∗sph =
χ

1− χ2
. (3.46)

Fig. 3.8(a) compares the absolute values of the topographic β-effect for the sphere (red) and

paraboloid at 35, 50, and 60 RPM (cyan, blue, green respectively). While the topographic

β-effect for a parabola differs from that of a sphere, the values are on the same order of

magnitude in the bulk of the fluid. In addition, for the lowest rotation rate they share

monotonic behaviors. These similarities and the flexibility of the parabolic β-effect with the

rotation rate make the parabola an excellent proxy for a sphere. The values of our maximum

topographic β for each case is listed in Table 3.4.4.2. Given the dimensions of our system,

we are able to reach higher topographic β values than earlier experiments (Matulka et al.,

2016; Lemasquerier et al., 2021).
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3.3.2 Heat flux

Radially directed buoyancy, characterized by heat flux, is a crucial parameter when comparing

the geometries as it ultimately drives the flow. We do a simple comparison of the heat flux

profiles by assuming that both the spherical shell and paraboloidal free surface configurations

have a fixed buoyancy flux, qi, at the inner radius, Ri. Then, assuming that there are no

sources or sinks in the fluid layer, and Power = qA = constant, we can apply thermal energy

conservation to approximate the variation of thermal flux with radius.

For a paraboloidal free surface, the geometry is as follows:

2πrihiqi = 2πsh(s)q(s), (3.47)

into which we can substitute the following quantities:

hi = h0 +
Ω2R2

i

2g
, (3.48)

and

h(s) = h0 +
Ω2s2

2g
. (3.49)

Making the substitutions and rearranging,

q(s) =
qiRi

(
h0 +

Ω2R2
i

2g

)
s
(
h0 + Ω2s2

2g

) . (3.50)

The same procedure can be followed to determine the heat flux through the spherical shell,

resulting in

q(r) =
qiR

2
i

r2
. (3.51)

The heat flux of the spherical and paraboloidal geometries are compared in Fig.3.8(b) , and

all profiles have a similar decay. This demonstrates the efficacy of using the paraboloid to

model the heat flux through a spherical shell.
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Figure 3.9: The thermal Rossby wave speeds predicted by Eq. 3.63 (Pr = 3.810) for a (a)

sphere and (b) paraboloid at 60 RPM. Schematics of expected vorticity dynamics given a

system with a (c) negative, nonlinear decrease in fluid layer height with radius and (d) a

positive, nonlinear increase in fluid layer height with radius. The vortex (solid black line) is

fixed at s/Ro = 0.5 (black dashed line). The outer edge is compressed (stretched), leading to

a negative (positive) vorticity. The inner edge is stretched (compressed), leading to a positive

(negative) vorticity. In both cases, the net azimuthal drift velocity will vary in radius (pink

arrows).
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3.3.3 Vorticity Dynamics

One of the advantages of our experimental device is the paraboloidal free surface, which

generates a significant β-effect comparable to that of a deep spherical shell as shown in Sec.

3.3.1. This analogy is important because a certain geometry with fluid layer height h(s) will

affect a local column of fluid with some vorticity, ω0 differently, depending on the geometry.

A simplified relationship that describes the induced vorticity by stretching of fluid columns

by motion in s is given by

∆ω ∼ β∆s, (3.52)

where ∆ω is the induced vorticity and ∆s is the change of the fluid column’s radial position.

Let us consider a system with a counter-clockwise background rotation rate, Ω and a

gently sloping boundary such that dh/ds = −B, where B is a constant, or where the height

is decreasing constantly with radius. As a reminder, β ∼ −dh/ds. Thus, when the outer

edge of the vortex is compressed (according to Eq. 3.52) the local vorticity relative to the

background flow decreases. However, the inner edge of the vortex is stretched, leading to a

positive vorticity. The net velocity drift of the vortex, proportional to dh/ds, will then be

in the counter-clockwise direction.

For more complex geometries, we turn to Fig. 3.9 which shows a schematic of this process

for a sphere versus a paraboloid. Fig. 3.9(a,b) give the Rossby wave speed as a function

of nondimensional radius χ for each geometry predicted by Eq. 3.63, which is discussed in

greater detail in Sec. 3.4.1. We find that cTRW is positive for the sphere, and negative for the

paraboloid. This can be understood by considering the schematics in Fig. 3.9(c,d), which

show the vorticity dynamics behind each process at χ = 0.5. In the first case, the outer edge

of the vortex is compressed, and according to Eq. 3.52, this will lead to a local decrease of

vorticity relative to the background shown by the blue circle. The opposite is true for the

inner edge, demarcated by a red circle. The net azimuthal drift (Rossby wave propagation)

of the vortex will be in the positive azimuthal direction (pink arrows).
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Now, consider a system where the fluid layer height is increasing, rather than decreasing,

nonlinearly with radius such as the paraboloid. The outer edge of some vortex will be

stretched. According to Eq. 3.52, leads to an increase of vorticity relative to the background

shown by the red circle. The opposite will be true for the inner edge. The net azimuthal drift

(Rossby wave propagation) of the vortex will be in the negative azimuthal direction direction.

For both the paraboloidal and spherical systems, the fluid layer height is changing nonlinearly

with radius and we expect structures to drift and tip due with an angle proportional to the

second derivative of height with radius (Busse and Hood, 1982).

3.4 Results

Table 3.1: Characteristic dimensional values from each experimental run. Averages are

carried out over the last ten minutes wherever applicable. Each row gives the rotation rate

Ω, max(|uφ|), ∆T⊥, ∆T‖, and 〈h〉s.

Ω (RPM; rad/s) max(|uφ|) (cm/s) ∆T⊥ (◦) C ∆T‖ (◦) C 〈h〉s (cm)

35, 3.7 0.53 4.19 −10.74 15.76

50, 5.2 0.47 6.60 −12.27 14.29

60, 6.3 0.49 7.60 −5.02 13.26

We present three natural convection cases at 35, 50, and 60 RPM where we collect UDV

velocity profiles, surface thermography, and basal thermometry. Details regarding these cases

can be found in Table 3.1, which gives several key measurements that will be used throughout

the analysis, and Table 3.2, which gives a more comprehensive list of control parameters

and non-dimensional numbers. Given the combination of a geostrophic turbulence and a

topographic β-effect, we expect to see several jets in the system following the Rhines scale

wavenumber from Eq. 3.2.
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3.4.1 Rossby Wave Propagation

Geostrophic turbulence, or that where rotation is the dominant force has been shown to

mimic two-dimensional turbulence (Danilov and Gurarie, 2008). However, deviations from

geostrophy occur in nearly all geophysical systems. One such phenomena that anistropizes

the nearly axially invariant flow through wave propagation, and thus halts the inverse energy

cascade is the topographic-β effect. For a deep spherical shell, such as the outer core, β →∞

at the equator, and thus likely has leading order effects on the dynamics.

To clarify how topographic-β breaks the two-dimensionality of the otherwise geostrophic

system and excites Rossby waves that propagate anisotropically, we turn to the governing

equations of motion in Cartesian coordinates where rotation Ω = Ωẑ.

∂ω

∂t
+ (uh ·∇h)ω + βuy = n.c.t., (3.53)

and for geostrophic (two-dimensional flows),

ω = ∇2
hψ, (3.54)

where β accounts for an increase in fluid layer height in the ŷ direction, ω is the vorticity, ψ is

the streamfunction, h is the horizontal directions x and y, and n.c.t. denotes non-conservative

terms such as forcing and dissipation. We can rewrite Eq. 3.53 allowing u = U + u′ where

the background zonal flow U = U x̂. Assuming u′ � U gives Eq. 3.53 becomes

∂ω

∂t
+ U

∂ω

∂x
+ βuy = n.c.t.. (3.55)

We can write Eq. 3.62 purely in terms of the streamfunction, which gives

∂∇2
hψ

∂t
+ U

∂

∂x
∇2
hψ + β

∂ψ

∂x
= n.c.t.. (3.56)

Asymmetry in the system is already observed in Eq. 3.110 by the third term on the left

hand side, which is only a derivative in x. Furthermore, assuming an unbounded domain

and inviscid flow, with a traveling wave solution of the form

ψ = ψ0e
i(kx+ly−σt), (3.57)
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Figure 3.10: (a) Side view of the rotating free surface cylindrical apparatus. The left hand

side of the schematic shows the Cartesian coordinates, and the right hand side shows the

cylindrical coordinates. (b) Top view of the same system.

where k and l are the wavenumbers in x and y respectively, and σ is the wave frequency.

Substituting into a linearized Eq. 3.110 yields the following normal mode dispersion relationship

for the barotropic Rossby waves (Vallis, 2006; McWilliams, 2006) Doppler shifted by the

advection by the zonal flow

σ = kU − β k

(k2 + l2)
, (3.58)

where σ is the barotropic Rossby wave frequency. From the propagation of barotropic Rossby

waves in Eq. 3.58, we observe that the two-dimensional isotropy of the system no longer

holds due to the topographic-β effect. We can multiply Eq. 3.58 by a characteristic length

scale in x to find the speed of the Rossby waves in the x-direction,

c = U − β

k2 + l2
(3.59)

where c gives the barotropic Rossby wave phase speed in the x-direction.

We follow (Lemasquerier et al., 2021) to apply Eq. 3.59 and estimate the barotropic

Rossby wave phase speed in our system. Because of the strong influence of rotation in

this device, we can transform our cylindrical coordinate system to a set of local Cartesian
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coordinates at a given location in s. In the Cartesian framework, φ → x and s → y.

The details are given in Fig. 3.10 which illustrates this transformation. In local Cartesian

coordinates, dh/dy < 0, which yields a positive β. According to Eq. 3.59, we then expect

barotropic Rossby waves that propagate in the retrograde direction. In addition, we can

simplify Eq. 3.59 by assuming the structures will be similar in length scale in the azimuthal

and radial directions, which gives

c = U − β

k2 + l2
≈ −β

2k2
. (3.60)

Noting that the background zonal flow in our system is the time-averaged azimuthal velocity

such that U ≈ 〈uφ〉t gives

c = 〈uφ〉t −
β

2k2
. (3.61)

The time average 〈uφ〉t is carried out over the 400 second Hovmöller window.

We force our system through buoyancy gradients that rely on the thermal field. Therefore,

we may expect thermal Rossby waves (TRW) rather than the barotropic Rossby waves. In

this case, the axial vorticity equation is given by

∂ω

∂t
+ U

∂ω

∂x
+ βuy = αΩ2∂T

∂x
. (3.62)

This is coupled to the temperature evolution equation given by Eq. 3.4. The linear stability

analysis for this set up was carried out by Busse and Or (1986); Busse (2004), where a phase

speed for thermal Rossby waves is found to be

cTRW = 〈uφ〉t −
1

(1 + Pr(T ))

( β

2k2

)
. (3.63)

In this case, Pr(T ) is the Prandtl number as a function of temperature. Now it is possible

to use Eq. 3.63 in local Cartesian coordinates to calculate the thermal Rossby wave phase

speed expected at a given radius. We choose Γ = 0.5, where Γ is introduced for gap position,

the normalized position from the inner cylinder radius, Ri to the tank radius, Ro. The

azimuthal wavenumber, k, is then measured by taking an FFT of the thermal anomaly in
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azimuth over time at fixed radius Γ = 0.5. Fig. 3.11(a,b) shows this FFT for the 50 and

60 RPM cases respectively. The peak of the FFT is demarcated by a black dashed line and

k/2π = 0.141cm−1 for the 50 RPM case, and k/2π = 0.262cm−1 for the 60 RPM case.

In addition for the 50 RPM case, we find 〈uφ〉t = 0.08871 cm/s for the background zonal

flow, and use the Prandtl number at the fluid’s mean temperature of T = 48.5629◦C, which

gives Pr = 3.5527. For the 60 RPM case, these values are 〈uφ〉t = −0.16145 cm/s and using

a mean fluid temperature of T = 44.8377◦C gives Pr = 3.8310. All Prandtl number values

used in this calculation are provided by UCLA Ph.D. student Jewel Abbate. Fig. 3.11(c,d)

give Hovmöller diagrams of the thermal anomalies in time and φ where the green, black, and

pink lines now correspond to the phase speeds found using Eq. 3.63. This range of slopes

show good agreement with the phase speed of the measured waves, demonstrating that we

likely have a variety of Rossby waves excited in our system.

Using the wavenumber values from each FFT, we can also find the wavelength of the

structures using

λ =
2π

k
, (3.64)

and the length scale of the structures

` =
λ

2
=
π

k
. (3.65)

This yields λφ = 7.41; `φ = 3.70cm and λφ = 4.25; `φ = 2.13cm for the 50 and 60 RPM

cases respectively. These values will be useful in Sec. 3.4.4, where we compare length scales

measured in the device to theoretical predictions.

3.4.2 Rhines Scale Jets

The topographic Rossby waves discussed in Sec. 3.4.1 likely drive the alternating prograde-retrograde

jets observed in the 35, 50, and 60 RPM cases. Another question to consider is at which

length scale will the topographic β-effect impact the inverse energy transfer typical of two

dimensional turbulence. To characterize this scale, we can return to Eq. 3.110 and take

103



Figure 3.11: Temperature anomaly in azimuth at mid-gap position, Γ = 0.5, for ((a), (b))

50 RPM and ((c), (d)) 60 RPM cases. The temperature anomaly is calculated such that

∆T = T (φ, t)− 〈T (t)〉φ. (a) and (c) show the respective peak wavelengths when an FFT is

taken over the azimuth and detrended. (b) and (d) are bandpass filtered from 0.03cm−1 to

0.35cm−1. The dashed black lines represent the theoretical stationary thermal Rossby phase

speed from Eq. 3.63. c50 = −0.055cm/s and c60 = −0.225cm/s. Variations in experimental

phase speed can be attributed to the thickness of the peaks in both cases, which are denoted

with pink and green lines.
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Figure 3.12: Figure from T. Lonner. IR Snapshots of the thermal field mid-case for (a) 35

RPM, (b) 50 RPM, and (c) 60 RPM. Color denotes temperature in degrees Celsius. Video

clips corresponding to each of these cases are available in the supplement. Overlayed at 3

O’Clock in each image is the time-averaged azimuthal UDV velocity data from the last 10

minutes of each case. The dashed black line signifies where velocity is zero. In (a), the cooler

region in the lower left of is an artifact caused by the IR camera being slightly off-center.

