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ABSTRACT OF THE DISSERTATION

Accelerating Benders Decomposition: Theory and Applications

By

Seyed Mojtaba Hosseini

Doctor of Philosophy in Management

University of California, Irvine, 2022

Associate Professor John G. Turner, Chair

Since its inception, Benders Decomposition (BD) has been successfully applied to a wide

range of large-scale mixed-integer (linear) problems that lie at the heart of operations research

and supply chain management. The inherent capacity of BD for exploiting the structural

properties of problems with complicating variables has made it one of the most prominent

exact algorithms for solving large-scale optimization problems. Over the years, BD has

grown in its ability to solve a wide range of challenging problems including variants of

facility location problems, supply chain and network design problems, scheduling and routing

problems, healthcare operations, machine learning, and variants of stochastic programming

problems among several other applications. This dissertation is structured into three research

papers. First, we introduce a general acceleration technique for BD by introducing deepest

Benders cuts. As an application of BD on problems arising in the transportation and logistics

sector, we introduce efficient and novel implementations of BD for variants of hub location

problems. We further analyze effects of uncertainty in demand and revenues in hub location

problems and propose novel modelling and solution methods based on robust and stochastic

optimization techniques.

The key element of BD is the derivation of Benders cuts, which are often not unique. In the

first chapter, we introduce a novel unifying Benders cut selection technique based on a geo-

x



metric interpretation of cut “depth”, produce deepest Benders cuts based on ℓp-norms, and

study their properties. Specifically, we show that deepest cuts resolve infeasibility through

minimal deviation from the incumbent point, are relatively sparse, and may produce op-

timality cuts even when classical Benders would require a feasibility cut. Leveraging the

duality between separation and projection, we develop a Guided Projections Algorithm for

producing deepest cuts while exploiting the combinatorial structure or decomposablity of

problem instances. We then propose a generalization of our Benders separation problem

that brings several well-known cut selection strategies under one umbrella. In particular,

by establishing its connection to our method, we provide systematic ways of selecting the

normalization coefficients in the Minimal Infeasible Subsystems method. We also provide

general implementation guidelines, which are useful beyond the scope of this study. Finally,

in our tests on facility location problems, we show deepest cuts often reduce both runtime

and number of Benders iterations, as compared to other cut selection strategies; and relative

to classical Benders, use 1/3 the number of cuts and 1/2 the runtime.

As an application of accelerating Benders decomposition, we model capacity allocation de-

cisions within profit maximizing hub location problems to satisfy demand of commodities

from different market segments. We present a strong deterministic formulation of the prob-

lem and describe two exact algorithms based on a Benders reformulation to solve large-size

instances of the problem. We show that the subproblems can be broken into smaller and

simpler problems in two phases. We prove that the first phase can be efficiently solved using

a cutting-plane algorithm. To produce strong cuts, we cast the second phase as a multi-

objective optimization problem. We show that non-dominated solutions to the second phase

can be obtained by either a set of continuous maximum weighted matching problems, or

by a series of continuous knapsack problems in a sequential manner. We further enhance

the performance of the algorithms by integrating improved variable fixing techniques. We

evaluate the efficiency and robustness of the algorithms through extensive computational

experiments. Computational results show that large-scale instances with up to 500 nodes

xi



and three demand segments can be solved to optimality, and that the proposed algorithms

generate cuts that provide significant speedups compared to using Pareto-optimal cuts. The

proposed two-phase methodology for solving the Benders subproblem as well as the variable

fixing and acceleration techniques can be used to solve other discrete location and network

design problems.

Finally, we extend the deterministic model by considering uncertainty associated with the de-

mand to develop a two-stage stochastic program. To solve the stochastic version, we develop

a Monte-Carlo simulation-based algorithm that integrates a sample average approximation

scheme with the proposed Benders decomposition algorithms. We then extend the models

by simultaneously incorporating two sources of uncertainty including stochastic demand and

uncertain revenue. To incorporate uncertain revenues into the problem, we use robust opti-

mization techniques and investigate two particular cases including interval uncertainty and

discrete scenarios. We formulate robust-stochastic models with a max-min profit criterion

and a min-max regret objective for the former and latter cases, respectively. We enhance

the Benders decomposition algorithms coupled with sample average approximation scheme

by novel acceleration techniques. We also conduct extensive computational experiments to

analyze the effects of uncertainty under different settings and compare the quality of the

solutions obtained from different modeling approaches under different parameter settings.

Computational results demonstrate the efficiency of the proposed algorithms and justify

the need for embedding both sources of uncertainty in decision making to provide robust

solutions.
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Chapter 1

Introduction

1.1 Benders Decomposition

Since Benders (1962) originally proposed a procedure for solving Mixed-Integer Linear Pro-

gramming (MILP) problems that temporarily fixes some variables to produce one or more

much easier-to-solve subproblems at the expense of additional inference and algorithm itera-

tions, Benders Decomposition (BD) has increasingly attracted the attention of researchers in

the last five decades. Of note, BD has proven very effective in tackling several classes of chal-

lenging MILP problems through both the classical as well as the generalized and logic-based

variants of the BD algorithm.

The inherent capacity of BD for exploiting the structural properties of problems with com-

plicating variables has made it one of the most prominent exact algorithms for solving large-

scale optimization problems. Over the years, BD has grown in its ability to solve a wide

range of challenging problems including variants of facility location problems (Magnanti and

Wong 1981, Fischetti et al. 2016, 2017), supply chain and network design problems (Keyvan-

shokooh et al. 2016, Alshamsi and Diabat 2018, Fontaine and Minner 2018, Pearce and Forbes
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2018), hub location problems (Contreras et al. 2011a, 2012, Maheo et al. 2017, Taherkhani

et al. 2020), scheduling and routing problems (Mercier 2008, Papadakos 2009, Adulyasak

et al. 2015, Bodur and Luedtke 2016, Bayram and Yaman 2017), healthcare operations (Cho

et al. 2014, Naderi et al. 2021), machine learning (Rahimi and Gönen 2021), and variants of

stochastic programming problems (Santoso et al. 2005, Adulyasak et al. 2015, Bodur et al.

2016, Rahmaniani et al. 2018, Khassiba et al. 2020, Taherkhani et al. 2021) among several

other applications.

BD, at its core, is a relax and “learn from mistakes” procedure (Hooker and Ottosson 2003).

In classical BD, this learning mechanism is naturally manifested through Linear Program-

ming (LP) duality and mistakes are “corrected” via Benders feasibility and optimality cuts.

These cuts are obtained by solving the dual of the subproblem induced by fixing the com-

plicating variables. The learning mechanism, however, need not be restricted to cuts based

on LP duality. Geoffrion (1972) laid the foundation for extending BD to general nonlinear

optimization problems, Hooker and Ottosson (2003) introduced logic-based BD for tackling

problems with logical constraints, and Codato and Fischetti (2006) tailored this idea to

MILP problems involving big-M constraints.

Despite its promising structure, a näıve implementation of BD may suffer from slow con-

vergence and other computational deficiencies. A wealth of studies have addressed different

drawbacks of BD from different angles (see e.g., Rahmaniani et al. 2017, and references

therein for recent advancements). As with any other cutting-plane algorithm, the conver-

gence rate is directly tied to the effectiveness of the generated cuts. Given that there is

typically more than one way to generate a Benders cut, an important theoretical and prac-

tical question is how to select the most “effective” cut(s) in each iteration, with the aim

of speeding up convergence. This question has spawned a stream of research, which we

contribute to.

In their seminal paper, Magnanti and Wong (1981) introduced a general-purpose cut selec-
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tion strategy for selecting a nondominated (or Pareto-optimal) optimality cut among the

alternative optimal solutions of the subproblem. More recently, Fischetti et al. (2010) cast

the Benders subproblem as a feasibility problem, and proposed an alternative cut selection

criterion that approximately identifies a minimal source of infeasibility from the derived

feasibility problem. Saharidis and Ierapetritou (2010) introduced the Maximum Feasibility

Subsystem (MFS) cut generation strategy for accelerating BD in problems where the ma-

jority of cuts generated are feasibility (as opposed to optimality) cuts. Sherali and Lunday

(2013) treated cut generation as a multi-objective optimization problem and proposed gen-

erating maximal nondominated cuts which they showed can be produced by perturbing the

right-hand-side of the primal subproblem. Recently, Bodur and Luedtke (2016) and Bodur

et al. (2016) proposed methods for sharpening Benders cuts using mixed-integer rounding

schemes.

1.2 Classical Benders Decomposition

We begin with a brief outline of the classical Benders Decomposition (BD) algorithm. Con-

sider the MILP problem

[OP] min c⊤x+ f⊤y

s.t. Ax+By ≥ b

x ≥ 0, y ∈ Y,

(1.1)

where f ∈ Rn, c ∈ Rn′
, b ∈ Rm, matrices A and B are conformable, and Y ⊂ Zn is the domain

of the y-variables. In what follows, we reserve i and j for indexing the rows and columns of

B, respectively. For the sake of generality, we do not make any specific assumptions about

the structure of the problem, except that it is a general bounded MILP.
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The idea behind BD is to project the original problem (OP) from the space of the (x, y)-

variables onto the space of the y-variables in the form of

min{Q(y) : y ∈ Y ∩ dom(Q)}, (1.2)

where Q(y) = f⊤y + Q̃(y) and Q̃(y) accounts for the contribution of the x-variables to the

objective function and is defined as

[PSP] Q̃(y) = min {c⊤x : Ax ≥ b−By, x ≥ 0}. (1.3)

Problem (1.3) is known as the primal subproblem (PSP) and dom(Q) is the set of y values

that induce a feasible PSP. Since OP is bounded, PSP is also bounded for any y ∈ Y . The

classical BD algorithm works as follows. First, problem (1.2) is reformulated in epigraph

form as

min {η : (y, η) ∈ E , y ∈ Y }, (1.4)

where E is the epigraph of Q defined as

E = {(y, η) ∈ Rn+1 : η ≥ Q(y), y ∈ dom(Q)}.

Then, a relaxation of (1.4) is successively tightened by progressively outer-approximating

E with supporting hyperplanes obtained by evaluating, at given y values, the dual of (1.3)

formulated as

[DSP] Q̃(y) = max {u⊤(b−By) : u⊤A ≤ c⊤, u ≥ 0}, (1.5)

which is known as the dual subproblem (DSP). From this dual formulation, we can observe

that Q̃(y) is a piece-wise linear convex function of y. Thus, Q(y) = f⊤y+Q̃(y) is a piece-wise
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linear convex function and E is a closed convex set. Let U denote the polyhedron defining

the set of feasible solutions of DSP, with U∗ its extreme points. For y ∈ dom(Q), the DSP

induced by y is bounded and its optimal value is attained at one of the extreme points of U .

Additionally, since Q̃(y) is the optimal value of DSP, it follows from weak duality that

Q(y) = f⊤y + Q̃(y) ≥ f⊤y + û⊤(b−By) ∀û ∈ U .

On the other hand, by Farkas lemma, the values of y that induce an infeasible PSP (i.e.,

an unbounded DSP) are the ones for which v̂⊤(b− By) > 0 for some (extreme) ray v̂ of U .

Hence, dom(Q) may be defined as dom(Q) = {y : 0 ≥ v̂⊤(b − By) ∀v̂ ∈ V∗}, where V∗ is

the set of extreme rays of U . Putting these pieces together, we can rewrite (1.4) as

[CMP] min η (1.6)

s.t. η ≥ f⊤y + û⊤(b−By) ∀û ∈ U∗ (1.7)

0 ≥ v̂⊤(b−By) ∀v̂ ∈ V∗ (1.8)

η ∈ R, y ∈ Y, (1.9)

which we refer to as the classical Benders master problem (CMP). Constraint sets (1.7) and

(1.8) are known as the Benders optimality and feasibility cuts, respectively. The classical

BD algorithm solves CMP by initially relaxing these constraints, and at each iteration posts

one or more cuts of the form (1.7) or (1.8) to this relaxation of CMP until the optimality gap

is sufficiently closed. For a complete description of the BD algorithm the reader is referred

to Rahmaniani et al. (2017).
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1.3 Hub Location Problems

In transportation, telecommunication and computer networks, hub-and-spoke structures are

used to collect, sort, switch or consolidate different flows of commodities. Hubs are special

types of facilities that connect a large number of origin-destination (O-D) pairs via a small

number of links. Hubs consolidate flows of different O-D pairs and by doing so reduce the

transportation costs by exploiting economies of scale. A hub location problem (HLP) is a

network design problem and generally consists of two main decision levels: selection of a

set of nodes to locate the hubs and to allocate the demand nodes to these hubs (Campbell

et al. 2002, Alumur and Kara 2008). HLPs are a difficult class of NP-hard problems, where

the interrelated decision process is the main source of difficulty in HLPs (Contreras et al.

2011a).

In classical hub location problems, it is usually required that the demand of each commodity

must be fully satisfied and so are formulated as cost minimization problems. It may, how-

ever, be more advantageous from a revenue management perspective not to fully serve the

demand of some commodities, especially if the cost of serving a commodity is higher than

the revenue associated with satisfying its demand. In such a setting, the right objective is

to maximize profit rather than minimizing cost so that the decision on how much demand

of each commodity to satisfy depends on the trade-off between revenue and cost. Moreover,

the demand of commodities usually consists of different classes (e.g., regular and priority

service). The decision maker thus needs to consider how to allocate the available capacity to

these different demand segments, while determining the proportion of the demand to serve

for each class.

The problem under study is motivated from airline passenger and freight transportation, and

express shipment delivery networks in which the amount of demand of different commodities

to serve is dependent on hub locations. Even though passengers choose their own routes in
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airline networks, airlines still have to design their hub networks considering the forecasted

demand. Different classes of demand may include the demand for, for example, the first,

business, and economy class service. In express shipment delivery networks, on the other

hand, there is a demand for services such as priority, express, and standard mail.

1.3.1 Related Works

In the last few decades, many variants of hub location problems have been studied in the

literature. The reader may refer to reviews on this area by Campbell et al. (2002), Alumur

and Kara (2008), and Contreras (2015). Capacitated versions of hub location problems are

first formulated by Campbell (1994) using path-based mixed integer programs that impose

capacity constraints on the total incoming flow at hubs (i.e., flow arriving from both hub

and non-hub nodes). A variant of this problem arises when capacities are applied only to

the traffic arriving directly from non-hub nodes. This variant is motivated from the postal-

delivery applications and has been studied by Boland et al. (2004) and Contreras et al. (2012)

among others. In some postal-delivery and express shipment networks (e.g. UPS, Canada

Post), however, total incoming flow (regardless that it is from a hub or a non-hub node)

is sorted at every hub-stop. Moreover, the limiting capacity of a hub may not necessarily

be on sorting or material handling, but, for example, on the available number of docks or

gates. Hence, in this study, we model the generic case and impose capacity constraints on

the total incoming flow at hubs, as introduced in Campbell (1994). As we elaborate in §3.2.2,

this generic definition of capacity usage brings on extra challenges for the implementation

of Benders decomposition.

There are only a few studies considering a profit-oriented objective in hub location problems.

Alibeyg et al. (2016) and the companion paper Alibeyg et al. (2018) present hub network

design problems with profits including the decisions on the O-D pairs that will be served.
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They employ Lagrangean relaxation within a branch-and-bound algorithm, and also adopt

reduction tests and partial enumeration to reduce the size of the problems as well as the

computation times. Lin and Lee (2018) consider a hub network design problem for time def-

inite LTL freight transportation in which the carrier aims to determine hub locations, under

price elasticity of demand, that maximize total profit. They show that profit optimization

builds a denser hub network than cost minimization. In the present study, we additionally

consider demands of commodities from different market segments and incorporate capacity

allocation decisions.

From a methodological point of view, Benders decomposition (BD) has received increased

attention, particularly for solving multiple allocation hub location problems. Camargo et al.

(2008) is the first work using a Benders reformulation to solve the uncapacitated multiple

allocation hub location problem. Rodriguez-Martin and Salazar-Gonzalez (2008) consider a

capacitated multiple allocation hub location problem in which the arcs connecting the hubs

are not assumed to create a complete graph. They provide a formulation and design two exact

solution algorithms relying on BD. Contreras et al. (2011a) employ a Benders reformulation

for the uncapacitated multiple allocation hub location problem which is enhanced through

the use of a multicut reformulation, the generation of (approximated) Pareto-optimal cuts,

the integration of reduction tests, and the execution of a heuristic procedure as a warm start

point of their algorithms. Contreras et al. (2012) provide an extension of the BD approach

proposed by Contreras et al. (2011a) to solve capacitated multiple allocation hub location

problems.

1.4 Hub Location Problems under Uncertainty

In strategic planning, decisions need to be held for a considerable time frame. During this

time, in real world, many unpredictable causes may lead to changes in operating conditions.
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For example, the amount of demand may be greater or less than its expected value. Changes

may also occur in the amount of revenue obtained from the satisfied demand due to some

unpredictable variations in a competitive environment. In these conditions, solving a de-

terministic model may result in wrong and costly decisions. Hence, taking uncertainty into

account in the decision process is a necessity. To provide more reliable models, we consider

two typical sources of uncertainty in our problem. We assume that demand of commodities

and revenues are not precisely known and the optimal decisions have to be anticipated under

uncertainty.

Optimization under uncertainty generally consists of two streams of research: stochastic

and robust optimization. In stochastic optimization, there are some known probability

distributions describing the behavior of uncertain parameters and these distributions can be

used to optimize the expected value of the objective function. In robust optimization, on

the other hand, no probabilistic information is available for the uncertain parameters. In

this case, uncertainty can be described by using a finite set of scenarios or can be modeled

assuming that the values of the uncertain parameters can change within predefined intervals

(for more information on robust optimization see, e.g., Bertsimas and Sim 2003, Ben-Tal

et al. 2004, Bertsimas et al. 2011, and Correia and Saldanha-da Gama 2015).

1.4.1 Uncertainty Considerations in Hub Location Problems

Yang (2009) proposes a two-stage stochastic programming model to address the issues of

air freight hub location and flight-route planning under stochastic demand. They solve the

deterministic equivalent of this problem considering three scenarios. In the same year, Sim

et al. (2009) present the stochastic p-hub center problem, in which service level considerations

are incorporated by using chance constraints when travel times are normally distributed.

Contreras et al. (2011b) study the uncapacitated multiple allocation hub location problem
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under uncertain demands and transportation costs. When demand is analyzed as the source

of uncertainty, they show that the stochastic problem will be equivalent to its associated

deterministic expected value problem where uncertain demand is replaced by its expectation.

However, this equivalence does not hold in the capacitated cases. The authors develop an

SAA method to solve their stochastic problems and apply it to instances involving up to 50

demand nodes.

More recently, Meraklı and Yaman (2016) model the robust uncapacitated multiple allocation

p-hub median problem under polyhedral demand uncertainty with two different uncertainty

sets; hose and hybrid. The hose model assumes that the only available information is the

upper limit on the total flow adjacent at each node, while the hybrid model imposes lower

and upper bounds on each pairwise demand. They adopt a min-max robustness criterion for

a cost-minimization objective function and develop two exact algorithms based on Benders

decomposition. Meraklı and Yaman (2017) extend this study by incorporating capacity

constraints for hubs and devise two different Benders decomposition algorithms capable of

solving instances with up to 50 nodes. To the best of our knowledge, Meraklı and Yaman

(2017) is the first paper that incorporates robustness into capacitated hubs problems.

From a methodological point of view, Benders decomposition (BD) has received increased

attention, particularly for solving multiple allocation hub location problems. Camargo et al.

(2008) is the first work using a Benders reformulation to solve the uncapacitated multiple

allocation hub location problem. Rodriguez-Martin and Salazar-Gonzalez (2008) consider a

capacitated multiple allocation hub location problem in which the arcs connecting the hubs

are not assumed to create a complete graph. They provide a formulation and design two exact

solution algorithms relying on BD. Contreras et al. (2011a) employ a Benders reformulation

for the uncapacitated multiple allocation hub location problem which is enhanced through

the use of a multicut reformulation, the generation of (approximated) Pareto-optimal cuts,

the integration of reduction tests, and the execution of a heuristic procedure as a warm start
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point of their algorithms. Contreras et al. (2012) provide an extension of the BD approach

proposed by Contreras et al. (2011a) to solve capacitated multiple allocation hub location

problems.

1.5 Organization of the Dissertation

In Chapter 2, we introduce a general framework for producing effective cuts for accelerating

Benders decomposition. By treating the separation problem as a feasibility problem, we

establish a duality between separation and projection, which we use for deriving what we

call deepest Benders cuts. With this perspective, the learning component in our Benders

procedure can be viewed as resolving infeasibility in this feasibility problem through min-

imal deviation from the incumbent point. Our approach departs from previous studies by

(i) taking the “depth” of the candidate cuts explicitly into account, (ii) providing a unifying

framework for producing deep optimality and feasibility cuts, and (iii) introducing Benders

distance functions that bring several cut selection strategies under one umbrella.

In Chapter 3, we present a strong mixed-integer programming formulation of the profit

maximizing capacitated hub location problem. We propose two exact algorithms based on

a Benders decomposition of the deterministic formulation. Since the subproblem is non-

separable, solving it can be as challenging as solving the original problem. Moreover, due

to degeneracy in the subproblem, straightforward implementation of Benders decomposition

suffers from low convergence. Alleviating these deficiencies, in this study, we propose a

general methodology for decomposing inseparable subproblems into smaller problems in a

two-phase fashion, where optimality and strength of the cuts are guaranteed in Phase I and

Phase II, respectively. More specifically, for the profit maximizing capacitated hub location

problem, we prove that the second phase can be solved as a set of LP-relaxations of maximum

weighted matching problems, or as a series of LP-relaxations of knapsack problems. We
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enhance these algorithms by incorporating improved variable fixing techniques.

In Chapter 4, we consider two sources of uncertainty in the profit maximizing hub location

problems: demand and revenue. Because of the availability of historical data, we assume

that demand is described by a known probability distribution. On the other hand, since

revenue might be affected by unpredictable external sources (e.g., economical conditions or

competition) and historical data may fail to effectively describe such variations, it may not

make sense to assume a known probability distribution for the revenue describing its behav-

ior. Hence, we use robust optimization techniques to incorporate uncertain revenues into the

problem by considering both interval representation and discrete scenarios. Modeling profit

maximizing hub location problems using both robust and stochastic optimization techniques

surely brings on extra computational challenges, yet we believe this is a much more realistic

problem setting with respect to information availability. We integrate the proposed Benders

decomposition algorithms with a sample average approximation (SAA) scheme to solve the

stochastic problem with a continuous demand distribution and an infinite number of sce-

narios. Inspired by the repetitive nature of SAA, we additionally propose novel acceleration

techniques to improve the convergence of the algorithms employed for the stochastic prob-

lem. Moreover, we perform extensive computational experiments to evaluate the efficiency

and robustness of the proposed algorithms and solve large-scale instances of the problem.

Finally, Chapter 5 summarizes the contributions of this thesis.
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Chapter 2

Deepest Cuts for Benders

Decomposition

In this chapter, we introduce a general framework for producing effective cuts for acceler-

ating Benders decomposition. We begin §2.1.1 with an alternative decomposition scheme,

which paves the way for us to formally define what we mean by “deep” Benders cuts. In

§2.1, we introduce a procedure to produce a so-called “deepest Benders cut” by taking the

Euclidean depth of the candidate cuts as a measure of cut quality. Then we extend the

notion of depth using general ℓp-norms in §2.1.3 and provide a comprehensive study of the

properties of deepest cuts in §2.1.4. In §2.2, we introduce Benders distance functions and

establish an important monotonicity property tied to convexity that generalizes geometric

distance. In §2.3, we (i) present some useful reformulations of the separation problem we use

to generate deep cuts, (ii) introduce distance functions based on linear normalization func-

tions, and (iii) present several ways of deriving effective normalization coefficients for our

linear normalization functions, which connect our method to other cut selection strategies by

Fischetti et al. (2010), Magnanti and Wong (1981) and Conforti and Wolsey (2019). Next,

we introduce our Guided Projections Algorithm (GPA) in §2.4, which leverages combinato-

13



rial structure to further accelerate deep cut generation. Then, in §2.5, we run computational

experiments on the capacitated facility location problem to test the performance of Benders’

cuts generated using several families of distance functions and demonstrate that deepest

cuts produced using GPA require 1/3 the number of cuts and 1/2 the runtime of classical

Benders cuts. Finally, we summarize our conclusions in §2.6. Technical details and proofs

are provided in Appendix A.

2.1 Deepest Benders Cuts

2.1.1 A Unifying Decomposition Scheme

In classical BD, y is the only piece of information passed from the master problem to the

subproblems, and η is merely used to obtain a lower bound on OP. But ignoring η is a little

like generating cuts with one hand tied behind your back; you can do it if you have to, but

you’ll get better results if you don’t. We instead begin by reformulating the original problem

(1.1) in epigraph form as

min η

s.t. η ≥ c⊤x+ f⊤y

Ax+By ≥ b

x ≥ 0, y ∈ Y,

(2.1)

and apply BD to it by taking (y, η) as the master problem variables. While this reformulation

is sometimes prone to numerical instabilities in the primal space (Bonami et al. 2020), if

treated carefully, it provides a framework for unifying the classical Benders optimality and

feasibility cuts (Fischetti et al. 2010). Taking this viewpoint, the primal subproblem induced

14



by trial solution (ŷ, η̂) is

[FSP] min 0

s.t. − c⊤x ≥ f⊤ŷ − η̂

Ax ≥ b−Bŷ

x ≥ 0,

(2.2)

which is a feasibility problem for any given (ŷ, η̂), hence we call it the feasibility subproblem

(FSP). Assigning the dual variable π0 to the first constraint and the dual vector π to the

second set of constraints, a Farkas certificate for infeasibility of FSP can be produced using

[CGSP] max
(π,π0)∈Π

π⊤(b−Bŷ) + π0(f
⊤ŷ − η̂), (2.3)

which we refer to as the certificate generating subproblem (CGSP), where

Π = {(π, π0) : π
⊤A ≤ π0c

⊤, π ≥ 0, π0 ≥ 0}

is the cone of feasible solutions (rays). If FSP is feasible, then the optimal value of both

FSP and CGSP is zero. Otherwise, CGSP is unbounded and a ray (π̂, π̂0) exists such that

π̂⊤(b−Bŷ) + π̂0(f
⊤ŷ − η̂) > 0; hence, the infeasible solution (ŷ, η̂) violates the constraint

π̂⊤(b−By) + π̂0(f
⊤y − η) ≤ 0.

