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Abstract

Latent Variable Models: Maximum Likelihood Estimation and Microbiome Data Analysis

by

Chun Yu Hong

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor William Fithian, Co-chair

Professor Perry de Valpine, Co-chair

Data analysis often involves modeling complex relationships among many variables, some
of which are unobserved. This type of analysis is usually tackled by latent variable models,
which are graphical models consisting of both observed variables and latent variables. In
this work, we delve into the computational aspect and the application aspect of latent
variable models. On the computational side, we unify and extend stochastic gradient based
maximum likelihood estimation methods for latent variable models under a framework called
Hierarchical Model Stochastic Gradient Descent (HMSGD). Numerical studies have shown
that certain extensions are more computationally efficient compared to the Monte Carlo
Expectation Maximization (MCEM) algorithm. On the application side, we develop a non-
parametric graphical model for microbiome data, and apply the framework to analyze the
statistical properties of rarefaction, a popular normalization technique in microbiome data
analysis. We show that rarefaction helps guarantee validity of permutation inference. We
introduce the sample rarefaction efficiency index as a preliminary data-driven indicator of
statistical efficiency of rarefied data compared to original data. Using the nonparametric
graphical model, we propose a rarefaction-based nonparametric statistical testing procedure,
the combined correlation permutation test, to assess whether library sizes are associated with
microbial compositions conditioning on the grouping variable of interest. Case studies have
shown that such associations are not uncommon in practice.
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Chapter 1

Introduction

1.1 Latent variable models

Graphical models are increasingly popular in modern data analysis because of their ability to
describe complex relationships among many variables. Often we would like to relate observed
variables to the unobserved variables. These unobserved variables are called latent variables.
Graphical models that include latent variables are called latent variable models.

As a concrete application example, in ecology, researchers are often interested in modeling
species community data to study species distributions and abundances. Often many species
are of interest, so species-to-species associations are high-dimensional and these associations
are hard to estimate directly without imposing any assumptions or structures. One approach
is to impose a low-dimensional structure via the use of latent factors, assuming that the
intricate associations can be explained by a few unobserved variables. This idea is used for
example as part of the modeling specification in a flexible framework called Hierarchical
Modeling of Species Communities (HMSC, [67]).

1.2 Parameter estimation

Broadly speaking, there are two approaches to parameter estimation for latent variable models:
the frequentist approach and the Bayesian approach. There has been ongoing debate on the
philosophy of these two approaches, but for our discussion we focus on the computational
aspects.

In the frequentist approach, parameters are viewed as fixed, unknown values. A common
frequentist estimation method is maximum likelihood estimation. In maximum likelihood
estimation, parameter estimates are computed by finding the maximizer of the likelihood
function, which is the joint density of the observed variables with parameters viewed as
the function inputs. If the likelihood function has a closed-form expression, the problem of
computing the maximum likelihood estimates is reduced to an optimization problem, which
can be tackled by running an optimization algorithm such as Newton-Raphson or gradient
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descent, assuming a unique maximizer exists and the likelihood function is well-behaved.
For latent variable models, the likelihood function typically does not have a closed-form
expression, since it is often in terms of an intractable integral over the latent variables. A
well-established general-purpose maximum likelihood estimation method for such models
is the Monte Carlo Expectation Maximization (MCEM, [9, 24]) algorithm1. However, the
runtime for MCEM can be quite long because of large sample sizes are typically required for
proper approximation of the expectation in the E-step of the algorithm. Furthermore, while
there are specialized software packages for running MCEM for specific models (for example,
generalized linear mixed models), users often have to implement the details of the MCEM
algorithms on their own if their models are more customized than the options availabe in
the packages. There are very few general-purpose MCEM implementations available until
recently (for example, in NIMBLE [65]).

In the Bayesian approach, parameters are viewed as random variables. Inference on
parameters is done by studying the posterior distribution, the conditional distribution of
the parameters given the data. Once the posterior distribution is obtained, point estimates
of parameters can be obtained by computing the posterior mean or the posterior median.
For many problems, when the analytical form of the posterior distribution is not available,
one typically has to use a Markov Chain Monte Carlo (MCMC) method to sample from the
posterior. JAGS (Just Another Gibbs Sampler, [74]), and more recently Stan [12] have made
MCMC sampling from the posterior an easy-to-implement procedure once the model has
been specified. Availability and user-friendliness of these software packages have arguably
contributed to the popularity of the Bayesian approach to parameter estimation in latent
variable models.

1.3 Microbiome data analysis

The advent in modern sequencing technologies has opened up many new exciting opportunities
in probing the microbial worlds and facilitating new scientific discoveries. To compile
a microbiome dataset from observations, researchers have to first perform an extraction
procedure and polymerase chain reactions (PCR) to obtain 16S rRNA gene sequences. These
sequences are then typically clustered at a certain similarity level to create groups of closely
related microbes. One can think of these groups as an operational version of the idea
of “species”, more commonly called operational taxonomic units (OTUs) in the context of
microbial biology. a A microbiome dataset is typically of the form of a count matrix, each
entry representing the number of a particular OTU for a particlar observation. The dataset
is commonly accompanied by information about the observations as well as phylogenetic
relationships among the OTUs.

There are several statistical challenges when dealing with microbiome count data. First,
microbiome datasets are high-dimensional. The number of features (OTUs), usually around
1000 to 10000, is typically much larger than the number of observations, usually around 10

1See Section 2.1 for other approaches to maximum likelihood estimation for latent variable models.
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to 100, making comparisons among microbial communities difficult. Second, the data are
typically over-dispersed and zero-inflated, rendering many traditional statistical approaches
inappropriate. Third, numbers of sequences (known as library sizes or read depths) among the
observations can vary greatly, so without proper normalization of observations comparisons
may not be valid. Library size variations are often considered as artifacts of sequencing
procedures.

One popular normalization strategy is rarefaction. The basic idea of rarefaction is to
subsample each observation to the a pre-specified depth via sampling without replacement,
and to discard all the observations with library sizes below the pre-specified depth. Previously,
performance studies of rarefaction have been largely limited to simulation studies under
specific parametric models. A non-parametric latent variable model on microbiome data
could be very helpful for formalizing statistical properties of rarefaction.

1.4 Overview

The rest of the dissertation is organized as follows. In Chapter 2, we develop Hierarchical
Model Stochastic Gradient Descent (HMSGD), a framework that unifies and extends stochastic
gradient based methods for maximum likelihood estimation of latent variable models. Some
of these extensions can arrive at the maximum likelihood estimates much faster than MCEM.
In Chapter 3, we devise a non-parametric graphical model for microbiome data and formally
study the statistical trade-offs of a popular normalization procedure called rarefaction. In
Chapter 4, we develop a correlation-based permutation test for testing the association between
the library size and the microbial composition and apply this test for various real-world
datasets. Chapter 5 outlines a few future directions along the lines of research presented in
this dissertation.



4

Chapter 2

Fast maximum likelihood estimation
for general hierarchical models

This chapter is based on joint work with Sara Stoudt and Perry de Valpine.

2.1 Introduction

Hierarchical statistical models are widespread in the applied sciences because of their ability
to capture complex relationships in data. In ecology, hierarchical models of species abundance
through space and time have been applied to estimate species distributions and dynamics
[81]. In political science, hierarchical models are used to estimate underlying preferences from
data on policymaker decisions [43], while in epidemiology such models are used to estimate
disease prevalence across space and time [56]. These models are difficult to estimate largely
because the likelihood requires integration over the latent variables, which is typically a
high-dimensional problem with no closed-form solution [18, 19].

Partly because of the difficulty of the likelihood integration problem, Bayesian analysis
via computational tools such as Markov chain Monte Carlo (MCMC) has become the main
practical path for analysis of many hierarchical models [20, 40]. However, many lines of
statistical reasoning would be enabled by a similarly general computational approach for
maximum likelihood estimation [91]. One might seek to apply likelihood ratio tests, model
selection by AIC, goodness-of-fit as measured by maximum likelihood or other metrics,
cross-validation, or other approaches. Although statisticians sometimes emphasize the
philosophical incompatibility of Bayesian and frequentist results, practitioners are quite
willing to study results from each side-by-side. Even when one seeks a Bayesian analysis,
maximum likelihood results can provide a sanity check on the MCMC posterior and the
influence of prior distribution assumptions. Statisticians have argued that the future will
hold a combination of both Bayesian and frequentist methods [26], yet for general hierarchical
models, practitioners are often limited to Bayesian results. Amid this rich space for statistical
innovation, the need for improved MLE methods for general hierarchical models is vital.



CHAPTER 2. FAST MAXIMUM LIKELIHOOD ESTIMATION FOR GENERAL
HIERARCHICAL MODELS 5

A variety of methods have been proposed for MLE estimation of general hierarchical
models, but none has gained the kind of general traction that MCMC has for Bayesian
estimation. One set of methods are stochastic variants on the expectation maximization (EM)
algorithm [24], such as Monte Carlo EM (MCEM, [98]), stochastic EM (SEM, [13, 14]), and
stochastic approximation EM (SAEM, [11, 23, 53]). These suffer from the potentially slow
convergence path of EM, and methods to ensure convergence involve costly increases in sample
sizes to achieve smaller Monte Carlo variance as the algorithm proceeds [9]. Despite these
issues, MCEM is one of the most widely applied methods because of its generality. A second
approach, Monte Carlo Newton-Raphson (MCNR, [54]), also requires increasing Monte Carlo
sample sizes to ensure convergence, although theory and application of this method appear
less widespread. A third approach, data cloning [57] or State-Augmentation for Marginal
Estimation (SAME, [44]), uses MCMC with many duplicate latent states, making the problem
similar to MCMC but harder. A fourth approach, Monte Carlo Kernel Likelihood (MCKL,
[90]), can require iterated application of MCMC.

Due to the various challenges in applying these methods, they are not used as widely
as they might be. Specialized methods have been created for specific problems, such as
stochastic approximation EM coupled with approximate Bayesian computation for state-space
models (SAEM-ABC, [72]) and stochastic approximation EM with a Metropolis-Hastings
sampling procedure that is based on a multidimensional Gaussian proposal for nonlinear
mixed effects models (f-SAEM, [48]), but these fail to cover a wide range of latent variable
model scenarios. Finally, we note that there has been interest in distributional approximation
methods such as INLA [82] and variational Bayes [5, 95] for the related Maximum Posterior
Estimation problem, but we focus on problems where the goal is exact MLE limited only by
small Monte Carlo error.

We exploit a connection between the hierarchical model maximum likelihood problem
and stochastic gradient descent methods in non-hierarchical models to obtain efficiency
improvements that range from 1-2 orders of magnitude in three examples. This level of
improvement has the potential to change statistical practice in analysis of hierarchical models
by enabling more routine maximum likelihood estimation.

In typical stochastic gradient descent problems, one has a non-hierarchical model for “big
data”. For example, the loss function for neural network parameters is a sum of many terms,
and the computation of its exact gradient to take an optimization step is costly [6, 7]. It
turns out to be more efficient to calculate a gradient from a stochastic subset of the data at
each iteration and to use a running average of steps to smooth over the stochasticity [7, 37,
38]. In essence, many fast, noisy steps converge more efficiently than few slow, deterministic
steps.

In a hierarchical model, the relevant gradient is an expectation over latent states, often
approximated by Monte Carlo. In this context, the large sample is not the data but rather
the Monte Carlo sample of latent states given parameters and data. Existing approaches
represent different ways of taking approximately deterministic steps at the cost of large Monte
Carlo sample sizes. The connection to stochastic gradient descent methods suggests that
many faster but noisier steps may work better. We take advantage of the fact that highly
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developed step-size schedules from the stochastic gradient descent literature are directly
transferable to the hierarchical model maximum likelihood problem in ways that have not
been done before. The general view of the problem also leads us to propose a new method
based on a greedy line search in an approximate gradient direction, which is better than
previous methods but not best in our computational experiments.

While the connection between maximum likelihood estimation of hierarchical models
and stochastic gradient descent of non-hierarchical models has been recognized before in
the computer science and machine learning literature [86, 87] and discussed in the context
of Hidden Markov Models [10], we have not found significant crossover of these ideas to
the applied statistics literature to achieve large efficiency gains as we do here. By placing
methods in a common framework, we can see them as variants on how to iterate between
sampling latent states given data and current parameters and making a step to update
parameters. The methods differ in sample-size and step-size choices, which we show can be
improved by drawing on advances in stochastic gradient descent methods. (Despite that the
likelihood is being maximized, we stick with the established label “descent”, viewing the
negative log likelihood as a loss function to be minimized.) Specifically, we compare the
fixed step-size schedule, the second-order based step-size schedule (Newton-Raphson), and
the adaptive step-size schedule Adam [51]. We refer to this class of methods as Hierarchical
Model Stochastic Gradient Descent (HMSGD). To the best of our knowledge, applying Adam
step-size schedules to Monte Carlo maximum likelihood algorithms for general hierarchical
models has not been studied, and it is these methods that yield the best and most stable
performance.

The new step-size schedule we propose, called iterative 1D sampling, emerges naturally
as a combination of the gradient-descent view of the problem and the Monte Carlo Kernel
Likelihood idea. The essential idea is to draw MCMC samples of the latent states and
parameters, but with parameters constrained to move in the direction of the approximated
gradient at the values from the previous maximization. The new maximizer in this direction
is then approximated using kernel density estimation (Figure 2.1). Section 2.3.3.3 describes
this approach in detail.

In Section 2.2, we establish notation for a general hierarchical model. In Section 2.3, we
place MCEM, MCNR, and Hierarchical Model Stochastic Gradient Descent in a common
framework and introduce Adam as a viable step-size schedule. We also introduce the greedy
stochastic line search method. In Section 2.4, we discuss computational considerations, and
in Section 2.5 we present computational experiments from three examples. The examples
include a Gamma-Poisson mixture model of pump failure times, a logistic GLMM with
random intercepts for seed germination, and a logistic GLMM for salamander mating success
with crossed random effects. Crossed random effects present a challenge to many numerical
methods. Results show that Adam and the newly proposed iterative 1D sampling can achieve
reasonably accurate estimates even with small MCMC sample sizes, leading to remarkable
improvement in computational time. Section 2.6 provides discussion and directions for future
work; Section 2.7 concludes the chapter.

We implement all of these methods in NIMBLE (Numerical Inference for statistical Models
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for Bayesian and Likelihood Estimation, [66, 92]. NIMBLE is an R package that allows
for flexible hierarchical model specification and writing algorithms such as MCMC or the
methods proposed here that can adapt to different model structures. The system is extensible
and automatically generates model- and algorithm-specific C++ for fast execution.

2.2 Model Setup

Suppose we have n observations y = (y1, ..., yn) ∈ Y ⊂ Rn, drawn from probability distribution
p(y|θ), where θ = (θ1, ..., θD) ∈ Θ ⊂ RD are the model parameters. We introduce the latent
variables x = (x1, ...xK) ∈ X ⊂ RK , which are considered unobserved random variables. The
general latent variable model structure is as follows:

x|θ ∼ p(x|θ) (2.1)

y|x, θ ∼ p(y|x, θ). (2.2)

The (marginal) likelihood of θ is

L(θ) := p(y|θ) =

∫
p(y|x, θ)p(x|θ)dx (2.3)

and our goal is to find
θ̂ML := arg max

θ∈Θ
log p(y|θ). (2.4)

We are often interested in the scenario where the dimension of the latent variables is much
larger than the dimension of the parameters; i.e. when D � K. When the dimension of
the latent variables K is large, it is computationally infeasible to approximate the integral
using a grid-based numerical integration. On the other hand, if D is small (say D = 2), it is
tempting to use the naive Monte Carlo approximation

1

S

S∑
i=1

p(y|x(s), θ)

based on x(s) ∼ p(x|θ) for a grid of values of θ and find the maximizer. However, this
rarely works well due to high variance, since the x(s) are drawn from a distribution without
information from the data y. To remedy the high variability, the sample size S has to be set
at a large value, which in turn increases the computational cost dramatically.

2.3 A General Framework for Sampling-based

Optimization Approaches

We begin by giving the general framework within which MCEM, MCNR, and gradient descent
are special cases.

Given a current iterate θ(t), each of the algorithms performs the following two steps:
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1. Sample Step: Generate MCMC samples x(t) = (x(t),1, x(t),2, ...x(t),S) from p(x|y, θ(t)).

2. Move Step: Update θ(t+1) = f(x(t)).

where the choice of f is different for each algorithm. The notation we use emphasizes the
dependence of f on the MCMC sample x(t), but f can also depend on any quantities involved
in the computation up to iteration t.

For the move step in most sampling-based approaches, gradient computation of the
complete log-likelihood is required. This can be seen from from the Fisher’s identity [27]:

d

dθ
log p(y|θ) = EX∼p(x|y,θ)

[
d

dθ
log p(X, y|θ)

]
. (2.5)

The gradient computation inside the expectation can be done efficiently via an autodifferenti-
ation package, and the expectation can be approximated via a Monte Carlo method.

When autodifferentiation packages are not available, one can use a finite-element approxi-
mation [3]:

d

dθ
log p(y|θ) =

1

p(y|θ)
d

dθ
p(y|θ)

≈

( p(y|θ+δe1)
p(y|θ) − 1

δ
, · · · ,

p(y|θ+δeD)
p(y|θ) − 1

δ

)
,

(2.6)

where ei denotes the unit vector in the ith coordinate and δ denotes a very small value,
say 10−4. This suggests that the key to the approximation is to estimate the ratio p(y|θ+δei)

p(y|θ) .