In (c), the ring at around Γ = 3/4 is due to reflections from the white tarp that covers the

device. The white line in the bottom right of each image the wire of a thermistor crossing

over the tank and can be disregarded.

the ratio of the inertial to topographic β terms. Noting that J(ψ,∇2
hψ) ∼ U2/L2 and

β(∂ψ/∂x) ∼ βU (where U,L are characteristic velocity and length scales respectively) we

find

LRh ∼

√
U

β
, (3.66)

first noted by (Rhines, 1975). More accurately, LR is the length scale of a jet, or half a

wavelength λRh given by

λRh =
2π

kRh
, (3.67)
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where kRh is the Rhines wavenumber. Therefore,

LRh = π

√
2U

β
. (3.68)

where a factor of
√

2 is often included in the numerator of (3.68) in the literature and

demonstrates its approximate nature Heimpel and Aurnou (2007). For scales L < LRh,

advection dominates whereas at L ≥ LRh, Rossby wave propagation dominates. The length

scale of zonal jets emerging from this system has been proposed to be LRh.

An additional scale of importance can be found by equating a turbulent eddy-turnover

timescale τt = ε−1/3k−2/3, where ε is the rate of upscale energy transfer within the turbulent

energy cascade and k is a wavenumber, to a Rossby wave timescale τw = k/β. This gives

the scale

Lβ =
( ε

β3

)1/5

(3.69)

and is often thought of as the threshold of turbulence anisotropisation owing to the β effect.

Taking the ratio of (3.66) and (3.69) characterizes the magnitude of the flow anisotropy and

the strength of the resulting jets. It is the zonostrophy index Lemasquerier et al. (2021)

Rβ =
LRh
Lβ

= β1/10(U)1/2ε−1/5 ≈
(βU

Ω2

)1/10( h2Ek

(Ro −Ri)2

)−1/10

. (3.70)

where ε is estimated from the rate of energy loss due to dissipation, ε ≈ U2/τE and τE =

(h/(Ro −Ri))(2E)−1/2Ω−1 is the Ekman spin-down time scale written in terms of Ek.

A regime of strong jets typically occurs when the Rossby waves are separated from the

final jet scale, or where the zonostrophy index Rβ > 2.5. Fig. 3.13 shows Rβ throughout

the fluid layer, and Table 3.4.4.2 gives the average value for our three cases. In all cases, we

find that we are close to this threshold and likely in a regime of moderate to strong jets.
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Figure 3.13: Zonostrophy index, according to Eq. 3.70, for the three cases throughout the

fluid layer.

Fig. 3.12 shows snapshots of the surface thermal fields for each case. The azimuthal

velocity is time-averaged over the last ten minutes of each run and overlayed at the top of

the snapshots, indicated by the solid black line. For the 35 RPM and 50 RPM cases, there is

a net prograde drift, whereas the 60 RPM case has a net retrograde drift. The difference in

drift direction may be, in part, due to migrating jets in the 60 RPM case (discussed further

in Sec. 3.4.3). The system is potentially transient and a longer experimental run may show

the jets stabilizing with a prograde drift like the other two cases. The net azimuthal drift

observed in Fig. 3.12(a,b) could be a thermal wind effect driven by a lateral buoyancy

gradient (Aurnou et al., 2003). Regardless of the background drift, the zonal flow profile in

all cases is dominated by alternating prograde and retrogrades jets. The width of the jets,

LJ , in each case can be measured and compared to the Rhines jet width prediction, LRh.
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Figure 3.14: Time averaged zonal flow profiles for (a) 35 RPM (b) 50 RPM and (c) 60 RPM.

Time averages were carried out for the last ten minutes of data. The black dashed line in

each panel shows the velocity that is subtracted from each profile to correct for drift. The

green, blue, and cyan lines then show each corrected zonal flow profile.

The process to measure the width of the jets is as follows: first, the net azimuthal drift

is subtracted from the zonal flow profiles given by the black solid lines in Fig. 3.12. For the

35 RPM case, this amounts to removing the mean drift speed, whereas the 50 RPM and 60

RPM cases require a subtraction of a linear fit of the velocity profile due to asymmetries in

the zonal flow behavior with radius. Fig. 3.14(a,b,c) shows these corrected zonal flows for

each case. Next, we find the radial locations at which the corrected zonal flow profiles cross

zero, not including noise in the signal near the inner and outer boundaries. Subtracting the

jet’s start point from the jet’s point gives the radial length scale of each measured jet, LJ

in terms of the gap width, Γ. We find two jets in the 35 RPM case, five jets in the 50 RPM

case, and six jets in the 60 RPM case, all of varying length scales.

The next step of the process is to calculate the theoretical Rhines scale prediction, LRh

using Eq. 3.68 for each jet, given a velocity scale U and a value of β. The jets are most

accurately represented by their peak velocity. Thus, we choose the scale U ∼ max(u∗φ) within

each jet. This value is shown as purple solid lines in Fig. 3.15 We also use the value of β
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Figure 3.15: The absolute value of the corrected zonal flows for (a) 35 RPM (b) 50 RPM

and (c) 60 RPM. The locations of the start and end points of each jet are given in solid

maroon lines. The start point is subtracted from the end point to give LJ for each jet. In

addition, to calculate LRh, we use the maximum of the corrected velocity within each jet.

This is shown in a purple line.

corresponding to that same location, which are given in Fig. 3.16 with purple solid lines.

These two quantities can be used to compute LRh for each jet.

Fig. 3.17(a,b,c) now give the measured jet width (blue dashed line) and the theoretical

Rhines jet width (black dashed line) for the 35, 50, and 60 RPM cases respectively in terms

of the gap width. The solid points are shown at the locations of the midpoint of each jet. We

can see that LJ ≈ LRh, especially for the 50 and 60 RPM cases near mid-shell. Finally, fig.

3.17(d) gives LJ/LRh for all three cases in green, blue, and cyan. We find good agreement

between the measured jet width and the Rhines scale prediction of the jet width, with the

best agreement for the 50 RPM case (〈LJ/LRh〉 = 1.52). The average ratio for the 35 RPM

case is 〈LJ/LRh〉 = 1.81, and the average ratio for the 60 RPM case is 〈LJ/LRh〉 = 1.93.

The average ratio for all three cases, 1.75, is indicated by the black dashed line. For all cases

and radial locations, LJ/LRh remains fixed near unity, indicating that the jets observed in
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Figure 3.16: The absolute value of topographic-β for (a) 35 RPM (b) 50 RPM and (c) 60

RPM. The locations of the start and end points of each jet are given in solid maroon lines.

To calculate LRh, we use the maximum of the corrected velocity within each jet. This is

shown in a purple line. Then, the value of |β| used to calculate LRh is the value at the same

location of the maximum of the corrected velocity within each jet.

our system follow the Rhines scale.
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Figure 3.17: Measured jet width, LJ (blue dashed line) versus the theoretical Rhines jet

width, LRh using Eq. 3.68 (black dashed line) for (a) 35 RPM (b) 50 RPM and (c) 60 RPM.

The solid points are shown at the locations of the midpoints of each jet. The ratio LJ/LRh

for all three cases is given in (d), where a solid black line shows where the ratios are equal

and the black dashed line gives 〈LJ/LRh〉 averaged over all jets and for all three cases.
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Figure 3.18: Azimuthal UDV velocity data from cases at (a) 35 RPM, (b) 50 RPM, and

(c) 60 RPM. Time is presented in both seconds (bottom axis) and rotations periods (top

axis) from the beginning of the experiment. Pink represents prograde motion while blue is

retrograde motion. In subplot (b), the striping is due to aliasing since the Doppler frequency

surpasses the Nyquist limit. This can be resolved in future experiments by adjusting the

settings on the UDV. (c) only presents data from 0.2 onwards due to the paraboloidal free

surface dipping below the height of the UDV transducers.
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3.4.3 Jet Migration

The latitudinal propagation of zonal jets, also known as jet migration, has been observed in a

variety of geophysical and astrophysical fluid systems or models of these systems. Examples

include Earth’s troposphere and ocean, and the Jovian atmosphere (Riehl et al., 1950;

Williams, 2003; Chan et al., 2007; Smith et al., 2014; Chemke and Kaspi, 2015; Ashkenazy

and Tziperman, 2016). Jet migration has also been observed in our paraboloidal convection

system.

Fig. 3.18(a,b,c) shows Hovmöller diagrams of the azimuthal Doppler velocimetry data

for the 35, 50, and 60 RPM respectively. In all cases, alternating bands of prograde (pink)

and retrograde (blue) jets are observed. However, in the 60 RPM case in particular, several

of the jets meander in the positive Γ direction, which we will quantify in this section. The

mechanisms responsible for jet migration remain an open question, but some possibilities

are eddy momentum flux convergence (Chan et al., 2007; Young et al., 2019), and poleward

bias in baroclinicty (Chemke and Kaspi, 2015).

Another concept was proposed by (Cope, 2021), who carried out a series of two dimensional,

double periodic computational models on a β-plane to investigate the conditions under

which jet migration may occur. Both quasilinear models, in which nonlinear interactions

between certain modes are restricted, and fully nonlinear models were run. Jet migration

was found to occur in models that included nonlinear interactions between low wavenumber

and high wavenumber modes. The underlying dynamical mechanism was proposed to be

these nonlinear interactions that force Rossby wave propagation with a background shear in

latitude (“zonons”). These zonons were further associated with the meandering of the jets.

In the same study, a function for the translation speed of a migration jet, Vmig was found

through empirical analysis. In the analysis it is assumed that

Vmig ∼ F (β, µ, ε, kf , kjet) (3.71)

where µ is a frictional damping rate, ε is an energy dissipation rate, kf is the forcing
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wavenumber, and kjet is the wavenumber that gives the number of jets in the domain. This

relationship is assumed because variations in flow morphologies can be typically attributed

to changes in these parameters. To determine the function, F , that relates measurable

parameters with Vmig, (Cope, 2021) noted that Vmig is related to the jet RMS velocity by

Urms =
√
ε/µ. To find what controls the quantity

√
ε/µ, the zonostrophy index Rβ is

used, which measures the strength of the jet solutions. An equation for Rβ as previously

stated is given by Rβ = LRh/Lβ. where Lβ represents the scale above which β-effects

impact the energy cascade. If ε is the energy dissipation rate, this quantity can be rewritten

as Lβ = (ε/β3)1/5 (Cabanes et al., 2017). The zonostrophy index can then be expressed

differently as

Rβ =
ε1/20β1/10

21/2µ1/4
(3.72)

The value Vmig/
√
ε/µ was then plotted against the zonostrophy index for a series of simulations

with varying numbers of jets, and a Rβ
−5 scaling is found. Using this scaling leads to the

relationship

Vmig ∼
µ3/4ε1/4

β1/2
∼ µLRh. (3.73)

In the Coreaboloid system, a sensible value for the damping rate µ is the inverse of the

Ekman drag timescale such that

µ =
1

τEk
, (3.74)

which gives the following relationship for the jet migration velocity

Vmig ∼
LRh
τEk

. (3.75)

Here, Ekl = ν/(2Ωh2) is the local Ekman number. In the following section, we employ Eq.

3.75 to predict the radial translation of a jet in time, and compare this prediction to Doppler

velocimeter data.
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3.4.3.1 Finding Paraboloidal Vmig and Comparing to Doppler velocimeter data

Staring with Eq. 3.75, some specifications can be made for our paraboloidal system. First,

LRh ∼

√
U

βpara
(3.76)

where βpara is given by Eq. 3.41. Making the substitution leads to an equation for LRh

specific to the paraboloidal geometry

LRh =

√
Ug(h0 + Ω2s2

2g
)

2Ω2s
. (3.77)

Furthermore, τEk is given by Eq. 3.34. In Ek, we use the local fluid layer height given by

Eq. 3.39 such that

τEk = (2Ekl)
−1/2Ω−1 = (2−1/2)

( ν

2Ωh(s)2

)−1/2

Ω−1 = h(s)(νΩ)−1/2. (3.78)

Substituting these quantities into Eq. 3.75 and simplifying yields a relationship for the jet

migration velocity

Vmig =

√√√√ νUg

2Ω2s
(
h0 + Ω2s2

2g

) . (3.79)

This equation gives a method to find how a jet core’s radial position, s varies in time.

However, since the right hand side of Eq. 3.79 also depends on s, it is necessary to integrate

this equation to find the relationship between s and t. In order to find the equation to

integrate, we carry out the following steps. Eq. 3.79 can be rewritten as ds/dt such that

ds

dt
= Vmig =

√√√√ νUg

2Ω2s
(
h0 + Ω2s2

2g

) . (3.80)

Rearranging Eq. 3.80 gives∫
s2

s1

√√√√2Ω2s
(
h0 + Ω2s2

2g

)
νUg

ds =

∫
t2

t1

dt, (3.81)
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where s1, t1 are the initial radial location and point in time of the jet respectively, and s2−s1

is the new radial location after time step t2−t1. We can further simplify Eq. 3.81 by allowing

C = (2Ω2h0)/νUg and D = Ω4/(νUg2) which gives∫ s2

s1

√
Cs+Ds3ds =

∫ t2

t1

dt. (3.82)

The left hand side of Eq. 3.82 cannot be expressed analytically with ease and thus calls for

numerical integration. Before carrying out the numerical integration, we specify a handful

of constants used to calculate C and D. First, we will carry out this integration for two jets

in the 60 RPM case that have the clearest radial migration. By observation of Fig. 3.18(c),

this is (counting all prograde/retrograde jets from the inner boundary) jet numbers three

and number five. We also allow the characteristic velocity, U to be the maximum of the time

averaged, corrected zonal flow for each jet, which can be found from the data shown in Fig.