Given (π̂, π̂0) ∈ Π, we define H(π̂, π̂0) and ∂(π̂, π̂0) as the half-space and hyperplane defined

by (π̂, π̂0), respectively, i.e.,

H(π̂, π̂0) = {(y, η) : π̂⊤(b−By) + π̂0(f
⊤y − η) ≤ 0},

∂(π̂, π̂0) = {(y, η) : π̂⊤(b−By) + π̂0(f
⊤y − η) = 0}.
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Consequently, OP can be restated as the following modified master problem (MP):

[MP] min η (2.4)

s.t. (y, η) ∈ H(π̂, π̂0) ∀(π̂, π̂0) ∈ Π (2.5)

η ∈ R, y ∈ Y. (2.6)

More precisely, this is a projection of (2.1) onto the (y, η) space. With this representation

of Benders decomposition, at iteration t, we produce a candidate point (y(t), η(t)) by solving

a relaxation of MP, and test its feasibility using CGSP. If the test proves (y(t), η(t)) infea-

sible, we generate a certificate (π̂, π̂0) and add a cut of the form (2.5) to the relaxed MP

to avoid producing the infeasible (y(t), η(t)) again; otherwise, we conclude that (y(t), η(t)) is

an optimal solution for MP. As noted in Proposition 2.1 below, cuts of the form (2.5) rep-

resent both Benders optimality and feasibility cuts; when π̂0 > 0, the cut corresponds to a

classical Benders optimality cut, while π̂0 = 0 corresponds to a classical Benders feasibility

cut. An overview of the BD algorithm based on this decomposition scheme is presented in

Algorithm 1. Proofs for all of our theorems and propositions can be found in Appendix A.1.

Proposition 2.1. Solution (y, η) satisfies constraints (2.5) if and only if (y, η) ∈ E.

Algorithm 1 Overview of Benders Decomposition algorithm

1: t← 1, Π̂t ← ∅.
2: Solve MP with Π̂t in place of Π and obtain master solution (y(t), η(t)).
3: Find a certificate (π̂, π̂0) for infeasibility of (y(t), η(t)) using CGSP (2.3).
4: if certificate (π̂, π̂0) exists then
5: Set Π̂t+1 ← Π̂t ∪ {(π̂, π̂0)}, t← t+ 1 and go to step 2.
6: else
7: Stop. (y(t), η(t)) is an optimal solution for MP.
8: end if

At step 3 of Algorithm 1, CGSP provides a logical answer to whether the current master

problem solution (y(t), η(t)) is feasible (and hence optimal) for MP. But, not every logical

answer is equally useful. In other words, to prove suboptimality of (y(t), η(t)), CGSP produces
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a certificate (π̂, π̂0) ∈ Π such that π̂⊤(b − By(t)) + π̂0(f
⊤y(t) − η(t)) > 0, without providing

further information about how “far” (y(t), η(t)) is from being optimal. Moreover, not only

do we want to discard the trial solution (y(t), η(t)), but we also want to rule out as many

other unacceptable values of (y, η) as possible. Hence, we may phrase the key question of

the BD algorithm as: How should we select a certificate (π̂, π̂0) ∈ Π that conveys additional

information about the sub-optimality of (y(t), η(t)), so that we may exploit this information

to speed up the convergence of the BD algorithm? Our order of business in this article is

to address this question by introducing selection strategies that exploit the properties of

promising cuts in a computationally tractable manner.

At each iteration of the BD Algorithm 1, we wish to separate (if possible) the incumbent

point (y(t), η(t)) from the epigraph E . As a result of Proposition 2.1, we may equivalently

define E as

E = {(y, η) : (y, η) ∈ H(π̂, π̂0) ∀(π̂, π̂0) ∈ Π}.

In cutting-plane theory, the separation problem produces a hyperplane (or a cut) that lies

between a given point and a closed convex set. In our application, we want to separate the

incumbent point (y(t), η(t)) from the closed convex set E using a hyperplane ∂(π, π0) for some

(π, π0) ∈ Π. Note that infinitely many such hyperplanes may exist, thus one needs a selection

criterion for producing the cut that “best” separates (y(t), η(t)) from E . While there is no

universal definition of “best” cut, a “good” cut should satisfy some natural requirements.

First, it should be a supporting hyperplane for E , in the sense that it should touch E at some

point. We further postulate that the cut must be deep, in the sense that it is as far from

the given point (y(t), η(t)) as possible. We begin in Section 2.1.2 with the Euclidean distance

as our measure of cut depth, then generalize to distances induced by ℓp-norms in Section

2.1.3. Finally, in Section 2.1.4 we present an alternative primal perspective of deepest cut

generation, and derive some important properties of deepest cuts. Specifically, we show that

deepest cuts not only support E , but also (i) minimally resolve infeasibility in the system
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FSP, (ii) amount to optimality cuts, and (iii) are relatively flat thus, help close the gap

quickly.

2.1.2 Euclidean Deepest Cuts

As our measure of cut depth, we start with the Euclidean distance from the point (ŷ, η̂) to

the hyperplane ∂(π, π0). Euclidean norm is the standard norm used in convex analysis, and

measuring depth using this norm, also known as scaled violation, is also common practice

in cutting-plane theory. For example, to produce deep facet-defining cuts for solving mixed-

integer programs, Balas et al. (1993) and Cadoux (2010) use the Euclidean distance between

the optimal vertex of the current relaxation and candidate separating hyperplanes; in a

similar spirit, we also call the cuts we generate deepest Benders cuts.

Let d(ŷ, η̂|π, π0) be the Euclidean distance between the point (ŷ, η̂) and the hyperplane

∂(π, π0). From basic linear algebra, we know that the Euclidean distance from the point ẑ

to the hyperplane α⊤z + β = 0 is |α⊤ẑ+β|
∥α∥2 . Hence,

d(ŷ, η̂|π, π0) =
|π⊤(b−Bŷ) + π0(f

⊤ŷ − η̂)|
∥(π0f⊤ − π⊤B, π0)∥2

=
π⊤(b−Bŷ) + π0(f

⊤ŷ − η̂)

∥(π0f⊤ − π⊤B, π0)∥2
, (2.7)

where the last equality holds because (ŷ, η̂) must (except at the last Benders iteration) violate

the constraint π⊤(b − By) + π0(f
⊤y − η) ≤ 0, hence π⊤(b − Bŷ) + π0(f

⊤ŷ − η̂) ≥ 0. To

produce a deepest cut, we choose (π, π0) ∈ Π which maximizes this distance (i.e., depth) via

[SSP] d∗(ŷ, η̂) = max
(π,π0)∈Π

d(ŷ, η̂|π, π0),

which we refer to as the separation subproblem (SSP). As we will show in §2.1.4, maximizing

the distance of a separating hyperplane from the point (ŷ, η̂) coincides with finding the

minimum distance of (ŷ, η̂) from the epigraph E ; thus we call d∗(ŷ, η̂) the (Euclidean) distance
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of (ŷ, η̂) from the epigraph E . At iteration t of the BD algorithm, if d∗(y(t), η(t)) > 0, then we

can separate (y(t), η(t)) from E , otherwise (y(t), η(t)) ∈ E . Consequently, if d∗(y(t), η(t)) = 0,

then (y(t), η(t)) is an optimal solution for MP.

Figure 2.1(a) illustrates how we select a certificate (π, π0) by finding the hyperplane that

is the maximum Euclidean distance from the master problem’s solution (y(t), η(t)). For

demonstration purposes, we assume y is a continuous one-dimensional variable in this toy

example. In this figure, the dark and light polygons represent E and the approximation

of E at iteration t (i.e., Et), respectively. (y(t), η(t)) is the current solution of the master

problem to be separated. The dashed lines represent the hyperplanes associated with the

dual solutions. The dual solution selected by the classical Benders subproblem is (π1, π1
0)

whereas the solution selected based on Euclidean distance is (π2, π2
0).

As illustrated in Figure 2.1(b), the hyperplane produced by classical DSP supports E at

(y(t), Q(y(t))). While the deepest cuts also support E (see Proposition 2.3), it does not

necessarily do so at (y(t), Q(y(t))), but at a point which we call the projection of (y(t), η(t))

onto E . As illustrated in Figure 2.1(a), dual solutions (π1, π1
0), (π

2, π2
0) and (π3, π3

0) (and their

convex combinations) are the candidate solutions evaluated based on the Euclidean distance

of their associated hyperplanes to the point (y(t), η(t)), and (π2, π2
0) is selected as the deepest

cut. It is worth pointing out that in the literature, the question of which Benders cut to

select usually arises when the classical DSP admits alternative optimal solutions (Magnanti

and Wong 1981). However, even when the classical DSP admits a unique optimal solution

(as in the given example), the deepest cut may not coincide with the classical Benders cut.

2.1.3 ℓp-norm Deepest Cuts

We now generalize our notion of distance to that induced by any ℓp-norm. Our derivation

begins with the observation that the denominator in (2.7) is the ℓ2-norm of the vector of

19



(a) Deepest Benders cut (b) Classical Benders cut

Figure 2.1: Deepest (a) versus classical (b) Benders cut selection.

coefficients (π0f
⊤− π⊤B, π0). If we replace this norm with a general ℓp-norm for p ≥ 1, and

define dℓp as

dℓp(ŷ, η̂|π, π0) =
π⊤(b−Bŷ) + π0(f

⊤ŷ − η̂)

∥(π0f⊤ − π⊤B, π0)∥p
, (2.8)

then an ℓp-norm deepest cut (or ℓp-deepest cut for short) can be produced by solving the

following separation problem

[SSP] d∗ℓp(ŷ, η̂) = max
(π,π0)∈Π

dℓp(ŷ, η̂|π, π0). (2.9)

With this definition, dℓp still measures the distance of (ŷ, η̂) from the hyperplane ∂(π, π0),

but unlike for the special case where p = 2 (Euclidean distance), the distance measure is no

longer the ℓp-distance. In fact, as Proposition 2.2 shows below, dℓp measures the distance

between (ŷ, η̂) and the hyperplane ∂(π, π0) with respect to the dual norm ℓq, where
1
p
+ 1

q
= 1.

The proof of this result relies on the definition of dual norm and is proven for general norms

(including standard ℓp norms), but to be expositionally consistent we state the results for

standard ℓp norms.

Proposition 2.2. Given q ≥ 1 and ẑ ∈ Rn+1, the minimum ℓq-distance from the point ẑ
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to the points on the hyperplane α⊤z + β = 0 is

min
z:α⊤z+β=0

∥z − ẑ∥q =
|α⊤ẑ + β|
∥α∥p

,

where ℓp is the dual norm of ℓq (i.e., 1
p
+ 1

q
= 1).

Note that, as given in the proof of Proposition 2.2, we may extend the definition of deepest

cuts by replacing the denominator in (2.8) with general norms (e.g., a composition of ℓp-

norms with different p for different subsets of the components of (π0f
⊤−π⊤B, π0)). However,

for clarity and simplicity of exposition, we restrict consideration in the remainder of this

chapter to standard ℓp-norms.

Some choices of p for ℓp-deepest cuts merit special attention. In particular, for p = 1 and

p =∞, dℓp defined by (2.8) measures the ℓ∞ and ℓ1 distance of (ŷ, η̂) from the hyperplane

∂(π, π0), respectively. As we will show in §2.3.1, these norms are in general computationally

favorable over the ℓ2-norm since they result in linear separation subproblems.

As well, note that π0 is the coefficient of η and π⊤B − π0f
⊤ is the coefficient of y in the cut

π⊤b ≤ (π⊤B−π0f
⊤)y+π0η. Therefore, deepest cuts effectively cut off the point (ŷ, η̂) while

minimizing the coefficients of the variables in the produced constraint. In particular, when

the ℓ1-norm is employed, producing deepest cuts mimics the idea of producing maximally

nondominated Benders cuts introduced by Sherali and Lunday (2013), where the cut is

maximally nondominated in the sense typically used in the cutting-plane theory for integer

programs.

2.1.4 A Primal Projection Perspective of the Separation Problem

We now provide another view of deepest cuts, which will be important for analyzing their

properties and paves the way for devising algorithms to produce them efficiently. By strong
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duality, we establish a duality between separation and projection as stated in Theorem 2.1

below.

Theorem 2.1. Separation problem (2.9) is equivalent to the following Lagrangian dual prob-

lem

[Primal SSP] min ∥(y − ŷ, η − η̂)∥q

s.t. η ≥ c⊤x+ f⊤y

Ax ≥ b−By

x ≥ 0,

(2.10)

in which (y, x, η) are the variables and ℓq is the dual norm of ℓp.

The following result follows from strong duality and the definition of E .

Corollary 2.1. d∗ℓp(ŷ, η̂) measures the ℓq distance of (ŷ, η̂) from E. That is,

d∗ℓp(ŷ, η̂) = min
(y,η)∈E

∥y − ŷ, η − η̂∥q. (2.11)

Let (ỹ, η̃) be the optimal solution of the Primal SSP. In convex analysis, the solution of (2.11)

for q = 2 is known as the projection of (ŷ, η̂) onto E . Thus, we refer to (ỹ, η̃) henceforth as the

ℓq-projection of (ŷ, η̂), and refer to (2.11) as the projection subproblem. Figure 2.2 illustrates

these projections for different values of q. In this figure, the dark and light polygons represent

E and the approximation of E at iteration t, respectively. The point (y(t), η(t)) is the current

solution of the master problem to be separated. Finding the ℓp-deepest cut (i.e., normalizing

dual solutions with ℓp-norm) accounts for resolving infeasibility in FSP (in the primal space)

by finding a point in E with minimum ℓq-distance to (y(t), η(t)), where ℓq is the dual norm

of ℓp. The red lines represent the contour lines of the objective value of SSP, which also

correspond to ℓq-balls around (y(t), η(t)). Observe that the ℓq-projection or the ℓp-deepest
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cut might not be unique for p = 1 (q = ∞) or p = ∞ (q = 1). The following proposition

states that deepest cuts support E at ℓq-projections, even when the projection or the cut are

not unique.

Proposition 2.3. Let (ỹ, η̃) ∈ E be an ℓq-projection of (ŷ, η̂) onto E. Then, any ℓp-deepest

cut separating (ŷ, η̂) from E supports E at (ỹ, η̃).

From the duality between separation and projection established in the above Theorem and

Proposition, we derive the following important technical results.

Deepest cuts minimally resolve infeasibility in FSP. By Theorem 2.1 and as illus-

trated in Figure 2.2, producing an ℓp-deepest cut amounts to finding the point (ỹ, η̃) of least

ℓq-distance from (ŷ, η̂) for which a feasible solution x exists that satisfies the system

{
c⊤x ≤ η̃ − f⊤ỹ; Ax ≥ b−Bỹ; x ≥ 0

}
.

Hence, producing a deepest cut can be viewed as resolving infeasibility of FSP (2.2) through

minimal deviation from (ŷ, η̂) with respect to the ℓq-norm. If FSP is feasible for (ŷ, η̂) (i.e.,

if ∥ỹ − ŷ, η̃ − η̂∥q = 0), then (ŷ, η̂) is optimal for MP. Effectively, d∗ℓp(ŷ, η̂) measures how far

(ŷ, η̂) is from being optimal by measuring the minimal deviation in (ŷ, η̂) that renders FSP

feasible. Thus, producing a deepest cut assesses how inaccurate our current guess of the

optimal solution is.

Sparsity, density and flatness of deepest cuts. We have empirically observed that

the deepest cuts generated at the early stages of the BD algorithm tend to be (relatively)

flat. That is, the coefficients of the y-variables in the cut are mostly zero, and in some cases

the cut is completely flat, i.e., all y coefficients are zero. Here, we provide a justification

for this observation and discuss its implications. Along this vein, we first note the following
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(a) ℓ1-deepest cut (p = 1, q =∞) (b) ℓ2-deepest cut (p = 2, q = 2) (c) ℓ∞-deepest cut (p = ∞, q =
1)

Figure 2.2: Primal and dual perspectives of the separation problem.

property of ℓ1-deepest cuts.

Proposition 2.4. For sufficiently small η̂, the ℓ1-deepest cut separating (ŷ, η̂) from E is the

flat cut η ≥ Q∗, where Q∗ = miny Q(y) is the optimal value of Q for unrestricted y.

Proposition 2.4 implies that, at early iterations of the BD algorithm, an ℓ1-deepest cut can

provide a lower bound of at least Q∗. Since Q∗ is obtained by relaxing y ∈ Y , Q∗ is at most

equal to the optimal value of the LP relaxation of OP. While the quality of this bound is

problem-specific, we have observed that the bound is indeed very close to the optimal value

of OP when the integrality gap is low (e.g., in facility location problems).

More generally, for small p (i.e., large q) and relatively small η̂, we may approximate

∥(y − ŷ, η − η̂)∥q ≈ η − η̂. Therefore, in line with Proposition 2.4, we can expect that the

coefficients of the y-variables in the ℓp-deepest cuts (i.e., π̂0f
⊤ − π̂⊤B) will be close to zero,

which means that the deepest cuts are relatively sparse. This observation is also in line

with using Lasso or ℓ1-regularization in machine learning and statistics for producing sparse

solutions (see e.g., Tibshirani 1996). By the same token, large values of p (e.g., p = ∞)

induce dense cuts, in that the coefficients of the y variables are mostly non-zero.
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Deepest cuts are more likely to be optimality cuts than feasibility cuts. In our

experiments with deepest cuts, we found that they are likely to be optimality cuts, even when

classical Benders produces a feasibility cut (i.e., even when ŷ /∈ dom(Q)). Intuitively, since

at each iteration of BD, η(t) is an under-estimator of the convex piece-wise linear function Q

and deepest cuts support E , the coefficient of η in a deepest cut (namely, π0) is most likely

non-zero (i.e., the cut is an optimality cut). More specifically, Propositions 2.5 and 2.6 below

provide sufficient conditions for when deepest cuts are guaranteed to be optimality cuts.

Proposition 2.5. Let Q∗ = min
y

Q(y) be the optimal unrestricted value of Q. Provided that

η̂ < Q∗ and p > 1, the ℓp-deepest cut(s) separating (ŷ, η̂) are optimality cuts for any arbitrary

ŷ (i.e., even if ŷ /∈ dom(Q)).

Proposition 2.6. Assume the ℓq-projection of (ŷ, η̂) onto E is unique, and denote it by the

point (ỹ, η̃). If η̂ < η̃, then the ℓp-deepest cuts separating (ŷ, η̂) are optimality cuts for any

arbitrary ŷ (i.e., even if ŷ /∈ dom(Q)).

Proposition 2.5 guarantees that deepest cuts are optimality cuts when η̂ is sufficiently small.

Proposition 2.6 further suggests that, even if η̂ is not very small, deepest cuts are more

likely to be optimality cuts (note that the ℓq-projection is always unique for 1 < q < ∞).

This is particularly appealing from a practical standpoint, as the contribution of Benders

optimality cuts to closing the gap is usually more pronounced than that of feasibility cuts

(see e.g., Saharidis and Ierapetritou 2010, de Sá et al. 2013). This property of deepest cuts is

in line with the cut generation strategy proposed by Saharidis and Ierapetritou (2010), where

to speed up convergence, they produce an additional optimality cut whenever a feasibility

cut is needed.

25



2.2 General Benders Distance Functions

In this section, we introduce a general distance function based on duality theory, which

we call a Benders distance function. Such a distance function (a) identifies whether the

incumbent point (ŷ, η̂) is inside, outside, or on the boundary of the epigraph E , and (b)

if outside, conveys how “far” the incumbent point is from the boundary. Crucially, we do

not explicitly define the metric on which a Benders distance function is based; this is by

design, and interestingly is not needed. In fact, we show in Section 2.2.1 that so long as a

monotonicity property linked to convexity holds, then a sufficient notion of distance exists.

Then, in Section 2.2.2 we introduce an important special class of Benders distance function,

normalized distance functions, which we will use in Section 2.3 to connect deepest cuts with

other types of Benders cuts from the literature. Finally, in Section 2.2.3 we introduce a

distance-based BD algorithm and study its convergence properties.

2.2.1 Definition

We define a Benders distance function, which is a generalization of the geometric distance

functions induced by ℓp-norms presented earlier, as follows.

Definition 2.1 (Benders distance function). Function d(ŷ, η̂|π, π0) : Rn+1 ×Π→ R is

a Benders distance function if (i) it certifies d(ŷ, η̂|π, π0) > 0 iff (ŷ, η̂) is in the exterior of

H(π, π0), d(ŷ, η̂|π, π0) = 0 iff (ŷ, η̂) is on the boundary of H(π, π0), and d(ŷ, η̂|π, π0) < 0 iff

(ŷ, η̂) is in the interior of H(π, π0), and (ii) d∗(ŷ, η̂) defined below is convex:

[BSP] d∗(ŷ, η̂) = sup
(π,π0)∈Π

d(ŷ, η̂|π, π0). (2.12)

Definition 2.2 (Epigraph distance function). For a given Benders distance function

d, we call d∗ as defined in (2.12) the epigraph distance function induced by d.
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Proposition 2.7. Epigraph distance function d∗ certifies d∗(ŷ, η̂) > 0 iff (ŷ, η̂) is in the

exterior of E, d∗(ŷ, η̂) = 0 iff (ŷ, η̂) is on the boundary of E, and d∗(ŷ, η̂) < 0 iff (ŷ, η̂) is in

the interior of E.

By Proposition 2.7, d∗ maps each point (ŷ, η̂) ∈ Rn+1 to a value in the extended real number

line (i.e., R∪{±∞}) such that the sign of d∗(ŷ, η̂) determines if (ŷ, η̂) is in the exterior (sign =

+1), interior (sign = −1) or on the boundary of E (sign = 0). The convexity requirement

for d∗ is tied to the epigraph distance function d∗ being monotonic in the following sense.

Definition 2.3 (Monotonicity of epigraph distance function). For arbitrary (ŷ, η̂) /∈

E and (y0, η0) ∈ ∂E (boundary of E) such that the open line segment between (ŷ, η̂) and

(y0, η0) lies in the exterior of E, define d∗(α) = d∗((1 − α)(y0, η0) + α(ŷ, η̂)). We say the

epigraph distance function d∗ is monotonic if d∗(α1) ≤ d∗(α2) for any 0 ≤ α1 < α2 ≤ 1.

We say d∗ is strongly monotonic if d∗(α1) < d∗(α2) for any 0 ≤ α1 < α2 ≤ 1.

Intuitively, and as illustrated in Figure 2.3(b), (strong) monotonicity of d∗ implies that as

α increases, we move away from the boundary of E and distance increases (i.e., d∗ becomes

larger). Theorem 2.2 formally establishes that d∗(ŷ, η̂) can be viewed as how far (ŷ, η̂) is

from the boundary of E . The proof of this result uses the fact that d∗ is a convex function.

Theorem 2.2. Epigraph distance functions are monotonic.

We end this section by pointing out that our definition of Benders distance functions is

sufficiently general to allow us to bring several well-known cut selection strategies under one

umbrella, which we will discuss in further detail in Section 2.3. However, in that section we

will show that classical Benders cuts, which we would not consider particularly “deep”, can

also be generated using a Benders distance function. In essence, just because a function may

be classified as a Benders distance function does not automatically mean that strong, deep

cuts will be generated using it. For this reason, we henceforth reserve the term “deepest
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cuts” to mean cuts that are produced based on geometric distance functions (i.e., dℓp), which

correspond to what we believe most people would intuitively consider “deep cuts”. Finally,

we remark that the epigraph distance functions induced by dℓp are strongly monotonic, which

draws another distinction between these distance functions and general Benders distance

functions.

Proposition 2.8. Epigraph distance function d∗ℓp (2.9) is strongly monotonic for any p ≥ 1.

2.2.2 Normalized Distance Functions and Normalization Func-

tions

We now introduce an important special class of Benders distance functions, which we call

normalized Benders distance functions. This is a generalization of the geometric ℓp-norm-

based Benders distance functions that we introduced in Section 2.1.3. The distance functions

in this class are constructed by replacing the denominator of the distance function dℓp (2.8)

with a general normalization function which is only required to be a positive homogeneous

function of the dual variables.

Definition 2.4 (Normalized distance function). Let dg(ŷ, η̂|π, π0) =
π⊤(b−Bŷ)+π0(f⊤ŷ−η̂)

g(π,π0)

where g is a positive homogeneous function (i.e., g(απ, απ0) = αg(π, π0) for any α ≥ 0). We

call dg a normalized distance function, and refer to g as its normalization function.

The normalization function g governs the behavior of the distance function, and quantifies

our perception of the quality of the cut it produces. Homogeneity of g is critical. Indeed,

with constant (i.e., non-homogeneous) g(π, π0) = 1, BSP is equivalent to the näıve CGSP

(2.3), for which d∗(y(t), η(t)) ∈ {0,+∞}. In this case, d∗ is simply a characteristic function

of E , which, regardless of the quality of the cut, merely provides a binary answer to whether

or not (y(t), η(t)) is the optimal solution, without any further indication of how far (y(t), η(t))

is from being optimal.
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For a positive homogeneous function g, let Πg = {(π, π0) ∈ Π : g(π, π0) ≤ 1} be the cone

Π truncated by the constraint g(π, π0) ≤ 1, and define the normalized separation problem

(NSP) as

[NSP] max
(π,π0)∈Πg

π⊤(b−Bŷ) + π0(f
⊤ŷ − η̂). (2.13)

We first note the following correspondence between normalized distance functions and nor-

malized separation problems, which sheds light on the role and desirable properties of the

normalization function g, and paves the way for reformulating the separation problems. It

operates by generalizing the Charnes-Cooper transformation (Charnes and Cooper 1962) for

linear-fractional programs.

Proposition 2.9. Let dg(ŷ, η̂|π, π0) = π⊤(b−Bŷ)+π0(f⊤ŷ−η̂)
g(π,π0)

be a normalized distance func-

tion. Then, the separation problem (2.12) is equivalent to the normalized separation problem

(2.13). That is,

d∗g(ŷ, η̂) = max
(π,π0)∈Πg

π⊤(b−Bŷ) + π0(f
⊤ŷ − η̂).

Additionally, g(π, π0) ≤ 1 is binding at optimality.

From a polyhedral perspective, Proposition 2.9 shows the equivalence between choosing a

distance function and truncating the cone Π with a specific normalization function. Note that

all general norms (including the ℓp-norms introduced in §2.1.3) are normalization functions.

Figure 2.3(a) illustrates the effect of ℓ1-, ℓ2- and ℓ∞-norms on truncating the cone Π. For

illustration, the space of dual variables (π, π0) ∈ Π is transformed from Rm+1 to the Rn+1-

space via (π̃, π̃0) = (π0f
⊤−π⊤B, π0) and Π is mapped to this space as Π̃ = {(π̃, π̃0) ∈ Rn+1 :

(π̃, π̃0) = (π0f
⊤ − π⊤B, π0), (π, π0) ∈ Π}.

From a computational point of view, Proposition 2.9 shows that, for convex g, BSP can be
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(a) Normalization functions truncate Π. (b) Epigraph distance functions are monotonic.

Figure 2.3: (a) Effect of ℓ1-norm (unit simplex), ℓ2-norm (sphere) and ℓ∞-norm (box) on
truncating the cone Π. (b) As we move away from the boundary of E , d∗ gets larger.

converted into a problem of optimizing a linear function over a convex set Πg. Additionally,

since Πg does not depend on (y(t), η(t)), one may leverage the reoptimization capabilities of

the solver whenever possible. For instance, a certificate produced at iteration t of the BD

algorithm can be used for warm starting the separation subproblem at iteration t + 1. In

particular, a convex piece-wise linear function g(π, π0) amounts to solving linear programs

with different objective function coefficients at each iteration, thus can be reoptimized using

a primal simplex method. We provide further details in §2.3.

Finally, as stated in Proposition 2.10 below, any normalized distance function induces a

monotonic epigraph distance function.

Proposition 2.10. Normalized distance function dg induces a monotonic epigraph distance

function d∗g for any normalization function g.
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2.2.3 Distance-Based Benders Decomposition Algorithm

We present an overview of our proposed Benders decomposition algorithm based on general

Benders distance functions in Algorithm 2. Theorem 2.3, below, establishes finite conver-

gence of this algorithm for a specific practical class of Benders distance function.