Following [33], note that

p(y|ψ)

p(y|θ)
=

1

p(y|θ)

∫
p(x|ψ)p(y|x, ψ)dx

and for any x,
1

p(y|θ)
=

p(x|y, θ)
p(x|θ)p(y|x, θ)

. Therefore,
p(y|ψ)

p(y|θ)
=

∫
p(x|ψ)p(y|x, ψ)

p(x|θ)p(y|x, θ)
p(x|y, θ)dx,

which can then be estimated by a standard Monte Carlo estimate using MCMC draws
x1, ..., xS from p(x|y, θ),

1

S

S∑
s=1

p(xs|ψ)p(y|xs, ψ)

p(xs|θ)p(y|xs, θ)
.

Letting ψ = θ + δei for i = 1, ..., D provides approximation of the likelihood ratios needed in
the finite-element approximation of the gradient.
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Higher-order derivatives can be computed in a similar fashion [10]. For example, the
Hessian of the log-likelihood admits the following representation

d2

dθdθT
log p(y|θ) = EX∼p(x|y,θ)

[
d2

dθdθT
log p(X, y|θ)

]
+EX∼p(x|y,θ)

[(
d

dθ
log p(X, y|θ)

)(
d

dθ
log p(X, y|θ)

)T]

−
(
d

dθ
log p(y|θ)

)(
d

dθ
log p(y|θ)

)T
,

(2.7)

which is often known as Louis’ identity [58]. This will prove useful in MCNR as discussed
in Section 2.3.2. Finite-element approximations of higher-order derivatives require division
by extremely small values and hence are numerically unstable. In a preliminary version of
this work, we used finite-element approximation for Hessians in MCNR and found that the
algorithm often diverged very quickly in our numerical studies. This issue is no longer present
once automatic differentiation is used.

Define respectively GMC(θ, x) and HMC(θ, x) as the Monte Carlo approximation of (2.5)
and (2.7) at θ based on a sample x. Now we present MCEM, MCNR, and Stochastic Gradient
descent and show how they fit into this unifying framework. Each method uses the same
sample step, but the function f for the move step varies.

2.3.1 Optimization as the Move Step

The MCEM algorithm [98] replaces the expectation in the E-step of the traditional EM
algorithm [24] with a Monte Carlo approximation. The corresponding move step is

f(x(t)) = arg max
θ

1

S

S∑
i=1

log p(x(t),i, y|θ). (2.8)

2.3.2 Second Order Move Step

Monte Carlo Newton-Raphson (MCNR) uses Monte Carlo estimates of the gradient and the
Hessian of log p(y|θ) for Newton-Raphson updates [63, 54]. The corresponding move step is

f(x(t)) = θ(t) − [HMC(θ(t), x(t)]−1GMC(θ(t), x(t)). (2.9)

2.3.3 First Order Move Step

The first-order move step is obtained by replacing the Hessian in (2.9) with a step-size choice α.
To allow each component to have its own step-size, we consider α to be a D-dimensional vector,
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where D is the number of components in the parameter vector. Denoting the component-wise
product (known as the Hadamard product) as �, the first order move step can be written as

f(x(t)) = θ(t) − α�GMC(θ(t), x(t)). (2.10)

We note that two common step-size choices are not useful for our problem. The first one
is an inexact line search based on Wolfe conditions. Wolfe conditions guarantee sufficient im-
provement in the iterate and a decrease in the magnitude of the gradient [102]. Unfortunately,
checking Wolfe conditions in our context is computationally costly, since it requires multiple
evaluations of the marginal likelihood at each iteration. The second one is the Robbins-Monro
step-size schedule [78], a popular step-size schedule for root finding, applications in regres-
sion [50], probability density estimation [49], and stochastic gradient methods in training
neural networks. However, we found in our experiments that the Robbins-Monro step-size
in our context leads to slow convergence compared to the alternative step-size schedules we
considered and requires careful tuning. We therefore omit the Robbins-Monro results below.

We will now describe four ways to select the step-size: fixed step-size, Adam, and
one-dimensional greedy line search.

2.3.3.1 Fixed step-size

The fixed step-size method suggests the use of a fixed learning rate for each component.
Tuning the size for a particular problem can be tricky to automate, so we appeal to other
choices of α that rely less on a user explicitly tuning the method in the following sub-sections.

2.3.3.2 Adam

Adam ([51]) uses bias-corrected moment estimates of gradients. Instead of using the estimated
gradient GMC(θ(t), x(t)) at the current iterate, the move is governed by an adjusted gradient.
For i = 1, ..., D, define the running averages of first and second-order moment estimates of
gradient:

m
(t+1)
i = β1m

(t)
i + (1− β1)[GMC(θ(t), x(t))]i; (2.11)

v
(t+1)
i = β2v

(t)
i + (1− β2)([GMC(θ(t), x(t))]i)

2, (2.12)

where β1, β2, α and ε are predetermined fixed scalars, and m
(0)
i and v

(0)
i are set to zero. Define

bias-corrected first and second-order moment estimates:

m̂
(t+1)
i =

m
(t+1)
i

1− βt+1
1

; (2.13)

v̂
(t+1)
i =

v
(t+1)
i

1− βt+1
2

. (2.14)
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The Adam update step is f(x(t)) = θ(t) − αadam �G(t)
MC,adj with

αadam =

 α√
v̂

(t+1)
1 + ε

, ...,
α√

v̂
(t+1)
D + ε


and G

(t)
MC,adj = [m̂

(t)
1 , ..., m̂

(t)
D ].

In the context of stochastic gradient methods, convergence results are often stated in
terms of bounds on the average regret, defined as

1

T

T∑
t=1

ft(θt)−min
θ′

1

T
[
T∑
t=1

ft(θ
′)

with ft being a sequence of convex loss functions. [51] shows that Adam achieves an average
regret bound of O(1/

√
T ) under mild conditions, one of which is the convexity of the objective

function. While in general a hierarchical model might not be globally convex, provided that
the sample size (of y) is large enough, often the likelihood surface is locally similar to a
Gaussian distribution near the optimum and hence locally convex.

2.3.3.3 One Dimensional Greedy Line Search

The idea of using an adaptive step-size has been explored in stochastic approximation and
gradient methods [73, 107]. We introduce a novel adaptive step-size method called 1D greedy
line search that has its roots in Monte Carlo likelihood estimation by weighted posterior
kernel densities (MCKL, [90]). The idea is to optimize the step-size at each step by solving
the following optimization problem

cmax
t = arg max

c
p(y|θ(t) + cGMC(θ(t);x(t)), (2.15)

and then updating θ(t+1) = f(x(t)), where

α
(t)
1D = [cmax

t , ..., cmax
t ]

and
f(x(t)) = θ(t) + α

(t)
1D �GMC(θ(t);x(t)).

In essence we are always choosing the “best” step-size in the sense that we pick the one
that provides the most progress. To approximately solve the optimization problem, given
(x(t), θ(t)), we sample jointly in (x, γ) from

p̃(x, γ|y) ∝ p(x, θ(t) + γGMC(θ(t);x(t))|y).

The samples of γ approximate a one-dimensional slice of the marginal distribution. We
approximate the maximizer on the line using a kernel density estimate of the MCMC samples.



CHAPTER 2. FAST MAXIMUM LIKELIHOOD ESTIMATION FOR GENERAL
HIERARCHICAL MODELS 12

START

Figure 2.1: Visualization of the 1-dimensional sampling. The ellipses represent the contours
of the likelihood surface. The blue crosses indicate the MCMC samples and the blue curves
represent the density estimates. Each of the red circles indicates the parameter estimate at
an iteration of the algorithms, which is computed as the mode of the estimated density.

The advantage of using a 1D line search is the potential of aggressive moves at the start
of the algorithm. The downside of 1D line search is the computational cost incurred by
additional MCMC sampling at each step. In addition, the number of MCMC samples needed
for the greedy line search has to be reasonably large in order for the kernel density estimation
(and hence the mode estimation) to be reliable.

Algorithm 1 Gradient descent via 1D Greedy Line Search

• Input: θ(t), g(t) := GMC(θ(t);x(t)).
1: Run an MCMC sampler to sample (x(t), γ(t)) from p̃(x, γ|y) ∝ p(x, θ(t) + γg(t)|y).
2: Perform a 1D kernel density estimate for the sampled γ(t) and compute the mode γ̂(t).
3: Set θ(t+1) = θ(t) + γ̂(t)g(t).

2.4 Computational Considerations

2.4.1 Burn-In and Warm Start

We set the burn-in to be half of the MCMC samples to be conservative (Section 6.5 of [8]).
Since diagnostics require considerable amount of time to run and assess, it is more beneficial
to run more samples (and conservatively remove the first half of the samples) rather than
worry about tracking diagnostics throughout each step. We also implement a “warm start”
where the last draws from the previous iteration’s chain are the starting point for the next
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iteration. This idea is used in many contexts [22, 80, 97] and in our case should also help
ensure that the burn-in period is adequate. We leverage the progress from the previous
iteration, taking advantage of the proximity of the parameter estimates between two adjacent
iterations.

2.4.2 Kernel and Bandwidth for the 1D Sampling Approach

For the kernel density estimation involved in the 1D sampling, we find that almost any
reasonable choice of the kernel and the bandwidth yields similar final maximum likelihood
estimates. For the numerical experiments, the kernel choice is defaulted to be Gaussian and
the (optimal) bandwidth is computed based on the effective MCMC sample size instead of
the nominal sample size, accounting for the fact that the usual optimal bandwidth is derived
based on an independently identically distributed (i.i.d.) assumption [84].

2.4.3 MCMC sample sizes

Just as the number of MCMC samples that we use for the gradient estimation is a hyperpa-
rameter, analogous to the batch size in stochastic gradient descent, that can be tuned, so
is the number of MCMC samples for 1D sampling. For the 1D sampling, a larger MCMC
sample size is needed due to the slow mixing of joint sampling of the parameters and latent
variables. In our experiments, the MCMC sample size choice1 of 300 seems to work reasonably
well. In one of our case studies, reasonably accurate performance can still be achieved with
only a sample size of 20.

2.4.4 Convergence Criteria

For stochastic gradient descent and its variants, the convergence is often checked by predictive
performance in machine learning applications. This is not appropriate in our MLE context
since we are not solving a prediction problem. Within MCNR, [54] uses a formal hypothesis
testing procedure where the variance of the updates are deduced based on a bootstrapping
procedure. This is not applicable to our framework either since the sample sizes involved
in our algorithms tend to be too small for proper variance estimation. Lastly, a less formal
option for convergence check is to plot the trajectory of the iterates and see if the trajectory
for each parameter roughly fluctuates around a particular number [9]. This requires users to
study the trajectory plots, which is not ideal for an automated MLE algorithm.

Our approach is to quantify the fluctuation and flatness of the estimate trajectory, leading
to the development of a two-step test for convergence. This approach is chosen to be ad hoc
but fast. Once the two-step test is passed, the algorithm is terminated. For the first step, we
use the Wald-Wolfowitz runs test [96] to determine whether the trajectory is close to being

1The number of samples used in the gradient approximation or the 1D sampling is only 150, since the
first half of the samples are discarded. Similar comments also apply for a different choice of sample size.
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monotonic, an indication of non-convergence. More specifically, at the tth iteration of the
algorithm, check if the number of runs in (θ

(t−w+1)
j , θ

(t−w+2)
j , ..., θ

(t)
j ) are at least r = 4 for a

block size w = 20. If this is not the case for every coordinate, continue the algorithm. If all
the coordinates have runs of at least r, we proceed to the next test. The choices of r and w
are somewhat arbitrary here and can be tuned. For the second step, we carry out a t-test to
compare the average of iterates in the most recent 20 iterations with that in the preceding 20
iterations. If we fail to reject the null hypothesis at a certain significance level (say 30%),
we terminate the algorithm and conclude convergence. Note that a larger significance level
means we are being conservative, and therefore we will favor running more iterations.

We remark that for MCEM in our numerical experiments, we use the implementation in
NIMBLE, which is based on [9]. The implementation gradually increases the MCMC sample
sizes, unlike our proposed approach of fixing a small MCMC sample size. Since the gradient
estimates are reliable for large MCMC sample size, this allows the simple convergence check:
check whether the approximated gradient is within a certain tolerance.

2.5 Numerical Experiments

We experiment with the algorithms using three examples: a conjugate Gamma-Poisson
hierarchical model (referred to as pump) and two GLMMs (referred to as seeds and salaman-
der). For gradient and Hessian computations, we use automatic differentiation instead of
finite-element approximation for better speed and higher accuracy. We run each algorithm
for 300 iterations and report the execution times. In addition, if the algorithm passes the
convergence test within 300 iterations, we report the convergence time and the number of
iterations to convergence. To obtain the final estimates, we take the 20% trimmed mean of
the last 20 iterates. The averaging is to smooth out any “bouncing around” the optimum
towards the end of the path, and the trimming is to make the estimate more robust to
occasional deviations on the path. Similar stabilizing approaches exist in the stochastic
gradient descent literature such as taking the average of the last α proportion of iterates,
called α-suffix averaging [75].

For every algorithm in each example, we report the CPU execution time (for 300 iterations),
the CPU time to convergence (that is, how long it takes until the convergence test passes), the
log-likelihood difference, and the mean-squared error (MSE) of the estimates compared to the
benchmark estimates. Detailed numerical results can be found in Supplementary Materials.

2.5.1 Case study: pump (Gamma-Poisson hierarchical model)

The pump model [32] is a classic example from WinBUGS [62]. It is a conjugate Gamma-
Poisson hierarchical model, so the marginal likelihood can be analytically derived. The MLE
can be found by a standard deterministic optimization procedure2. The model specification

2We use optim() in R.
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is as follows: for i = 1, ..., N ,

θi|α, β ∼ Gamma(α, β), (2.16)

λi = θiti, (2.17)

xi|λi ∼ Poisson(λi), (2.18)

where xi is the number of failures for pump i, θi is the failure rate for pump i, and ti is the
length of operation time for pump i. We treat x1, ..., xN as the observed random variables,
t1, ..., tN as fixed constants and θ1, ..., θN as latent variables. The pump reliability dataset is
originally from [31]. It consists of data about ten power plant pumps (N = 10).

To investigate the sensitivity of the algorithms to initial values, each of the algorithms is
tested with two different starting points (α(0), β(0)) = (10, 10) and (α(0), β(0)) = (10, 2). We
observe that all the algorithms except the smaller fixed step-size (0.005) are able to get close
to the benchmark MLE. Figure 2.2 shows that the 1D sampling approach makes aggressive
moves initially, so it gets close to the optimum in fewer iterations. The smaller fixed step-size
(0.005) follows the shape of the likelihood surface more closely at the cost of many more
steps. Adam’s final iterations concentrate more tightly around the optimum. The methods
are robust to both different initial values and different MCMC sample sizes. The latter
robustness allows us to reduce the computational time by not relying on as many MCMC
samples to assure good performance. We remark that MCEM takes far fewer iterations but a
much longer computational time to reach the optimum.

2.5.2 Case study: seeds (logistic regression with random effects)

Our next example, seeds, is a logistic regression model with random effects. These types
of models are common in social sciences and medicine as many longitudinal studies have a
binary outcome [68]. The seeds example has appeared in [62] as a classic WINBUGS example
and the dataset is originally from [21].

The model specification is as follows:

β2i ∼ N(0, σ2
RE), (2.19)

logit(pi) = β0 + β1xi + β2i, (2.20)

ri ∼ Binom(ni, pi), (2.21)

where ri is the binary outcome of interest for individual i, the xi are the explanatory data
collected per individual i, the ni are the number of replications per individual i, and the
β2i are the unobserved random effects for individual i. We treat x1, ..., xN as the observed
random variables, n1, ..., nN as fixed constants and the β2i and pi as latent variables. The
parameters of interest are β0, β1, and σRE. Our dataset consists of twenty one individuals
(N = 21).

We experiment with two initial values, (β0, β1, σRE) = (0, 0, 1) and (β0, β1, σRE) =
(−1,−1, 4), as well as two different MCMC sample sizes, 20 and 300. With MCMC sample
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Figure 2.2: Estimate trajectories for the pump example. Zoomed-in trajectories are based on
the final 100 iterations of the algorithms. The true MLE is (α̂, β̂) = (0.823, 1.262)
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size 300 and initial value (−1,−1, 4), Newton-Raphson seems to be stuck at the boundary
constraints and fails to get close to the benchmark MLE, showing that Newton-Raphson
could be sensitive to the initial value. Figure 2.3 display the trajectories of the iterates
for each algorithm with MCMC sample size 300 and initial value (0, 0, 1). The larger fixed
step-size is sensitive to large gradients, leading to erratic jumps. Contrasting with the pump
example, here the smaller step-size is preferable, suggesting that the fixed step-size method
might require a careful step-size choice to achieve well-behaved trajectories. All of the other
methods appear to converge within a narrow band around the true parameters fairly quickly.
Adam and Newton-Raphson still perform well with MCMC sample sizes of 20 (Table A.9),
but both the small fixed step-size and the large fixed step-size approaches have trouble with a
small MCMC sample size (Table 2.3). Comparing Table A.13 with Table A.9, we observe that
for smaller MCMC sample sizes more iterations are typically needed to reach convergence.
Remarkably, Adam and 1D sampling arrive at a solution in seconds rather than minutes,
much faster in terms of computational time than MCEM (Tables A.9 and A.13). The smaller
fixed step-size approach also does fairly well. In this case we can also compare to the results
given by the specialized method in the lme4 package [4] in R, and we see close agreement in
the estimates.