3.14(c). This gives U = 1.5 cm/s for jet three, and U = 2.3 cm/s for jet five. In addition, h0

can be calculated through Eq. 3.39, which gives 2.06 cm. Finally, s1 gives the initial radial

location of each jet. We choose to begin the integration at t1 = 1900. By using the data

shown in Fig. 3.18(c), we find s1 = 0.331Γ (jet three) and s1 = 0.536Γ (jet five). A

After specifying the values of C and D, we are able to numerically integrate Eq. 3.82.

The steps to carry this out are below.

1. Evaluate the left hand side of Eq. 3.82 with integral bounds s1 + ∆s where ∆s is a

small step size. To do this, we chose to use the Python function scipy.integrate.quad,

which computes the definite integral with specific bounds using quadrature methods.

This gives the time step dt required to advance s1 + ∆s in space.

2. Use the equation ds = Vmigdt to update the spatial step, ∆s.

3. Compute s1 = s1+∆s, and repeat the process until s1+∆s is equal to the approximate

final location of the jet.
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Figure 3.19: Result of integration of the equation derived for jet migration, Vmig given by Eq.

3.82 for the 60 RPM case. (a) jet three and (b) jet five (jet numbers are found by counting

all prograde and retrograde jets starting at the inner boundary). The functions give the

radial movement of the jet core in time, and can be compared to the Doppler velocimetry

data.

At each iteration, values of s and t are saved. Fig. 3.19(a,b) give the results of the integration

for jet three (left panel) and jet five (right panel). According to these functions, each jet

should migrate about 0.15−0.20 of the gap width in about 600−700 seconds. These functions

are also shown as the black solid lines in Fig. 3.18(c). We observe that the lines closely track

the radial movement of the jet core in each case. Appendix D gives the integration script

that carries out these steps for jet three in the 60 RPM case.

This shows that the jet migration is well captured by Eq. 3.79, which is based on a

key physical assumption. Following (Cope, 2021), through which Eq. 3.79 was found, this

migration may be attributed to internal dynamics through nonlinear eddy interactions, rather

than an external symmetry breaking mechanism as previously proposed (such as geometrical

effects due to sphericity or localization of baroclinicity). In addition, upon observation of

Eq. 3.79, we note several other interesting features. First, the speed of the migration

increases as U1/2 implying that stronger jets likely migrate at a faster speed. In addition,
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Figure 3.20: Testing predicted length scales for comparison with the measured lφ. In each

panel, the green line corresponds to the 35 RPM case, the blue line corresponds to the

50 RPM case, and the cyan line corresponds to the 60 RPM case. (a) 2.4Ek1/3h(s), (b)

Ro1/2h(s), (c)Roch(s) and (d) RD.

the jet migration velocity is inversely proportional to the rotation rate Ω which suggests

that rotation dampens such lateral motions. Finally, the geometry of the system does play

a crucial rose in the migration speed which is inversely related to the fluid layer depth. In

a system where dh/ds > 0, such as the paraboloidal geometry studied here, we may expect

slower migration velocities near the outer boundary.

3.4.4 Length Scale Analysis

The connection between length scales observed in the geomagnetic field and the length

scales of core flow remains an open question (Cardin and Olson, 1994; Aurnou et al., 2015;
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Aubert et al., 2017; Guervilly et al., 2019). Comparing the characteristic length scales of

flows found in this study to those found theoretically by leading order force balances could

elucidate which forces and scales are dominant in Earth’s core at low latitudes. As stated,

geophysical flows are often strongly constrained by rotation. By examination of Eq. 3.7, a

dominance of the Coriolis term leads to a balance between pressure and Coriolis,

2Ωẑ × u = − 1

ρ0

∇P. (3.83)

also known as geostrophic balance. Taking the curl of 3.83 we find,

∂u

∂z
= 0, (3.84)

which is known as the Proudman-Taylor theorem. According to Eq. 3.84, we expect that

Coriolis dominated flows will be invariant along the axis of rotation and extend across

the fluid layer in the axial direction. Therefore, we are mainly interested in length scales

perpendicular to the axial direction, which we call “horizontal.”

Flows that depart from geostrophic balance are often called quasigeostrophic (QG), and

different forces in Eq. 3.7 are able to balance Coriolis depending on the system. In this

section, we compare the scale lφ calculated through the thermal IR data in Sec. 3.4.1 to

several different theoretical horizontal length scales, and discuss these implications for core

flow.

3.4.4.1 Coriolis balanced with viscosity

In this section, we consider the case where viscosity is at leading order, along with Coriolis.

In order to find the length scale at which viscosity balance can balance the Coriolis term

in the horizontal direction, we can take the curl of geostrophic balance, Eq. 3.83 with the

addition of the viscous term. This leads to

2Ω
∂u

∂z
∼ ν∇2ω. (3.85)
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where ω =∇×u is the vorticity. Then, the component of Eq. 3.85 in the ẑ-hat direction is

∂uz
∂z
∼ ν

2Ω
∇2ωz (3.86)

where uh denotes a typical horizontal velocity and lh denotes a typical horizontal length

scale. Scaling and solving for lh gives

lh ∼ Ek−1/3L, (3.87)

where L is a characteristic scale. Eq. 3.87 gives a viscous, QG length scale, and has

been shown to be the predicted characteristic length scale of rotating convection at the

onset of convection, where convection first manifests as elongated, columnar structures

(Chandrasekhar, 1961).

Furthermore, in the rapidly rotating limit where Ek → 0, linear stability analysis shows

that

lh = 2.4Ek1/3L, (3.88)

for plane layer geometries (Chandrasekhar, 1961; Julien and Knobloch, 1998). Similar

scalings have been observed in a number of studies of rotating convection in various geometries,

including spherical systems (Busse, 1976; Zhang and Schubert, 2000; Dormy et al., 2004).

Fig. 3.20(a) shows this scaling, 2.4Ek1/3h(s) where we use the height of the fluid layer as

the characteristic length scale, L for the 35, 50, and 60 RPM cases (green, blue, cyan). We

find that the greatest percentage in increase of predicted horizontal length scale, lh, occurs

for the 60 RPM case. The third column of Table 3.3 then gives 2.4Ek1/3h(s)|Γ=0.5. We

choose Γ = 0.5 because lφ was measured at that radial location. When comparing lφ to

2.4Ek1/3h(s)|Γ=0.5, we find that the theoretical prediction according to this balance between

viscosity and Coriolis yields a predicted scale about a factor of ten smaller than the measured

value. Thus, the thermal structures are likely not controlled by viscosity and we continue to

seek additional scaling that may explain the measured horizontal length scales.
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3.4.4.2 Coriolis balanced with inertia

Instead if it is inertia that balances Coriolis we find

2Ω
∂u

∂z
∼ u ·∇ω. (3.89)

Eq. 3.89 can be scaled to give
2ΩU

L
∼ U2

l2h
, (3.90)

which can be rearranged to give,

lh
L
∼
( U

2ΩL

)1/2

∼ Ro1/2. (3.91)

Solving for lh gives

lh ∼ Ro1/2L. (3.92)

Note that this scaling depends on an output parameter, the velocity scale U . We can

formulate the velocity scale U in terms of control parameters by using the free fall velocity

that arises from balancing inertia with centrifugal buoyancy (given in Eq 3.9). Using this in

the Rossby number gives a parameter known as the convective Rossby number

Roc =

√
α∆T⊥Ω2(Ro −Ri)2

2Ω(Ro −Ri)
=

√
α∆T⊥

2
. (3.93)

In the rapidly rotating limit (Guervilly et al., 2019; Aurnou et al., 2020)

Ro1/2 ∼ Roc. (3.94)

Therefore we will also calculate

lh ∼ RocL, (3.95)

to characterize the length scale that comes from a balance between Coriolis and inertia.

Fig. 3.20(b) shows Eq. 3.92 where we use the height of the fluid layer as the characteristic

length scale, L and the maximum value of uφ for each case as the characteristic velocity scale.

These values are given in Table . Similar to Fig. 3.20(a), the predicted length scale increases
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with radial position, though the curves for the various rotation rates do not intersect. The

fourth column of Table 3.3 then gives Ro1/2h(s)|Γ=0.5. Comparing lφ to Ro1/2h(s)|Γ=0.5 shows

that the theoretical prediction according to this balance between inertia and Coriolis again

gives a predicted scale about a factor of ten smaller than the measured value. We can also

test the length scales predicted by Eq. 3.95.

Fig. 3.20(c) shows Eq. 3.95, where we use the height of the fluid layer as the characteristic

length scale, L. The predicted length scales for the three cases are nearly equivalent and cross

near the mid shell. This is verified through Table 3.3, where Roch(s)|Γ=0.5 varies between

0.217 and 0.233 cm. These values are also an order of magnitude less than lφ. We also observe

that lφ decreases with increasing rotation rate, which is not reflected in Roch(s)|Γ=0.5. Thus,

the thermal structures are likely not controlled by inertia. We continue to seek additional

scaling that may explain the measured horizontal length scales.

3.4.4.3 The Rossby Deformation Radius

The flows in this system are baroclinic, and may be governed by BCI as discussed in Sec.

3.1.2. Therefore, the dominant horizontal length scale that manifests may not be those

discussed previously in this section, but rather the Rossby deformation radius, RD (Chelton

et al., 1998; Smith et al., 2014; Nurser and Bacon, 2014). To calculate the RD, we use Eq.

3.31 with L = h and note that the Brunt-Väisälä frequency, N , has contributions form both

lab gravitational acceleration and centrifugal acceleration where,

N = Nlab +Ncent. (3.96)

We can express the lab gravitational acceleration as

Nlab =

√
− g

ρ0

∂p

∂z
. (3.97)

where p is the dynamic pressure. To simplify Eq. 3.99, we apply the Boussinesq approximation

where ρ = ρ0(1 − α∆T‖) where ρ0 is the background density. We also assume hydrostatic
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balance, and dynamic pressure gradients are then related to the temperature by

∂p

∂z
= α∆T‖g. (3.98)

Substituting Eq. 3.98 into Eq. 3.99 gives

Nlab =

√
αg∆T‖
h

. (3.99)

where the vertical gradient has been scaled by h. The same can be carried out for the

centrifugal acceleration,

Ncent =

√
−Ω2s

ρ0

∂p

∂s
, (3.100)

where the dynamic pressure is related to the temperature by

∂p

∂s
= ρ0α∆T⊥Ω2s. (3.101)

After substitution of Eq. 3.101 into Eq. 3.102, we find

Ncent =

√
αΩ2s∆T⊥
(Ro −Ri)

, (3.102)

where the radial gradient has been scaled by Ro − Ri. Finally, inserting Eq. 3.99 and Eq.

3.102 into Eq. 3.96 gives

RD =
(Nlab +Ncent)h

2Ω
=

√
αh2

4Ω2

(g∆T‖
h

+
Ω2s∆T⊥

(Ro −Ri)

)
. (3.103)

Eq. 3.103 gives the Rossby deformation radius for a system with both lab and centrifugal

acceleration. Fig. 3.20(d) shows the RDl as a function of fluid layer height, h for each

case. At a given radial location, the Rossby deformation radius decreases with rotation

rate. Column six of Table 3.3 gives 〈RD〉s, and when comparing to lφ, we again predict that

structures should be about an order of magnitude finer in scale.

Thus far, it is unclear which physical mechanisms sets the horizontal scale of the structures.

Future iterations of this project will improve length scale measurements and explore additional

avenues to explain the trends observed in the data.
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Table 3.3: Comparing the measured horizontal length scale, lφ, to theoretical predictions.

All length scales are in centimeters.

Ω (RPM) lφ l = 2.4Ek1/3h(s)|Γ=0.5 l = Ro1/2h(s)|Γ=0.5 l = Roch(s)|Γ=0.5 〈RD〉s

35 5.32 0.464 0.813 0.217 0.81

50 3.70 0.375 0.585 0.233 0.61

60 2.13 0.328 0.318 0.217 0.38

3.4.4.4 Stewartson Boundary Layers

Fluid systems often include boundary layers, which are relatively sharp hydrodynamic,

thermal, or magnetic gradients that exist to satisfy a given set of boundary conditions.

For example, no-slip conditions due to a solid surface top and bottom surfaces generally

result in steep gradients in the velocity field whose thickness scales as

δν ∼ Re−1/2L, (3.104)

where δν is known as the viscous boundary layer. As the strength of inertia grows relative

to viscosity, the thickness of the viscous boundary layer decreases. For turbulent flows, the

narrow width of viscous boundary layers can be challenging to resolve both numerically and

in the laboratory.

In our system, we are able to capture a different type of boundary layer, known Stewartson

boundary layers which arise in rotating flows with rigid sidewalls (Stewartson, 1957; Friedlander,

1980; Kunnen et al., 2013; Vogt et al., 2021). The thickness of one of these layers is given by

λs = Ek1/4L. (3.105)

Within this shear layer, there is a secondary circulation unique from the bulk in which there

is a change in angular velocity. In our device, we are able to resolve the Stewartson layers

near the outer boundary by measuring the azimuthal velocity with the Doppler velocimeter.
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Figure 3.21: Time averaged zonal flow profiles, where the black dashed line corresponds to

the location of the Stewartson boundary layer given the relationship λs = (Ek)1/4H, where

H is the fluid layer height at the outer boundary. The panels correspond to the rotation

rates where (a) 35 RPM, (b) 50 RPM, and (c) 60 RPM.

