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Abstract 

This report describes research carried out at the Lawrence Berkeley National Laboratory 
(LBNL) to assist the U. S. Environmental Protection Agency (EPA) in developing a consistent 
yet flexible approach for evaluating the inputs to probabilistic risk assessments. The U.S. EPA 
Office of Emergency and Remedial Response (OERR) recently released Volume 3 Part A of Risk 
Assessment Guidance for Superfund (RAGS), as an update to the existing two-volume set of 
RAGS. The update provides policy and technical guidance on performing probabilistic risk 
assessment (PRA). Consequently, EPA risk managers and decision-makers need to review and 
evaluate the adequacy of PRAs for supporting regulatory decisions. A critical part of evaluating a 
PRA is the problem of evaluating or judging the adequacy of input distributions PRA. Although 
the overarching theme of this report is the need to improve the ease and consistency of the 
regulatory review process, the specific objectives are presented in two parts. The objective of 
Part 1 is to develop a consistent yet flexible process for evaluating distributions in a PRA by 
identifying the critical attributes of an exposure factor distribution and discussing how these 
attributes relate to the task-specific adequacy of the input.  This objective is carried out with 
emphasis on the perspective of a risk manager or decision-maker.  The proposed evaluation 
procedure provides consistency to the review process without a loss of flexibility. As a result, the 
approach described in Part 1 provides an opportunity to apply a single review framework for all 
EPA regions and yet provide the regional risk manager with the flexibility to deal with site- and 
case-specific issues in the PRA process. However, as the number of inputs to a PRA increases, so 
does the complexity of the process for calculating, communicating and managing risk.  As a 
result, there is increasing effort required of both the risk professionals performing the analysis 
and the risk manager reviewing it. For deterministic risk assessments, the use of default inputs 
has improved the ease and the consistency of both performing and reviewing assessments. By 
analogy, it is expected that similar advantage will be seen in the field of probabilistic risk 
assessment through the introduction of default distributions. In Part 2 of this report, we consider 
when a default distribution might be appropriate for use in PRA and work towards development 
of recommended task-specific distributions for several frequently used exposure factors. An 
approach that we develop using body weight and exposure duration as case studies offers a 
transparent way for developing task-specific exposure factor distributions. A third case study 
using water intake highlights the need for further study aimed at improving the relevance of 
“short-term” data before recommendations on task-specific distributions of water intake can be 
made. 
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Executive Summary 

This report describes research carried out at the Lawrence Berkeley National Laboratory 
(LBNL) to assist the U. S. Environmental Protection Agency (EPA) in developing a consistent 
yet flexible approach for evaluating the inputs to probabilistic risk assessments. As part of the 
EPA Superfund reform activities, the U.S. EPA Office of Emergency and Remedial Response 
(OERR) is updating its 1989 Risk Assessment Guidance for Superfund (RAGS). Volume 3 Part 
A of RAGS was recently released in draft form as an update to the existing two-volume set of 
RAGS. The update provides policy and technical guidance on conducting probabilistic risk 
assessment for both human and ecological receptors. Risk assessors now have the option of using 
probabilistic risk assessment (PRA) to provide supporting information for risk management 
decisions at Superfund hazardous waste sites. Consequently, EPA risk managers and decision-
makers need to review and evaluate the adequacy of PRAs for supporting regulatory decisions. 
One of the key components in the evaluation of a PRA, and the main focus of this report, is the 
problem of evaluating or judging the adequacy of input distributions used in PRA.  

This report has two objectives. The first objective is to identify critical attributes of input 
distributions.  This objective is carried out from the perspective of a risk manager or decision 
maker and provides general recommendations for relating critical attributes to the distribution’s 
task-specific adequacy, that is to how it will be used in decisions.  The second objective is to 
identify when default distributions are appropriate for use in PRA.  This is done by example 
through development of recommended distributions for several frequently used exposure factors. 
Both objectives have in common the goal of improving the ease and consistency of the regulatory 
review process for PRAs.  But the objectives are sufficiently different to justify separating the 
report into two parts—one dealing with “Critical Attributes for Evaluating Distributions” and the 
other “Toward Development of Recommended Exposure Factor Distributions”. Summaries for 
each part are provided below. 

Part 1: Critical Attributes for Evaluating Distributions 

This part of the report draws on numerous studies, reports, workshops and our experience 
to identify and summarize a set of critical attributes for probabilistic input distributions. Even 
though there are many different ways to develop probability distributions, we find that the 
information needed to judge its task-specific adequacy can be summarized with seven key 
attributes. These attributes are grouped into three categories—(1) the sensitivity of the outcome 
of a PRA to the input distribution, (2) data evaluation, and (3) the distribution or statistical model 
evaluation category.  Our approach, justification, and application of each category are 
summarized in the following paragraphs. 
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Sensitivity Analysis Category 

The sensitivity-analysis category considers the importance of the distribution in the 
context of the overall probabilistic risk analysis, that is, the sensitivity of the outcome of a PRA 
to the input distribution. There are an increasing number of methods available for investigating 
the relationship between variation in the inputs of a model and variation in the model outcome 
(Campolongo et al., 2000). These sensitivity analyses (SA) play a vital role in the set-up, use and 
evaluation of probabilistic risk models. Therefore, all PRAs should include results and discussion 
from some form of sensitivity analysis. These results will likely be reported as elasticity, 
sensitivity score, contribution to variance, correlation coefficients or regression coefficients. If 
SA results are lacking, the relative contribution to variance can be approximated for the simple 
product/quotient models that are typically used at Superfund hazardous waste sites. Distributions 
that contribute less than a few percent to the outcome variance of the model need only be 
checked to insure that the central tendency and the approximate range of the distribution are 
appropriate. The remaining distributions, those that contribute more than a few percent, should 
be given more scrutiny in the review process. In these cases, evaluation of the input would need 
to consider both the underlying data and the selected distribution. 

Data Evaluation Category  

Data evaluation considers as key attributes the quantity, quality and relevance of the 
information that is the foundation of any constructed distribution. Methods have been described 
that relate sample size to uncertainty (Cullen and Frey, 1999). The issue of relating data quality 
and relevance to uncertainty has also been discussed (Morgan and Henrion, 1990; USEPA, 
1999a), although in more subjective terms. 

Data Quantity Attribute – Typically the uncertainty in a distribution is inversely related to 
the sample size. The actual sample size needed to characterize a distribution depends on both the 
range of data and the precision in the measurement of each sample value. Uncertainty can often 
be ignored when sample size is large but small sample size will require explicit treatment of 
uncertainty in the analysis. For distributions based on moderately small samples the decision to 
explicitly include uncertainty due to the size of the dataset will need to be judged on a case-by-
case basis.  

Data Quality Attribute – Experimental error due to flaws in sampling design or 
imprecision in measurements and/or self-reported information are reflected in the quality of data 
and these errors propagate through to the distribution development process. The relative quality 
of information used in developing distributions for PRA is as follows: direct measurements of 
the exposure factor of interest > self reported values for the exposure factor of interest > direct 
measure of surrogate data > self-reported surrogate data. Surrogate information (e.g., estimated 
breathing rate from caloric intake or exposure duration based on population mobility) may often 
be the only information available.  
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Data Relevance Attribute – Even large amounts of high quality data cannot compensate 
when the data is not relevant to the population of interest. Relevant data adequately captures 
temporal and spatial variability as well as the demographic characteristics of the target 
population. Judging the relevance of a distribution requires a clearly defined population or 
cohort, a well-defined exposure scenario, a well-documented source of data and a clear 
description of the steps, if any, taken by the risk assessor to adjust for data quality or to improve 
data relevance (USEPA, 1999a).  

Distribution Evaluation Category  

The distribution evaluation considers how well the input distribution simulates the 
original information and the degree to which the performance of the distribution can be validated 
using alternate models, assumptions, theoretical underpinnings and/or independent data.  The 
three attributes of the distribution-evaluation category include both statistical and graphical 
goodness-of-fit (GOF) and cross-validation performance or verification with competing 
models/theory.  

Goodness-of-Fit Attributes– Many statistical GOF tests are available to the risk assessor 
for evaluating a hypothesis that data come from a particular distribution.  Examples include the 
Chi-squared, Anderson-Darling, Kolmogorov-Smirnov and various measures of regression and 
correlation. Although positive results from a GOF test can contribute to the reviewer’s belief that 
the distribution adequately summarizes the data, passing a statistical GOF test should not be 
taken as proof that a distribution is adequate, nor should failing the test be taken as a fatal flaw in 
the distribution. Graphical methods of performance testing are often preferred in cases where 
curve fitting is important in a particular region of the distribution. Informative graphical methods 
for visualizing the performance of a distribution include residual plots, percentage-percentage 
probability (P-P) plots or quantile-quantile (Q-Q) plots (USEPA, 2000b). A reviewer should be 
able to use these visual tests to evaluate the performance of a distribution relative to a specific 
target population and exposure scenario.  

Performance Evaluation Attribute – Types of information that might be considered in the 
performance evaluation include the theoretical basis for a selected distribution, verification using 
alternate models or assumptions, validation using independent data, cross-validation using 
samples drawn from the original data and different sources of expert or professional advise. The 
performance evaluation attribute provides supporting information for decisions made by the risk 
assessor during the distribution development process.  

Synthesizing the Attributes: The Evaluation Wheel 

Evaluating the attributes described above is often, if not always, subjective on the part of 
both the risk assessor and the risk manager.  Thus, we introduce a qualitative paper-based tool for 
guiding the risk manager through the evaluation process and for tracking the critical attributes of 
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a distribution. The evaluation wheel is introduced and used in this report as a balance sheet to 
track each attribute in a simple yet informative manner. Each attribute of a given input 
corresponds to a different ray or spoke on the wheel. After using sensitivity analysis results to 
prioritize the distributions, the reviewer systematically evaluates each of the key attributes and 
uses that information to either justify accepting the input or to facilitate discussion with the risk 
assessor about where improvements to the input might be needed. By following the 
recommendations presented in this report, and working closely with the risk assessor and other 
risk professionals, risk managers can arrive at consistent and transparent conclusions regarding 
the adequacy of the probabilistic input distributions used in a PRA. 

Part 2: On the Development of Recommended Exposure Factor 
Distributions 

For deterministic risk assessments, default inputs have improved the ease and the 
consistency of both performing and reviewing assessments. The challenge for developing 
“default” exposure factor distributions is the need to reduce the number of distributions that are 
considered for a given input while maintaining enough flexibility to adequately represent specific 
target populations and/or risk scenarios in the PRA.  

We consider two initial options for developing recommended distributions for PRA. The 
first option begins with a baseline or “prior” distribution for the general U.S. population then 
updates the distribution to better represent the target population using Bayesian statistical 
methods and a minimum amount of sampling within the target population. The second option 
begins with a set of default distributions (building blocks) that are relevant to each key 
demographic category. These demographically based distributions are then used to construct a 
case-specific distribution, with uncertainty and variability, based on readily available information 
about the size and demographic composition of the target population. Although certain aspects of 
the Bayesian approach may be necessary, the case studies described in this report focus primarily 
on the second option because of the need for transparency in the distribution development 
process and the desire to work with existing and readily available information.  

As a first step toward recommended distributions for PRA, we focus on three common 
exposure factors: body weight, exposure duration and water intake. Each of these exposure 
factors has available a significant amount of nationally representative data.  

Body Weight 

Although body weight can be important for relating exposure to risk, it is often one of the 
least important contributors to variance in probabilistic risk assessments. A large amount of 
useful data is readily available for a number of demographic categories within the U.S. 
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population. The general approach described in this report for developing recommended body 
weight input distributions for PRA is to identify and acquire data, use available data analysis 
methods to identify important demographic factors and develop distributions of body weight for 
each demographic category. Finally, we suggest a transparent method for sampling from these 
distributions, using information from census data, to construct relevant case-specific 
distributions.  

Source of data: Measured body weights from the most recent National Health and 
Nutrition Examination Survey, NHANES III, (NCHS, 1996) are combined with the continuing 
survey of food intakes by individuals, CSFII, (USDA, 1998) and the Centers for Disease Control 
(CDC) data on children’s bodyweights. The combined data are used to construct demographically 
relevant distributions that are sampled from to construct input distributions for specific target 
populations.  

Key demographic factors: Body weight is primarily dependent upon age, followed by sex 
and race with the latter two factors only important for adults. Although race was found to have a 
measurable influence on body weight, even the combined CSFII and NHANES III data set was 
not large enough to allow development of distributions for all age/sex/race categories. Therefore, 
the demographic categories are constrained to age and sex.  

Demographically specific distributions: The approach taken here for development of 
age/sex specific distributions for body weight is similar to the methods described in Kuczmarski 
et al., (2000) and recent work characterizing distributions of body weight using data from 
NHANES II (Burmaster and Crouch, 1997). Smooth percentiles are developed from the raw data 
or the CDC growth charts then a three-parameter lognormal model is fit to the percentiles for 
each demographic category.   

Development of case specific distribution: Information about the demographic 
composition of the target population can be accessed through the U.S. Census interactive data 
retrieval service or by direct survey of the target population. This information is used to design a 
case-specific sampling strategy for reconstructing the target population from the demographic 
distributions. A representative number of values are drawn from each age/sex distribution then 
combined in a way that is relevant to the PRA (e.g., children ages 7-13 or adult women). An 
appropriate parametric model, typically a two-parameter lognormal or extreme value model, is fit 
to the simulated data. For small populations or cohorts the sampling and fitting process is 
repeated several times to estimate uncertainty about the model parameters.   

Exposure Duration 

Exposure duration (defined here as total duration within a specified region) is typically an 
influential input to a PRA. But exposure duration is rarely measured. Rather, surrogate data such 
as mobility, mortality, current residence time and/or tax records have been used to estimate 
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occupancy period, which is used as a surrogate for exposure duration (Israeli and Nelson, 1992; 
Johnson and Capel, 1992; Price et al., 1992; Sedman et al., 1998). Given the inherent 
uncertainties about the demographic makeup of the target population, all of the previously 
published methods give comparable results . The general approach taken for exposure duration in 
this report is to identify and acquire appropriate surrogate data, evaluate and identify the key 
demographic factors in that data and select or develop an appropriate model for relating the 
surrogate data to exposure duration.   

Source of data: The U.S. Census Bureau conducts regular national housing surveys.  
These surveys provide comprehensive housing statistics with a range of demographic factors. 
The data from 1995 (USDOC, 1995) were used in a previous report (Maddalena et al., 1999) to 
identify key demographic factors in the population. The Census Bureau (USDOC, 1999) also 
reports population mobility on a regular basis. Population mobility has remained relatively 
constant over the last few decades and as such provides a useful surrogate for estimating 
exposure duration for selected cohorts or populations. 

Identification of key demographic factors: Current residence time (CRT) has been used 
previously as a surrogate for exposure duration and to identify important factors relating to 
occupancy period (Maddalena et al., 1999). Results indicate that exposure duration is primarily 
dependent upon tenure (rent or own) and age. We found a significant difference between the 
probabilities of changing residences within the same county and that of moving to a different 
county.  

Development of occupancy period model: Because of the difficulty of obtaining 
occupant-age, occupant-number and tenure within a given housing stock or target region, we 
assume no prior knowledge of age or mortality rate.  Instead of individuals we focus the estimate 
of exposure duration on a specified number of homes within the target region. Exposure duration 
is simulated using only the tenure-based mobility that results in an occupant moving out of 
geographic region. A simple model is developed to simulate occupancy period over a specified 
time period based on the number of owner occupied and renter occupied homes within the target 
region. This model was found to be in good agreement with existing models that use a range of 
surrogate data.  

Final recommendation for exposure duration distribution: Readily available demographic 
information is used to design a sampling strategy for simulating the target population. An 
appropriate parametric model, typically a two-parameter exponential model, is fit to the 
simulated data for occupancy period across the housing stock in the exposure district. For a small 
target region the sampling and fitting process can be repeated several times to estimate 
uncertainty about the model parameter.  
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Water Intake  

Water intake can also be an influential input to a PRA. Data for water intake are from the 
same national survey that includes self-reported values of body weight but the values for water 
intake are from “recall” data, which may impact the quality of the data in ways that are difficult 
to predict. More importantly, long-term average water intakes for the population are estimated 
from short-term (2-day) sampling periods in these surveys. Although short-term data relates well 
to the overall population mean it greatly inflates the variance in the distribution of average daily 
intake values for individuals in the target population. Without correcting the inflated variance in 
the water intake data it is not possible to improve the relevance of the distribution using more 
complicated statistical models or demographic characteristics of the population. Therefore, we do 
not provide detailed information about possible demographic differences across the population. 
Rather, we evaluate the implications of using short-term data and develop recommendations for 
addressing these limitations with further study. 

Recommendations for water intake: Lognormal distributions appear to provide a 
reasonable fit to water intake data, (Burmaster, 1998; Roseberry and Burmaster, 1992), but a 
recent report suggests that a more complex 5-parameter generalized F-distribution may be 
warranted (USEPA, 2000b). Our own research indicates that a mixture model is appropriate. 
However, without addressing the issue of variance inflation caused by using short-term survey 
data, it is not possible to identify the most appropriate parametric model or to recommend a 
transparent approach for constructing task-specific distributions. Developing a method for 
improving the relevance of short-term data is currently beyond the scope of this project but 
recommendations for future research are provided.  
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1.0 Introduction 

This report describes research carried out at the Lawrence Berkeley National Laboratory 
(LBNL) to assist the U. S. Environmental Protection Agency (EPA) in developing a framework 
for supporting and evaluating probabilistic risk assessments. Among the current needs of the 
exposure-assessment community is the need to provide data for linking exposure, dose, and 
health information in ways that improve environmental surveillance, improve predictive models, 
and enhance risk assessment and risk management (NAS, 1994). The U.S. Environmental 
Protection Agency (EPA) Office of Emergency and Remedial Response (OERR) plays a lead role 
in developing national guidance and planning future activities that support the EPA Superfund 
Program.   

The OERR is in the process of updating its 1989 Risk Assessment Guidance for 
Superfund (RAGS) as part of the EPA Superfund reform activities. Volume 3 Part A of RAGS 
was recently released in draft form as an update to the existing two-volume set of RAGS 
(USEPA, 1999b). The update provides policy and technical guidance on conducting probabilistic 
risk assessment for both human and ecological receptors. Risk assessors now have the option of 
using probabilistic risk assessment (PRA) to provide supporting information for risk 
management decisions at Superfund hazardous waste sites. Consequently, risk managers and 
decision-makers will need to review and evaluate the adequacy of PRAs for supporting 
regulatory decisions.  

In judging the adequacy of a PRA, it is essential that the reviewer first understand the 
adequacy of the input distributions used in the assessment. An approach is needed for evaluating 
input distributions, from the risk manager’s perspective, using information that is easily 
calculated or readily available in the risk assessment documentation. In addition, given the level 
of effort required of both the risk assessor and the risk manager when performing and reviewing 
a PRA, a set of recommended distributions for commonly used and well-characterized exposure 
factors would help reduce the effort and improve the consistency of the PRA process.  

1.1 Probability Distributions in Exposure Assessment 

Estimating potential human exposure involves collection and analysis of large amounts of 
data coupled with the use of models.  Because these data and models must be used to 
characterize individual behaviors, contaminant transport, human contact, and uptake among large 
and often heterogeneous populations, there can be large variability and uncertainty associated 
with exposure predictions.   
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One common approach to address variability and uncertainty in exposure and risk 
assessments is the practice of compounding upper bound estimates in order to make decisions 
based on a highly conservative estimate of exposure.  Such compounding of upper bound 
estimates leaves the decision maker with no flexibility to address margins of error; to consider 
reducible versus irreducible uncertainty; to separate individual variability from true scientific 
uncertainty; or to consider benefits, costs, and comparable risks in the decision-making process.  
Because the compounding of conservative estimates does not serve the exposure assessment 
process well, there has been a growing effort to include variance propagation and uncertainty 
analyses into the risk assessment process.  This effort has culminated in the recent release of 
RAGS Volume 3 - Part A, Process for Conducting Probabilistic Risk Assessment (draft). 

For human populations, total exposure assessments that include time-activity patterns and 
micro-environmental data reveal that an exposure assessment is most valuable when it provides a 
comprehensive view of exposure pathways and identifies major sources of variability and 
uncertainty (McKone, 1994; McKone and Bogen, 1992; USEPA, 1999b, pg. xx). Monte Carlo 
sampling methods using carefully developed exposure factor distributions provide one of the 
most versatile and informative means for characterizing uncertainty and variability in exposure 
estimates (Cullen and Frey, 1999; Morgan and Henrion, 1990). The draft guidance in RAGS 3A 
describes the application of these methods to the risk assessment process.  However, the 
effectiveness of probabilistic methods for characterizing and communicating risk is largely 
dependent on the risk assessor’s ability to characterize the type and degree of uncertainty and 
variability associated with inputs in the risk model, particularly for those inputs that have a 
strong influence on the modeling outcome.  

A significant amount of discussion and debate has focused, from the risk assessor’s 
perspective, on the methods that are used to construct distributions for probabilistic risk 
assessment. However, little attention has been given to the issue of evaluating the input 
distributions that are ultimately used in the PRA from the risk manager or decision maker’s 
perspective. 

1.2 The Need for an Evaluation Process for Existing Distributions 

Constructing a distribution function for a given parameter begins by assembling 
information from the literature, from surveys and/or from experience. This information or data is 
selected, if possible, to be consistent with the model and its particular application. The values 
will vary as a result of measurement error, spatial and temporal variability, extrapolation of data 
from one scenario to another and lack of knowledge. When the data is limited, imprecise or 
imperfect – which is most often the case – then the process of constructing a distribution can 
become highly subjective. The process becomes less subjective as the amount of data for a given 
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parameter increases. However, a large set of data does not necessarily imply that the data is 
directly relevant to the risk scenario or that a suitable distribution function exists.  