2.5.3 Case study: salamander (crossed random effects model)

Our next example, salamander [47], features a GLMM with crossed random effects, which lead
to challenging estimation of the random effects’ variances. Let yi be the observed outcome of
whether salamander pair i successfully mated or not. For pair i, we use F (i) and M(i) to
denote the corresponding female and male. Let REFF (i) and REMM(i) denote the random
effects for female F (i) and male M(i). The model specification is as follows:

REFF (i) ∼ N(0, σ2
F ), (2.22)

REMM(i) ∼ N(0, σ2
M), (2.23)

logit(θi) = β1isRRi + β2isRWi + β3isWRi + β4isWWi + REFF (i) + REMM(i) (2.24)

yi ∼ Bern(θi), (2.25)

where isRR, isRW, isWR, and isWW encode which population the female (first letter) and male
(second letter) are from in each pair with R denoting “rough-butt” and W denoting “whiteside”;
θi is the probability of mating for each pair i. We consider the random effects REFF (i),
REMM(i) as latent variables. The top level parameters of interest are β1, β2, β3, β4, σ

2
F , and

σ2
M . Data from 360 pairs of salamanders (N = 360) is available in the glmm package [52] in

R.
We experiment with two initial values of the six parameters (β1, β2, β3, β4, σ

2
F , σ

2
M),

(2, 2, 2, 2, 2, 2) and (4, 4, 4, 4, 4, 4). Our benchmark estimate is from the lme4 package [4] in R.
In addition, we also compare our estimates with the ones from the glmm package [52]. We
take the advice in the documentation of glmm to increase the Monte Carlo sample size to
105 from the default of 104 in order to get a more reliable estimate of the parameters.
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Figure 2.3: Estimate trajectories for the seeds example. Zoomed-in trajectories are based on
the final 100 iterations of the algorithms. The fixed step-size (0.05) trajectories are dropped
in the zoomed-in plots for better resolution of the other methods. The lme4 estimates suggest
that a decent ML estimate should be around (β̂0, β̂1, σ̂RE) = (−0.548, 1.310, 0.249).

From Figure 2.4, we observe that all the methods arrive at a stable estimate of the
β values quickly when the initial value is (2, 2, 2, 2, 2, 2). In particular, Newton-Raphson
and 1D sampling get close to the benchmark MLE within ten iterations. We compute the
approximate log-likelihood values at the various MLEs via lme4. As shown in Table A.17 and
A.19 in Supplementary Materials, the sampling based approaches yield MLEs close to the
ones given by glmm and lme4 in terms of both log-likelihood differences and MSE, regardless
of the initial values.
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Figure 2.4: Estimate trajectories for the salamander example with MCMC sample size
300. Newton-Raphson and 1D sampling get close to the benchmark MLE within ten
iterations, despite the fact that they do not pass the ad-hoc convergence criterion. The
glmm estimates suggest that a decent ML estimate should be around (β1, β2, β3, β4, σ

2
F , σ

2
M ) =

(1.023, 0.335,−1.908, 1.006, 1.326, 1.221), while the lme4 estimates suggest that a decent ML
estimate should be around (β1, β2, β3, β4, σ

2
F , σ

2
M ) = (1.008, 0.306,−1.896, 0.990, 1.174, 1.041).
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2.6 Discussion

It is difficult, if not impossible, to establish theoretical comparisons among different sampling-
based MLE approaches in terms of computational time. For example, while second-order
method tends to converge in fewer iterations due to quadratic convergence, each computation
of the Hessian matrix requires a considerable amount of time, so the benefit of converging in
fewer iterations is being offset by the expensive Hessian computations. Due to difficulties
in theoretical comparisons, experiments were conducted to investigate the performance of
algorithms. Our experiments have two main limitations. The first limitation is that the
conclusions might not be generalizable to all latent variable models. We have chosen examples
where a benchmark MLE can be computed via specialized methods. For the pump example,
we can explicitly find the marginal likelihood and compute the MLE; for the two GLMM
example we use the results from lme4 as benchmarks, although lme4 relies on Laplace
approximation and hence the results might not be accurate. The second limitation is that it
is impossible to conduct experiments with all possible tuning parameter configurations for
each of the MLE algorithms.

Empirically, the stochastic gradient approach is shown to be robust to small MCMC
sample sizes. We conjecture that this robustness is due to the fast mixing behavior of the
MCMC when we are sampling the latent variables given the data and the top-level parameters.

In our preliminary experiments we had experimented with other adaptive step-size
schedules, Adagrad [25] and Adadelta [106]. We found that Adagrad decays the step-size
too aggressively and results in slow convergence; Adadelta often ends in highly oscillating
behaviors near convergence. Hence we do not include Adagrad and Adadelta in our work.

We observe in numerical experiments that HMSGD with Adam and 1D sampling typically
work well with default tuning parameters. In addition, their estimate trajectories are relatively
stable compared to HMSGD with fixed step-size. We summarize the challenges of existing
MLE methods and their solutions via HMSGD-based methods in Table 2.1.

2.7 Conclusion

We presented a unifying framework for various sampling-based MLE algorithms and proposed
various extensions. In particular, we have experimented with the use of adaptive step-size
schedule Adam in the context of MLE for hierarchical models, and introduced the 1D sampling
approach as a viable step-size determination procedure. Our numerical experiments have
shown promising results for various algorithms, especially Adam and 1D sampling, in terms
of achieving short computational time and obtaining reasonable parameter estimates. We
have also found that automatic differentiation not only speeds up gradient computations but
also helps stabilize Newton-Raphson method. We provide access to these algorithms in an
easy-to-use format that is still customizable, and we hope these techniques can be valuable
to practitioners in many fields.
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Method Challenge(s) HMSGD-based solution
EM Analytical derivation of E-step

and/or M-step is required.
HMSGD-based solutions do not
require analytical derivation.

MCEM Fully-automated MCEM is
computationally slow due to in-
creasingly large MCMC sizes.

HMSGD with Adam can work
with reasonably well with small
MCMC sample sizes.

HMSGD
with fixed
step-size

It is sensitive to tuning and of-
ten leads to erratic estimate tra-
jectories.

HMSGD with Adam/1D sam-
pling typically works well with
default tuning parameters and
estimate trajectories are less
susceptible to erratic jumps.

MCNR Approximate Hessian is
required and can be ill-
conditioned. It might be
sensitive to initial values.

HMSGD with Adam/1D sam-
pling does not require Hessian
and is less sensitive to initial
values.

Table 2.1: Current challenges for existing MLE methods and their solutions via HMSGD-based
approaches.
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Chapter 3

To rarefy or not to rarefy: statistical
trade-offs of rarefying microbiome
data

This chapter is based on joint work with Ulas Karaoz, William Fithian, and Perry de Valpine.

3.1 Introduction

The rapid development of high-throughput sequencing technologies facilitates the production of
many valuable microbiome datasets, allowing insightful investigation of microbial communities.
To make proper use of these datasets, adjusting for the varying library sizes (also known
as sequencing depths or read depths) is crucial. Failure to do so might result in drawing
the wrong scientific conclusions from the subsequent inferential procedures. One popular
approach to data normalization is rarefaction (often referred as rarefying). The typical
rarefaction procedure is as follows:

1. Specify a desired library size L∗.

2. Discard all the samples with library size Li less than L∗.

3. Subsample all the samples with library size Li greater than L∗ to L∗. This sampling is
done via sampling without replacement.

The desired library size L∗ is often chosen to be the smallest observed library size Lmin among
the samples. In this case no samples will be discarded. However, often the smallest observed
library size Lmin is much smaller than the library sizes for most of the samples, possibly due
to sampling or processing failures. The data would become too noisy if all the samples were
to be rarefied to Lmin. In this case researchers pre-specify a certain threshold L∗ and proceed
with the rarefaction procedure.
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According to Willis [101], rarefaction were first proposed in Sanders [83] for alpha diversity
comparisons in oceanography. As described in Weiss et al. [99], recently the practice
of rarefaction has been applied in the context of studying beta diversity [41, 46]. From
McMurdie and Holmes [64], “rarefying was first recommended for microbiome counts in order
to moderate the sensitivity of the UniFrac distance [60] to library size, especially differences
in the presence of rare OTUs (operational taxonomic units) [61]”.

There has been ongoing debate on whether rarefaction is a statistically justifiable procedure.
Rarefying microbiome data has been criticized a statistically inadmissible procedure under
the assumption that the data can be modeled with a negative binomial distribution [64].
Roughly speaking, the phrase “statistically inadmissible” means that there exists a statistical
decision rule that has a lower statistical risk. Since rarefaction discards valuable data and
leads to an inadmissible procedure, McMurdie and Holmes [64] recommend that rarefaction
should never be used in practice. However, the mathematical argument on inadmissibility
in [64] relies on the model assumption being correct, and McMurdie and Holmes [64] do
not consider randomization tests for differential abundance testing in simulation studies.
Willis [101] explains how rarefaction can introduce bias in the context of studying alpha
diversity. On the other side of the debate, Weiss et al. [99] argue that “rarefying is still a
useful normalization technique” since from simulation studies rarefying seems to be a more
effective procedure to reduce the effect of uneven library sizes in inferential procedures.

To the best of our knowledge, previous studies in understanding rarefaction for statistical
inference has been limited to simulation studies and/or specific data generating processes
and modeling assumptions. We provide motivating examples in which without rarefaction
statistical inference can be compromised. Our work develops a formal statistical framework
for understanding rarefaction. To formally understand how rarefaction helps normalize the
data, we propose a nonparametric graphical model for grouped microbiome data and clarify
how various sources of randomness can affect inferential procedures for microbial compositions.
In particular, the variance of the sample relative abundance can be decomposed into latent
variation in microbial compositions and measurement error. Using a nonparametric graphical
model framework not only allows us to make general claims about rarefying but also highlights
the minimal assumptions for rarefying to be a justifiable procedure.

We establish that rarefaction guarantees the validity of permutation tests under the
nonparametric graphical model, opening up the use of flexible testing procedures via per-
mutations. In particular, rarefaction preserves the conditional multinomial distribution of
the count data the while eliminating the potential dependence between library sizes and
group memberships. While model-based approaches are gaining popularity as they often lead
powerful procedures, inferences drawn from these approaches are often questionable since
the underlying parametric assumptions are tricky to verify. If observations are exchangeable
under the null hypothesis that there are no between group differences (referred as null
exchangeability), one can use a model-based test statistic with permutation inference to guard
against potential violations of model assumptions.

We develop rarefaction efficiency index (REI) as an indicator for efficiency loss, motivated
by our theoretical considerations under the nonparametric graphical framework. REI can
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be viewed as an estimate of statistical efficiency between testing based on original data and
testing based on rarefied data. We illustrate the use of REIs with a microbiome data example,
and simulation studies show that REIs are indeed informative about the sensitivity loss from
rarefaction. We also provide simulated examples in which, without rarefaction, common
statistical procedures for microbiome data (PERMANOVA and DESeq2) can have inflated
Type I error rate.

Throughout the rest of the paper, we assume we have grouped microbiome data. To
simplify the discussion, we assume there are only two groups, although our discussion can be
easily extended to the case of multiple groups.

3.2 Notations

Consider a grouped microbiome dataset with J OTUs of interest and samples can be
categorized into G = 2 different groups. For group g ∈ {1, 2}, there are ng observations. For

i ∈ {1, ..., ng}, let x
(g)
i ∈ NJ denote the ith count vectors in group g so that the kth entry of

the vector corresponds to the raw count of the kth OTU. Our data consist of two groups
of observations {x(1)

1 , ...,x
(1)
n1 } and {x(2)

1 , ...,x
(2)
n2 }. The library size for sample i in group g is

L
(g)
i =

∑J
j=1 x

(g)
ij . Let L∗ be the rarefied depth, and {x(1)∗

1 , ...,x
(1)∗
n1 }, {x

(2)∗
1 , ...,x

(2)∗
n2 } be the

rarefied data. We assume each replicate has an unobserved latent composition π
(g)
i , which is

a random vector of OTU relative abundances. For positive integer K, we use 1K is a vector
of K ones.

When we narrow our discussion for n samples in the same group g for a particular OTU,
for i ∈ {1, ..., n}, let xi be the raw count of the particular OTU in sample i, Li be the
associated library sizes, and πi be the latent relative abundance. We assume all the samples
share a common expected OTU relative abundance p. We further drop the subscript i when
discussing a generic observation.

3.3 Motivating examples

We carry out simulations to illustrate how varying library size distributions, as well as various
violations of model assumptions, can potentially undermine popular statistical procedures in
microbiome studies. In particular, we study the Type I error control for (1) the permutation
t-test of species richness, and (2) DESeq2, a differential abundance testing approach.

3.3.1 Permutation t-test for species richness

To illustrate how different library sizes can compromise statistical inference, we provide
a simple example of comparing species richness between two groups of samples with the
same underlying microbial composition distribution. Intuitively, observations with larger
library sizes have larger species richness solely because more microbes are being sampled. We
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Figure 3.1: 95% confidence intervals of the Type I error rates for the permutation t-test on
species richness. The permutation t-test rejects the null hypothesis that the two groups of
observations have the same mean species richness if the permutation p-value is less than 5%.
Simulations show that testing based on rarefied data properly control the Type I error rate.
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simulate 200 datasets from the following: for group g = 1, 2 and observation i = 1, ..., 30,

π
(g)
i ∼ Dirichlet(α), (3.1)

L
(g)
i ∼ Pg, (3.2)

x
(g)
i |L

(g)
i ∼ Multinomial(L

(g)
i ,π

(g)
i ), (3.3)

where α is the empirical vector of relative abundances (the number of OTUs J = 9719) from
the microbiome preservation dataset [85], scaled by a concentration parameter estimated from
the data; P1 and P2 are empirical distributions of library sizes for observations subject to
the freezethaw treatment and observations subject to the 4◦C storage treatment respectively.
Note that the distribution of the underlying microbial compositions for two groups are the
same, so a test that rejects the null hypothesis the two groups have the same species richness
commits a Type I error.

Figure 3.1 shows that two 95% confidence intervals for the Type I error rates of the
permutation t-test (number of permutations = 200; the test rejects the null if the permutation
p-value fall below 5%) of species richness, one for original data and one for rarefied data (that
is, data are rarefied to the smallest library size). Based on the confidence intervals, the Type
I error is being inflated if original data are being used, and it is properly controlled if rarefied
data are being used.

3.3.2 DESeq2

DESeq2 [59] is a negative binomial-based method to test for differential gene expression. Since
its introduction, it has garnered popularity in microbiome studies in differential abundance
testing [35, 45, 94, 103, 105].

We first investigate the robustness of DESeq2 against different data conditions. For each
of the following conditions, we generate 100 datasets with J = 2000 OTU:

1. baseline: n1 = n2 = 30, and for g ∈ {1, 2},

π
(g)
i ∼ Dirichlet

(
30

1J
J

)
, (3.4)

L
(g)
i ∼ Poisson(10000), (3.5)

x
(g)
i |L

(g)
i ∼ Multinomial(L

(g)
i ,π

(g)
i ); (3.6)

2. small sample sizes: same as the baseline model except n1 = n2 = 10;

3. different mean library sizes: same as the baseline model except L
(2)
i ∼ Poisson(50000);

4. mixture: same as the baseline model except π
(g)
i comes from a mixture of two Dirichlet

distributions:

π
(g)
i ∼ 0.3Dirichlet

(
30

1J
J

)
+ 0.7Dirichlet

(
3[1.5

1J/2
J

, 0.5
1J/2
J

]

)
.
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Figure 3.2: 95% confidence intervals of DESeq2 Type I error rates in differential abundance
testing based on 2000 OTUs and 100 simulated datasets under four difference data generating
conditions. Top left: DESEq2 on original data; top right: permutation test with DESEq2 test
statistic on original data; bottom left: DESEq2 on rarefied data; bottom right: permutation
test with DESEq2 test statistic on rarefied data. In each condition, the null hypothesis that
there are no compositional difference holds, so the true Type I error rate for each OTU is
5%. Simulations show that permutation tests on rarefied data control the Type I error rate
approximately at the correct 5% level.

Ww have two versions of each dataset, original and rarefied. For each version of the dataset,
we apply DESeq2 with two modes of testing: a) likelihood asymptotics: use the default
Wald test to obtain p-values for each OTU; b) permutation: p-values are computed based on
permutations for each OTU. For each OTU, we reject the null hypothesis that the OTU is
not differentially abundant if the p-value falls below 0.05. Note that in all the simulations
the null hypothesis holds.

Figure 3.2 shows the 95% confidence intervals of Type I error rates in each scenario.
Inferences based on asymptotics tend to have an inflated Type I error rate in all simulations.
On the other hand, inferences based on permutations tend to achieve the expected Type I
error rate except when the mean library sizes for the two groups differ. Regardless of the
conditions, the combination of rarefying and permutations consistently yields approximately
the expected 5% Type I error rate. In theory, we expect the confidence interval should cover
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the expected 5% Type I error rate; however, very small deviations arises due to DESeq2 not
being able to estimate OTU count dispersions for certain permuted samples.
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Figure 3.3: 95% confidence intervals of DESeq2 Type I error rates in differential abundance
testing based on 100 simulated datasets as close to the microbiome preservation dataset as
possible. Since the latent compositions are simulated from the same distribution, the true
Type I error rate for each OTU is 5%. Simulations show that permutation tests on rarefied
data control the Type I error rate approximately at the correct 5% level.