Fig. 3.21(a,b,c) give the time averaged zonal flow profiles for the 35, 50, and 60 RPM cases

respectively. We choose the fluid layer height at the outer boundary, H, as the characteristic

length scale because we are measuring the Stewartson layer thickness at this outer wall. The

black dashed line in each panel demarcates this value λs = Ek1/4H. Fig. 3.21(a) (35 RPM)

shows an increase in the zonal flow at λs relative to the retrograde jet. Fig. 3.21(b) (50

RPM) shows a peak in the zonal flow after the last prograde jet at λs. And Fig. 3.21(c) (60

RPM) also shows a peak in the zonal flow at λs after the last retrograde jet. Thus, in all

cases we find a distinct shift in the zonal flow velocity at the predicted Stewartson boundary

layer thickness demonstrating good qualitative agreement with this theoretical value.

3.4.5 Groundwork for Future Computational Models

Concurrence between experiments and direct numerical simulations (DNS) can offer a broad

understanding of the dynamics that may not be realized with one method independent of the

other. Fully three-dimensional DNS calculations of core flow are computationally expensive,

owing to the range of length scales needed to resolve the thin Ekman boundary layers up
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to domain-scale structures. To this end, we began developing a quasi-geostrophic (QG),

paraboloidal thermal convection model based on the spherical shell models of Calkins et al.

(2012b) and Calkins et al. (2012a). This section serves to lay the groundwork for possible

future paraboloidal, QG models.

3.4.5.1 Overview of Spherical Shell Quasigeostrophic Convection Models

QG theory is formally derived as an asymptotic limit of the governing equations where the

Rossby number approaches zero (Vallis, 2006; McWilliams, 2006). In this limit, the Coriolis

force is leading order and balanced only by pressure gradients, giving vertically constrained

(columnar) flow. Following this, the physical idea of the QG convection model in a deep

fluid layer with sloping boundaries is to account for stretching and compression of columns

as they move radially, inducing local vorticity and generating topographic Rossby waves (see

Sec. 3.4.1). It is therefore only rigorously valid when β is small (Busse, 1970).

Fig. 3.22, adapted from Aubert et al. (2003) gives a schematic of a QG spherical shell

convection model, where the fluid motions are solved only in the equatorial plane (yellow)

while accounting for the interactions of convection columns with the sloping boundaries of

the domain (blue). And despite limitations to the strength of buoyancy relative to rotation in

this framework, comparison between QG DNS and laboratory experiments of convection in

a spherical shell have shown good agreement (Aubert et al., 2003; Dormy et al., 2004; Gillet

et al., 2007). Furthermore, QG models are limited in that they cannot fully capture heat

flow within a spherical shell. To this end, Busse (1970) and Glatzmaier and Olson (1993)

have demonstrated that the cylindrical component of buoyancy is the dominant driver of

convection in the region outside of the tangent cylinder parallel to the equatorial plane.

Therefore, the QG model is a valuable tool that can be used to simulate convection in

Earth’s core, while being computationally tractable.

Next, we discuss the governing equations and numerical methods of the spherical shell

quasigeostrophic convection by Calkins et al. (2012b), which we will adapt for a paraboloidal
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Figure 3.22: Figure adapted from (Aubert et al., 2003). Schematic depicting the spherical

shell quasi-geostrophic convection model, which uses a cylinder coordinate system. In this

model, the fluid motions are solved in the equatorial plane (yellow), but account for the

stretching and compression of axial convection columns (blue). The model does not solve

for motion inside the tangent cylinder (grey).
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geometry. This model employs a vorticity-streamfunction method to capture the fluid

behaviour in a slice parallel to the equatorial plane. Gravity is linearly dependent on

the cylindrical radius g = −gŝ, and the conductive temperature profile is given by Tc =

ln(s/so)/ln(Ri/so) where so is the nondimensional outermost (cylindrical) radius, Ri is the

radius of the inner boundary, and Ro is the radius of the outer (spherical) boundary. The

nondimensional scales are, a length scale of d = Ro − Ri and thermal diffusion time scale

of τκ = d2/κ. The QG Boussinesq governing equations for vorticity (ω), the streamfunction

(ψ), velocity (us, uφ, uz), and thermal energy are (Calkins et al., 2012b; Schaeffer and Cardin,

2005)
1

Pr

(∂ω
∂t

+ us
∂ω

∂s
+
uφ
s

∂ω

∂φ

)
=

2

Ek

∂uz
∂z
−Ra∂T

∂φ
+∇2ω, (3.106)

∇2ψ = −ω, (3.107)

us =
1

s

∂ψ

∂φ
, uφ =

−∂ψ
∂s

, (3.108)

and (∂T
∂t

+ us
∂T

∂s
+
uφ
s

∂T

∂φ

)
= −us

∂T

∂φ
+∇2T. (3.109)

The control parameters are the Rayleigh number (Ra), the Prandtl number (Pr), and the

Ekman number (Ek) as previously defined. The boundary conditions are no slip at s = Ri

and s = Ro, leading to
∂ψ

∂s
(Ri, φ) =

∂ψ

∂s
(so, φ) = 0. (3.110)

Equation 3.110 can be reformulated in terms of Dirichlet boundary conditions by considering

the volumetric flow rate per axial depth (Calkins et al., 2012b; Peyret, 2002)

ψ(Ri, φ)− ψ(so, φ) = −
∫ so

Ri

〈uφ〉ds, (3.111)

where 〈〉 denotes an azimuthal average. For simplicity, we set ψ(Ri, φ) = 0 and have

ψ(so, φ) =

∫ so

Ri

〈uφ〉ds, (3.112)
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as a boundary condition on the streamfunction. To calculate 〈uφ〉, we take the φ component

of the momentum equation and average over φ, obtaining (Calkins et al., 2012b; Peyret,

2002) ( 1

Pr

)(∂〈uφ〉
∂t

+ us
∂〈uφ〉
∂s

+
〈uφus

s

〉)
= − 2

Ek
〈us〉+∇2〈uφ〉 −

〈uφ〉
s2

. (3.113)

We begin the numerical portion of this study by validating the QG spherical shell thermal

convection code originally developed by M. Calkins. To do this, we perform four fully

nonlinear simulations, and compare to Calkins et al. (2012b). We calculate the time-averaged

Nusselt number, time-averaged convective Reynolds number, and time-averaged zonal Reynolds

number. For all of the cases, Pr is fixed at 0.025. Table 3.4 gives the results of the

comparison.

Ek Ra/Rac NuAA NuMC Rec(AA) Rec(MC) Rez(AA) Rez(MC)

10−5 2 1.04 1.04 252 253 187 183

10−5 4 1.93 1.96 2140 2200 2850 2900

10−5 8 2.10 2.20 2600 2710 2715 2710

10−6 2 1.09 1.09 709 722 622 635

Table 3.4: Results from the QG spherical shell thermal convection model used in this study

(AA), and those from M. Calkins (MC) (Calkins et al., 2012b), where we give Ekman

number (Ek), the Rayleigh number relative to the critical Rayleigh number (Ra/Rac), the

time-averaged Nusselt number (Nu), time-averaged convective Reynolds number (Rec), and

time-averaged zonal Reynolds number (Rez). The maximum percent error for any given

parameter was ≈ 3%.

3.4.5.2 Paraboloidal Modifications

Here we give the essential modifications required to modify the QG spherical shell system

to that of a QG paraboloid. This system has yet to be benchmarked, has not yet been
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peer-reviewed, and only serves as a theoretical guide for future studies.

In the QG system, us and uφ are independent of z, implying that uz is linear in z. We

can integrate uz with respect to z, leading to

∂uz
∂z

=
uz,T − uz,B

h
. (3.114)

The flat, solid bottom boundary has a no-slip condition, requiring that uz,b = 0. It remains

to find uz,T . The first contribution to this velocity is from the non-penetration boundary

condition at the top curved outer boundary, quantified by the topographic-β effect (Schaeffer

and Cardin, 2005). The second contribution comes from ‘Ekman pumping,’ which is a

secondary circulation owing to viscous coupling between the fluid and rotating solid bottom

boundary. A geometry-independent, asymptotic expression in the limit of Ek → 0 exists for

Ekman pumping (Greenspan, 1968). Thus, a general form of the stretching of axial vorticity

becomes, (Schaeffer and Cardin, 2005).

∂uz
∂z

= Ek1/2P (us, uφ, r) + βus, (3.115)

where P (us, uφ, r) comes from Ekman pumping, and the second term on the right hand side

is a result of the no-penetration condition. We start by deriving β for the paraboloid. The

free-surface height of the fluid layer in dimensional form is given by

h(s) = h0 +
Ω2s2

2g
. (3.116)

We nondimensionalize Eq. 3.118 by radial gap width R = Ro −Ri

h(s)

(Ro −Ri)
=

h0

(Ro −Ri)
+

Ω2s2

2g(Ro −Ri)
. (3.117)

Noting that s = (Ro −Ri)s
∗ and substituting, we have

h(s)

(Ro −Ri)
=

h0

(Ro −Ri)
+

Ω2s∗2(Ro −Ri)
2

2g(Ro −Ri)
, (3.118)

yielding the nondimensional form

h∗(s) = h∗0 +
Ω2s∗2(Ro −Ri)

2g
, (3.119)
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where h∗0 = h0/(Ro−Ri) is the nondimensional height of the fluid at s = 0 and is controlled

by the volume of fluid in a given tank. Recalling the Froude number,

Fr =
Ω2(Ro −Ri)

g
, (3.120)

we can rewrite Eq. 3.119 as

h∗(s) = h∗0 +
Fr s∗2

2
. (3.121)

Thus the nondimensional topographic-β effect becomes

dh∗

ds∗
= s∗(Fr). (3.122)

Thus, the stretching of vorticity term can be written as

∂uz
∂z

= Ek1/2P (us, uφ, r) +

(
Fr

h∗0 + (Fr)s∗2

2

)
s∗us. (3.123)

Next, we find the Ekman pumping term for our geometry, which is simpler than the spherical

shell. This is because the top boundary, a free-surface, will not contribute to the Ekman

pumping. However, the flat solid bottom boundary will, and the stretching of vorticity is

then described by (dropping the asteriks that denote nondimensional quantities) (Greenspan,

1968; Schaeffer and Cardin, 2005):

∂uz
∂z

= −E
1/2

2h
(ω) +

(
Fr

h0 + (Fr)s2

2

)
s us. (3.124)

Eq. 3.113 includes an additional contribution: the azimuthally averaged radial velocity, a

consequence of topographic curvature and circulation in the Ekman layer (Calkins et al.,

2012b). This term, proportional to 〈us〉 is geometry-dependent and we can derive it by

invoking azimuthally averaged mass conservation

1

s

(∂〈sus〉
∂s

)
= −

(∂〈uz〉
∂z

)
, (3.125)

We can calculate the right hand side of Eq. 3.125 by azimuthally averaging Eq. 3.124

(dropping the asterisks (*) that denote nondimensional numbers)

1

s

(∂〈sus〉
∂s

)
= −s(Fr)

(
1

h(s)

)
〈us〉+

E1/2

2h(s)
(〈ω〉). (3.126)
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Noting that

〈ω〉 =
1

s

∂

∂s

(
s〈uφ〉

)
, (3.127)

we can rewrite Eq. 3.126 as

1

s

(∂〈sus〉
∂s

)
= −s(Fr)

(
1

h(s)

)
〈us〉+

E1/2

2h(s)

(1

s

∂

∂s
(s〈uφ〉)

)
. (3.128)

Applying the product rule to expand the only term on the left hand side the and the second

term on the right hand side of Eq. 3.128 gives

∂〈us〉
∂s

+
〈us〉
s

= −s(Fr)

(
1

h(s)

)
〈us〉+

E1/2

2h(s)

((∂〈uφ〉
∂s

)
+
〈uφ〉
s

)
. (3.129)

Grouping terms together,

∂〈us〉
∂s

=
(−s(Fr)

h(s)
− 1

s

)
〈us〉+

E1/2

2h(s)

((∂〈uφ〉
∂s

)
+
〈uφ〉
s

)
, (3.130)

where the first term on the right hand side represents the radial velocity induced by the

topographic-β effect, and the remainder constitute those effects from the Ekman layer at

the bottom boundary. Eq. 3.124 and Eq. 3.130 summarize the modifications made to

simulate convection in a QG paraboloidal free-surface with a flat bottom boundary, rather

than spherical shell.

Possibilities for future work include benchmarking the steps laid out here by comparing

to linear theory, and using the QG paraboloid in conjunction with the Coreaboloid to learn

more about low latitude core dynamics.

3.5 Discussion

Earth’s magnetic field is generated and sustained by fluid motions in the liquid iron outer

core, in a process known as dynamo action. Modeling the fluid motions underlying the

geodynamo is challenging both computationally and experimentally owing to the separation

of scales required to resolve core-style convective turbulence. To this end, we have developed
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a novel laboratory device with a curved paraboloidal free surface and laterally driven convection

to understand the hydrodynamic base flow responsible for the geodynamo. The laboratory

device, which we call “the Coreaboloid” (Core + Paraboloid) uses rotation and a radial

temperature gradient induced by a cold source at the inner boundary to drive centrifugal

buoyancy and baroclinic instability, which could both be drivers of turbulence. We collect

UDV velocity profiles, novel surface thermography, and basal thermometry for diagnostics.

A particularly important feature of this device is the curved paraboloidal free surface,

quantified by the topographic β-effect. We show that the topographic β-effect from our

paraboloidal geometry is a useful proxy to model the curved boundary of a spherical shell.

In addition, we demonstrate that the heat flux decay through the paraboloidal system is

also similar to that of a spherical shell. These two comparisons allow us to extrapolate our

paraboloidal findings to understand core flow at first order.

We use our novel Coreaboloid device with a curved paraboloidal free surface and laterally

driven convection and baroclinic instability to obtain several interesting flow features by

running three cases at 35, 50, and 60 RPM. First, an analysis of thermal anomalies in azimuth

over time for the 50 and 60 RPM cases yields a phase speed similar to the theoretical Rossby

wave propagation speed, demonstrating that Rossby waves from the β-effect are generated

in this system. This analysis also shows that the novel thermal imaging system used in this

study can be used to describe the flow field.

