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Abstract

Localization of specific mRNAs is an important mechanism through which cells achieve polarity and direct asymmetric
growth. Based on a framework established in Saccharomyces cerevisiae, we describe a She3-dependent RNA transport
system in Candida albicans, a fungal pathogen of humans that grows as both budding (yeast) and filamentous (hyphal and
pseudohyphal) forms. We identify a set of 40 mRNAs that are selectively transported to the buds of yeast-form cells and to
the tips of hyphae, and we show that many of the genes encoded by these mRNAs contribute to hyphal development, as
does the transport system itself. Although the basic system of mRNA transport is conserved between S. cerevisiae and C.
albicans, we find that the cargo mRNAs have diverged considerably, implying that specific mRNAs can easily move in and
out of transport control over evolutionary timescales. The differences in mRNA cargos likely reflect the distinct selective
pressures acting on the two species.
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Introduction

Cell polarity – asymmetry in shape, protein distribution, and/or

sub-cellular function – is an essential feature of most eukaryotic cells

and underlies such fundamental processes as cell division, cell

differentiation, and cell-cell communication. One mechanism for

achieving cellular asymmetry is through the localization of specific

mRNAs to different parts of the cell. For instance, the spatial

distribution of specific mRNAs in the oocytes of Drosophila

melanogaster and Xenopus laevis underlies establishment of embryo

polarity in these organisms [1,2,3,4,5]. In chick fibroblasts, transport

of beta-actin mRNA promotes actin assembly at the leading edge of

the cells [6,7,8], and in mammalian neurons, transport of RNA to

dendrites for localized protein synthesis is critical to synaptic activity

[9,10,11,12]. In each of these examples, RNA localization occurs

via active transport along cytoskeletal elements: microtubules in the

Drosophila embryo, microfilaments in chick fibroblasts, and both

structures in the Xenopus embryo and in mammalian neurons.

Selective RNA transport is also a key feature of fungi. In the

maize pathogen Ustilago maydis, the Rrm4 protein binds RNA and

moves along microtubules. Loss of Rrm4, or mutation of its RNA-

binding domain, results in polarity defects and reduced virulence

of the organism [13,14]. One of the best understood RNA

localization mechanisms is the Saccharomyces cerevisiae She system, a

riboprotein complex that uses actomyosin transport to move a set

of mRNAs from the mother cell to the bud during mitosis

[15,16,17,18,19]. Within the She complex, She2 is thought to be

the primary RNA binding protein that links specific mRNAs to

Myo4, a type V myosin motor, via the adaptor protein She3

[20,21,22,23]. Thus, a small set of mRNAs, selected by binding to

She2, is transported from the mother cell to the bud. One such

mRNA encodes Ash1, a transcriptional repressor of HO, an

endonuclease required for mating-type interconversion; Ash1

localization to daughter cells ensures that only mother cells

express HO and thereby undergo this type of programmed DNA

rearrangement [24,25,26,27].

In this study, we investigated the biological role of She-

dependent RNA transport in Candida albicans, a commensal fungus

and an opportunistic pathogen that can cause severe infection in

immunocompromised humans. In the host, C. albicans exists in a

variety of morphological forms, including budding yeast, pseudo-

hyphae (chains of elongated ellipsoidal cells), and hyphae (chains

of long, cylindrical cells with parallel cell walls) [28]. The ability to

rapidly switch among these forms in response to external cues is

one of numerous factors contributing to virulence. The hyphal

form in particular has been associated with numerous virulence

attributes such as passage through endothelial and epithelial

barriers and host tissue damage.

C. albicans hyphae are formed by polarized growth at the apical

cell (the hyphal tip cell). Several morphological and molecular

characteristics distinguish the hyphal tip cell from the sub-apical (i.e.,

non-tip) cells of the filament. Newly formed apical cells inherit most

of the cytoplasm and are cytologically active, while the mother or

sub-apical cells are extensively vacuolated and undergo temporary

cell cycle arrest [29]. Further, the Golgi complex is continuously

redistributed to tip cells [30], suggesting a means by which hyphae
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achieve localized secretion at their tips. As in other filamentous

fungi, the tip of C. albicans hyphae contains the Spitzenkörper, a

cluster of exocytic vesicles that drives polarized growth by

concentrating secretion at the tip [31]. Finally, there is evidence

that hyphal tip cells serve a specialized function during C. albicans

invasion of host tissues. Electron micrographs have shown a zone of

clearing around hyphae penetrating mammalian epithelia, suggest-

ing a concentration of hydrolytic enzymes at the invading tip [32].

At least one such enzyme, phospholipase B, has been shown to be

preferentially secreted from the hyphal tip cells [33].

In this study, we establish the existence of a She3-dependent

mRNA transport system in C. albicans. In addition, we (1) identify a

set of RNA transcripts specifically bound to She3; (2) determine

the cellular localization of She3-bound transcripts; (3) characterize

the phenotypes associated with loss of She3, and (4) study the

effects of deleting individual genes whose mRNAs are She3-

bound. From the results of these experiments, we conclude that C.

albicans has a She3-mediated system that transports selected

transcripts into both daughter cells of budding yeast and into tip

cells of the hyphae. We further show that approximately one third

of these transcripts have roles in hyphal development. Finally, we

show that She-based RNA transport, although not required for

hyphal growth per se, is important for proper hyphal morphology

and for specific aspects of hyphal function, specifically, invasive

hyphal growth and tissue damage.

Although the general features of the C. albicans She transport

system appear conserved with those of S. cerevisiae, the mRNAs

carried by She3 differ considerably between the two species,

suggesting relatively rapid evolutionary turnover in the set of cargo

mRNAs. This finding is analogous to comparisons of transcrip-

tional circuits between C. albicans and S. cerevisiae; although the

transcriptional regulators are often highly conserved, the genes

they regulate can differ considerably.

Results

Actin-based RNA transport in C. albicans
A search of the genome sequence of C. albicans (www.

candidagenome.org) revealed ORF19.5595, predicted to encode

a 377 amino acid protein, as a likely ortholog of S. cerevisiae SHE3.

An alignment of this protein with other putative fungal She3

orthologs indicates that the region of highest conservation is in the

amino-terminal half of the protein, the putative myosin interaction

domain [23]. No clear SHE2 ortholog was identified in C. albicans;

either She3 may serve as the RNA-binding protein, or another,

yet-unidentified protein may fulfill this function in C. albicans. The

C. albicans genome contains a single gene encoding a class V

myosin, MYO2 (orf19.5015 [34]); if the RNA transport mecha-

nisms are similar in S. cerevisiae and C. albicans, Myo2 is most likely

the motor linking She3 to actin filaments.