Once the necessary information is acquired, the next step in the distribution development 
process is to identify an appropriate statistical model and to fit that model to the data. A number 
of papers, reports and books are available that describe − often in great detail − methods for 
selecting and/or constructing input distributions for probabilistic risk assessment (Conover, 1999; 
Cullen and Frey, 1999; D'Agostino and Stephens, 1986; USEPA, 1997b; USEPA, 1998; USEPA, 
1999a; USEPA, 2000b). In addition, computer software is readily available for automating much 
of the distribution development process. When these methods are applied, one obtains a 
distribution that provides an optimum fit to the available data.  However, the resulting 
distribution does not automatically provide the risk manager with a clear understanding of how 
well the distribution replicates either the underlying data or the true range of the exposure factor 
being represented.  

The quality or validity of the input distributions used in a probabilistic analysis directly 
influences the reliability of the model outcome, and the credibility of decisions that are based on 
that outcome. A significant amount of information is available to the risk assessor for 
constructing input distributions for the PRA. However, the problem of judging the task-specific 
adequacy of these distributions from the risk manager or decision-maker’s perspective has not 
been sufficiently addressed. There is a need for a consistent yet flexible evaluation approach that 
can be used by regional risk managers when evaluating PRAs. 

In order to develop an approach for evaluating existing exposure factor distributions, we 
first identify the key attributes that directly influence the adequacy of a given distribution for a 
specified task.  At a minimum, the attributes must characterize (i) the importance of the input 
distribution relative to other sources of uncertainty, (ii) the adequacy of the information that is 
used to develop the distribution and (iii) the performance of the final distribution relative to the 
original data and supporting evidence.  Once identified, these attributes can be used to provide a 
systematic approach for evaluating distributions and judging their adequacy in the context of a 
particular risk scenario.  

1.3 The Need for a Set of Recommended Exposure Factor Distributions  

As the number of inputs in a probabilistic risk assessment increases, so does the 
complexity of the analysis, and subsequently, the amount of effort required of both the risk 
professional performing the analysis and the risk manager reviewing it. For deterministic risk 
assessments, default inputs have improved the ease and the consistency of both performing and 
reviewing assessments. However, the idea of providing default distributions for exposure factors 
used in PRA can be inconsistent with probabilistic analysis. The problem is that the desire for a 
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small number of “conservative” or “health protective” distributions is often at odds with the need 
to insure adequate representation of the target population and explicit treatment of variability and 
uncertainty. This tradeoff between simplicity and relevance suggests the need for a process that 
identifies and incorporates the important inter- and intra-individual characteristics of the target 
population in a flexible and transparent manner. 

There are a number of tools and methods available for constructing input distributions for 
PRA. However, given the need for task-specific relevance, any single distribution will almost 
certainly be inadequate for representing different populations and exposure scenarios. What is 
needed is a transparent approach that balances consistency with flexibility. The approach taken in 
this report is to develop, for a given exposure factor, a set of recommended distributions that are 
relevant to each key demographic category. These demographically based distributions are then 
used to construct task- or cohort-specific distributions, with uncertainty and variability, based on 
readily available information about the size and demographic characteristics of the target 
population. A validated set of demographically based distributions can provide the necessary 
consistency for the distribution development process and a sampling scheme based on census 
data can provide the flexibility needed to address the range of target populations and exposure 
scenarios.  

1.4 Objectives of this Study 

The overall focus of this report is to improve the ease and consistency both of performing 
PRAs and evaluating the adequacy of existing risk assessments. This overall focus is divided into 
two primary objectives. The first objective is to provide a clear and concise monograph on the 
critical attributes of distributions, from the risk manager’s perspective, along with general 
recommendations for an evaluation process that relates these attributes to the task-specific 
adequacy of a distribution.  The second objective is to consider when “default” distributions 
might be appropriate for use in PRA and to move toward development of recommended 
distributions for a small set of frequently used and well characterized exposure factors.  

1.5 Overview of the Report 

The remainder of this report consists of eight sections.  In the next section, Section 2, we 
provide background on the development and use of distribution functions in exposure and risk 
assessment. The remaining chapters are divided into two parts. Part 1 (Sections 3-6) introduces 
the critical attributes for evaluating existing distributions, beginning in Section 3 with a 
discussion of sensitivity analysis, followed by the attributes that are specific to the data (Section 
4) and those that are specific to the distribution (Section 5). The last section in Part 1 (Section 6) 
describes a process for systematically considering each of the critical attributes in a way that both 
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organizes the information for judging the adequacy of the distribution and facilitates of focuses 
dialogue with the risk assessor and other risk professionals. In Part 2 of this report we begin to 
develop recommendations for task-specific distributions for several commonly used and well 
characterized exposure factors beginning with body weight (Section 7) followed by exposure 
duration (Section 8) and water intake (Section 9). 

 

2.0 Background 

An important step in the process of conducting an uncertainty analysis is defining 
distributions for model inputs that contribute to variance in the outcome. These distributions can 
be in the form of probability density functions (PDF), cumulative distribution functions (CDF), 
or empirical distribution functions (EDF). The purpose of these distributions is to define the 
range of values that a variable can take on and to assign a probability of obtaining any particular 
value within that range. One step in the process of constructing a probability distribution is to 
define the range and moments of the input data. Once this is done, various methods (subjective, 
graphical, and statistical) can be used to select and parameterize an appropriate statistical model 
or distribution and judge the effectiveness with which the distribution describes the data.  

2.1 Probabilistic Inputs and Models 

Exposure models are used to describe the relative magnitude and variation in human 
contact with environmental contaminants.  An important feature of exposure models is the ability 
to account for factors that influence variation in human contact (i.e. age, sex, location, activity 
patterns and physiological characteristics). Uncertainties limit the ability of models to fully 
characterize these relationships.  Uncertainty in model predictions can be from a number of 
different sources, including specification of the problem; formulation of the conceptual model; 
formulation of the computational model; estimation of input values; and calculation, 
interpretation, and documentation of the results.  Of these, only uncertainties due to estimation of 
input values can be quantified in a straightforward manner using error propagation techniques. 
Uncertainties that arise from errors associated with the specification of the problem or the model 
formulation are clearly important but fall outside of the scope of this report.   

Point value inputs to models fail to express exposure variation and the uncertainty that 
arises from the use of incomplete and proxy data.  Such issues can be addressed in part with the 
use of probability distributions as inputs to models. The value of information derived from a 
probabilistic analysis is very much dependent on the care given to the process of constructing the 
input parameter distributions in the context of the overall assessment. The data, scenarios, and/or 
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models used to represent this overall assessment of exposures to environmental contaminants 
include at least five important relationships:  

(i) The magnitude of the source medium concentration, that is, the level of contaminant in 
the air, water, soil, and food with which the population has contact;  

(ii) the contaminant concentration ratio, which defines how much a source medium 
concentration changes as a result of transfers, transformation, partitioning, dilution etc. 
prior to human contact; 

(iii) the rate of human contact, which includes the frequency (days per year or hours per 
day) and magnitude (m3/day, L/day or kg/day) of human contact with a potentially 
contaminated exposure medium; 

(iv) the duration of potential contact for the population of interest as it relates to the 
fraction of lifetime during which an individual is potentially exposed; and 

(v) the averaging time for the type of health effects under consideration, i.e. is the 
appropriate averaging time the cumulative duration of exposure (as is typical for 
cancer and chronic diseases) or some relatively short time period (as is the case for 
acute effects).  

Taken together, these relationships define the risk scenario and must be considered both 
individually and in concert when developing and evaluating distributions. Not only should the 
distributions provide adequate representation of each exposure factor, it is also important that the 
various relationships that make up a PRA receive homologous treatment (i.e., the level of detail 
and sophistication should be comparable across the entire process).  For example, developing a 
sophisticated treatment of variability and uncertainty for intakes may not improve the credibility 
of the assessment if a comparable level of knowledge is not available for characterizing the 
concentrations in exposure media. As a result, acceptable levels of uncertainty will differ from 
one exposure scenario to the next and a distribution that is adequate for one situation is not 
necessarily adequate for the next.  

2.2 Variability and Uncertainty 

One of the issues in uncertainty analysis that must be considered is how to distinguish 
between variability and uncertainty during the characterization of inputs and modeling results. 
Variability refers to quantities that are distributed empirically–such factors as rainfall, soil 
characteristics, weather patterns and human characteristics that come about through processes 
that we expect to be stochastic because they reflect actual variations in nature. These processes 
are inherently random. In contrast, true uncertainty or model-specification error (e.g., statistical 
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estimation error) refers to an input that, in theory, has a single value but the value cannot be 
known with precision due to measurement or estimation error. 

In many situations, an exposure model is used to characterize the relative magnitude and 
importance of parameter uncertainty (lack of information) versus parameter variability (inter-
individual variation). It is important to distinguish between the two forms of variance because 
each plays a unique role in decision making. Uncertainty can be reduced by further study while 
variability can only be better characterized (i.e., uncertainty about the variability might be 
reduced through further study).   

 
Figure 1: The family of cumulative probability plots reflecting both variability and 

uncertainty. Each curve expresses a realization of a variability distribution at 
a different level of uncertainty. Various methods are available for 
transforming the family of curves into confidence regions about the 
distributions. 

 

To fully express the combined impact of uncertainty and variability, it is sometimes 
necessary to carry out a two-dimensional (2-D) Monte Carlo simulation consisting of an inner set 
of calculations embedded within an outer set. Bogen and Spear (1987) first described this 
approach. In the first phase, a single realization is obtained from the distribution of each 
uncertain parameter, followed by repeated sampling from the variable parameters. This process is 
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repeated until a large number of uncertain parameter value sets are taken in the outer phase and a 
larger number of the variable parameter values are used in the inner set of calculations. The 
simulation results are plotted as either a two-dimensional surface or as a family of variability 
curves representing uncertainty. Typical results for this type of simulation are shown in Figure 1.  

In short, two-dimensional Monte Carlo simulations require that probabilistic inputs be 
parameterized not only with the statistical descriptors of the model (i.e., mean, standard 
deviation, mode, scale, etc.) but also with distributions representing uncertainty about those 
parameters as well.  

2.3 The Link between Data and PDFs 

Although it is occasionally appropriate to use raw data or a custom distribution to 
characterize the inputs for a probabilistic analysis, it is often useful to present the range of values 
in terms of a standard probability distribution. It is important that the selected distribution be 
matched to the range and moments of the available data. Although many different distributions 
are available to choose from (Evans et al., 1993; Johnson et al., 1994a; Johnson et al., 1994b), 
some of the more commonly used statistical models include the Normal, the Lognormal, the 
Uniform, the Log-uniform, and Triangular (Cullen and Frey, 1999; McKone et al., 1996). 

Probability distributions are typically displayed as either probability density functions 
(PDFs) or as cumulative distribution functions (CDFs). For a continuous distribution, the PDF is 
a smooth function, f(x), which represents the density of probability that a variate X has a value 
between x - ∆∆∆∆x/2 and x + ∆∆∆∆x/2, where ∆∆∆∆x is an infinitely small interval (Morgan and Henrion, 
1990). In a CDF, F(x) represents the probability that a value realized by the variate X is less than 
or equal to x. Figure 2a shows a PDF for a continuous distribution and Figure 2b shows the 
corresponding CDF for this distribution. These two diagrams illustrate the PDF and CDF that 
would be used to represent a normal distribution with mean value, 1, and standard deviation, 0.3. 
Continuous distributions, like the examples in Figure 2, may be separated into three categories: 
(1) Those that represent only variability, (2) those that represent only uncertainty and (3) those 
that represent both variability and uncertainty.  

There are a number of methods for constructing a parametric PDF from observations 
(data). These include moments matching, graphical methods, goodness of fit approaches, 
maximum likelihood methods and Bayesian methods, among others (Cullen and Frey, 1999; 
D'Agostino and Stephens, 1986; McKone et al., 1996; USEPA, 2000b). When these methods are 
applied, one obtains a distribution that has been optimized to fit the available observations. 
Often, more than one parametric model can satisfactorily fit a data set but the function used to 
optimize the fit rarely provides decisive information about which of two models is better. Thus, 
the final choice of model (distribution type) is often based on a combination of theory, 
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convention and/or convenience (Thompson, 1999). Each step in the distribution development 
process must be considered in the context of the overall risk scenario. 
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Figure 2a: Probability density function for a Normal distribution with mean of 1 and 

standard deviation of 0.3. 
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Figure 2b: Cumulative density function for a Normal distribution with mean of 1 and 

standard deviation of 0.3. 
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2.4 A Tiered Approach to Uncertainty/Variability Analysis 

As discussed earlier (section 2.1) compounding of upper bound estimates for exposure 
factors is no longer the generally accepted approach to exposure and risk assessment.  A more 
informative approach is one that provides the decision maker with flexibility to address margins 
of error; to consider reducible versus irreducible uncertainty; to separate individual variability 
from true scientific uncertainty; and to consider benefits, costs, and comparable risks in the 
decision making process.  In order to make an exposure assessment consistent with such an 
approach, it should have both sensitivity and uncertainty analyses incorporated directly into an 
iterative process by which premises lead to measurements, measurements lead to models, models 
lead to better premises, and better premises lead to additional, better-informed measurements. In 
1996, the U.S. EPA Risk Assessment Forum held a workshop on Monte Carlo Analysis 
(USEPA, 1997b). Among the many useful discussions at this meeting was a call for a “tiered” 
approach for probabilistic risk analysis (PRA) that is iterative and progressively more complex. 
Such a tiered approach required new methods in the exposure assessment community and greater 
demands on the number and types of exposure measurements that must be made.  

According to the summary report of this workshop (USEPA, 1997b), at least three tiers 
are needed. First, the variance associated with all input values should be clearly stated and the 
impact of these variances on the final estimates of risk assessed. At a minimum, the estimation 
error or the experimental variance associated with the parameters should be included when these 
values or their estimation equations are defined. A clear summary and justification of the 
assumptions used for each aspect of a model should be provided. In addition, it should be stated 
whether these assumptions are likely to result in representative values or conservative (upper 
bound) estimates. Second, a sensitivity analysis should be used to assess how model predictions 
are impacted by model reliability and data precision. The goal of a sensitivity analysis is to 
evaluate and rank the input parameters, and modeling assumptions, on the basis of their 
contribution to variance in the output. Third, variance propagation or error analysis techniques 
(including but not necessarily limited to Monte-Carlo methods) should be used to carefully map 
how the overall precision of risk estimates are tied to the variability and uncertainty associated 
with the models, inputs, and risk scenarios. 

2.5 Justification for an Evaluation Process and Recommended 
Distributions 

The numerous modeling relationships that make up a risk scenario (section 2.1), the need 
to separate uncertainty and variability (section 2.2), the subjective nature of the distribution 
development process (section 2.3), and the iterative or tiered approach to PRA (section 2.4), 
combine to increase the difficulty associated with evaluating PRAs. Guidance is readily available 
for constructing distributions (Cullen and Frey, 1999; D'Agostino and Stephens, 1986; Seiler and 
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Alvarez, 1996; Thompson, 1999; USEPA, 2000b) and for performing PRA (Burmaster and 
Anderson, 1994; Cullen and Frey, 1999; Morgan and Henrion, 1990; Smith, 1994; Thomspon et 
al., 1992; USEPA, 1997b; USEPA, 1999b). However, the guidance is often written specifically 
for the risk assessor or statistician, with little or no guidance available for the decision maker or 
risk manager who must evaluate a PRA and judge the adequacy of this information before using 
it to support regulatory decisions.   

This report is different from most others in the probabilistic risk analysis literature in that 
it approaches the issue from the perspective of the “Risk Manager” charged with using the output 
from a stochastic risk model. The authors recognize that judgement about the task-specific 
adequacy of a PRA, and the individual distributions within the PRA, is best left to the regional 
risk manager. Even if it were possible to entirely remove subjectivity from the review process, it 
would not be advisable to reduce the process to a simple scorecard.  The risk manager brings a 
level of familiarity and understanding of the specific risk scenario to the evaluation process that 
cannot be captured in a scorecard or checklist. However, we do think that a concise description 
of the critical attributes that most influence the adequacy of a distribution can improve the 
consistency of the review process without removing the human element. Systematically working 
through the attributes can facilitate constructive dialogue between the risk manager, the risk 
assessor and other risk professionals focusing attention on the key elements of the PRA and 
providing consistency to the overall process. Therefore, the first objective of this report is to 
provide a monograph on the critical attributes of distributions, from the risk manager’s 
perspective, along with general recommendations for relating these attributes to the task-specific 
adequacy of an input distribution.  

Even with simple guidelines for reviewing distributions, PRAs can be very labor 
intensive for both the risk assessor and the risk manager. It has been shown that even when large, 
high quality data sets are available, risk practitioners will often select different statistical models 
to represent the data and the rational for the selection of different exposure factor distributions is 
often hard to discern (Binkowitz and Wartenberg, 2001). Default inputs have improved both the 
ease and the consistency of deterministic risk assessments. However, it remains unclear how 
appropriate default distributions might be for PRA. A single recommended distribution, or even a 
small set of “defaults” to choose from, would almost certainly limit the risk practitioner’s ability 
to adequately model a specific target population and risk scenario. Thus, the second objective of 
this report is to attempt to strike a balance between the consistency of default inputs and the need 
to maintain flexibility and relevance in the PRA process.  The approach developed in Part 2 of 
this report begins with raw data and readily available information about the target population.  
We then provide a transparent process for combining these two pieces of information in a way 
that is consistent across assessments but also provides enough flexibility to achieve relevance for 
a specified risk scenario.    
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Part 1 
Critical Attributes for Evaluating Distributions 

 
For this part of the report, we draw on numerous studies, reports, workshops and our own 

experience, to identify and summarize the critical attributes of a probabilistic input distribution. 
Even though there are many different ways to develop a distribution, we find that the information 
needed to judge its task-specific adequacy can be summarized using seven key attributes. For 
simplicity, we group these attributes into three categories that only coincidentally resemble the 
three tiers introduced earlier for development of a probabilistic risk assessment (section 2.3). The 
first category, which directly influences the level of scrutiny one gives to an exposure factor 
input, considers the importance of the distribution in the context of the overall probabilistic risk 
analysis, or, put another way, the sensitivity of the PRA to the distribution. The second category 
considers the original information (data, summary statistics, expert judgement, etc.) that provides 
the foundation of any constructed distribution. The key attributes in the second category are 
quantity, quality and relevance of the data. The final category considers how well the final 
distribution represents the original information and the degree to which the performance of the 
distribution can be confirmed or validated using alternate models, assumptions, theoretical 
underpinnings and/or independent data. The attributes in the third category include statistical 
goodness-of-fit, graphical goodness-of-fit and performance evaluation or cross-validation results.  

The risk manager’s judgment about the overall adequacy of a distribution will likely 
consider all seven attributes in concert but for clarity we first summarize each category (and the 
specific attributes of each category), then we introduce a systematic evaluation process for 
tracking and communicating the information. Some discussion is provided for the individual 
attributes with respect to their overlap and interaction and how this can impact the adequacy of 
the final distribution. The last section in Part 1 provides a graphical paper-based tool and 
systematic approach for evaluating the attributes of an exposure factor distribution. This tool 
combines the various types of information in a way that facilitates judgement about the task-
specific adequacy of the distribution. The process is designed to be flexible, allowing the risk 
manager to weigh information about the attributes and maintain the transparency that is necessary 
for constructive dialogue among the risk practitioners involved in the assessment. 

 

3.0 Category One: The Sensitivity Analysis  

There are many methods for investigating the relationship between variation in the inputs 
to a model and variation in the model outcome (Campolongo et al., 2000). These investigations, 
collectively termed sensitivity analyses (SA) play a vital role in the set-up, use and evaluation of 
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probabilistic risk models. Therefore, all PRAs should include results and discussion from some 
form of sensitivity analysis (USEPA, 1997b, USEPA, 1999 #101). These results will likely be 
reported as sensitivity scores, contribution to variance, correlation coefficients, or regression 
coefficients. Results from the SA can help the reviewer identify the inputs that contribute the 
most to variance in the model output and therefore require the closest scrutiny during the 
evaluation process. We begin with an overview of the types of sensitivity analysis that a reviewer 
might see in a PRA. We then discuss approaches for using results of the SA in the distribution 
evaluation process.  

3.1 The Myriad of Sensitivity Analysis Techniques 

The relationship between the variance (uncertainty and variability) in model inputs and 
variance in the model outcome is generally estimated using either analytical methods or 
simulation methods. Analytical methods use mathematics to derive an expression for the model 
outcome variance. If the analytical expression is exact, it can be related directly to the input 
variances. If approximate, some steps in the derivation may require alternative approaches. 
Simulation methods provide numbers, histograms and/or curves from which the model outcome 
variance is read.  

In order to discuss sensitivity analysis, we first recognize that any mathematical model 
produces an outcome Y, such as risk, that is a function of w input variates, Xi, and time, t, 

Y = f (X1,X2,X3,...Xw,t) (1) 

The explanatory variables, Xi, represent the various inputs to the model. As applied to a 
mathematical model, sensitivity analysis involves measuring changes in model outcome (Y) that 
result from changes in individual model inputs (Xi). The goal of a sensitivity analysis with 
respect to the PRA evaluation process is to rank the Xis on the basis of their contribution to 
variance in the output.  

Sensitivity analyses can be performed on either a local or global scale. A local sensitivity 
analysis examines the effects of small changes in Xi at some specified point in the range of 
input/outcome values. A global sensitivity analysis quantifies the effects of variation in Xis over 
their entire range of values. The global sensitivity analysis requires a probabilistic sampling 
method (e.g., Monte Carlo or Latin Hypercube sampling) as a starting point.  

3.1.1 Local Sensitivity Analysis Techniques 

Iman and Helton (1988) and others (Morgan and Henrion, 1990; Saltelli et al., 2000) 
describe different measures of local sensitivity. The simplest form is given as the rate of change 
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in the output with respect to change in the input evaluated at the nominal or base case given by 
X°  (typically in the central range or at the mean value of the output). 