Theorem 2.3. Let dg be a Benders normalized distance function with a convex piece-wise

linear normalization function g. Then BD Algorithm 2 converges to an optimal solution or

asserts infeasibility of MP in a finite number of iterations.

In particular, Algorithm 2 is finitely convergent when g is a linear function of (π, π0) (see

§2.3.2 for such linear functions) or when ℓ1- or ℓ∞-deepest cuts are produced. For other

cases (e.g., Euclidean deepest cuts), one may choose to employ Euclidean deepest cuts in

conjunction with known finitely convergent separation routines (e.g., classical BD cuts) to

guarantee convergence while continuing to benefit from the desirable properties of deepest

cuts.

Algorithm 2 Distance-based Benders Decomposition algorithm

1: Select a Benders distance function d.
2: t← 1, Π̂t ← ∅
3: Solve MP with Π̂t in place of Π and obtain master solution (y(t), η(t)).
4: Solve BSP (2.12) to obtain d∗(y(t), η(t)) and the optimal solution (π̂, π̂0).
5: if d∗(y(t), η(t)) > 0 then
6: Set Π̂t+1 ← Π̂t ∪ {(π̂, π̂0)}, t← t+ 1 and loop to Step 3.
7: else
8: Stop. (y(t), η(t)) is an optimal solution for MP with optimal value η(t).
9: end if
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2.3 Reformulations and Connections to other Cut Se-

lection Strategies

In this section, we present some reformulations that may be used to implement distance-

based cuts, as well as highlight special cases of normalized distance functions which link

our concept of Benders distance function to other cut selection strategies in the literature.

Section 2.3.1 begins by presenting reformulations of the separation problems introduced in

Section 2.1, which can be used to computationally generate ℓp-deepest cuts using linear or

quadratic programming solvers. Then, Section 2.3.2 considers the special case of normalized

distance functions where the normalization function is linear, and examines how specific

choices of linear coefficients correspond to cut selection strategies in the literature.

2.3.1 ℓp-deepest Cuts

We first show how SSP (2.9) can be cast as linear/quadratic programs using standard re-

formulation techniques. By homogeneity of ℓp-norms, using Proposition 2.9 we may restate

SSP (2.9) as

max
(π,π0)∈Π

π⊤(b−Bŷ) + π0(f
⊤ŷ − η̂)

s.t. ∥(π0f
⊤ − π⊤B, π0)∥p ≤ 1.

(2.14)

Using this reformulation, we may express the constraint ∥(π0f
⊤ − π⊤B, π0)∥p ≤ 1 as a set

of linear/quadratic constraints depending on the choice of p as follows.

• For p =∞, we have ∥(π0f
⊤−π⊤B, π0)∥∞ = max

{
π0, max

j=1,...,n
{|π0fj − π⊤B.j|}

}
, where

B.j is the j’th column of matrix B. Therefore, ∥(π0f
⊤ − π⊤B, π0)∥∞ ≤ 1 can be

represented by the 2n linear constraints −1 ≤ π0fj − π⊤B.j ≤ 1 for each j, and a

32



bound constraint π0 ≤ 1.

• For p = 1, we may rewrite ∥(π0f
⊤ − π⊤B, π0)∥1 = π0 +

∑n
j=1 |π0fj − π⊤B.j| ≤ 1

as π0 +
∑n

j=1 τj ≤ 1 by introducing n new variables τ ∈ Rn
+ and 2n constraints

−τ ≤ π0f − π⊤B ≤ τ .

• For p = 2, one only needs to rewrite ∥(π0f
⊤ − π⊤B, π0)∥2 ≤ 1 as π2

0 +
∑n

j=1(π0fj −

π⊤B.j)
2 ≤ 1 to cast (2.14) as a convex quadratically constrained linear program.

• For p > 2 and integer, note that ∥(π0f
⊤−π⊤B, π0)∥p ≤ 1 is equivalent to πp

0+
∑n

j=1 τ
p
j ≤

1, where −τj ≤ π0fj − π⊤B.j ≤ τj. The constraint πp
0 +

∑n
j=1 τ

p
j ≤ 1 can be expressed

as quadratic constraints using a series of transformations. For instance, with p = 4, it

is not difficult to see that π4
0 +
∑n

j=1 τ
4
j ≤ 1 may be expressed using auxiliary variables

{βj}nj=0 as the following set of second-order constraints; similar transformations may

be used for other values of p.

β2
0 +

n∑
j=1

β2
j ≤ 1, π2

0 ≤ β0, τ 2j ≤ βj ∀j.

2.3.2 Linear Pseudonorms

Consider the class of normalization functions defined by choosing parameters (w,w0) such

that g(π, π0) = π⊤w + π0w0 ≥ 0 for all (π, π0) ∈ Π. In this subsection, we study how

different values of the (w,w0) parameters impact the resulting normalized Benders distance

function, as well as how the cuts produced relate to other cut selection strategies in the

literature. Note that a linear function g of this form satisfies most axioms of a norm; that

is, g is subadditive (i.e., g(u+ v) ≤ g(u) + g(v)), homogeneous (i.e., g(αu) = αg(u) for any

α ≥ 0), and positive over Π, but not necessarily positive definite (i.e., g(π, π0) = 0 does not

necessarily imply (π, π0) = 0, unless (w,w0) > 0). Hence, we call g a linear pseudonorm

over Π. With g(π, π0) = π⊤w + π0w0, the separation problem (2.13) can be stated as the
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following linear program

max π⊤(b−Bŷ) + π0(f
⊤ŷ − η̂)

s.t. π⊤A ≤ π0c
⊤

π⊤w + π0w0 = 1

π ≥ 0, π0 ≥ 0,

(2.15)

which contains only one additional variable and one additional constraint compared to DSP

(1.5) in the classical BD algorithm. Note that the normalization constraint is an equality

constraint since g(π, π0) is binding at optimality.

Separation problem (2.15) is similar to the MIS (minimal infeasible subsystems) subprob-

lem proposed by Fischetti et al. (2010). They derive the MIS subproblem by treating the

separation problem as approximating the minimal source of infeasibility of FSP (2.2) by

minimizing a positive linear function π⊤w+ π0w0 over the alternative polyhedron of Π (i.e.,

Π truncated by constraint π⊤(b− Bŷ) + π0(f
⊤ŷ − η̂) = 1). Therefore, the MIS subproblem

can be viewed as a special type of the Benders separation subproblem (2.12) in which the

normalization function g takes the form of g(π, π0) = π⊤w + π0w0.

As noted by Fischetti et al. (2010), the choice of the normalization coefficients (w,w0) can

have a profound impact on the effectiveness of MIS cuts. In their implementation, the

authors set w0 = 1 and initially set wi = 1, for all i = 1, . . . ,m. They further suggest that

setting wi = 0 for the null rows of B (i.e., row i such that Bij = 0 for all j) may lead to

substantial improvement in the convergence of the BD algorithm. Below, we propose four

ways for choosing parameters (w,w0) based on the parameters of the problem instance and

discuss their implications and connections to other cut selection strategies.
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2.3.2.1 Benders pseudonorm.

A trivial choice for parameters w and w0 is to set w = 0 and w0 = 1, which leads to setting

π0 = 1, thus (2.15) reduces to the dual subproblem (1.5) in the classical BD algorithm. In

other words, if we define dCB(ŷ, η̂|π, π0) =
π⊤(b−Bŷ)+π0(f⊤ŷ−η̂)

π0
, as the classical Benders (CB)

distance function, then

d∗CB(ŷ, η̂) = max
(π,π0)∈Π

dCB(ŷ, η̂|π, π0) = Q̃(ŷ) + f⊤ŷ − η̂ = Q(ŷ)− η̂.

Therefore, as illustrated in Figure 2.1(b), d∗CB(ŷ, η̂) can be geometrically interpreted as the

distance from the point (ŷ, η̂) to the boundary of E along the η-axis. Observe that, at

iteration t of BD, Q(y(t)) − η(t) ≥ UB − LB, where LB = η(t) and UB is the best upper

bound identified by the algorithm so far. Hence, d∗CB(y
(t), η(t)) estimates how far (y(t), η(t))

is from being optimal by overestimating the optimality gap. Thus, d∗CB(y
(t), η(t)) = 0 means

(y(t), η(t)) is an optimal solution to (1.4), which is exactly the stopping criterion used in the

classical BD algorithm.

2.3.2.2 Relaxed ℓ1 pseudonorm.

Expanding the ℓ1-norm as ∥(π0f
⊤−π⊤B, π0)∥1 = π0+

∑n
j=1 |π0fj−π⊤B.j| = π0+

∑n
j=1 |π0fj−∑m

i=1 πiBij| and using the triangle inequality, we obtain

∥(π0f
⊤ − π⊤B, π0)∥1 ≤ π0(1 +

n∑
j=1

|fj|) +
m∑
i=1

πi

n∑
j=1

|Bij|.

Hence, we refer to g(π, π0) = π⊤w + π0w0 with w0 = 1 +
∑n

j=1 |fj| and wi =
∑n

j=1 |Bij|

for i = 1, . . . ,m as the relaxed ℓ1 pseudonorm (and write Rℓ1 for short). Note that, since

Bij = 0 for the null rows of B, Rℓ1 automatically sets wi =
∑n

j=1 |Bij| = 0 for the null rows

of B, which is in line with the intuitive suggestion of Fischetti et al. (2010). Furthermore,
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observe that dRℓ1 defined as

dRℓ1(ŷ, η̂|π, π0) =
π⊤(b−Bŷ) + π0(f

⊤ŷ − η̂)

π⊤w + π0w0

underestimates dℓ1. Thus, maximizing dRℓ1 serves as a surrogate for maximizing dℓ1, but

by solving a simpler LP. As stated in Proposition 2.11 below, the choice of (w,w0) accord-

ing to Rℓ1 not only assigns meaningful values to the normalization parameters in the MIS

subproblem, but also leads to a geometric interpretation of the MIS subproblem.

Proposition 2.11. The following relationship between the epigraph distance functions in-

duced by dCB, dℓp, and dRℓ1 holds:

d∗CB(ŷ, η̂) = Q(ŷ)− η̂ ≥ d∗ℓ∞(ŷ, η̂) ≥ · · · ≥ d∗ℓp(ŷ, η̂) ≥ · · · ≥ d∗ℓ1(ŷ, η̂) ≥ d∗Rℓ1(ŷ, η̂).

2.3.2.3 Magnanti-Wong-Papadakos pseudonorm.

The Magnanti-Wong procedure for producing a Pareto-optimal cut using a given core point

ȳ (i.e., ȳ ∈ relint(Y )) involves solving the following subproblem (Magnanti and Wong 1981):

max
{
u⊤(b−Bȳ) : u⊤(b−Bŷ) = Q̃(ŷ), u ∈ U

}
, (2.16)

where U = {u ≥ 0 : u⊤A ≤ c⊤} and Q̃(ŷ) is obtained by solving DSP (1.5). The constraint

u⊤(b− Bŷ) = Q̃(ŷ) in (2.16) is imposed to guarantee that the dual solution u is one of the

alternative optimal solutions of the DSP induced by ŷ. However, as noted by Papadakos

(2008), one can still produce a Pareto-optimal cut by suppressing this constraint and solving

Q̃(ȳ) = max
{
u⊤(b−Bȳ) : u ∈ U

}
. (2.17)
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Note that Q̃(ȳ) − u⊤(b − Bȳ) ≥ 0 for any u ∈ U , and problem (2.17) is equivalent to

minimizing Q̃(ȳ) − u⊤(b − Bȳ). Additionally, π
π0
∈ U for any (π, π0) ∈ Π such that π0 > 0.

Consequently, one can approximate a Pareto-optimal cut when cutting off the point (ŷ, η̂)

by employing

dMWP(ŷ, η̂|π, π0) =
π⊤(b−Bŷ) + π0(f

⊤ŷ − η̂)

π0Q̃(ȳ)− π⊤(b−Bȳ)
,

as the distance function, which is equivalent to setting g(π, π0) = π⊤w+π0w0 with (w,w0) =

(Bȳ − b, Q̃(ȳ)). We refer to g(π, π0) with this choice of (w,w0) as the Magnanti-Wong-

Papadakos (MWP) pseudonorm, which further connects the distance functions to this well-

known cut selection strategy. Note that Q̃(ȳ) needs to be computed only once and that the

normalization function remains the same in the course of BD Algorithm 2.

2.3.2.4 Conforti-Wolsey pseudonorm.

Recently, Conforti and Wolsey (2019) proposed an interesting procedure for producing facet-

defining cuts using a core point. Given a core point ȳ and its optimal value Q(ȳ) = Q̃(ȳ) +

f⊤ȳ, the geometric interpretation of this idea is to find the closest point to (ŷ, η̂) on the line

segment between (ȳ, Q(ȳ)) and (ŷ, η̂) that renders FSP (2.2) feasible. In our context, their

procedure translates to solving

min λ

s.t. − c⊤x+ λ
(
Q(ȳ)− η̂ − f⊤(ȳ − ŷ)

)
≥ −η̂ + f⊤ŷ

Ax+ λB(ȳ − ŷ) ≥ b−Bŷ

x ≥ 0, 1 ≥ λ ≥ 0.

(2.18)

First, note that we may suppress λ ≤ 1 since (ȳ, Q(ȳ)) is feasible for FSP (2.2). Next,

assigning dual variable π0 to the first constraint and π to the second set of constraints, we
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may express (2.18) in its dual form as

max π⊤(b−Bŷ) + π0(f
⊤ŷ − η̂)

s.t. π⊤B(ȳ − ŷ) + π0

(
Q(ȳ)− η̂ − f⊤(ȳ − ŷ)

)
≤ 1

(π, π0) ∈ Π,

which is equivalent to employing g(π, π0) = π⊤w+π0w0 in the normalized separation problem

(2.13) with w0 = Q(ȳ) − η̂ − f⊤(ȳ − ŷ) and w = B(ȳ − ŷ). We refer to g(π, π0) with this

choice of (w,w0) as the Conforti-Wolsey (CW) pseudonorm. We remark that the coefficients

of the CW pseudonorm change as (ŷ, η̂) changes; thus, unlike other normalization functions

presented so far, one should update the normalization constraint for each new point being

separated.

2.4 Guided Projections Algorithm for ℓp-deepest Cuts

The reformulations previously presented in §2.3.1 may be used to produce ℓp-deepest cuts

using LP/QP blackbox solvers. However, unless the subproblem happens to be small or

can be decomposed into smaller subproblems, exploiting the combinatorial structure which

otherwise would be present in classical Benders subproblems is not straightforward. Since

exploiting combinatorial structure often produces an order of magnitude in speed-up for the

BD algorithm, we propose in this section a specialized iterative algorithm that produces

or approximates ℓp-deepest cuts through a series of projections guided by classical Benders

cuts.

As noted in Proposition 2.1, we can express E in terms of the classical optimality and

feasibility cuts, which means deepest cuts can be represented as combination of these cuts.

Provided that there exists an oracle for producing classical cuts efficiently, we show how
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these cuts can be used for producing deepest cuts. Recall from Theorem 2.1 that producing

an ℓp-deepest cut is equivalent to finding the ℓq-projection of the incumbent point (ŷ, η̂)

onto the epigraph E . Instead of finding this projection directly, we can iteratively guide

the projection by moving from the incumbent point to its projection on the epigraph by

successively identifing facets of the epigraph using classical Benders dual subproblems; thus,

we call this iterative procedure the Guided Projections Algorithm (GPA). GPA separates

the projection problem (2.10) into two simpler problems in a row generation manner: (a)

producing a new facet of E using classical Benders subproblems, and (b) projecting the

incumbent point (ŷ, η̂) onto these half-spaces.

Algorithm 3 provides an overview of GPA. Starting with C(0) as an initial approximation of

E , GPA first projects (ŷ, η̂) onto C(0) to obtain the intermediate projection (ỹ(0), η̃(0)). GPA

then produces a classical cut by solving DSP evaluated at ỹ(0), and adds the cut to C(0) to

obtain C(1). GPA then iterates by updating the epigraph approximation and producing new

dual solutions. Note that at iteration h, given the intermediate projection (ỹ(h), η̃(h)), the

values of ∥(ŷ, η̂)−(ỹ(h), η̃(h))∥q and ∥(ŷ, η̂)−(ỹ(h), Q(ỹ(h)))∥q provide lower- and upper-bounds

on d∗ℓp(ŷ, η̂) (i.e., the ℓq distance from (ŷ, η̂) to E), respectively. As the algorithm iterates and

C(h) becomes a tighter approximation of E , these bounds converge; thus, the intermediate

projections converge to the projection of (ŷ, η̂) onto E .

Figure 2.4 illustrates this procedure in our 1-dimensional example, where (ỹ(0), η̃(0)) = (ŷ, η̂)

is the point to be separated, (ỹ(2), η̃(2)) is its projection onto E (dark polygon), and (u(1), 1)

corresponds to the deepest cut. To find this projection and the deepest cut, we first obtain

the optimality cut defined by u(0) by solving a classical DSP induced by ỹ(0) = ŷ. We

then find the projection of (ŷ, η̂) onto this half-space to obtain (ỹ(1), η̃(1)). Repeating this

procedure for another step produces dual solution (u(1), 1) and primal solution (ỹ(2), η̃(2)).

Once GPA converges, we obtain a sequence of dual solutions {(π(h), π
(h)
0 )}, and by construc-

tion, each one of these solutions can be used for separating (ŷ, η̂) from E . Note that the dual
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Algorithm 3 Guided Projections Algorithm

1: STEP 0: Initialize C(0) ← ∅, h← 0;
2: while not converged do
3: STEP 1 (Projection): If h = 0, set (ỹ(h), η̃(h)) = (ŷ, η̂). Otherwise, find the

ℓq-projection of (ŷ, η̂) onto C(h), and let (ỹ(h), η̃(h)) be this projection.

(ỹ(h), η̃(h))← argmin
(y,η)∈C(h)

∥(y − ŷ, η − η̂)∥q (2.19)

4: STEP 2 (Cut Generation): Solve the following classical DSP:

[DSP] Q̃(ỹ(h)) = max
{
u⊤(b−Bỹ(h)) : u⊤A ≤ c, u ≥ 0

}
.

5: if DSP is bounded then
6: Let u(h) be an optimal solution to DSP and set (π(h), π

(h)
0 )← (u(h), 1)

7: else
8: Let v(h) be an optimal ray to DSP and set (π(h), π

(h)
0 )← (v(h), 0)

9: end if
10: STEP 3 (Epigraph Approximation): C(h+1) ← C(h) ∩H(π(h), π

(h)
0 )

11: h← h+ 1
12: end while

solution associated with the deepest cut might not be one of these solutions, but a convex

combination of them. Therefore, one can choose to add one or more of the cuts produced

by GPA to the BD master problem. Note that GPA guarantees convergence of the BD algo-

rithm, even if we terminate GPA before converging to the true projection. This is because

the cut obtained in the first iteration of this algorithm is the cut that one would produce

using the classical BD algorithm.

We remark that C(0) need not be initialized with an empty set, and the algorithm may

benefit from initializing C(0) with a few simple constraints. For instance, one can use the

cuts generated before (e.g., in separating master solutions in the previous iterations of BD)

to initialize C(0). Also, in many cases the constraints that define Y are also feasibility cuts.

For instance, the non-negativity constraints y ≥ 0 are necessary to ensure boundedness in

DSP for facility location-type problems. Therefore, one can add such constraints to C(0) as

well.
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Figure 2.4: A geometric view of Guided Projections Algorithm.

2.5 Computational Experiments

In this section, compare the performance of deepest cuts and other variants of Benders

cuts on instances of the capacitated facility location problem (CFLP), whose structure is

known to be well-suited for BD (Fischetti et al. 2016, 2017). General details for the effective

implementation of the BD algorithm are given in Appendix A.2.

2.5.1 Benchmark Instances

We used instances of the CFLP as a testbed for evaluating the performance of the BD al-

gorithm with different choices of distance functions. Facility location problems lie at the

heart of network design and planning, and arise naturally in a wide range of applications

such as supply chain management, telecommunications systems, urban transportation plan-

ning, health care systems and humanitarian logistics to count a few (see e.g., Drezner and

Hamacher 2001). Given a set of customers and a set of potential locations for the facilities,

CFLP in its simplest form as formulated below, consists of determining which facilities to
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open and how to assign customers to opened facilities to minimize cost, i.e.,

min
k∑

l=1

n∑
j=1

xljdlclj +
n∑

j=1

fjyj (2.20)

s.t.
n∑

j=1

xlj ≥ 1 ∀l (2.21)

k∑
l=1

xljdl ≤ sjyj ∀j (2.22)

xlj ≤ yj ∀l, j (2.23)

x ≥ 0, y ∈ Y, (2.24)

where fj and sj are respectively the installation cost and capacity of facility j = 1, . . . , n; dl

is the demand of customer l = 1, . . . , k; clj is the cost of serving one unit of demand from

customer l using facility j; and Y = {y ∈ {0, 1}n :
∑k

l=1 dl ≤
∑n

j=1 sjyj} is the domain of

the y variables.

We used two sets of benchmark instances from the literature:

CAP: The famous CAP data set from the OR-Library (Beasley 2021) consists of 24 small

instances with k = 50 customers and n ∈ {16, 25, 50} facilities, and 12 large instances with

n = 100 facilities and k = 1000 customers. The instances are denoted CAPx1–CAPx4, where

x ∈ {6, 7, 9, 10, 12, 13} for the small instances and x ∈ {a, b, c} for the large instances.

CST: These are instances that we randomly generated following the procedure proposed by

Cornuéjols et al. (1991). We denote each instance by tuple (n, k, r), where (n, k) pairs

were selected from {(50,50), (50,100), (100,100), (100,200), (100,500), (500,500), (100,1000),

(200,1000), (500,1000), (1000,1000)} and the scaling factor r was selected from {5, 10, 15, 20}.

For each choice of (n, k, r) we randomly generated 4 instances as follows. For each facility

j ∈ {1, . . . , n}, we randomly drew sj and fj from U [10, 160] and U [0, 90] + U [100, 110]
√
sj,

respectively, where U [a, b] represents the uniform distribution on [a, b]. For each customer
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l ∈ {1, . . . , k}, we randomly drew dl from U [5, 35]. Finally, we scaled the facility capacities

using parameter r such that r =
∑n

j=1 sj∑k
l=1 dl

. To compute the allocation costs, we placed the

customers and facilities in a unit square uniformly at random, and set clj to 10 times the

Euclidean distance of facility j from customer l.

We remark that, whenever a core point ȳ was needed (e.g., for the MWP and CW pseudonorms)

we chose the core point by setting ȳj =
1
r
+ ϵ for each j, where ϵ = 10−3 and r =

∑n
j=1 sj∑k
l=1 dl

. The

same core point was used for choosing β for scaling the η variable as described in §A.2.2.

2.5.2 Numerical Results for Standard Reformulations

We start by presenting numerical results for distance-based BD algorithms where the sepa-

ration problems are reformulated as LP/QP programs using standard transformation tech-

niques presented in §2.3 and solved using a solver without exploiting any combinatorial

structures in the problem instances. We considered nine cut selection strategies:

• ℓ1 and ℓ∞: Deepest cuts with ℓ1 and ℓ∞ norms on the coefficients. Separation problems

are transformed into linear programs according to the transformations given in §2.3.1.

• ℓ2 and ℓ4: Deepest cuts with ℓ2 and ℓ4 norms on the coefficients. Separation problems

are transformed into quadratic programs according to the transformations given in

§2.3.1.

• MIS : Distance function with linear normalization function g(π, π0) = w⊤π + w0π0,

with (w,w0) in the MIS subproblem chosen according to the default setting suggested

by Fischetti et al. (2010), that is w0 = 1, wi = 0 if the i’th row of B is all zeros and

wi = 1 otherwise.

• Rℓ1: Distance function with linear normalization function g(π, π0) = w⊤π + w0π0,

with (w,w0) in the MIS subproblem chosen according to Rℓ1 as described in §2.3.2.2.
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• MWP : Distance function with linear normalization function g(π, π0) = w⊤π + w0π0,

with (w,w0) in the MIS subproblem chosen according to MWP as described in §2.3.2.3.

• CW : Distance function with linear normalization function g(π, π0) = w⊤π + w0π0,

with (w,w0) in the MIS subproblem chosen according to CW as described in §2.3.2.4.

• CB : Classical Benders cuts which correspond to setting g(π, π0) = π0.

Table 2.1 compares the computational performance of BD with different choices of the nor-

malization functions across CAP and CST instances. Each row in Table 2.1 corresponds to

the average performance metrics over four instances. The CAP instances are formatted as

“CAPx* (n, k)”. For instance CAP6* (16,50) corresponds to CAP instances CAP61–CAP64, which

contain n = 16 facilities and k = 50 customers. The CST instances are formatted as “CST

(n, k, r)”, which correspond to four randomly generated instances with n facilities, k cus-

tomers, and capacity/demand scaling factor r. In these experiments, we have used the small

and moderately sized instances of these data sets (i.e., with at most k = 200 customers) to

showcase the quality of the cuts produced based on each normalization function.

The results provided in Table 2.1 highlight the effectiveness of ℓp-deepest cuts in reducing

the number of cuts compared to CB and MIS cuts with different choices of the normalization

coefficients. This is particularly pronounced with p = 1 and p = 2 in CAP instances, while

all choices of p ∈ {1, 2, 4,∞} perform well in CST instances. A surprising result is that

the default choices of normalization coefficients in MIS suffers from producing weak cuts

in the CAP instances, but performs well in the CST instances. On the other hand, when

the normalization coefficients are chosen according to MWP, CW or Rℓ1 pseudonorms, MIS

subproblems perform significantly better. In fact, the best performance in the CST instances

across all normalization functions is achieved when Rℓ1 or CW pseudonorms are used.

In terms of computation time, MWP, CW, Rℓ1, and CB yield the best overall computation

time in CAP instances, followed by ℓ1- and ℓ∞-deepest cuts in second place. This is because
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although deepest cuts are often more effective (particularly ℓ1-deepest cuts in the CAP in-

stances), generating these cuts is often computationally more expensive than MWP, CW,

Rℓ1, and CB, which require solving simpler LPs. Similar observations can be made in CST

instances, except ℓ∞-deepest cuts along with Rℓ1 and CW cuts achieve the best computation

times. As expected, since ℓ2- and ℓ4-deepest cuts require solving relatively large quadratic

programs, their computation times do not justify the effectiveness of the cuts. These obser-

vations necessitate resorting to a method such as GPA capable of exploiting the structural

properties of the problem.

2.5.3 Numerical Results for the Guided Projections Algorithm

We now present computational results for the BD algorithm when ℓp-deepest cuts are gen-

erated using the Guided Projections Algorithm 3. Our goal is to assess the effectiveness

of GPA in exploiting the combinatorial structure of a problem while producing ℓp-deepest

cuts for different choices of p. The capacitated facility location problem, which we use in

our tests, (2.20)–(2.24) exhibits combinatorial structures that can be exploited when solving

classical Benders subproblems. Since our intent is to isolate the effect of deepest cuts, we

do not employ stabilization techniques in our numerical tests, which would complicate the

dynamics and make conclusions harder to draw. A list of such techniques can be found

in (Fischetti et al. 2017) and a comprehensive study of their impacts in conjunction with

deepest cuts is left to future work.