Previous work has supported the idea that a She3-dependent

mechanism of RNA transport may operate in C. albicans. C. albicans

Ash1 protein is restricted to the tip cells of hyphae, as well as to

daughter cells of budding yeast [35]. When the mRNA encoding

C. albicans Ash1 was expressed in S. cerevisiae, it accumulates in

daughter cells [36], indicating that the C. albicans ASH1 transcript

may contains localization signals that are recognized by the S.

cerevisiae She complex.

To directly test whether C. albicans possesses a She3-dependent

RNA transport system, we deleted both copies of the C. albicans

SHE3 gene (C. albicans is diploid) (strains used in this study are

listed in Table 1). We observed that Ash1 now appears in both

mother and daughter nuclei in yeast, and in nuclei of multiple cells

of hyphae (Figure 1). We used fluorescent in situ hybridization

(FISH) to detect localization of the endogenous ASH1 transcript in

wild type and she3D/she3D cells. We observed that ASH1 mRNA

accumulates in yeast daughter cells and in the tips cells of hyphae

in a She3-dependent manner. The results indicate that C. albicans

Ash1 localization (to daughter cells in yeast and to tip cells in

hyphae) is mediated by She3 and likely occurs through specific

localization of the ASH1 transcript – as occurs in S. cerevisiae.

Identification of She3-associated RNAs
We used immunoprecipitation (IP) of She3-RNA complexes,

followed by hybridization to whole genome microarrays, to

identify the set of RNAs bound and potentially localized by C.

albicans She3 (Figure S1). Cellular lysates were prepared from a C.

albicans strain (YSE25) containing a single copy of She3 fused to a

tandem affinity purification tag (She3-TAP) [37], which was

grown in the yeast form (YEPD medium 30uC) or induced to form

hyphae by addition of serum at 37uC for 30 minutes, one hour, or

three hours. The tagged She3 protein was immunoprecipitated

from these lysates, and the associated RNAs were eluted. Labeled

cDNA generated from the She3-associated RNA was compared to

reference cDNA by competitive hybridization to C. albicans

microarrays representing the entire genome [38]. We used two

different types of reference RNA: (1) total RNA from the She3-

TAP strain, or (2) RNA isolated from a mock IP performed with

an untagged strain. Use of the first type of reference risks false

positives inherent to the IP methods (i.e., ‘‘sticky RNAs’’), whereas

use of the second is subject to potential complications arising from

the use of two different strains. In a given experiment, we used

either one reference or the other, and we combined results for data

analysis, as explained below. This approach allowed us to

eliminate false positives inherent to either method.

Stringent filter criteria were used to identify the set of candidate

She3-associated RNAs. Data were derived from twelve micro-

arrays from yeast (six each using either of the two reference

samples) and 24 from hyphae (from each of three time points, four

arrays each using the two reference populations). To pass the

initial filter, array elements (spots) must have produced interpret-

able hybridization in greater than 50% of arrays from any single

experiment (i.e., from one growth condition using one reference

Author Summary

Generation of cellular polarity – asymmetry in shape,
protein distribution, and/or sub-cellular function – is an
essential feature of most eukaryotic cells and underlies
such diverse processes as differentiation, mating, nutrient
acquisition, and growth. Localization of specific mRNAs is
one mechanism through which cells achieve polarity. We
describe an RNA transport system in Candida albicans, a
fungal pathogen of humans, that grows in both single cell
(budding yeast) and filamentous (hyphal and pseudohy-
phal) forms. Hyphae are chains of elongated cells that
remain attached after cell division and exhibit highly
polarized growth at their tips. We show that the C. albicans
She3-dependent RNA transport system binds to 40 mRNAs
and transports these mRNAs to yeast buds and to the tips
of hyphae. Both the transport system itself and many of
the genes encoded by transported mRNAs are required for
normal growth and function of hyphae. Although the basic
transport mechanism appears conserved with that of the
model yeast, Saccharomyces cerevisiae, the cargo mRNAs
are largely distinct. The apparently rapid evolution of the
transported mRNAs probably reflects distinct selective
pressures acting on the two organisms.

An RNA Transport System in Candida albicans
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population) and must have had a median percentile rank of at least

98. A second filter required that transcripts be identified using

both reference populations, and, for those identified from hyphal

lysates, be identified in at least two time points. These criteria

identified a set of 31 high-confidence transcripts bound by She3 in

yeast and a largely overlapping set of 38 high-confidence

transcripts bound by She3 in hyphae (Table 2).

The genes represented by the set of She3-bound transcripts act

in a variety of cellular processes, including mitosis and cytoskeletal

dynamics, cell polarity, transcription, small molecule transport and

regulation, virulence, and cell wall structure and function (Table 2).

Ten genes encode proteins of unknown function. ASH1 was

identified as She3-associated in both yeast and hyphae, validating

the approach and providing independent evidence that Ash1

protein is localized via She3-dependent transport of ASH1 RNA.

For the most part, the She3-bound mRNAs are the same in yeast

and in hyphae; only two of these transcripts were identified as

She3-bound solely in yeast, and nine were identified as bound only

in hyphae. In general, these patterns do not reflect the relative

abundance of the transcripts in yeast versus hyphae, as determined

by previous studies (www.candidagenome.org).

Comparison of She-associated transcripts in S. cerevisiae
and C. albicans

Of the 24 RNAs identified as She-transported in S. cerevisiae,

clear orthologs of only two – ASH1 and WSC2 – were also

identified as She-associated in C. albicans (Table 2 and [16]). Two

possibilities could explain this difference: 1) the mRNAs

transported by She3 differ considerably between the two species,

or 2) the difference is an artifact of overly stringent filter criteria.

To distinguish between these alternatives, we analyzed the C.

albicans yeast form IP data to determine the percentile ranking of

close homologs (including orthologs) of those mRNAs transported

in S. cerevisiae. Excluding ASH1 and WSC2, we identified clear C.

albicans homologs (or, at least, best BLAST hits) for 13 of the S.

cerevisiae She-transported mRNAs. We considered the percentile

rank of all spots that met our basic threshold criteria (i.e., produced

interpretable hybridization in greater than 50% of arrays from one

type of experiment); based on these criteria, array spots

representing eleven genes were included in the analysis. The

median percentile rank across all these array spots was 59,

suggesting that these transcripts are not significantly enriched in

the C. albicans She3-TAP IPs. When the same analysis was applied

to the set of transcripts that were She3-associated in C. albicans, the

median percentile rank was 99. Thus, the She machinery appears

to bind distinct sets of transcripts in C. albicans and in S. cerevisiae.