( )
oX

yxS x
yU 




∂
∂=,  (2) 

The problem with the simple sensitivity score is that the scale or units of the input 
influences the measurement of sensitivity. To normalize the sensitivity measure and remove its 
dependence on scale an “elasticity score” can be used, such as 

( ) o

o

o y
x

x
yU

X
yxE 




∂
∂=,  (3) 

where x° and y° are the base case values or quantiles of the input and output. Elasticity is simply 
the ratio of percent change in the output caused by a given percent change in the input.  

Although better than the simple measure, the elasticity measure still has the limitation 
that it does not account for uncertainty. Even an exposure factor with a very high elasticity score 
can be of little importance if we know the value of the input with a high degree of certainty. To 
account for the level of uncertainty in each input, the coefficient of variation (CV) for the input is 
used as a normalization factor instead of the ratio x° /y° where CV is the ratio of the arithmetic 
standard deviation to the arithmetic mean. 

3.1.2 Exact Analytical Methods 

For many mathematical operations, including addition, subtraction, multiplication, 
division, logarithms, exponential, power relations, etc. there are exact analytical expressions for 
explicitly relating input variance and covariance to variance in the model predictions (Bevington, 
1969). In analytical methods, the mean, variance, and covariance matrix of the input distributions 
are used to determine the mean and variance of the outcome. These methods are often referred to 
as error analysis. Textbooks such as Data Reduction and Error Analysis for the Physical 
Sciences by Bevington (1969) give variance propagation formulae for a range of mathematical 
operations. Many models used in risk assessment can be simplified to a chain of additive and 
multiplicative terms using these formulas.  

The following is an example of the exact analytical approach. If ψ is the product of x 
times y times z, then the equation for the mean or expected value of ψ, E(ψ), is: 

E(ψ)= E(x) × E(y) × E(z)  (4) 

The variance in ψ (the standard deviation squared) is given by: 
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where 2
xσ , 

2
yσ , 2zσ  are the variances of the variates X, Y, Z, and 

2
xyσ , 2

xzσ , 2
yzσ , are, 

respectfully, the covariance of x, y and z,  (Bevington, 1969). The covariance terms are defined 
as: 
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The expected value, taken here as the arithmetic mean ( x ), is used to represent all inputs 
derived from a set of measured values, assuming equal sampling probability—even those that 
might have geometric distributions. The x  is computed by summing the n observations in the 
dataset and dividing this sum by n:   

Arithmetic mean 
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The variance (unbiased) is calculated as: 
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The standard deviation (σ) is the square root of the variance and the coefficient of variation (CV) 
is xσ .  It should be noted that based on the central limit theorem of statistics, the confidence 
associated with the estimate of x  becomes large as the number of samples used to estimate x  
also becomes large (Snedecor and Cochran, 1989). Consequently, the reliability of the mean and 
CV estimates of a variable is low when the sample size is small. An estimate of the error 
associated with estimating a mean from a small sample size is the standard error of the mean 
[S.E. ( )x ] given by: 
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Bevington (1969) lists variance propagation solutions like the one illustrated in Equations 
5 through 9 for several mathematical operations. These relationships hold regardless of the shape 
of the input distributions. For situations where covariance is negligible, variance propagation 
solutions can be used to develop simple estimates for each input’s contribution to outcome 
variance. However, the analytical method can not be used to estimate confidence intervals or 
percentiles of the output variable unless we have prior knowledge of the shape of the output 
distribution. 

3.1.3 Global Sensitivity Analysis Techniques 

When random sampling methods such as Monte Carlo or Latin Hypercube sampling are 
used to estimate outcome variance by propagating input variance through a given model, several 
measures of sensitivity can be applied. These include graphical methods, approximate analytical 
methods, correlation- and regression-coefficients in both the units of the data and rank-
transformed space. In addition, variations on the standard approaches such as regional sensitivity 
analysis and different forms of probabilistic sensitivity analysis are also available for 
characterizing different aspects of model dependencies on input variance. Each of these methods 
is briefly described below.  

 3.1.3.1 Graphical Methods of Analysis 
It is often useful to begin the process of understanding the nature and strength of 

relationships between inputs and outputs of a model with visual observations.  This can be 
accomplished using scatter plots of model output values plotted against the random values 
selected for each input/output pair in the analysis.  These plots can provide insight, show 
nonlinear effects, thresholds, and other subtle but potentially important relationships. In addition, 
scatter plots are useful in diagnostic analyses to help determine if the model is working as 
intended (Iman and Helton, 1988) or if the sensitivity is dominant over a given range of the data 
(Helton et al., 1989).  

When performing a graphical analysis, one has several options for viewing data. Two of 
the more common options are plotting values in the original units of the data or plotting in rank-
transformed space. The rank-transformed values are determined by ranking them, and indexing 
them by their order position. (Cullen and Frey, 1999, pg. 259; Snedecor and Cochran, 1989, 
pg.194).  Viewing the data according to their rank can remove the influence of outliers and can 
help to highlight nonlinear and continuously increasing or decreasing (i.e., monotonic) 
relationships. However, the advantages of working with rank-transformed data are often much 
more pronounced in the correlation and regression analyses summarized later in this section.  

3.1.3.2 Empirical Methods  
When a probabilistic analysis is performed, numerical methods are needed to estimate the 

individual contribution of various inputs to model outcome variance.  The most commonly used 
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numerical methods for ranking uncertain parameters are correlation and regression methods. 
These methods are described in the Safety Series 100 report of the International Atomic Energy 
Association (IAEA, 1989) and in other reference books such as those by Draper and Smith 
(1981), Freund and Minton (1979) and Saltelli et al. (2000).  A brief overview is provided here. 
The reader should refer to the original references for details on each method. 

Standard Correlation Coefficients: A simple, but not necessarily reliable way to derive a ranking 
for model inputs in a Monte-Carlo simulation is to compute the correlation coefficient between 
model predictions and the random variates of each model input.  The correlation coefficient, ρYX, 
is a measure of the degree of association between two variates that are distributed over a range 
such that   

[ ]XY
YXYX σσ

σρ
2

=  (10) 

where 2
YXσ is the covariance between input X and output Y, and σX and σY are the standard 

deviation of the variates X and Y respectively. 

For a Monte-Carlo type simulation with m realizations, the m pairs of model input/output 
values are correlated using the relationship between each Xj and associated outcome Y.  From a 
given random sample (x1, y1), (x2, y2), ..., (xm, ym),  of size m from the joint distribution of Y 
and X, the sample or empirical correlation coefficient ρYX is obtained from 
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The sample correlation coefficient is a measure of the degree of linear relationship 

between the set or simulated X and Y variates.  This correlation gives an estimate of the linear 
contribution of the input to uncertainty in the model prediction.  By averaging the effect of each 
input over the joint probability distribution for all other inputs, it is inherently a global measure 
of uncertainty importance (Morgan and Henrion, 1990).   

Partial Correlation Coefficients: Iman and colleagues (1980; 1988) have also suggested the use 
of partial correlation coefficients (PCC), which is a measure of the contribution of an input to the 
output variance, after removing the effects attributable to the other inputs. PCC are particularly 
useful when there is significant correlation among inputs. PCC indicate the degree of linear 
relationship between those portions of the model prediction and the input that cannot be 
explained by a linear relationship of each to the remaining inputs (Iman and Helton, 1988). The 
partial correlation coefficient is calculated by first developing a set of regression models 
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where ŷ  and x̂ are the outcome and input of regressions for Xj, respectively, b0 and c0 are 
intercepts, and bk and ck are weighting coefficients. The partial correlation coefficient for the jth 

input is then calculated as the correlation between YY ˆ− and jj XX ˆ− .  

Correlation methods can over-predict the sensitivity of the outcome to a particular input 
when outliers are present in the input/output pairs. Likewise, the method can under-predict the 
importance when the relationship is nonlinear but monotonic. One way to reduce misleading 
results from the sensitivity analysis is to transform the values into ranks as described earlier 
(section 3.1…) and perform the correlation analysis on the ranks rather than the actual values. 

Regression Models and Standardized Regression Coefficients: Another approach to evaluating 
the strength of the relationship between inputs and outputs is based on a regression analysis. 
Consider a least squares regression model fit to estimate the output, Y, as a linear function of the 
inputs, Xj. (Note that the index j is over all inputs, whereas k was over the m sample values from 
a probabilistic analysis for a given input) 
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The βj  regression coefficients are measures of the linear sensitivity of Y to input Xj 
(Draper and Smith, 1981).  Regression coefficients have the disadvantage that they depend on the 
units or scale of measurement of Y and Xj. A more useful measure of sensitivity, known as the 
standardized regressions coefficient  (SRC), may be obtained by multiplying each coefficient by 
the ratio of the estimated standard deviations, s, of Xj to Y such that (Draper and Smith, 1981) 
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×
=

β
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It is often useful to perform stepwise regression, producing a sequence of linear models 
consisting of 1, 2, 3, up to the total number of the input variables respectively. Inputs are added 
one at a time to maximize the fit of the model according to an R2 value. The sequence in which 
they are selected is a useful measure of their importance, as is the incremental increase in R2 that 
they produce. 
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An alternative approach relates the changes in Y with respect to Xj, which is based on the 
partial derivative with respect to Xj. The coefficients aj, j=1, 2, ..., w are from a multiple linear 
regression model of the results from a probabilistic analysis having w input variates 

ε+++++= ww XaXaXaaY ...22110  (14) 

and represent the partial derivatives of Y with respect to Xj. The aj indicate the change in Y 
associated with unit changes in Xj, all other Xk, k≠j remaining constant. If Y and Xj are 
standardized according to 
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are called standardized partial regression coefficients. The standardized partial regression 
coefficients indicate how many standard deviation changes in Y are associated with one standard 
deviation change in Xj, all other Xk, k≠j, remaining constant.  

As with the correlation methods, the regression methods are a measure of the linear 
relationship and do not perform well with nonlinear but monotonic input/output pairs or when 
outliers are present in the data. However, as with the correlation methods, regression methods 
can also be extended to evaluate rank-transformed data. For further details on these and other 
methods, the reader should consult the specific reference included in this section.   

3.1.3.3 Approximate Analytical Method 
In order to rank the relative importance of inputs that are truly uncertain versus variable 

inputs, McKone (1994) used an approximate analytical method to assess variance contributions 
from groups of parameters.  Whereas exact analytical methods and numerical methods are used 
to rank the contribution of individual parameters, the approximate analytical method (McKone, 
1994) ranks groups of parameters in exposure models.   

Depending on the structure of the model, it is assumed that variance combines as either 
an additive, multiplicative, or geometric function.  That is, if we consider that a given outcome, 
Y, comes about as a function of both uncertain (U) and variable parameters (V), 

( )nn VVVUUUfY ,...,,;,...,, 2121=  (17) 
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then the total variance (i.e., uncertainty and variability) in Y can be approximated from the mean 
and standard deviation of the U and V parameters according to following expressions, which are, 
respectively, additive, multiplicative, and geometric,  

2222222 ......
2121 nn VVVUUUY σσσσσσσ +++++++=  (18) 
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where E[Y] is the expected value of Y and ηj and υj are expected values of the respective U and V 
parameters.   

Because some inputs are correlated and the contribution to variance from a group of 
variables and not a single variable is modeled in Eqs. 18-20, it is not possible to determine a 
priori how the overall variance in Y is attributed to the uncertain and variable input groupings.  In 
one method for evaluating contribution to variance, a number of realizations are used to generate 
a “base case” with all inputs treated as probabilistic. Next, a second set of realizations is 
generated using the same random number sequence but with either the uncertain set or variable 
set (exclusion case) treated probabilistically.  Finally the same number of realizations is 
generated, again with the same random number sequence, but with only parts of input set allowed 
to vary (partial inclusion).  This process is repeated for each parameter category.  

The variances obtained from the base case, exclusion case, and partial inclusion are 
grouped as additive, multiplicative, and geometric to allow evaluation of variance attributable to 
uncertain, variable, or mixed parameters. The method is based on a predefined set of criteria that 
leads to a “robust” solution (McKone, 1994).  The approach provides insight into model structure 
and interaction among various categories of inputs. 

3.1.3.4 Regional Sensitivity Analysis 
Spear and Hornberger (Hornberger and Spear, 1980; 1980) first described what they 

defined as a regional sensitivity analysis (RSA) to investigate parameter structure and parameter 
interaction in a complex environmental model. The method has since been used in a wide range 
of model systems ((Spear et al., 1994), and references therein). In the RSA method, random 
values are drawn from input PDFs and used to calculate a set of model outcomes. Each input is 
assigned a binary classification (yes-no, pass-fail) depending on whether or not the outcome is in 
agreement with some expected or observed behavior of the system (specified in advance). Spear 
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and Hornberger (1980) showed that, for a given parameter, the degree of separation between the 
CDF of the inputs classified as "pass" and the those classified as "fail", is an indication of the 
importance of that parameter toward the attainment of the specified outcome.  

Beck and Chen (2000; Chen and Beck, 1998) recently modified the RSA approach to 
evaluate the sensitivity of a model at different regions of the outcome distribution. For example, 
the method presented by Chen and Beck can be used to identify inputs that influence the high end 
of the outcome distribution. In higher-order fate and exposure models (those having a large 
number of inputs) different inputs might be important to the outcome variance as one moves 
from the low end of the outcome distribution to the upper tail. This is particularly important 
when the assessment is directed at a specified outcome (i.e., estimate of risk in excess of some 
predetermined value).  

3.2 Interpreting the Sensitivity Analysis Results 

There are almost as many ways to interpret results from a sensitivity analyses as there are 
different ways for generating those results. Many of the sensitivity analysis techniques described 
above, and elsewhere (Saltelli et al., 2000), are designed as diagnostic and evaluative tools to 
help model developers gain insight into the level and source of uncertainty in a model and 
whether that uncertainty is acceptable given the modeling task (Scott et al., 2000). In addition, 
different types of sensitivity analyses will be used during different phases of the model 
development process. Simple screening level analyses will likely be used in the early phases of 
the modeling to get a general idea of the important inputs while more detailed analyses (Chen 
and Beck, 1998; Maddalena et al., 2001; McKone, 1994) might be performed during the final 
stages of model development and evaluation. Although absolute measures of sensitivity from the 
different methods do not always agree, the relative ranking of importance is typically conserved 
for the input distributions, particularly those that have a significant contribution to outcome 
variance (McKone et al., 1995).  

Even though a value can be calculated for each probabilistic variable in the sensitivity 
analysis, not all inputs in a model contribute significantly to outcome variance. Although some 
exposure and risk scenarios require a large number of stochastic inputs to fully characterize the 
outcome variance, the majority of scenarios are controlled by a relatively small number of inputs 
(Maddalena et al., 2001; McKone and Bogen, 1992).  This is particularly true in the higher order 
regulatory environmental models that have a large number of input variables. It is advantageous 
for both the risk assessor and risk manager to understand which inputs need to be treated as 
stochastic, which can be assigned point values and which can be excluded from the calculations. 
It is best to classify the inputs early in the model development process before investing resources 
into the development and evaluation of distributions that will not influence the outcome.  
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Therefore, results from a number of different sensitivity analysis exercises will likely be 
included in the dialogue between the risk assessor and risk manager as they work through the 
various tiers of a probabilistic risk assessment.  The results reported in the final PRA will likely 
be given for each probabilistic variable as a measure of rank correlation (or partial rank 
correlation) generated directly from the final output of the probabilistic analysis. Rank correlation 
results are reported on either a scale from –1 to +1, (depending on whether increasing the input 
tends to decrease or increase the output) or as an approximate contribution to variance on a scale 
normalized to unity (or 100%). If some of the inputs in the risk model are correlated, the 
sensitivity analysis results should be generated and presented both with and without correlation 
among the inputs (or as partial rank correlation). When the model outcome is sensitive to one of 
the correlated inputs it can inflate or mask the importance of the other variable if correlation is 
included in the analysis. 

Regardless of how the results are presented, dialogue during the risk assessment process 
and information in the final PRA should provide enough detail for the Risk Manager to have a 
clear understanding of the relative importance of the inputs in the model. 

3.3 Relating Sensitivity Analysis Results to the other Attributes  

While the remaining categories and attributes of the distribution (described in the 
following chapters) relate to the intrinsic properties of a particular distribution, the sensitivity 
analysis category relates the adequacy of those attributes to the overall assessment. Presumably, 
by the time the final PRA is completed, decisions about which inputs to treat as probabilistic, 
which to model as point values and which to exclude from the assessment will already have been 
made. In deciding that an exposure factor distribution is adequate for a given task, the risk 
professional is always making a subjective decision. Nevertheless, sensitivity analysis could and 
should provide valuable information for supporting the decision.  

Distributions that contribute less than a few percent (normalized scale) to the outcome 
variance of the model will typically only require a quick check to insure that the central tendency 
and the approximate range of the distribution are appropriate. The remaining distributions should 
be taken to the next level of review and the information about the specific attributes should be 
weighted according to overall importance of the given input determined in the sensitivity 
analysis. 
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4.0 Category Two: Adequacy of the Data  

Although there are many sources of information that can be used to construct 
distributions, the primary focus of this section is on the adequacy of raw data. For information on 
the adequacy of expert judgment in the distribution development process, the reader is referred to 
Morgan and Henrion (1990). For a discussion of the adequacy of summary statistics for 
development of distributions see the recent reports by Research Triangle Institute (Myers et al., 
1998; USEPA, 2000b). However, the following discussion about the adequacy of raw data can be 
applied to summary statistics if information about the original source of data is available. 

The three key attributes of the raw data used to develop distributions include quantity 
(number of samples in the data set), quality (precision and accuracy of the data collection 
process) and relevance (relationship of the data to the actual exposure factor within the 
population, cohort or scenario of interest). These attributes represent the knowledge base that 
provides the foundation for constructing a distribution. Lack of data or poor quality data does not 
necessarily mean one cannot construct an adequate distribution for the PRA. However, 
limitations in the data or gaps in the knowledge base must be acknowledged by explicitly 
including uncertainty in the distribution. Methods have been described that relate sample size to 
uncertainty in probability distributions (Cullen and Frey, 1999; Morgan and Henrion, 1990). 
Although much more subjective in nature, the issue of relating data quality and relevance to 
uncertainty has also been discussed (Morgan and Henrion, 1990; USEPA, 1999a). 

4.1 Data Quantity Attribute  

The quantity of data used to construct a distribution is important because uncertainty in 
the distribution is inversely related to the sample size. For very small samples, uncertainty about 
the selection of a particular parametric model increases greatly. In addition, precision of the 
various methods for estimating the value of model parameters (e.g., mean, standard deviation, 
mode, etc.) decreases with decreasing sample size. This lack of precision in the statistical 
parameters is much more pronounced for the moments representing the spread of the data than 
for the central tendency. Using a form of bootstrap sampling, which is a method for repeatedly 
sampling data to reduce bias and get estimates of variance, Cullen and Frey (1999, pp. 107-113) 
have also shown that skewness and kurtosis (i.e., the shape of the distribution) are influenced by 
sample size.  

Although the central moments relating to shape can be useful to the risk assessor when 
choosing an appropriate statistical model to represent data, the primary concern for the risk 
manager is how sample size might influence uncertainty about the range and percentiles of the 
data (and subsequent distribution). Therefore, recommendations developed in this section for 
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evaluation of the data quantity attribute are focused primarily on the second central moment of 
the data and methods for estimating uncertainty about the percentiles.  

4.1.1 Relating Sample Size to Precision in Distributions 

Ershow and Cantor (1989) specify the minimum number of samples required to report 
various percentiles of water intake. The values were based on guidelines developed by the 
National Center for Health Statistics. Sample sizes needed to report the 50th, 75th, 90th, 95th and 
99th percentiles were 6, 13, 36, 72 and 369, respectively (Ershow and Cantor, 1989, page 17). 
Another recent report on water ingestion (USEPA, 2000a) also gives estimates of necessary 
sample size for reporting percentiles based on minimum reporting requirements suggested by the 
Life Science Research Office (LSRO, 1995). Samples sizes recommended in the second report 
were estimated as {8×(variance inflation factor)/(1-percentile)} where the “variance inflation 
factor” (1.60) was specific to the survey being used (USEPA, 2000a, page 3-7). The resulting 
minimum sample sizes for the 50th, 75th, 90th, 95th and 99th percentiles were 26, 51, 128, 256 and 
1280, respectively. The minimum sample requirements in the second of the two reports are 
approximately 3.5 times greater than the values recommended in the earlier report by Ershow and 
Cantor (1989).  

One way to evaluate the relative precision provided by the recommendations for 
minimum sample size is to compare the approximate range in the order statistics that 
encompasses the specified percentile for a given sample size. Morgan and Henrion (1990, pages 
83 and 202) derive a simple approximation for the number of random values (i.e. sample size) 
necessary to achieve a specified level of confidence that the actual fractile (percentile/100) of a 
distribution is within a specified range. The sample size (n) that is required to have a (1-α) 
degree of certainty that a specified fractile (p) is within a certain range ∆p is  

 ( )
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where Z(1-α) is the standard normal deviate for the (1-α) probability. Derivation of Eq. 21 is based 
on order statistics and an assumption that the sample size is large enough to allow a normal 
distribution to adequately approximate the binomial distribution. For details on the derivation of 
Eq. 21, the reader is referred to the original text (Morgan and Henrion, 1990, pgs. 200 to 203).  

Rearranging Eq. 21 to approximate the range encompassing p for various sample sizes we 
arrive at 
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Using Eq. 22 we estimate the ∆p that encompasses a specified fractile with 95% confidence for 
various sample sizes and compare the estimates to those recommended in references (Ershow and 
Cantor, 1989) and (USEPA, 2000a). The estimated fractile range from Eq. 22 is independent of 
the shape of the original distribution giving rise to the data (Morgan and Henrion, 1990).  

Table 1: Relating sample size to precision in order statistics a 

Fractile 
of interest 

Suggested 
sample size from 
(Ershow and 
Cantor, 1989, pg. 