For a given (fractional) solution ŷ, we may derive a Benders cut efficiently by solving the

subproblem in the primal space as follows. First, note that constraints (2.22) can be treated

as bounds on the primal variables x. Consequently, it suffices to update these bounds based

on values of ŷ and reduce the number of constraints in the primal subproblem from n+k+nk

to n+k constraints. The resulting problem is a transportation problem, which can be solved
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Table 2.1: Performance comparison of BD with different distance functions on CAP and
CST instances. Separation problems are solved using a LP/QP solver without exploiting
combinatorial structure.

efficiently for large instances using specialized algorithms. In our implementation, however,

we have used CPLEX for solving the transportation problems since it benefits from better
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warm starting. Let ûD be the optimal dual solution associated with the demand constraints

(2.21) obtained by the solver. Given ûD, as noted by several authors (see e.g., Cornuéjols

et al. 1991, Fischetti et al. 2016), the Benders cut takes the form

η ≥
k∑

l=1

ûD
l +

n∑
j=1

(
fj + κj(û

D)
)
yj, (2.25)

where κj(û
D) is the optimal value of the continuous knapsack problem

κj(û
D) = min

{
k∑

l=1

(dlclj − ûD
l )αl :

k∑
l=1

αldl ≤ sj, α ∈ [0, 1]k

}
,

which can be solved efficiently in O(k) time by finding the weighted median of the ratios

{clj −
ûD
l

dl
} using the procedure given in Balas and Zemel (1980).

Each iteration of GPA (Algorithm 3) for producing an ℓp-deepest cut involves finding an

ℓq-projection (with q such that 1
p
+ 1

q
= 1), and producing a classical cut using (2.25). We

terminate Algorithm 3 when the ℓq-projection (ỹ(h), η̃(h)) at iteration h of GPA is sufficiently

close to E as mentioned in §2.4, or after 10 iterations. We considered three choices for ℓp-

deepest cuts with p ∈ {1, 2,∞}. We also considered the option of switching to classical cuts

after the optimality gap falls below a certain threshold (5% in our experiments) to validate

the intuitions provided in §2.1.4 which suggest that deepest cuts are more effective at the

early iterations of the BD algorithm. Table 2.2 compares the computational results of six

variants of BD equipped with GPA for producing ℓp-deepest cuts (with or without switching

to classical cuts) with classical Benders (CB) across the CAP and CST benchmark instances.

To showcase the benefits of exploiting the structural properties of the problem at a large

scale, we have included the large instances of these data sets (i.e. up to 1000 facilities and

customers) in Table 2.2. For brevity, we have excluded the results for smaller instances, but

we highlight that GPA is able to reduce the runtime of BD with ℓ∞-, ℓ1-, and ℓ2-deepest cuts

by more than 4, 16, and 35 times on average, respectively, compared to the results reported
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Table 2.2: Computational performance of BD algorithm using GPA for producing deepest
cuts on large instances of CAT and CST data sets, where cuts are generated by exploiting the
combinatorial structures of the instances.

in Table 2.1 for these norms.
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Comparing GPA and CB, we observe that BD equipped with GPA with all choices of p ∈

{1, 2,∞} has reduced the number of cuts by more than three times on average compared to

BD with CB cuts in the large instances of both CAP and CST data sets. The results further

confirm effectiveness of deepest cuts in closing the optimality gap, despite the classical cuts

in the CFLP (when derived using (2.25)) often being deemed sufficiently effective in the

literature (Fischetti et al. 2016). More importantly, we observe that the running time of

BD with GPA is less than half that of BD with CB cuts, even when Euclidean (ℓ2) deepest

cuts are produced. This highlights the effectiveness of GPA in separating the projection and

cut generation steps while producing cuts, even when the projection step requires solving a

quadratic program. Finally, we observe that employing deepest cuts at the early iterations

of the BD algorithm and switching to classical cuts after a certain threshold (5% optimality

gap in our tests) has a positive effect on the overall number of cuts produced and on the

computation time, which supports the theoretical insights provided in §2.1.4.

2.6 Conclusions

In this chapter, we proposed and analyzed theoretically and computationally a new method

for selecting Benders cuts, aimed at improving the effectiveness of the cuts in closing the gap

and reducing the running time of the BD algorithm. Our technique is based on generating

Benders cuts that explicitly take cut depth into account. As a measure of cut depth, we

considered Euclidean distance from the master solution to the candidate cuts, and then

extended this measure to general ℓp-norms. We provided a comprehensive study of deepest

cuts and unveiled their properties from a primal perspective. We showed that producing

an ℓp-deepest cut is equivalent to finding an ℓq-projection of the point being separated onto

the epigraph of the original problem. We also showed how the separation problems can be

solved as linear or quadratic programs. Leveraging the duality between ℓp-deepest cuts and
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ℓq-projections, we introduced our Guided Projections Algorithm for producing ℓp-deepest

cuts in a way that can exploit the combinatorial structure of problem instances.

From a theoretical perspective, we generalized our notion of distance by defining what we

call a Benders distance function, and developed a notion of monotonicity which allows these

functions to be treated as distance functions despite the fact that they do not necessarily

satisfy the axioms of metrics. Then, we illustrated the connection of such distance functions

to some well-known cut selection strategies. Specifically, we established the connection to

MIS cuts, and provided three novel ways of choosing the normalization coefficients in the

MIS subproblem, that connect our distance functions to the Magnanti-Wong procedure for

producing Pareto-optimal cuts, as well as the Conforti-Wolsey procedure for producing facet-

defining cuts.

Our computational experiments on CFLP instances showed the benefits of deepest cuts

and other distance-based cuts, particularly when generated using GPA, in decreasing the

number of cuts as well as the runtime of the BD algorithm. Besides the theoretical insights,

our results showed that deepest cuts are effective in speeding up convergence of BD. Our

results also illustrated the benefits of choosing specific normalization coefficients in the MIS

problems based on parameters of the problem instances.

50



Chapter 3

Benders Decomposition for Profit

Maximizing Hub Location Problems

with Capacity Allocation

In this chapter1, we consider revenue management decisions within hub location problems

and determine how to allocate available capacities of hubs to demand of commodities from

different market segments. The profit maximizing capacitated hub location problems intro-

duced in this study seek to find an optimal hub network structure, maximizing total profit

to provide services to a set of commodities while considering the design cost of the network.

The decisions to be made are the optimal number and locations of hubs, allocation of demand

nodes to these hubs, and the optimal routes of flow of different classes of commodities that

1Statement of collaboration: The following is the summary of a joint work with my coauthors
Gita Taherkhani (Department of Information Systems and Supply Chain Management, Quinlan School
of Business, Loyola University Chicago, Chicago, IL. Email: gtaherkhani@luc.edu) and Sibel A. Alu-
mur (Department of Management Sciences, University of Waterloo, Waterloo, Ontario, Canada. Email:
sibel.alumur@uwaterloo.ca). This chapter contains materials from (Taherkhani et al. 2020). All authors
were involved in writing the papers and my main contributions to this study was in developing and imple-
menting the models and algorithms.
Reprint permission acquired from Transportation Science with License ID 1225865-1.
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are selected to be served. We consider a hub location problem with multiple assignments,

and allow a path of an O-D pair to pass through at most two hubs. Direct connections

between non-hub nodes are not allowed; all commodities must be routed via a set of hubs.

Demand is segmented into different classes and revenue is obtained from satisfying demands

for the commodities of each class. The model is to decide how much demand to serve from

each class considering the available capacity. Each demand class from each commodity can

be partially satisfied.

This chapter is organized as follows. We introduce the notation and formulate the mixed-

integer linear programming models in §3.1. §3.2 embodies the main contribution of the study

which is the proposed Benders decomposition algorithm and our introduction of several

features that improve the convergence and efficiency for the deterministic version of the

problem. We perform extensive computational experiments in §3.3 to test our mathematical

models and evaluate our algorithms. The chapter is concluded in §3.4 with concluding

remarks. Finally, technical details and supplementary numerical results are provided in

Appendix B.

3.1 Mathematical Formulation

This section first introduces the notation and then presents mathematical formulation for

the deterministic version of the problem.

3.1.1 Notation

Let G = (N,A) be a complete digraph, where N is the set of nodes and A is the set of arcs.

Let H ⊆ N be the set of potential hub locations (in our setting we simply assume H = N),

and let fi and Γi denote the installation cost and the available capacity of a hub located
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at node i ∈ H, respectively. K ⊆ N × N represents the set of commodities whose origin

and destination points belong to N (in our setting we assume K = N × N). Demand of

commodities are segmented into M classes. For each commodity k ∈ K of class m ∈M , wm
k

represents the amount of commodity k of class m to be routed from the origin o(k) ∈ N to

the destination d(k) ∈ N . Satisfying a unit commodity k ∈ K of class m ∈ M produces a

per unit revenue of rmk .

The transportation cost from node i ∈ N to node j ∈ N is defined as cij = γdij, where dij

denotes the distance from node i to node j, and γ is the resource cost per unit distance.

Distances are assumed to satisfy the triangle inequality. Each path of an O-D pair contains

at least one and at most two hubs. Thus, paths are of the form (o(k), i, j, d(k)), where (i, j) ∈

H×H represents the ordered pair of hubs to which o(k) and d(k) are allocated, respectively.

The transportation cost of routing one unit of commodity k along path (o(k), i, j, d(k)) can

be calculated by Cijk = χco(k)i+αcij+δcjd(k), where χ, α, δ represent the collection, transfer,

and distribution costs, respectively. The economies of scale between hubs is reflected by

assuming α < χ and α < δ.

Before presenting the mathematical formulation, we note the following properties of the

capacitated hub location problems.

Property 3.1. (Boland et al. 2004) In any optimal solution, a commodity can be routed

via a path containing two distinct hubs only if it is not cheaper to do so using one of the

hubs.

Property 3.2. (Contreras et al. 2011a) In any optimal solution, among the paths (o(k), i, j, d(k))

and (o(k), j, i, d(k)), commodity k ∈ K uses at most one them and it is the one with the lower

transportation cost.

Consequently, instead of defining hub arc a as an ordered set a = (a1, a2) ∈ H×H, we define

a hub arc as a = {a1, a2} where a1, a2 ∈ H. For simplicity, when a1 = a2 (i.e. (a1, a2) is a
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loop) we denote the loop as a = {a1}. We use the notation |a| as the number of hubs that

form the hub arc a, and we say i ∈ a = {a1, a2} if node i is equal to a1 or a2. Additionally,

each commodity defines its own set of potential hub arcs. Henceforth, we replace Cijk with

Ĉijk = min{Cijk, Cjik}, and reduce the set of candidate hub arcs for commodity k ∈ K to

Ak defined as

Ak = {(i, j) ∈ A : i ≤ j, Ĉijk ≤ min{Ciik, Cjjk}}, (3.1)

which can be used to reduce the size of the mathematical formulations. In this equation,

when i = j we assume that the hub arc is a loop.

3.1.2 Mathematical Model

We first consider the deterministic setting assuming that perfect information on demands

and revenues is available. Let yi equal to 1 if a hub is established at node i ∈ H, and 0

otherwise. Define Y = {0, 1}|H| as the domain of the y-variables. Moreover, let xm
ak determine

the fraction of commodity k ∈ K of class m ∈ M that is satisfied through a path with hub

arc a ∈ Ak. The profit maximizing capacitated hub location problem is then modeled as:

max
∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)w
m
k x

m
ak −

∑
i∈H

fiyi (3.2)

s.t.
∑
a∈Ak

xm
ak ≤ 1 k ∈ K,m ∈M (3.3)

∑
a∈Ak:i∈a

xm
ak ≤ yi i ∈ H, k ∈ K,m ∈M (3.4)

∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wm
k x

m
ak ≤ Γiyi i ∈ H (3.5)

x ≥ 0, y ∈ Y. (3.6)

54



The objective function (3.2) represents net profit, which is calculated by subtracting total

cost from total revenue. If demand of a commodity from a given class is to be satisfied, then

by constraints (3.3) flow must be routed via hub arcs. Note that each demand class from

each commodity can be partially satisfied through different paths, hence these constraints

are expressed for each m ∈M . Constraints (3.4) ensure that demand of commodities can be

satisfied only through open hubs. Constraints (3.5) restrict capacity on the total incoming

flow at a hub via both hub and non-hub nodes. Finally, constraints (3.6) define the non-

negative and binary variables, in which x = {xm
ak}.

Remark 3.1. For integer values of y, constraints (3.3) and (3.5) imply constraints (3.4).

Hence, constraints (3.4) act as valid inequalities for the mathematical model (3.2)-(3.6).

Since our solution method is based on Benders decomposition, and it is known that Benders

decomposition performs better with stronger formulations (Magnanti and Wong 1981), we

choose to keep these constraints in our mathematical model.

Note that when revenue from satisfying the commodity k ∈ K of class m ∈ M is strictly

smaller than the unit transportation cost of routing commodity k along a path containing a

hub arc a ∈ Ak, no profit can be obtained from satisfying the demand for commodity (k,m)

through that path. Accordingly, the optimal value for the corresponding variable xm
ak can

then be set to zero as noted in Property 3.3 below.

Property 3.3. For every k ∈ K, m ∈ M and a ∈ Ak, if r
m
k < Ĉak, then xm

ak = 0 in any

optimal solution to (3.2)-(3.6).

3.2 Benders Decomposition

Motivated by successful implementations of BD to solve hub location problems, in this

study, we also develop Benders-based algorithms to solve our problems to optimality. To
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date, the largest capacitated hub location instances that could be solved optimally contain

300 nodes (Contreras et al. 2012). As we will show through our computational experiments,

we are able to solve instances of size 500 nodes, while considering an even more difficult

problem setting with generic capacity constraints, multiple demand segments, and a profit

maximizing objective function. Moreover, we show that the BD algorithms that we introduce

in this study is more efficient in terms of computation time, using memory and in generating

stronger cuts than those in the previous literature.

Benders decomposition is well suited for hub location problems especially with multiple

allocation structure as the problem can be decomposed into linear subproblems by fixing

the integer variables for the location of hubs. In this section, we first present the Benders

reformulation of the deterministic model and the Benders decomposition algorithm; we then

detail our solution strategies for the subproblems. For details of Benders decomposition, the

reader is referred to §1.2.

3.2.1 Benders Reformulation and Algorithm

Given the formulation (3.2)-(3.6), in the Benders reformulation of the problem, the hub

location decisions are handled in the master problem and the rest is left to the subproblem.

By fixing the values of the y-variables at yt ∈ Y , we obtain the following linear primal
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subproblem (PSP):

max
∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)w
m
k x

m
ak (3.7)

s.t.
∑
a∈Ak

xm
ak ≤ 1 k ∈ K,m ∈M (3.8)

∑
a∈Ak:i∈a

xm
ak ≤ yti i ∈ H, k ∈ K,m ∈M (3.9)

∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wm
k x

m
ak ≤ Γiy

t
i i ∈ H (3.10)

xm
ak ≥ 0 k ∈ K,m ∈M,a ∈ Ak. (3.11)

Associating the dual variables αm
k , u

m
ik, and bi to the constraints (3.8), (3.9), and (3.10),

respectively, we have the following dual subproblem (DSP):

min
∑
k∈K

∑
m∈M

αm
k +

∑
i∈H

yti(Γibi +
∑
k∈K

∑
m∈M

umik) (3.12)

s.t. αm
k + umik + umjk + wm

k (bi + bj) ≥ (rmk − Ĉijk)w
m
k k ∈ K,m ∈M, (i, j) ∈ Ak : i ̸= j (3.13)

αm
k + umik + wm

k bi ≥ (rmk − Ĉiik)w
m
k k ∈ K,m ∈M, i ∈ H (3.14)

αm
k , umik, bi ≥ 0 k ∈ K,m ∈M, i ∈ H (3.15)

Since any choice of y ∈ Y results in a feasible primal subproblem, the primal and dual

subproblems are always feasible and bounded, hence an optimal solution of DSP is one of

the extreme points of DSP. Let P denote the polyhedron defined by (3.13)-(3.15), and let

Ex(P ) be the set of extreme points of P . Note that P and Ex(P ) do not depend on yt.

Hence, for any arbitrary y, DSP can be restated as

Q(y) = min

{∑
k∈K

∑
m∈M

αm
k +

∑
i∈H

yi(Γibi +
∑
k∈K

∑
m∈M

um
ik) : (α, u, b) ∈ Ex(P )

}
. (3.16)
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Let η be an under-estimator of Q(y) representing the overall revenue obtained by satisfying

the demand; the Benders master problem (MP) can then be formulated as:

max η −
∑
i∈H

fiyi (3.17)

s.t. η ≤
∑
k∈K

∑
m∈M

αm
k +

∑
i∈H

yi(Γibi +
∑
k∈K

∑
m∈M

um
ik) (α, u, b) ∈ Ex(P ) (3.18)

y ∈ Y. (3.19)

Note that MP contains an exponential number of constraints of the form (3.18). Therefore,

instead of Ex(P ), starting with initial set P̂ ⊂ Ex(P ), we iteratively solve a relaxed master

problem with Ex(P ) replaced with P̂ and keep adding new extreme points to P̂ by solving

dual subproblems, until the optimal solution to MP is found. An overview of the basic BD

algorithm is given in Algorithm 4. In this algorithm, UB, LB, t and ztMP stand for the

current upper and lower bounds, the iteration counter, and the optimal solutions obtained

from the master problem at iteration t, respectively. ζ is a parameter of the algorithm

controlling the convergence threshold (in our computations we set ζ = 10−6).

Algorithm 4 Benders Decomposition for deterministic HLP

1: UB ← +∞, LB ← −∞, t← 1, P̂ ← ∅
2: while LB − UB < ζ do
3: SOLVE MP to obtain yt and ztMP

4: UB ← ztMP

5: SOLVE DSP(yt) to obtain (α, u, b)t and Q(yt)
6: LB ← max{LB,Q(yt)−

∑
i∈H

fiy
t
i}

7: P̂ ← P̂ ∪ {(α, u, b)t}
8: t← t+ 1
9: end while

The computational efficiency of the Benders decomposition algorithm generally depends on

the number of iterations required to obtain an optimal solution and the computational effort

needed to solve MP as well as DSP at each iteration. In the following sections, we first
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explain how the subproblem can be solved efficiently and then describe how the size of the

problem can be reduced via variable fixing.

3.2.2 A Two-Phase Method for Solving the Subproblem

Note that the dual subproblem contains O(|N |3|M |) variables and O(|N |4|M |) constraints.

Solving such a huge problem is the most challenging part of the BD algorithm. Due to

different definition of capacity usage of hubs in our problems, unlike Contreras et al. (2012),

we can no longer cast the subproblem (3.12)-(3.15) as a transportation problem2. Moreover,

the algorithm may suffer from slow convergence due to weakness of the generated cuts.

Pareto-optimal (PO) cuts (Magnanti and Wong 1981) have been extensively used in the

literature for generating strong optimality cuts. Since DSP is a huge problem, solving it as

whole is computationally prohibitive, specially for large instances of the problem. Note that

for fixed values of the b-variables in the DSP, DSP can be solved as |M ||K| independent

problems, one for each (k,m) (see §3.2.3 below). By fixing b at specific values, Contreras

et al. (2012) generate good cuts by approximating the PO subproblem (Contreras et al.

2011a). Because of the structural differences of our problem, as we will demonstrate via

computational experiments, the method proposed by Contreras et al. (2012) does not gen-

erate good enough cuts for our problem, or it comes with a high computational cost. Hence,

we seek a method for generating good optimality cuts with less computational effort.

In this study, we propose a method for solving the subproblem in two sequential phases

based on the set of values of the binary variables at which the subproblem is evaluated, and

break each phase into smaller and simpler problems. In Phase I, we obtain the optimal value

of the subproblem (i.e. Q(yt)). In Phase II, we strengthen the cut while preserving the

2There exists a Lagrangian relaxation of the subproblem which converts it into a transportation problem.
However, this transportation problem would be different than that of Contreras et al. (2012). Moreover, due
to difficulties with convergence, solving this problem using a sub-gradient method would be computationally
challenging.
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optimality and feasibility of the solution. Note that this procedure does not require solving

the subproblem twice; rather, we break the subproblem into two smaller problems and solve

them sequentially.

At iteration t of the BD algorithm, we obtain an optimal solution yt from MP. Let H t =

{i : yti = 1} and H̄ t = {i : yti = 0} be the set of open and closed hubs, respectively. Note

that any feasible value of bi and um
ik would be optimal when i ∈ H̄ t. Hence, we can solve

the subproblem in two phases. In Phase I, we remove the variables bi and um
ik and their

corresponding constraints from DSP associated with i ∈ H̄ t, and compute the values of the

remaining variables by solving the following Phase I subproblem (DSP-I).

min
∑
k∈K

∑
m∈M

αm
k +

∑
i∈Ht

(Γibi +
∑
k∈K

∑
m∈M

umik) (3.20)

s.t. αm
k + umik + umjk + wm

k (bi + bj) ≥ (rmk − Ĉijk)w
m
k k ∈ K,m ∈M, (i, j) ∈ At

k (3.21)

αm
k + umik + wm

k bi ≥ (rmk − Ĉiik)w
m
k k ∈ K,m ∈M, i ∈ Ht (3.22)

αm
k , umik, bi ≥ 0 k ∈ K,m ∈M, i ∈ Ht (3.23)

where At
k = {(i, j) ∈ Ak∩H t×H t : i ̸= j} denotes the set of distinct potential open hub arcs

associated with commodity k at iteration t. Note that α-variables are independent from i,

accordingly, solving DSP-I results in obtaining the optimal values of all α-variables. Hence,

in Phase II, we find feasible values of bi and um
ik for i ∈ H̄ t, k ∈ K,m ∈ M with respect to

constraints (3.13)-(3.15), aiming to generate optimality cuts as strong as possible.

Let Āt
k = {(i, j) ∈ Ak ∩ H̄ t × H̄ t : i ̸= j} denote the set of distinct potential closed hub

arcs of commodity k ∈ K at iteration t, and let H t
i = {j ∈ H t : (i, j) ∈ Ak or (j, i) ∈ Ak}

be the set of open hubs that together with the closed hub i ∈ H̄ t form a potential hub arc

for commodity k ∈ K. Updating DSP by fixing the value of the computed variables and
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removing the already satisfied constraints, we get the following Phase II feasibility problem:

um
ik + um

jk + wm
k (bi + bj) ≥ ρkmij k ∈ K,m ∈M, (i, j) ∈ Āt

k (3.24)

um
ik + wm

k bi ≥ ρkmii k ∈ K,m ∈M, i ∈ H̄ t (3.25)

um
ik, bi ≥ 0 k ∈ K,m ∈M, i ∈ H̄ t (3.26)

where ρkmij = (rmk − Ĉijk)w
m
k − αm

k and

ρkmii = max

{
max
j∈Ht

i

{(rmk − Ĉijk)w
m
k − um

jk − wm
k bj}, (rmk − Ĉiik)w

m
k

}
− αm

k . (3.27)

Recall that the optimality cuts are in the form of

η ≤
∑
k∈K

∑
m∈M

αm
k +

∑
i∈Ht

yiκi +
∑
i∈H̄t

yiκi, (3.28)

where κi = Γibi+
∑

k∈K
∑

m∈M um
ik is the coefficient of hub i in the produced cut. By the end

of Phase I subproblem, the constant term (i.e.
∑

k∈K
∑

m∈M αm
k ) and coefficient of currently

open hubs (i.e. κi for i ∈ H t) in (3.28) are computed. To produce a strong cut, we need

to find a feasible solution to the Phase II problem such that the remaining coefficients (i.e.

κi for currently closed hubs) in the produced optimality cut are as small as possible. This

problem is a multi-objective optimization problem of the form

[DSP-II(yt)] min
(3.24)−(3.26)

κ = (κi)i∈H̄t . (3.29)

We propose two algorithms for producing non-dominated solutions for Phase-II subproblem.

In the first method, we scalarize this multi-objective problem into a single objective linear

problem by assigning equal weights to each κi, which mimics the idea of producing dense cuts

as suggested by Fischetti et al. (2010). We show that the special structure of the Phase II
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subproblem allows for solving this problem as a set of LP-relaxations of maximum weighted

matching problems for a given value of bi for i ∈ H̄ t. In the second approach, we produce

non-dominated solutions to DSP-II by solving this problem in a lexicographic manner. We

show that this version of DSP-II can be solved as a sequence of LP-relaxations of knapsack

problems. In the following sections, we present some theoretical insights and discuss how to

solve the two phases efficiently.

3.2.3 Solving the Phase I Subproblem

We now turn our attention to solving the DSP-I subproblem (3.20)-(3.23). First, note that

for b fixed, DSP-I (3.20)-(3.23) can be decomposed into smaller problems, one for each k ∈ K

and m ∈M , denoted DSP-I(km):

min αm
k +

∑
i∈Ht

um
ik (3.30)

s.t. αm
k + um

ik + um
jk ≥ βkm

ij (i, j) ∈ At
k (3.31)

αm
k + um

ik ≥ βkm
ii i ∈ H t (3.32)

αm
k , u

m
ik ≥ 0 i ∈ H t, (3.33)

where βkm
ij = (rmk − Ĉijk−bi−bj)w

m
k for (i, j) ∈ At

k, and βkm
ii = (rmk − Ĉiik−bi)w

m
k for i ∈ H t.

We further simplify DSP-I by noting the following property of DSP-I.

Proposition 3.1. There exists an optimal solution to DSP-I, in which um
ik = 0 for k ∈ K,

m ∈M and i ∈ H t.

Proof. Let µij and µii be the dual variables associated with (3.31) and (3.32), respectively,
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for (i, j) ∈ At
k and i ∈ H t. Dual of DSP-I(km) can be formulated as:

max
∑
a∈Ât

k

µaβ
km
a (3.34)

s.t.
∑
a∈Â1

ke

µa ≤ 1 (3.35)

∑
a∈Ât

k:i∈a

µa ≤ 1 i ∈ H t (3.36)

µa ≥ 0 a ∈ Ât
k (3.37)

where Ât
k = At

k ∪ {(i, i) : i ∈ H t}. Constraints (3.36) are implied by (3.35) for every i ∈ H t,

thus can be removed entirely from the dual problem. Accordingly, it is optimal to set the

dual variables associated with (3.36) to zero, i.e. um
ik = 0 for i ∈ H t.

The outcome of Proposition 3.1 is that we can compute the optimal solution of DSP-I(km)

and its dual using the corollaries stated below:

Corollary 3.1. In the optimal solution of DSP-I(km), αm
k = max{0,max

a∈Ât
k

{βkm
a }}.

Corollary 3.2. Let a∗ = argmax
a∈Ât

k

{βkm
a }, where ties are broken arbitrarily. In the optimal

solution of Dual DSP-I(km), µa = 0 for a ∈ Ât
k \ {a∗}. If βkm

a∗ > 0, then µa∗ = 1, otherwise

µa∗ = 0.

When the u-variables are set to 0 in the DSP-I subproblem, we refer to the resulting problem

as the restricted DSP-I subproblem. Consequently, restricted DSP-I can be solved using a

cutting-plane algorithm, where b is the master problem variable and α is the subproblem

variable, and the dual subproblems are solved using Corollary 3.2. Equivalently, DSP-I can

be solved using Dantzig-Wolfe decomposition in the dual space of DSP-I. We also note the

following remark on difficulty of solving the restricted DSP-I as opposed to DSP.