The RNA elements that specify She3-dependent transport in S.

cerevisiae are incompletely understood; they appear to be a complex

combination of RNA secondary structure and RNA primary

sequence [19,39,40,41,42]. For these reasons, simple sequence

inspection of the transported mRNAs could not reveal whether the

C. albicans She3-dependent transport system uses signals similar to

those in S. cerevisiae.

Localization of She3-associated transcripts
Based on these results, we predicted that transcripts bound to C.

albicans She3 would accumulate in yeast daughter cells (buds) and

in the tip cells of hyphae and that this accumulation would be

She3-dependent. We tested this prediction for 21 transcripts

bound by She3 using FISH. Each probe was hybridized to wild

type and she3D/she3D cells under conditions in which the

transcripts had been identified from the She3 IP experiments.

Fourteen mRNAs were clearly detectable by FISH in the wild type

background. In yeast cells, hybridization was observed in the

presumptive bud site and/or the bud. In hyphae, signal

accumulated at the distal tip of the germ tube (the nascent form

of hyphae where a yeast cell sends out a long projection) and in the

tip cells of mature hyphae. Signal accumulation in the bud and/or

hyphal tip cell was absent in the she3D/she3D cells. Table 3

summarizes the results of the FISH experiments, and representa-

tive examples of She3-dependent RNA localization are shown in

Figure 2; additional images are provided in Figure S2. In some

cases, (e.g., CHT2 in yeast), fluorescence was clearly visible and

diffuse in the mutant strain. In other examples (e.g., RBT4 in

hyphae), the fluorescence in the mutant strain was not detectable

above background. The lower signal in she3D/she3D cells,

particularly in hyphae, suggests that site-specific accumulation is

critical for visualizing the signal. It is unlikely that a lower signal in

the deletion strain reflects reduced mRNA expression or stability;

microarrays comparing the transcriptional profiles of SHE3/SHE3

Table 1. Names and genotypes of strains used in this study.

Strain Name Genotype Reference

CAF2-1 URA3/ura3::imm434 [51]

QMY23 leu2::pLEU2/leu2::pHIS1; his1D/his1D [52]

SE4 she3D/she3::URA3; ura3D/ura3D This study

SE5 she3D/she3D; ura3D/ura3D This study

SE6 she3D/SHE3; ura3D/ura3D This study

SE18 ash1::p6MYC-ASH1::URA3/ASH1; ura3D/ura3D This study

SE20 ash1::p6MYC-ASH1::URA3/ASH1; she3D/she3D; ura3D/ura3D This study

SE25 SHE3-TAP::URA3/she3D; ura3D/ura3D This study

SE28 she3::HIS1/SHE3; leu2D/leu2D; his1D/his1D; arg4D/arg4D This study

SE30 she3::HIS1/she3::LEU2; leu2D/leu2D; his1D/his1D This study

SE32 she3::HIS1/she3::LEU2; leu2D/leu2D; his1D/his1D; arg4D/arg4D This study

SE61 she3::HIS1/SHE3; leu2D/leu2D; his1D/his1D; arg4D/arg4D; RPS1-pARG4 This study

SE63 she3::HIS1/she3::LEU2; leu2D/leu2D; his1D/his1D; arg4D/arg4D; RPS1-pARG4 This study

SE64 she3::HIS1/she3::LEU2; leu2D/leu2D; his1D/his1D; arg4D/arg4D; RPS1-pSHE3-ARG4 This study

doi:10.1371/journal.pgen.1000664.t001

An RNA Transport System in Candida albicans

PLoS Genetics | www.plosgenetics.org 3 September 2009 | Volume 5 | Issue 9 | e1000664



and she3D/she3D strains showed no overall decrease in levels of

She3-associated transcripts (nine of the 14 probes with clear FISH

results were analyzed; data not shown). In any case, the majority of

probes (14/21) revealed that mRNAs identified as She3-bound

were localized in a She3-dependent fashion, validating the IP and

microarray analysis methods for identifying transported tran-

scripts.

In order to exclude the possibility that She3 transports all or

most mRNAs in C. albicans, we performed FISH with three control

probes, ACT1 (orf19.5007), ACC1 (orf19.7466) and ADH1

(orf19.3997). These genes all had a median percentile rank of

less than 75 in the She3 binding experiments. In each case, no

specific localization was detected in yeast or in hyphae. Moreover,

there was no detectable difference in distribution of the signal

between wild type and she3D/she3D cells (Figure 2B and 2D). This

result supports the conclusion that She3 localizes only a specific set

of transcripts and that the S. cerevisiae and C. albicans She3 systems

transport different mRNAs.

Figure 1. Ash1 protein and ASH1 mRNA are mis-localized in C. albicans lacking She3. (A–D) SHE3/SHE3 [SE18, (A,C)] and she3D/she3D cells
[SE20, (B,D)] carrying a myc-tagged version of Ash1 (Myc-Ash1) were processed for indirect immunofluorescence, as described [35]. Cells were stained
with the mouse 9E10 anti-myc antibody followed by the Alexa-546 secondary antibody (red). Cell nuclei were visualized with DAPI (blue). In a wild
type background, Myc-Ash1 accumulates in daughter cells of yeast (A) and in tip cells of hyphae (C). In the she3D/she3D strain, myc-Ash1 accumulates
in both mother and daughter cells of yeast (B) and in tip and non-tip cells of hyphae (D). (E–H) Cells from wild type (‘‘WT,’’ CAF2-1) and she3D/she3D
(SE4) strains were processed for fluorescent in situ hybridization (FISH) to detect endogenous ASH1 transcript; cell nuclei were visualized with DAPI.
Probe signal accumulates in the daughter cell of wild-type C. albicans yeast (E) and in the tips of hyphae (G). There is no specific localization of probe
signal in yeast or in hyphae lacking She3 (F,H).
doi:10.1371/journal.pgen.1000664.g001
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She3 is necessary for invasive hyphal growth
Based on the role of She3 in localizing transcripts to the hyphal

tip, we next investigated the requirement for She3 in the formation

and proper function of hyphae. When grown in liquid serum-

containing medium, the she3D/she3D strain forms germ tubes that

are initially indistinguishable from those of the matched wild-type

strain (Figure 3A), indicating that She3-regulated RNA transport is

not required for the initiation of hyphal growth. However, subtle

defects become apparent as the filaments grow. Normal hyphae

have parallel sides with no constrictions at septal junctions, and

their first septa are formed within the germ tube [28]. By two

hours of serum exposure, approximately two-thirds of the she3D/

she3D cells that had initiated germ tube formation failed to form

normal hyphae; instead they displayed a range of defects,

including constrictions at their septal junctions and uneven

filament width (Figure 3B). By the same criteria, only five percent

of wild type hyphae were abnormal. These data indicate that

She3-mediated RNA transport is not required for germ tube

formation, the earliest stage in hyphal formation, but comes into

play at later stages of hyphal growth.