17) 

Calculated range 
encompassing 

fractile with 95% 
confidence 

Suggested 
sample size from 
(USEPA, 2000a, 

pg. 3-7) 

Calculated range 
encompassing 
percentile with 
95% confidence 

0.50 6 0.30-0.70 26 0.40-0.60 
0.75 13 0.63-0.87 51 0.69-0.81 
0.90 36 0.85-0.95 128 0.87-0.93 
0.95 72 0.92-0.98 256 0.94-0.96 
0.99 369 0.985-0.995 1280 0.987-0.993 

a. We provide an example of how to read this table.  Given a sample size of n=72 (second column, fourth row), 

equation 22 says that we are 95% confident that the actual 95th percentile of the data falls somewhere 

between the 92nd and 98th percentile of the cumulative distribution (third column, fourth row). 

The ranges calculated using Eq. 22 and reported in Table 1 are for the fractiles (or 
percentiles where percentile=fractile×100%) that are typically plotted on the ordinate axis (i.e., 
the y-axis) of a standard cumulative distribution plot. Relating this range to the precision in the 
value or quantile of interest to the risk manager (i.e., x-axis) requires knowledge of the variance 
in the data set or the spread of the data. For example, defining two lognormal distributions, ΑΑΑΑ and 
ΒΒΒΒ, with arithmetic means of unity but with standard deviations of 0.1 for ΑΑΑΑ and 1 for ΒΒΒΒ then a 
fractile range of (0.94, 0.96) (e.g., n = 256 in Table 1) would encompass a quantile range of 0.03 
for distributions ΑΑΑΑ and 0.4 for distributions ΒΒΒΒ. Therefore, it is important for the reviewer to 
consider both the range encompassing the percentile of interest with a given confidence and the 
spread of the data (i.e., the standard deviation and the precision in the estimate of the standard 
deviation). 

For estimating the precision about the standard deviation of a distribution as a function of 
sample size for normally distributed data, the following can be used (Snedecor and Cochran, 
1989, pg. 75) 
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where n is the sample size, s2 is the estimated variance from the sample, σ2 is the true variance 
and χ2

(n-1) is the value of the chi-square distribution with (n-1) degrees of freedom. Rearranging 
Eq. 23 for a (1-α)% confidence interval of σ2 we arrive at  
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which expresses the precision of s2 as a percentage of the true variance (σ2) in the population. 
The two-sided 95% confidence limits for the ratio, 22 σs , is illustrated in Figure 3. For a 
sample of size n=256, the 95% confidence interval for the variance ratio is (0.83, 1.18). In terms 
of the standard deviation (i.e., taking the square root of equation 24), the 95% confidence interval 
for the ratio of s/σ given a sample size n=256 is (0.91, 1.09), or approximately ± 0.09. 
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Figure 3:  The 95% confidence interval for the ratio of the estimated sample variance to 
the true (unknown) variance σ2 illustrating the relationship between sample 
size and precision as related to the spread of the data. 

The precision of the sample standard deviation expressed as a percent of the true standard 
deviation can be related to a percentile of interest (e.g., the 95th percentile) for normally 
distributed data using the relationship 
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sxth 645.1percentile 95 +=  (25) 

where 1.645 is the one-tailed Z0.95. Therefore, according to Eq. 25, there is about a 95% chance 
that an estimate of the 95th percentile of a normally distributed sample of size n = 256 falls within 
a range 9% more or less than the actual 95th percentile.  

For lognormal data expressed as log(xi) the upper tail is given by Eq. 26 except that x and 
s are now the arithmetic mean and standard deviation of the log transformed data. The upper tail 
for lognormally distributed data can also be calculated by 

645.1percentile 95 GSDGMth ×=  (26) 

where GM and GSD are the geometric mean and geometric standard deviation. The GM and GSD 
of lognormally distributed data are related to the arithmetic moments by  
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As a result, uncertainty in the upper tail (95th percentile) of a lognormally distributed data set, 
provided with a 95% level of confidence, is also on the order of ±9% of the true value when 
based on a sample size of n=256.  

Thus, the variance ratio illustrated in Figure 3 shows that the relationship between the 
two-sided 95% confidence limit of the 95th percentile of a sample with sizes n = 50, 100, 250, 
500 and 1000 are within approximately 40%, 30%, 18%, 13% and 9% of the true variance, 
respectively. In terms of the standard deviation, the approximate precision of the estimate of the 
standard deviation from samples of size n = 50, 100, 250, 500 and 1000 are ± 20%, 14%, 9%, 6% 
and 4%, respectively. Again, these results are based on the assumption that the sample points 
were drawn from a normal distribution.  

4.1.2 Interpreting Sample Size 

The desired level of precision in the tails of the outcome distribution for a PRA will 
depend on both the given scenario and on the level of precision that the analyst can achieve for 
other inputs to the assessment. If the sensitivity analysis reveals that a distribution is potentially 
important and the sample size is small, (e.g., less than about 50) then the risk assessor should 
have justified the chosen distribution on a theoretical basis (Thompson, 1999) and taken steps to 
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incorporate uncertainty into the distribution using a two-dimensional (2-D) analysis (Bogen and 
Spear, 1987; Cullen and Frey, 1999; Morgan and Henrion, 1990).  As was demonstrated in the 
previous section, one cannot expect to attain precision greater that about ±20% for the upper tail 
(~95th percentile) with samples where n is less than 50. Precision would be even less if the 
analyst was interested in even more extreme events such as the 99th or 99.9th percentiles. In 
contrast, a much smaller sample size could be used if the analysis is directed only at the 50th 
percentile or confidence about the mean. 

Large samples can best provide an adequate level of information to identify an 
appropriate distribution when there is some theoretical justification available (Thompson, 1999). 
In these cases, uncertainty due to sample size will most likely be overshadowed by other sources 
of uncertainty in the analysis (Hertwich et al., 2000). We base our definition of a “large sample” 
and adequate precision on the premise that uncertainty and/or variability in the exposure 
concentrations in various media (e.g., air, soil, water, food, …) will often limit the precision of 
the assessment. Variation in measured or modeled concentrations in exposure media can easily 
exceed a factor of two or three. Errors due to the chemical analysis alone can be on the order of 
±10% (Eiceman et al., 1993). Therefore, we suggest that sample sizes in excess of about 250 
should provide adequate precision in the mid- to upper-tails (i.e., up to about the 95 percentile of 
the data). However, a final decision on the necessary level of precision for a given PRA will need 
to be judged on a case by case basis considering a range of site- and scenario-specific factors. 
Smaller sample size can be used if theoretical justification for a specific statistical model exists 
or if the analysis is focused on the central tendency of the outcome.  

For distributions based on moderately small samples, e.g., n between 50 and 250, the 
decision to explicitly include uncertainty due to sample size will need to be judged on a case-by-
case basis. For these situations, the risk assessor should either explicitly include uncertainty in 
the analysis or demonstrate that precision at the percentile of interest to the assessment is not 
significantly influenced by uncertainty due to sample size or uncertainty related to the choice of 
parametric model. 

4.2 Data Quality Attribute  

The remaining two attributes of the data (quality and relevance) are more subjective in 
nature. As a result only general guidance can be provided. Experimental error due to flaws in 
sampling design or imprecision in the measurement instrumentation are reflected in the quality of 
data and these errors propagate through to any distribution constructed from that data. Even with 
high quality data there is often a certain degree of imprecision. For example, analytical methods 
used to measure chemical residues in environmental samples often have relative standard 
deviations on the order of 5 - 10% (Eiceman et al., 1993) and this imprecision cannot be 
appreciably reduced by increasing the number of samples.  
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High quality data for developing distributions will typically be from direct measurements 
using peer reviewed and accepted methodology. The relative quality of information used in 
developing distributions for PRA is as follows: direct measurements of the exposure factor of 
interest > self reported values for the exposure factor of interest > direct measure of surrogate 
data > self-reported surrogate data. When the actual exposure factor is difficult or impractical to 
measure, surrogate information (e.g., estimated breathing rate from caloric intake or exposure 
duration based on population mobility) may be the best information available.  

It is important to note that imprecision from lesser quality data is ultimately captured in 
the distribution as an increase in the range or spread of the input data. However, the reviewer 
must consider the possibility that lower quality data (self-reported or surrogate) may introduce 
bias into the data and ultimately into the distribution and this bias is often much more important 
than the inability to distinguish between uncertainty and variability.  

Judging how the data quality attribute relates to the ultimate adequacy of the distribution 
is highly subjective. If the reviewer suspects that a distribution might be biased because of lower 
quality data then the results from the sensitivity analysis can provide insight into how important 
this potential bias might be in the context of the full PRA. If the potential for bias is high and the 
model is sensitive to the input then the risk assessor should address the issue by artificially 
inflating uncertainty in the distribution’s central tendency (based on expert judgement) or by 
demonstrating that bias will have little effect on the regulatory decision. Knowing why and how 
the original data were collected will help the reviewer evaluate both the data quality attribute and 
the data relevance for a specified task. 

4.3 Data Relevance Attribute  

Even a significant amount of high quality data may not be adequate if the data is not 
relevant to the population of interest. Relevant data is data that adequately captures temporal and 
spatial variability as well as the demographic characteristics of the target population. For 
example, if a PRA is concerned about a long-term local pollutant source near an Inuit village in 
Alaska then exposure factor distributions from a probability based national survey, or based on 
short-term sampling periods (e.g., 2-day average intake rates) may not be relevant. Although 
direct measures within the population of interest are most relevant, it is often necessary to rely on 
information from surrogate regions or cohorts drawn from large and complex data sets (USEPA, 
1997a) or on short-term data for estimating exposure factors for long-term exposure scenarios.  

Judging the relevance of a distribution requires a clearly defined population or cohort, a 
well-defined exposure scenario, a well-documented source of data and a clear description of the 
steps, if any, taken by the risk assessor to adjust for data quality or to improve data relevance 
(USEPA, 1999a). All of this information should be available in the PRA, particularly for those 
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inputs that are identified as significant during the sensitivity analysis. If, as is most often the case, 
the data are not actually from the target population, then the PRA should clearly justify the 
distributions using either available data, expert judgment or a representative sample collected 
from the target population. If the risk assessor is unable to justify the relevance of an input then it 
may be necessary to use expert judgement to adjust the distribution towards a more 
representative value and/or inflate the uncertainty to capture potential differences between the 
target population and the sampled population. Although a number of methods have been 
suggested for improving the relevance of 2-day diary data for estimating long term intake rates 
(Buck et al., 1995; Slob, 1993; Slob, 1996; USEPA, 1999a; Wallace et al., 1994) little guidance 
is available for dealing with other types of relevance. Nevertheless, the reviewer need only 
consider whether any differences between the data used to construct a distribution and the target 
population of interest will influence the model outcome or the regulatory decision. 

 

5.0 Category Three: Adequacy of the Distribution  

Once the reviewer is satisfied with the data and any necessary adjustments, then the next 
step is to select a distribution that adequately represents this data and adequately incorporates 
uncertainties from deficiencies in data quantity, quality or relevance. The three attributes in the 
distribution category focus specifically on how well the final distribution simulates the particular 
exposure factor within the target population. The attributes include both statistical and graphical 
goodness-of-fit (GOF) tests along with consideration of cross-validation performance or 
verification/justification with alternate models and theory. All of this information should be 
readily available in the risk assessment or from the risk assessor. However, as with the data 
quality and data relevance attributes, judgment about the adequacy of distribution attributes will 
be subjective and often strongly dependent on the personal preference of the reviewer and risk 
assessor towards certain GOF or statistical tests and on their beliefs about the characteristics of 
the specific exposure factor.  

Simple guidelines are provided along with references for further information, where 
necessary, to help improve the ease and consistency of the review process. Although much has 
been written on the appropriate methods for selecting, fitting and testing distributions (Conover, 
1999; Cullen and Frey, 1999; D'Agostino and Stephens, 1986; USEPA, 1999a), it is not 
necessary for a reviewer to be proficient with probabilistic methods. Rather, the reviewer only 
needs to be concerned with judging how well the final input distribution simulates the exposure 
factor for the target population and the specified risk scenario. 
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5.1 Statistical Goodness-of-Fit Attribute  

A number of GOF tests are available to the risk assessor for evaluating a hypotheses that 
data come from a particular distribution type for the population or, conversely, that a selected 
distribution is an adequate representation of the data (Conover, 1999; Cullen and Frey, 1999; 
D'Agostino and Stephens, 1986; McKone et al., 1996; Myers et al., 1998; Seiler and Alvarez, 
1996; USEPA, 1998; USEPA, 1999a). Some of the more common statistical tests include the 
Chi-squared, Anderson-Darling, Kolmogorov-Smirnov and various measures of regression and 
correlation. Although some GOF tests penalize the model for over-parameterization (e.g., the F-
test), most of the GOF measures are based solely on how well a particular parametric model fits 
an empirical distribution of the data.  

Results from statistical GOF tests for each distribution, particularly those found to be 
important in the sensitivity analysis, should be provided in the risk assessment. Assuming the 
reviewer has already concluded that the data provide an adequate representation of the target 
population then statistical GOF can provide useful information for judging the adequacy of the 
distribution. However, a number of experts have pointed out that statistical GOF tests have 
significant shortcomings and should not be mistaken for purely objective measures of fit 
(USEPA, 1999a). Therefore, although positive results from the test(s) can increase the reviewer’s 
confidence in the distribution, one should be careful not to base judgement about the adequacy of 
a distribution solely on the statistical GOF test.  

Passing a statistical GOF test should not be taken as proof that a distribution is adequate, 
nor should failing the test be taken as a fatal flaw in the distribution. In each case (pass or fail), 
the reviewer should strive to understand why the results of the test were positive or negative and 
how that might influence the outcome of the PRA. Visual/graphical tests are often more powerful 
for judging the performance of a distribution – particularly when the assessment is targeting a 
specific region of the distribution. In short, if a distribution passes a statistical GOF test, the 
reviewer should take that into consideration but it is still important to consider graphical GOF. If 
the distribution fails the GOF test the reviewer should strive to understand why it failed (poor fit 
in a less important region of the distribution or excessively low tolerance for error due to large 
sample size) then move to the next level of the evaluation.  

5.2 Graphical Goodness-of-Fit Attribute  

Graphical methods of performance testing are often preferred when evaluating how well a 
distribution fits a set of data especially if a particular region of the distribution is of interest. 
Informative graphical methods for visualizing the performance of a distribution include 
frequency plots or histograms, residual plots, percentage-percentage probability (P-P) plots, 
quantile-quantile (Q-Q) plots or various forms of linear transformation. A simple layman’s Q-Q 
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plot can be constructed without transforming the values to a linear form by simply drawing n 
“random” values from the selected input distribution, sorting these data by rank and plotting 
them against the original data (sample size = n) also sorted by rank.  

Using the graphical GOF, the reviewer only needs to evaluate whether the distribution 
produces a sample that is compatible with the original data (relevance of the data to the target 
population is evaluated as an attribute of the data). If the simulated data is found to be biased, the 
reviewer must consider if that bias is in a critical region of the sample (e.g. the distribution 
consistently over-estimates values above the 95 percentile of exposure) and, if so, how this bias 
might influence the regulatory decision. As with statistical GOF, graphical GOF is particularly 
useful when the reviewer is satisfied with the data (quantity, quality and relevance). In this case, 
the risk assessor only needs to demonstrate that the distribution used in the assessment 
adequately simulates the original data.  

If, however, the attributes of the data are questionable, then the risk assessor must 
demonstrate that the range of simulated data (including variability and uncertainty) captures the 
range of values that are likely to exist in the target population. Demonstrating that a distribution 
performs adequately in the absence of sufficient data ultimately must rely on professional 
judgement in the context of the regulatory management objective. If the PRA or the regulatory 
decision is highly sensitive to the input then it may be necessary to adjust the uncertainty 
component of the distribution to acknowledge shortcomings with the original data or the GOF. 

5.3 Distribution Performance Attribute  

This final attribute focuses on performance of the distribution as it relates to supplemental 
information that is specific to the risk assessment and/or to the target population. Although the 
performance attribute may draw on various GOF techniques, it is distinguished from the previous 
GOF attributes in that it goes beyond the original set of data and considers a range of evidence 
related to the performance of the model. Types of information that might be considered in the 
performance evaluation include the theoretical basis for a selected distribution, verification using 
alternate models or assumptions, validation using independent data, cross-validation using 
samples drawn from the original data and different sources of expert or professional advise. 
Although the overall reliability of a distribution cannot be fully characterized without testing the 
model against independent and highly relevant data, a resource that is rarely available, 
performance evaluations can provide significant insight into the reliability of the selected 
distribution function beyond the “calibration” data set.  

Much of the information needed by the reviewer for the performance evaluation will have 
been used by the risk assessor in selecting a particular distribution and, as a result, should be 
available to the risk manager either through dialogue with the risk assessor or directly from the 
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PRA. However, some of the information and assumptions made during the distribution 
development process may be difficult to interpret. Although open dialogue is encouraged 
throughout the process of performing a PRA, evaluation of the performance attribute, more than 
any of the other attributes will require direct interaction and dialogue between the risk manager 
and the risk assessor. The dialogue should remain clear, focused and non-technical whenever 
possible. The reviewer should use all information available and strive to understand how the 
distribution might influence the regulatory decision, why the risk assessor selected the 
distribution and what evidence is available for supporting this selection. 

If the evidence is sparse, it may be necessary to collect additional data or to subjectively 
increase the uncertainty for those distributions that are important to the analysis before the 
reviewer can accept them as adequate for the task. Again, it is important to seek advice from 
other experts or risk professionals who might be familiar with the specific risk scenario whenever 
the evidence about the adequacy of a distribution is inconclusive. 

 

6.0 Process for Evaluating Input Distributions in 
Probabilistic Risk Assessment  

In the process of combining the various attributes described above, we note that assigning 
a score to each attribute is subjective. At this point we see no opportunity to avoid subjectivity on 
the part of both the risk assessor and the risk manager. Even what seems to be quantitative 
information, such as statistical goodness-of-fit, can be strongly influenced by choices made 
during the distribution development process. The only attributes that can truly be considered 
objective are the quantity and quality of the data and possibly the sensitivity analysis, although 
the latter two are likely subject to interpretation. Thus, information with varying degrees of 
subjectivity will need to be synthesized during the evaluation process to maintain consistency 
and transparency in the review and to focus dialogue with the risk assessor and with other 
experts. To accomplish this, we provide a qualitative evaluation wheel for tracking the critical 
attributes of a distribution.  

The evaluation wheel is based on the standard radar or radial plot available in most 
spreadsheet or graphing software. The tool is used here to track and organize the objective and 
subjective information that will contribute to the reviewer’s judgement about the adequacy of 
each distribution in the PRA. The proposed wheel provides a format that is simple and flexible 
enough to allow the risk manager to adapt the tool in a way that is suitable to his or her own 
review style. Referring to Exhibit 1, each probabilistic input distribution in the PRA corresponds 
to a separate page and each page includes an evaluation wheel. Each attribute of the distribution 
corresponds to a different ray or spoke on the wheel. The individual rays on the plot are 
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arbitrarily scaled from either zero to 1 (sensitivity analysis) or low-to-high where “high” is 
preferable. The wheel is divided into the three major categories (i.e., those related to the SA, the 
Data and the Distribution). There is a space at the top of the page for recording details about the 
specific exposure factor, any correlation that might be included and summary statistics of the 
distribution. A set of checkboxes is also provided to indicate the status of the review. A section 
for notes is given at the bottom of the page to maintain transparency in the evaluation process. It 
is envisioned that the sheet containing the evaluation wheel would serve as a cover page 
summarizing the supporting information for each distribution. This supporting information can 
either be attached to the evaluation sheet or filed elsewhere depending on the reviewer’s 
preference.   

To use the evaluation wheel the reviewer first summarizes the descriptive information for 
each probabilistic exposure factor (name of exposure factor, PRA or scenario reference, related 
or correlated inputs, opening date of file, contact information, summary statistics, etc.). Next, 
each of the distributions in the PRA are scored based on results from the sensitivity analysis 
using a preliminary mark on the SA ray of the wheel. The reviewer then sorts the sheets in order 
of importance (based on the sensitivity analysis) and begins with the most important input and 
systematically works around the evaluation wheel considering, and qualitatively scoring, each of 
the attributes.  

By documenting observations and supporting information for the distribution using the 
evaluation wheel and working closely with the risk assessor and other risk professionals, the risk 
manager should be able to arrive at a scientifically defensible and transparent conclusion 
regarding the adequacy of each exposure factor distribution. In spite of the subjective choices that 
must be made during the review process, the proposed evaluation procedure can provide 
consistency without a loss of flexibility. As a result, there is an opportunity to apply a single 
review framework for all EPA regions and yet provide the regional risk manager the flexibility 
for dealing with site- and case-specific issues in the PRA process. 
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Exhibit 1: Evaluation Wheel and information tracking sheet 
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Part 2 
On the Development of Recommended Distributions  

As the number of inputs to a probabilistic risk assessment increases, so does the 
complexity of the process for calculating, communicating and managing risk.  As a result, there 
is increasing effort required of both the risk professionals performing the analysis and the risk 
manager reviewing it. For deterministic risk assessments, the use of default inputs has improved 
the ease and the consistency of both performing and reviewing assessments. By analogy, it is 
expected that similar advantage will be seen in the field of probabilistic risk assessment through 
the introduction of default distributions. However, the idea of providing specific default 
distributions for exposure factors used in PRA is inconsistent with the purpose of performing the 
probabilistic analysis. Probabilistic risk assessments are performed to explicitly treat uncertainty 
and variability for a given risk scenario and a specific target population.  This allows the risk 
manager to base decisions on both the estimated risk at a given percentile in the population and 
the confidence associated with that estimate.  A single “health protective” default distribution 
would almost certainly lack relevance to specific target populations and specific Superfund risk 
scenarios.  