We also study the robustness of DESeq2 under a setup in which simulated data are as
close to an actual dataset as possible. We choose the actual dataset to be the micriobiome
preservation dataset [85]. Let P1 and P2 are empirical distributions of library sizes for
observations subject to the freezethaw treatment and observations subject to the 4◦C storage
treatment respectively. Let Q be the empirical distributions of relative abundance vectors for
observations subject to the freezethaw treatment. Each of the simulated datasets is generated
as follows:

1. For group g = 1, simulate 30 library sizes L
(1)
1 , ...L

(1)
30 from P1.

2. For group g = 2, simulate 30 library sizes L
(2)
1 , ...L

(2)
30 from P2.

3. For g = 1, 2 and i = 1, ..., 30, simulate the latent composition π
(g)
i from Q and x

(g)
i from

Multinomial(L
(g)
i , π

(g)
i ).
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Figure 3.3 shows the 95% confidence intervals of Type I error rates under this simulation
setup for original data and rarefied data, using DESeq2 with permutational inference. Testing
based on original data yield inflated Type I error rate, while testing based on rarefied data
does not.

3.4 Framework

To facilitate a rigorous discussion of rarefaction, we develop a nonparametric statistical
framework for microbiome data. The setup is that there are multiple subjects from each
group, and each subject has an associated composition of the microbial community, say πi

for the i-th subject. Due to limitations of sequencing procedures, the specimen extracted
from a subject comes from a sampling of the microbial community, and typically the total
count (library size) of the specimen is not informative about the absolute total abundance of
the specimen.

To provide intuition of this setup, suppose we collect two groups of soil samples. Each
group of soil samples comes from a different region. Within each group, the samples can
have different microbial compositions, perhaps due to unobserved conditions of each sample
such as temperature and humidity at sample collection, or perhaps due to inherent variation
across identical conditions. The microbial composition of a sample is never entirely observed;
for each sample, we take a swab and perform the sequencing procedure. This can be viewed
as subsampling the microbial community in the soil sample.

Motivated by the setup, we propose the following nonparametric model for microbiome
data:

latent composition: π
(g)
i |g ∼ fπ(·|g) (3.7)

library size: L
(g)
i |π

(g)
i , g ∼ fL(·|π(g)

i , g) (3.8)

count: x
(g)
i |π

(g)
i , L

(g)
i ∼ Multinomial(L

(g)
i ,π

(g)
i ), (3.9)

where fπ(·|g) is a probability density function supported on the p-dimensional probability

simplex and fL(·|π(g)
i , g) is a probability mass function supported on non-negative integers.

For a given group, there is an underlying mean composition, and values of π
(g)
i represent

latent variation in sample composition. The multinomial distribution is a natural modeling
assumption if the sampling of microbial community, from data collection to obtaining the
raw counts, is assumed to be representative of the underlying microbial composition.

In the graphical model the arrows do not necessarily imply causal relationships. A generic
joint distribution of (π

(g)
i , L

(g)
i )|g can be described by fπ(·|g) and fL(·|π(g)

i , g) since the
following identity holds

fπ,L(π
(g)
i , L

(g)
i |g) = fπ(π

(g)
i |g)fL(L

(g)
i |π

(g)
i , g) (3.10)

for any joint distribution fπ,L(·, ·|g).
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x

π L

g

Figure 3.4: A nonparametric graphical model for grouped microbiome data. In the model,
g is the group the observation belongs to, π is the (latent) microbial composition, L is the
library size, and x is the vector of OTU counts. The shaded nodes are observed quantities.
The dashed arrow represents the hypothesis of interest: whether microbial compositions vary
across different groups.

3.4.1 Example: Dirichlet-Multinomial

Dirichlet-Multinomial (DM) models have been used in microbiome studies to model the
count vector of multiple taxa [55, 39, 15, 17, 93]. In the DM model, the latent composition
follows a Dirichlet distribution and the conditional distribution of the count vector follows
a multinomial distribution. Dirichlet distribution is a conjugate prior for the multinomial
distribution, which greatly simplifies subsequent computations.

For testing differential abundance in a single OTU, the negative binomial (NB) distribution
is frequently used to model counts. When the count vectors of microbial communities are
modeled by the DM model, the counts for each OTU follow approximately the NB distribution.
See Supplementary Materials for more details.

3.5 How much does rarefaction hurt statistical

inference?

Rarefaction has been criticized for wasting data since we effectively remove a portion of
the data in the downsampling procedure [64]. The subsampling in rarefying will inevitably
increase the variance of test statistics and decrease the power of subsequent testing procedures.
The key question is how much rarefaction hurts statistical inference. We address this question
through theoretical considerations and simulation studies. We focus our discussion on two
relatively simple testing procedures, the negative binomial Wald test and the two-sample
t-test. More involved statistical procedures such as DESeq2 [59] and permutational analysis of
variance (PERMANOVA, [2]) are hard to analyze theoretically because they integrate various
statistical principles. Negative binomial-based tests are used in two popular microbiome
analysis routines, edgeR [79] and DESeq2 [59], while the two-sample t-test (and the closely
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related z-test) is a classical statistical test widely used in microbiome studies [100, 104], and
it forms an integral part of more involved approaches in the popular package limma [77, 71]
for differential expression analysis.

3.5.1 Theoretical considerations

We summarize the key theoretical findings in this section and leave all the mathematical
details and the precise statements in Supplementary Materials.

Under the proposed graphical model framework, it can be shown that rarefaction to a
pre-specified depth leads to the exchangeability of observations under the null hypothesis,
which is required for permutation tests to achieve correct Type I error rates. The intuition is
that the effects of group memberships and latent composition on library sizes are removed by
reducing all the library sizes to the same number.

It can further be shown that the variance of sample relative abundance within each group
can be written as the sum of latent variation and measurement error:

Var
(x
L

)
= Var(π)︸ ︷︷ ︸

latent variation

+ E
[
π(1− π)

L

]
︸ ︷︷ ︸
measurement error

. (3.11)

The first term in Var
(
x
L

)
is the variance of the latent relative abundance π, representing

the latent variation. The latent variation arises from having multiple observations belonging
to the same group. Samples from the same group do not necessarily have the same OTU
proportion due to individual differences. The latent variation Var (π) is determined by fπ(·|g)
in the graphical model. The second term in Var

(
x
L

)
is the measurement error, arise from the

sequencing procedure of each sample. Intuitively if the library size is larger, the precision
increases and hence the measurement error decreases.

Statistical efficiency is often used to compare hypothesis testing procedures. Roughly
speaking, a more efficient testing procedure requires fewer observations to achieve the same
power. It can be shown that the (asymptotic) statistical efficiency (measured by asymptotic
relative efficiency, ARE) based on original data versus rarefied data for the two-sample t-test
is approximately

1
n1

Var
(
x(1)

L(1)

)
+ 1

n2
Var

(
x(2)

L(2)

)
1
n1

Var
(
x(1)∗

L∗

)
+ 1

n2
Var

(
x(2)∗

L∗

) (3.12)

and the ARE for the negative binomial Wald test is upper bounded by the above quantity
(3.12). See Appendix B.6 for details.

3.5.2 Rarefaction efficiency index

Consider the setup for two groups and J OTUs. It would be helpful to have an index that
informs us whether rarefaction would lead to a significant loss in statistical efficiency. We
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call the quantity in (3.12)
1
n1

Var
(
x(1)

L(1)

)
+ 1

n2
Var

(
x(2)

L(2)

)
1
n1

Var
(
x(1)∗

L∗

)
+ 1

n2
Var

(
x(2)∗

L∗

)
the rarefaction efficiency index (REI).

In practice we would have to estimate the variance terms in the REI. To formalize ideas,
let x

(g)
ij and L

(g)
i be the observed count for OTU j in sample i from group g and the associated

library size respectively. For group g and OTU j, we can directly estimate Var(x
(g)
ij /L

(g)
ij )

using the sample variance of the observed relative abundances,

S
(g)
j :=

1

ng − 1

ng∑
i=1

(
x

(g)
ij

L
(g)
i

− 1

ng

ng∑
l=1

x
(g)
ij

L
(g)
l

)2

. (3.13)

While we can estimate Var(x
(g)∗
ij /L∗) using the sample variance of rarefied data, the realized

value of this estimator can be larger than S
(g)
j . Thus we use an alternative estimator for

Var(x
(g)∗
ij /L∗): S

(g)
j + V

(g)
j (L∗), with

V
(g)
j (L∗) :=

1

ngL∗

ng∑
i=1

x
(g)
ij

L
(g)
i

(
1−

x
(g)
ij

L
(g)
i

)(
L

(g)
i − L∗

L
(g)
i − 1

)
, (3.14)

which can be shown to be the estimated additional variance induced by rarefying data to
depth L∗ (see Appendix B.8). The sample rarefaction efficiency index (sample REI) of OTU
j at rarefied depth L∗ is defined as follows:

R̂EIj(L
∗) :=

1
n1
S

(1)
j + 1

n2
S

(2)
j

1
n1

(S
(1)
j + V

(1)
j (L∗)) + 1

n2
(S

(2)
j + V

(2)
j (L∗))

. (3.15)

Since V
(1)
j (L∗) and V

(2)
j (L∗) are always nonnegative, R̂EIj(L

∗) is always less than or equal to
1. For simplicity, we define the sample REI for a dataset to be the average of sample REIs
over all OTUs, but in practice one might opt for a weighted average if OTUs have varying
importance in the analysis.

A sample REI close to 1 suggests that inference based on rarefied data is almost as efficient
as inference based on original data. The idea is that when latent variation in composition is
large relative to measurement error, the sample REI is close to 1 and there is not much loss
of information from rarefying. On the other hand, a sample REI close to 0 suggests a huge
loss in sensitivity when data are rarefied.

3.5.2.1 An usage example of rarefaction efficiency index

To illustrate how REIs can be applied in practice, we consider a dataset in a study on the
effects of preservation and storage conditions on the fecal microbiomes [85]. The rarefied
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depth is chosen to be 30000. Suppose we select observations preserved for four weeks with
95% ethanol and storage temperature being either 20◦C or 4◦C. We group the observations
by the storage temperature. The sample REI for comparing these two groups is found to be
0.76. On the other hand, suppose we select observations from two particular human subjects.
We group the observations by the subjects. The sample REI for comparing these two groups
is found to be 0.61.

Intuitively, if observations are grouped by treatments, we expect the latent variation to
be large since observations come from different individuals; consequently, the loss in efficiency
due to rarefaction should be small and the sample REI should be large. On the other hand,
if observations are grouped by subjects, we expect the latent variation to be small since all
the observations come from the same individual and are subject to preservation treatments
to a certain extent; consequently, the loss in efficiency due to rarefaction should be large and
the sample REI should be small.

Suppose researchers are willing to tolerate up to 25% loss in statistical efficiency. Based
on the sample REIs, researchers should be concerned about using rarefaction for comparisons
between the two subjects, but less concerned for comparisons between the two treatments.

3.5.3 Simulation studies

We carry out simulation studies to (1) investigate the impact of latent composition variation
on the power of testing procedures and (2) see if REI properly reflects the discrepancy in
power between original data and rarefied data. To echo the theoretical considerations, we
focus on the two-sample t-test and the negative binomial based Wald test in single OTU
differential abundance testing for two groups of samples. In the simulations, the concentration
parameter α ranges over three values {100, 1000, 10000}. A smaller α represents more
overdispersion; that is, more latent composition variation. The two groups have the same
number of observations n, and the sample size is either n = 20 or n = 100. To keep the
simulation as realistic as possible, the library size distributions are derived from an actual
dataset: for group 1, the library size distribution (denoted by P1) is the empirical library size
distribution based on the Human Microbiome Project dataset (HMPv35, [42]); for group 2,
the HMPv35 library sizes are multiplied by a factor of either 2 or 10 (denoted by P2). We
screen out all the rare species in the HMPv35 dataset (the number of remaining OTUs is
J = 366). We use the empirical relative abundances, denoted as v1, as the true baseline
relative abundances in the simulation. The empirical relative abundance of the first OTU is
0.1%.

We simulate 500 datasets from the following Dirichlet-Multinomial model: for the first
group, the model is π

(1)
i ∼ Dirichlet(αv1), L

(1)
i ∼ P1, x

(1)
i |L

(1)
i ∼ Multinomial(L

(1)
i ,π

(1)
i );

for the second group, we introduce a fold change factor (FC) for the first OTU, and

the model is π
(2)
i ∼ Dirichlet(αv2), L

(2)
i ∼ P2, x

(2)
i |L

(2)
i ∼ Multinomial(L

(2)
i ,π

(2)
i ), where

v2 = [v1,1(FC), [1− v11(FC)]v1,2:J ], with v1,1 the relative abundance of the first OTU, and
v1,2:J the relative abundances of the rest of the OTUs. For the rarefied depth, we simply take
the smallest observed library size.
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Figure 3.5: Power curves of differential abundance testing from simulation studies. Datasets
are simulated from a Dirichlet-Mutlinomial model. In Group 1, the relative abundance of the
OTU of interest is 0.1%. Within each figure, panels are arranged from left to right based on
increasing overdispersion (i.e. decreasing α).



CHAPTER 3. TO RAREFY OR NOT TO RAREFY: STATISTICAL TRADE-OFFS OF
RAREFYING MICROBIOME DATA 35

We test for differential abundance for the first OTU. The results for the NB test and the
two-sample t-test are similar, although in general the power from NB test is slightly higher.
Figure 3.5 shows that both tests control the Type I error at around the 5% level when the
fold change is 1 (i.e.: there is no difference in the relative abundance of the first OTU for the
two groups) except for the scenario in which the sample size is small and the overdispersion
is large.

In the overdispersed case α = 100, we can see from Figure 3.5 that the power curves
for tests based on original data are very similar to those based on rarefied data, regardless
of the sample sizes or the difference in mean library sizes between the two groups. As
the concentration parameter α increases (in other words, the latent composition variation
decreases), the gap between the original power curve and the rarefied one becomes more
prominent in each of the scenarios.

Comparing the plots in Figure 3.5, we can see that rarefying worsens the power more
significantly as the mean library size differences increases. This is expected because the
downsampling in rarefying becomes more aggressive for the larger library sizes. resulting in a
bigger loss in precision.

From Figure 3.5, we observe that whenever the sample REI is small, the gap between
the power curves is large, regardless of sample sizes. When the sample REI is around 0.9,
the power curves essentially overlap, meaning that the effect of rarefaction on sensitivity is
negligible; when the sample REI is around 0.7, the gap between power curves is visible but
small. In practice, the default threshold for the sample REI can be set to 0.7; if the sample
REI is below 0.7, one must beware of the drop in sensitivity due to rarefaction.

3.6 Discussion

We have shown that rarefaction with permutation tests provides robustness to differential
abundance testing. Analysts often face the dilemma of whether to rarefy or not to rarefy. If
the analyst is certain library sizes are independent of groups, rarefaction is not necessary since
the observations are exhcangeable under the null hypothesis and permutation tests would
yield valid p-values. To check if library sizes are independent of group memberships, one may
use a parametric test such as ANOVA, or a nonparametric test such as Kruskal-Wallis test,
to test for differences in library sizes among groups. In practice, analysts might want to err
on the side of caution and opt for rarefaction at the potential cost of sensitivity loss; the
extent of such sensitivity loss can be informed by REIs.

As long as observations are exchangeable under the null hypothesis, permutation tests
are always valid regardless of the choice of the test statistic. However, permutation tests
have several drawbacks. First, permutation tests are computationally expensive, especially
when they are used in conjunction with a model-based approach. This problem is somewhat
alleviated with parallel computing and the ever increasing computational power. Second, it
can be challenging to deal with complex experimental designs in microbiome studies with
permutation tests due to the exchangeability assumption underlying such tests.
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Figure 3.6: Comparisons of parametric tests, permutation tests based on original data, and
permutation tests based on rarefied data.

3.7 Conclusion

We are not advocating the use of rarefying in all microbiome data analysis. Rather, we
highlight that in certain scenarios rarefying can be a valuable tool to guarantee the validity
of permutation tests, and the loss in sensitivity due to rarefying might not be as severe as
one might imagine. If loss in power is of concern, sample REIs can be used as a heuristic to
determine whether one should proceed with rarefaction. Whether to rarefy or not ultimately
depends on assumptions of the data generating process and characteristics of the data.
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Chapter 4

Assessing the association between
library sizes and microbial
compositions in microbiome studies

This chapter is based on joint work with Ulas Karaoz, William Fithian, and Perry de Valpine.

4.1 Introduction

High-throughput microbiome data samples often have widely varying numbers of sequences
(known as library sizes). Library sizes variations are often believed to be an artifact of the
sequencing procedure, for instance due to preferential amplification by polymerase chain
reaction (PCR) [1]. As mentioned in [99], “the microbial community in each biological sample
may be represented by very different numbers of sequences (i.e., library sizes), reflecting
differential efficiency of the sequencing process rather than true biological variation”.

To facilitate proper comparisons of microbial communities, various normalization strategies
for microbiome data have been proposed. One particular approach is rarefaction, also referred
as rarefying in [64], a normalization procedure first proposed in [83] to compare alpha
diversity in oceanography. The intuitive motivation for rarefaction is that observations
become “comparable” after rarefaction since rarefied data all share the same library size.