A more striking defect caused by deletion of the SHE3 gene is

observed on filament-inducing solid media (we use the term

filament to include both hyphae and pseudohyphae). When grown

on YEPD agar with 10% serum or on Spider agar, wild type C.

albicans colonies develop a wrinkled central region (a mixture of

yeast, hyphae and pseudohyphae), as well as peripheral filaments

(predominantly hyphae) that invade the agar. she3D/she3D colonies

specifically lack these peripheral filaments; the central wrinkled

region is expanded, but otherwise indistinguishable from wild type

colonies (Figure 4). This pronounced phenotype is observed at

both 30uC and 37uC, and the identical defect was observed in six

independently derived she3D/she3D strains, representing three

different strain backgrounds. In the SN152 background [43], the

she3D/she3D defect was complemented (that is, peripheral hyphae

were restored) by re-introduction of the wild type SHE3 gene (see

Methods). While other loss-of-function mutations that preferen-

tially affect central or peripheral filaments have been described

[44], none of these completely and selectively eliminates peripheral

filaments without affecting the central portion of the colony.

In order to visualize the defect caused by deletion of SHE3 in

greater detail, we monitored the initial events in the formation of

peripheral filaments. Wild type and she3D/she3D cells were seeded

onto thin agar slabs or standard agar plates and colony growth

under a cover slip was observed for 48 hours. Colonies from both

strains initially grew as yeast and began to filament by 36 hours.

Early filaments of wild type colonies, observed at the interface

between the agar and the cover slip, were a mixture of hyphae and

pseudohyphae. Invasive filaments, which appeared by 48 hours,

were predominantly hyphae. In the she3D/she3D strain, in

contrast, hyphae were never observed (i.e., all filaments were

pseudohyphae), and the overall extent of filamentous growth and

invasion of the agar was markedly decreased (Figure 5). These

results, taken together, suggest that She3-regulated RNA transport

is required for hyphal growth on solid media. It appears that the

pseudohyphae of the she3D/she3D strain are inefficient at invasive

growth, and that the absence of peripheral filaments in the she3

null colonies stems from an inability to make invasive hyphae.

She3 mediates epithelial cell damage
We next tested whether the defect in invasive growth on solid

agar might correlate with a defect in damage to host cells. A she3D/

she3D strain was tested for the ability to damage monolayers of

human epithelial and endothelial cells [45,46]. While cells lacking

SHE3 were able to damage endothelial cells as efficiently as wild

S
y

st
e

m
ic

N
a

m
e

S
ta

n
d

a
rd

N
a

m
e

S
.

ce
re

vi
si

ae
O

rt
h

o
lo

g
o

r
B

e
st

H
it

P
re

d
ic

te
d

F
u

n
ct

io
n

P
re

d
ic

te
d

B
io

lo
g

ic
a

l
P

ro
ce

ss
G

ro
w

th
S

ta
g

e
(s

)

S
e

ru
m

In
d

u
ct

io
n

Y
3

0
m

1
h

r
3

h
r

o
rf

1
9

.3
4

6
0

U
n

kn
o

w
n

U
n

kn
o

w
n

X
X

X

o
rf

1
9

.5
2

8
2

U
n

kn
o

w
n

U
n

kn
o

w
n

X
X

X
X

o
rf

1
9

.2
4

3
1

U
n

kn
o

w
n

U
n

kn
o

w
n

X
X

o
rf

1
9

.1
3

5
4

Y
ER

0
6

7
W

U
n

kn
o

w
n

U
n

kn
o

w
n

X
X

o
rf

1
9

.3
7

9
3

U
n

kn
o

w
n

U
n

kn
o

w
n

X
X

X
X

o
rf

1
9

.3
4

2
2

FM
P

2
7

Y
LR

4
5

4
W

U
n

kn
o

w
n

U
n

kn
o

w
n

X
X

Sy
st

e
m

ic
n

am
e

,s
ta

n
d

ar
d

n
am

e
,a

n
d

S.
ce

re
vi

si
a

e
o

rt
h

o
lo

g
o

r
b

e
st

-h
it

ar
e

as
lis

te
d

in
th

e
C

a
n

d
id

a
G

e
n

o
m

e
D

at
ab

as
e

(C
G

D
,w

w
w

.c
an

d
id

ag
e

n
o

m
e

.o
rg

).
P

re
d

ic
te

d
fu

n
ct

io
n

an
d

p
re

d
ic

te
d

b
io

lo
g

ic
al

p
ro

ce
ss

su
m

m
ar

iz
e

in
fo

rm
at

io
n

in
th

e
‘‘D

e
sc

ri
p

ti
o

n
,’’

‘‘M
o

le
cu

la
r

Fu
n

ct
io

n
,’’

an
d

‘‘B
io

lo
g

ic
al

P
ro

ce
ss

’’
fi

e
ld

s
in

C
G

D
an

d
/o

r
th

e
Sa

cc
h

a
ro

m
yc

es
G

e
n

o
m

e
D

at
ab

as
e

(w
w

w
.y

e
as

tg
e

n
o

m
e

.o
rg

).
G

ro
w

th
st

ag
e

(s
)

re
fe

rs
to

th
e

ly
sa

te
s

fr
o

m
w

h
ic

h
tr

an
sc

ri
p

ts
w

e
re

id
e

n
ti

fi
e

d
as

Sh
e

3
-a

ss
o

ci
at

e
d

.
A

n
X

in
d

ic
at

e
s

th
at

at
le

as
t

o
n

e
ar

ra
y

e
le

m
e

n
t

re
p

re
se

n
ti

n
g

a
g

iv
e

n
tr

an
sc

ri
p

t
p

as
se

d
th

e
in

it
ia

l
fi

lt
e

r,
as

d
e

sc
ri

b
e

d
in

R
e

su
lt

s.
R

aw
e

n
ri

ch
m

e
n

t
va

lu
e

s
(r

at
io

o
f

th
e

m
e

d
ia

n
s

o
f

Sh
e

3
-a

ss
o

ci
at

e
d

R
N

A
co

m
p

ar
e

d
to

re
fe

re
n

ce
)

ar
e

p
ro

vi
d

e
d

in
T

ab
le

S3
,a

n
d

ra
w

m
ic

ro
ar

ra
y

d
at

a
ar

e
p

ro
vi

d
e

d
in

T
ab

le
S4

.W
e

n
o

te
th

at
ce

rt
ai

n
g

e
n

e
s

w
h

o
se

e
xp

re
ss

io
n

h
as

b
e

e
n

d
e

sc
ri

b
e

d
as

ye
as

t-
o

r
h

yp
h

al
-s

p
e

ci
fi

c
w

e
re

id
e

n
ti

fi
e

d
in

b
o

th
ye

as
t

an
d

h
yp

h
al

ly
sa

te
s.