Remark 3.2. Restricted DSP-I subproblem contains O(|M ||K||H t|2) constraints and O(|M ||K|+
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|H t|) variables. Since only a few hubs are opened at each iteration (i.e. |H t| ≪ |H|), the

restricted DSP-I is much easier to solve than DSP.

3.2.4 Solving the Phase II Subproblem as Maximum Weighted

Matching Problems

In our first approach for solving the DSP-II subproblem, we assign equal weights to each κi

and turn the multi-objective problem (3.29) into the following single objective problem:

min

{∑
i∈H̄t

κi =
∑
i∈H̄t

(Γibi +
∑
k∈K

∑
m∈M

um
ik) : (3.24)− (3.26)

}
. (3.38)

Similar to DSP-I, for a given vector (bi)i∈H̄t , (3.38) can be restated for each k ∈ K and

m ∈M as:

[DSP-II(km)] min
∑
i∈Ht

um
ik (3.39)

s.t. um
ik + um

jk ≥ ρkmij − wm
k (bi + bj) (i, j) ∈ Āt

k (3.40)

um
ik ≥ ρkmii − wm

k bi i ∈ H̄ t (3.41)

um
ik ≥ 0 i ∈ H̄ t. (3.42)

Assume that the values of the b-variables are known. We will discuss how suitable values of

these variables can be computed later. Observe that (3.41) jointly with (3.42) serve as lower

bounds on um
ik. Define τmik = um

ik − lbmik, where lbmik = max{ρkmii − wm
k bi, 0}. DSP-II(km) can
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be restated as:

[MWC(km)] min
∑
i∈H̄t

τmik (3.43)

s.t. τmik + τmjk ≥ βkm
ij (i, j) ∈ Āt

k (3.44)

τmik ≥ 0 i ∈ H̄ t. (3.45)

where βkm
ij = ρkmij − wm

k (bi + bj) − lbmik − lbmjk for (i, j) ∈ Āt
k. Not that by definition, i ̸= j

for each (i, j) ∈ Āt
k. Also, assume without loss of generality that βkm

ij values are non-

negative, otherwise their corresponding constraints can be dropped. Problem (3.43)-(3.45)

is commonly known as the Minimum Weight Cover (MWC) problem (see e.g. Galil 1986),

which is the dual of the LP-relaxation of the Maximum Weighted Matching (MWM) problem

in the edge-weighted undirected graph Gkm = (H̄ t, Āt
k), where edges are weighted according

to βkm
ij . LP-relaxation of MWM can be formulated as

[MWM(km)] max
∑
a∈Āt

k

µkm
a βkm

a (3.46)

s.t.
∑

a∈Āt
k:i∈a

µkm
a ≤ 1 i ∈ H̄ t (3.47)

µkm
a ≥ 0 a ∈ Āt

k, (3.48)

where µkm
a is the dual variable associated with (3.44) and represents the extent to which edge

a ∈ Āt
k is picked in the MWM. To solve this problem, we note that unlike the LP-relaxation

of the MWM problem in general graphs, LP-relaxation of the MWM problem in bipartite

graphs (denoted MWMB) is tight, in that there exists an integral solution that is optimal for

LP-relaxation of MWMB. Hence, methods proposed for solving MWMB can also be used for

solving its LP-relaxation. In Appendix B.1, we show that the MWM problem (3.46)-(3.48)

can be transformed into an MWMB counterpart problem in an equivalent sparse bipartite

graph.
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Several algorithms have been proposed for solving MWMB. (For a review on recent methods,

see, e.g., Burkard et al. 2009.) As a byproduct of solving the MWM problem (3.46)-(3.48),

we eventually need to find the optimal value of (3.39)-(3.42). Hence, we adapt a primal-dual

algorithm due to Galil (1986), which can be solved in O(mn log⌈m/n+1⌉ n), where n = |H̄ t|

and m = |Āt
k| are the number of nodes and edges, respectively. The details of the proposed

algorithm are given in Appendix B.1.

The strength of the cut generated using this method depends highly on the value at which

vector (bi)i∈H̄t is fixed. One could simply set bi to zero for i ∈ H̄ t, or to the average of bi in

previous iterations of the BD algorithm. However, our primary experiments show that these

choices of b will likely result in weak cuts. Moreover, note that larger values of b result in

fewer positive βkm
a values, thus reducing the number of edges (i.e. |Āt

k|) of the graph under

which the MWM problem is being solved. Consequently, the computational time for solving

the MWM problems is lower for larger values of b. In Appendix B.2, we explain how proper

values of (bi)i∈H̄t can be calculated efficiently through a relaxation of (3.38).

3.2.5 Solving the Phase II Subproblem as Knapsack Problems

At each iteration of the BD algorithm, we obtain a solution y defining a set of open/closed

hubs. The open hubs are potentially the ones with desirable properties; e.g., with high ca-

pacity, low installation cost, and/or proximity to demand points. Hence, the most frequently

opened hubs in the preceding iterations of BD are more likely to be opened again in the sub-

sequent iterations. Therefore, if we define Ot
i =

∑
h:h≤t

yhi as the number of times that hub i

has been opened prior to iteration t of BD, we can assume that a higher value of Ot
i implies

a higher chance for hub i to be open at iteration t+ 1.

Thus, in our second approach, we solve the multi-objective problem DSP-II (3.29) in a

lexicographic manner by prioritizing minimizing the coefficients of more frequently opened
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hubs over the hubs that are less likely to be open in the subsequent iterations. In other

words, we sequentially minimize the coefficient of yi for one closed hub i ∈ H̄ t at a time, in

the order of importance of the hubs, rather than minimizing the summation of coefficients of

all closed hubs simultaneously. Therefore, we first solve DSP-II (3.29) as if i = argmax
j∈H̄t
{Ot

j}

is the only hub in H̄ t:

[DSP-II(i)] min Γibi +
∑
k∈K

∑
m∈M

um
ik (3.49)

s.t. um
ik + wm

k bi ≥ ρkmii k ∈ K,m ∈M (3.50)

um
ik, bi ≥ 0 k ∈ K,m ∈M. (3.51)

Note that since i is assumed to be the only hub in H̄ t, constraints (3.24) do not appear

in this model, but will be satisfied by the next closed hubs in the sequence by means of

updating the respective ρkmii values using (3.27).

Upon solving DSP-II(i), we obtain the values of all dual variables associated with hub i

(i.e., um
ik and bi). Consequently, we fix these values, add i to H t and remove i from H̄ t. We

continue this procedure with the next closed hub i = argmax
j∈H̄t
{Ot

j} with ρkmii values updated

according to the new sets H t and H t
i using (3.27). We replicate this procedure until values of

all dual variables are computed (i.e., until H̄ t becomes empty). An overview of this procedure

is presented in Algorithm 5.

Algorithm 5 Solving DSP-II as a sequence of continuous knapsack problems

1: while H̄ t ̸= ∅ do
2: i← argmax

j∈H̄t
{Ot

j}

3: Compute ρkmii values using (3.27) for the selected i and each k ∈ K and m ∈M with
respect to the updated H t and H t

i .
4: SOLVE DSP-II(i) and obtain bi and um

ik for k ∈ K and m ∈M .
5: H̄ t ← H̄ t \ {i}
6: H t ← H t ∪ {i}
7: end while
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Observe that DSP-II(i) is the dual of the LP-relaxation of a knapsack problem (KP) with

knapsack capacity Γi, and items (k,m) ∈ K ×M with weight wm
k and profit ρkmii , as formu-

lated below:

[KP(i)] max
∑

(k,m)∈K×M

ρkmii µm
k (3.52)

s.t.
∑

(k,m)∈K×M

wm
k µ

m
k ≤ Γi (3.53)

0 ≤ µm
k ≤ 1 (k,m) ∈ K ×M, (3.54)

where µm
k is the dual variable associated with constraint (3.50) and represents the extent

to which item (k,m) ∈ K ×M is picked. Note that the items with a non-positive profit

(i.e., ρkmii ≤ 0) can be discarded from the problem. Dantzig (1957) showed that the optimal

solution to this problem can be found by filling the knapsack in a non-increasing order of

profit-to-weight ratio ρkmii /wm
k of the items, until we reach the first item that does not fit into

the knapsack. This item is called the break item (denoted (k̄, m̄)), which is partially picked

according to the residual capacity. Using the complementary-slackness conditions, it can be

verified that the optimal value of bi is the profit-to-weight ratio of the break item; i.e.,

bi = ρk̄m̄ii /wm̄
k̄ . (3.55)

Moreover, using (3.50) and (3.51), the optimal value of um
ik can be calculated by setting

um
ik = max{ρkmii − wm

k bi, 0}. By finding the break item as a weighted median, rather than

by explicitly sorting the items, Balas and Zemel (1980) showed that the LP-relaxation of

knapsack problem can be solved in O(n) instead of O(n log n), where n = |K||M | is the

number of items. This implies that the optimal values of b and u can be found in the same

time bound.
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3.2.6 Variable Fixing

Variable fixing can improve the efficiency of the Benders decomposition algorithm by reducing

the computational time of solving the master problems and subproblems by means of solution

space reduction. The dominance properties presented in §3.1 reduce the size of the model

significantly via preprocessing. We can further reduce the size by eliminating hubs that

cannot be open in an optimal solution. Contreras et al. (2011a) propose two reduction tests

that eliminate such hubs by using the information obtained during the inner iterations of

the BD algorithm. In this study, we adapt and improve on these tests for eliminating hubs

from H and the associated variables from the model.

The first reduction test is based on the primal information obtained by solving the LP-

relaxation of MP. Let MPt
LP denote the LP-relaxation of MP at iteration t, ztLP its optimal

value, and f̄ t
i the reduced cost associated with variable yi for i ∈ H. Let LB be a known

lower bound on the optimal value of MP. Since ztLP + f̄ t
i provides a lower bound on the

optimal value of MP, any hub i ∈ H for which ztLP + f̄ t
i < LB cannot be open in any optimal

solution. Hence, such hubs and their associated variables in the master and subproblem can

be discarded in subsequent iterations.

The second reduction test is a logical test that attempts to prove that a set of hubs H̃ ⊂ H

must be closed in an optimal solution. Let MPt(H̃) denote the MP at iteration t with the

additional constraint
∑

i∈H̃ yi ≥ 1, and ztMP (H̃) its optimal value. Let LB be a lower bound

on the optimal value of MP. Note that MPt(H̃) provides a lower bound on the optimal value

of MP at iteration t. Hence, if ztMP (H̃) < LB, then none of these hubs can be open in any

optimal solution. Therefore, the hubs contained in H̃ and their associated variables can be

safely eliminated in the subsequent iterations.
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3.3 Computational Experiments

3.3.1 Experimental Setup

We use the well-known Australia Post (AP) dataset to test our models and algorithms. AP

dataset contains postal service data of 200 cities in Australia and it is the most commonly

used dataset in hub location literature (Ernst and Krishnamoorthy 1996). The distances (dij)

and the postal flow between pairs of cities (wk) are provided in OR Library, and a computer

code is presented to generate smaller subsets of the data by grouping cities (Beasley 1990).

We assume that the demand of commodities are segmented into 3 classes; i.e., |M | = 3, where

w1
k = 0.2wk, w

2
k = 0.3wk, and w3

k = 0.5wk. Motivated from the postal delivery applications,

where the price of sending a parcel depends on its size and the distance between the origin-

destination, and also considering revenue elasticity of demand, the revenue per unit demand

is taken to be dependent on the distance, class, and the amount of commodity to be shipped.

Hence, for the revenue from commodity k ∈ K of classm ∈M , we generate random values as

rmk = γm ck
wm

k
, where γ1 ∼ U [50, 60], γ2 ∼ U [40, 50], and γ3 ∼ U [30, 40]. Collection, transfer,

and distribution costs per unit are taken as χ = 2, α = 0.75, and δ = 3 as defined in the AP

dataset (Beasley 1990). We test instances with |H| ∈ {10, 20, 25, 40, 50, 75, 100, 200}.

There are two different sets for installation costs and capacities of hubs available on the AP

dataset referred to as loose and tight. The opening cost of hubs in the instances with tight (T)

installation costs is larger than those with loose (L) installation costs. In contrast, instances

with tight (T) capacities have smaller available capacities compared to the instances with

loose (L) capacities. Hence, there are four instances for a given node size corresponding to

different combinations of installation costs and capacities. We denote each instance as nfΓ

where n is the instance size, f is the installation costs, and Γ is the capacity.

Computational experiments were carried out on a workstation that contains: Intel Core i7-
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3930K 2.61GHz CPU, and 39 GB of RAM. The algorithms were coded in C# and the time

limit was set to 15 hours. The master problems of all versions of the Benders decomposition

algorithms as well as the master problems of the inner cutting-plane algorithm of Phase I

subproblems were solved using the callable library of CPLEX 12.7.

3.3.2 Results

In this section, we first evaluate the performance and effectiveness of the algorithms proposed

in §3.2 for the deterministic model. We implemented two different versions of Algorithm 4

referred to as BD1 and BD2, corresponding to different solution strategies of Phase II. In

BD1, Phase II is solved as LP-relaxations of maximum weighted matching problem as de-

scribed in §3.2.4, whereas in BD2, Phase II is solved as LP-relaxations of knapsack problems

as described in §3.2.5. For comparison, we also implemented Pareto-optimal cuts (PO), the

best known cuts from the literature, to solve our subproblems. We used ỹ with ỹi = 0.1 as

the core point as suggested by Contreras et al. (2012). We used the two reduction tests as

described in §3.2.6 to eliminate candidate hubs within all of the three algorithms: PO, BD1,

and BD2.

The detailed results of the comparison between these Benders algorithms using the AP

instances are provided in Table 3.1. The first column represents the name and size of the

instance. The next four columns labeled “Total time (sec)” present the computational time

of instances (in seconds) obtained from solving the problems to optimality by using CPLEX,

PO, BD1, and BD2, respectively. The next three columns labeled “Iterations” provide the

required number of iterations for the convergence of the algorithms PO, BD1, and BD2,

respectively. The columns labeled “% hubs elim.” present the percentage of the total

candidate hubs eliminated by algorithms PO, BD1, and BD2, respectively. The last two

columns labeled “Optimal solution” indicate the maximum net profit and the locations of
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hub nodes, respectively, for the optimal solution found for each of the considered instances.

Whenever an algorithm is not able to solve an instance within the time limit (15 hours of

CPU time) to optimality, we write “Time” in the corresponding entry of the table. If an

algorithm runs out of memory, we write “Mem”.

Our goal of presenting the results of PO in Table 3.1 is to compare the strength of the

cuts generated by BD1 and BD2 with this method. We use the decomposition scheme

proposed by Contreras et al. (2012) for solving the Pareto-optimal subproblem. In this

method, at iteration t of Algorithm 4, by fixing the value of (bi)i∈Ht at the optimal values

obtained from the original subproblem, and by setting (bi)i∈H̄t to zero, they decompose

the PO subproblem into |K| (here |K||M |) independent problems. These problems can be

solved using an LP solver, however, as Contreras et al. (2011a) argue, for computational

tractability, they sacrifice the strength of the cuts by solving the resulting problems via

an approximation technique. Since our goal of implementing PO method is to compare

the strength of the resulting cuts with our proposed methods, after decomposing the PO

subproblem into |K||M | independent problems, rather than employing the approximation

technique, we solve the dual of the resulting problems using the CPLEX LP solver. Note

that the number of iterations cannot be reduced by the approximation algorithm, hence the

number of iterations of PO as reported in Table 3.1 provides a lower bound on the number

of iterations that we would obtain using the approximation technique proposed by Contreras

et al. (2011a).

Table 3.1 shows that both algorithms BD1 and BD2 outperform CPLEX in terms of compu-

tational time and the number of instances solved to optimality. Additionally, the results of

Table 1 clearly indicate that our algorithms (BD1 and BD2) outperform PO, with the only

exception of instance 40LL.

Each of the Benders algorithms proposed in this chapter is able to solve all considered

instances to optimality within an hour of CPU time, with the exception of instances 200LL
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Table 3.1: Comparison of Benders reformulations and CPLEX with the AP dataset for the
deterministic model.
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and 200LT, which take approximately 3.3 hours for BD1 and 1.9 hours for BD2, respectively.

The columns % hubs elim. show that a large percentage of candidate hubs can be eliminated

by variable fixing. The columns Total time (sec) and Iterations indicate that the convergence

of the Benders algorithm is improved by solving Phase II as LP-relaxations of knapsack

problem, especially for the larger size instances. This implies that BD2 outperforms BD1;

hence, we use BD2 for the rest of the computational experiments.

Table 3.1 also shows the locations of installed hubs in optimal solutions, where the optimal

number of hubs to locate varies between one and six. It seems that, in these particular

instances, the number of installed hubs does not depend on the size of the instance; it is

rather more dependent on hub installation costs and capacities. For example, in the instances

with tight installation costs and loose capacities, the problem tends to result in locating fewer

hubs.

Instance
type

Demand class
Average

1 2 3
LL 98.32% 94.58% 71.74% 88.21%
LT 98.32% 87.95% 55.83% 80.70%
TL 98.32% 93.45% 59.99% 83.92%
TT 93.00% 75.45% 39.64% 69.37%

Table 3.2: Percentage of total demand satisfied for each demand class.

In Table 3.2, we observe the percentages of satisfied demand from different market segments.

The averages for each demand class are calculated over instances from Table 3.1 with the

same type of installation costs and capacities. The last column provides the average percent-

ages of total satisfied demand. Among the three demand classes, the first class is the one

with the highest percentages of satisfied demand, as serving this class of demand yields the

highest revenue. On the other hand, for the instances with the same configuration of hub

installation costs and capacities, the third demand class, having the least revenues, has the

least percentages of satisfied demand as expected. Moreover, instances with loose capacities

(LL and TL) result in higher percentages on average compared to the instances with tight
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Instance Total time (sec) Iterations % hubs elim. Profit #open hubs

Set I
50L 22.30 31 88.0 21,765 6
50T 15.49 19 90.0 16,943 4
100L 45.43 36 94.0 30,273 4
100T 50.18 23 95.0 30,215 4
150L 648.31 65 93.3 77,667 7
150T 523.05 25 94.7 74,952 6
200L 1,734.22 30 96.0 155,097 8
200T 3,160.84 33 95.5 144,874 7
250L 19,441.16 69 96.0 325,657 9
250T 4,861.76 37 97.2 181,027 5
300L 20,132.06 75 96.0 388,322 11
300T 14,885.61 52 97.7 188,944 6

Set II
50L 64.29 35 88.0 85,327 6
50T 50.78 27 86.0 60,174 5
100L 224.41 48 92.0 201,451 7
100T 448.40 58 90.0 199,819 8
150L 3,785.39 121 91.3 458,915 12
150T 2,904.36 38 92.7 438,771 9
200L 1,442.94 25 95.0 236,247 8
200T 3,556.37 21 94.5 216,241 9
250L 10,414.33 62 95.2 437,819 11
250T 5,589.51 47 96.0 354,688 10
300L 17,367.18 68 96.0 1,532,224 10
300T 16,399.61 49 97.0 986,373 7

Set III
50L 32.50 37 88.0 19,037 5
50T 19.93 32 90.0 16,353 5
100L 736.18 21 88.0 511,879 9
100T 530.51 16 91.0 39,672 7
150L 5,945.02 28 91.3 129,155 12
150T 5,327.03 27 92.7 964,137 9
200L 7,920.45 49 90.0 144,503 15
200T 6,738.52 45 93.5 103,987 11
250L 12,166.41 41 92.8 992,585 16
250T 11,057.31 32 95.2 710,562 11
300L 22,565.61 39 93.3 1,004,591 17
300T 18,349.47 34 95.0 903,773 14

Table 3.3: Computational results for the deterministic model using BD2 with Sets I, II, and
III instances.
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capacities (LT and TT).

To better understand the performance of the proposed algorithms from a computational point

of view, we also present computational results with larger-size instances introduced by Con-

treras et al. (2011a), and later extended by Contreras et al. (2012). There are three different

sets of instances, referred as Set I, Set II, and Set III, which are constructed by considering

three different levels of magnitude for the amount of flow originating at a given node: low-

level (LL) nodes, medium-level (ML) nodes, and high-level (HL) nodes. The total outgoing

flow of LL, ML and HL nodes are obtained from the interval [1,10], [10,100], and [100,1000],

respectively. Capacities of hubs are generated by using the formula provided in Ebery et al.

(2000) in which parameter ρ is taken to be 0.5 and 1.5 for the loose (L) and tight (T) types

of capacities, respectively. The other sets of parameters are as described at the beginning of

§3.3. For Sets I, II, and III, we test instances with |H| ∈ {50, 100, 150, 200, 250, 300}. The

detailed results are provided in Table 3.3 where the column titles have the same meanings

as in the previous table.

All of the instances presented in Table 3.3 from Sets I, II, and III are solved to optimality.

The most time-consuming instance in Sets I, II, and III took around 6, 5, and 6 hours,

respectively, to solve to optimality. The averages of the computational times reported in

Table 3.3 for the Sets I, II, and III are 1.5, 1.4, and 2.1 hours, respectively.

Lastly, we present additional runs from Sets I and II with |H| ∈ {350, 400, 500} to analyze

the limit of our algorithm. We have extended the CPU time limit to 24 hours for these

instances. The results are presented in Table 3.4. Our algorithm is able to solve all of the

instances to optimality within the time limit, except for the instance 500L in Set II. That

particular instance resulted in an optimality gap of 2.52%. These results further confirm

the efficiency and robustness of the BD2 algorithm when considering more challenging and

larger-size instances.
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Instance Total time (sec) Iterations % hubs elim. Profit #open hubs

Set I
350L 28,118.49 19 96.9 188,759 11
350T 21,881.74 15 97.7 147,501 7
400L 43,942.63 16 97.0 248,458 12
400T 35,763.21 14 97.5 186,239 9
500L 83,149.54 15 95.4 1,137,769 23
500T 54,731.43 11 97.0 821,439 14

Set II
350L 31,025.56 31 95.7 682,514 15
350T 23,149.81 26 96.6 530,697 11
400L 40,209.23 29 95.3 852,627 19
400T 33,195.23 22 95.3 671,734 13
500L (2.52% Gap) 17 71.8 965,113 25
500T 82,296.42 14 96.6 583,129 17

Table 3.4: Computational results of Sets I and II instances with |H| ∈ {350, 400, 500}.

3.4 Conclusions

In this chapter, we defined the profit maximizing hub location problem with capacity allo-

cation by incorporating revenue management decisions, and embedding more realistic and

challenging capacity constraints for hubs. We developed two Benders decomposition algo-

rithms accelerated by a new cut strengthening technique for solving the Benders subproblems

to solve the large-scale instances of the problem. We showed that the subproblems can be

broken into smaller and simpler problem in two phases, We solved the first phase using a

cutting-plane algorithm and formulated the second phase as a multi-objective optimization

problem. We showed that non-dominated solutions to the second phase can be obtained

by either a set of LP-relaxations of maximum weighted matching problems (BD1), or by a

series of LP-relaxations of knapsack problems in a lexicographic manner (BD2). We further

enhanced the algorithms by incorporating improved variable fixing techniques.

We performed extensive computational experiments on the well-known AP dataset, and

also on larger-size instances from the literature, to analyze the performance of the proposed
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algorithms. In view of our computational results, both BD algorithms outperform the best

known cuts (approximated Pareto-optimal cuts) in the literature, in terms of computational

efficiency as well as strength of the cuts. The results further show that BD2 outperforms

BD1 particularly on larger instances. BD2 succeeded to optimally solve instances with up

to 500 nodes and 750,000 commodities of different demand classes.
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Chapter 4

Benders Decomposition for

Robust-Stochastic Hub Location

Problems

In this chapter1, we consider two sources of uncertainty in profit maximizing hub location

problems: demand and revenue. Because of the availability of historical data, we assume

that demand is described by a known probability distribution. On the other hand, since

revenue might be affected by unpredictable external sources (e.g., economical conditions or

competition) and historical data may fail to effectively describe such variations, it may not

make sense to assume a known probability distribution for the revenue describing its behav-

ior. Hence, we use robust optimization techniques to incorporate uncertain revenues into the

problem by considering both interval representation and discrete scenarios. Modeling profit

maximizing hub location problems using both robust and stochastic optimization techniques

1Statement of collaboration: The following is the summary of a joint work with my coauthors Gita
Taherkhani and Sibel A. Alumur. This chapter contains materials from two papers (Taherkhani et al. 2020)
and (Taherkhani et al. 2021). All authors were involved in writing the papers and my main contributions to
these studies were in developing and implementing the models and algorithms.
Reprint permission acquired from Transportation Science with License IDs 1225865-1 and 1225865-2.
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surely brings on extra computational challenges, yet we believe this is a much more realistic

problem setting with respect to information availability.

We propose a robust-stochastic model by taking interval uncertainty into account for revenues

using the max-min criterion with a budget of uncertainty. The max-min criterion maximizes

profit under the worst case scenario. We then propose a min-max regret stochastic model by

considering a finite set of scenarios that describe uncertainty associated with the revenues to

model. With the min-max regret criterion, the decision maker decides based on the regret

(or opportunity loss) from not selecting the best strategy. Both max-min profit and min-max

regret criteria fit a conservative decision maker approach (Aissi et al. 2009). In this study,

we model both approaches to empirically show the level of robustness and conservatism of

each metric in addressing the uncertainty associated with revenues.

We develop exact algorithms based on Benders decomposition coupled with a sample average

approximation (SAA) scheme to solve large-scale instances of the problem. We also propose

novel acceleration techniques to enhance the convergence of the algorithms. We perform

extensive computational analysis and investigate the effects of uncertainty under different

settings on optimal hub networks and empirically evaluate the quality of the solutions ob-

tained from different modeling approaches under various parameter settings.

The rest of the chapter is organized as follows. In §4.1, we present an SAA algorithm,

coupled with Benders decomposition, for the problem with stochastic demand and deter-

ministic revenue. In §4.2, we address simultaneous uncertainty in demand and revenue. We

introduce two models, one based on interval uncertainty for revenue and the other based

on discrete scenarios for revenue. We present two SAA algorithms, coupled with Benders

decomposition, for the problem with stochastic demand and uncertain revenue. We perform

extensive computational experiments in §4.3 to test our mathematical models and evaluate

our algorithms. The chapter is concluded in §4.4 with concluding remarks. Finally, technical

details and supplementary numerical results are provided in Appendix C.
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4.1 Stochastic Demand with Known Revenue

We now model the problem with uncertain demand assuming that the uncertainty associated

with demands is described by a known probability distribution. As noted before, demand is

segmented into different classes and we consider a stochastic demand for each class, while

revenues are assumed to be known. To model this problem, let wm
k (ξ) denote the random

variables representing the future demand for commodity k ∈ K of classm ∈M to be shipped

from origin o(k) ∈ N to destination d(k) ∈ N . The demands of different commodities

are considered as independent random variables, whereas different demand classes of each

commodity are assumed to be dependent and thus correlated. Let Eξ denote the expectation

with respect to ξ, and Ξ be the support of ξ. The profit maximizing capacitated hub location

problem with stochastic demand can be modeled as:

max Eξ[
∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)w
m
k (ξ)x

m
ak(ξ)]−

∑
i∈H

fiyi (4.1)

s.t.
∑
a∈Ak

xm
ak(ξ) ≤ 1 k ∈ K,m ∈M, ξ ∈ Ξ (4.2)

∑
a∈Ak:i∈a

xm
ak(ξ) ≤ yi i ∈ H, k ∈ K,m ∈M, ξ ∈ Ξ (4.3)

∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wm
k (ξ)x

m
ak(ξ) ≤ Γiyi i ∈ H, ξ ∈ Ξ (4.4)

xm
ak(ξ) ≥ 0 k ∈ K,m ∈M,a ∈ Ak, ξ ∈ Ξ (4.5)

y ∈ Y. (4.6)

The above model forms a two-stage stochastic program. The first stage problem corresponds

to strategic hub location decisions. These long-term decisions will not be influenced by

demand variations, accordingly, the y-variables become known in the first stage. However,

the allocation decisions and the optimal routes of flows through the network, as well as the

decision on how much of total capacity should be allocated to demand from different classes,

81



do vary in response to the change of demand and, thus, are influenced by the stochastic

demand. These tactical decisions are determined in the second stage depending on the

particular realization of the random vector ξ ∈ Ξ. Accordingly, the variables xm
ak become

known in the second stage.