In the previous chapter, we developed a nonparametric graphical model for microbiome
data to investigate the statistical trade-offs of rarefaction. Under the graphical model
framework, we showed that rarefaction guarantees the validity of permutation tests for
grouped microbiome data even if library sizes might be associated with the grouping variable
of interest, and the loss in sensitivity due to rarefaction depends on the latent variation of
microbial compositions. We also provided examples of how permutation tests can potentially
be invalid without rarefying the data.

To formalize our discussion, we make a distinction between latent microbial composition
and observed microbial composition. In microbiome data analysis, the quantity of scientific
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interest is the latent microbial composition, which can be thought of as the microbial
composition of the sample after extraction and PCR. The adjective latent is used to emphasize
that in practice we do not observe every individual sequence in a sample via sequencing so the
microbial composition is never directly observed. On the other hand, the observed microbial
composition, defined as the observed OTU (operational taxonomic unit) counts divided by
the observed library size (this is often called total-sum scaling, TSS, in the literature), clearly
depends on the library size. Conditional on the library size, the variance of the observed
microbial composition decreases as the library size increases.

If library sizes were truly an artifact of the sequencing procedure, there would not be any
association between the latent microbial composition and the library size. A natural question
is how to assess this association from microbiome data. While the observed composition is a
reasonable proxy for the latent composition, the observed composition always depends on
the library size, so disentangling this dependence from the association between the latent
composition and the library size can be challenging.

Another natural question is whether the association between the latent composition and
the library size affects statistical comparisons of latent composition across different groups of
observations. Broadly speaking, there are two types of inference, which we term conditional
inference and unconditional inference. In conditional inference, statistical comparisons in
latent comparison are performed conditioning on the library sizes; in unconditional inference
statistical comparisons are made without the conditioning. For example, metagenomeSeq [69],
a popular differential abundance testing method for microbiome data, allows both conditional
inference and unconditional inference by having the library sizes as an optional argument in
its software package [70].

In this work, under the nonparametric graphical model framework for microbiome data, we
discuss how conditional inference and unconditional inference can lead to different conclusions
about microbial compositions. In addition, we establish a sufficient condition, namely the
conditional independence between the latent microbial composition and the library size
given the grouping variable of interest, for conditional inference to be valid for testing the
unconditional independence between the microbial composition and the grouping variable.
Furthermore, we develop a rarefaction-based nonparametric statistical testing procedure, the
combined correlation permutation test, to assess whether library sizes are associated with
microbial compositions conditioning on the grouping variable of interest. We also discuss
how multiple testing can be used to detect OTU-specific associations with library sizes. We
apply these testing procedures to various microbiome datasets and find that such association
arises quite often in practice.

4.2 Notations and model setup

Let G be the number of groups. For g = 1, ..., G, let ng be the number of observations in
group g. Denote the smallest group sizes as nmin = min(n1, ..., nG) and the sum of the groups
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(a) Full model: L depends on both π and g.
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(b) Simplified model: L depends on only g.

Figure 4.1: A non-parametric graphical model for grouped microbiome data. The shaded
nodes are observed quantities. The dashed arrow represents the hypothesis of interest:
whether microbial compositions vary across different groups.

sizes as N . For sample i in group g, let L
(g)
i be the associated library size and x

(g)
i be the

associated count vector of OTUs.
To simplify the setup, suppose we have two groups of n observations of count vector (the

discussion can be generalized to more than two groups as well as unequal group sizes). For

i ∈ {1, ..., n} and g ∈ {1, 2}, denote the ith observation in group g as x
(g)
i ∈ Zp≥0, where p

is the number of species. Let π
(g)
i be the latent composition and L

(g)
i =

∑p
j=1(x

(g)
i )j be the

library size.
We assume the data is generated according to the following nonparametric graphical

model:

latent composition: π
(g)
i |g ∼ fπ(·|g) (4.1)

library size: L
(g)
i |π

(g)
i , g ∼ fL(·|π(g)

i , g) (4.2)

count: x
(g)
i |π

(g)
i , L

(g)
i ∼ Multinomial(L

(g)
i ,π

(g)
i ), (4.3)

where fπ(·|g) is a probability density function supported on the p-dimensional probability

simplex and fL(·|π(g)
i , g) is a probability mass function supported on non-negative integers.

We call this model the full model (Figure 4.1a). If we further assume the library size is
independent of the latent composition (given the group membership), we call the model the
the simplified model (Figure 4.1b).

The typical hypothesis of interest in microbiome studies is whether the distribution of the
latent composition π is independent of g; that is fπ(·|g) = fπ(·). In terms of the graphical
model language, we are interested in whether there is an arrow from g to π. We refer this
hypothesis as the unconditional null hypothesis, since we are studying the independence
between the latent composition and the grouping variable without conditioning on the library
size.
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Figure 4.2: Full model with the unconditional null hypothesis: the microbial composition π
is independent of the grouping variable g.

4.3 Conditional inference versus unconditional

inference

We formalize under the nonparametric graphical model framework the difference between
conditonal inference and unconditional inference.

Assume the full model holds with the unconditional null hypothesis: the microbial
composition π is independent of the grouping variable g (Figure 4.2). Due to the explaining-
away phenomenon, π and g are conditionally dependent given the library size L. This implies
that the unconditional null hypothesis and the conditional null hypothesis are not equivalent
under the full model, meaning that we can potentially arrive at different conclusions with
conditional inference and unconditional inference.

For a concrete hypothetical example, suppose we have only p = 2 OTUs of interest and
there are two groups of n observations. Suppose further the distribution of π does not depend
on the group membership g (that is, the unconditional null hypothesis holds), and

π =

{
(1/4, 3/4) with probability 1/2

(3/4, 1/4) with probability 1/2
. (4.4)

For some reason, the machine processing samples in group 1 always returns observations
with library size 1000 whenever the first OTU is dominant and 2000 otherwise; the machine
processing samples in group 2 always returns observations with library size 2000 whenever the
first OTU is dominant and 1000 otherwise. Suppose we are interesting in the unconditional
null hypothesis but we proceed with conditional inference. Since the unconditional null
hypothesis holds, we commit a Type I error (false positive) if we reject the null hypothesis in
subsequent testing procedures.

Since library sizes can only take two values in this example, conditioning on the library
sizes is equivalent to creating two strata of the samples: stratum 1 contains all the observations
with library size 1000, and stratum 2 contains all the observations with library size 2000. Now
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note that within stratum 1 P (π = (1/4, 3/4)|L = 1000, g = 1) = 1 and P (π = (1/4, 3/4)|L =
1000, g = 2) = 0. Therefore, conditioning on the library size any sensible statistical procedure
(for example, running a two-sample t-test for the relative abundance of OTU 1 for each
stratum) would conclude there is a difference in microbial compositions between the two
groups of samples, commiting a Type I error with respect to the unconditional null hypothesis.

A natural question is under what scenarios conditional inference is valid for testing the
unconditional null hypothesis. A sufficient condition is that the simplified model (Figure
4.1b) holds. In the simplified model, the latent composition π is conditionally independent
of the library size L given the group membership g. The following theorem shows that under
the simplified model, the conditional null hypothesis is equivalent to the unconditional null
hypothesis.

Theorem 1. Under the simplified model, π is independent of g if and only if π is conditionally
independent of g given the library size L.

Proof. (Unconditional independence implies conditional independence): Assume π is in-
dependent of g. From the simplified model, the unconditional null also implies that π is
independent of (L, g). Therefore, for all L and g,

p(π|L, g) = p(π) = p(π|L).

(Conditional independence implies unconditional independence): Assume π is condition-
ally independent of g given L. Then for all L and g,

p(π|g) = p(π|L, g) = p(π|L), (4.5)

where the first equality uses the conditional null hypothesis and the second equality uses the
property of the simplified model. Let PL denote the marginal distribution of L. From (4.5),
for all g,

p(π|g) =

∫
p(π|g)dPL(L) =

∫
p(π|L)dPL(L) = p(π),

so π is indeed independent of g.

4.4 Methodology

In this section we develop a hypothesis testing procedure for testing whether π and L are
conditionally independent given the grouping variable g. Equivalently, this is testing whether
the simplified model is adequate in modeling the data relative to the full model (Figure 4.3).

Within each group, to measure the dependence between the latent composition π and
the library size L (here we drop the superscript (g) to simplify notations), we study the
OTU-specific Spearman’s correlation coefficients [88] between the latent proportions πj and
the library size L for each OTU j = 1, ..., J , where the Spearman’s correlation coefficient
between two variables is defined as the correlation between the ranked version of the two
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x

π L

Figure 4.3: A graphical model representation of testing the simplified model against the full
model for a particular group of observations. To simplify the representation, the node for the
grouping variable g is dropped since we condition on g. The dashed arrow represents the
hypothesis of whether microbial compositions and library sizes are associated. Inference on
the dashed arrow based on x is challenging because of the direct dependence between x and
L.

x∗L∗

π L

Figure 4.4: A graphical model representation of rarefied data. The rarefied depth is denoted
by L∗ and the corresponding rarefied data is denoted by x∗. Since the only way rarefied
count can depend on the original library size L is through the latent composition π, it is
sensible to use x∗ to infer whether L and π are dependent.

variables. Spearman’s correlation coefficient is used instead of Pearson’s correlation coefficient
because outlying library sizes are common in practice and Pearson’s correlation coefficient is
sensitive to outliers.

Since π is not observable, we cannot directly compute the sample correlation between πj
and L. A naive approach is to compute the sample Spearman’s correlation coefficients between
the observed relative abundances and the associated library sizes instead. However, conditional
on the library sizes, under the simplified model the observed relative abundances are not
exchangeable since the library size controls the variation of observed relative abundances.
The lack of exchangeability is problematic because a randomization test on correlation might
not be valid. Based on a result in the previous chapter, rarefied observations (to the same
pre-specified rarefied depth L∗) from the same group are exchangeable. It is hence sensible to
use the sample Spearman’s correlation coefficients between the rarefied relative abundances
and the associated library sizes. Rarefaction can be summarized as follows:

1. Select a rarefied depth L∗.

2. Discard all the samples with library size less than L∗.
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3. Subsample all the samples with library size Li greater than L∗ to L∗. This subsampling
is done via sampling without replacement.

Let R be the matrix of rarefied relative abundances and Rj be the vector of rarefied relative
abundances for OTU j. Let L be the vector of original library sizes. For OTU j = 1, ..., J , let
Tj(R,L) = |ρ̂(Rj,L)| be the absolute value of the sample Spearman’s correlation coefficients
between the rarefied relative abundances for OTU j and the associated library sizes.

We keep the matrix R fixed and permute the vector of library sizes L. Let L(1), ...,L(B)

be B randomly permuted vectors of library sizes. Then for b = 1, ..., B, Tj(R,L
(b)) is the bth

permuted test statistic for the jth OTU. Let #A denote the number of elements in the set A.
For j ∈ {1, ..., J}, define the permutation p-value for the jth OTU as

pj =
1 + #{b : Tj(R,L

(b)) ≥ Tj(R,L)}
1 +B

, (4.6)

which is the proportion of permuted test statistics (including the observed one) being at
least as large as the observed test statistic. For our purpose of detecting the presence of any
associations of compositions and library sizes, rather than testing for each individual OTU
separately, we combine the p-values via Fisher’s method [30] to form a combined statistic

Y = −2
J∑
j=1

log pj, (4.7)

which synthesizes the statistical evidence across all the OTUs. If the permutation p-values are
approximately independent under the assumption that π and L are conditionally independent
given g, we can simply use the χ2 distribution with J degrees of freedom to compute the
p-value associated with Fisher’s combined statistic Y . However, since there are complex
relationships among the OTUs, such an independent assumption is usually unwarranted.

To proceed, we obtain the approximate permutation distribution of Y . A direct approach
to simulate the permutation distribution of Y is to generate a large number of permuted library
size vectors, break them down into many smaller subsets, compute the combined statistic for
each subset, and aggregate these statistics to get the approximate permutation distribution
of Y . To save computations, we recycle the permuted library size vectors L(1), ...,L(B) to
compute the bth permuted Fisher’s combined statistic for b = 1, ..., B:

Y (b) = −2
J∑
j=1

log

[
I(Tj(R,L) ≥ Tj(R,L

(b))) + #{c : Tj(R,L
(c)) ≥ Tj(R,L

(b))}
1 +B

]
. (4.8)

Since (L,L(1), ...,L(B)) is exchangeable, (Y, Y (1), ..., Y (b)) is also exchangeable, so a valid
permutation p-value can be constructed using (Y, Y (1), ..., Y (b)). The permutation p-value
based on Fisher’s combined statistic is

p =
1 + #{b : Y (b) ≥ Y }

1 +B
, (4.9)
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which is the proportion of permuted Fisher’s combined statistics (including the observed
one) being at least as large as the observed Fisher’s combined statistic. If the permutation
p-value is below a pre-specified significance level (say 5%), we conclude that π and L are
conditionally dependent given g. We call this test the combined correlation permutation
test. In the combined correlation permutation test, we obtain a single p-value based on one
rarefied dataset. If one is concerned about using only one particular rarefied dataset, one can
average the resulting p-values over different versions (say 10 different versions) of the rarefied
datasets to lower the variance of the final p-value.

Recall that our goal is to test the independence between π and L within each group of
observations. After obtaining the permutation p-value from combined correlation permutation
test for each group, given a pre-specified significance level, we can apply the Bonferroni cor-
rection to determine there is sufficient statistical evidence for the π-L conditional dependence.
As long as there is at least one significant p-value, we conclude that there are π-L conditional
dependence.

We can also test for the conditional independence between the microbial proportion and
the library size each of the particular OTU by computing a permutation p-value based on
Spearman’s correlation coefficient. This leads to a multiple testing problem, which can be
tackled by applying a Bonferroni correction or the Benjamini-Hochberg procedure.

4.5 Case studies

We provide several real data examples to show how to apply the methodology in practice.
In each of the case studies, for each group we use 200 permutations in the permutation
tests (so the smallest possible permutation p-value is 0.005) and average the final p-value
over 10 different rarefied datasets. We assume that the unconditional null hypothesis is of
interest. We also study the OTU-specific conditional independence. We increase the number
of permutations to the number of OTUs multiplied by 1000 to ensure that the resulting
p-values can be small enough to reject the null hypothesis.

4.5.1 Human Microbiome Project

The first data example is from the Human Microbiome Project dataset (HMPv35, [42]),
available in the R package MicrobesDS. The goal of the study is to determine if there is a core
microbiome at each body site. Body sites include the gastrointestinal and female urogenital
tracts, oral cavity, nasal and pharyngeal tract, and skin. For the purpose of illustration, we
look at only tongue and throat. Suppose our scientific objective is to determine whether
the tongue microbiome is different from the throat microbiome, without conditioning on
the library sizes. The p-values for the combined correlation permutation test are 0.005 and
0.005 for tongue and throat respectively. Since there is strong statistical evidence that the
simplified model is inadequate relative to the full model, conditional inference is inappropriate.
Using the Bonferroni correction, only 0.6% of OTUs in tongue microbiomes and 0.1% of
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OTUs in throat microbiomes shows significant dependence with library sizes; using the
Benjamini-Hochberg procedure, 2% and 0.2% respectively.

4.5.2 Diets and infant microbiomes

The second data example is from an infant fecal microbiome study [36]. The goal is to
investigate the impact of three different diets (breast milk, experimental infant formula, and
standard infant formula) on infant fecal microbiomes via a randomized controlled trial. For
the purpose of illustration we use only the data for six-month-old infants. The p-values from
the combined correlation permutation test for the three diets are 0.036, 0.854 and 0.747
respectively. If we choose 5% as the significance level and apply Bonferroni’s correction, none
of the p-values are significant. The simplified model may be adequate to describe the data
and conditional inference may be appropriate. For the OTU-specific test for conditional
independence, we do not find any statistically significant result using either the Bonferroni
correction or the Benjamini-Hochberg procedure.

4.5.3 Hand surface bacteria

The third data example is from a study on hand surface bacteria [29]. One of the objectives
is to assess whether microbial composition is associated with time since last hand washing.
We use time since last hand washing as the grouping variable, and restrict our attention
on observations with time since last hand washing being two hours and six hours. The
p-values are 0.123 and 0.044 respectively. If we choose 5% as the significance level and apply
Bonferroni’s correction, none of the p-values are significant. Similar to the previous case
studies, the simplified model may be plausible. For the OTU-specific test for conditional
independence, we do not find any statistically significant result using either the Bonferroni
correction or the Benjamini-Hochberg procedure.

4.5.4 Air of bedrooms in the Chicago area

The fourth data example is from a study on microbiome and allergens in the air of bedroom
in the Chicago area [76]. We use neighborhood as the grouping variable, and use only
observations in suburban neighborhoods as well as observations in urban neighborhoods. The
p-values are 0.005 and 1.000 respectively. The small p-value for suburban neighborhoods
provides evidence that the simplified model is not appropriate for the data, so conditional
inference is inappropriate. For the OTU-specific test for conditional independence, we do
not find any statistically significant result using either the Bonferroni correction or the
Benjamini-Hochberg procedure.
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Figure 4.5: The association between the latent composition π and the library size L can arise
if there are unobserved variables C affecting both π and L.

4.5.5 Forensic identification

The fifth data example is from a forensic identification study [28]. One of the research
objectives is to study the microbial compositional differences between skin surfaces and
keyboard surfaces. The p-values for the two groups are 0.005 and 0.005 respectively. Such
small p-values indicate strong statistical evidence for the dependence between microbial
compositions and library sizes, and conditional inference is not appropriate. For the OTU-
specific test for conditional independence, we do not find any statistically significant result
using either the Bonferroni correction or the Benjamini-Hochberg procedure.