Second, in all cases we find a series of alternating prograde-retrograde jets after averaging

the UDV azimuthal velocity over ten minutes of data. The width of the jets closely follows

the Rhines scaling prediction. This shows that we likely have an inverse cascade of energy

halted by the β-effect. Moreover, in the 60 RPM case, we find a migration of the jets

that can be predicted by a theoretical migration speed. The theoretical migration speed is

parameterized based on the results of (Cope, 2021) using the Ekman drag timescale and the

Rhines scale jet width. This leads to a differential equation that can be integrated for the

radial position of a jet core as a function of radius and time. We numerically integrate this
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function, and show that the jet core trajectory closely matches the migration of jet cores in

the 60 RPM case. Jet migration has been shown to result from nonlinear eddy interactions

(Cope, 2021), which likely contributes to the phenomena observed here.

Furthermore, we carry out a broader analysis of the azimuthal length scales measured

in each case by comparing these values to various, theoretical predicted scales such as the

Rossby deformation radius. Though we do not find good agreement between the scales

measured here and those predicted by theory, this remains an open question for future

studies. We do however find that anomalies in the measured jet profiles near the outer

boundary occur at a radial location that matches a theoretical boundary layer thickness

known as the Stewartson layer.

Finally, we are currently edited a model of QG thermal convection in a spherical shell

to include a paraboloidal free-surface geometry. First results indicate convective structures

that are sheared in the retrograde direction, and a zonal flow profile that is qualitatively

similar to previous spherical shell results. However, more work must be done to benchmark

the QG paraboloid before comparisons to the Coreaboloid are made, though the derivations

made here lay the theoretical groundwork for future QG paraboloid models. This device is

unique in its ability to generate a large β-effect and in its use of lateral convection to drive

turbulence. Given the dependence of the topographic β-effect on rotation rate, the system

is also flexible, capable of testing wide ranges of β without modifications. Additionally, the

use of an infrared thermographic camera to map temperature fields to flow fields has not

been done previously, to our knowledge.

The device could be further improved by introducing active heating and cooling elements

at the inner and outer boundaries, allowing for steadier forcing and longer experiment times.

Additionally, introducing a transparent lid above the paraboloidal surface would reduce the

impacts of air drag and outside temperature variations. Finally, developing a computational

system that can map the thermal field quantitatively to a velocity field would allow us to

study the dynamics of the system through an analysis of the surface temperature field.

134



Appendix C

Fitting Jet Migration Data

As discussed in Section 3.4.3, the jets in the 60 RPM case meander in Γ, also known as

jet migration. Though we are able to closely model the jet migration speed Vmig using

the theoretical relationship derived from (Cope, 2021), we carry out additional methods to

analyze this behavior. One such method involves carrying out a linear fit to the azimuthal

Doppler velocity data in time. To do this, first isolate the azimuthal velocity data of a

particular jet by masking out data not within that jet. The analysis here is for jet three

in the 60 RPM case (see Fig. 3.18(c)). We also neglect data where t < 1900s, as the jet

signature is anomalous before this range. Then, we track the location of the “jet core” in

time and radius. We define the location of the jet core as the location of the maximum

azimuthal velocity where

score = s|uφ=max(uφ). (C.1)

Figure C.1: A sixth order polynomial fit to the azimuthal Doppler velocity data at

t = 2061.286s used to track the radial location of the jet core in time.
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Figure C.2: (a) Location of score versus time, calculated by finding the location of maximum

of the sixth-order polynomial fit using uφ. We use a linear fit on score(t), and the slope is

Vmig. (b) Vmig overlaid on the Hovmöller for the 60 RPM case.

Due to noise in the Doppler data, we find that tracking max(uφ) yield anomalies in the

location of the jet core. To mitigate this, we carry out a sixth-order polynomial fit of

uφ versus Γ at each point in time. Fig. C.1 shows an example of this polynomial fit at

t = 2061.286s. We take the maximum of the best fit to this function, which minimizes the

risk of using noise in the data as the maximum of the velocity signal, and thus the location

of the jet core. Fig. C.2(a) shows score as a result of this method versus time. We carry out

a linear fit of score(t), and obtain a jet migration speed Vmig.

Fig. C.2(b) shows Vmig = 1.11×10−4Γ/s overlaid on the Hovmöller for the 60 RPM case.

The value calculated from this process slightly underestimates that jet migration speed, and

could be improved by refining the methods used to remove noise in the data.
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CHAPTER 4

Conclusion

Zonal flows or “jets” are important features found in an array of geophysical and astrophysical

fluid layers. They are the most visually dominant structures observed at the surfaces of

the Gas Giant planets, Jupiter and Saturn. They are also responsible for mechanisms

such as the transportation of warm and cool air in atmospheres, which can drive complex

weather patterns. In addition, they could play an important role in the generation of Earth’s

magnetic field through the Ω-effect, in which zonal flows provide large-scale shears to convert

components of poloidal fields into toroidal fields. I have carried out a series of numerical

simulations and theoretical analyses to contribute to our understanding of zonal flows in

these systems. Broadly, my results give important insight into the damping and formation

of jets. First, we find that the inertia of the jets dictates the strength of an external magnetic

field required to damp them. In addition, nonlinear interactions through the inertial term

can result in an inverse transfer of energy upscale and manifest as a series of alternating

prograde-retrograde jets, some of which migrate laterally. Furthermore, a change in axial

fluid layer height with depth can generate Rossby waves and set the observed length scale

of these jets.

Specifically, in Chapter 2 we investigate the fundamental process of magnetic damping

on convectively driven large-scale jets using a reduced, quasi two dimensional numerical

model with an imposed vertical magnetic field. We use this reduced model as a proxy

to gain insight into how the jets observed at the surface of Jupiter and Saturn may be

slowed with electromagnetic braking as their electrical conductivity increases radially with
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depth. Thus, we explore how the increasing importance of magnetohydrodynamic processes

with depth may damp the hydrodynamic zonal winds observed at the surface. We begin

by demonstrating how strong planetary rotation relative to other forces suggests that the

flow may be approximately invariant along the axis of rotation. This allows us to use a

massively simplified quasi two-dimensional Cartesian box to model a slice of the Jovian

atmosphere parallel to the equatorial plane. We then present the general framework for

understanding MHD flows under the presence of a strong, uniform magnetic field, which

includes a demonstration of the equivalence of the potential and induction formulations to

simplify the Lorentz force.

After introducing the governing equations and numerical method for our quasi two

dimensional magnetoconvection system, we briefly discuss marginal stability analysis and

its implications for the critical Rayleigh number Rac and the critical length scale lc. We

use this system to carry out a suite of about 60 numerical simulations in a parameter space

where Ra and Ch are both varied by several orders of magnitude. In this parameter space,

we quantitively define five different regimes that are similar to those found in various studies

of magnetoconvection (Yan et al., 2019; Zürner, 2020) and rotating convection (Nieves et al.,

2014; Stellmach et al., 2014; Horn and Aurnou, 2018; Kunnen, 2021; Madonia et al., 2021).

These regimes are (i) steady convection rolls, (ii) steady magneto-columns, (iii) unsteady

to turbulent magneto-plumes, (iv) horizontally drifting magneto-plumes, and (v) jets with

intermittent turbulent convective bursts. We discuss the momentum and heat transport

properties of each regime, before measuring their characteristic length scales and velocity

scales. We then use the length and velocity scalings found in each regime to construct three

different interaction parameter-based regime transition lines that can be used to distinguish

one regime from the next.

It is the transition to the jet dominated regime has the most immediate applications

to the magnetic damping of Jovian jet flows. We find that the separation between jets

and a magnetically constrained system occurs at a jet-based interaction parameter value
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NJ ≈ 1. To apply our results to a Jovian system, we estimate two different interaction

parameters based on the magneto-thermal wind equation, which is simplified by noting that

radially increasing electrical conductivity has a leading order impact on the dynamics. One

interaction parameter N is given by the ratio of the advection of vorticity term to the Lorentz

torque. The next, NΩ is given by the ratio of the Coriolis term to the Lorentz torque. After

calculating N,NΩ we find that the Lorentz torque can only overcome the inertial terms at a

truncation depth of dT ≈ 6000 km. This is deeper than recent gravity harmonics data from

the Juno mission suggests. Based on our quasi two dimensional results, we conclude that

the Lorentz force alone likely cannot brake the jets on Jupiter, and additional mechanisms,

such as a stably stratified density layer, are needed to fully truncate them Liu et al. (2008);

Heimpel and Aurnou (2012); Cao and Stevenson (2017); Christensen et al. (2020); Gastine

and Wicht (2021).

The code used to carry out the project in Chapter 2 was written as a portion of this

thesis work primarily following Glatzmaier (2014). In the remaining portion of Chapter 2, I

discuss further details of the code including the spatial and temporal discretization schemes.

At each step of the development process, the solver was benchmarked to known results

including RBC and MC linear theory, and fully nonlinear RBC and MC studies. Finally,

Appendix E gives an abbreviated version of the Fortran code in which we present the main

time integration loop.

In Chapter 3, we focus on an alternative open question regarding jets in planetary

fluid systems: the processes that control their generation and sets their length scale. In

particular, we use a novel laboratory-numerical set up that includes both strong buoyancy

forces to drive inertial flows, and strong boundary curvature to explore the formation jets

flow. Our system is a proxy to understand the process through which Earth’s magnetic

field is generated through fluid motions in the liquid outer core at low latitudes. Turbulence

in the laboratory device is driven through centrifugal buoyancy and baroclinic instability,

both of which manifest in structures with different characteristic length scales. Further,
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the turbulence here is constrained by the device’s strong background rotation. Rotationally

constrained turbulence has been shown to mimic two-dimensional turbulence. However,

deviations from geostrophy occur in nearly all geophysical systems. One such phenomenon

that anistropizes the nearly axially invariant flow and thus halts the inverse energy cascade

is the topographic-β effect. For a deep spherical shell, such as the outer core, β →∞ at the

equator, and thus likely has leading order effects on the dynamics.

Next, we discuss the experimental set up, which features a paraboloidal free surface and

cylindrically radial temperature gradient. The device was built and the cases were run by

previous UCLA student Taylor Lonner, without whom this project would not be possible.

Diagnostics are collected through UDV velocity profiles, novel surface thermography, and

basal thermometry. We demonstrate that this novel paraboloidal set-up approximates the

topographic β and heat flux profiles in a sphere, thus provides a meaningful proxy to study

low-latitude core convection.

We present three rotating convection cases in the paraboloidal device at 35, 50, and

60 RPM where UDV velocity profiles, surface thermography, and basal thermometry are

collected. Given the combination of and a topographic β-effect, we expect to see several jets

in the system following the characteristic Rhines scale wavenumber where the inverse cascade

of energy is halted through Rossby wave propagation. We find that Rossby waves are excited

in our system by analyzing the surface thermal anomaly data in φ, t at gap location Γ = 0.5.

The azimuthal wavenumber, k, is first measured by taking an FFT of the thermal anomaly,

and used along with β|Γ=0.5 in the dispersion relationship to predict the Rossby wave speed.

The Rossby wave speed is compared to the slope of the thermal structures in φ, t. We find

good agreement between the theoretical speed and those measured in the device.

The Rossby waves excited here likely drive the alternating prograde-retrograde jets

observed in each case at 35, 50, and 60 RPM. We analyze the jet width of these structures and

compare them to the predicted Rhines scale, which is controlled by the β-effect. The process

to measure the width of the jets is as follows: first, the net azimuthal drift is subtracted
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from the zonal flow profiles. For the 35 RPM case, this amounts to removing the mean drift

speed, whereas the 50 RPM and 60 RPM cases require a subtraction of a linear fit of the

velocity profile due to asymmetries in the zonal flow behavior with radius. Next, we find

the radial locations at which the corrected zonal flow profiles cross zero. The measured jet

width is given by the difference in radius of these zero crossings. This jet width is compared

to the Rhines scale prediction, and for all cases and radial locations the ratio remains fixed

near unity, indicating that the jets observed in our system indeed follow the Rhines scale.

In the 60 RPM case, several of the jets meander in Γ, which is known as jet migration.

Jet migration has been found to occur typically in models that included the full nonlinear

interactions between small scale eddies. We build upon the work of Cope (2021) who

found a theoretical jet migration speed, Vmig, that depends on the Rhines scale and a

drag timescale. We use this relationship to derive an paraboloidal estimate for Vmig, and

integrate the resulting equation numerically to find the radial translation of the jet core in

time. Overlaying this curve on plots of uφ(Γ, t) demonstrates good agreement between our

relationship for Vmig and the observed migration speed. This shows that the jet migration

may be driven by nonlinear interactions between small scale eddies, and is controlled by the

Rhines scale and the Ekman drag timescale.

Next, we seek to find the mechanism that controls the horizontal (relative to the axial

direction) scale of the flow, lφ. We derive several theoretical relationships for this scale based

on leading order force balances. We also consider the Rossby deformation scale, which is the

size of the structures resulting from baroclinic instability. After comparing these theoretical

scales to lφ measured through the FFT of the thermal anomaly data, it is remains unclear

which physical mechanism may be setting the length scale of the observed structures. Thus,

this is still an open question.

Finally we discuss the numerical portion of this study, in which we modify the quasi

geostrophic (QG) spherical shell model developed by Calkins et al. (2012b) to include a

paraboloidal geometry. The first step of this process is to re-run the spherical shell model
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and benchmark the results to previous QG spherical shell studies. After doing this, we

present the analytical framework for modifying the Ekman pumping and vortex stretching

terms for a paraboloidal system. We carry out a test case of paraboloidal QG code, and

find convective structures sheared in the retrograde direction, we is expected for a system in

which dh/ds > 0. We find one strong prograde jet near the inner boundary, and a weaker jet

near the outer boundary. However, further steps to benchmark the paraboloidal QG code

to ensure its efficacy were not carried out, and these steps should be taken in the future

before additional analysis is done. This part of our study lays the groundwork for future

paraboloidal QG models.