O
u

r
IP

m
e

th
o

d
o

lo
g

y
re

lie
d

so
le

ly
o

n
d

if
fe

re
n

ti
al

Sh
e

3
b

in
d

in
g

an
d

sh
o

u
ld

n
o

t
re

q
u

ir
e

h
ig

h
le

ve
ls

o
f

e
xp

re
ss

io
n

o
f

b
o

u
n

d
tr

an
sc

ri
p

ts
.

* T
h

e
ar

ra
ys

sp
o

ts
fo

r
SA

P
4

(o
rf

1
9

.5
7

1
6

),
SA

P
5

(o
rf

1
9

.5
5

8
5

),
an

d
SA

P
6

(o
rf

1
9

.5
5

4
2

)
cr

o
ss

-h
yb

ri
d

iz
e

d
.

In
o

rd
e

r
to

d
is

ti
n

g
u

is
h

w
h

ic
h

o
f

th
e

se
th

re
e

SA
P

tr
an

sc
ri

p
ts

w
e

re
Sh

e
3

-a
ss

o
ci

at
e

d
,

w
e

p
e

rf
o

rm
e

d
q

u
an

ti
ta

ti
ve

P
C

R
u

si
n

g
p

ri
m

e
rs

sp
e

ci
fi

c
to

e
ac

h
SA

P
g

e
n

e
.c

D
N

A
fr

o
m

th
e

Sh
e

3
-T

A
P

R
N

A
IP

fr
o

m
3

0
m

in
u

te
an

d
th

re
e

h
o

u
r

se
ru

m
in

d
u

ct
io

n
s

w
as

co
m

p
ar

e
d

to
cD

N
A

fr
o

m
to

ta
l

R
N

A
o

r
m

o
ck

IP
.T

h
e

se
e

xp
e

ri
m

e
n

ts
sh

o
w

e
d

co
n

si
st

e
n

t
e

n
ri

ch
m

e
n

t
o

f
SA

P
5

in
th

e
Sh

e
3

-T
A

P
IP

an
d

m
o

re
va

ri
ab

le
e

n
ri

ch
m

e
n

t
o

f
SA

P
4

an
d

SA
P

6.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
g

e
n

.1
0

0
0

6
6

4
.t

0
0

2

T
a

b
le

2
.

C
o

n
t.

An RNA Transport System in Candida albicans

PLoS Genetics | www.plosgenetics.org 6 September 2009 | Volume 5 | Issue 9 | e1000664



type, their ability to damage epithelial cells was reduced by about

40%, a statistically significant difference (Figure 6A). The defect

suggests that tip-localization of one or more of the She3-associated

transcripts may be required for the physical processes associated

with epithelial cell damage or may be involved in sensing this

particular niche. The she3 null strain showed normal virulence in a

mouse model of disseminated candidiasis (data not shown),

suggesting that She3 is not required for this disease model [47].

Based on the sheer number of She3-transported mRNAs and the

crucial functions predicted for some of the encoded proteins, one

might have predicted that deletion of She3 would exhibit more

severe phenotypes than those observed. It seems likely that She3 –

mediated mRNA transport is one of several overlapping mecha-

nisms to ensure proper protein localization. For example, the

proteins encoded by She3-associated mRNAs could also contain

localization signals (2,16). Alternatively, some of these proteins may

retain all or part of their function even if mislocalized.

Transported transcripts make diverse contributions to
hyphal development

To further explore the role of She3-mediated transport in hyphal

development, we analyzed the roles of individual transported

mRNAs. We constructed homozygous deletion strains for 33 of the

genes encoding transported transcripts and assessed their pheno-

types after ten days on Spider agar plates and after 48 hours on

Spider agar slabs under a cover slip, as previously performed with

the she3D/she3D strain. Eleven of the 33 mutants displayed colony

morphology defects on Spider agar plates, and, among these, nine

displayed aberrant filamentation in the early stages of embedded

colony growth on Spider slabs. Some of the mutants showed an

overall increase in filamentous growth, while some showed an

overall decrease (Figure 7A and 7B). We tested the strains with

aberrant colony morphology for the ability to form hyphae under

strongly inducing conditions; i.e. exposure to serum at an elevated

(37uC) temperature. Three strains, those lacking CHT2, orf19.6044,

or orf19.267, displayed obvious defects. The phenotype of the

orf19.6044 (MOB2 ortholog) deletion mutant is consistent with

Mob2’s established role in polarized growth [48]. The remaining

strains showed normal hyphal morphology in liquid serum-

containing medium, suggesting that the deleted genes are required

for specialized hyphal function but not for hyphal formation per se.

In summary, we analyzed deletion mutants corresponding to 33

transported mRNAs. Three strains exhibited severe defects in

hyphal formation and an additional eight showed more subtle

Table 3. Results of FISH experiments.