Therefore, the primary challenge regarding development of default distributions for PRA 
will be that of balancing consistency with enough flexibility in the distribution (or the 
distribution development process) to achieve an adequate level of relevance to the target 
population. In confronting this challenge, we considered two initial options for developing 
scientifically defensible default distributions. The first option is to specify a baseline distribution 
or “prior” for the general U.S. population then provide a standard method for updating the central 
tendency and variance in the prior to better represent the target population using a Bayesian 
Monte Carlo approach. The second option is to provide, for a given exposure factor, a set of 
default distributions that are relevant to a key demographic category as a consistent starting point. 
The risk assessor then samples from these demographically based defaults to construct a 
task-specific distribution, with uncertainty and variability, based on readily available information 
about the size and demographic characteristics of the target population. Although certain aspects 
of the first option may be necessary, particularly for increasing relevance of short-term data, the 
recommendations developed in the following sections are based primarily on the second option.  
We made this choice because of the need for transparency in the distribution development 
process. Bayesian methods, although increasingly accepted by risk professionals, may be difficult 
to explain or justify to those stakeholders or risk managers who lack a strong background in 
Bayesian statistics and probability theory.  
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Introduction to Exposure Factors 

We focus on three common exposure factors: body weight, exposure duration and water 
intake. This choice does not necessarily imply that these are the most important exposure 
distributions for risk assessment.  We selected these factors to illustrate the process of developing 
default distributions for probabilistic risk assessment. Each of these exposure factors has 
available a significant amount of nationally representative data, but the relevance of the available 
data varies.  

• Body weight (BW): The data for body weight includes both self-reported and directly 
measured values from several probability-based nationally representative surveys that include 
a wide range of demographic factors. As a result, body weight represents the “best case” for 
developing recommended distributions.  

• Exposure Duration (ED): Although the various forms of exposure duration are rarely 
measured directly, several different surrogate measures have been used in the past to 
approximate “duration”. We recognize that the definition of exposure duration depends on 
the specific risk scenario being considered and, as a result, must be defined on a case-by-case 
basis.  The challenge for developing recommended distributions of exposure duration is that 
of relating the surrogate measures of duration to the population- or scenario-specific 
definition used in the risk analysis.  

• Water Intake (IUw): Water intake is estimated from self-reported values collected over two 
nonconsecutive days for both water and total food intake.  The quantity of water derived from 
food is calculated using recipe data files. The water intake values are relevant, but uncertainty 
in the reporting process and the time frame in which the data was collected (short-term) make 
these data useful only as surrogate data for the time frame of interest (long-term average 
intake). As a result, the primary challenge for developing recommended water intake 
distributions will be transforming the data into a form that is relevant to long-term average 
intake across the population of interest. 

Sensitivity Analysis of Exposure Factors in a Standard Product/Quotient Risk Model 

Before looking at the individual exposure factors, it is helpful to understand the relative 
importance of each exposure factor in the simple product/quotient models typically used for 
Superfund risk assessment. Given an initial contaminant concentration in soil (time zero) at a 
given site, Cs(0) (mass contaminant per mass soil), we can estimate risk, H(t), by summing 
potential dose and effect over multiple exposure routes (j), environmental media (k) and exposure 
pathways (i) arriving at 
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where Qj(ADDijk) is the dose response function that relates potential dose (ADDijk), by route j to the 
probability (over a specified averaging time) of an adverse outcome for an individual in the 
population, ( )kijk CADD  is the average daily potential dose (over a specified averaging time) 

from exposure medium i by route j related to environmental compartment k and 
( )[ ]tCC ks ,0 →Φ  is the multimedia dispersion function that converts concentration in the source 

media (i.e., soil) at time zero, Cs(0), into contaminant concentration in environmental media k at 
some time t in the future. Ignoring variance in the dose response function and assuming 
environmental media concentrations are constant over the duration of exposure (ED), the average 
potential dose for a specific demographic (age, sex, race, …) category (d) within the population 
is  
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where Ci/Ck is the ratio of contaminant concentration in exposure media i relative to the 
concentration in environmental media k, {IUi/BW}d is the intake/uptake rate of exposure media i 
relative to body weight for group d, and EFd, EDd and ATd are the exposure frequency, exposure 
duration and averaging time, respectively, for group d. Averaging over all demographic 
categories in the population we get 
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were Nd is the number of individuals in demographic group d, DG is the number of demographic 
categories used to represent the population. Combining all demographic categories and 
considering only a single exposure media, Eq. 31 reduces to the standard product/quotient 
exposure model 
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Based on the exact analytical method for propagating variance in product/quotient models 
given earlier (Eq. 5, Section 3.1.2) and neglecting correlation among the inputs, we approximate 
the percent contribution to variance (%CTVi) for each input (n=6) in Eq. 32 as  
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where CVi is the coefficient of variation for input i and model outcome w. As a first 
approximation, the CVs for intake (IU), body weight (BW), exposure duration (ED), exposure 
frequency (EF) and averaging time (AT) are 0.6, 0.2, 1.0, 0.14 and 0.1, respectively (McKone, 
1992). Assuming an arbitrary yet somewhat optimistic value of 0.5 for the CV of the 
concentration term (Ci), the approximate contribution to variance for IU, BW, ED, EF, AT and Ci 
are 18%, 2%, 66%, 1%, 0% and 12%, respectively. The absolute values of %CTV will likely 
change depending on the risk model used, whether or not correlation is included and how much 
the input distributions are refined during the model development process. However, the relative 
ranking of the basic model inputs (i.e., ED > IU  & C > BW, EF & AT) will likely be conserved 
unless uncertainty in the inputs is significantly changed and/or variance is partitioned into more 
homogeneous subgroups within the target population.   

Having introduced the three case study exposure factors for the following chapters and 
evaluated their relative importance with respect to the outcome of the standard product/quotient 
model, we now move on to the work of developing recommended exposure factor distributions 
for PRA. The next section (Section 7) will consider body weight followed by exposure duration 
in Section 8 and finally, water intake in Section 9.  

 

7.0 Body Weight 

Although body weight can be important in deterministic risk assessments and in deriving 
unit risks, it is often one of the least important contributors to variance in the probabilistic risk 
assessment process. Nevertheless, a large amount of high quality data is readily available for a 
number of demographic categories within the U.S. population. As a result, body weight is useful 
for demonstrating the development of recommended PRA distributions. As stated above, we 
recognize that a single distribution or set of distributions will almost certainly lack the flexibility 
needed by the risk assessor. However, a reasonable amount of consistency and transparency is 
beneficial to both the risk assessors performing the analysis and the risk managers responsible for 
evaluating and using the information that comes out of the analysis. Therefore, our objective is to 
provide a consistent, scientifically defensible set of “baseline” distributions for the population, as 
a starting place for the distribution development process, along with a transparent and flexible 
method for using these distributions to derive a final exposure factor PDF for the risk assessment. 
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The final distribution should incorporate both uncertainty and variability and be relevant to the 
target population and specific risk scenario.  

The general approach for satisfying our stated objective is to (i) acquire an adequate 
amount of raw data for body weight, (ii) use standard data analysis techniques to identify the 
most influential demographic factors and (iii) reduce the raw data to distributions of BWd for 
each important demographic category. Finally, we provide a transparent method for combining 
the demographically based distributions to reconstruct relevant distributions that explicitly 
account for uncertainty and variability.  This includes uncertainty due to differences in size and 
composition of the population potentially exposed at specific site relative to the populations 
represented by available distributions and the variability in the exposure factor across the 
population of interest. 

7.1 Source of data 

The data sources for body weight include the Center for Disease Control revised growth 
charts for children (Kuczmarski et al., 2000), the Continuing Survey of Food Intakes by 
Individuals (CSFII) (USDA, 1998) and the most recent National Health and Nutrition 
Examination Survey (NHANES III) (NCHS, 1996). In addition, the U.S. Census data is used as a 
source of site specific information for reconstructing distributions from the set of 
demographically specific distributions. Each information source is summarized below.  

7.1.1 CDC Revised Growth Charts for Children from Birth to 20 years 

The Center for Disease Control and Prevention / National Center for Health Statistics 
(Kuczmarski et al., 2000) recently released their revised growth charts for children from birth to 
age 20 years in the United States. Data for the revised charts were from five national health 
examination surveys collected from 1963 to 1994 and three supplemental data sets (used 
primarily to evaluate birth weight). Each survey reports measured body weight for individuals in 
a cross-sectional national probability-based sample of the civilian, non-institutionalized 
population. The data were pooled to obtain the necessary precision for calculating percentile 
distributions, and statistical sampling weights (provided for each survey) were applied to the data 
to make them representative of the U.S. population at the time the surveys were conducted.   

Data from the most recent survey (NHANES III) for children ≥ 6 years were excluded 
from the combined data set to avoid the upward shift in the body weight of children in recent 
years. Exclusion of recent data for children ≥ 6 years may reduce the relevance of the data set for 
the current population. However, we agree with, and accept the decision made by the CDC to 
exclude the recent data for two reasons. First, the current trend toward increased body weight for 
children in the U.S. population is generally thought to be unhealthy. Efforts are underway to 
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educate the population and reverse this trend and as such the baseline set of demographically 
based distributions should be relevant to a “healthy” population. Second, given the function of 
the BW factor in risk models (e.g. decreased BW increases “risk”), using body weight data that is 
biased towards a “healthy” population will error slightly towards increased protection of the 
overweight population.  

Although there appear to be racial differences in growth rates for children, these 
differences are small and inconsistent. Therefore, only sex/age categories are provided in the 
CDC growth chart data (Kuczmarski et al., 2000). Data were grouped by month from 1 to 11 
months, by 3-month intervals from 12 through 23 months and by 6-month intervals from 24 
months through 19 years. To reduce the “jagged or irregular” nature of the plotted percentiles, a 
number of data smoothing procedures were used to develop the final weight-for-age percentile 
curves for males and females from birth to 20 years. In addition to the empirically smoothed 
percentile curves, a statistical smoothing procedure was used to derive analytical expressions that 
allow interpolation between the reported percentiles. The statistical smoothing approach uses a 
Box-Cox transformation in the form of 

( ) LLSZMcentile 11+=  (34) 

where M and S  are the median and standard deviation, L is the power in the Box-Cox 
transformation and Z is the z-score that corresponds to the percentile of interest. Values for L, M 
and S were actually derived empirically in the report to provide final curves that are nearly 
identical to the initially smoothed percentiles. The final values are reported by sex for one-month 
intervals from birth to 20 years (http://www.cdc.gov/growthcharts).  

For convenience, the values of the parameters in equation 34 are provided in Appendix 1. 
For further details on the data and the empirical and statistical smoothing methods, the reader is 
referred to the original report on the revised growth charts (Kuczmarski et al., 2000). We use 
these growth charts exclusively for deriving age and sex specific distributions for children and 
adolescents from birth through 19 years. 

7.1.2 Continuing Survey of Food Intakes by Individuals, CSFII 

The CSFII was conducted from 1994 through 1996 by the Food Surveys Research Group, 
Beltsville Human Nutrition Research Center, Agricultural Research Service (USDA, 1998). The 
survey collected self-reported values of body weight for individuals in a stratified multi-area 
probability sample of non-institutionalized (non-military, and not in group quarters) households, 
for the U.S. population. Low-income housing units were over-sampled but weighting factors 
were provided for the samples so that the final values reflect the composition of the US 
population based on the 1990 Census. The actual question asked of the interviewee was “About 

http://www.cdc.gov/growthcharts
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how much (do you/does NAME) weigh without shoes?” – reported in pounds. The response was 
converted to kg and listed for each sample person in data file RT25.  

A number of other factors were included in the survey. The demographic factors that 
might contribute to variance in body weight include age, pregnant/lactating status, race (white, 
black, Asian/Pacific Islander, American Indian/Alaskan native, or other race), origin (Mexican, 
Puerto Rican, Cuban, or other Hispanic) and region (Northeast, Midwest, South or West). After 
excluding children and adolescents (birth through 19 years) and excluding sample persons with 
fields for body weight that included “don’t know” or “non-reported”, the remaining 9,161 adults 
(≥ 20 years) included 4,724 men and 4,437 women.  

The raw data from the CSFII for all ages were used in a previous report (Maddalena et al., 
1999) to evaluate and identify the important demographic factors influencing body weight. The 
raw data (appropriately weighted) for adults was then pooled with the data from the National 
Health and Nutrition Examination Survey (NHANES III) and the combined data set was used to 
develop age/sex based distributions for adults.   

7.1.3 National Health and Nutrition Examination Survey, NHANES III 

The Third National Health and Nutrition Examination Survey was conducted by the 
National Center for Health Statistics between 1988 and 1994. The general structure of the survey 
was a stratified multistage probability design representing the total civilian non-institutionalized 
population, 2 months of age and over, in the 50 States of the U.S. (NCHS, 1994). The study was 
multifaceted but the overall goal was to evaluate prevalence and trends in selected diseases and 
risk factors and to estimate population reference distributions of selected health parameters. The 
study was also designed to investigate disease etiology and the natural history of selected 
diseases. These goals required precise information on the health status of selected population 
groups and as a result required the over-sampling of several groups (e.g., young children, the 
elderly and certain ethnic or racial groups). Sample weighting factors are provided to allow 
estimates of values relevant to the total U.S. population based on the 1990 census. The body 
weight values reported in the NHANES III results represent actual measurements taken during a 
physical examination.  

As with the CSFII data, a number of demographic factors are reported for each sample 
person.  After removal of sample persons reporting age<20 years and non-reported body weight 
values, the 16,977 adults (≥ 20 years) included 7,934 men and 9,043 women. 

7.1.3 The Combined NHANES III, CSFII data set 

To achieve an adequate sample size for the various demographic categories for adults, we 
combine the NHANES III and CSFII data. However, prior to combining the samples, the degree 
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of bias in self-reported values was evaluated by comparing the empirical cumulative distributions 
(weighted) for adult males and females from each survey (Figure 4). The actual measured body 
weights from the NHANES III survey are taken as accurate and the deviation from the NHANES 
III distribution function by the CSFII distribution function is assumed to be due to bias in the 
reporting/data collection method.  
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Figure 4 Comparison of empirical cumulative distribution functions from two national 
surveys where the measured values from NHANES III are shown as smooth 
curves (women on left, men on right) and the self-reported values from CSFII 
are the irregular or jagged curves. Figure 4 also illustrates the difference in 
body weight related to sex. 

 

The maximum deviation between the self-reported and measured body weights for 
women (~7%) occurs at about the 93rd percentile of the data and the maximum deviation for men 
(~5%) occurs at about the 22nd percentile of the data. In general, we find that women do a good 
job reporting body weight in the lower half of the distribution but under-report body weight in 
the upper half.  Men do a reasonable job reporting body weight in the upper half of the 
distribution but tend to over-report body weight in the lower half. However, given the relative 
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sample size of each data set, the measured data from NHANES III is automatically weighted over 
the self-reported data from CSFII by a factor of almost 2:1 so the overall effect of bias in the self-
reported values is expected to be negligible. Therefore, we combine the results from the two 
surveys for use in characterizing demographically based (e.g., age and sex) distributions in 
section 7.3.  

7.2 Key demographic factors 

Based on results presented in a previous report (Maddalena et al., 1999), body weight is 
primarily dependent upon age, followed by sex and race. Although age dependence seems to 
continue throughout ones lifetime (Okajima et al., 2000), the strongest dependence is seen from 
birth into the late teens. The dependence of body weight on sex and race is mainly seen in adults. 
The influence of race was detected in both male and female adults. Even though a relatively 
sophisticated data analysis package was used previously to identify and evaluate the important 
demographic factors for body weight (Maddalena et al., 1999), the objective of this work is 
somewhat less stringent in that we are only interested in identifying the main factors influencing 
body weight. As such, any number of data analysis techniques would suffice. The simplest way 
to satisfy our current objective was to confirm the results reported earlier by visually comparing 
the distributions from the demographic categories that were identified as important in the 
previous work (i.e., age, sex and race).   

The influence of age on body weight is obvious even in the absence of graphical analysis. 
The importance of sex on the distribution of body weight is illustrated in Figure 4, which shows 
the difference between empirical cumulative distributions for adult males and females. Likewise, 
the influence of race is illustrated in Figure 5 as a comparison of empirical distribution of body 
weight for adult women. The average reported body weight for adult women classified as 
asian/pacific islander, white/other and black/native american were 55 kg, 68 kg and 77 kg, 
respectively, which, along with the distributions, clearly shows the potential influence of race. 
The results for adult men (not shown) were similar to those found for adult women in that the 
average body weight reported by asian/pacific islanders was approximately 16 kg less than the 
average reported for the remainder of the adult male population. 

Although race was found to have a measurable influence on body weight (Figure 5) 
(Maddalena et al., 1999), only the CSFII survey collected information specific to “asian, pacific 
islander” and the data set was not large enough to allow development of separate distributions for 
each age/sex/race category. Therefore, the demographic categories selected in this study, which 
provide the basis for deriving task-specific distributions, are constrained to age and sex. If the 
target population is composed predominantly of individuals of Asian and/or Pacific Islander 
decent, and the assessment is concerned with adults, then the risk assessor may need to adjust the 
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central tendency of the final distribution or re-evaluate the raw data to develop relevant 
distributions for the specific task. 
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Figure 5: An illustration of difference between the empirical cumulative distribution of 
reported body weight from CSFII for females identified with different racial 
groups. Similar racial differences in reported body weight were seen for adult 
men (Maddalena et al., 1999). 

 

7.2.1 U.S. Census Data Summary Tables 

Summary tables of the 1990 U.S. census data provide information on the demographic 
composition of site specific populations at different geographically relevant scales. The 
information is collected every 10 years although the 2000 data was not yet generally accessible 
when this report was finalized. Information from the 1990 census is easily accessed from the U.S. 
Census Bureau’s LOOKUP Servers (interactive data retrieval via HTTP) at 
http://homer.ssd.census.gov/doc/lookup_doc.html. Summary tables are provided at a number of 
geographic scales including State, County, Place, Urbanized Area and Metropolitan Statistical 

http://homer.ssd.census.gov/doc/lookup_doc.html
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Area. These options provide the flexibility to acquire population information on a scale that is 
relevant to a particular risk scenario.  

The summary tables provide 100% counts for a specified location. The results are 
reported by sex in 14 age categories from birth through 19 years along with 17 additional age 
categories for adults (age ≥ 20). These categories form the basis for development of 
demographically based distributions (e.g., subgroups of the population are defined to match the 
age/sex categories reported by the Census Bureau). 

7.3 Constructing Age/Sex Baseline Distributions  

In this section, we use the information described above to develop distributions that are 
relevant to a specified set of age/sex categories. The set of categories is selected to coincide with 
the available information from the U.S. Census summary tables. These tables include by sex 14 
age categories for birth through 19 years and 17 additional age categories for adults (age ≥ 20).  

For children from birth through 19 years, we begin with the statistically smoothed growth 
curves from the CDC (Kuczmarski et al., 2000) and transform them into probability distributions 
that match the age/sex categories reported in the census summary tables. For adults, we begin 
with raw data from the combined CSFII, NHANES III. The data is grouped in categories that 
match the census tables then specific percentiles are estimated from the raw data. These 
percentiles are smoothed and individual parametric distributions are fit to each age/sex category. 
The approach is similar in principle to the methods used by the CDC in developing percentile 
growth curves for children, (Kuczmarski et al., 2000) except that a parametric model is fit to the 
percentiles rather than a Box-Cox transformation. The approach is also similar to recent work 
characterizing distributions of body weight using data from NHANES II (Burmaster and Crouch, 
1997).  

7.3.1 Baseline distribution for children (birth through 19 years) 

Distributions of body weight by sex are developed for the following age categories: birth 
to 1, 1 through 2, 3 through 4, 5, 6, 7 through 9, 10 through 11, 12 through 13 and each year from 
14 through 19 years of age. Equation 34 and the parameters listed in Appendix 1 were used to 
simulate 500 equally weighted values for body weight for each 1-month age interval using the 
following combined Excel – Crystal Ball function 

percentile = M*(1+L*S*NORMSINV(CB.Uniform(0,1)))^(1/L) (35) 

where “CB.Uniform(0,1)” is used to generate random values from zero to unity, 
“NORMSINV(CB.Uniform(0,1))” transforms the random value into a “z-score”, and L, M and S 
are as previously defined (see equation 34). Simulated data for the 1-month intervals were then 
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combined according to the desired age/sex categories. For example, the 500 random body 
weights for each 1-month interval included in the age category defined as one through two year 
olds (total of 24 1-month intervals) resulted in a total of 12,000 random body weights for the 
category.  

Table 2: Best fit parameters for each age/sex category for children to be used with Eq. 37 

 Males Females 
Age category θ µLN(x) σLN(x) SSxy θ µLN(x) σLN(x) SSxy 

1 and 2 -1.799 2.664 0.124 5.42E-05 0.115 2.470 0.154 4.87E-05 
3 and 4 6.576 2.267 0.239 5.55E-05 7.829 2.072 0.306 8.65E-05 

5 9.092 2.343 0.258 8.52E-05 10.599 2.139 0.331 5.20E-04 
6 10.674 2.420 0.288 6.64E-05 11.705 2.277 0.348 1.53E-04 

7 through 9 13.512 2.610 0.379 7.38E-05 12.065 2.726 0.379 1.96E-05 
10 and 11 16.391 2.972 0.373 8.26E-05 15.138 3.090 0.365 1.39E-04 
12 and 13 14.605 3.437 0.307 7.71E-05 19.456 3.274 0.350 1.31E-04 

14 24.018 3.392 0.345 1.01E-04 26.961 3.178 0.398 2.33E-04 
15 20.764 3.640 0.281 1.35E-04 31.306 3.083 0.437 1.76E-04 
16 30.238 3.482 0.331 1.37E-04 33.681 3.038 0.436 3.41E-04 
17 33.911 3.462 0.344 8.25E-05 37.051 2.908 0.499 7.01E-04 
18 36.659 3.450 0.356 6.40E-05 36.574 3.006 0.461 4.48E-04 
19 34.431 3.573 0.317 1.16E-04 35.318 3.119 0.437 3.02E-04 

 

The simulated body weights were then used to derive a baseline distribution for each 
age/sex category. Exploratory data analysis using the curve fitting functionality in the Crystal 
Ball software failed to identify a parametric model that adequately fit the data for each category. 
Upon further evaluation, we determined that the 3-parameter lognormal model provided good 
agreement across all age categories. The percentiles of the 3-parameter lognormal are estimated 
using the following Excel function 

percentile =  LOGNORMDIST((xi-θ),µLN(x),σLN(x) ) (36) 

where θ is the location parameter, µLN(x) is the mean of ln(xi) and σLN(x) is the standard deviation 
of ln(xi). The 3-parameter lognormal was fit to the data by minimizing the sum of the square 
differences (SSxy) between the empirical percentile of the data and the percentile estimated using 
Eq 36. The “fit” was performed on a total of 21 different points include the 1st, 5th, 10th, 15th, …, 
85th, 90th, 95th and 99th percentiles of the data. The resulting parameters are reported in Table 2 
along with the sum of the squares for the fit.  