The work presented in this thesis advances our understanding of how zonal flows in

planetary fluid systems form, evolve, and decay. Future work could include accounting for a

spatially varying electrical conductivity and characterizing its impact of the electromagnetic

damping discussed in Chapter 2. Or, more complex paraboloidal models could be coupled to

the laboratory device discussed in Chapter 3. There are many open questions that remain

about planetary scale zonal flows.
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Appendix D

Jet Migration Integration Script

This section gives the code used to find the jet migration velocity discussed in Sec. 3.4.3.

#!/ usr / b in /env python3

# −∗− coding : u t f −8 −∗−

”””

Created on Thu Jan 13 10 :46 :57 2022

@author : ashnaaggarwal

”””

import matp lo t l i b

import matp lo t l i b . pyplot as p l t

import numpy as np

import s c ipy . i n t e g r a t e as i n t e g r a t e

import s c ipy . s p e c i a l as s p e c i a l

from s c ipy . i n t e g r a t e import quad

p l t . rcParams . update ({ ’ f on t . s i z e ’ : 30})

cbformat = matp lo t l i b . t i c k e r . Sca larFormatter ( ) # crea t e the format t e r

cbformat . s e t p owe r l im i t s ((−2 ,2) )

p l t . rcParams [ ” font . f ami ly ” ] = ”Times New Roman”

matp lo t l i b . rcParams [ ’ mathtext . f o n t s e t ’ ] = ’cm ’

matp lo t l i b . rcParams [ ’ mathtext . rm ’ ] = ’cm ’
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matp lo t l i b . rcParams [ ’ mathtext . i t ’ ] = ’cm: i t a l i c ’

matp lo t l i b . rcParams [ ’ mathtext . bf ’ ] = ’cm: bold ’

p l t . rcParams [ ’ axes . ax i sbe low ’ ] = True

#goa l i s to i n t e g r a t e j e t migrat ion func t i on

#de f i n i n g cons tan t s

nu = 1e−2; #cmˆ2/ s

omega = 6 .3 #rad/s

h0 = 2.06 #cm

g = 981 #cm/s ˆ2

U = 0.15 #cm/s

DeltaR = (37 .25 − 10) #gap width , cm

r0 = 10 . 1 6 ; #cm

s2 = 14.5+ r0 ; #cm

s1 = 8.80+ r0 ; #cm

A = (2∗omega∗∗2∗h0 ) /(nu∗U∗g )

B = (omega∗∗4) /(nu∗U∗g ∗∗2)

def in tegrand ( s , A, B) :

return np . sq r t (A∗ s + B∗ s ∗∗3) #the func t i on to i n t e g r a t e

#goa l i s to s t a r t i n t e g r a t i o n at s = s1 ( i n i t i a l po in t o f j e t core )

#and i n t e g r a t e equat ion above to f i nd l o c a t i o n at s + \ d e l t a s

n = 1000

ds = ( s2−s1 ) /n

s t o t a l = [ ] #w i l l have each po in t in s

t t o t a l = [ ]
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s t o t a l . append ( s1 )

t t o t a l . append (0)

print ( ds , ’ i n t e g r a t i o n step in cm ’ )

for i in range (1 , n ) :

I = quad ( integrand , s1 , s1 + ds , args=(A,B) ) #eva l ua t i n g i n t e g r a l to f i nd dt

dt = I [ 0 ] #pu l l i n g on ly the va lue t ha t we need

ds = np . sq r t ( ( nu∗U∗g ) /

(2∗omega∗∗2∗ s1 ∗( h0+(omega∗∗2∗ s1 ∗∗2) /(2∗ g ) ) ) ) ∗dt #ds = vm∗ dt

s1 = s1 + ds #advancing s

s t o t a l . append ( s1 ) #sav ing s

t t o t a l . append ( t t o t a l [ i −1] + dt ) #sav ing t

p l t . f i g u r e ( f i g s i z e =(9 ,7) )

p l t . g r i d ( )

p l t . p l o t ( t t o t a l , np . array ( s t o t a l ) ∗10 , l i n e s t y l e=’ s o l i d ’ , c o l o r=’ da r kv i o l e t ’ )

p l t . x l ab e l ( ’Time ( s ) ’ )

p l t . y l ab e l ( ’ Jet p o s i t i o n (mm) ’ )

p l t . t i g h t l a y ou t ( )

p l t . s a v e f i g ( ’ Vmig Ujet 60RPMJet3 . png ’ , dpi=200)

p l t . show ( )

p l t . f i g u r e ( f i g s i z e =(9 ,7) )

p l t . g r i d ( )

p l t . p l o t ( t t o t a l , (np . array ( s t o t a l )−r0 ) /DeltaR ,

l i n e s t y l e=’ s o l i d ’ , c o l o r=’ darkblue ’ )

p l t . x l ab e l ( ’Time ( s ) ’ )

p l t . y l ab e l ( ’ Jet p o s i t i o n ( $\Gamma$) ’ )

145



p l t . t i g h t l a y ou t ( )

p l t . s a v e f i g ( ’Vmig Gamma Ujet 60RPMJet3 . eps ’ )

p l t . show ( )

Gammaloc = (np . array ( s t o t a l )−r0 ) /DeltaR

print (Gammaloc[−1]−Gammaloc [ 0 ] , ’ t o t a l gamma ’ )

print ( t t o t a l [−1]− t t o t a l [ 0 ] )

t a r r ay = np . array ( t t o t a l )

Gamma array = (np . array ( s t o t a l )−r0 ) /DeltaR

np . save txt ( ’Gamma t 60RPMJet3 . txt ’ , l i s t ( zip ( t a r ray , Gamma array ) ) ,

header = ’ t ( s ) Loc (\Gamma) ’ )
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Appendix E

Main Solver of 2D Magnetoconvection Code

Here we give an abbreviated version of the code developed for the thesis work in this Chapter

2. It includes the main routine in which the variables of interest (temperature, vorticity,

streamfunction, and velocity) are integrated in time and saved in external files. The code

snippet does not include input files, subroutines, or the initialization of variables and arrays.

! S t a r t time loop ˜˜!

ca l l cpu time ( s t a r t t ime )

do nt=nt s t a r t , ns teps

ca l l communicate ( tem , i e r r , my rank , size , k s ta r t , k f i n a l , nn )

! communicating between ranks b e f o r e c a l c u l a t i o n

ca l l communicate (omg , i e r r , my rank , size , k s ta r t , k f i n a l , nn )

ca l l communicate ( ps i , i e r r , my rank , size , k s ta r t , k f i n a l , nn )

! Step 1 : c a l c u l a t e dtempdt ( d e r i v a t i v e o f temperature )

! and domgdt ( d e r i v a t i v e o f v o r t i c i t y ) based on l i n e a r / non l inear terms

do kaux =kstar t , k f i n a l

k r e a l = my rank∗nz aux + kaux

do n=0,nc
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dtempdt ( kaux , n , 2 ) = sqrt ( 1 . d0 /(Ra∗Pr ) ) ∗( tem( kaux+1,n) − tem(kaux−1,n) )

∗oodq2 1 ( kaux )+

sqrt ( 1 . d0 /(Ra∗Pr ) ) ∗ ( ( tem( kaux+1,n) − 2 . d0∗tem(kaux , n) + tem(kaux−1,n) )

∗oodq2 2 ( kaux )− &

(( real (n , 8 ) ∗2 . d0∗ pi /a ) ∗∗2∗tem(kaux , n) ) )

! F in i t e d i f f e r e n c e to update d e r i v a t i v e o f temperature

domgdt ( kaux , n , 2 ) = ( 2 . d0∗ real (n , 8 ) ∗ pi /a ) ∗ j ∗tem(kaux , n) + &

sqrt (Pr/Ra) ∗ ( (omg( kaux+1,n) − omg( kaux−1,n) ) ∗oodq2 1 ( kaux )+&

(omg( kaux+1,n) − 2 . d0∗omg( kaux , n) + omg( kaux−1,n) ) ∗oodq2 2 ( kaux ) &

− ( ( real (n , 8 ) ∗2 . d0∗ pi /a ) ∗∗2) ∗omg( kaux , n) )+&

(Ch∗sqrt (Pr/Ra) ) ∗ ( ( p s i ( kaux+1,n) − p s i ( kaux−1,n) ) ∗oodq2 1 ( kaux )+&

( p s i ( kaux+1,n) − 2 . d0∗ p s i ( kaux , n) + ps i ( kaux−1,n) ) ∗oodq2 2 ( kaux ) )

! f i n i t e d i f f e r e n c e to update d e r i v a t i v e o f v o r t i c i t y

end do

end do

do kaux = kstar t −1, k f i n a l+1

! S p e c t r a l transform to c a l c u l a t e non l inear terms

! De l i a se h i ghe r modes

tem(kaux , nc+1:nn) = 0 . d0

omg( kaux , nc+1:nn) = 0 . d0

p s i ( kaux , nc+1:nn) = 0 . d0

! End d e l i a s e

! Transforming tem , omg , p s i @ current s t ep to p h y s i c a l space

i nput spec ( kaux , : ) = tem(kaux , : )

ca l l d f f tw e x e c u t e d f t c 2 r ( planb , input spec ( kaux , : ) , output phys ( kaux , : ) )

tem phys st ( kaux , : ) = output phys ( kaux , : )
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i nput spec ( kaux , : ) = omg( kaux , : )

ca l l d f f tw e x e c u t e d f t c 2 r ( planb , input spec ( kaux , : ) , output phys ( kaux , : ) )

omg phys st ( kaux , : ) = output phys ( kaux , : )

i nput spec ( kaux , : ) = ps i ( kaux , : )

ca l l d f f tw e x e c u t e d f t c 2 r ( planb , input spec ( kaux , : ) , output phys ( kaux , : ) )

p s i p hy s s t ( kaux , : ) = output phys ( kaux , : )

! End trans format ion to p h y s i c a l space

end do

! Looping over g r i d po in t s in z

do kaux = kstar t , k f i n a l

domgdt phys ( kaux , 0 )= ( ( p s i p hy s s t ( kaux , 1) ) − ( p s i p hy s s t ( kaux , nx ) ) )&

∗dx2 ∗ ( ( omg phys st ( kaux+1, 0) ) − ( omg phys st ( kaux−1 ,0) ) )&

∗dq2 ( kaux ) − ( ( p s i p hy s s t ( kaux+1 ,0) ) − ( p s i p hy s s t ( kaux−1 ,0) ) )&

∗dq2 ( kaux ) ∗ ( ( omg phys st ( kaux , 1) ) − ( omg phys st ( kaux , nx ) ) ) ∗dx2

dtempdt phys ( kaux , 0 ) =(( p s i p hy s s t ( kaux , 1) ) − ( p s i p hy s s t ( kaux , nx ) ) )&

∗dx2 ∗ ( ( tem phys st ( kaux+1, 0) ) − ( tem phys st ( kaux−1, 0) ) ) ∗dq2 ( kaux )&

− ( ( p s i p hy s s t ( kaux+1, 0) ) − ( p s i p hy s s t ( kaux−1, 0) ) ) ∗dq2 ( kaux ) &

∗ ( ( tem phys st ( kaux , 1) ) − ( tem phys st ( kaux , nx ) ) ) ∗dx2

do i =1, nx−1

domgdt phys ( kaux , i )=(( p s i p hy s s t ( kaux , i +1) )−( p s i p hy s s t ( kaux , i −1) ) )&

∗dx2 ∗ ( ( omg phys st ( kaux+1, i ) ) − ( omg phys st ( kaux−1, i ) ) ) ∗dq2 ( kaux ) &−

( ( p s i p hy s s t ( kaux+1, i ) ) − ( p s i p hy s s t ( kaux−1, i ) ) ) ∗dq2 ( kaux ) &

∗ ( ( omg phys st ( kaux , i +1) ) − ( omg phys st ( kaux , i −1) ) ) ∗dx2
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dtempdt phys ( kaux , i )=(( p s i p hy s s t ( kaux , i +1) )−( p s i p hy s s t ( kaux , i −1) ) )&

∗dx2 ∗ ( ( tem phys st ( kaux+1, i ) ) − ( tem phys st ( kaux−1, i ) ) ) ∗dq2 ( kaux )− &

(( p s i p hy s s t ( kaux+1, i ) ) − ( p s i p hy s s t ( kaux−1, i ) ) ) ∗dq2 ( kaux ) &

∗ ( ( tem phys st ( kaux , i +1) ) − ( tem phys st ( kaux , i −1) ) ) ∗dx2

end do

domgdt phys ( kaux , nx ) = domgdt phys ( kaux , 0 )

! Per iod ic BC, va l u e s at nx=0 shou ld match endpoint a t nx

dtempdt phys ( kaux , nx ) = dtempdt phys ( kaux , 0 )

! Per iod ic BC, va l u e s at nx=0 shou ld match endpoint a t nx

input phys ( kaux , : ) = dtempdt phys ( kaux , : )

! Transforming non l inear terms back to s p e c t r a l space ( tem)

ca l l d f f tw e x e c u t e d f t r 2 c ( p lanf , input phys ( kaux , : ) , output spec ( kaux , : ) )

tem nl ( kaux , : ) = output spec ( kaux , : )

input phys ( kaux , : ) = domgdt phys ( kaux , : )

! Transforming non l inear terms back to s p e c t r a l space (omg)

ca l l d f f tw e x e c u t e d f t r 2 c ( p lanf , input phys ( kaux , : ) , output spec ( kaux , : ) )

omg nl ( kaux , : ) = output spec ( kaux , : )

! Dea l i a s ing ye t again

tem nl ( kaux , nc+1:nn) = 0 . d0

omg nl ( kaux , nc+1:nn) = 0 . d0

tem nl ( kaux , : ) = ( tem nl ( kaux , : ) ) /(nx )