4.6 Discussion and conclusion

From the case studies, library sizes seem to be often associated with latent compositions,
challenging the conventional wisdom that library sizes are simply artifacts of the sequencing
procedures. While there might not be a direct relationship between the latent composition π
and the library size L, associations between these two quantities can arise from unobserved
variables. Consider the graphical model in Figure 4.5. The unobserved variables C affect
both π and L but C do not depend on the grouping variable g. Even if π is independent of
g, π and g becomes dependent through the path g → L← C→ π conditioning on L.

If the unconditional null hypothesis is of scientific interest, one can use the combined
correlation permutation test as a preliminary indicator of the invalidity of conditional inference.
Suppose we choose a cutoff, say 5%, for the p-values. If the test yields at least one p-value
less than 5%, there is statistical evidence that simplified model does not hold and conditional
inference might not be valid. On the other hand, if all the p-values are larger than 5%,
there is no evidence that simplified model does not hold but we cannot simply conclude
that simplified model holds without further assumptions. It is possible that there are other
types of conditional dependence not well captured by Spearman’s correlation coefficients,
or the test is not sensitive enough to yield small p-values. This is analogous to how one
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Does the combined
correlation permutation
test give small p-values?

yes no

Conditional inference
might not be valid.

Can we assume that
the the latent microbial
composition is condition-
ally independent given
the grouping variable?

yes no

Both conditional infer-
ence and unconditional

inference are valid.

Conditional inference
might not be valid.

Figure 4.6: A workflow to determine whether conditional inference is valid for testing the
unconditional null hypothesis: microbial composition is independent of the grouping variable.

cannot conclude good model fit from failing to reject a goodness-of-fit test. The workflow to
determine whether conditional inference is valid for testing the unconditional null hypothesis
is summarized in Figure 4.6.

For the OTU-specific test for conditional independence, one potential reason for the lack
of significant results is that permutation p-values cannot be too small for OTUs with many
zeros. After a multiple testing correction, many of the OTU-specific permutation p-values
become insignificant.

If a researcher is concerned about the validity of conditional inference and is not comfortable
making further assumptions on the data generating process, one can first rarefy the data
and apply the conditional inference methods. This yields valid inference because rarefaction
removes the dependence between the library sizes and the latent composition (as well as the
grouping variable).
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Chapter 5

Future directions

This dissertation has explored both computational and applied aspects of latent variable
models. In particular, we studied efficient maximum likelihood estimation methods for latent
variable models and developed a non-parametric graphical model framework for microbiome
data analysis. We discuss a few future directions in these lines of research.

5.1 Maximum likelihood estimation

With the use of “warm start” the algorithms might afford to have a much smaller burn-in,
rather than half of the MCMC samples, since the starting point is reasonably close to the
high density region of the stationary distribution. It would be interesting to formalize the
benefits of “warm start” in the MCMC sampling part of the algorithms. We remark that
a hybrid approach, such as running 1D sampling initially and then switching to MCNR or
Adam, might be beneficial. However, determining when to switch to the other algorithm
can be tricky to automate. Although the examples shown are on the smaller side of latent
variable model problems, there is potential to consider leveraging tools such as greta [34],
a modeling framework in R that uses Google’s TensorFlow, to scale our approach without
sacrificing accessibility and usability for practitioners.

5.2 Stratified rarefaction: a data-efficient

normalization for permutation inference in

microbiome studies

The idea of stratified rarefaction is as follows:

1. Specify a protocol on how to create strata of observations based on library sizes. Each
stratum must contain at least one observation from each group.
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2. Within each stratum, subsample each of the observations to the smallest library size in
the stratum.

One can discard all the observations with unreasonably small library sizes prior to the
stratified rarefaction procedure. An example of a stratification protocol is to pair up the
observations with the same library size rank. That is, create n strata such that the kth
stratum consists of the kth smallest (in terms of library size) observation from each group.
Another example is to partition the positive real line into intervals; for each interval create a
stratum by collecting all the observations with library sizes inside the interval.

After stratified rarefaction, one can carry out a conditional permutation test; we permute
group labels of the observations within each stratum, not across different strata. The
conditional permutation test is valid for the null hypothesis that the latent composition π is
conditionally independent of the group membership g given the library size L. We call this
the conditional null hypothesis. This is different from the unconditional null hypothesis : the
latent composition π is independent of the group membership g. Both hypotheses could be of
scientific interest, although the unconditional null hypothesis is more natural if library sizes.
As discussed in Chapter 4, these two hypotheses are not equivalent under the full model but
they are equivalent under the simplified model.

5.2.1 Stratum specification

Ideally the stratification scheme should be chosen to maximize the power of the subsequent
hypothesis testing procedures. However, power calculations are dependent on the choice of
the tests and generally quite involved. A more straightforward objective is to minimize the
total loss in library sizes. We can formulate this as an optimization problem. Define S + 1
cutoff points a0, a1, ..., aS with a0 = min(L

(g)
i ), aS = ∞, and as−1 ≤ as for s = 1, ..., S to

discretize the range of library sizes. Given that our goal is to minimize library size loss, we
would like to solve the following optimization problem

min
S

min
a1,...,aS−1

G∑
g=1

ng∑
i=1

S∑
s=1

(L
(g)
i − as−1)I(as−1 ≤ L

(g)
i < as) (5.1)

subject to the constraint that each interval [as−1, as) must contain at least one library size
from each group. Due to the combinatorial nature of the optimization problem, finding the
optimal solution is not computationally feasible even for moderately sized problems.

An alternative approach is to assign ranks for library sizes within each group of observations,
and to stratify observations by matching observations across groups based on their ranks.
We call this type of stratified rarefaction pairwise rarefaction.

5.2.2 Number of permutations

By restricting the set of possible permutations, a natural concern is whether there are
sufficient permutations for small p-values. This is especially concerning if multiple testing
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G = 2 G = 3
n rarefying pairwise rarefying rarefying pairwise rarefying

5 3.63× 106 32 1.31× 1012 7776
10 2.43× 1018 1024 2.65× 1032 6.05× 107

15 2.65× 1032 32768 1.20× 1056 4.70× 1011

20 8.16× 1047 1.05× 106 8.32× 1081 3.66× 1015

G = 4 G = 5
n rarefying pairwise rarefying rarefying pairwise rarefying

5 2.43× 1018 7.96× 106 1.55× 1025 2.49× 1010

10 8.16× 1047 6.34× 1013 3.04× 1064 6.19× 1020

15 8.32× 1081 5.05× 1020 2.48× 10109 1.54× 1031

20 7.16× 10118 4.02× 1027 9.33× 10157 3.83× 1041

Table 5.1: Number of permutations for rarefying and pairwise rarefying for comparing G
groups (G ∈ {2, 3, 4, 5}) with the same number of observations n.

corrections are being applied. In a permutation test, the smallest possible p-value is 1/#Perm,
where #Perm is the number of distinct permutations. Suppose we partition the data into
S strata. For s = 1, ..., S, let ng,s be the number of observations in group g in stratum s
and n·,s be the number of observations in stratum s. We require ng,s ≥ 1 for all g and s
to ensure that each stratum has at least one observation from each group. The number of
permutations for stratified rarefying is

∏S
s=1 (n·,s!) . In particular, if N is the total number

of observations, for rarefaction, the number of permutations is N !; for pairwise rarefaction,
G!nmin−1[N − G(nmin − 1)]!, where nmin = min(n1, ..., nG). Table 5.1 displays the number
of permutations for rarefaction and pairwise rarefaction when there are G ∈ {2, 3, 4, 5}
groups of equal number of observations. As a rough guideline for a reasonable smallest
permutation p-value, for G = 2, we recommend at least 15 observations in each group for
pairwise rarefaction; for G = 3, at least 10. For G ≥ 4, the number of permutations for
pairwise rarefaction is large even when the sample size n is only 5.

5.3 Dependence between the library size and the

grouping variable in microbiome data analysis

Chapter 4 of this dissertation have developed methodology for studying the association
between the latent composition and the library size and have found that such dependence
are not uncommon in practice. As discussed in Chapter 4, this association might undermine
the use of conditional inference on the unconditional null hypothesis. On the other hand,
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in the nonparametric graphical model, there is an arrow from the grouping variable g to
the library size L. Without this arrow, observations are exchangeable even if data have not
been rarefied, implying that permutation inference is valid with original data. Hence it is of
interest to determine whether this association between the grouping variable and the library
size is common in practice.

There has been ongoing effort in this research direction with Christina Jin, William
Fithian, Perry de Valpine, and Ulas Karaoz. Preliminary meta-analysis based on about 20
microbiome datasets from the open-source microbial study management platform Qiita1 has
shown that it is indeed not uncommon that library size distributions depend on the grouping
variable. Such phenomenon remains prominent even when more sophisticated library size
estimation methods, cumulative-sum-scaling (CSS [69]) and geometric mean of pairwise ratios
(GMPR [16]), are used.

Another research direction is to study how much library size distributions have to differ
across groups in order for permutation inference to be invalid. As shown in Section ??, it is
possible that permutation inference remains valid even when the exchangeability assumption
in permutation test is not met. There are several challenges in this research direction. First,
the robustness to difference in library distributions is likely to depend on the particular test
statistic used. Second, it is unclear which particular aspects of library size distributions can
undermine permutation inference. Potential aspects to be considered include how large the
difference in mean library sizes is, how large the difference in spreads is, and how much the
library size distributions overlap.

1https://qiita.ucsd.edu/.
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Appendix A

Supplementary materials for Chapter
2

In the following tables, Exec.(s) refers to the CPU time for 300 iterations in terms of seconds;
Conv.(s) refers to the CPU time to convergence in terms of seconds; Conv.(iter.) refers to
the number of iterations to convergence; loglik diff. refers to the log likelihood difference
between the resulting estimate and the benchmark estimate; MSE refers to the mean-squared
deviation between the resulting estimate and the benchmark estimate. NA in Conv. means
that the convergence test is not passed within 300 iterations.

A.1 Numerical results for pump

The benchmark MLE (0.823, 1.262) can be obtained numerically.

Table A.1: Numerical estimates for the pump example with MCMC sample size 300 and
initial value (10,10).

α β
Fixed 0.863 1.365
Fixed 0.005 4.671 11.253
Adam 0.824 1.271
Newton-Raphson 0.820 1.252
1D Sampling 0.864 1.337
MCEM 0.825 1.267
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Table A.2: Numerical performances for the pump example with MCMC sample size 300 and
initial value (10,10).

Exec.(s) Conv.(s) Conv.(iter.) loglik diff. MSE
Fixed 6.507 NA NA 0.00827 0.00615
Fixed 0.005 6.115 NA NA 9.90228 57.31417
Adam 6.418 3.534 167 0.00013 0.00005
Newton-Raphson 11.518 2.549 66 0.00007 0.00005
1D Sampling 17.604 3.765 67 0.00632 0.00364
MCEM 124.200 NA NA 0.00002 0.00002

Table A.3: Numerical estimates for the pump example with MCMC sample size 300 and
initial value (10,2).

α β
Fixed 0.820 1.254
Fixed 0.005 2.505 6.241
Adam 0.825 1.263
Newton-Raphson 0.817 1.248
1D Sampling 0.818 1.294
MCEM 0.825 1.267

Table A.4: Numerical performances for the pump example with MCMC sample size 300 and
initial value (10,2).

Exec.(s) Conv.(s) Conv.(iter.) loglik diff. MSE
Fixed 6.437 5.937 276 0.00005 0.00004
Fixed 0.005 6.305 NA NA 4.50968 13.81102
Adam 6.516 NA NA 0.00002 0.00000
Newton-Raphson 11.254 1.699 46 0.00016 0.00011
1D Sampling 16.203 4.908 90 0.00327 0.00053
MCEM 124.200 NA NA 0.00002 0.00002
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Table A.5: Numerical estimates for the pump example with MCMC sample size 3000 and
initial value (10,10).

α β
Fixed 0.864 1.372
Fixed 0.005 4.676 11.252
Adam 0.817 1.248
Newton-Raphson 0.822 1.259
1D Sampling 0.855 1.304
MCEM 0.825 1.267

Table A.6: Numerical performances for the pump example with MCMC sample size 3000
and initial value (10,10).

Exec.(s) Conv.(s) Conv.(iter.) loglik diff. MSE
Fixed 37.647 NA NA 0.00922 0.00692
Fixed 0.005 34.470 NA NA 9.90997 57.32270
Adam 37.415 19.806 162 0.00016 0.00011
Newton-Raphson 69.421 11.486 51 0.00000 0.00000
1D Sampling 49.248 9.918 62 0.00425 0.00142
MCEM 124.200 NA NA 0.00002 0.00002

Table A.7: Numerical estimates for the pump example with MCMC sample size 3000 and
initial value (10,2).

α β
Fixed 0.822 1.259
Fixed 0.005 2.505 6.236
Adam 0.824 1.265
Newton-Raphson 0.823 1.263
1D Sampling 0.851 1.326
MCEM 0.825 1.267
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Table A.8: Numerical performances for the pump example with MCMC sample size 3000
and initial value (10,2).

Exec.(s) Conv.(s) Conv.(iter.) loglik diff. MSE
Fixed 36.951 NA NA 0.00001 0.00000
Fixed 0.005 35.305 NA NA 4.50699 13.78914
Adam 37.211 36.962 298 0.00001 0.00001
Newton-Raphson 66.333 13.068 59 0.00000 0.00000
1D Sampling 48.362 11.841 74 0.00347 0.00242
MCEM 124.200 NA NA 0.00002 0.00002

A.2 Numerical results for seeds

The lme4 estimate (in bold) should be viewed as the benchmark for the MLE estimate. The
glmer package relies heavily on the Gaussian assumption for random effects and leverages
special case computations to drastically reduce the computational time.

Table A.9: Numerical estimates for the seeds example with MCMC sample size 20 and initial
value (0,0,1).

β0 β1 σRE
Fixed 0.05 19.379 36.515 10.000
Fixed 0.005 5.177 5.005 9.791
Adam -0.533 0.999 0.325
Newton-Raphson -0.504 1.055 0.087
1D Sampling -0.533 1.070 0.308
MCEM 0.522 1.024 0.309
glmer (lme4) -0.519 1.019 0.307



APPENDIX A. SUPPLEMENTARY MATERIALS FOR CHAPTER 2 63

Table A.10: Numerical performances for the seeds example with MCMC sample size 20 and
initial value (0,0,1).

Exec.(s) Conv.(s) Conv.(iter.) loglik diff. MSE
Fixed 0.05 2.493 NA NA 236.93937 583.28593
Fixed 0.005 2.491 NA NA 54.94134 46.09180
Adam 2.671 NA NA 0.03844 0.00032
Newton-Raphson 4.077 1.849 133 1.85747 0.01671
1D Sampling 18.193 NA NA 0.03607 0.00092
MCEM 284.575 NA NA 0.00036 0.00001
glmer (lme4) 0.100 0.100 NA 0.00000 0.00000

Table A.11: Numerical estimates for the seeds example with MCMC sample size 20 and
initial value (−1,−1,4).

β0 β1 σRE
Fixed 0.05 -0.388 36.539 10.000
Fixed 0.005 -0.532 1.004 0.315
Adam -0.527 1.033 0.242
Newton-Raphson -0.516 1.042 0.196
1D Sampling -0.529 1.050 0.320
MCEM -0.522 1.024 0.309
glmer (lme4) -0.519 1.019 0.307

Table A.12: Numerical performances for the seeds example with MCMC sample size 20 and
initial value (−1,−1,4).

Exec.(s) Conv.(s) Conv.(iter.) loglik diff. MSE
Fixed 0.05 2.554 NA NA 117.43856 451.86852
Fixed 0.005 2.332 NA NA 0.02311 0.00016
Adam 2.522 0.934 117 0.18121 0.00152
Newton-Raphson 4.052 2.226 169 0.51604 0.00429
1D Sampling 18.438 14.198 231 0.01940 0.00040
MCEM 284.575 NA NA 0.00036 0.00001
glmer (lme4) 0.100 0.100 NA 0.00000 0.00000
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Table A.13: Numerical estimates for the seeds example with MCMC sample size 300 and
initial value (0,0,1).

β0 β1 σRE
Fixed 0.05 -0.663 0.974 1.003
Fixed 0.005 -0.520 1.017 0.329
Adam -0.533 1.039 0.334
Newton-Raphson -0.509 1.007 0.316
1D Sampling -0.521 1.027 0.321
MCEM -0.522 1.024 0.309
glmer (lme4) -0.519 1.019 0.307

Table A.14: Numerical performances for the seeds example with MCMC sample size 300 and
initial value (0,0,1).

Exec.(s) Conv.(s) Conv.(iter.) loglik diff. MSE
Fixed 0.05 13.321 3.115 69 7.16310 0.16905
Fixed 0.005 13.024 8.251 186 0.01798 0.00016
Adam 12.545 2.626 61 0.03111 0.00044
Newton-Raphson 23.399 NA NA 0.00516 0.00010
1D Sampling 29.612 11.268 112 0.00820 0.00008
MCEM 284.575 NA NA 0.00036 0.00001
glmer (lme4) 0.100 0.100 NA 0.00000 0.00000

Table A.15: Numerical estimates for the seeds example with MCMC sample size 300 and
initial value (−1,−1,4).