The parameters listed in Table 2 can be used to generate random body weight values for 
each demographic (age/sex) category using the following Excel function 

xi = (LOGINV(CB.Uniform(0,1), µLN(x), σLN(x)))+ θ  (37) 
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where the “LOGINV” function transforms the random value generated by “CB.Uniform(0,1)” 
into a lognormal distribution with the defined parameters. Thus, the 3-parameter model can be 
readily adapted for use in available probabilistic risk software. 

7.3.2 Baseline distributions for adults (≥ 20 years) 

Distributions of body weight for adult males and females (age ≥ 20 years) are developed 
for the following age categories: 20, 21, 22 through 24, 5 year intervals from 25 through 59, 60 
through 61, 62 through 64, 5 year intervals from 65 through 84 and 85 and above. This provides 
a total of 17 categories by sex in accordance with the categories presented in the census summary 
tables. Values reported in the combined CSFII, NHANES III surveys were first grouped 
according to the above age categories. Next, the percentiles (weighted) for each age/sex category 
were calculated. The raw percentiles for males and females are reported in Appendix 2. Prior to 
constructing distributions, the raw percentiles were empirically smoothed using  

x
cbxay ++= 3   (38) 

and 

xcxbxay 22 ++=   (39) 

for male percentiles and female percentiles, respectively. The smoothed percentiles for each age 
category are also provided in Appendix 2. The smoothed curves for the 5th, 50th and 95th 
percentiles of body weight for adult males are plotted along with the raw percentiles in Figure 6. 
For reference, Figure 6 also includes weight versus age curves for children (birth through 19 
years) based on the CDC LMS model described earlier. The slight discontinuity at the transition 
from the growth chart curves to the adult curves, particularly for the 95th percentile curve, is 
likely due to the exclusion of the NHANES III data from the growth charts (e.g., removal of the 
effect of overweight children in recent surveys).    

The cross-sectional data illustrated in Figure 6 shows a slight temporal trend towards 
increasing body weight up until about 50 years of age followed by a decreasing trend. This trend 
is similar to one seen in data from the NHANES II survey (Burmaster and Crouch, 1997). 
Although the data is extremely limited in scope, there is recent evidence that the longitudinal 
long-term temporal variation in individual body weights follow the general pattern found in the 
cross-sectional data (Okajima et al., 2000). Although the trend is subtle, it should be considered 
to maximize the relevance of the distribution to the age composition of the target population. 
Therefore, the next step is to develop distributions for each of the age/sex categories for adults. 
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Figure 6:  Illustration of the 5th  (lower dash), 50th (solid line) and 95th (upper dash) 
percentile of body weight for adult males as a function of age from birth to 85 
years and above. The curves to the left of the solid line are from the CDC 
LMS model and the curves to the right of the solid line are the smoothed 
percentiles from the combined CSFII, NHANES III data. The data marks 
represent the empirical percentiles for each age category. 

 

As with the children’s data, an exploratory data analysis using the curve fitting 
functionality in the Crystal Ball software failed to identify a parametric model that performed 
well across all categories.  Again, upon further analysis, the 3-parameter lognormal had the 
flexibility to perform well with each age/sex category. Therefore, the same method previously 
described (Section 7.3.1) was used here to fit the 3-parameter lognormal model to each age/sex 
category. The results are presented in Table 3 along with the sum of the square differences (SSxy) 
between the smoothed percentile of the data and the percentile estimated using Eq 36. 



LBNL-51492 

 61 

Table 3: Best fit parameters for each age/sex category for adults based on CSFII/NHANES III 

 Males Females 
Age category θ µLN(x) σLN(x) SSxy θ µLN(x) σLN(x) SSxy 

20 34.826 3.618 0.349 1.28E-03 38.624 3.037 0.607 7.73E-04 
21 34.312 3.659 0.339 1.09E-03 38.595 3.057 0.601 7.20E-04 

22 – 24  33.291 3.731 0.321 8.43E-04 38.512 3.096 0.587 6.22E-04 
25 – 29  31.490 3.839 0.297 6.46E-04 38.217 3.176 0.560 4.62E-04 
30 – 34  28.158 3.961 0.270 6.48E-04 37.569 3.278 0.526 3.24E-04 
35 – 39  25.200 4.047 0.251 7.30E-04 36.545 3.378 0.492 2.38E-04 
40 – 44  21.761 4.124 0.234 8.03E-04 35.089 3.475 0.458 1.89E-04 
45 – 49  17.817 4.194 0.219 8.30E-04 33.097 3.570 0.425 1.62E-04 
50 – 54  13.245 4.261 0.204 8.01E-04 30.533 3.660 0.392 1.46E-04 
55 – 59  7.013 4.338 0.187 7.18E-04 27.184 3.750 0.358 1.33E-04 
60 – 61  3.297 4.376 0.178 6.28E-04 23.855 3.822 0.330 1.23E-04 
62 – 64  0.003 4.410 0.171 5.79E-04 21.834 3.861 0.315 1.18E-04 
65 – 69 -4.863 4.453 0.161 4.99E-04 17.321 3.937 0.286 1.12E-04 
70 – 74 -6.477 4.448 0.157 5.35E-04 9.679 4.048 0.245 1.24E-04 
75 – 79 -28.000 4.649 0.124 6.48E-04 0.558 4.158 0.206 2.07E-04 
80 – 84 -46.770 4.789 0.103 1.27E-03 -22.435 4.428 0.144 4.18E-04 

85 – above -61.807 4.879 0.089 2.88E-03 -49.448 4.668 0.099 1.18E-03 
 

7.4 Relating the Demographically Based Distributions to Site-specific Distributions 

Information about the demographic composition of the target population can be accessed 
through the U.S. Census interactive data retrieval service located at 
http://homer.ssd.census.gov/doc/lookup_doc.html or by direct survey of the target population. 
This census information is used to design a sampling strategy for reconstructing the distribution 
of body weights for the target population using the demographically based distributions 
developed in the previous sections.  

The recommended approach begins with the sample numbers taken from the census data 
for the specific age/sex categories. These sample numbers may need to be updated to account for 
changes in the population that may have occurred since the last census was taken. Census data 
for 2000 was not generally available for this study, but population projections by state are 
available from the U.S. Census Bureau. These projections were used to improve the relevance of 
the 1990 data with respect to the current population. In general, the population/demographic 
numbers should be selected to maximize relevance of the data to the target population in the 
region of influence around a particular site. For a discussion of how to approximate the region of 
influence or the distance that a chemical might travel in the environment, see Bennett et al. 
(1998).   

Once the representative number of individuals has been determined for the target 
population, the appropriate number of random values is drawn from each age/sex distributions to 
create a single realization of the distribution of the exposure factor of interest for the specified 

http://homer.ssd.census.gov/doc/lookup_doc.html
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population (or cohort). These samples for the demographic categories are combined to address 
the specific needs of the PRA (e.g., children ages 7-13 or adult women). Finally, an appropriate 
parametric model is identified and fit to the data (see Part 1 of this report for discussion and 
references). For the body weight parameter, typically a 2-parameter or 3-parameter lognormal 
will be appropriate for the data. When the target population in the region of influence is relatively 
small, the sampling and fitting process should be repeated several times to evaluate uncertainty 
about the choice of parametric model and to estimate the level of uncertainty in the model 
parameter values.  

Given the tabulated parameters for the age/sex specific distributions provided in Tables 2 
and 3, the development of task-specific default distributions can be automated in a highly 
transparent manner using any number of spreadsheet, mathematical or statistical software 
packages. These baseline distributions and the method for reconstructing body weight PDFs 
provide a first example of how risk professionals might be able to improve the consistency of the 
probabilistic risk assessments without sacrificing the flexibility that is necessary for relating the 
process to specific target populations and risk scenarios.    

 

8.0 Exposure Duration 

Exposure duration (ED) can be an influential input to the risk assessment process. 
However, depending on the risk scenario, exposure duration can be defined in a number of 
different ways. Some of the more common definitions include time spent in a given occupation; 
at a particular location, (e.g., time spent at current residence) (USEPA, 1997a); or participating in 
a particular activity (e.g., duration of time as a sport fisherman (Price et al., 1998)). In general, 
exposure duration is the time interval during which exposure occurs, either continuously or 
intermittently, at a given exposure concentration and intake/uptake rate (USEPA, 1997a, page 1-
12). Based on this general definition and for the purposes of this report, we treat exposure 
duration as the amount of time spent in an “exposure district,” the spatial range potentially 
impacted by a particular risk agent (i.e., a contaminant at a Superfund site). Given this definition, 
a useful first approximation for exposure duration might be the amount of time an individual 
remains in his/her current residence – a value previously referred to as “total residence time” 
(Israeli and Nelson, 1992), “residential occupancy period” (Johnson and Capel, 1992) and 
“residence duration” (Sedman et al., 1998).  

The problem with simply using occupancy period as a surrogate for exposure duration is 
that changing residences does not necessarily mean that the exposed individual has moved out of 
an exposure district. Statistics from the National Association of Realtors, reported in the 
Exposure Factors Handbook (USEPA, 1997a, Table 15-171) indicate that approximately half of 
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home buyers purchase homes within 10 miles of their previous residence. Therefore, to estimate 
exposure duration one should know both the total occupancy period for individuals in the target 
population and the likelihood that at the end of each occupancy period the individual moves out 
harms way with respect to a given risk scenario.  

Neither the total occupancy period nor absolute distance to a new residence has been 
reported on a scale that is relevant to the national population. Rather, surrogate data such as 
mobility, mortality, current residence time and/or tax records have been used to estimate 
occupancy period for various demographic categories in the U.S. population (Israeli and Nelson, 
1992; Johnson and Capel, 1992; Price et al., 1992; Sedman et al., 1998). Information on distance 
of move is even more sparse. Currently, the best readily available source of information related to 
distance of move for the national population is from migration data that reports type of move at 
the scale of state, county, metropolitan area, central city or suburb.  Although nationally 
representative, the migration data lack site-specific information. We expect this lack of site 
specific data to increase the uncertainty in distributions of exposure duration. Nevertheless, 
without information about both mobility and distance of move, any estimate of exposure duration 
would lack relevance to the exposed population.   

Therefore, our objective for exposure duration is to provide a consistent, scientifically 
defensible “baseline” distribution for the population along with a transparent and flexible method 
for using this information to derive a final exposure factor PDF. The final distribution should 
incorporate both uncertainty and variability and be relevant to the target population and specific 
risk scenario.  

Our general approach is to (1) identify and acquire the information to estimate occupancy 
period, (2) use data analysis techniques to identify important demographic factors and (3) review 
existing methods for estimating occupancy period in the context of uncertainty about site-specific 
demographics and distance of move.  A relatively simple and transparent method is needed for 
reconstructing relevant distributions that explicitly account for uncertainty and variability due to 
the size and demographic composition of the population in the target region and the general lack 
of information related to distance of move. 

8.1 Sources of data 

The U.S. Bureau of the Census currently conducts national housing surveys every other 
year.  These surveys provide comprehensive housing statistics for the U.S. Department of 
Housing and Urban Development (HUD) and include information on housing (apartments, 
single-family homes, and mobile homes, tenure), attributes of housing units (locale, number of 
rooms, square footage, etc.), and data on household members (age, race, sex, income, education, 
etc.).  The current residence time and demographic information reported in the survey data from 
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1995 (USDOC, 1995) were used in a previous report (Maddalena et al., 1999) to evaluate and 
identify key demographic factors in the population that influence residence time.  

The U.S. Bureau of Census also provides information on population mobility that is 
collected using the Annual Demographic Supplement to the Current Population Survey 
(USDOC, 1999). Mobility status is classified on the basis of a comparison between the place of 
residence of each individual at the time of the March survey and the place of residence the 
previous March. The information about whether the sample person is living in the same house at 
the end of the survey period as the beginning is used to identify movers and non-movers. Movers 
are further classified as to whether they were living in the same or different county, state, region, 
or were movers from abroad. Movers are also categorized by whether they moved within or 
between central cities, suburbs, and non-metropolitan areas of the United States (USDOC, 2000). 
Outside of a direct sample of the target population, the Current Population Survey provides the 
most relevant information available on a national scale for estimating the annual probability and 
approximate distance of a move. 

8.2 Identification of key demographic factors 

Current residence time (CRT) (USDOC, 1995) was used as a surrogate for exposure 
duration to identify important demographic factors for occupancy period (Maddalena et al., 
1999). The results indicate that exposure duration is primarily dependent upon age and tenure 
(rent or own). Farm status also seems to influence the reported length of current residence, since 
farm families tend to remain in their current residence longer than the general population.  
However, some of this difference is explained by the tenure and urban/rural status that is 
typically associated with farms. There also seems to be a slight regional influence.  People 
residing in the Northeast region of the country report somewhat longer residence times than the 
general population. These results were similar to those found in an earlier report that used current 
residence time to estimate total residence time (Israeli and Nelson, 1992). 

The age dependence of reported current residence time, as illustrated in Figure 7, shows a 
bimodal relationship that peaks at around age 18 then drops to a minimum at around age 30 
followed by a steady increase to a maximum current residence time of about 27 years. If we 
assume that the current residence time reported for children (birth to around 20 years) is 
approximately that of their parents, (i.e., young adults) then we can ignore reported values for 
children in Figure 7 and consider only adults. Without the influence of reported residence time 
for children, the relationship between residence time and age is approximately linear from age 
24, increasing at a rate of approximately 0.46 per year of age.  

In contrast to data on time at current residence, migration data indicate that the median 
occupancy period remains relatively constant across all age categories in owner occupied homes. 
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The trend towards increased residence time for adults is mainly due to renters where occupancy 
period doubles between ages 24-29 and ages 65 and above (Hansen, 1998).  Furthermore, among 
the general population, renters are approximately 4 times more likely to move in a given year 
than owners are. Within the general population, those that do move are approximately 3 times 
more likely to remain in the same county than they are to move to a different county (Figure 8). It 
is not possible to know, a priori, the distribution of ages within a given household. Therefore, we 
conclude that the most important information that is readily available for understanding exposure 
duration are the composition of the housing stock in the target region (i.e., rental versus owner 
occupied) and the type of move (local versus long distance). 

M
ea

n 
C

ur
re

nt
 R

es
id

en
ce

 T
im

e 
(y

)

0

10

20

30

0 10 20 30 40 50 60 70 80 90
Age of sample person (y)  

Figure 7:  The relationship between the average reported current residence time for the 
national population and the age of the sample person showing a bimodal 
distribution that arises from correlation between residence time of children 
and their parents. 
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Based on the availability and quality of information related to mobility, housing stock 
composition and migration, we can recommend a balanced approach for estimating exposure 
duration but first we provide a brief overview of previously published methods as a background. 
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Figure 8: Annual geographic mobility data showing percent of population that reported 
moving during the year that proceeded each Annual Demographic 
Supplement to the Current Population Survey. The average percent movers 
for the period from 1989 to 1998 for the “total movers” category (top line), is 
16.2% (σ = 0.6) of which renters and owners moved at a rate of 32% and 8% 
per year, respectively. For movers out of the county, the average over the 
same period is 5.9% (σ = 0.4) of which renters and owners moved at a rate of 
11% and 3%, respectively. 
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8.3 Overview of Existing Methods 

Israeli and Nelson, (1992) used weighted data from the 1985 and 1987 AHS-N surveys to 
estimate expected total residence time for the following groups: all households, renters, owners, 
urban households, rural households, farms (subset of rural households), and households in four 
geographic regions (northeast, midwest, south and west).  They used a semi-analytical approach 
in which they related the fraction of households that moved into their current residence t years 
before the survey to the fraction of households just moving in at the time of the survey that will 
be found in the same residence t years from now.  Values of the fraction of households that 
moved into their current residence t years before the surveys were calculated from American 
Housing Survey data and fit with a five-parameter survival function.  Three of the five fitted 
parameters were then used to estimate the expected total residence time. 

Johnson and Capel (1992) used a Monte Carlo approach to develop distributions of 
residential occupancy time by sex and age.  In their simulations, they used population and 
mobility data from the U.S. Bureau of the Census and mortality data from the National Center for 
Health Statistics.  The data that they used represent the 1987 U.S. population. The first step in 
their process was to determine the number of persons in each demographic group of interest, 
(e.g., the number of males or females of a given age).  Next, they developed mobility tables and 
mortality tables for the different demographic groups.  Mobility tables give the probability that a 
person in the demographic group did not move during the previous year (see Figure 8).  Mortality 
tables give the probability that a person in the demographic group will die during the upcoming 
year.  They then applied a Monte Carlo algorithm that generates current residence time using the 
mobility tables and future residence time using both the mobility and mortality tables.  The 
occupancy period is then estimated as one plus the sum of the current and future residence times.  
Johnson and Capel estimated occupancy period for 500,000 simulated persons. 

Finley et al. (1994) summarized and evaluated the work of both Israeli and Nelson and 
Johnson and Capel in their review of distributions of exposure factors.  In addition, they derived 
a formula for and calculated the residential occupancy periods of children born in the given 
household based on moving rates from the U.S. Bureau of the Census.  Finley et al. recommend 
using the estimates of Israeli and Nelson for exposure assessments that depend on housing unit 
characteristics such as geographic location, etc., and using the distributions of Johnson and Capel 
for exposure assessments for individuals of specified ages. 

Price et al. (1992) describe a simulation approach using mortality and mobility data to 
estimate what they term the Fraction of Life Exposed, and is defined as the exposure duration 
divided by the lifetime of the simulated individual. The model generates a hypothetical person 
based on current distributions of age and sex in the U.S. population then simulates a lifetime of 
exposure for that individual based on age specific mobility and mortality data.  
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Price et al, (1998) also describe a somewhat different computational approach for 
calculating the total duration (TD) of a behavior based on the reported duration (RD) and the 
starting age (SA) of the behavior.  Their approach is based on relating the probability of RD to the 
probability of TD given the value of SA.  Price et al. (1998) applied their method to surveys of 
anglers rather than to housing data.  However, the approach should be applicable to housing data 
given information about reported current residence time and starting age.  In the context of 
housing data, TD would be the total time an individual lives in a residence, RD would be the 
reported residence time, and SA would be the age of the individual when he/she first occupied the 
residence. 
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Figure 9:  Comparison of the estimates for occupancy period (total time that an 
individual lives in current residence) from different methods. The dash line is 
derived from frequency (used here as probability) of moving to a different 
county during a given year (Hanson, 1997; USDOC, 1999).    

 

Finally, Sedman et al. (1998) used public records on property title transfers to develop 
surrogates for occupancy periods. The specific public records used were the tax records for single 
family residences from the Tax Assessors office. The advantage of the method used by Sedman 
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et al. was that the records provide a closed interval for total residence duration that is not 
available in the other methods. The limitation is that the method can only be used for owner-
occupied housing and it assumes that the individuals live in the house during the entire period of 
ownership and that they subsequently move upon sale of the property. 

The various percentiles reported in Israeli and Nelson, (1992), Johnson and Capel (1992), 
Price et al. (1992) and Sedman et al., (1998) are graphically compared in Figure 9. 

As illustrated in Figure 9, all of the existing methods give comparable results, particularly 
when one considers the inherent uncertainties regarding the demographic makeup of the target 
population. The dash line in Figure 9 is derived solely from information about the annual 
percentage of the U.S. population that moves to a different county. This simple approach agrees 
reasonably well with the values predicted by the other four methods. Therefore, given the general 
absence of both site-specific mobility data and information about the total distance of a move, we 
cannot justify the complexity of any of the previously described models. Rather, we use readily 
available information on the tenure-based mobility of the national population and the 
approximate distance of move (out of metropolitan area, county, state,…) as surrogate data for 
exposure duration (i.e., duration of time spent in the target region).  A method for deriving 
exposure duration distributions from this information and accounting for site-specific 
characteristics is given in the following section. 

8.4 Recommendation for Estimating Distributions of Exposure Duration  

In estimating exposure duration, we assume no prior knowledge of individual ages within 
the target population for reasons given in Section 8.2. Rather, we estimate ED for a given 
household in the target region using tenure-based mobility data. An exposure duration value for a 
given home is  

∑=
=

in

i
ii YED

1
 (40) 

where 





≥
<

=
d

d
i PR

PR
Y

 if         0
 ifyear   1

 (41) 

and R is a random number between 0 and 1, Pd is the demographically-based probability of 
moving (i.e. the probability of moving out of county for the U.S. population) and ni is the total 
number of random draws, until R ≥  Pd (i.e., the household moves), that satisfy the constraint 
R < Pd. This process is repeated for a given home until a full averaging time (AT) profile is 
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established. Further, the number of homes within the target region and the composition of the 
housing stock (rental versus owner occupied) are used to construct a set of random EDij values 
over a specified AT for j different homes having any combination of Pd values (e.g., d equals 
renter or owner). The process is easily applied using available statistical, mathematical or 
spreadsheet software packages.  The approach can be applied to simulate occupancy period over 
a specified averaging time for a given number of homes based on the tenure composition across 
the housing stock, i.e., the number of owner occupied and renter occupied homes within the 
target region.  