! normal ize the FFTW

omg nl ( kaux , : ) = ( omg nl ( kaux , : ) ) /(nx )
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! normal ize the FFTW

do n=0,nc

dtempdt ( kaux , n , 2 ) = dtempdt ( kaux , n , 2 ) + tem nl ( kaux , n)

! adding non l inear tem modes to d e r i v a t i v e

domgdt ( kaux , n , 2 ) = domgdt ( kaux , n , 2 ) + omg nl ( kaux , n)

! adding non l inear omg modes to d e r i v a t i v e

end do

end do

! Step 2 : Use dtempdt and domgdt to update tem and omg

do kaux = kstar t , k f i n a l

do n =0, nc

tem(kaux , n) = tem(kaux , n) + ( dt /2 . d0 ) ∗ ( 3 . d0∗dtempdt ( kaux , n , 2 )&

− dtempdt ( kaux , n , 1 ) )

!AB2 time i n t e g r a t i o n scheme to update temperature based on d e r i v a t i v e s

omg( kaux , n) = omg( kaux , n) + ( dt /2 . d0 ) ∗ ( 3 . d0∗domgdt ( kaux , n , 2 ) &

− domgdt ( kaux , n , 1 ) )

!AB2 time i n t e g r a t i o n scheme to update v o r t i c i t y based on d e r i v a t i v e s

end do

end do

ca l l communicate ( tem , i e r r , my rank , size , k s ta r t , k f i n a l , nn )

! communicating updated va l u e s o f tem with o ther ranks

ca l l communicate (omg , i e r r , my rank , size , k s ta r t , k f i n a l , nn )

! communicating updated va l u e s o f omg with o ther ranks

! Step 3 : So lve po i s son equat ion f o r s t reamfunc t ion
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! Grid cannot be p a r a l l e l in z , swap d i r e c t i o n to x us ing MPI ALLTOALL

ca l l MPI ALLTOALL(omg ( 1 : nz aux , : ) , nz aux∗nn aux , &

MPI DOUBLE COMPLEX, omg f la t ( : ) , nz aux∗nn aux , &

MPI DOUBLE COMPLEX, MPICOMMWORLD, status , i e r r )

! F i r s t s t ep i s to sw i t ch d i r e c t i o n o f v o r t i c i t y p a r a l l e l i z a i t o n

! a l l to a l l by d e f a u l t f l a t t e n s array to 1D

do rankloop=0, size−1

! Loop to organ i ze f l a t t e n e d omg array to 2D array

! wi th dimensions ( nz , nn aux )

do kaux=1,nz aux

do n aux=0,nn aux−1

omg trans ( kaux+rankloop ∗nz aux , n aux ) = &

omg f la t ( rankloop ∗nz aux∗nn aux + kaux + nz aux∗n aux )

end do

end do

end do

omg trans ( 1 , : ) = 0 . d0

! Enforcing BC on v o r t i c i t y f o r a l l modes at nz=1

do n aux=0,nn aux−1

! Each proce s so r s l oops over nn/nproc number o f modes

nr ea l = my rank∗nn aux + n aux

! Keeping t rack o f the ( nonpa r a l l e l ) mode number

do k=2,nz−1

! Looping over g r i d po in t s in z

d i a f u l l ( k ) = ( 2 . d0∗ real ( nrea l , 8 ) ∗ pi /a ) ∗∗2 + 2 . d0∗ o odq2 2 f u l l ( k )

! Diagonal va l u e s o f array based on l o c a t i o n in z and mode
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end do

d i a f u l l ( 1 ) = 1 . d0

! Boundary cond i t i on o f d iagona l

d i a f u l l ( nz ) = 1 . d0

! Boundary cond i t i on o f d iagona l

ca l l t r i d i ( nz , omg trans ( : , n aux ) , &

p s i t r a n s ( : , n aux ) , s u b f u l l ( : ) , d i a f u l l ( : ) ,&

s u p f u l l ( : ) , wk1 fu l l ( : ) , wk2 fu l l ( : ) )

! c a l l i n g t r i d i a g o n a l s o l v e r to update s t reamfunc t ion

end do

p s i t r a n s 2 ( 0 : nn aux −1 ,1: nz ) = &

TRANSPOSE( p s i t r a n s ( 1 : nz , 0 : nn aux−1) )

! must t ranspose p s i output o f t r i d i a g s o l v e r

ca l l MPI ALLTOALL( p s i t r a n s 2 ( 0 : nn aux −1 , : ) , &

nz aux∗nn aux , MPI DOUBLE COMPLEX, &

p s i f l a t ( : ) , nz aux∗nn aux , MPI DOUBLE COMPLEX, &

MPICOMMWORLD, i e r r )

! a l l to a l l by d e f a u l t f l a t t e n s array to 1D

do rankloop=0, size−1

! Loop to organ i ze f l a t t e n e d p s i t r a n s array to 2D array

do n aux=0,nn aux−1

! Loop to organ i ze f l a t t e n e d p s i t r a n s array to 2D array

do kaux=1,nz aux

p s i ( kaux , n aux+rankloop ∗nn aux ) = &

p s i f l a t ( ( rankloop ∗nn aux∗nz aux + n aux + nn aux ∗( kaux−1) )+1)

end do
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end do

end do

i f (my rank . eq . 0) then

p s i ( ks tar t −1 , : ) = 0 . d0

! Enforcing BC fo r the s t reamfunc i ton

end i f

ca l l communicate ( ps i , i e r r , my rank , size , k s ta r t , k f i n a l , nn )

! Step 4 : Use updated s treamfunct ion , v o r t i c i t y , and temperature

! to c a l c u l a t e output q u a n t i t i e s i n c l u d i n g v e l o c i t i e s and heat t r a n s f e r

! Transform temperature , s t reamfunc t ion

! and v o r t i c i t y from Fourier to p h y s i c a l space

do kaux=kstar t −1, k f i n a l+1

input spec ( kaux , : ) = tem(kaux , : )

ca l l d f f tw e x e c u t e d f t c 2 r ( planb , input spec ( kaux , : ) , output phys ( kaux , : ) )

tem phys ( kaux , : ) = output phys ( kaux , : )

i nput spec ( kaux , : ) = omg( kaux , : )

ca l l d f f tw e x e c u t e d f t c 2 r ( planb , input spec ( kaux , : ) , output phys ( kaux , : ) )

omg phys ( kaux , : ) = output phys ( kaux , : )

i nput spec ( kaux , : ) = ps i ( kaux , : )

ca l l d f f tw e x e c u t e d f t c 2 r ( planb , input spec ( kaux , : ) , output phys ( kaux , : ) )

p s i phys ( kaux , : ) = output phys ( kaux , : )

end do

! Ca l cu l a t e output parameters . Not needed every time s t ep
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do i =0, nx

do kaux=kstar t , k f i n a l

vx phys ( kaux , i ) = ( ps i phys ( kaux+1, i ) − ps i phys ( kaux−1, i ) ) ∗dq2 ( kaux )

! v e l o c i t y in x−d i r e c t i o n based on der . o f s t reamfunc i ton in z

end do

i f (my rank . eq . size −1) then

vx phys ( k f i n a l +1, i ) = vx phys ( k f i n a l , i )

end i f

i f (my rank . eq . 0) then

vx phys ( ks tar t −1, i ) = vx phys ( ks tar t , i )

end i f

end do

do kaux=kstar t −1, k f i n a l+1

do i =1, nx−1

vz phys ( kaux , i ) = −(p s i phys ( kaux , i +1) − ps i phys ( kaux , i −1) ) ∗dx2

end do

vz phys ( kaux , 0 ) = −(p s i phys ( kaux , 1) − ps i phys ( kaux , nx ) ) ∗dx2

vz phys ( kaux , nx ) = −(p s i phys ( kaux , 0) − ps i phys ( kaux , nx−1) ) ∗dx2

end do

ca l l communicate r ( vx phys , i e r r , my rank , size , k s ta r t , k f i n a l , nx )

! communicatng r e a l data between ranks

ca l l communicate r ( vz phys , i e r r , my rank , size , k s ta r t , k f i n a l , nx )

ca l l communicate r ( tem phys , i e r r , my rank , size , k s ta r t , k f i n a l , nx )

! Nus se l t top and bottom ( or through any sur f a ce )

do kaux=kstar t , k f i n a l

do i =0,nx

dtempdz phys ( kaux , i ) = &
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1 . d0 ∗( tem phys ( kaux−1, i )− tem phys ( kaux+1, i ) ) ∗dq2 ( kaux ) +&

vz phys ( kaux , i ) ∗ tem phys ( kaux , i )

end do

end do

do kaux=kstar t , k f i n a l

dtempdz zonal ( kaux ) = SUM( dtempdz phys ( kaux , : ) ) ∗dx/( a )

end do

i f (my rank . eq . 0) then

Nu bot = dtempdz zonal ( k s t a r t+1)

end i f

i f (my rank . eq . size −1) then

Nu top = dtempdz zonal ( k f i n a l −1)

ca l l mpi ssend (Nu top , 1 , &

MPI DOUBLE, 0 , 1 , MPICOMMWORLD, i e r r )

end i f

i f (my rank . eq . 0) then

ca l l mpi recv (Nu top , 1 , &

MPI DOUBLE, ( size −1) , 1 , MPICOMMWORLD, status , i e r r )

end i f

! Nus se l t ( volume averaged )

do i =0, nx

do kaux=kstar t , k f i n a l

vT phys ( kaux , i ) = vz phys ( kaux , i ) ∗ tem phys ( kaux , i )

end do

end do
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i f (my rank . eq . 0) then

do i =0, nx

vT phys fu l l ( 1 : nz aux , i ) = vT phys ( ks tar t −1: k f i n a l , i )

end do

end i f

do i =0, nx

i f (my rank > 0) then

ca l l mpi ssend ( vT phys ( k s t a r t : k f i n a l , i ) , nz aux+1, &

MPI DOUBLE, 0 , 1 , MPICOMMWORLD, i e r r )

! Other proce s so r s w i l l send convec t i v e f l u x data to Rank 0

else i f (my rank . eq . 0) then

do rankloop=1, size−1

ca l l mpi recv ( vT phys fu l l ( rankloop ∗nz aux + 1 : &

( rankloop+1)∗nz aux , i ) , nz aux+1, MPI DOUBLE,&

rankloop , 1 , MPICOMMWORLD, status , i e r r )

end do

end i f

end do

i f (my rank . eq . 0) then

vT tota l = 0 . d0

do i =0, nx

do k=2, nz−1

vT tota l = vT tota l + ( vT phys fu l l (k , i ) ) ∗ d z f u l l ( k ) ∗dx

end do

end do

vT tota l = vT tota l /( a ) ! volume averaged
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Nu vol = 1 . d0 + vT tota l ∗( sqrt (Ra∗Pr ) )

end i f

ca l l MPI Bcast ( Nu vol , 1 , MPI DOUBLE, 0 , &

MPICOMMWORLD, status , i e r r )

!Nu v i s c . d i s s .

e v t o t a l = 0 . d0

Nu visc = 0 . d0

do kaux=kstar t , k f i n a l

k r e a l = my rank∗nz aux + kaux

do i =1, nx−1

ev phys ( kaux , i ) = ( ( vx phys ( kaux , i +1)− &

vx phys ( kaux , i −1) ) ∗dx2 ) ∗∗2 . d0 + &

( ( vz phys ( kaux+1, i )−vz phys ( kaux−1, i ) ) ∗dq2 ( kaux ) ) ∗∗2 . d0 + &

( ( vx phys ( kaux+1, i )−vx phys ( kaux−1, i ) ) ∗dq2 ( kaux ) ) ∗∗2 . d0 + &

( ( vz phys ( kaux , i +1)−vz phys ( kaux , i −1) ) ∗dx2 ) ∗∗2 . d0

end do

ev phys ( kaux , 0 ) = ( ( vx phys ( kaux , 1 )−&

vx phys ( kaux , nx ) ) ∗dx2 ) ∗∗2 . d0 + &

( ( vz phys ( kaux+1 ,0)−vz phys ( kaux−1 ,0) ) ∗dq2 ( kaux ) ) ∗∗2 . d0 + &

! p e r i o d i c boundary cond i t i on s ( wrapping the d e r i v a t i v e around f o r i =0)

( ( vx phys ( kaux+1 ,0)−vx phys ( kaux−1 ,0) ) ∗dq2 ( kaux ) ) ∗∗2 . d0 + &

( ( vz phys ( kaux , 1 )−vz phys ( kaux , nx ) ) ∗dx2 ) ∗∗2 . d0

ev phys ( kaux , nx ) = ( ( vx phys ( kaux , 0 )−&

vx phys ( kaux , nx−1) ) ∗dx2 ) ∗∗2 . d0 + &

( ( vz phys ( kaux+1,nx )−vz phys ( kaux−1,nx ) ) ∗dq2 ( kaux ) ) ∗∗2 . d0 + &
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! p e r i o d i c boundary cond i t i on s ( wrapping the d e r i v a t i v e around f o r i=nx )

( ( vx phys ( kaux+1,nx )−vx phys ( kaux−1,nx ) ) ∗dq2 ( kaux ) ) ∗∗2 . d0 + &

( ( vz phys ( kaux , 0 )−vz phys ( kaux , nx−1) ) ∗dx2 ) ∗∗2 . d0

end do

do i =1,nx−1

ev phys ( ks tar t −1, i ) = ( ( vx phys ( ks tar t −1, i +1)−&

vx phys ( ks tar t −1, i −1) ) ∗dx2 ) ∗∗2 . d0 + &

( ( vz phys ( k s t a r t +1, i )−vz phys ( ks tar t −1, i ) ) ∗dq2 ( k s t a r t ) ) ∗∗2 . d0 + &

( ( vz phys ( ks tar t −1, i +1)−vz phys ( ks tar t −1, i −1) ) ∗dx2 ) ∗∗2 . d0 + &

( ( vx phys ( k s t a r t +1, i )−vx phys ( ks tar t −1, i ) ) ∗dq2 ( k s t a r t ) ) ∗∗2 . d0

ev phys ( k f i n a l +1, i ) = ( ( vx phys ( k f i n a l +1, i +1)−&

vx phys ( k f i n a l +1, i −1) ) ∗dx2 ) ∗∗2 . d0 + &

( ( vz phys ( k f i n a l +1, i )−vz phys ( k f i n a l −1, i ) ) ∗dq2 ( k f i n a l ) ) ∗∗2 . d0 + &

( ( vz phys ( k f i n a l +1, i +1)−vz phys ( k f i n a l +1, i −1) ) ∗dx2 ) ∗∗2 . d0 + &

( ( vx phys ( k f i n a l +1, i )−vx phys ( k f i n a l −1, i ) ) ∗dq2 ( k f i n a l ) ) ∗∗2 . d0

end do

! Communicatng r e a l data between ranks

ca l l communicate r ( ev phys , i e r r , my rank , size , k s ta r t , k f i n a l , nx )

do i =0, nx

do kaux=kstar t , k f i n a l

e v t o t a l = e v t o t a l + ev phys ( kaux , i ) ∗dx∗dz ( kaux )

end do

end do

do i =1,nx−1

i f (my rank . eq . 0) then
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e v t o t a l = e v t o t a l + ev phys ( ks tar t −1, i ) ∗dx∗dz ( k s t a r t )

e l s e i f (my rank . eq . size −1) then

e v t o t a l = e v t o t a l + ev phys ( k f i n a l +1, i ) ∗dx∗dz ( k f i n a l )

end i f

end do

e v t o t a l = ( e v t o t a l ) /a

ca l l MPI REDUCE( ev to t a l , Nu visc , 1 , &

MPI DOUBLE, MPI SUM, 0 , MPICOMMWORLD, i e r r )

! sum of i n d i v i d u a l Nu visc f o r t o t a l

Nu viscsum = 1 . d0 + ( Nu visc ) ! ∗( s q r t (Ra/Pr) ) !

f i n a l step , s ee Goluskin et a l . 2014 page 380 f o r de f .