The objective function (4.1) contains a deterministic term which calculates the installation

cost of the hubs, and the expectation of the second stage objective which calculates the

expected value of revenue and transportation cost. To solve this problem, we integrate a

sampling technique, named as sample average approximation (SAA) algorithm (the reader

may refer to Shapiro and Homem-de Mello 1998, Kleywegt et al. 2002) with the BD algorithm

detailed in the following sections.

4.1.1 Sample Average Approximation

SAA is a Monte Carlo simulation based approach to stochastic discrete optimization prob-

lems. The main idea of this method is to reduce the size of the problem by generating a

random sample and approximating the expected value of the corresponding sample average

function. The sample average optimization problem is then solved (using the BD algorithm

in our case), and the procedure is repeated. The SAA scheme has previously been applied

to stochastic supply chain design as well as hub location problems with a large number of

scenarios (see, e.g., Santoso et al. 2005, Schütz et al. 2009, and Contreras et al. 2011b).

The main challenge in solving the stochastic problem (4.1)-(4.6) is the evaluation of the

expected value of the objective function (Kleywegt et al. 2002). To deal with this problem,

we use SAA scheme in which a random sample N of realizations of the random vector ξ is
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generated, and the second-stage expectation

Eξ[
∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)w
m
k (ξ)x

m
ak(ξ)]

is approximated by the sample average function

1

|N |
∑
n∈N

∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)w
mn
k xmn

ak , (4.7)

where wmn
k and xmn

ak denote the amount of commodity k ∈ K of class m ∈M to be shipped

from origin o(k) ∈ N to destination d(k) ∈ N under sample n ∈ N , and the fraction of

commodity k ∈ K of class m ∈M that is satisfied through a hub link a ∈ Ak under scenario

n ∈ N , respectively. Accordingly, the approximated form of the stochastic problem by the

SAA algorithm is modeled as:

max
1

|N |
∑
n∈N

∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)w
mn
k xmn

ak −
∑
i∈H

fiyi (4.8)

s.t.
∑
a∈Ak

xmn
ak ≤ 1 k ∈ K,m ∈M,n ∈ N (4.9)

∑
a∈Ak:i∈a

xmn
ak ≤ yi i ∈ H, k ∈ K,m ∈M,n ∈ N (4.10)

∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wm
k xmn

ak ≤ Γiyi i ∈ H,n ∈ N (4.11)

xmn
ak ≥ 0 k ∈ K,m ∈M,a ∈ Ak, n ∈ N (4.12)

y ∈ Y. (4.13)

Hereafter, we use the above approximated model (4.8)-(4.13) as the mathematical model

for the profit maximizing capacitated hub location problem with stochastic demand. The

optimal solution and the optimal value of the SAA problem (4.8)-(4.13) converges with

probability one to their true counterpart (4.1)-(4.6) as the sample size increases (Kleywegt

et al. 2002).
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To choose N in practice, one should take into account the trade-off between the quality of

the solution obtained from the SAA problem and the computational time required to solve

it. Hence, it can be more efficient to solve the SAA problem (4.8)-(4.13) with independent

samples repeatedly (say |M| replications) rather than increasing the sample size N . The

detailed SAA procedure is described in Appendix C.1.

4.1.2 Benders Decomposition for the SAA Problem

In this section, we present a BD algorithm coupled with SAA to solve the profit maximizing

capacitated hub location problem with stochastic demand. By approximating the second-

stage expectation via the sample average function as described in the previous section, the

stochastic problem can be formulated as (4.8)-(4.13). To solve this problem, we apply the

same procedure described in §3.2.1 and assume that the hub location decisions are handled

in the master problem, while the rest is left to the subproblem. For a given sample N and

fixed value of the y-variables at yt ∈ Y , the primal subproblem (PSP(N )) reads as

[PSP(N )] max
1

|N |
∑
n∈N

∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)w
mn
k xmn

ak (4.14)

s.t.
∑
a∈Ak

xmn
ak ≤ 1 k ∈ K,m ∈M,n ∈ N (4.15)

∑
a∈Ak:i∈a

xmn
ak ≤ yti i ∈ H, k ∈ K,m ∈M,n ∈ N (4.16)

∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmn
k xmn

ak ≤ Γiy
t
i i ∈ H,n ∈ N (4.17)

xmn
ak ≥ 0 k ∈ K,m ∈M,a ∈ Ak, n ∈ N . (4.18)

Observe that PSP(N ) can be decomposed into |N | independent subproblems of the form

PSP (3.7)-(3.11) for each n ∈ N . Consequently, the dual subproblem associated with each n

can be formulated as DSP (3.12)-(3.15) and solved using the techniques proposed in §3.2.2.

In the following, we denote the DSP under scenario n ∈ N by DSP(N , n), in which wm
k is
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replaced with wmn
k , for each k ∈ K and m ∈M .

Let P n
N for n ∈ N denote the polyhedron defined by feasible region of DSP(N , n), and let

Ex(P n
N ) be its extreme points. The master problem, denoted MP(N ), can then be stated as

max
1

|N |
∑
n∈N

ηn −
∑
i∈H

fiyi (4.19)

s.t. ηn ≤
∑
k∈K

∑
m∈M

αmn
k +

∑
i∈H

yi(Γib
n
i +

∑
k∈K

∑
m∈M

umn
ik ) n ∈ N , (αn, un, bn) ∈ Ex(Pn

N ) (4.20)

y ∈ Y (4.21)

As described in §3.2.1, we solve this problem by replacing Ex(P n
N ) with P̂ n

N ⊂ Ex(P n
N ),

and solve a sequence of relaxed master problems and dual subproblems, until the optimal

solution is found.

4.1.3 Acceleration Techniques for the SAA Algorithm

The variable fixing techniques presented in §3.2.6 can be applied to each sample of the

stochastic model. We can further enhance the convergence of our SAA algorithm by exploit-

ing the repetitive structure of the SAA algorithm. Note that we must solve |M| replications

of problem (4.8)-(4.13). Assume that at some stage of the SAA algorithm, problem (4.8)-

(4.13) has been solved for an arbitrary sample N̂ . Consequently, upon solving MP(N̂ ), we

obtain a set of dual solutions (α̂n̂, ûn̂, b̂n̂) contained in P̂ n̂
N̂ for each n̂ ∈ N̂ . Now, assume

that we want to solve (4.8)-(4.13) for a different sample N . Solving MP(N ) with initially

setting P̂ n
N = ∅ would disregard the fact that the optimal solution of MP(N̂ ) is potentially a

near-optimal solution to MP(N ). We can exploit this property and retrieve feasible solutions

(αn, un, bn) ∈ P̂ n
N for scenario n of sample N from the solutions contained in P̂ n̂

N̂ for n̂ ∈ N̂ .

Given a feasible solution for DSP(N̂ , n̂), the following proposition provides a feasible solution

for DSP(N , n).
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Proposition 4.1. Let (α̂n̂, ûn̂, b̂n̂) ∈ P̂ n̂
N̂ be a feasible solution for DSP(N̂ , n̂), and wmn̂

k be

the demand for commodity k ∈ K of class m ∈M under scenario n̂ ∈ N̂ . (αn, un, bn) defined

by (4.22)-(4.24) is feasible for DSP(N , n):

bni = b̂n̂i i ∈ H (4.22)

αmn
k =

wmn
k

wmn̂
k

α̂mn̂
k k ∈ K,m ∈M (4.23)

umn
ik =

wmn
k

wmn̂
k

ûmn̂
ik k ∈ K,m ∈M, i ∈ H (4.24)

Proof. From (4.23) and (4.24), we obtain α̂mn̂
k =

wmn̂
k

wmn
k

αmn
k and ûmn̂

ik =
wmn̂

k

wmn
k

umn
ik , respectively.

Feasibility of (αn, un, bn) for DSP(N , n) can easily be verified by replacing b̂n̂i , α̂
mn̂
k , and ûmn̂

ik

respectively with bni ,
wmn̂

k

wmn
k

αmn
k , and

wmn̂
k

wmn
k

umn
ik , in constraints (3.13)-(3.15).

Corollary 4.1. The solution obtained by (4.22)-(4.24) provides a valid cut for MP(N ).

Note that for a given scenario n ∈ N , each scenario n̂ ∈ N̂ can provide a valid cut for

MP(N ). To avoid overburdening the MP with too many cuts, for each scenario n ∈ N

we select a single scenario n̂∗ ∈ N̂ and convert the solutions contained in P̂ n̂∗

N̂ to feasible

solutions for P̂ n
N using Proposition 4.1. A heuristic way for choosing such a scenario is to

choose the one with the least demand deviation from the demand under scenario n ∈ N , i.e.

n̂∗(n) = argmin
n̂∈N̂

 ∑
(k,m)∈K×M

|wmn̂
k − wmn

k |

 . (4.25)

It should, however, be noted that if in the process of solving MP(N̂ ), we eliminate a number

of hubs via variable fixing, we will not calculate the dual variables associated with the

eliminated hubs, hence the incomplete solution obtained by (4.22)-(4.24) may not provide

a valid cut for MP(N ). To tackle this problem, we sacrifice the first sample of the SAA

algorithm without employing the variable fixing rules to ensure that the resulting cuts can
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be used for the subsequent samples of SAA. Once these solutions are obtained, we add

the respective cuts to the master problem of the subsequent samples and continue with

performing variable fixing as introduced in §3.2.6.

4.2 Stochastic Demand with Uncertain Revenue

We now model the robust-stochastic problems when there is uncertainty associated with rev-

enues under stochastic demand. We present two mathematical formulations for the robust-

stochastic version of the problem, where we first model a max-min profit criterion and then

a min-max regret criterion.

4.2.1 Case I: Max-min Profit Criterion

We use interval uncertainty for revenues in which each parameter rmk for k ∈ K,m ∈ M

takes values in [r̄mk − r̂mk , r̄
m
k ], where r̄mk is the nominal value of revenue and r̂mk ≥ 0 rep-

resents the deviation from the nominal value. Let γr ∈ [0, |K| × |M |] be an integer value

denoting the uncertainty budget as defined by Bertsimas and Sim (2003), which controls the

level of conservatism in the objective and the maximum number of revenue parameters rmk

whose value is allowed to differ from its nominal value r̄mk . Since our problem is a profit

maximization problem, worse scenarios occur when the realized profits are lower than the

nominal profit. Hence, for every given solution the adversary will choose a maximum num-

ber γr of the revenue coefficients in such a way as to obtained the worst profit (Bertsimas

and Sim 2003). Therefore, we are interested in finding a solution that optimizes against all

such realizations. The robust-stochastic model with max-min profit criterion for the profit
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maximizing hub location problem with capacity allocation is then modeled as:

[RS-I] max
(x,y)∈℧

Eξ[
∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)w
m
k (ξ)x

m
ak(ξ)− νξ(x)]−

∑
i∈H

fiyi (4.26)

where ℧ = {(x, y) : (4.2)− (4.6) are satisfied}, and νξ(x) is defined as follows:

νξ(x) = max
Ur⊆K×M :|Ur|≤γr

∑
(k,m)∈Ur

∑
a∈Ak

r̂mk w
m
k (ξ)x

m
ak(ξ). (4.27)

In the above equation, Ur represents the subset of commodities whose revenue values are

subject to variation. The goal of νξ(x) is to determine the worst case deviation from the

total revenue over all possible revenue realizations for a given solution x. Note that in

extreme cases when γr = 0 or γr = |K| × |M | (alternatively, when Ur = ∅ or Ur = K ×M ,

respectively), the problem can be reduced to the stochastic model and it has trivial solutions

such that for all commodities (k,m), in the former case, rmk = r̄mk , whereas in the latter case,

rmk = r̄mk − r̂mk . These extreme cases represent the least and highest levels of conservatism,

respectively. In general, a higher value of γr leads to a more conservative solution in the

expense of a possibly lower profit.

We can reformulate νξ(x) by introducing a binary variable zmk which determines whether or

not class m ∈ M of commodity k ∈ K is subject to uncertainty; i.e., zmk = 1 if (k,m) ∈ Ur,

and 0 otherwise.

νξ(x) = max
∑
k∈K

∑
m∈M

(
r̂mk w

m
k (ξ)

∑
a∈Ak

xm
ak(ξ)

)
zmk (4.28)

s.t.
∑
k∈K

∑
m∈M

zmk ≤ γr (4.29)

zmk ∈ {0, 1} k ∈ K,m ∈M. (4.30)

Since γr is integer, νξ(x) is simply a sorting problem. Hence, constraint (4.30) can be
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replaced with its linear relaxation counterpart without losing integrality. Let µ(ξ) and λm
k (ξ)

be the dual variables associated with constraints (4.29) and the linear relaxation of (4.30),

respectively. The dual of problem (4.28)-(4.30) can be obtained as:

νξ(x) = min γrµ(ξ) +
∑
k∈K

∑
m∈M

λm
k (ξ) (4.31)

s.t. µ(ξ) + λm
k (ξ) ≥ r̂mk w

m
k (ξ)

∑
a∈Ak

xm
ak(ξ) k ∈ K,m ∈M (4.32)

λm
k (ξ), µ(ξ) ≥ 0 k ∈ K,m ∈M. (4.33)

With this formulation of νξ(x), mathematical program (4.26) can be reformulated as the

following MILP:

max
(x,y)∈℧

Eξ[∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)w
m
k (ξ)xmak(ξ)− γrµ(ξ)−

∑
k∈K

∑
m∈M

λm
k (ξ)]−∑

i∈H
fiyi

s.t. (4.32), (4.33) (4.34)

4.2.2 Case II: Min-max Regret Criterion

If there exists a set of scenarios describing uncertainty associated with the revenues, one

may also use a min-max regret type objective function to model the problem (Correia and

Saldanha-da Gama 2015). Let Sr define the set of scenarios for uncertain revenues and rms
k

denote the amount of revenue obtained from satisfying a unit commodity k ∈ K of class

m ∈M under scenario s ∈ Sr.

For a given demand realization ξ ∈ Ξ, the maximum profit that can be achieved under

89



revenue scenario s ∈ Sr, denoted by Zs(ξ), can be calculated by

Zs(ξ) = max
∑
k∈K

∑
m∈M

∑
a∈Ak

(rms
k − Ĉak)w

m
k (ξ)x

m
ak(ξ)−

∑
i∈H

fiyi (4.35)

s.t.
∑
a∈Ak

xm
ak(ξ) ≤ 1 k ∈ K,m ∈M (4.36)

∑
a∈Ak:i∈a

xm
ak(ξ) ≤ yi i ∈ H, k ∈ K,m ∈M (4.37)

∑
k∈K

∑
m∈M

∑
a∈Ak:i∈a

wm
k (ξ)x

m
ak(ξ) ≤ Γiyi i ∈ H (4.38)

xm
ak(ξ) ≥ 0 k ∈ K,m ∈M,a ∈ Ak (4.39)

y ∈ Y. (4.40)

For a given demand realization ξ ∈ Ξ, the regret of a solution (x(ξ), y) under revenue scenario

s ∈ Sr is defined as the difference between the optimal profit that can be achieved under

that scenario (i.e. Zs(ξ)) and the total profit associated with (x(ξ), y). With this definition,

the min-max regret stochastic model, denoted RS-II, can be formulated as follows:

min
(x,y)∈℧

Eξ[max
s∈Sr

{Zs(ξ)− (
∑
k∈K

∑
m∈M

∑
a∈Ak

(rms
k − Ĉak)w

m
k (ξ)xmak(ξ)−

∑
i∈H

fiyi)}]. (4.41)

The inner maximization calculates the maximum regret among all revenue scenarios. Re-

placing the inner maximization with a continuous variable V (ξ), the above formulation can

be linearized as follows:

min
(x,y)∈℧

Eξ[V (ξ)] (4.42)

s.t. V (ξ) ≥ Zs(ξ)− (
∑
k∈K

∑
m∈M

∑
a∈Ak

(rms
k − Ĉak)w

m
k (ξ)xmak(ξ)−

∑
i∈H

fiyi) ξ ∈ Ξ, s ∈ Sr. (4.43)

We now define V̄ (ξ) := −(V (ξ) −
∑
i∈H

fiyi) and replace V (ξ) with −(V̄ (ξ) −
∑
i∈H

fiyi) and
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reformulate (4.42)-(4.43) in a maximization form as:

max
(x,y)∈℧

Eξ[V̄ (ξ)]−
∑
i∈H

fiyi (4.44)

s.t. V̄ (ξ)−
∑
k∈K

∑
m∈M

∑
a∈Ak

(rms
k − Ĉak)w

m
k (ξ)x

m
ak(ξ) ≤ −Zs(ξ) ξ ∈ Ξ, s ∈ Sr. (4.45)

We now like to compare the min-max regret stochastic model (RS-II) with the robust-

stochastic model with max-min profit criterion (RS-I). Let’s first assume that the set of

revenue scenarios considered in the min-max regret model (i.e. Sr) complies with the re-

quirements of the uncertainty sets considered in the robust-stochastic model with max-min

profit criterion (i.e. Ur). In other words, let Sr consists of all revenue scenarios involving at

most γr commodities with an uncertain revenue. The robust-stochastic model with max-min

profit criterion for each solution (x, y) selects from Sr the scenario that minimizes the total

revenue, and maximizes the expectation of this minimal revenue over all possible solutions

(x, y). The min-max regret stochastic model, on the other hand, selects from Sr the scenario

that maximizes the regret, and minimizes the expectation of this maximal regret over all

possible solutions (x, y). Interestingly, as shown in Theorem 4.1 below, the robust-stochastic

version with max-min profit criterion is actually a special case of the min-max regret stochas-

tic model in which Zs(ξ) = Ẑ for some arbitrary value Ẑ (e.g. 0) for each revenue scenario

s ∈ Sr and demand realization ξ ∈ Ξ.

Theorem 4.1. Let Sr be the set of revenue scenarios where at most γr commodities are sub-

ject to revenue uncertainty. Then, the robust-stochastic model with min-max regret criterion

(4.41), in which regrets are calculated with respect to a fixed reference point Ẑ, is equivalent

to the robust-stochastic model with max-min profit criterion (4.26).

Proof. Please see Appendix C.2 for the proof.

As a consequence of Theorem 4.1, the robust-stochastic model with max-min profit criterion
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is computationally less challenging as there is no need to compute Zs(ξ) for each scenario.

We empirically analyze the outcome and the level of robustness with both of the models

through our computational experiments.

To approximate the expected values in the robust-stochastic models (4.41) and (4.26) we

employ the same SAA scheme described in §4.1.1. We solve the SAA counterpart of the

problems (4.34) and (4.44)-(4.45) using a Benders decomposition (BD) algorithm. The

algorithms are very similar to the ones proposed for the model with stochastic demand and

known revenue. In Appendices C.5 and C.6, we present exact algorithms based on BD

coupled with SAA to solve the robust-stochastic models with max-min profit and min-max

regret criteria, respectively.

4.3 Computational Experiments

4.3.1 Computational Results for the Stochastic Model

In this section, we first focus on the practical convergence of the SAA scheme using the

stochastic model, we then test the performance of our methods on the instances involving

up to 75 nodes. All computational experiments with the stochastic model are performed

using BD2 coupled with SAA.

4.3.1.1 Sample generation

We generate independent samples for demands of commodities using a normal distribution

parameterized as follows: Let w̄m
k be the demand of commodity k of class m in the deter-

ministic case. Moreover, let w̄k =
∑

m∈M w̄m
k be the total demand of commodity k, and

ρkm =
w̄m

k

w̄k
be the proportion of demand of segment m of commodity k. We assume that the
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total demand of k (i.e. wk) is drawn from a normal distribution in which the mean demand

is set to w̄k and the standard deviation is equal to σk = νw̄k, where ν is the coefficient of

variation. Consequently, once the total demand of commodity k is realized, the correlated

demand of class m is computed as wm
k = ρkmwk.

4.3.1.2 Results

In Appendix C.3 we analyze the practical convergence of the SAA procedure to choose num-

ber of replications |M| and the sample size per replication |N |. As a result, we choose

|N | = 50 and |M| = 60 to balance the trade-off between computation time and solution

quality. In the following, we first evaluate the performance of the acceleration techniques

proposed for SAA. The results are provided in Table C.1 in Appendix C.4. In our compu-

tational experiments, the algorithm runs up to five times faster, and more than two times

faster on the average, with the implementation of the acceleration techniques. Hence, all

computational experiments with the stochastic model are carried out using the acceleration

techniques.

We now analyze and evaluate the performance of the SAA algorithm on larger-size instances

with up to 75 nodes from the AP dataset. For each instance, we consider two values 0.5

and 1 as the coefficient of variation to represent the amount of uncertainty in the stochastic

demand. The computational results are summarized in Table 4.1. The first two columns

provide the number of nodes and the coefficient of variation. The next three columns labeled

“Optimal solution” present the net profit (V̄N
M), the best hub locations, and the run time

of instances (in seconds) obtained from solving the SAA algorithm, respectively. The next

column labeled “% Gap” provides the percent optimality gap relative to the best solution

obtained by the SAA algorithm. The last two columns labeled “CI for SAA % gap at” give

the 95% and 99% confidence interval for the optimality gap of the best solution obtained by

the SAA algorithm, respectively.
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Instance Optimal solution % Gap CI for SAA % gap at

|H| ν Profit Open hubs Time (sec) SAA 95% 99%

10LL 0.5 21,380 5,6,9,10 50.82 0.08 (-6.16, 11.73) (-8.74, 14.31)
1 22,529 5,6,9,10 41.76 -0.04 (-4.91, 13.47) (-7.47, 16.03)

10LT 0.5 3,344 5 15.39 0.06 (-9.96, 13.67) (-13.45, 17.16)
1 3,358 5,6 18.33 0.18 (-7.24, 15.50) (-9.29, 17.55)

10TL 0.5 13,890 4,5,9 33.89 0.14 (-14.02, 7.87) (-18.39, 12.24)
1 14,586 4,5,9 53.48 -0.04 (-11.05, 8.37) (-12.19, 9.51)

10TT 0.5 2,690 5 14.97 0.03 (-9.96, 13.67) (-13.56, 17.27)
1 2,683 5 13.11 0.14 (-6.42, 16.57) (-10.60, 20.75)

20LL 0.5 105,282 7,9,10,19 1,553.42 0.04 (-15.15, 14.31) (-16.73, 15.89)
1 113,599 7,9,10,14,19 2,713.17 0.03 (-9.92, 15.72) (-14.67, 20.47)

20LT 0.5 59,727 5,9,10,12,14,19 1,442.36 0.05 (-4.45, 8.72) (-9.21, 13.48)
1 63,731 5,9,10,12,14,19 1,907.56 0.04 (-3.72, 10.74) (-7.05, 14.07)

20TL 0.5 53,035 5,7,10 1,089.42 0.08 (-11.67, 10.97) (-16.07, 15.37)
1 57,511 5,7,10 1,173.79 0.06 (-8.60, 15.09) (-11.86, 18.35)

20TT 0.5 13,672 10 101.11 0.02 (-10.62, 10.07) (-11.90, 11.35)
1 13,984 10 76.78 -0.03 (-8.08, 12.76) (-10.94, 15.62)

25LL 0.5 133,240 7,14,17,23 1,418.24 -0.03 (-10.32, 13.46) (-13.03, 16.17)
1 140,164 7,14,17,23 2,014.32 -0.02 (-6.47, 14.83) (-11.33, 19.69)

25LT 0.5 92,042 6,10,12,14,25 3,218.51 -0.01 (-6.23, 10.47) (-11.13, 15.37)
1 98,570 9,10,12,14,19,25 3,832.22 0.01 (-9.87, 11.51) (-14.58, 16.22)

25TL 0.5 81,755 6,9,14,23 1,127.83 -0.02 (-8.48, 10.26) (-9.95, 11.73)
1 87,625 6,9,14,23 1,613.32 -0.02 (-5.98, 12.38) (-10.64, 17.04)

25TT 0.5 36,956 6,10,14,25 1,420.91 0.00 (-9.16, 8.70) (-11.60, 11.14)
1 39,992 6,9,10,14,25 1,711.33 -0.01 (-7.18, 10.91) (-8.92, 12.65)

40LL 0.5 80,696 12,22,26,29 15,219.35 -0.03 (-18.92, 17.71) (-22.80, 21.59)
1 86,456 9,22,26,29,38 17,612.49 0.02 (-15.39, 19.48) (-16.88, 20.97)

40LT 0.5 71,192 12,14,26,29,30,38 20,369.86 -0.04 (-19.32, 22.57) (-21.37, 24.62)
1 76,989 5,14,19,26,29,30,38 22,928.64 0.04 (-16.86, 23.36) (-18.55, 25.05)

40TL 0.5 65,621 14,19,29 7,549.28 -0.03 (-14.74, 19.37) (-18.99, 23.62)
1 71,406 14,19,29 8,084.24 0.05 (-12.37, 21.22) (-14.30, 23.15)

40TT 0.5 52,843 14,19,25,38 9,672.36 -0.04 (-17.53, 19.75) (-19.06, 21.28)
1 57,349 5,19,25,30 10,836.71 0.05 (-15.95, 23.42) (-20.59, 28.06)

50LL 0.5 77,216 15,28,33,35 13,565.38 0.03 (-19.46, 25.37) (-27.00, 32.91)
1 83,180 5,15,28,33,35 15,738.46 -0.03 (-17.11, 26.23) (-25.07, 34.19)

50LT 0.5 73,467 6,26,32,46 11,874.35 0.05 (-15.83, 21.64) (-22.38, 28.19)
1 79,923 6,19,26,30,46 14,969.23 -0.06 (-13.26, 23.83) (-16.90, 27.47)

50TL 0.5 58,384 3,26,45 5,595.46 0.05 (-16.30, 16.99) (-20.26, 20.95)
1 60,756 3,14,29,45 7,304.05 -0.09 (-12.61, 18.28) (-17.92, 23.59)

50TT 0.5 48,376 6,26,48 6,393.29 0.12 (-14.67, 16.36) (-20.39, 22.08)
1 53,261 6,26,48 7,141.92 -0.07 (-12.71, 18.49) (-17.16, 22.94)

75LL 0.5 145,792 14,23,35,37,56 43,955.24 0.10 (-17.54, 12.63) (-23.37, 18.46)
1 198,962 5,14,19,26,29,30,38 46,085.51 0.04 (-12.46, 18.49) (-16.55, 22.58)

75LT 0.5 113,510 14,25,32,35,38,59 36,666.45 -0.08 (-14.29, 18.81) (-18.50, 23.02)
1 122,007 14,26,32,35,46,59 39,157.63 0.04 (-11.39, 19.41) (-16.60, 24.62)

75TL 0.5 92,609 14,35,37 24,531.79 0.16 (-21.74, 19.83) (-29.04, 27.13)
1 96,829 14,35,37 25,742.90 0.07 (-18.25, 22.49) (-24.14, 28.38)

75TT 0.5 81,697 25,32,38,59 32,559.79 0.14 (-23.67, 16.74) (-31.43, 24.50)
1 84,157 25,26,32,38,59 34,637.15 -0.10 (-17.34, 18.51) (-22.33, 23.50)

Table 4.1: Computational results for the stochastic model with 48 instances of the AP
dataset.
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The results provided in Table 4.1 indicate that the estimated optimality gaps obtained by

the SAA algorithm are always below 0.2%, and that the corresponding confidence intervals

for the optimality gaps are quite narrow for both 95% and 99%. These confirm the efficiency

of the SAA algorithm proposed for the problem with stochastic demand, and also imply that

the solutions produced by our algorithm are good enough to be used in practical applications.