Information about the composition of the housing stock within the target region can be 
accessed through the U.S. Census interactive data retrieval service at 
http://homer.ssd.census.gov/doc/lookup_doc.html or by direct survey of the target population.  
Information about the mobility of different demographic subsets of the population can be 
accessed at http://www.census.gov by looking up “Migration” in the “Subjects A to Z” index. In 
applying this method to different geographical regions of the U.S., we found that the 
two-parameter exponential distribution (Johnson et al., 1994a) consistently provided the best fit 
to different sets of simulated exposure duration values.  But this is expected because the model is 
simply a mixture of demographically based moving rates. For target regions where the number of 
houses is small, we recommend that the sampling and fitting process be repeated several times to 
estimate uncertainty about the model parameterization. In addition, the inputs to the process (e.g., 
demographically based probability of moving) should be defined as distributions to explicitly 
account for uncertainty and lack of site-specificity. 

Although not as robust as the method for estimating body weight, we believe that the 
recommended method for deriving exposure duration distributions is adequate given the 
availability, and quality of surrogate data. That is, the complexity of the approach is appropriate 
given the state of the science and general lack of site-specific data.  

 

9.0 Water Intake  

For many exposure scenarios, water intake is an important input to the risk assessment 
process. Reported valures for water intake rate are from the same nationally representative survey 
that includes self-reported values of body weight (USDA, 1998). The data on water intake are 
collected using 24-hour recall about the amount of food, beverage and plain water that the 
individual surveyed has consumed the previous day. Food and beverage values are subsequently 
converted to water intake using food recipe files (USEPA, 2000a). Although the 24-hour recall 
sampling method and the food-to-water conversions likely lead to imprecision and/or bias in the 

http://homer.ssd.census.gov/doc/lookup_doc.html
http://www.census.gov/
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data, an equally if not more important limitation of the data, in the context of PRA, is the fact 
that only two nonconsecutive days are sampled for each individual.  

These “short-term” recall samples have been used to represent the distribution of 
individual long-term average intake for the US population (Burmaster, 1998; Ershow et al., 
1991; Ershow and Cantor, 1989; Roseberry and Burmaster, 1992; USEPA, 2000a). Although 
short-term data provides a good estimate of the population mean it greatly inflates the variance in 
the distribution of average daily intakes for individuals. As a consequence the distribution of 
long-term daily average intake across the population is also inflated.  This results in significant 
over-estimates of exposure for the high end of the population and significant under-estimates for 
the low end (Buck et al., 1995; Slob, 1993; Slob, 1996; USEPA, 1997a; Wallace et al., 1994).  
Variance associated with exposure factor distributions is critical in the context of probabilistic 
analyses where both the range and likelihood of an outcome are of interest. Distributions that are 
derived using short-term survey data not only lack relevance for the tails of the distributions, they 
are wrong, but wrong in way that is predictable.  

Without adjusting the data to compensate for this variance inflation effect, there is little 
value in understanding the demographic characteristics of the population and using higher-order 
statistical models that provide more precise fits to the data. Therefore, the limitations associated 
with short-term survey data must be addressed before the data can be used to construct 
“recommended” exposure factor distributions for chronic (long-term) exposure scenarios. 
Method development and evaluation of existing methods for improving the relevance of short-
term data is beyond the scope of this study. As a result, we are not able to provide either a set of 
demographically based distributions or a method for constructing site-specific PDFs for water 
intake. However, we do provide in the following sections, a brief illustration of the extent to 
which the distribution of long-term average water intake is effected by sample size and by 
assumptions about the variance structure within the data. We conclude the section with 
recommendations for future studies that begin to address the limitations in the data. 

9.1 The Implications of using Short-term Data to Estimate Long-term Averages 

The problem of using small, short-term samples to estimate long-term averages comes up 
frequently in environmental statistics, and has previously been considered for food and soil 
ingestion data (Slob, 1993; Slob, 1996; Stanek et al., 1998; Wallace et al., 1994). Previous 
researchers have used parametric modeling to relate the short- and long-term exposure 
distributions. A common assumption made for both convenience and for substantive reasons is 
that either individual daily observations or annual consumption values are lognormally 
distributed.  But failures to meet these assumptions have been noted and alternative assumptions 
presented (Wallace et al. 1994). Other assumptions used in existing methods include the lack of 
measurement error and specific variance structure across the population (i.e., constant CVs, 
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constant standard deviation or independence of day-to-day variation within and/or between 
individuals).    

We expand on the model of Buck et al. (1995) to illustrate how short-term survey data 
might influence the final selection of a PDF. In this approach, we assume that the amount of 
water that a person might report consuming on a given day is represented mathematically as   

Xij = µi+τij+τik (42) 

where Xij is the amount person i reports consuming on day j, µi is the true long-term average 
intake for person i, τij is the deviation for person i from µi on day j due to day-to-day variability 
and τik is the deviation due to measurement or reporting error.  

The long-term average intake for the ith person (µi in equation 42) is a random variable 
from distribution function G which is the true distribution of per capita intakes across the 
population of interest (e.g., the distribution needed for a PRA concerned with a chronic 
exposures at the population level). For simplicity we assume that distribution G is lognormal 
with mean, µp and variance, σ2

p where the subscript p indicates population.  

Deviation from the true long-term average intake for the ith person on day j (τij in equation 
42) is a random variable from distribution function H with mean = 0 (assumes no bias) and 
variance = σ2

i for individual i.  Neglecting reporting/measurement error (τik) in Eq. 42, we pose 
three possible scenarios for day-to-day variability of individual intakes.  

(1) Day-to-day variability, σ2
i, is the same for all individuals in the population.  

(2) Day-to-day variability, σ2
i, is different for each individual in the population, e.g., σ2

i is a 

random variable drawn from distribution function F. 

(3) The coefficient of variation for day-to-day variability (σi/µi) is the same for all individuals. 

To evaluate the influence of the three scenarios on the distribution of long-term average, 
we specify parameters for distribution function G (lognormal) that are near what we expect to see 
for an exposure factor such as water intake (µp = 1.5 liter per day and σp = 0.9). Next we draw a 
set of 250 individual means (µi) from distribution G where each mean represents the true 
long-term average intake for an individual in the population. 
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Figure 10:  Results for Case 1. Comparison of the “true” distribution of average values 
(solid line) with an empirical distribution constructed using 250 hypothetical 
individuals where two samples are drawn for each individual and used to 
estimate the average intake for that person.  The variance structure for 
individuals in the population is assumed to be constant from day-to-day for 
all members of the population; σ = 0.9.   

 

For case 1 we use the 250 values along with a constant standard deviation (σp = 0.9) to 
simulated two sets of Xij (day 1 and day 2) using equation 42 for each sample person. The 
resulting empirical distribution function constructed using the average of these two simulated 
days is shown in Figure 10 along with the actual distribution function of average per capita intake 
across the population.  

For the second case we again use the set of 250 individual means generated from 
LogNorm(1.5,0.9), but the day-to-day variation, τij in Eq. 42, is now assumed to be a random 
variable drawn from a lognormal distribution with mean = 1.35 and σ = 1.00.  Thus, the values 
used to construct the empirical distribution of short-term average intakes are from the 
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distribution LogNorm{LogNorm(1.5,0.9), LogNorm(1.34,1.00)}. The result for Case 2 is 
illustrated in Figure 11.  
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Figure 11: Results for Case 2. Comparison of the “true” distribution of average values 
(solid line) with an empirical distribution constructed using short-term data 
(2-day) where the day-to-day variance structure in the population is assumed 
to be distributed randomly with lognormal distribution; LogNorm(1.35,1.00).  

 

Case 3 uses the same individual means but the day-to-day variation is represented by a 
constant coefficient of variation (CV = 0.5) for all individuals. The result for this case is shown 
in Figure 12.  
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 distribution of average per capita intake LN(1.5,0.9)
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Figure 12:  Results from Case 3. Comparison of the “true” distribution of average values 
with an empirical distribution constructed using short-term data (2-day) 
where the day-to-day variance structure in the population is assumed to be 
represented by a constant relative standard deviation, i.e., day-to-day 
variation for each member of the population has the same coefficient of 
variation; CV(0.5).  

In each case, regardless of our assumption about the structure of the day-to-day variance 
in intakes for individuals in the population, the empirical distribution of the data from the 2-day 
average intakes clearly deviates from the “true” distribution of average intakes for the population. 
The implication for constructing exposure factor distributions is that regardless of how 
sophisticated our statistical model is, or how well we “fit” the model to the data, the relevance of 
the resulting PDF to the actual (all-be-it unknown) exposure factor distribution is limited, i.e., the 
resulting PDF is wrong. It is clear that until we can develop a scientifically defensible method for 
updating the relevance of short-term data, the exposure factor PDFs that are based on this data 
will be unreliable.  
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9.2 A Final Recommendation for Water Intake 

Although lognormal distributions have been shown to provide a reasonable fit to water 
intake data, (Burmaster, 1998; Roseberry and Burmaster, 1992) a recent report suggests a more 
complex 5-parameter generalized F-distribution may be appropriate (USEPA, 2000b). Our own 
screening analysis of a range of demographically based sets of water intake values found that 
mixture models work best for fitting large data sets (results not shown).  However, without 
addressing the issue of variance inflation due to the survey design, it will not be possible to 
identify the most appropriate parametric model or to recommend a transparent approach for 
reconstructing task-specific default distributions.  

To address this limitation in the data we suggest that studies be targeted at improving the 
way short-term survey data is used to derive distributions of long-term average intakes.  The 
problem described and demonstrated above is also relevant to a number of other exposure factors 
(e.g., food intakes, activity diaries, etc.) and as such warrants close consideration. We suggest 
that the general task of improving data relevance be focused on two main efforts using water 
intake as the case study but where the results would be relevant to the general case of using short-
term data to estimate long-term exposure factors. We recommend the following: 

1. Use existing water intake data to construct an initial distribution by assuming each person’s 
daily intake can be drawn from a lognormal distribution as illustrated in the case studies, with 
person-dependent geometric mean (GM) and a partially pooled estimate of geometric 
standard deviation (GSD). The personal GM (and GSD) for each person cannot simply be 
extracted from the two available measurements per person because that will result in an 
inflated variability. Instead, Bayesian modeling can be used to estimate annual mean 
consumption from a combination of the data and relevant factors such as sex, age, region of 
the country, etc. Following the standard techniques of posterior predictive updates, the 
estimates of GMs and GSDs could be used to generate simulated data, which could then be 
compared to the observed data in order to investigate model violations, with particular 
emphasis on the upper tail of the distribution. This task would essentially extend previous 
lognormal modeling of intake data (Slob, 1993; Slob, 1996; Stanek et al., 1998; Wallace et 
al., 1994) by (i) including demographic factors (i.e., age, sex, body weight, etc.) that are 
expected to influence water intake, and by (ii) using posterior predictive checks (Gelman et 
al., 1995) to quantify model violations.  The outcome of this research thrust could provide 
more accurate estimated water intake distributions for various demographic categories and 
provide quantitative error estimates for each quantile of the distribution for the population or 
specific cohorts within the population.  
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2. It is possible that the first recommended task will yield fully satisfactory estimates of water 
intake distributions by sex, age, region, etc., with only insignificant model violations, and 
thus provide accurate prediction of the high tail of the intake distribution.  More likely, 
however, some violations will remain. For example, the use of a lognormal distribution, with 
its extended high tail, may be inappropriate.  A truncated lognormal, a gamma or log-gamma 
distribution, or other distribution, might be found to better agree with the data, particularly at 
the high end of the distribution.  Fitting such models is substantially more complicated than 
fitting lognormal models, which is one reason they are not frequently used.  Still, we must 
use models that fit the data, not the other way around, and it may be that these alternative 
models will prove necessary. Thus, the second recommendation is to evaluate the use of non-
lognormal models, as needed, to address substantial problems with the lognormal 
assumptions, particularly at the high end of the intake distribution.  Although conceptually 
straightforward, fitting modified distributions (such as truncated lognormal distributions) 
would require a significant level of computational effort. Once the short-term data are 
appropriately transformed to represent long-term statistics in the population then the general 
approach described in Section 7 for body weight could be developed to reconstruct task-
specific distribution for target populations at various geographic locations and scales. 
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Appendix 1: Estimation of Body Weight Percentiles for 
Children 

Percentiles for body weight per sex and age category for children from birth through 19 
years are calculated using the standard normal distribution (z-score) for the desired percentile and 
Eq. 34 along with the L, M, S parameters listed below from reference (Kuczmarski et al., 2000). 
The values are listed below for convenience. The reader should refer to the original report for 
further details. The location is provided in the original report (Kuczmarski et al., 2000) for 
downloading an electronic copy of the variables. 

 Male Female 
Age in 
Months 

 
L 

 
M 

 
S 

 
L 

 
M 

 
S 

0 1.815151 3.530203 0.152385 1.509188 3.399186 0.142107 
0.5 1.547523 4.003106 0.146025 1.357944 3.797528 0.138076 
1.5 1.068796 4.879525 0.136479 1.105538 4.544777 0.131734 
2.5 0.695974 5.672889 0.129678 0.902597 5.230584 0.126893 
3.5 0.419815 6.391392 0.124717 0.734121 5.859961 0.123025 
4.5 0.219867 7.041836 0.12104 0.590235 6.437588 0.119841 
5.5 0.077506 7.630425 0.118271 0.464392 6.96785 0.117167 
6.5 -0.02191 8.162951 0.116154 0.352164 7.454854 0.114894 
7.5 -0.08944 8.644832 0.11451 0.250498 7.902436 0.11295 
8.5 -0.13341 9.08112 0.113217 0.157248 8.314178 0.111285 
9.5 -0.1601 9.4765 0.112186 0.070886 8.693418 0.109864 

10.5 -0.1743 9.835308 0.111355 -0.00968 9.043262 0.108661 
11.5 -0.17972 10.16154 0.110676 -0.08526 9.366594 0.107656 
12.5 -0.17925 10.45885 0.110119 -0.15641 9.666089 0.106835 
13.5 -0.17518 10.73063 0.109657 -0.22356 9.944226 0.106183 
14.5 -0.16932 10.97992 0.109274 -0.28701 10.20329 0.105691 
15.5 -0.16311 11.20956 0.108956 -0.347 10.44541 0.10535 
16.5 -0.15771 11.42207 0.108695 -0.40369 10.67251 0.10515 
17.5 -0.15402 11.61978 0.108483 -0.45722 10.88639 0.105084 
18.5 -0.15276 11.80478 0.108317 -0.5077 11.08868 0.105144 
19.5 -0.15447 11.97897 0.108194 -0.55524 11.2809 0.105323 
20.5 -0.15952 12.14404 0.108111 -0.59992 11.4644 0.105613 
21.5 -0.16818 12.30154 0.108067 -0.64185 11.64043 0.106007 
22.5 -0.18057 12.45283 0.108062 -0.68114 11.81014 0.106498 
23.5 -0.1967 12.59913 0.108095 -0.71788 11.97454 0.107078 
24.5 -0.2165 12.74154 0.108166 -0.75221 12.13456 0.10774 
25.5 -0.23979 12.88102 0.108275 -0.78423 12.29102 0.108477 
26.5 -0.26632 13.01842 0.108421 -0.8141 12.44469 0.109281 
27.5 -0.29575 13.1545 0.108605 -0.84194 12.59622 0.110144 
28.5 -0.32773 13.2899 0.108826 -0.86789 12.74621 0.111061 
29.5 -0.36182 13.42519 0.109083 -0.8921 12.89517 0.112023 
30.5 -0.39757 13.56088 0.109378 -0.91472 13.04357 0.113023 
31.5 -0.43452 13.69738 0.109708 -0.93588 13.19181 0.114056 
32.5 -0.47219 13.83505 0.110073 -0.95572 13.34023 0.115115 
33.5 -0.51012 13.97418 0.110473 -0.97438 13.48913 0.116193 
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34.5 -0.54789 14.11503 0.110907 -0.99198 13.63877 0.117286 
35.5 -0.58507 14.2578 0.111375 -1.00864 13.78937 0.118387 
36.5 -0.62132 14.40263 0.111875 -1.02447 13.94108 0.119492 
37.5 -0.6563 14.54965 0.112406 -1.03957 14.09407 0.120596 
38.5 -0.68974 14.69893 0.112967 -1.05404 14.24844 0.121695 
39.5 -0.72141 14.85054 0.113558 -1.06795 14.40429 0.122785 
40.5 -0.75118 15.00449 0.114177 -1.08137 14.56168 0.123863 
41.5 -0.7789 15.16078 0.114822 -1.09438 14.72064 0.124927 
42.5 -0.80452 15.3194 0.115493 -1.10702 14.88121 0.125973 
43.5 -0.828 15.4803 0.116188 -1.11934 15.04341 0.127 
44.5 -0.84938 15.64343 0.116904 -1.13137 15.20721 0.128006 
45.5 -0.8687 15.80873 0.117641 -1.14314 15.37263 0.12899 
46.5 -0.88603 15.9761 0.118397 -1.15466 15.53962 0.129951 
47.5 -0.90151 16.14548 0.119169 -1.16596 15.70817 0.130889 
48.5 -0.91524 16.31677 0.119955 -1.17703 15.87824 0.131802 
49.5 -0.92738 16.48986 0.120755 -1.18787 16.04978 0.132692 
50.5 -0.93807 16.66468 0.121565 -1.19848 16.22277 0.133559 
51.5 -0.94748 16.8411 0.122385 -1.20885 16.39715 0.134403 
52.5 -0.95577 17.01904 0.123212 -1.21897 16.57289 0.135226 
53.5 -0.9631 17.19839 0.124044 -1.2288 16.74994 0.136028 
54.5 -0.96963 17.37906 0.124879 -1.23833 16.92827 0.136811 
55.5 -0.97553 17.56096 0.125716 -1.24754 17.10783 0.137576 
56.5 -0.98094 17.744 0.126554 -1.25639 17.28859 0.138324 
57.5 -0.98601 17.92809 0.12739 -1.26486 17.47052 0.139058 
58.5 -0.99087 18.11316 0.128224 -1.27293 17.65361 0.139779 
59.5 -0.99564 18.29912 0.129054 -1.28055 17.83782 0.14049 
60.5 -1.00045 18.48592 0.129879 -1.28769 18.02314 0.141191 
61.5 -1.0054 18.6735 0.130698 -1.29433 18.20956 0.141885 
62.5 -1.01058 18.8618 0.13151 -1.30044 18.39709 0.142574 
63.5 -1.01606 19.05077 0.132315 -1.30599 18.58571 0.14326 
64.5 -1.02193 19.24037 0.133111 -1.31095 18.77545 0.143944 
65.5 -1.02824 19.43058 0.133898 -1.31529 18.96631 0.144629 
66.5 -1.03504 19.62136 0.134676 -1.31899 19.15831 0.145317 
67.5 -1.04237 19.8127 0.135444 -1.32204 19.35149 0.146009 
68.5 -1.05025 20.00459 0.136203 -1.3244 19.54588 0.146707 
69.5 -1.05871 20.19703 0.136952 -1.32606 19.74151 0.147412 
70.5 -1.06773 20.39002 0.137691 -1.32702 19.93843 0.148127 
71.5 -1.07732 20.58357 0.138422 -1.32726 20.1367 0.148852 
72.5 -1.08747 20.7777 0.139143 -1.32676 20.33636 0.14959 
73.5 -1.09815 20.97243 0.139855 -1.32554 20.53748 0.15034 
74.5 -1.10933 21.16779 0.14056 -1.32358 20.74013 0.151105 
75.5 -1.12097 21.36383 0.141256 -1.32089 20.94438 0.151885 
76.5 -1.13302 21.56058 0.141947 -1.31747 21.1503 0.152682 
77.5 -1.14543 21.75811 0.142631 -1.31333 21.35797 0.153495 
78.5 -1.15813 21.95645 0.14331 -1.30849 21.56748 0.154326 
79.5 -1.17106 22.15567 0.143985 -1.30295 21.77891 0.155174 
80.5 -1.18414 22.35584 0.144657 -1.29673 21.99235 0.156041 
81.5 -1.19731 22.55702 0.145327 -1.28986 22.20789 0.156927 
82.5 -1.21048 22.7593 0.145996 -1.28236 22.42562 0.157831 
83.5 -1.22357 22.96273 0.146666 -1.27424 22.64564 0.158753 
84.5 -1.2365 23.16742 0.147337 -1.26555 22.86804 0.159693 
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85.5 -1.24919 23.37343 0.148012 -1.2563 23.09293 0.160651 
86.5 -1.26156 23.58086 0.14869 -1.24653 23.32039 0.161627 
87.5 -1.27352 23.78979 0.149374 -1.23627 23.55052 0.162619 
88.5 -1.28501 24.00031 0.150065 -1.22555 23.78342 0.163628 
89.5 -1.29595 24.21251 0.150764 -1.21441 24.01918 0.164651 
90.5 -1.30627 24.42648 0.151472 -1.20288 24.25789 0.165689 
91.5 -1.3159 24.64231 0.15219 -1.19101 24.49965 0.16674 
92.5 -1.32478 24.8601 0.15292 -1.17882 24.74454 0.167802 
93.5 -1.33286 25.07992 0.153663 -1.16635 24.99264 0.168876 
94.5 -1.34008 25.30189 0.154419 -1.15365 25.24403 0.169959 
95.5 -1.34641 25.52607 0.155189 -1.14075 25.4988 0.17105 
96.5 -1.35181 25.75257 0.155974 -1.12768 25.75702 0.172147 
97.5 -1.35625 25.98146 0.156775 -1.11449 26.01874 0.173249 
98.5 -1.35971 26.21284 0.157592 -1.1012 26.28404 0.174355 
99.5 -1.36217 26.44679 0.158425 -1.08786 26.55298 0.175462 