Probe Cell Type

Yeast Hyphae from Serum Induction

30 min 1 hr 3 hr

Probes showing She-dependent localization CDC20 +++ +*

MSS4 ++* ++

CHT2 +++ +*

PGA6 ++ 22

PGA55 ++$ + +

ASH1 +++# +++# +

HAC1 ++$ 22

CCC1 22 ++

orf19.5406 22 22 ++

orf19.1536 + +++

RBT4 ++ +++ ++

SAP5 + ++

orf19.4432 ++ +++

orf19.5224 22 ++

Probes with no detectable signal orf19.267 22 22 22

orf19.5537 22 22

BCR1 22 22

ZCF11 22 22 22

orf19.1582 22

CTA9 22

YHB1 22

FISH experiments were performed in wild-type and she3D/she3D yeast and/or hyphae following 30 minutes, one hour, or three hours of serum induction, as indicated. A
She3-dependent signal was detected for 14 probes in at least one cell type; for the remaining probes, no significant signal above background was detected.
+, ++, or +++ indicates probe enrichment in the yeast bud and/or hyphal tip in, respectively, ,25%, 25–50%, or .50% of cells.
22 indicates absence of probe signal above background.
A blank box indicates that the probe was not tested in this cell type. Detection of certain probes was limited to certain stages of the cell cycle, as noted.
*Pre-mitotic cells.
$Cells with emerging buds or germ tubes.
#Post-mitotic cells.
doi:10.1371/journal.pgen.1000664.t003
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Figure 2. She3-associated transcripts accumulate in yeast buds and in hyphal tips. Cells from wild type (‘‘WT,’’ CAF2-1) and she3D/she3D
(SE4) strains were processed for FISH to detect endogenous She3-associated transcripts; cell nuclei were visualized with DAPI. Representative
examples illustrate She3-dependent localization of the indicated transcripts. (A) Probe signal accumulates in the incipient bud (MSS4), or bud (CDC20,
CHT2) of wild type C. albicans yeast. There is no specific localization of probe signal in yeast cells lacking She3. (B) A control ACT1 probe is not
localized in yeast cells from either strain. (C) In wild type hyphae, probe signal accumulates in the distal end of the germ tube (SAP5) or hyphal tip cell
(RBT4, orf19.1536). Hyphae shown hybridized with SAP5, RBT4, and orf19.1536 probes were collected, respectively, 30 minutes, one hour, or three
hours after serum induction. As in yeast, probe signals are not localized in hyphae lacking She3. (D) A control probe for ACT1 is not localized in germ
tubes from either strain collected 40 min after serum induction. Signals from two additional control probes, ACC1 and ADH1, were not localized in
yeast or hyphae (data not shown).
doi:10.1371/journal.pgen.1000664.g002
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defects in hyphal growth regulation. These results support the

conclusion that transport of specific mRNAs into the hyphal tip

cell is needed for proper hyphal development and function.

Discussion

In this paper, we describe an RNA transport system in C.

albicans that localizes specific mRNAs to daughter cells in budding

yeast and the tip cells of hyphae. When this RNA transport is

inactivated by elimination of She3 (a component of the transport

system), hyphae display specific defects, including aberrant growth

and decreased capacity to damage an epithelial cell monolayer.

We identified mRNAs transported by this system through their

tight association with She3, and we used FISH to show that the

transported mRNAs accumulate in yeast buds and in the tips of

hyphae in a She3-dependent manner. We believe that this study

represents the first description of a set of mRNAs that are

specifically localized to hyphal tip cells of a filamentous fungus.

Based on direct studies in C. albicans or characterization of

orthologous genes in S. cerevisiae, the mRNAs bound by C. albicans

She3 are predicted to encode several classes of proteins. Several

(orf19.3356, MSS4, CDC20, orf19.267, orf19.3071, orf19.5537,

CHT2, orf19.6044 and orf19.6705) encode proteins that function

in mitosis, the cytoskeleton, cell wall dynamics, or cell polarity.

Figure 3. Morphology of C. albicans filaments from a she3 null strain. Wild-type (‘‘WT,’’ CAF2-1) and she3D/she3D (YSE4) strains were grown in
YEPD/10% serum at 37uC for one (A) or two (B) hours, then fixed on cover slips and stained with Calcofluor White. (A) After one hour, germ tubes
from the two strains are essentially indistinguishable. (B) By two hours, the majority of filaments from the she3-null strain display subtle defects,
including swelling (R), uneven filament width (c), and constrictions at the septal junctions in filaments that appear to have originally developed as
true hyphae (»). The filament marked ‘‘PH’’ is a pseudohypha. The proportion of stereotypical and abnormal filaments from each strain at two hours
after serum induction was determined. From 35–40 distinct fields, all fully visibly, un-branched hyphae with no constriction at junction of mother cell/
filament junction were scored. Filaments displaying any of the above-described defects were scored as abnormal. Sixty-six percent of filaments from
the she3-null strain (n = 167) showed some abnormality, whereas only five percent of wild type filaments (n = 171) displayed any defect.
doi:10.1371/journal.pgen.1000664.g003
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Another group of associated mRNAs (ASH1, CTA9, CTA9, BCR1,

HAC1, GLN3) encode transcriptional regulators. She3 also

associates with mRNAs for cell-surface proteins, including

predicted GPI anchored proteins (PGA55, YWP1, PGA6, and

PGA54) and cell membrane-associated regulators of ion transport

(orf19.1582 and orf19.5406). Finally, She3-associated RNAs

encode known hyphal-specific virulence factors, RBT4 and SAP5.

Taken together, the identities of transported mRNAs suggest that

the She3 machinery supports diverse functions, including

localization of the basic machinery required for cellular growth

and polarity, specification of transcriptional programs in daughter

cells and in hyphal tip cells, and differential distribution of cell

surface and secreted proteins, some of which function in virulence.

We present several lines of evidence that She3-mediated RNA

transport, although not required for hyphal formation per se, is

required for normal hyphal growth and function. First, she3D/

she3D strains display reduced ability form hyphae and to penetrate

solid agar. Second, although she3D/she3D strains can form hyphal

structures in certain conditions, these filaments are morphologi-

cally abnormal. Third, a she3D/she3D strain shows reduced

capacity to damage an epithelial cell monolayer. Finally, we

constructed and tested deletions of 33 genes whose transcripts are

She3-bound. Approximately one third of the individual deletion

mutants have filamentation defects on solid medium, and the

aberrant morphologies vary considerably among the mutants. As

might be expected, none of these strains displayed exactly the same

defects as the she3D/she3D strains, indicating that the she3 mutant

phenotype does not reflect the absence of a single transported

mRNA in hyphal tip cells. Taken together, these observations

support the idea that transport of multiple mRNAs to hyphal tip

cells contributes to proper hyphal function.

Our analysis of the She system in C. albicans allows for the first

direct cross-species comparison of an RNA transport system. A

surprising finding from our studies is the minimal apparent overlap

between She-associated transcripts in S. cerevisiae and C. albicans:

only two genes (out of 40 in C. albicans and 24 in S. cerevisiae) are

bound in both species. These results suggest that specific mRNAs

have moved in and out of the She3-dependent transport system

relatively rapidly over evolutionary timescales.