β0 β1 σRE
Fixed 0.05 -0.389 1.111 1.939
Fixed 0.005 -0.525 1.018 0.316
Adam -0.513 1.026 0.300
Newton-Raphson -0.999 -0.994 10.000
1D Sampling -0.553 1.030 0.339
MCEM -0.522 1.024 0.309
glmer (lme4) -0.519 1.019 0.307
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Table A.16: Numerical performances for the seeds example with MCMC sample size 300 and
initial value (−1,−1,4).

Exec.(s) Conv.(s) Conv.(iter.) loglik diff. MSE
Fixed 0.05 12.439 NA NA 16.94627 0.89580
Fixed 0.005 12.439 11.170 268 0.00435 0.00004
Adam 12.236 6.892 168 0.00577 0.00004
Newton-Raphson 22.970 NA NA 48.06622 32.74360
1D Sampling 30.444 20.947 203 0.06495 0.00077
MCEM 284.575 NA NA 0.00036 0.00001
glmer (lme4) 0.100 0.100 NA 0.00000 0.00000

A.3 Numerical results for salamander

The lme4 estimates (in bold) should be viewed as the benchmark for the MLE estimate. Fixed
stepsizes, Adam, Newton-Raphson, and 1D sampling did not pass the convergence criterion
within 300 iterations. We stopped MCEM at iteration 60 due to the long computational time
with little variability between iterations.

Table A.17: Numerical estimates for the salamander model with MCMC sample size 300
and initial value (2,2,2,2,2,2).

β1 β2 β3 β4 σ2
F σ2

M

Fixed 0.05 1.013 0.299 -1.948 0.992 1.388 1.254
Fixed 0.005 1.078 0.345 -1.972 1.070 1.605 1.419
Adam 1.071 0.363 -2.006 1.007 1.468 1.361
Newton-Raphson 1.007 0.302 -1.914 0.949 1.273 1.144
1D Sampling 0.993 0.294 -1.935 1.000 1.430 1.160
MCEM 1.016 0.316 -1.938 1.000 1.377 1.251
glmm 1.023 0.335 -1.908 1.006 1.326 1.221
glmer (lme4) 1.008 0.306 -1.896 0.990 1.174 1.041
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Table A.18: Numerical performances for the salamander model with MCMC sample size 300
and initial value (2,2,2,2,2,2).

Exec.(s) loglik diff. MSE
Fixed 0.05 287.321 0.12660 0.00361
Fixed 0.005 281.251 0.37247 0.01355
Adam 314.740 0.23599 0.00954
Newton-Raphson 577.779 0.04573 0.00107
1D Sampling 387.433 0.11607 0.00297
MCEM 7923.793 0.12066 0.00329
glmm 1181.430 0.08856 0.00220
glmer (lme4) 0.100 0.00000 0.00000

Table A.19: Numerical estimates for the salamander model with MCMC sample size 300
and initial value (4,4,4,4,4,4).

β1 β2 β3 β4 σ2
F σ2

M

Fixed 0.05 1.019 0.323 -1.921 1.058 1.439 1.328
Fixed 0.005 1.757 0.834 -2.027 1.707 3.778 3.518
Adam 0.982 0.338 -1.987 1.049 1.435 1.270
Newton-Raphson 1.003 0.316 -1.930 0.979 1.343 1.184
1D Sampling 1.029 0.306 -2.002 1.029 1.503 1.414
MCEM 1.016 0.316 -1.938 1.000 1.377 1.251
glmm 1.023 0.335 -1.908 1.006 1.326 1.221
glmer (lme4) 1.008 0.306 -1.896 0.990 1.174 1.041

Table A.20: Numerical performances for the salamander model with MCMC sample size 300
and initial value (4,4,4,4,4,4).

Exec.(s) loglik diff. MSE
Fixed 0.05 286.661 0.20898 0.00608
Fixed 0.005 279.704 6.59919 0.47355
Adam 288.458 0.16740 0.00631
Newton-Raphson 548.292 0.07862 0.00194
1D Sampling 394.195 0.29475 0.01032
MCEM 7923.793 0.12066 0.00329
glmm 1181.430 0.08856 0.00220
glmer (lme4) 0.100 0.00000 0.00000
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B.1 Model setup

We propose the following non-parametric model for microbiome data:

latent composition: π
(g)
i |g ∼ fπ(·|g) (B.1)

library size: L
(g)
i |π

(g)
i , g ∼ fL(·|π(g)

i , g) (B.2)

count: x
(g)
i |π

(g)
i , L

(g)
i ∼ Multinomial(L

(g)
i ,π

(g)
i ), (B.3)

where fπ(·|g) is a probability density function supported on [0, 1]p and fL(·|π(g)
i , g) is a

probability mass function supported on non-negative integers. Intuitively, πi represents the
latent composition of the sample up to the point of counting sequences. Thus fπ(·|g) could
include effects of extraction, polymerase chain reaction (PCR), and any additional processing
procedures. Then the multinomial assumption is that taxa are drawn independently in the
machine that does the counting.

B.2 Rarefaction preserves multinomial distribution

The typical rarefaction procedure is as follows:

1. Specify a desired library size L∗.

2. Discard all the samples with library size Li less than L∗.

3. Subsample all the samples with library size Li greater than L∗ to L∗. This sampling is
done via sampling without replacement.
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x

π L

g

(a) Full model: L depends on both π and g.

x

π L

g

(b) Simplified model: L depends on only g.

Figure B.1: A non-parametric graphical model for grouped microbiome data. The shaded
nodes are observed quantities. The dashed arrow represents the hypothesis of interest:
whether microbial compositions vary across different groups.

Since the subsampling is done via sampling without replacement, conditional on the
observed count vector x (and the rarefied depth L∗), the rarefied count vector x∗ follows a
multivariate hypergeometric distribution:

p(x∗|x, L∗) =

∏p
j=1

(
xj
x∗j

)(
L
L∗

) , (B.4)

where xj is the jth observed OTU count and x∗j is the jth rarefied OTU count.
We claim that rarefaction reduces all the library sizes L to a pre-specified rarefying depth

L∗, regardless of the group memberships and the latent compositions, while preserving the
multinomial distribution of the count vectors. This statement is made rigorous in Theorem 2.

Theorem 2. Assume the rarefied depth L∗ is smaller than or equal to the smallest library
size, so no samples are discarded. Let (x

(1)∗
1 , ...,x

(1)∗
n1 ,x

(2)∗
1 , ...,x

(2)∗
n2 ) be the rarefied data after

rarefying the count data (x
(1)
1 , ...,x

(1)
n1 ,x

(2)
1 , ...,x

(2)
n2 ) to depth L∗. Under the non-parametric

graphical model (B.1) - (B.3), the distribution of (x
(1)∗
1 , ...,x

(1)∗
n1 ,x

(2)∗
1 , ...,x

(2)∗
n2 ) is described by

the following:

π
(g)
i |g ∼ fπ(·|g) (B.5)

x
(g)∗
i |L∗,π

(g)
i ∼ Multinomial(L∗,π

(g)
i ). (B.6)

Proof. Let m1,m2, ... be a sequence of iid Multinomial(1,π) random variable. For all
R, x1:R :=

∑R
t=1 mt is Multinomial(R,π). The original count vector x conditional on L

and π can be viewed as x1:L. It remains to show that x1:L∗ conditional on L∗ and π
can be viewed as the rarefied count vector x∗. To this end, we argue that x1:L∗|x1:L, L

∗

follows the multivariate hypergeometric distribution in (B.4), because this implies that x1:L∗

can be generated via sampling x without replacement, which is exactly rarefaction. We
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x

π L∗

g

Figure B.2: The graphical model of rarefied data with rarefied depth L∗. A boxed node is
used to emphasize that L∗ is a fixed value.

denote the jth element of x1:L by x1:L,j (similar for x1:L∗). For any positive integer K and
v ∈ {w ∈ {0, 1, ..., K}p|

∑p
j=1 wj = K}, let

(
K
v

)
= K!(

∏p
j=1 vj!)

−1 denote the multinomial
coefficient. Noting that L =

∑p
j=1 x1:L,j,

p(x1:L∗|x1:L, L
∗,π) = p(x1:L∗|x1:L, L

∗,π, L)

=

(
L∗

x1:L∗

)∏p
j=1 π

x1:L∗,j
j

(
L−L∗

x1:L−x1:L∗

)∏p
j=1 π

x1:L,j−x1:L∗,j
j(

L
x1:L

)∏p
j=1 π

x1:L,j

j

=

∏p
j=1

(
x1:L,j

x1:L∗,j

)(
L
L∗

) ,

(B.7)

which does not depend on latent composition π. Hence, if we marginalize over π, we get

p(x1:L∗|x, L∗) =

∫
p(x∗|x, L∗,π)p(π|x, L∗)dπ =

∏p
j=1

(
x1:L,j

x1:L∗,j

)(
L
L∗

) ∫
p(π|x, L∗)dπ

=

∏p
j=1

(
x1:L,j

x1:L∗,j

)(
L
L∗

) ,

(B.8)

which is the multivariate hypergeometric distribution in (B.4).

B.3 How much does rarefaction hurt statistical

inference?

Rarefying has been criticized for wasting data since we effectively remove a portion of the data
in the downsampling procedure [64]. The subsampling in rarefying will inevitably increase the
variance of test statistics and decrease the power of subsequent testing procedures. The key
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question is how much rarefying hurts statistical inference. We address this question through
theoretical considerations and simulation studies. We focus our discussion on two relatively
simple testing procedures, the negative binomial Wald test and the two-sample z test. More
involved statistical procedures such as DESeq2 and PERMANOVA are hard to analyze
theoretically because they integrate various statistical principles. Negative binomial-based
tests are used in two popular microbiome analysis routines, edgeR [79] and DESeq2 [59],
while the z-test (and the closely related t-test) is a classical statistical test widely used in
microbiome studies [100, 104], and it forms an integral part of more involved approaches in
the popular package limma [77, 71] for differential expression analysis.

B.3.1 Theoretical Considerations

B.3.1.1 Sample relative abundance for an observation

We first consider a single observation, with x being the count for a particular OTU, π being
the latent relative abundance of the OTU, and L being the library size. We are interested
in the basic statistical properties of the sample OTU relative abundance x/L. Under the
multinomial model, x|π, L follows a binomial distribution with parameters L and π, with
mean Lπ and variance Lπ(1− π).

Proposition 1. The sample relative abundance is an unbiased estimator of the expectation
of the latent relative abundance: E

(
x
L

)
= E(π).

Proof. Using the law of iterated expectations,

E
(x
L

)
= E

[
E
[x
L
|π, L

]]
= E

[
1

L
E [x|π, L]

]
= E

[
1

L
(Lπ)

]
= E(π). (B.9)

Theorem 3. The variance of sample relative abundance can be written as the sum of latent
decomposition variation and measurement error:

Var
(x
L

)
= Var(π)︸ ︷︷ ︸

latent variation

+ E
[
π(1− π)

L

]
︸ ︷︷ ︸
measurement error

. (B.10)

Proof. Using the law of total variance,

Var
(x
L

)
= Var

[
E
[x
L
|π, L

]]
+ E

[
Var

[x
L
|π, L

]]
= Var(π) + E

[
π(1− π)

L

]
. (B.11)
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To simplify the rest of our discussion, we will assume the distribution of library sizes does
not depend on the latent composition; that is fL(·|π, g) = fL(·|g), resulting in the graphical
model in Figure B.1b. From the graphical model, we can immediately deduce the conditional
independence of L and π, leading to

Var
(x
L

)
= Var(π)︸ ︷︷ ︸

latent variation

+E[π(1− π)]E
[

1

L

]
︸ ︷︷ ︸

measurement error

. (B.12)

The first term in Var
(
x
L

)
is the variance of the latent relative abundance π, representing

the latent variation. Samples from the same group do not necessarily have the same OTU
proportion due to individual differences. The second term in Var

(
x
L

)
is the measurement error,

arise from the sequencing procedure of each sample. The measurement error is proportional
to the expected reciprocal of library size E(1/L). Intuitively if the library size is larger, the
precision increases and hence the measurement error decreases.

B.3.1.2 Estimation of expected OTU relative abundance

Next we suppose that there are n observations belonging to the same group. Consider
two estimators, the negative binomial estimator and the sample average estimator, for the
expected OTU relative abundance p for a particular OTU.

The negative binomial estimator Assume the raw counts follow a negative binomial
distribution:

xi
ind∼ NB(µi = Lip, φ), i = 1, ..., n. (B.13)

The negative binomial estimator is the maximum likelihood estimator of p under the NB
model. Using a standard result from large-sample theory, the MLE p̂ML is asymptotically
normally distributed with mean p and variance (scaled by 1/n) approximately the harmonic
mean of the conditional variances of relative abundances given the library sizes. See Appendix
B.5 for a derivation of this result.

The sample average estimator Without assuming any parametric models, a straight-
forward estimator of p is the sample average estimator, the arithmetic average of observed
proportions:

p̂avg =
1

n

n∑
i=1

xi
Li
. (B.14)

From Proposition 1, each of the observed proportions xi/Li is an unbiased estimator of p,
so p̂avg is also an unbiased estimator of p. If we view (xi, Li) as independently identically
distributed, then by central limit theorem p̂avg is approximately normal with mean 0 and
variance Var(x1/L1)/n.



APPENDIX B. SUPPLEMENTARY MATERIALS FOR CHAPTER 3 72

B.3.1.3 Hypothesis testing

Finally we turn to the problem of hypothesis testing. Let n = n1 +n2 be the total sample size.
Assume that limn→∞ n1/n = c ∈ (0, 1). Suppose we have two groups of independent samples

((x
(1)
1 , L

(1)
1 ), ..., (x

(1)
n1 , L

(1)
n1 )) and ((x

(2)
1 , L

(2)
1 ), ..., (x

(2)
n2 , L

(2)
n2 )). Assume that E(x

(1)
1 /L

(1)
1 ) = ... =

E(x
(1)
n1 /L

(1)
n1 ) = p(1) and E(x

(2)
1 /L

(2)
1 ) = ... = E(x

(2)
n2 /L

(2)
n2 ) = p(2). The null hypothesis of

interest is H0 : p(1) = p(2).
We would like to compare the theoretical performance of a testing procedure based on

original data versus the same procedure based on rarefied data. To do so, we make use of the
notion of asymptotic relative efficiency (ARE) [89]. Intuitively, ARE measures how many
observations are needed for the first test compared to the second test, while holding fixed the
desired significance level and the lower bound of power.

Definition 1. Let wk(θ;n) be the power function, based on n observations, for test k, k = 1, 2,
of H0 : θ = 0 against the alternative H1 : θ = θν, where the sequence of alternatives is indexed
by ν with θν → 0 as ν → ∞. For k = 1, 2, let nν,k be the minimal number of observations
such that wk(0;nν,k) ≤ α ∈ (0, 1) and wk(θν ;nν,k) ≥ γ ∈ (α, 1). Suppose the limit

ARE = lim
ν→∞

nν,2
nν,1

(B.15)

exists. Then ARE is called the asymptotic relative efficiency (or Pitman efficiency) of the
first with respect to the second sequence of tests.

The following lemma (Theorem 14.19 in [89]) simplifies our studies of ARE.

Lemma 1. Consider statistical models (Pn,θ : θ ≥ 0) such that ||Pn,θ − Pn,0||
θ→0→ 0 for every

n. For k = 1, 2, suppose the sequence of statistics Tn,k is asymptotically normal in the sense
that for all sequences θn ↓ 0,

√
n(Tn,k − µk(θn))

σk(θn)

θn→ N(0, 1), (B.16)

where
θn→ is the law indexed by θn, µk is differentiable at zero and σk is continuous at zero

with µ′k(0) > 0 and σk(0) > 0. The ARE of the tests that reject the null hypothesis H0 : θ = 0
for large values of Tn,k is equal to (

µ′1(0)/σ1(0)

µ′2(0)/σ2(0)

)2

. (B.17)

for every sequence of alternatives θν ↓ 0, independently of α ∈ (0, 1) and γ ∈ (α, 1).

In our setting, tests k = 1, 2 refer to the test based on rarefied data and the test based on
original data respectively. The test statistic Tn,k is the difference in estimated proportions for
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the two groups, θn = p
(g)
1 − p

(g)
2 , µk(θn) = θn (so µ′k(0) = 1), and σ2

k(θn) = Var(Tn,k). It can
be shown that for the NB Wald test and the two-sample z-test the ARE can be written in
terms of ratios of variances Var( xi

Li
)/Var( x

∗

L∗
) (see Theorems 5 and 6 in Appendix B.6).

Under the nonparametric graphical model, the ratios of variances Var( xi
Li

)/Var( x
∗

L∗
) can

be written approximately in terms of the variance-to-mean ratio (VMR), also known as
coefficient of dispersion, of the latent relative abundance, as well as the expectation of the
reciprocal of library size. We denote the VMR of π as VMR(π) := Var(π)/E(π).

Theorem 4. Under the non-parametric graphical model (B.1) - (B.3), provided that the
distribution of library sizes does not depend on the latent composition, the ratio of variances
for original data (x, L) and rarefied data (x∗, L∗) is

Var( x
L

)

Var( x
∗

L∗
)

= 1−
[

1

L∗
− E

(
1

L

)][
Var(π)

E[π(1− π)]
+

1

L∗

]−1

≈ 1−
1
L∗
− E

(
1
L

)
VMR(π) + 1

L∗

, (B.18)

where the approximation is reasonable if π is small with high probability.

Proof. The claim follows immediately from Theorem 3.