! End Nusse l t v i s cou s d i s s .

! volume averaged zona l f l ow

vx t o t a l = 0 . d0

do i =0, nx

do kaux=kstar t , k f i n a l

v x t o t a l = vx t o t a l + vx phys ( kaux , i )∗&

vx phys ( kaux , i ) ∗dx∗dz ( kaux ) ! i n t e g r a t i n g

end do

end do

do i =1,nx−1

i f (my rank . eq . 0) then

vx t o t a l = vx t o t a l + vx phys ( ks tar t −1, i )∗&

vx phys ( ks tar t −1, i ) ∗dx∗dz ( k s t a r t )

e l s e i f (my rank . eq . size −1) then

vx t o t a l = vx t o t a l + vx phys ( k f i n a l +1, i )∗&
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vx phys ( k f i n a l +1, i ) ∗dx∗dz ( k f i n a l )

end i f

end do

vx t o t a l = ( vx t o t a l ) /a

ca l l MPI REDUCE( vx to ta l , vx tota l sum , 1 , &

MPI DOUBLE, MPI SUM, 0 , MPICOMMWORLD, i e r r )

! volume averaged convec t i v e f l ow

v z t o t a l = 0 . d0

do i =0, nx

do kaux=kstar t , k f i n a l

v z t o t a l = v z t o t a l + vz phys ( kaux , i ) ∗vz phys ( kaux , i ) ∗dx∗dz ( kaux )

end do

end do

do i =1,nx−1

i f (my rank . eq . 0) then

v z t o t a l= v z t o t a l+vz phys ( ks tar t −1, i ) ∗vz phys ( ks tar t −1, i ) ∗dx∗dz ( k s t a r t )

e l s e i f (my rank . eq . size −1) then

v z t o t a l= v z t o t a l+vz phys ( k f i n a l +1, i ) ∗vz phys ( ks tar t −1, i ) ∗dx∗dz ( k f i n a l )

end i f

end do

v z t o t a l = ( v z t o t a l ) /a

ca l l MPI REDUCE( vz t o t a l , vz tota l sum , 1 , &

MPI DOUBLE, MPI SUM, 0 , MPICOMMWORLD, i e r r )
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! Ca l cu l a t i n g the CFL con s t r a i n t based on max v e l o c i t i e s

ca l l MPI REDUCE( vx phys , maxvx , 1 , MPI DOUBLE, &

MPI MAX, 0 , MPICOMMWORLD, i e r r ) !max vx

ca l l MPI REDUCE( vz phys , maxvz , 1 , MPI DOUBLE, &

MPI MAX, 0 , MPICOMMWORLD, i e r r )

c f l d t = dx/(abs (maxvx) )

! End c a l c u l a t i n g the CFL con s t r a i n t based on max v e l o c i t i e s

! Running time average f o r s e v e r a l output q u a n t i t i e s

! ( vx , vz , vx∗vz , T, ev , ek , omg , vzT , vxT , vx∗vx ,

! vx ∗∗3 , vx ∗∗4 , vz ∗vz , vz ∗∗3 , vz ∗∗4 , T∗T, T∗∗3 , T∗∗4

vx tavg ( : , : ) = ( vx tavg ( : , : ) ∗( i t e r −1) + vx phys ( : , : ) ) /( i t e r )

vz tavg ( : , : ) = ( vz tavg ( : , : ) ∗( i t e r −1) + vz phys ( : , : ) ) /( i t e r )

vxz tavg ( : , : ) =(vxz tavg ( : , : ) ∗( i t e r −1)&

+vx phys ( : , : ) ∗vz phys ( : , : ) ) /( i t e r )

T tavg ( : , : ) = ( T tavg ( : , : ) ∗( i t e r −1) + tem phys ( : , : ) ) /( i t e r )

ev tavg ( : , : ) = ( ev tavg ( : , : ) ∗( i t e r −1) + ev phys ( : , : ) ) /( i t e r )

ek tavg ( : , : ) = ( ek tavg ( : , : ) ∗( i t e r −1) + ek phys ( : , : ) ) /( i t e r )

omg tavg ( : , : ) = ( omg tavg ( : , : ) ∗( i t e r −1) &

+ omg phys ( : , : ) ) /( i t e r )

vzT tavg ( : , : ) =(vzT tavg ( : , : ) ∗( i t e r −1) $

+ tem phys ( : , : ) ∗vz phys ( : , : ) ) /( i t e r )

vxT tavg ( : , : ) =(vxT tavg ( : , : ) ∗( i t e r −1) &

+ tem phys ( : , : ) ∗vx phys ( : , : ) ) /( i t e r )

vxsq tavg ( : , : ) = ( vxsq tavg ( : , : ) ∗( i t e r −1) + vx phys ( : , : ) ∗∗2 . d0 ) /( i t e r )

vxcb tavg ( : , : ) = ( vxcb tavg ( : , : ) ∗( i t e r −1) + vx phys ( : , : ) ∗∗3 . d0 ) /( i t e r )

vxqr tavg ( : , : ) = ( vxqr tavg ( : , : ) ∗( i t e r −1) + vx phys ( : , : ) ∗∗4 . d0 ) /( i t e r )
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vzsq tavg ( : , : ) = ( vzsq tavg ( : , : ) ∗( i t e r −1) + vz phys ( : , : ) ∗∗2 . d0 ) /( i t e r )

vzcb tavg ( : , : ) = ( vzcb tavg ( : , : ) ∗( i t e r −1) + vz phys ( : , : ) ∗∗3 . d0 ) /( i t e r )

vzqr tavg ( : , : ) = ( vzqr tavg ( : , : ) ∗( i t e r −1) + vz phys ( : , : ) ∗∗4 . d0 ) /( i t e r )

Tsq tavg ( : , : ) = ( Tsq tavg ( : , : ) ∗( i t e r −1) + tem phys ( : , : ) ∗∗2 . d0 ) /( i t e r )

Tcb tavg ( : , : ) = ( Tcb tavg ( : , : ) ∗( i t e r −1) + tem phys ( : , : ) ∗∗3 . d0 ) /( i t e r )

Tqr tavg ( : , : ) = ( Tqr tavg ( : , : ) ∗( i t e r −1) + tem phys ( : , : ) ∗∗4 . d0 ) /( i t e r )

! Running time average o f Nusse l t ( volume averaged )

i f (my rank . eq . 0) then

Nuvol tavg = ( Nuvol tavg ∗( i t e r −1) + Nu vol ) /( i t e r )

Nuvol tavgsave = Nuvol tavg

end i f

avg freq sum = avg freq sum + avg f r eq

! Step 5 : Data I /O

! Writing out the running time average o f data in t o ne t cd f f i l e

ca l l MPI Bcast ( Nuvol tavgsave , 1 , &

MPI DOUBLE, 0 , MPICOMMWORLD, status , i e r r )

! Only wr i t e out the data every ou t pu t f r e q s t e p s

IF ( ( output f r eq /= 0) .AND. (MOD( i t e r , output f r eq ) == 0) ) THEN

cal l output 2D hdf5 s tat ( ”STAT” // FILE STRING , kstar t −1, k f i n a l +1,&

transpose ( vx tavg ( : , : ) ) , transpose ( vz tavg ( : , : ) ) ,&

transpose ( vxz tavg ( : , : ) ) ,&

transpose ( T tavg ( : , : ) ) , transpose ( ev tavg ( : , : ) ) , &

transpose ( ek tavg ( : , : ) ) , &

transpose ( omg tavg ( : , : ) ) , transpose ( vxT tavg ( : , : ) ) , &

transpose ( vzT tavg ( : , : ) ) ,&

transpose ( vxsq tavg ( : , : ) ) , transpose ( vzsq tavg ( : , : ) ) , &
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transpose ( vxcb tavg ( : , : ) ) , &

transpose ( vzcb tavg ( : , : ) ) , transpose ( vxqr tavg ( : , : ) ) ,&

transpose ( vzqr tavg ( : , : ) ) , &

transpose ( Tsq tavg ( : , : ) ) , transpose ( Tcb tavg ( : , : ) ) , &

transpose ( Tqr tavg ( : , : ) ) ,&

my rank , nz , nz aux , nx )

! End wr i t i n g out running time average in to ne t cd f f i l e

! Writing out time s e r i e s data ( Nusse l t , vx , vz , probes )

! Only wr i t e out t imes s e r i e s data every a v g f r e q s t e p s

IF ( ( avg f r eq /= 0) .AND. (MOD( i t e r , avg f r eq ) == 0) ) THEN

i f (my rank . eq . 0 ) then

write (100 ,FMT = ’ (6( (10000 es16 . 9 ) , 2x ) ) ’ ) time , abs ( Nu bot ) , &

abs ( Nu top ) , abs ( Nu vol ) , abs (Nu thermsum) , abs ( Nu viscsum )

write (200 ,FMT = ’ (6( (10000 es16 . 9 ) , 2x ) ) ’ ) time , abs ( vx tota l sum ) , &

abs ( vz to ta l sum ) , abs (maxvx) , abs (maxvz ) , c f l d t

ca l l f l u s h ( )

end i f

! po in t probes , w i l l be in an i f s ta tement

i f ( po int probe . eqv . . true . ) then

i f (my rank . eq . rankprobe1 ) then

write (400 ,FMT = ’ (13((10000 es17 . 9 ) , 2x ) ) ’ ) &

time , tem phys ( kauxprobe1 , iprobe1 ) ,&

tem phys ( kauxprobe1 , iprobe2 ) , tem phys ( kauxprobe1 , iprobe3 ) ,&

vx phys ( kauxprobe1 , iprobe1 ) , vx phys ( kauxprobe1 , iprobe2 ) , &

vx phys ( kauxprobe1 , iprobe3 ) ,&

vz phys ( kauxprobe1 , iprobe1 ) , vz phys ( kauxprobe1 , iprobe2 ) , &

vz phys ( kauxprobe1 , iprobe3 ) ,&
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omg phys ( kauxprobe1 , iprobe1 ) , &

omg phys ( kauxprobe1 , iprobe2 ) , omg phys ( kauxprobe1 , iprobe3 )

ca l l f l u s h ( )

end i f

end i f

END IF

END IF

! Write out c e r t a i n va l u e s f o r a r e s t a r t case at ou t pu t f r e q

IF ( ( output f r eq /= 0) .AND. (MOD( i t e r snap , output f r eq ) == 0) ) THEN

write ( r e s t a r t f i l e n ame , ’ ( i 10 . 1 0 ) ’ ) int ( i t e r s nap / output f r eq )

! a l l o c a t e s 10 d i g i t s wi th l e ad in g zeroes , e d i t s from SH

ca l l ou tpu t r e s t a r t (FILE STRING // ”Restart ” , Ra , &

Pr , Ch, a , nn , nc , nz , nx , time , dt , nt , &

in t t , i t e r snap , Nuvol tavgsave , real ( tem ( : , : ) ) , &

real (omg ( : , : ) ) , real ( p s i ( : , : ) ) , aimag( tem ( : , : ) ) , &

aimag(omg ( : , : ) ) , aimag( p s i ( : , : ) ) , &

real ( dtempdt ( : , : , 1 ) ) , real ( domgdt ( : , : , 1 ) ) ,&

aimag( dtempdt ( : , : , 1 ) ) , aimag( domgdt ( : , : , 1 ) ) , &

kstar t −1, k f i n a l +1, size , my rank , nz aux )

i n t t = int ( time∗ output f r eq )

end i f

! Step 6 : Set the new time s t ep

! ( t h i r d dimension o f d t arrays ) to the prev ious time s t ep

dtempdt ( : , : , 1 ) = dtempdt ( : , : , 2 )

domgdt ( : , : , 1 ) = domgdt ( : , : , 2 )

time = nt∗dt ! update time

ITER = ITER + 1
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i t e r s nap = i t e r snap + 1

end do

! End time loop ! ! ! ! ! ! !
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