Based on existing data, two plausible mechanisms could account

for the apparently rapid evolution of mRNAs transported by the

She system. In one model, changes in the RNA-binding specificity

of the modular She complex could account for this difference. In

an alternate model, which we favor, the change in She3 cargo may

have arisen via changes in the nucleotide sequences of the

transported mRNAs, which have brought new transcripts under

She3 regulation. The cis-acting elements that mediate localization

of She-associated transcripts in S. cerevisiae have been characterized

for a small subset of transported RNAs and are composed of short

degenerate sequence motifs, as well as secondary structures that

are largely sequence-independent [19,39,40,41,42]. It is plausible

that, over evolutionary timescales, small sequence changes mediate

rapid losses and gains of cargo mRNAs. Such a mechanism is

analogous to evolutionary changes in transcription circuitry, where

the basic transcriptional machinery and its regulators have been

conserved over long timescales, but changes in cis-regulatory

sequences have brought new sets of genes in and out of control of

ancient regulators [49,50].

C. albicans and S. cerevisiae diverged from a common ancestor

roughly 200 million years ago, and since that time they have

adapted to distinct environmental niches. S. cerevisiae is widely

distributed in the environment, whereas C. albicans is restricted to

Figure 4. C. albicans lacking She3 are defective in invasive growth in agar. Wild type (‘‘WT,’’ CAF2-1) and she3D/she3D (SE4) strains were grown
for ten days on solid Spider medium (A) or on YEPD/10% serum medium (B). Images show representative colonies from each strain on each condition.
doi:10.1371/journal.pgen.1000664.g004
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warm-blooded animals. We suggest that the differences in the

She3-transported mRNA cargos likely reflect the distinct pressures

of each organism’s environmental niche.

Materials and Methods

Strains and media
Strains used in this study are listed in Table 1 and described in

greater detail below and in Text S1. CAI4, CAF2-1, SN87,

SN152, and QMY23 have been described previously [43,51,52].

C. albicans transformations were performed according to standard

lithium acetate methods. For cultivation of C. albicans hyphae,

strains were grown to OD 10–12, then diluted at least tenfold into

YEPD containing 10% serum and grown at 37uC, unless

otherwise indicated.

Strain construction
Two methods were used for deleting orf19.5595 (SHE3). A

modified Ura-blaster protocol [53] was used for construction of

the heterozygous deletion strain SE6 and homozygous deletion

Figure 5. C. albicans She3 contributes to development of hyphae in solid media. (A) Colonies from wild type (‘‘WT,’’ CAF2-1) and she3D/
she3D (SE4) strains were grown on Spider agar slabs under a glass cover slip at 30uC. Images show typical colony edges at the indicated time periods.
Similar results were observed on YEPD/10% serum slabs (data not shown). (B) Colonies from wild type and she3D/she3D strains grown for five days
under a cover slip placed atop a Spider agar plate.
doi:10.1371/journal.pgen.1000664.g005
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strains SE4 and SE5. Fusion PCR methods that avoided using the

URA3 marker were used to produce the she3 null mutants SE30

and SE32, in, respectively, SN87 and SN152 backgrounds [43].

For complementation studies, a construct containing SHE3 under

the control of its own regulatory sequence was introduced to the

region downstream of RPS1 (orf19.3002) in SE32 to generate the

SHE3-complemented strain SE64. she3 heterozygote and null

mutant strains with the same nutritional markers as SE64 were

also generated.

Strains SE18 and SE20 in which one copy of ASH1 contained

an amino-terminal 66MYC tag were generated in, respectively,

wild type (CAI4) and she3-null backgrounds. One copy of

endogenous ASH1 was deleted, and the plasmid p DI-30 [35],

carrying 6MYC-ASH1, was integrated into the region of the

deleted ASH1 allele.

A strain in which the single copy of SHE3 was TAP-tagged [37]

was constructed using modified fusion PCR methods [43] to

produce the SHE3-TAP strain (SE25), in which a TAP-URA3

cassette was added immediately upstream of the stop codon of the

SHE3 allele.

Deletion strains corresponding to individual She-associated

transcripts were constructed in the SN152 background using

fusion PCR methods [43].

Detailed methods of strain construction are provided in Text

S1; primers used in strain construction are provided in Table S1.

Immunoprecipitation of She3-RNA complexes and
microarray analysis

Immunoprecipitation of She3-RNA complexes from SE25 were

adapted from published methods [16,20] and are described fully in

Text S1. Briefly, exponentially growing yeast cells or hyphae

produced by 30 minutes, one hour, or three hours of serum

induction were lysed with glass beads in extraction buffer. Lysates

were incubated with IgG-sepharose beads, the immunoprecipitate

was released from the beads by cleavage with TEVprotease, and

RNA was isolated by phenol-choloroform extraction followed by

ethanol precipitation. For a mock RNA immunoprecipitation, the

SHE3-TAP parental strain SE6 was subjected to the same

methods. Total RNA from the SHE3-TAP strain was harvested

from cultures prepared as above and was isolated by a hot phenol

protocol [54]. Labeled cDNA was generated from each RNA

sample, coupled to fluorescent dyes and hybridized to DNA

microarrays essentially as described [38]. Microarray data were

quantified using GENEPIX PRO version 3.0 or 5.0 and were

further processed using NOMAD (http://ucsf-nomad.sourceforge.

net/). Processed data were analyzed in Microsoft Excel; filters

applied to the data are described in the Results. cDNA samples

from generated from total RNA from SE25 and SE6 were directly

compared on DNA microarrays using the above methods.

Fluorescent in situ hybridization (FISH)
Methods were adapted from published protocols [55] and are

described in detail in Text S1. Briefly, for each FISH probe, a

digoxigenin-labeled antisense riboprobe was generated by in vitro

transcription from a plasmid template containing a portion of the

corresponding gene; primers used for template construction are

provided in Table S2. Yeast and hyphal cells were grown as

described above, fixed in 5% formaldehyde, and spheroplasted in

sorbitol buffer containing zymolyase 100 T. Probe hybridization

and signal detection with the HNPP Fluorescent Detection Set

(Roche) were performed essentially as described [24]. Mounted cells

were imaged on the Axiovert-200 (Carl Zeiss, Thornwood, NY).

Preparation of hyphae on coverslips
C. albicans strains were grown to approximately OD-12 in YEPD

at 30u, diluted 1:50 into YEPD/20% serum, and incubated with

rotation for two hours at 37uC. Cultures were fixed in culture

medium plus 4% formaldehyde for one hour, washed and

resuspended in PBS, and sonicated in Branson Sonifier 450 for

30 seconds with power setting 1.5, 40% duty cycle. Cells were

adhered for ten minutes to cover slips that had been pretreated

overnight with 1 mg/ml concanavalin A, washed twice in PBS,

then stained with 1 mg/ml fresh Calcofluor White for ten minutes

in the dark. Cover slips were washed five times with PBS, and then

mounted on glass slides.