To gain intuition from Theorem 4, we consider two scenarios for the VMR of the latent
relative abundance:

1. VMR(π)� 1/L∗: The VMR of the latent relative abundance is much smaller than the
reciprocal of rarefied depth. In this case, the ratio of variances is approximately[

E
(

1

L

)]
/

(
1

L∗

)
, (B.19)

so by Theorems 5 and 6 in Appendix B.6 the AREs of both the NB Wald test and the
two-sample z-test are purely governed by the measurement error. In this case rarefying
can potentially weaken the power of the testing procedure substantially.

2. VMR(π) � 1
L∗
− E

(
1
L

)
: The VMR of the latent relative abundance is much greater

than loss in precision due to rarefying. In this case the ratio of variances is close to 1,
so measurement error does not matter and reasonable rarefying procedures would not
affect the ARE much.

B.4 Dirichlet-multinomial model and the negative

binomial distribution

In this section, we show that a Dirichlet-multinomial simulation will approximately satisfy
negative binomial analysis assumptions.

Suppose
π ∼ Dirichlet(α), x|L,π ∼ Multinomial(L,π),
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where α ∈ RJ and L > 0 is the library size. Consider a particular taxon, say j. From the
Dirichlet-multinomial model,

πj ∼ Beta(αj,
∑
k 6=j

αk), xj|L, πj ∼ Binomial(L, πj).

In the context of microbiome studies πj tends to be small, so xj|L, πj is approximately Poisson
distributed. On the other hand, using 1−y ≈ e−y for small y, the probability density function
of πj is

f(πj) ∝ π
αj−1
j (1− πj)

∑
k 6=j αk−1 ≈ π

αj−1
j e−(

∑
k 6=j αk−1)πj ,

so πj is approximately Gamma distributed. Since πj is approximately Gamma and xj|L, πj
is approximately Poisson, the marginal distribution of xj is approximately negative binomial.

B.5 Asymptotic distribution of the negative binomial

estimator

Suppose x1, ..., xn are independent NB(µi = Lip, φ), with Li being fixed. The corresponding
log-likelihood is

l(p, φ) =
n∑
j=1

[
log

(
xi + φ− 1

xi

)
+ xi log

(
Lip

Lip+ φ

)
+ φ log

(
φ

Lip+ φ

)]
. (B.20)

Let (p̂ML, φ̂ML) be the maximum likelihood estimate, obtained by maximizing l(p, φ).
While there is no closed form solution for (p̂ML, φ̂ML), we can gain some intuition of p̂ML

from the partial derivatives of l(p, φ). Note that

∂

∂p
l(p, φ) = φ

n∑
j=1

xi − Lip
p(Lip+ φ)

=
n∑
j=1

L2
i

xi
Li
− p(

Lip+
L2
i p

2

φ

) =
n∑
j=1

xi
Li
− p

Var(xi)/L2
i

(B.21)

=
n∑
j=1

1

Var(xi/Li)

(
xi
Li
− p
)

(B.22)

From the first order condition ∂
∂p
l(p, φ)

∣∣
(p̂ML,φ̂ML)

= 0, we get

p̂ML =
1∑n

j=1
1

V̂ar(xi/Li)

n∑
j=1

1

V̂ar(xi/Li)

(
xi
Li

)
≈ 1∑n

j=1
1

Var(xi/Li)

n∑
j=1

1

Var(xi/Li)

(
xi
Li

)
,

(B.23)

where V̂ar(xi/Li) = Lip̂ML +
L2
i p̂

2
ML

φ̂ML
, so p̂ML is approximately an inverse-variance-weighted

average of observed proportions.
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On the other hand, the second partial derivatives of l(p, φ) with respect to p is

∂2

∂p2
l(p, φ) = φ

n∑
j=1

L2
i p

2 − xi(2Lip+ φ)

p2(Lip+ φ)2
. (B.24)

Therefore,

−E
[
∂2

∂p2
l(p, φ)

]
= φ

n∑
j=1

Lip(2Lip+ φ)− L2
i p

2

p2(Lip+ φ)2
= φ2

n∑
j=1

Lip+
L2
i p

2

φ

p2(Lip+ φ)2
(B.25)

=
n∑
j=1

Var(xi)

p2
(
Lip
φ

+ 1
)2 =

n∑
j=1

L2
i

Var(xi)(
L2
i p

2

φ
+ Lip

)2 =
n∑
j=1

L2
i

Var(xi)
(B.26)

=
n∑
j=1

1

Var(xi/Li)
. (B.27)

Using a standard result from large-sample theory, the MLE p̂ML is asymptotically normally
distributed with mean p and variance(
−E

[
∂2

∂p2
l(p, φ)

])−1

=
1∑n

j=1
1

Var(xi/Li)

=
1

n
HM

(
Var

(
x1

L1

)
, ...,Var

(
xn
Ln

))
, (B.28)

where HM(a1, ..., an) = n
1
a1

+...+ 1
an

is the harmonic mean of a1, ..., an.

Now we turn to the case that Li is viewed as random, with a distribution that does not
depend on p or φ. The MLE is still p̂ML, but the asymptotic variance is different. Using law
of iterated expectations and the modeling assumption (xi, Li) being independently identically
distributed,

−E
[
∂2

∂p2
l(p, φ)

]
= −E

[
E
[
∂2

∂p2
l(p, φ)

∣∣∣∣L1, ..., Ln

]]
= E

[
n∑
i=1

1

Var(xi/Li|Li)

]

= nE
[

1

Var(xi/Li|Li)

]
.

(B.29)

Using law of total variances,

Var

(
xi
Li

)
= E

[
Var

(
xi
Li

∣∣∣∣Li)]+ Var

[
E
(
xi
Li

∣∣∣∣Li)] = E
[
Var

(
xi
Li

∣∣∣∣Li)]+ Var(p)

= E
[
Var

(
xi
Li

∣∣∣∣Li)] . (B.30)

Putting all the pieces together, the asymptotic variance is(
−E

[
∂2

∂p2
l(p, φ)

])−1

=
1

n

1

E
[

1
Var(xi/Li|Li)

] ≤ 1

n

1
1

EVar(xi/Li|Li)

=
Var(xi/Li)

n
, (B.31)

where the inequality is due to Jensen’s inequality.
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B.6 Hypothesis testing

In this appendix, we show that the AREs for both the negative binomial Wald test and the
two-sample z-test can be expressed in terms of ratios of variances Var(x/L)/Var(x∗/L∗).

The negative binomial Wald test Let p̂
(1)
ML and p̂

(2)
ML be the NB estimators of proportions

computed based on the first group of samples and the second group respectively. We
define the negative binomial test of H0 : p(1) = p(2) to be the test that rejects H0 if
|p̂(1)
ML − p̂

(2)
ML|/ŜE(p̂

(1)
ML − p̂

(2)
ML) > zα/2, where ŜE(p̂

(1)
ML − p̂

(2)
ML) is the estimated standard error

of p̂
(1)
ML − p̂

(2)
ML, α is the desired significance level, and zα/2 is the upper α/2-quantile of a

standard normal distribution.
We first state the result for the case of fixed library sizes and then state a corollary for

the case of random library sizes.

Theorem 5. Suppose x
(g)
i are independent NB(L

(g)
i p(g), φ) for i = 1, ..., ng, g = 1, 2 with the

library sizes L
(g)
i being fixed values. Suppose c := limn→∞ n1/n ∈ (0, 1), and for k = 1, 2 the

limit

lim
n→∞

HM

(
Var

(
x

(g)
1

L
(g)
1

)
, ...,Var

(
x

(g)
ng

L
(g)
ng

))
(B.32)

exists, where HM(a1, ..., ang) = ng
1
a1

+...+ 1
ang

is the harmonic mean of (a1, ..., ang). Suppose the

rarefied depth L∗ ≤ L
(k)
i for all j, k, so no samples are discarded. Assume that in the limit

of any sequence of alternatives considered p(g) → p for g = 1, 2. The asymptotic relative
efficiency of the negative binomial test based on the rarefied data with rarefied depth L∗ relative
to the same test based on the original data is[

(1− c) lim
n→∞

HM

(
Var(x

(1)′

1 /L
(1)
1 )

Var(x∗/L∗)
, ...,

Var(x
(1)′
n1 /L

(1)
n1 )

Var(x∗/L∗)

)
(B.33)

+ c lim
n→∞

HM

(
Var(x

(2)′

1 /L
(2)
1 )

Var(x∗/L∗)
, ...,

Var(x
(2)′
n2 /L

(2)
n2 )

Var(x∗/L∗)

)]
, (B.34)

where x
(g)′

i ∼ NB(L
(g)
i p, φ) for g = 1, 2 and x∗ ∼ NB(L∗p, φ).

Corollary 1. Suppose (x
(g)
i , L

(g)
i ) are independent with

L
(g)
i ∼ f (g) (B.35)

x
(g)
i |L

(g)
i ∼ NB(L

(g)
i p(g), φ) (B.36)

for i = 1, ..., ng, g = 1, 2 with f (g) being some discrete distribution on non-negative integers.

Suppose c := limn→∞ n1/n ∈ (0, 1). Suppose further the rarefied depth L∗ ≤ L
(k)
i for all
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j, k, so no samples are discarded. Assume that in the limit of any sequence of alternatives
considered p(g) → p for g = 1, 2. The asymptotic relative efficiency of the negative binomial
test based on the rarefied data with rarefied depth L∗ relative to the same test based on the
original data is

1

Var(x∗/L∗)

(1− c) 1

E
(

1

Var(x
(1)′
i /L

(1)
i |L

(1)
i )

) + c
1

E
(

1

Var(x
(2)′
i /L

(2)
i |L

(2)
i )

)
 , (B.37)

where x
(g)′

i |L
(g)
i ∼ NB(L

(g)
i p, φ) for g = 1, 2 and x∗ ∼ NB(L∗p, φ).

Note that the expression in B.37 is upper bounded by

(1− c)V ar(x
(1)′

i /L
(1)
i )

V ar(x∗/L∗)
+ c

V ar(x
(2)′

i /L
(2)
i )

V ar(x∗/L∗)
, (B.38)

since

Var

(
x

(1)′

i

L
(1)
i

)
= E

(
Var

(
x

(1)′

i

L
(1)
i

∣∣∣∣L(1)
i

))
+ Var

(
E

(
x

(1)′

i

L
(1)
i

∣∣∣∣L(1)
i

))

= E

(
Var

(
x

(1)′

i
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and by Jensen’s inequality

1

E
(

1

V ar(x
(g)′
i /L

(1)
i |L

(g)
i )

) ≤ E

(
Var

(
x

(g)′

i

L
(g)
i

∣∣∣∣L(g)
i

))
= Var

(
x

(g)′

i

L
(g)
i

)
(B.40)

for g ∈ {1, 2}.

The two-sample z-test Let p̂
(1)
avg and p̂

(2)
avg be the sample average estimators of proportions

computed based on the first group of samples and the second group respectively. We define
the two-sample z-test of H0 : p(1) = p(2) to be the test that rejects H0 if |p̂(1)

avg− p̂(2)
avg|/ŜE(p̂

(1)
avg−

p̂
(2)
avg) > zα/2, , where ŜE(p̂

(1)
avg − p̂(2)

avg) is the estimated standard error of p̂
(1)
avg − p̂(2)

avg, α is the
desired significance level, and zα/2 is the upper α/2-quantile of a standard normal distribution.

Similar to the NB Wald test result, we first state the result for the case of fixed library
sizes and then state a corollary for the case of random library sizes.
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Theorem 6. Suppose x
(g)
i follows a certain distribution P

L
(g)
i ,p(g)

, indexed by the library size

and the expected relative abundance. Assume that library sizes are fixed. Further assume that
c := limn→∞ n1/n ∈ (0, 1), and for k = 1, 2 the limit

lim
n→∞

AM

(
Var

(
x

(g)
1

L
(g)
1

)
, ...,Var

(
x

(g)
ng

L
(g)
ng

))
(B.41)

exists, where AM(a1, ..., ang) = (a1 + ... + ang)/ng is the arithmetic mean of (a1, ..., ang).

Suppose the rarefied depth L∗ ≤ L
(k)
i for all j, k, so no samples are discarded. Assume that

in the limit of any sequence of alternatives considered p(g) → p and for all i = 1, ..., ng
||P

L
(g)
i ,p(g)

− P
L
(g)
i ,p
|| → 0 for g ∈ {1, 2}. The asymptotic relative efficiency of the z-test based

on the rarefied data with rarefied depth L∗ relative to the same test based on the original data
is [

(1− c) lim
n→∞

AM

(
Var(x

(1)′

1 /L
(1)
1 )

Var(x∗/L∗)
, ...,

Var(x
(1)′
n1 /L

(1)
n1 )

Var(x∗/L∗)

)
(B.42)

+ c lim
n→∞

AM

(
Var(x

(2)′

1 /L
(2)
1 )

Var(x∗/L∗)
, ...,

Var(x
(2)′
n2 /L

(2)
n2 )

Var(x∗/L∗)

)]
, (B.43)

where x
(g)′

i ∼ P
L
(g)
i ,p

for g ∈ {1, 2} and x∗ ∼ PL∗,p.

Corollary 2. Suppose x
(g)
i |L

(g)
i follows a certain distribution P

L
(g)
i ,p(g)

, indexed by the library

size and the expected relative abundance. Assume that in the limit of any sequence of
alternatives considered p(g) → p and for all i = 1, ..., ng ||PL(g)

i ,p(g)
−P

L
(g)
i ,p
|| → 0 for g ∈ {1, 2}.

The asymptotic relative efficiency of the z-test based on the rarefied data with rarefied depth
L∗ relative to the same test based on the original data is

(1− c)Var(x
(1)′

i /L
(1)
i )

Var(x∗/L∗)
+ c

Var(x
(2)′

i /L
(2)
i )

Var(x∗/L∗)
(B.44)

where x
(g)′

i |L
(g)
i ∼ P

L
(g)
i ,p

for g ∈ {1, 2} and x∗ ∼ PL∗,p.

Remarks

1. The ARE of using rarefied data versus original data for the z-test are completely

determined by the ratios of variances Var(
x
(g)
i

L
(g)
i

)/Var( x
∗

L∗
).

2. Suppose the NB model holds. Since AM is at least as large as HM, in terms of ARE,
rarefying hurts us more for the NB Wald test than for the two-sample z-test.
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B.7 Proof of Theorem 5 and Theorem 6

Now we prove Theorem 5. The proof of Theorem 6 is similar and hence is omitted.

Proof. For k = 1, 2, let p̂
(k)
ML be the NB estimator of the proportion for group k based on

the original data and p̂
(k)
ML,r be the same estimator based on rarefied data. Under the null

hypothesis, √
n[(p̂

(1)
ML − p̂

(2)
ML)− (p(1) − p(2))]√
H

d→ N(0, 1), (B.45)

where

H =
1

c
lim
n→∞
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, ...,Var
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On the other hand, under the null hypothesis,

√
n[(p̂

(1)
ML,r − p̂

(2)
ML,r)− (p(1) − p(2))]√(

1
c

+ 1
1−c

)
Var

(
x∗

L∗

) d→ N(0, 1). (B.47)

Putting everything together, by Lemmma 1, the ARE is

H(
1
c

+ 1
1−c

)
Var

(
x∗

L∗

) =

[
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+ c lim
n→∞
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Var(x
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. (B.49)

B.8 Estimation of variance of rarefied relative

abundance

A natural estimator of Var(x(g)/L(g)) is the sample variance of observed relative abundance:

S
(g)
j :=

1

ng − 1

ng∑
i=1

(
x

(g)
ij

L
(g)
i

− 1

ng

ng∑
l=1

x
(g)
ij

L
(g)
l

)2

. (B.50)

Similarly, a straightforward estimator of Var(x∗/L∗) is the sample variance of observed relative
abundance based on rarefied data. However, the realized value of this estimator Var(x∗/L∗)
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can be larger than S
(g)
j , which is undesirable because Var(x(g)/L(g))/Var(x∗/L∗) is always at

most 1. In addition, this estimator is a function of the rarefied data, so there is additional
variance introduced in this estimator by the subsampling procedure.

We would like to construct an estimator of Var(x∗/L∗) that depends on the original data.
By the law of total variance, conditioning on x and L,

Var

(
x∗

L∗

)
= Var

(
E
(
x∗

L∗

∣∣∣∣x(g), L(g)

))
+ E

(
Var

(
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))
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1

L∗
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(
1− x(g)
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)(
L(g) − L∗

L(g) − 1

))
.

(B.51)

The first term Var(x(g)/L(g)) in (B.51) can be estimated via S
(g)
j ; the second term can be

estimated by an empirical average:

V
(g)
j (L∗) :=

1

ngL∗

ng∑
i=1

x
(g)
ij

L
(g)
i

(
1−

x
(g)
ij

L
(g)
i

)(
L

(g)
i − L∗

L
(g)
i − 1

)
, (B.52)

using the fact that the conditional distribution of x∗ given (x, L) is a Hypergeometric

distribution. Intuitively, the quantity V
(g)
j (L∗) estimates the additional variance induced by

rarefying the data to depth L∗. Note that V
(g)
j (L∗) is a decreasing function in the rarefied

depth L∗, which is consistent with the intuition that a larger rarefied depth preserves more
data and hence less variability is being introduced by rarefaction. From this discussion, we
see that Var(x∗/L∗) can be estimated by S

(g)
j +V

(g)
j (L∗), a quantity depending on the original

data but not the rarefied data.