100.5 -1.36361 26.68339 0.159275 -1.0745 26.82559 0.176568 
101.5 -1.36404 26.92273 0.160142 -1.06115 27.10193 0.177673 
102.5 -1.36346 27.16489 0.161026 -1.04785 27.38203 0.178774 
103.5 -1.36187 27.40995 0.161926 -1.03462 27.66593 0.17987 
104.5 -1.35928 27.65797 0.162842 -1.0215 27.95365 0.180958 
105.5 -1.35572 27.90904 0.163775 -1.00852 28.24521 0.182037 
106.5 -1.3512 28.16324 0.164722 -0.99571 28.5406 0.183105 
107.5 -1.34575 28.42064 0.165684 -0.98309 28.83984 0.18416 
108.5 -1.33941 28.6813 0.166659 -0.97069 29.14291 0.185201 
109.5 -1.33219 28.9453 0.167647 -0.95853 29.4498 0.186225 
110.5 -1.32414 29.21271 0.168646 -0.94664 29.76048 0.187231 
111.5 -1.31529 29.48359 0.169655 -0.93504 30.07493 0.188218 
112.5 -1.30569 29.758 0.170673 -0.92376 30.39308 0.189183 
113.5 -1.29537 30.03602 0.171698 -0.9128 30.7149 0.190124 
114.5 -1.28437 30.3177 0.172729 -0.9022 31.04032 0.191041 
115.5 -1.27275 30.60311 0.173763 -0.89196 31.36928 0.191932 
116.5 -1.26054 30.8923 0.174799 -0.88211 31.70168 0.192796 
117.5 -1.24778 31.18533 0.175836 -0.87266 32.03745 0.19363 
118.5 -1.23453 31.48225 0.176871 -0.86363 32.37649 0.194434 
119.5 -1.22082 31.78312 0.177903 -0.85503 32.71868 0.195207 
120.5 -1.20669 32.08799 0.178929 -0.84687 33.06392 0.195947 
121.5 -1.19219 32.3969 0.179947 -0.83917 33.41208 0.196653 
122.5 -1.17736 32.70991 0.180955 -0.83193 33.76303 0.197325 
123.5 -1.16224 33.02704 0.181951 -0.82518 34.11663 0.197961 
124.5 -1.14688 33.34835 0.182934 -0.81891 34.47272 0.198561 
125.5 -1.1313 33.67387 0.183899 -0.81314 34.83116 0.199123 
126.5 -1.11554 34.00363 0.184847 -0.80787 35.19176 0.199648 
127.5 -1.09965 34.33766 0.185774 -0.80312 35.55437 0.200134 
128.5 -1.08365 34.67599 0.186678 -0.7989 35.9188 0.200581 
129.5 -1.06759 35.01864 0.187558 -0.7952 36.28486 0.200988 
130.5 -1.05148 35.36562 0.188411 -0.79205 36.65236 0.201356 
131.5 -1.03537 35.71695 0.189236 -0.78944 37.02111 0.201684 
132.5 -1.01928 36.07263 0.19003 -0.78737 37.39089 0.201971 
133.5 -1.00324 36.43266 0.190791 -0.78587 37.76149 0.202218 
134.5 -0.98727 36.79704 0.191518 -0.78493 38.1327 0.202425 
135.5 -0.97141 37.16577 0.19221 -0.78456 38.5043 0.202591 
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136.5 -0.95567 37.53881 0.192864 -0.78476 38.87605 0.202717 
137.5 -0.94008 37.91616 0.193479 -0.78554 39.24775 0.202803 
138.5 -0.92467 38.29777 0.194053 -0.7869 39.61914 0.202848 
139.5 -0.90945 38.68361 0.194586 -0.78886 39.99 0.202854 
140.5 -0.89445 39.07364 0.195077 -0.7914 40.36009 0.20282 
141.5 -0.87968 39.46781 0.195523 -0.79455 40.72918 0.202747 
142.5 -0.86516 39.86604 0.195925 -0.79829 41.09701 0.202636 
143.5 -0.85092 40.26828 0.196281 -0.80264 41.46336 0.202486 
144.5 -0.83696 40.67444 0.196592 -0.8076 41.82798 0.202299 
145.5 -0.82332 41.08443 0.196855 -0.81317 42.19063 0.202074 
146.5 -0.80999 41.49817 0.197072 -0.81936 42.55108 0.201814 
147.5 -0.79701 41.91555 0.197241 -0.82616 42.90909 0.201517 
148.5 -0.78439 42.33644 0.197363 -0.83359 43.26442 0.201185 
149.5 -0.77214 42.76073 0.197437 -0.84163 43.61683 0.200819 
150.5 -0.76027 43.18828 0.197464 -0.85031 43.96612 0.200419 
151.5 -0.74882 43.61896 0.197445 -0.85961 44.31204 0.199987 
152.5 -0.73778 44.05259 0.197378 -0.86953 44.65437 0.199522 
153.5 -0.72718 44.48903 0.197266 -0.88009 44.99291 0.199027 
154.5 -0.71704 44.92809 0.197109 -0.89127 45.32745 0.198501 
155.5 -0.70736 45.3696 0.196907 -0.90308 45.65777 0.197946 
156.5 -0.69817 45.81336 0.196662 -0.91551 45.98369 0.197363 
157.5 -0.68948 46.25917 0.196375 -0.92857 46.30501 0.196753 
158.5 -0.6813 46.70681 0.196046 -0.94225 46.62155 0.196116 
159.5 -0.67367 47.15606 0.195677 -0.95654 46.93314 0.195455 
160.5 -0.66659 47.60669 0.195269 -0.97144 47.23962 0.194769 
161.5 -0.66007 48.05847 0.194825 -0.98695 47.54083 0.194061 
162.5 -0.65414 48.51113 0.194344 -1.00305 47.83661 0.19333 
163.5 -0.64882 48.96443 0.19383 -1.01974 48.12685 0.19258 
164.5 -0.64412 49.4181 0.193283 -1.03701 48.41141 0.191809 
165.5 -0.64006 49.87187 0.192706 -1.05485 48.69018 0.191021 
166.5 -0.63665 50.32546 0.1921 -1.07323 48.96305 0.190216 
167.5 -0.63392 50.77859 0.191467 -1.09216 49.22993 0.189395 
168.5 -0.63188 51.23096 0.190808 -1.11161 49.49075 0.18856 
169.5 -0.63054 51.68229 0.190127 -1.13155 49.74544 0.187712 
170.5 -0.62992 52.13226 0.189425 -1.15198 49.99394 0.186852 
171.5 -0.63004 52.58059 0.188703 -1.17287 50.23621 0.185983 
172.5 -0.63091 53.02696 0.187964 -1.19418 50.47222 0.185104 
173.5 -0.63253 53.47107 0.187209 -1.21591 50.70196 0.184219 
174.5 -0.63492 53.91261 0.186442 -1.23801 50.92541 0.183328 
175.5 -0.63808 54.35128 0.185663 -1.26045 51.14259 0.182432 
176.5 -0.64203 54.78677 0.184874 -1.28319 51.35353 0.181534 
177.5 -0.64676 55.21878 0.184079 -1.30621 51.55825 0.180635 
178.5 -0.65226 55.64701 0.183277 -1.32946 51.75681 0.179736 
179.5 -0.65855 56.07116 0.182472 -1.3529 51.94926 0.17884 
180.5 -0.66561 56.49096 0.181666 -1.37648 52.13568 0.177947 
181.5 -0.67343 56.90611 0.180859 -1.40015 52.31616 0.177059 
182.5 -0.68199 57.31634 0.180054 -1.42388 52.4908 0.176179 
183.5 -0.69127 57.72139 0.179253 -1.44759 52.6597 0.175307 
184.5 -0.70126 58.121 0.178457 -1.47125 52.82299 0.174446 
185.5 -0.71192 58.51492 0.177668 -1.49479 52.98079 0.173597 
186.5 -0.72322 58.90293 0.176887 -1.51816 53.13327 0.172761 
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187.5 -0.73512 59.2848 0.176116 -1.54129 53.28056 0.171941 
188.5 -0.74758 59.66033 0.175357 -1.56412 53.42284 0.171137 
189.5 -0.76055 60.02932 0.17461 -1.5866 53.56028 0.170352 
190.5 -0.77398 60.39159 0.173877 -1.60866 53.69307 0.169588 
191.5 -0.78782 60.74699 0.17316 -1.63023 53.82138 0.168844 
192.5 -0.80199 61.09537 0.172459 -1.65125 53.94544 0.168125 
193.5 -0.81645 61.4366 0.171776 -1.67165 54.06543 0.167429 
194.5 -0.83111 61.77057 0.171111 -1.69138 54.18158 0.16676 
195.5 -0.84591 62.09719 0.170466 -1.71036 54.29411 0.166118 
196.5 -0.86079 62.41639 0.169841 -1.72854 54.40324 0.165504 
197.5 -0.87565 62.72809 0.169237 -1.74586 54.50921 0.164921 
198.5 -0.89044 63.03228 0.168655 -1.76224 54.61224 0.164368 
199.5 -0.90506 63.32892 0.168095 -1.77764 54.71257 0.163847 
200.5 -0.91946 63.61802 0.167558 -1.79201 54.81044 0.163359 
201.5 -0.93354 63.89959 0.167044 -1.80528 54.9061 0.162905 
202.5 -0.94725 64.17367 0.166553 -1.81742 54.99978 0.162486 
203.5 -0.96051 64.44032 0.166085 -1.82837 55.09172 0.162101 
204.5 -0.97324 64.69961 0.16564 -1.83809 55.18217 0.161753 
205.5 -0.9854 64.95165 0.165218 -1.84655 55.27135 0.16144 
206.5 -0.9969 65.19653 0.164819 -1.85372 55.35951 0.161164 
207.5 -1.00771 65.4344 0.164442 -1.85957 55.44686 0.160924 
208.5 -1.01776 65.6654 0.164087 -1.86407 55.53362 0.160721 
209.5 -1.027 65.8897 0.163753 -1.86721 55.62001 0.160554 
210.5 -1.0354 66.10749 0.163439 -1.86898 55.70624 0.160423 
211.5 -1.04292 66.31897 0.163144 -1.86937 55.79248 0.160329 
212.5 -1.04951 66.52437 0.162867 -1.86839 55.87892 0.160269 
213.5 -1.05516 66.7239 0.162608 -1.86603 55.96573 0.160245 
214.5 -1.05984 66.91784 0.162365 -1.86233 56.05305 0.160254 
215.5 -1.06353 67.10642 0.162137 -1.85729 56.141 0.160296 
216.5 -1.06622 67.28993 0.161923 -1.85095 56.2297 0.16037 
217.5 -1.06791 67.46863 0.161721 -1.84333 56.31922 0.160474 
218.5 -1.06859 67.64281 0.161532 -1.8345 56.40963 0.160607 
219.5 -1.06826 67.81277 0.161352 -1.82448 56.50096 0.160768 
220.5 -1.06693 67.97877 0.161183 -1.81334 56.5932 0.160955 
221.5 -1.06462 68.14111 0.161022 -1.80115 56.68633 0.161166 
222.5 -1.06134 68.30005 0.16087 -1.78798 56.78026 0.161399 
223.5 -1.05712 68.45585 0.160726 -1.7739 56.8749 0.161652 
224.5 -1.05199 68.60872 0.16059 -1.75901 56.9701 0.161923 
225.5 -1.04599 68.75889 0.160462 -1.74339 57.06565 0.162209 
226.5 -1.03917 68.90653 0.160343 -1.72716 57.16132 0.162509 
227.5 -1.03158 69.05176 0.160234 -1.71041 57.2568 0.162819 
228.5 -1.02329 69.19467 0.160138 -1.69327 57.35176 0.163138 
229.5 -1.01439 69.33527 0.160056 -1.67585 57.44578 0.163463 
230.5 -1.00495 69.47351 0.159992 -1.6583 57.5384 0.163791 
231.5 -0.9951 69.60926 0.15995 -1.64075 57.6291 0.16412 
232.5 -0.98496 69.74228 0.159934 -1.62333 57.71728 0.164447 
233.5 -0.97466 69.87224 0.159951 -1.60621 57.80227 0.164771 
234.5 -0.96438 69.99869 0.160007 -1.58953 57.88334 0.165088 
235.5 -0.95427 70.12104 0.160112 -1.57347 57.95967 0.165398 
236.5 -0.94455 70.23857 0.160274 -1.55818 58.0304 0.165698 
237.5 -0.93541 70.3504 0.160505 -1.54385 58.09453 0.165985 
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238.5 -0.92706 70.45546 0.160819 -1.53064 58.15104 0.16626 
239.5 -0.91972 70.55252 0.16123 -1.51875 58.19877 0.16652 

240 -0.91649 70.59761 0.161477 -1.51336 58.21897 0.166645 
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Appendix 2: Body Weight Percentile Data for Adults 

This appendix includes actual values of raw percentile in Tables A2.1 and A2.2 for 
women and men, respectively. The values of the smoothed percentiles are provided in Tables 
A2.3 and A2.4. For details on the source of data and the smoothing process see Part 2 of this 
report, Section 7.1 and 7.3, respectively.  

 

Table A2.1: Empirical percentiles of body weight (kg) for adult women  

Combined CSFII and NHANES III Data 

Age 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99 
20 44 47 49 50 50 52 53 55 55 58 60 61 62 64 64 68 70 73 81 92 116 
21 40 47 48 50 51 52 54 56 57 58 59 61 64 66 67 73 77 83 90 95 116 

22-24 42 47 50 51 53 56 57 58 59 60 61 63 65 66 68 71 75 78 82 99 121 
25-29 42 47 50 52 54 54 56 57 59 60 61 63 65 67 70 74 77 81 87 100 117 
30-34 43 48 51 52 54 55 57 59 61 62 64 66 68 70 73 77 80 84 92 103 128 
35-39 44 49 52 54 56 58 59 61 62 64 66 68 70 72 75 79 84 89 94 106 125 
40-44 43 50 53 55 57 59 60 62 64 65 67 69 72 74 76 79 82 87 92 104 134 
45-49 44 50 54 56 58 59 62 64 65 67 69 70 73 75 78 81 84 89 95 104 122 
50-54 44 52 54 57 59 61 63 65 66 68 70 73 75 77 80 83 87 91 96 109 132 
55-59 46 51 55 57 59 61 64 65 67 68 70 72 75 77 79 82 86 90 93 103 124 
60-61 43 50 53 55 59 60 62 64 66 68 68 70 73 74 76 80 83 86 93 100 115 
62-64 44 50 53 58 60 61 63 64 66 68 69 71 73 76 77 80 83 87 93 100 121 
65-69 43 50 52 54 57 59 60 62 64 66 68 69 72 74 75 77 80 84 88 95 116 
70-74 43 49 52 54 57 59 60 61 63 64 66 68 70 73 75 77 80 84 89 99 117 
75-79 37 44 49 52 54 56 58 59 61 63 65 67 68 70 73 74 76 79 83 88 108 
80-84 36 43 47 48 52 54 56 57 59 60 62 64 65 66 68 70 73 75 77 84 97 
≥ 85 33 41 45 47 49 51 52 53 54 55 57 59 60 61 64 65 68 70 72 78 94 

The age categories are listed down the leftmost column and the percentiles are listed across the 
top of the table. To read the table, start at a selected age category then scan across the table to the 
column under the percentile of interest. For example, the 50th percentile bodyweight based on the 
empirical cumulative distribution for 22-to-24 year-old females is 61 kg.  
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Table A2.2: Empirical percentiles of body weight (kg) for adult men  

Combined CSFII and NHANES III Data 

Age 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99 
20 51 56 59 62 63 64 66 67 68 68 70 74 77 79 80 82 84 88 95 102 138 
21 50 54 58 62 64 66 68 70 70 71 74 74 75 77 79 82 84 86 93 104 120 

22-24 54 58 61 64 66 67 69 71 73 75 77 79 81 82 84 86 89 92 100 106 127 
25-29 54 60 63 66 68 70 72 73 75 76 77 79 82 84 85 88 92 95 102 112 134 
30-34 54 62 64 66 68 72 74 75 77 79 80 82 84 86 88 91 93 98 102 109 132 
35-39 55 62 66 69 71 73 74 76 78 79 82 83 85 87 89 92 96 100 104 113 150 
40-44 54 62 66 69 73 75 77 79 81 82 84 86 88 90 93 95 99 104 107 118 136 
45-49 58 63 67 70 72 75 76 78 79 80 82 83 84 86 89 92 95 99 103 114 141 
50-54 56 65 68 72 75 77 79 81 82 84 85 87 89 91 92 95 97 102 105 113 142 
55-59 55 61 67 71 73 75 77 79 80 82 84 86 87 89 91 94 97 99 105 114 128 
60-61 52 61 65 68 70 73 75 77 79 81 82 84 86 88 90 93 94 97 101 107 121 
62-64 54 60 64 69 72 75 76 79 79 82 83 84 86 89 91 93 95 100 104 111 125 
65-69 53 62 65 68 71 73 75 77 78 80 82 84 86 89 90 92 95 98 102 108 124 
70-74 52 59 63 66 68 70 72 74 75 77 79 82 83 84 86 88 91 95 99 104 120 
75-79 52 59 62 64 66 68 70 72 73 75 76 78 80 82 83 85 86 91 95 100 113 
80-84 46 55 59 62 64 66 67 68 70 71 73 75 76 77 79 81 84 86 93 99 111 
≥ 85 44 50 55 57 59 61 64 65 67 69 71 72 73 74 75 77 79 81 84 89 101 

The age categories are listed down the leftmost column and the percentiles are listed across the 
top of the table. To read the table, start at a selected age category then scan across the table to the 
column under the percentile of interest. For example, the 50th percentile bodyweight based on the 
empirical cumulative distribution for 22-to-24 year-old males is 77 kg.  
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Table A2.3: The smoothed percentiles of body weight (kg) for adult women. 

Data is from the combined CSFII and NHANES III Data.  
The smoothing function was y=a+bx2+cx2.5. 

Age 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99 
20 42 46 48 50 51 52 54 55 57 58 60 61 63 65 67 70 74 78 84 96 118 
21 42 46 49 50 51 53 54 56 57 58 60 61 63 65 67 71 74 79 85 97 118 

22-24 42 47 49 51 52 53 55 56 58 59 61 62 64 66 68 72 75 80 86 97 119 
25-29 43 48 50 52 53 55 56 58 59 60 62 64 66 68 70 74 77 81 88 99 121 
30-34 43 48 51 53 55 56 58 59 61 62 64 66 68 70 72 76 79 84 90 101 123 
35-39 44 49 52 54 56 58 59 61 62 64 66 68 70 72 74 78 81 86 92 103 125 
40-44 45 50 53 55 57 59 61 62 64 66 67 69 71 74 76 79 83 87 93 104 126 
45-49 45 51 54 56 58 60 62 63 65 67 68 70 73 75 77 81 84 88 94 105 126 
50-54 45 51 54 57 59 60 62 64 66 68 69 71 74 76 78 81 85 89 95 105 126 
55-59 44 51 54 57 59 61 62 64 66 68 70 72 74 76 78 81 85 89 94 104 125 
60-61 44 50 54 56 59 60 62 64 66 68 69 71 74 76 78 81 84 88 94 103 123 
62-64 43 50 53 56 59 60 62 64 66 67 69 71 73 76 78 81 84 88 93 102 122 
65-69 42 49 53 55 58 60 62 63 65 67 68 70 72 75 77 79 83 86 91 99 119 
70-74 41 48 51 54 56 58 60 62 63 65 67 69 71 73 75 77 80 83 88 95 114 
75-79 39 46 50 52 55 56 58 60 61 63 64 66 68 70 72 74 77 80 83 90 108 
80-84 36 44 47 49 52 54 55 57 58 60 61 63 64 66 68 70 72 75 78 84 100 
≥ 85 33 41 44 46 48 50 52 53 54 56 57 59 60 61 63 64 66 69 71 76 91 

The age categories are listed down the leftmost column and the percentiles are listed across the 
top of the table. To read the table, start at a selected age category then scan across the table to the 
column under the percentile of interest. For example, the 50th percentile bodyweight for 22-to-24 
year-old females is 61 kg.  
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Table A2.3: The smoothed percentiles of body weight (kg) for adult men. 

Data is from the combined CSFII and NHANES III Data.  
The smoothing function was y=a+bx3+c/x0.5. 

Age 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99 
20 51 56 59 62 63 64 66 67 68 68 70 74 77 79 80 82 84 88 95 102 138 
21 50 54 58 62 64 66 68 70 70 71 74 74 75 77 79 82 84 86 93 104 120 

22-24 54 58 61 64 66 67 69 71 73 75 77 79 81 82 84 86 89 92 100 106 127 
25-29 54 60 63 66 68 70 72 73 75 76 77 79 82 84 85 88 92 95 102 112 134 
30-34 54 62 64 66 68 72 74 75 77 79 80 82 84 86 88 91 93 98 102 109 132 
35-39 55 62 66 69 71 73 74 76 78 79 82 83 85 87 89 92 96 100 104 113 150 
40-44 54 62 66 69 73 75 77 79 81 82 84 86 88 90 93 95 99 104 107 118 136 
45-49 58 63 67 70 72 75 76 78 79 80 82 83 84 86 89 92 95 99 103 114 141 
50-54 56 65 68 72 75 77 79 81 82 84 85 87 89 91 92 95 97 102 105 113 142 
55-59 55 61 67 71 73 75 77 79 80 82 84 86 87 89 91 94 97 99 105 114 128 
60-61 52 61 65 68 70 73 75 77 79 81 82 84 86 88 90 93 94 97 101 107 121 
62-64 54 60 64 69 72 75 76 79 79 82 83 84 86 89 91 93 95 100 104 111 125 
65-69 53 62 65 68 71 73 75 77 78 80 82 84 86 89 90 92 95 98 102 108 124 
70-74 52 59 63 66 68 70 72 74 75 77 79 82 83 84 86 88 91 95 99 104 120 
75-79 52 59 62 64 66 68 70 72 73 75 76 78 80 82 83 85 86 91 95 100 113 
80-84 46 55 59 62 64 66 67 68 70 71 73 75 76 77 79 81 84 86 93 99 111 
≥ 85 44 50 55 57 59 61 64 65 67 69 71 72 73 74 75 77 79 81 84 89 101 

The age categories are listed down the leftmost column and the percentiles are listed across the 
top of the table. To read the table, start at a selected age category then scan across the table to the 
column under the percentile of interest. For example, the 50th percentile bodyweight for 22-to-24 
year-old males is 77 kg.  
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