We next observe the effects of variability in uncertain demands on the solutions reported

in Table 4.1. When the ν value increases, that is, when the variability in the uncertain

demand increases, the net profit values and the computation time required for the SAA

algorithm also increase. Note that the best found hub locations do not change significantly

under these variations. We can identify a few instances in which hub locations change by

demand variation, and in most of the instances, the locations of the hubs obtained with

the deterministic and stochastic models are identical (Tables 3.1 and 4.1). It seems that,

in these particular instances, the long-term location decisions are dependent more on the

configuration of hub installation costs and capacities than the demand.

4.3.2 Computational Results for the Robust-Stochastic Model with

Max-min Profit Criterion

For the analysis of the robust-stochastic model with max-min profit criterion, we take r̂mk ∼

U [0, φr̄mk ] to generate intervals of uncertainty, where φ is the maximum possible deviation

from the nominal value of revenue. We first evaluate the effect of the uncertainty budget (γr)

on total profit. We select two instances of the AP dataset on 20 and 25 nodes with φ = 0.5,

and test the model using γr ∈ {0, 5%, 10%, . . . , 100%}. For simplicity, we use percentage

to represent the budget of uncertainty which corresponds to the percentage of the revenue

parameters under uncertainty.

Figures 4.1(a) and 4.1(b) plot the percentage of decrease from the nominal profit for different
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values of γr for the AP20TL and AP25LT instances, respectively. Let Zγr denote the optimal

profit obtained from the robust-stochastic model with max-min profit criterion when budget

of uncertainty is γr and Z0 denote the objective function value with the nominal profit that

can be obtained from the stochastic model. The percentage of decrease from the nominal

profit can then be calculated as Z0−Zγr

Z0
for any γr.

It is clear that a higher value of γr leads to a more conservative solution with a lower Zγr .

Moreover, as shown in Bertsimas and Sim (2003), Zγr is a convex (in our case concave)

function of γr. Consequently, as noted from the Figures 4.1(a) and 4.1(b), for smaller values

of γr, percentage of decrease from the nominal profit drops faster compared to higher values

of the budget of uncertainty. In particular, when we select our budget of uncertainty with

γr ≥ 55%, we observe from both of the figures that, there is not much deviation in the

optimal profits. This observation indicates that small and moderate values of γr provide

better insights for evaluating the effects of the uncertainty budget on the solutions. For this

reason, we use γr ∈ {15%, 25%, 50%} during the rest of our analysis.

(a) AP20TL (b) AP25LT

Figure 4.1: Effect of the uncertainty budget on the max-min profit.

We now analyze the results obtained from the max-min profit model for larger size instances

with up to 75 nodes from the AP dataset. For each instance, we consider two values to

represent the amount of deviation from the nominal value of revenues; φ ∈ {0.5, 1}. The

computational results are summarized in Table 4.2. The first two columns provide the size
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Instance γr = 15% γr = 25% γr = 50%

|N | φ Profit
Avg.
iter.

Time
(sec)

Open
hubs

Profit
Avg.
iter.

Time
(sec)

Open
hubs

Profit
Avg.
iter.

Time
(sec)

Open
hubs

10LL 0.5 11,051 2.01 16 5,9 10,629 2.01 16 5,9 10,129 2.01 19 5,9
1 10,057 2.01 21 5,9 9,536 2.01 19 5,9 9,336 2.01 78 5,9

10LT 0.5 2,799 2.01 14 5 2,522 2.01 13 5 2,222 2.01 13 5
1 2,370 2.01 18 5 1,973 2.01 14 5 1,773 2.01 12 5

10TL 0.5 10,805 2.01 15 5,9 10,384 2.01 15 5,9 9,784 2.01 19 5,9
1 9,720 2.01 21 5,9 9,098 2.01 17 5,9 9,088 2.01 77 5,9

10TT 0.5 2,409 2.01 13 5 2,349 2.01 13 5 2,049 2.01 13 5
1 2,378 2.01 17 5 2,185 2.01 14 5 1,685 2.01 13 5

20LL 0.5 71,687 13.26 2,342 7,9,10,19 67,929 13.05 1,948 7,9,10,19 55,471 13.36 2,402 7,9,10,19
1 49,394 9.71 1,526 7,10,19 43,784 9.5 2,257 7,10,19 26,496 7.83 2,130 10,19

20LT 0.5 33,992 8.03 2,265 5,10,12,14 31,514 7.82 1,099 5,10,12,14 24,129 6.10 1,383 5,10,12,14
1 20,639 6.09 1,802 5,10,12,14 16,736 5.81 2,022 10,12,14 12,166 4.06 285 10,14

20TL 0.5 28,963 3.02 347 7,10 26,602 2.74 154 7,10 19,612 3.07 143 7,10
1 16,662 3.01 311 7,10 12,667 3.17 194 7,10 9,168 3.08 105 10

20TT 0.5 5,416 2.01 78 10 4,911 2.01 71 10 4,565 2.01 57 10
1 1,558 2.01 139 10 527 2.01 79 10 436 2.01 60 10

25LL 0.5 95,864 18.53 6,567 7,14,17,23 91,273 18.32 1,783 7,14,17,23 76,665 18.73 5,300 7,14,17,23
1 67,639 12.63 2,028 7,14,17 60,669 12.42 3,848 7,14,17 38,708 17.63 2,035 9,17

25LT 0.5 59,640 8.02 2,413 6,9,10,12,14,25 55,493 7.91 1,555 6,9,10,12,25 44,722 9.64 2,607 6,9,10,12,25
1 41,798 6.60 1,886 6,9,12,14,25 36,685 6.39 2,186 9,12,14,25 23,167 6.60 1,762 12,14,25

25TL 0.5 49,639 8.07 1,966 6,9,14 46,153 7.86 1,586 6,9,14 35,093 7.20 1,638 6,9,14
1 33,417 7.20 1,118 6,9,14 27,273 6.99 2,078 6,9,14 16,152 6.06 860 14

25TT 0.5 17,306 8.03 1,933 6,10,14 15,481 7.82 1,067 10,14 12,515 8.03 1,219 10,14
1 10,282 7.02 1,329 10,14 8,632 6.81 1,632 14 8,205 2.01 321 14

40LL 0.5 61,336 26.03 21,631 12,22,26,29 58,575 25.82 16,324 12,22,26,29 53,575 24.01 19,324 12,22,26,29
1 42,520 25.54 20,749 17,26,35 38,203 25.33 19,017 17,26,35 31,203 23.18 18,017 17,26,35

40LT 0.5 48,425 22.13 21,852 10,14,26,30,38 46,080 21.92 18,448 10,14,26,30,38 42,080 17.42 18,448 10,14,26,38
1 29,070 19.09 20,318 10,17,26, 38 27,736 18.88 21,547 10,26, 38 22,736 15.75 16,547 10,26, 38

40TL 0.5 42,569 16.83 8,116 14,19,29 40,477 16.12 6,903 14,19,29 35,185 10.09 71,032 14,29
1 25,900 10.96 6,401 14,29 22,730 10.75 9,165 14,29 14,752 8.16 3,367 14,29

40TT 0.5 32,427 10.03 10,331 14,19,25,38 30,583 9.82 7,523 14,19,25,38 26,691 7.55 3,027 14,19,38
1 20,168 8.43 8,252 14,19,38 17,523 8.22 10,048 14,19,38 11,809 4.24 948 14,38

50LL 0.5 59,282 22.71 14,393 15,28,33,35 57,541 22.5 12,143 15,28,33,35 54,541 16.94 12,143 15,28,33,35
1 39,066 20.08 16,141 15,28,33,35 36,174 17.27 16,732 15,28,35 31,174 14.18 10,732 15,28,35

50LT 0.5 55,565 19.23 15,057 26,32,46 54,186 16.02 10,436 26,32,46 52,186 13.07 13,436 26,32,46
1 39,119 17.08 13,326 26,32,46 35,992 9.87 14,681 26,46 30,992 8.74 8,681 26,46

50TL 0.5 34,324 9.13 9,645 26,45 32,431 8.92 5,912 26,45 27,449 8.23 6,113 26,45
1 17,729 7.73 7,912 24 15,340 4.52 9,448 24 9,882 3.23 2,436 24

50TT 0.5 29,183 4.06 7,299 26,48 27,727 3.85 4,479 26,48 24,434 3.01 4,125 26,48
1 16,113 3.81 6,729 26,48 13,639 3.6 8,759 26 9,800 3.02 2,403 26

75LL 0.5 93,115 47.37 68,749 14,26,35,38,56 81,343 47.16 65,231 14,26,35,38,56 55,318 41.82 63,194 14,26,38,56
1 64,054 45.29 64,184 14,26,35,38,56 53,172 41.23 57,418 14,26,38,56 32,719 23.08 56,319 14,38,56

75LT 0.5 74,926 43.16 59,317 25,32,35,38,59 57,343 42.95 53,568 25,35,38,59 41,663 24.76 43,717 25,38,59
1 40,963 45.83 61,732 25,32,35,38,59 31,568 40.26 55,619 25,35,38,59 24,428 19.80 21,368 25,38

75TL 0.5 52,219 11.76 47,273 14,35,37 39,618 11.21 45,236 14,35,37 25,763 9.96 20,813 14,37
1 27,165 10.74 45,613 14,35,37 21,308 5.91 34,192 14,37 19,233 2.21 12,341 37

75TT 0.5 42,708 11.63 45,763 26,32,38,59 30,784 11.42 30,118 26,38 20,619 9.59 21,679 26,38
1 28,816 8.89 31,573 26,38,59 17,193 8.28 29,918 26,38 14,672 2.20 11,972 38

Table 4.2: Computational results for the robust-stochastic model with the max-min profit
criterion with 48 instances of the AP dataset.
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and name of the instances and the amount of deviation, respectively. The columns labeled

“Profit”, “Avg. iter.”, and “Time (sec)” indicate the optimal expected profit, the average

number of iterations required for the convergence of the BD algorithm at each replication

of SAA, and the computation time of the instances (in seconds) obtained from solving the

model, respectively. The columns labeled “Open hubs” show the locations of the hub nodes.

Table 4.2 is split into three parts to represent the results for γr = 15%, γr = 25%, and

γr = 50%, respectively.

All of the instances presented in Table 4.2 are solved to optimality. We observe that the

computation times and average number of iterations do not vary significantly by varying γr

values. This can be attributed to the fact that the number of dual variables associated with

the intervals of uncertainty is independent from the value of γr. This characteristic enables

the algorithm to solve instances with up to 16,875 commodities containing stochastic demand

and uncertain revenue. The averages of the computational times reported in Table 4.2 for

the γr = 15%, 25%, and 50% instances are 3.8, 3.4, and 2.8 hours, respectively. These results

clearly confirm the efficiency of the proposed algorithm for the robust-stochastic model with

max-min profit criterion.

The profits obtained from the max-min profit model represent the lowest profit that can

be expected, as long as the revenues comply with the model of uncertainty. This profit

provides a valuable information, in particular to a conservative decision maker, since the

profit associated with this solution will never fall below the obtained value.

Next, we analyze the effects of variability in uncertain revenues on the optimal solutions

presented in Table 4.2. When the level of uncertainty (i.e., φ and γr) increases, the net

profit value and the number of open hubs in the optimal solutions decrease. It can also be

observed that the set of open hubs with a high level of uncertainty (e.g., γr = 50% and

φ = 1) is a subset of the open hubs, when the level of uncertainty is low (e.g., γr = 15% and

φ = 0.5). For example, in the optimal solution of 20LL with γr = 50% and φ = 1, hubs are
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located at nodes 10 and 19. While, by decreasing γr to 15% and φ to 0.5, hubs are located

at nodes 7, 9, 10, and 19.

Instance
type

φ
γr = 15% γr = 25% γr = 50%

Demand Class (%)
Avg.

Demand Class (%)
Avg.

Demand Class (%)
Avg.

m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3

LL 0.5 97.56 84.19 69.38 83.71 87.50 74.75 58.42 73.56 74.89 62.81 44.81 60.84
1 87.80 75.94 50.83 71.52 78.42 67.10 41.85 62.45 66.58 55.96 31.07 51.20

LT 0.5 91.13 78.44 57.69 75.75 84.29 69.84 48.88 67.67 72.92 57.68 37.97 56.19
1 83.40 68.46 39.14 63.67 73.65 59.34 30.87 54.62 62.90 49.21 19.89 44.00

TL 0.5 93.69 82.34 61.56 79.20 86.66 71.72 51.08 69.82 75.66 58.29 38.05 57.33
1 85.69 71.10 40.62 65.80 77.27 66.41 32.07 58.58 65.54 56.78 20.81 47.71

TT 0.5 83.62 72.19 42.38 66.06 76.43 65.68 32.75 58.29 65.53 54.48 21.89 47.30
1 73.73 63.00 26.98 54.57 64.45 53.98 18.14 45.52 53.02 41.70 8.62 34.45

Table 4.3: Percentage of demand satisfied for each demand class with the max-min profit
model.

Table 4.3 presents the percentages of satisfied demand from different market segments. For a

given (φ, γr) pair, the averages for each demand class are calculated over instances from Table

4.2 with the same type of installation costs and capacities. The average percentages of total

satisfied demand are provided in the last columns corresponding to each γr value. When φ or

γr value increases, the percentage of satisfied demand for all three market segments decreases

as expected. For a given (φ, γr) pair, in the instances with the same configuration of hub

installation costs and capacities, the first class is the one with the highest percentages of

satisfied demand, while the third demand class has the least. This is because serving the first

and third classes result the highest and lowest revenues, respectively. On average, instances

with loose capacities (LL and TL) yield higher percentages compared to the instances with

tight capacities (LT and TT).
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4.3.3 Computational Results for the Robust-Stochastic Model with

Min-max Regret Criterion

We now analyze the results obtained with the min-max regret stochastic model. We use

instances with up to 75 nodes from the AP dataset. For each instance, we perform two sets

of experiments each involving five different scenarios with uncertain revenues (i.e., |Sr| = 5).

In the first set, revenue scenarios are randomly generated from the interval [0.75r̄mk , r̄
m
k ],

while in the second set, revenue scenarios are drawn from the interval [0.5r̄mk , r̄
m
k ], where r̄mk

is the nominal revenue of commodity k of class m.

The computational results are summarized in Table 4.4, which is split into two parts to

represent the results for rms
k ∈ [0.75r̄mk , r̄

m
k ] and rms

k ∈ [0.5r̄mk , r̄
m
k ], respectively. In this

table, the column “Regret” indicates the optimal regret of the problem and “Avg. profit”

represents the average anticipated profits, which are computed by taking the average profits

over 50 demand and 5 revenue scenarios in 60 replications. The rest of the columns report

the same as in Table 4.2.

All of the instances in Table 4.4 are solved to optimality. The CPU times and average

number of iterations required for solving the instances to optimality indicate the efficiency

and robustness of the algorithm and also the acceleration techniques proposed for the min-

max regret stochastic model. As can be observed from Table 4.4, different revenue intervals

have no significant impact on the performance of the algorithm. In particular, the averages

of the computational time for rms
k ∈ [0.75r̄mk , r̄

m
k ] and rms

k ∈ [0.5r̄mk , r̄
m
k ] are 3.8 and 3.7 hours,

respectively.

The regret values reported in Table 4.4 indicate the maximum amount of profit that can be

lost under this data uncertainty. This implies that if the decision maker employs the obtained

solution, the anticipated loss in profit is expected to be less than this value. Moreover, the

average profits provide an insight on the expected profit itself.
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We now analyze the effect of the lower bound of the interval from which revenue scenarios are

generated on the optimal solutions. For a given instance, when the lower bound decreases

from 0.75 to 0.5, that is, when the range of fluctuations in revenue values increases, the

regret of the solution increases, while the average profit and the optimal number of open hubs

decrease. This is because with a wider range of fluctuations in the data, we would expect

lower revenues, thus the installation cost of fewer hubs can be justified by the expected

revenue. It is worthwhile to also note that the set of open hubs, when rms
k ∈ [0.5r̄mk , r̄

m
k ],

turned out to be a subset of the open hubs, when rms
k ∈ [0.75r̄mk , r̄

m
k ] in all the instances in

Table 4.4.

Instance rms
k ∈ [0.75r̄mk , r̄

m
k ] rms

k ∈ [0.5r̄mk , r̄
m
k ]

|N | Regret
Avg.
profit

Avg.
iter.

Time
(sec)

Open hubs Regret
Avg.
profit

Avg.
iter.

Time
(sec)

Open hubs

10LL 139 13,642 2.00 39 5,9 678 8,379 2.00 40 5,9
10LT 565 4,700 2.00 31 5 1,296 1,692 2.00 39 5
10TL 137 11,023 2.00 32 5,9 975 7,942 2.00 31 5,9
10TT 561 3,560 2.00 26 5 1,368 1,799 2.00 31 5
20LL 550 73,309 5.70 2,237 7,9,10,19 2,323 40,839 7.20 1,820 7,10,19
20LT 902 35,684 3.04 1,946 5,10,12,14 1,994 23,234 6.00 1,241 5,10,14
20TL 1,027 29,181 2.03 104 7,10 2,137 21,532 3.00 144 7,10
20TT 1,074 7,231 2.00 91 10 1,799 5,712 2.00 102 10
25LL 145 94,318 2.10 4,563 7,14,17,23 781 70,435 3.84 4,548 7,14,17,23
25LT 383 59,317 2.00 5,394 6,9,10,12,14,25 1,203 41,059 5.03 5,637 6,9,12,14,25
25TL 760 48,941 2.90 2,572 6,9,14 1,094 31,520 4.00 2,776 6,9,14
25TT 979 17,593 4.00 1,774 10,14 1,872 11,451 3.00 457 14
40LL 219 65,561 6.07 22,437 12,22,26,29 935 49,338 6.79 18,717 12,26,29
40LT 189 56,402 4.70 20,214 12,14,26,29,30,38 869 37,804 4.03 15,749 14,26,29,38
40TL 127 48,637 2.00 4,426 14,19,29 929 34,389 2.21 2,616 14,29
40TT 397 37,614 4.01 9,180 14,19,25,38 1,170 25,789 2.16 4,736 14,19,38
50LL 126 64,073 4.09 14,718 15,28,33,35 489 35,848 5.12 15,134 15,28,33,35
50LT 148 60,578 2.00 7,625 6,26,32,46 577 35,812 4.07 7,526 6,26,32,46
50TL 233 37,516 3.00 4,712 26,45 780 15,456 4.40 4,495 26,45
50TT 363 31,974 2.00 5,021 26,48 1,083 13,384 2.00 5,549 26,48
75LL 368 100,106 5.86 72,163 14,23,35,38,56 954 59,933 6.14 74,318 14,23,35,38,56
75LT 464 80,243 4.91 67,335 14,25,32,38,59 1,063 37,002 5.08 67,660 14,25,32,38,59
75TL 534 55,236 4.79 43,307 14,35,37 1,187 24,537 4.36 47,208 14,35,37
75TT 599 46,406 4.15 37,639 26,32,38 1,608 25,810 4.09 41,314 26,32,38

Table 4.4: Computational results for the min-max regret stochastic model with 24 instances
of the AP dataset.

Table 4.5 presents the percentages of satisfied demand from different market segments for

rms
k ∈ [0.75r̄mk , r̄

m
k ] and [0.5r̄mk , r̄

m
k ]. When the lower bound of the interval decreases, the
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Instance
type

rms
k ∈ [0.75r̄mk , r̄

m
k ] rms

k ∈ [0.5r̄mk , r̄
m
k ]

Demand Class (%)
Avg.

Demand Class (%)
Avg.

m=1 m=2 m=3 m=1 m=2 m=3

LL 97.19 83.34 48.67 76.40 93.21 74.66 37.56 68.48
LT 89.90 70.80 36.68 65.79 84.02 58.25 26.97 56.41
TL 92.21 71.38 38.35 67.31 88.07 62.51 28.05 59.55
TT 76.90 47.51 17.96 47.46 66.09 32.70 12.56 37.12

Table 4.5: Percentage of demand satisfied for each demand class with the min-max regret
model.

percentage of satisfied demand for all three market segments also decreases. Similar to our

observations with Table 4.3, in the instances with the same configuration, the first and

third classes result in the highest and lowest percentages of satisfied demand, respectively.

For a given revenue interval, the percentage of satisfied demand in the instances with loose

capacities, on average, is higher than that of the instances with tight capacities.

4.3.4 Comparison of Stochastic and Robust-Stochastic Solutions

In this section, we compare the solutions obtained from the stochastic and the two robust-

stochastic models to analyze the effect of uncertain revenues. For the stochastic model, we use

the nominal revenues (i.e., r̄mk ). For the robust-stochastic models, the set of revenue scenarios

considered in the min-max regret model (i.e., Sr) should comply with the requirements of

the uncertainty sets considered in the max-min profit model (i.e., φ and γr). Recall that

in the max-min version, we use φ to determine the variability in uncertain revenue, such

that r̂mk ∼ U [0, φr̄mk ] and the interval of uncertainty for revenue is [r̄mk − r̂mk , r̄
m
k ]. To make

the settings under which the two models are executed comparable, for the min-max regret

stochastic model, we generate ten revenue scenarios (i.e., |Sr| = 10) using the same intervals

as in the max-min version (i.e., rms
k ∈ [r̄mk − r̂mk , r̄

m
k ] for each s ∈ Sr) and implicitly satisfy the

budget of uncertainty constraint (4.29) by ensuring that
∑
k

∑
m

r̄mk −rms
k

r̂mk
≤ γr, for each scenario

s ∈ Sr.
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Note that each model optimizes a different metric, hence, we cannot compare the quality of

the solutions based on the individual objective function values. However, we can compare

the hub networks obtained from each of the models. We suggest evaluating the quality of

the solutions under two metrics: the profit that can be expected from each solution, and the

frequency at which each solution attains the highest profit among other solutions.

Let (x̃, ỹ) denote the optimal solution obtained from any of the stochastic or robust-stochastic

models. For revenue rmk ∈ [r̄mk − r̂mk , r̄
m
k ], the total profit associated with a solution (x̃, ỹ) is

calculated as:

Zr(x̃, ỹ) = Eξ[
∑
k∈K

∑
m∈M

∑
a∈Ak

(rmk − Ĉak)w
m
k (ξ)x̃

m
ak(ξ)]−

∑
i∈H

ỹifi

=
∑
k∈K

∑
m∈M

rmk X̃
m
k − C̃ (4.46)

where

X̃m
k = Eξ[

∑
a∈Ak

wm
k (ξ)x̃

m
ak(ξ)] and C̃ = Eξ[

∑
k∈K

∑
m∈M

∑
a∈Ak

Ĉakw
m
k (ξ)x̃

m
ak(ξ)] +

∑
i∈H

ỹifi.

Recall that rmk is a random variable (with unknown distribution). Therefore, by central limit

theorem, Zr(x̃, ỹ) is a normally distributed random variable with expected value

Er[Zr(x̃, ỹ)] =
∑
k∈K

∑
m∈M

E[rkm]X̃m
k − C̃, (4.47)

and variance

Vr[Zr(x̃, ỹ)] =
∑
k∈K

∑
m∈M

V[rkm](X̃m
k )2. (4.48)

The first metric can be computed using (4.47). In our experiments, we adapt the SAA

scheme and use |N | = 50 demand scenarios. Moreover, we assume that rmk ∼ U [r̄mk − r̂mk , r̄mk ].
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Therefore, Er[Z(x̃, ỹ)] and Vr[Z(x̃, ỹ)] can easily be computed by setting E[rkm] = r̄mk −0.5r̂mk

and V[rkm] = 1
12
(r̂mk )

2.

The second metric estimates the probability that a solution dominates other two solutions

in terms of the profit that can be obtained under different revenue realizations. Let (x̃S, ỹS),

(x̃R1, ỹR1), and (x̃R2, ỹR2) be the solutions obtained by the stochastic model with nominal

revenue, robust-stochastic model with max-min profit criterion and robust-stochastic model

with min-max regret criterion, respectively. The probability that solution obtained by the

stochastic model yields the highest profit among the three models is computed by

P[Zr(x̃S, ỹS) > Zr(x̃R1, ỹR1), Zr(x̃S, ỹS) > Zr(x̃R2, ỹR2)]. (4.49)

The probability that other two solutions yield the highest profits are defined similarly. Note

that although random variables Zr(.) are normally distributed with known parameters, these

random variables are not independent and so computing the probability defined by (4.49) is

not straightforward. To approximate these probabilities, we generate a large sample of rev-

enue scenarios (here of size 1,000) and estimate the percentages by counting the realizations

under which each model outperforms the other two.

We performed the above analysis using four instances from the AP dataset: 20LL, 25LT,

40TL, and 50LL. For each instance, we considered five levels of variability for the rev-

enue intervals, φ ∈ {0.2, 0.4, 0.6, 0.8, 1}, and two values for the budget of uncertainty with

γr ∈ {25%, 50%}. Computational results are reported in Table 4.6. Columns under the

heading of “Expected profit” represent the expected profit obtained from the stochastic,

robust-stochastic model with max-min profit criterion, and min-max regret stochastic model,

respectively. Columns under the heading “Dominance probability (%)”, on the other hand,

provide the percentage that each model yields the highest profit among the three models

under 1,000 replica. The bold entries in Table 4.6 highlight the highest expected profit for
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each instance.

The solutions obtained from both of the robust-stochastic models substantially outperform

the solutions obtained from the stochastic model based on the nominal revenues, in gen-

eral. On average, the robust-stochastic models yield significantly higher expected profits

compared to the stochastic model. More specifically, in our experiments, there is a 97%

chance that at least one of the robust-stochastic models dominates the stochastic model

with nominal revenues. The robustness of the solutions obtained from the robust-stochastic

models increases as the uncertainty in the revenues (i.e. φ) increases. These observations

underline the robustness of the solutions obtained from the robust-stochastic models over

the stochastic model and justify the need for incorporating both sources of uncertainty in

decision making.