Preparation of colonies on agar slabs
Agar slabs were prepared by pouring molten agar media

between glass plates separated by 1 mm spacers; rectangular

Figure 6. C. albicans lacking She3 shows reduced capacity to damage oral epithelial cells. Damage to human primary endothelial cells (A)
or FaDu oral epithelial cells (B) induced by wild-type C. albicans (‘‘WT,’’ QMY23), a she3D/SHE3 heterozygote (SE67), a she3D/she3Dhomozygous
deletion (SE63), or a she3D/she3D strain complemented with SHE3 added to the RPS1 locus (SE64). Results for endothelial and epithelial represent the
mean +/2 standard deviation of, respectively, two or three independent experiments.
doi:10.1371/journal.pgen.1000664.g006
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pieces of the solidified media were places atop glass slides. The

slabs were spread with 10 ml of C. albicans preparations

(exponentially growing C. albicans yeast cultures, diluted to

approximately 1 cfu/ml in water), overlaid with glass coverslips,

and kept in a humid chamber at 30uC.

Cell damage assays
Endothelial and epithelial cell damage assays were performed as

previously described [45,46].

Supporting Information

Figure S1 Schematic representation of the methods used to

identify She3-associated transcripts. A TAP-tagged version of She3

was immunoprecipitated from lysates from C. albicans yeast and

from hyphae collected 30 minutes, one hour, or three hours after

serum induction. The associated mRNAs (it is not clear whether

She3 binds RNA directly or indirectly) were eluted and used to

generate cDNA for microarray analysis. Fluorescently labeled

cDNA from She3-associated transcripts was competitively hybrid-

ized against reference cDNA derived either from total RNA from

the She3-TAP strain or from a mock IP with the parental strain

(derived from four pooled mock IPs). Twelve microarrays from

yeast (6 each using either the two reference samples) and 24 from

hyphae (from each of three time points, 4 four arrays each using

the two reference populations) were performed to determine the

set of She3-associated RNAs.

Found at: doi:10.1371/journal.pgen.1000664.s001 (0.08 MB PDF)

Figure S2 She3-associated transcripts accumulate in yeast buds

and in hyphal tips; images not shown in Figure 2. Cells from wild

type (‘‘WT,’’ CAF2-1) and she3D/she3D (SE4) strains were

processed for fluorescent in situ hybridization (FISH) to detect

endogenous She3-associated transcripts; cell nuclei were visualized

with DAPI. (A) PGA55 probe signal accumulates in the bud of

wild type C. albicans yeast. There is no specific signal in she3D/

she3D yeast cells (data not shown). In wild-type hyphae collected

30 minutes (B), one hour (C), or three hours (D) after serum

induction, the probe signal accumulates in the distal end of the

germ tube or hyphal tip cell. There is no specific localization in

hyphae lacking She3. Probe identities are as indicated.

Found at: doi:10.1371/journal.pgen.1000664.s002 (3.59 MB PDF)

Table S1 Primers used for strain construction, as described in

the Supporting Materials and Methods section (Text S1).

Found at: doi:10.1371/journal.pgen.1000664.s003 (0.04 MB PDF)

Table S2 Primers used for generation of FISH probes. The

Description column lists gene name (as in Table 2) and primer

orientation. The reverse primers include T7 promoter sequence,

which is in lowercase.

Found at: doi:10.1371/journal.pgen.1000664.s004 (0.05 MB PDF)

Table S3 Fold enrichment of transcripts identified as She3-

associated in microarray experiments comparing transcripts

immunoprecipitated with She3 to reference samples. For each

She3-associated transcript, raw enrichment values (ratio of the

medians of She3-associated RNA compared to reference) are

provided for each experiment (i.e., one growth condition using one

reference population) where array element(s) representing that

transcript passed the initial filter - spots produced interpretable

hybridization in greater than 50% of arrays from that experiment

and had a median percentile rank of at least 98. In cases where

individual transcripts are represented by multiple array elements,

the highest enrichment value from each microarray is provided.

Microarrays #1–12 represent experiments with yeast cells.

Microarrays #13–20, 21–28, and 29–36 represent experiments

with hyphae grown in serum for, respectively, 30 minutes, one

hour, or three hours. For microarrays # 1–6, 13–16, 21–24, and

Figure 7. C. albicans strains lacking She3-associated transcripts
are defective in filamentous growth. Wild-type C. albicans (‘‘WT,’’
QMY23) or strains lacking the indicated transcripts were grown for ten
days on solid Spider medium at 30uC (A), on Spider agar slabs under a
glass cover slip at 30uC for 48 hours (B), or in liquid YEPD with 20% serum
at 37uC (C). Images are representative of two isolates of each genotype.
doi:10.1371/journal.pgen.1000664.g007
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29–32, the reference was RNA from a mock immunoprecipitation,

as described in the Results. For microarrays # 7–12, 17–20, 25–

28, and 33–36, the reference sample was total RNA from the

She3-TAP strain.

Found at: doi:10.1371/journal.pgen.1000664.s005 (0.04 MB

XLS)

Table S4 Raw microarray data. For the 36 arrays used to

compare She3-associated and reference mRNA, raw enrichment

values (ratio of the medians) are provided for all array elements

(spots) that produced interpretable hybridization. ‘‘Element ID’’

refers to the unique identifier assigned to each array spot.

‘‘Candida albicans ORF’’ refers to the gene identifier associated

with the sequence of that spot, as determined at the time the

microarrays were produced. Microarrays #1–12 represent

experiments with yeast cells. Microarrays #13–20, 21–28, and

29–36 represent experiments with hyphae grown in serum for,

respectively, 30 minutes, one hour, or three hours. For micro-

arrays # 1–6, 13–16, 21–24, and 29–32, the reference was RNA

from a mock immunoprecipitation, as described in the manuscript

Results. For microarrays # 7–12, 17–20, 25–28, and 33–36, the

reference sample was total RNA from the She3-TAP strain.

Found at: doi:10.1371/journal.pgen.1000664.s006 (2.36 MB

XLS)

Text S1 Supporting materials and methods.

Found at: doi:10.1371/journal.pgen.1000664.s007 (0.08 MB PDF)
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