When the two robust-stochastic models are compared with each other, the min-max regret

model turned out to be more likely to yield the highest profit. In particular, the min-

max regret model attained the highest profit in 71% of the instances whereas the max-min

profit model attained the highest profit only in 22%. It can also be observed from the

results reported in Table 4.6 that increasing the budget of uncertainty from γr = 25% to

50% results in a higher expected profit for the robust-stochastic models, on average. This

suggests a positive effect of increasing the level of conservatism on the quality of the solutions

obtained from the robust-stochastic models. Increasing the level of conservatism plays a role

in favour, in particular, of the min-max regret model, as it not only increases the expected

profit, but also increases the chance that this model yields the highest profit among the three

models.
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Instance
γr = 25% γr = 50%

Expected profit Dominance probability (%) Expected profit Dominance probability (%)

|N | φ
Nominal
revenue

Max-min
profit

Min-max
regret

Nominal
revenue

Max-min
profit

Min-max
regret

Nominal
revenue

Max-min
profit

Min-max
regret

Nominal
revenue

Max-min
profit

Min-max
regret

20LL 0.2 42,746 42,791 42,748 22.7 54.5 22.8 42,746 42,899 43,063 0.1 8.0 91.9
0.4 32,896 34,671 36,210 0.0 0.0 100.0 32,896 35,232 36,396 0.0 0.0 100.0
0.6 23,047 26,225 29,678 0.0 0.0 100.0 23,047 27,950 29,879 0.0 0.0 100.0
0.8 13,197 18,720 23,180 0.0 0.0 100.0 13,197 18,985 23,602 0.0 0.0 100.0
1 3,348 14,087 16,769 0.0 2.4 97.6 3,348 16,298 17,595 0.0 12.9 87.1

25LT 0.2 80,587 80,373 80,609 23.3 0.0 76.7 80,587 80,425 80,655 4.8 0.0 95.2
0.4 69,063 67,812 69,225 9.1 0.0 90.9 69,063 65,583 69,324 2.4 0.0 97.6
0.6 57,539 53,817 57,988 1.9 0.0 98.1 57,539 52,355 58,038 17.9 0.0 82.1
0.8 46,015 42,143 46,948 0.4 0.0 99.6 46,015 40,420 49,117 0.0 0.0 100.0
1 34,491 34,108 36,131 0.2 3.5 96.3 34,491 34,634 41,383 0.0 0.0 100.0

40TL 0.2 52,727 52,659 52,830 0.0 0.0 100.0 52,727 52,666 52,839 0.0 0.0 100.0
0.4 45,753 45,488 45,935 0.0 0.0 100.0 45,753 45,363 45,950 0.0 0.0 100.0
0.6 38,779 40,131 39,142 0.0 100.0 0.0 38,779 39,864 39,541 0.0 95.6 4.4
0.8 31,805 31,531 32,664 0.0 0.0 100.0 31,805 31,905 36,304 0.0 0.0 100.0
1 24,831 23,562 26,216 0.0 0.0 100.0 24,831 24,353 30,462 0.0 0.0 100.0

50LL 0.2 54,568 54,692 54,681 0.0 83.6 16.4 54,568 54,684 54,705 0.0 0.6 99.4
0.4 47,232 47,354 47,449 0.0 3.3 96.7 47,232 47,485 47,519 0.0 27.1 72.9
0.6 39,897 40,279 40,181 0.0 77.4 22.6 39,897 42,151 40,762 0.0 100.0 0.0
0.8 32,562 37,606 33,286 0.0 100.0 0.0 32,562 38,646 36,247 0.0 100.0 0.0
1 25,226 28,177 26,323 0.0 100.0 0.0 25,226 31,280 29,937 0.0 99.9 0.1

Avg. 39815 40811 41910 2.9 26.2 70.9 39815 41159 43166 1.3 22.2 76.5

Table 4.6: Profit comparison with stochastic and robust-stochastic models.

4.4 Conclusions

In this chapter, to capture more realistic cases, we extended the profit-maximizing hub

location models to cases where demand or revenue are uncertain. We addressed demand un-

certainty by developing a two-stage stochastic program. We further extended the stochastic

model to robust-stochastic models to address the uncertainty in the revenues. To incorpo-

rate uncertain revenues into the problem, we employed robust optimization techniques and

considered two particular cases including interval representation with a max-min profit cri-

terion and discrete scenarios using a min-max regret objective. We proposed mixed integer

programming formulations for each of these cases and showed that the robust-stochastic

version with max-min profit criterion can be viewed as a special case of the min-max regret

stochastic model.

For the stochastic and robust-stochastic problems, we presented a solution method that

integrates the proposed Benders decomposition algorithms with the SAA scheme to obtain
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solutions to problems with a large number of scenarios. We additionally developed novel

acceleration techniques to enhance the performance of the algorithms enabling them to solve

large-scale intractable instances of the stochastic and robust-stochastic problems. Integrating

BD2 with the accelerated SAA algorithm, instances involving up to 75 nodes and 16,875

commodities were solved to optimality. These results clearly confirm the efficiency and

robustness of our algorithms.

We additionally compared the quality of the solutions obtained from the stochastic and

robust-stochastic models. The results provide several important insights in the design of

optimal hub networks to maximize profit. For example, the expected profit obtained from

both of the robust-stochastic models is significantly higher than that of the stochastic model.

These observations verify that the robust-stochastic models indeed provide robust solutions

and justify the need for embedding both sources of uncertainty.
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Chapter 5

Contributions and Concluding

Remarks

Benders decomposition is a prevalent large-scale optimization technique for tackling challeng-

ing problems that lie at the heart of operations research and supply chain management. This

thesis contributed to the literature in this area in three main directions. First, we presented

general techniques for accelerating Benders decomposition algorithm. Second, we illustrated

applicability of Benders decomposition in a new profit maximizing hub location problem.

Third, we introduced a novel modelling approach for taking uncertainties in designing hub

networks and introduced techniques for efficiently solving these problems. Contributions of

this thesis in each direction are summarized as follows.

In Chapter 2, we proposed a general method for selecting Benders cuts to enhance conver-

gence of the BD algorithm. Our approach explicitly takes cut depth into account through

Euclidean distance from the master solution to the candidate cuts. We then extended this

measure to general ℓp-norms, and unveiled their properties from a primal perspective. We

also presented reformulation techniques for deriving these cuts by solving the separation
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problems as linear or quadratic programs. We further established a duality between sep-

aration and projection, and through this duality, we introduced the Guided Projections

Algorithm for producing ℓp-deepest cuts.

Through a generalization of notion of distance, we illustrated the connection of our method

to some well-known cut selection strategies. Specifically, we established the connection

to MIS cuts, and provided three novel ways of choosing the normalization coefficients in

the MIS subproblem, that connect our distance functions to the Magnanti-Wong procedure

for producing Pareto-optimal cuts, as well as the Conforti-Wolsey procedure for producing

facet-defining cuts. As a proof of concept, we performed computational experiments on

CFLP instances, and we showed the benefits of deepest cuts and other distance-based cuts,

particularly when generated using GPA, in decreasing the number of cuts as well as the

runtime of the BD algorithm.

In Chapter 3, we considered revenue management decisions within hub location problems and

proposed MILP formulations of the problem. We presented a fast implementation of Benders

decomposition equipped with efficient and tailored routines for producing effective optimality

cuts leveraging the combinatorial structures of the hub location problem. In our approach,

referred to as the two-phase cut generation, we introduced a framework for decomposing

the subproblem into two sequential problems, where the first phase guarantees optimality

of the solution, and the second phase strengthens the cut while maintaining optimality.

We introduced two routines for the seconds phase by treating this problem as a multiple

objective optimization problem. The first routine is based on solving the subproblem as a

set of continuous maximum weighted matching problems, while the second routine solves

the subproblem as a series of continuous knapsack problems. We further enhanced the BD

algorithm by incorporating improved variable fixing techniques.

Through computational experiments, we showed that both cut selection routines result in

generating effective cuts, outperforming the state-of-the-art cuts from the literature (Pareto-
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optimal cuts; Magnanti and Wong 1981) in terms of effectiveness in closing the optimality gap

as well as computational efforts required for producing them, offering orders of magnitude

speedups. Our two-phase cut generation routine as well as the improved variable fixing

proposed can be used for solving several classes of transportation and network optimization

problems. We evaluated the proposed Benders decomposition algorithms through extensive

computational experiments, and illustrated the capability of our method in solving instances

with up to 500 nodes, exceeding the largest instances solved to date (300 nodes; Contreras

et al. 2012), while considering an even more difficult problem setting with generic capacity

constraints, multiple demand segments, and a profit maximizing objective function.

In Chapter 4, we extended the profit maximizing hub location problems by considering sev-

eral types of uncertainty in the parameters. We first proposed a two-stage stochastic program

for considering uncertain demand. We further extended the model by incorporating uncer-

tain revenue through robust-stochastic formulations. We employed two robust optimization

techniques based on interval representation with a max-min robustness criterion as well as

discrete scenarios using a min-max regret objective. To the best of our knowledge, this is the

first study that compares two robust approaches under a stochastic setting. The proposed

modeling techniques can be used to formulate uncertainty in other types of optimization

problems. We proposed MILP formulations for theses three cases and developed sample

average approximation scheme to obtain solutions to problems with large number of sce-

narios. We further employed Benders decomposition algorithms tailored to the structures

of each problem for solving large-scale instances. Leveraging the repetitive structures of

these problems, we proposed novel acceleration techniques to improve the convergence of the

algorithms. Our acceleration techniques can be employed in a more general context.

We performed extensive computational analysis and illustrated the benefits of these tech-

niques in reducing the computation times by a factor of more than five, enabling our algo-

rithm to solve large-scale intractable instances of this problem. We showed that our methods
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were able to solve instances with up to 75 nodes and 16,875 commodities of multiple demand

classes, surpassing are the largest instances solved for any type of stochastic hub location

problems. Our results further provided several important insights in the design of hub net-

works. We showed that the expected profit obtained from both of the robust-stochastic

models are significantly higher than that of the stochastic model. We also observed that the

uncertainty associated with the revenues resulted in building denser hub networks with a

higher number of allocation connections. These observations justify the need for embedding

both sources of uncertainty for designing robust hub networks.
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Appendix A

Supplementary Materials for

Chapter 2

A.1 Proofs

In this appendix, we provide the proof of the propositions and theorems given in Chapter 2.

For convenience, we formally restate the propositions and theorems as well.

Proposition 2.1. Solution (y, η) satisfies constraints (2.5) if and only if (y, η) ∈ E .

Proof. We first show that any (y, η) ∈ E satisfies all constraints (2.5). It suffices to show

that constraints (2.5) are implied by the classical Benders cuts. For an arbitrary certificate

(π, π0), we may consider two cases:

Case 1: For π0 > 0, define u = π
π0
. Then, u ≥ 0 and u⊤A ≤ c⊤, implying u ∈ U .

Consequently, by Minkowski’s representation theorem, u is a convex combination of extreme

points of U and a weighted combination of extreme rays of U , which implies that constraint

0 ≥ π⊤(b−By) + π0(f
⊤y − η) is implied by the classical Benders feasibility and optimality
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cuts.

Case 2: For π0 = 0, we have π⊤A ≤ 0, which means π is in the recession cone of U .

Consequently, constraint 0 ≥ π⊤(b − By) + π0(f
⊤y − η) = π⊤(b − By) is implied by the

classical Benders feasibility cuts.

Next, we show that any (y, η) satisfying constraints (2.5) belongs to E . Observe that any ex-

treme point u of U can be represented as a certificate (π, π0) = (u, 1). Similarly, any extreme

ray v of U can be represented as a certificate (π, π0) = (v, 0). Consequently, constraint set

(2.5) contains all classical Benders optimality and feasibility cuts.

Proposition 2.2. Given q ≥ 1 and ẑ ∈ Rn+1, the minimum ℓq-distance from the point ẑ

to the points on the hyperplane α⊤z + β = 0 is

min
z:α⊤z+β=0

∥z − ẑ∥q =
|α⊤ẑ + β|
∥α∥p

,

where ℓp is the dual norm of ℓq (i.e.,
1
p
+ 1

q
= 1).

Proof. For generality, we prove the proposition for general norms using the definition of dual

norms; proof for ℓp norms follows directly. By definition of dual norms, we have

∥α∥∗ = max
x

{
|α⊤x|
∥x∥

}
.

Replacing x = z − ẑ, we get

∥α∥∗ = max
z

{
|α⊤(z − ẑ)|
∥z − ẑ∥

}
. (A.1)

For z ∈ Rn+1 \ {ẑ}, define z̃(z) to be the intersection of hyperplane α⊤z + β = 0 and the

line that crosses points (z, ẑ). Note that the intersection point for any optimal z exists,
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since the line crossing (z, ẑ) cannot be parallel to the hyperplane α⊤z+ β = 0 for optimal z.

This is because a parallel line crossing (z, ẑ) and hyperplane α⊤z + β = 0 would imply that

α⊤(z − ẑ) = 0, which cannot be optimal, since ∥α∥∗ > 0. Now, since ẑ does not belong to

the hyperplane α⊤z + β = 0, there exists θ(z) ̸= 0 such that z − ẑ = θ(z)× (z̃(z)− ẑ). We

can therefore rewrite (A.1) as

∥α∥∗ = max
z

{
|θ(z)||α⊤(z̃(z)− ẑ)|
∥θ(z)× (z̃(z)− ẑ)∥

}
= max

z

{
|α⊤(z̃(z)− ẑ)|
∥(z̃(z)− ẑ)∥

}
, (A.2)

where the last equality holds since norms are homogeneous. Consequently, without loss of

generality we may restrict z to the points on the hyperplane α⊤z + β = 0, that is

∥α∥∗ = max
z:α⊤z+β=0

{
|α⊤(z − ẑ)|
∥z − ẑ∥

}
= max

z:α⊤z+β=0

{
|α⊤ẑ + β|
∥z − ẑ∥

}
, (A.3)

where we have used β = −α⊤z. But |α⊤ẑ + β| is constant, therefore we may rewrite (A.3)

as

∥α∥∗ = |α⊤ẑ + β| max
z:α⊤z+β=0

{
1

∥z − ẑ∥

}
=

|α⊤ẑ + β|
min

z:α⊤z+β=0
∥z − ẑ∥

, (A.4)

which completes the proof for general norm. The proof for ℓq follows by replacing ∥·∥ = ∥·∥q

and ∥ · ∥∗ = ∥ · ∥p.

Theorem 2.1. Separation problem (2.9) is equivalent to the following Lagrangian dual
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problem.

[Primal SSP] min ∥(y − ŷ, η − η̂)∥q

s.t. η ≥ c⊤x+ f⊤y

Ax ≥ b−By

x ≥ 0,

(A.5)

in which (y, x, η) are the variables and ℓq is the dual norm of ℓp.

Proof. SSP (2.9) can be equivalently stated as (see Proposition 2.9):

max
(π,π0)∈Π

π⊤(b−Bŷ) + π0(f
⊤ŷ − η̂)

s.t. ∥(π0f
⊤ − π⊤B, π0)∥p ≤ 1.

(A.6)

In the following, we prove the statement for p <∞, since for p =∞ the dual can be directly

derived using LP duality by reformulating (A.6) as an LP (see Section 2.3.1). For p < ∞,

∥(π0f
⊤ − π⊤B, π0)∥p ≤ 1 is equivalent to πp

0 +
∑n

j=1 |π0fj − π⊤B.j|p ≤ 1, where B.j is the

j’th column of matrix B. Hence, introducing non-negative variables τj, j = 1, . . . , n, we may

restate (A.6) as

max π⊤(b−Bŷ) + π0(f
⊤ŷ − η̂) (A.7)

s.t. π⊤A− π0c
⊤ ≤ 0 (A.8)

πp
0 +

n∑
j=1

τ pj ≤ 1 (A.9)

π0f
⊤ − π⊤B ≤ τ⊤ (A.10)

π⊤B − π0f
⊤ ≤ τ⊤ (A.11)

π ≥ 0, τ ≥ 0, π0 ≥ 0. (A.12)
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Assigning Lagrange multipliers x, δ0, y
− and y+ respectively to constraints (A.8)-(A.11), we

can derive the following Lagrangian dual problem

min ∥(y+ + y−, δ0)∥q (A.13)

s.t. c⊤x ≤ η̂ + δ0 − f⊤(ŷ + y+ − y−) (A.14)

Ax ≥ b−B(ŷ + y+ − y−) (A.15)

x ≥ 0, δ0 ≥ 0, y+ ≥ 0, y− ≥ 0. (A.16)

The dual problem (A.5) is derived by replacing y = ŷ+ y+− y− and noting that minimizing

y+j + y−j is equivalent to minimizing |yj − ŷj|. Finally, as we will show in Proposition 2.9,

constraint (A.9) is binding at optimality; thus, at optimality δ0 ≥ 0 and we may suppress

this constraint.

Proposition 2.3. Let (ỹ, η̃) ∈ E be an ℓq-projection of (ŷ, η̂) onto E . Then, any ℓp-deepest

cut separating (ŷ, η̂) from E supports E at (ỹ, η̃).

Proof. Let (π̂, π̂0) be the solution associated with the ℓp-deepest cut. By Theorem 2.1 we

have

∥(ỹ − ŷ, η̃ − η̂)∥q =
π̂⊤(b−Bŷ) + π̂0(f

⊤ŷ − η̂)

∥(π̂⊤B − π̂0f⊤, π̂0)∥p
. (A.17)

On the other hand, (ỹ, η̃) ∈ E implies π̂⊤(b−Bỹ)+ π̂0(f
⊤ỹ− η̃) ≤ 0. To the contrary, assume

that (ỹ, η̃) is not on the hyperplane. Then, π̂⊤(b − Bỹ) + π̂0(f
⊤ỹ − η̃) must be negative,

implying

0 < − π̂⊤(b−Bỹ) + π̂0(f
⊤ỹ − η̃)

∥(π̂⊤B − π̂0f⊤, π̂0)∥p
. (A.18)
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Adding (A.17) and (A.18) we get

∥(ỹ − ŷ, η̃ − η̂)∥q <
(π̂⊤B − π̂0f

⊤)(ỹ − ŷ) + π̂0(η̃ − η̂)

∥(π̂⊤B − π̂0f⊤, π̂0)∥p
.

But this contradicts with Hölder’s inequality since ℓp and ℓq are dual norms.

Proposition 2.4. For sufficiently small η̂, the ℓ1-deepest cut separating (ŷ, η̂) from E is

the flat cut η ≥ Q∗, where Q∗ = miny Q(y) is the optimal value of Q for unrestricted y.

Proof. Since the dual norm of ℓ1 is ℓ∞, the objective function in Primal SSP (2.10) is to

minimize the component with largest absolute value in (y − ŷ, η − η̂), which, for sufficiently

small η̂, is |η − η̂| = η − η̂. Thus, we can restate Primal SSP as the following LP

−η̂ +min η

s.t. η ≥ c⊤x+ f⊤y

Ax ≥ b−By

x ≥ 0.

(A.19)

Let (η̃, ỹ, x̃) be the optimal solution of (A.19). Observe that η̃ = Q(ỹ) = miny Q(y), that is

(η̃, ỹ) is an optimal corner point of E . Further, let π0 and π be the dual multipliers. The

dual LP reads as

−η̂ +max π⊤b

s.t. π⊤A ≤ π0c

π⊤B = π0f

π0 = 1

π ≥ 0.

(A.20)
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Let (π̂, π̂0) be the optimal solution to (A.20). The ℓ1-deepest cut is π̂
⊤(b−By)+π̂0(f

⊤y−η) =

π̂⊤b − η ≤ 0. By strong duality, π̂⊤b = η̃ = Q∗, hence the deepest cut is the flat cut

η ≥ Q∗.

Proposition 2.5. Let Q∗ = min
y

Q(y) be the optimal unrestricted value of Q. Provided

that η̂ < Q∗ and p > 1, the ℓp-deepest cut that separates (ŷ, η̂) is an optimality cut for any

arbitrary ŷ (i.e., even if ŷ /∈ dom(Q)).

Proof. Since η̂ < Q∗, we can separate (ŷ, η̂) from E using the flat cut H̄ = {(y, η) : η ≥ Q∗}.

Let (π̂, π̂0) ∈ Π be the dual solution associated with the deepest cut, and assume to the

contrary that the deepest cut is vertical, that is π̂0 = 0.

Let (ỹH , η̃H) and (ỹV , η̃V ) be the ℓq-projections of (ŷ, η̂) onto H̄ and H(π̂, π̂0), respectively.

Observe that (ỹH , η̃H) = (ŷ, Q∗) and η̃V = η̂, and that the ℓq-projection of (ŷ, η̂) onto

H̄ ∩ H(π̂, π̂0) is (ỹ
V , η̃H). Let d̄ be the ℓq-distance of (ŷ, η̂) from H̄ ∩ H(π̂, π̂0). Note that

d̄ =∥(ŷ, η̂)− (ỹV , η̃H)∥q =
(
∥ŷ − ỹV ∥qq + ∥η̂ − η̃H∥qq

) 1
q

=
(
∥ŷ − ỹV ∥qq + ∥η̂ − η̃V ∥qq + ∥ŷ − ỹH∥qq + ∥η̂ − η̃H∥qq

) 1
q

=
(
∥(ŷ, η̂)− (ỹV , η̃V )∥qq + ∥(ŷ, η̂)− (ỹH , η̃H)∥qq

) 1
q

=((d∗)q + (Q∗ − η̂)q)
1
q ,

where d∗ = ∥(ŷ, η̂)− (ỹV , η̃V )∥q. This implies that d̄ > d∗ since q <∞ and Q∗ > η̂. However,

both H̄ and H(π̂, π̂0) support E , therefore ℓq-distance of (ŷ, η̂) from E (i.e., d∗) must be at

least equal to d̄, that is d∗ ≥ d̄, which is a contradiction.
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Proposition 2.6. Let (ỹ, η̃) be the unique ℓq-projection of (ŷ, η̂) onto E . If η̂ < η̃, then

the ℓp-deepest cuts separating (ŷ, η̂) are optimality cuts for any arbitrary ŷ (i.e., even if

ŷ /∈ dom(Q)).

Proof. Let (π̂, π̂0) ∈ Π be the dual solution associated with the deepest cut. Assume to

the contrary that the deepest cut is a feasibility cut, that is π̂0 = 0. Since the projection

is unique, the ℓq-projection of (ŷ, η̂) onto the vertical cut H(π̂, π̂0) must be (ỹ, η̂), which

contradicts with the assumption that η̃ > η̂.

Proposition 2.7. Epigraph distance function d∗ certifies d∗(ŷ, η̂) > 0 iff (ŷ, η̂) is in the

exterior of E , d∗(ŷ, η̂) = 0 iff (ŷ, η̂) is on the boundary of E , and d∗(ŷ, η̂) < 0 iff (ŷ, η̂) is in

the interior of E .

Proof. The proof follows from definition of d∗ and noting that E is the intersection of half-

spaces H(π, π0) for all (π, π0) ∈ Π. We can show each case one by one.

• d∗(ŷ, η̂) > 0 iff there exists (π̂, π̂0) ∈ Π such that d(ŷ, η̂|π̂, π̂0) > 0. This implies that

d∗(ŷ, η̂) > 0 iff (ŷ, η̂) /∈ H(π̂, π̂0) for some (π̂, π̂0) ∈ Π, thus (ŷ, η̂) /∈ E (i.e., (ŷ, η̂) is in

the exterior of E).

• d∗(ŷ, η̂) < 0 iff d(ŷ, η̂|π̂, π̂0) < 0 for all (π̂, π̂0) ∈ Π. This implies that d∗(ŷ, η̂) < 0 iff

(ŷ, η̂) is in the interior of H(π̂, π̂0) for all (π̂, π̂0) ∈ Π, thus (ŷ, η̂) is in the interior of E .

• d∗(ŷ, η̂) = 0 iff d(ŷ, η̂|π̂, π̂0) ≤ 0 for all (π̂, π̂0) ∈ Π, with at least one (π̂, π̂0) ∈ Π

such that d(ŷ, η̂|π̂, π̂0) = 0. This implies that d∗(ŷ, η̂) = 0 iff (ŷ, η̂) ∈ H(π̂, π̂0) for all

(π̂, π̂0) ∈ Π and there exists (π̂, π̂0) ∈ Π such that (ŷ, η̂) is on the boundary of H(π̂, π̂0),

thus (ŷ, η̂) is on the boundary of E .
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Theorem 2.2. Benders distance functions are monotonic.

Proof. Let αi ∈ [0, 1] for i = 1, 2 and assume that α2 > α1. Define (ȳ(i), η̄(i)) = (1 −

αi)(y
0, η0)+αi(ŷ, η̂) for i = 1, 2. Since 0 ≤ α1 < α2 ≤ 1, we may state (ȳ(1), η̄(1)) as a convex

combination of (ȳ(2), η̄(2)) and (y0, η0) of the following form

(ȳ(1), η̄(1)) = (1− α1

α2

)(y0, η0) +
α1

α2

(ȳ(2), η̄(2)).

Convexity of d∗ implies that

d∗(α1) = d∗(ȳ(1), η̄(1)) ≤ (1− α1

α2

)d∗(y0, η0) +
α1

α2

d∗(ȳ(2), η̄(2)) =
α1

α2

d∗(ȳ(2), η̄(2))

≤ d∗(ȳ(2), η̄(2)) = d∗(α2),

where the we have used d∗(y0, η0) = 0 because (y0, η0) ∈ ∂E . Hence d is monotonic.

Proposition 2.8. Distance function dℓp is strongly monotonic for any p ≥ 1.

Proof. The proof is exactly the same as Theorem 2.2, except

d∗ℓp(α1) = d∗ℓp(ȳ
(1), η̄(1)) ≤ (1− α1

α2

)d∗ℓp(y
0, η0) +

α1

α2

d∗ℓp(ȳ
(2), η̄(2)) =

α1

α2

d∗(ȳ(2), η̄(2))

< d∗ℓp(ȳ
(2), η̄(2)) = d∗ℓp(α2),

where the last strict inequality holds because α1

α2
< 1 and 0 < d∗ℓp(ȳ

(2), η̄(2)) < ∞ since

(ȳ(2), η̄(2)) /∈ E and d∗ℓp(ȳ
(2), η̄(2)) measures the ℓq distance of (ȳ(2), η̄(2)) to E and is thus

finite.
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Proposition 2.9. Let dg(ŷ, η̂|π, π0) =
π⊤(b−Bŷ)+π0(f⊤ŷ−η̂)

g(π,π0)
be a normalized distance function.

Then, the separation problem (2.12) is equivalent to the normalized separation problem

(2.13). That is

d∗g(ŷ, η̂) = max
(π,π0)∈Πg

π⊤(b−Bŷ) + π0(f
⊤ŷ − η̂).

Additionally, g(π, π0) ≤ 1 is binding at optimality.

Proof. The separation problem (2.12) can be equivalently expressed as

max
q>0

{
max

(π,π0)∈Π:g(π,π0)=q

π⊤(b−Bŷ) + π0(f
⊤ŷ − η̂)

q

}
. (A.21)

Define (π̃, π̃0) =
1
q
(π, π0). Since Π is a cone it follows that (π̃, π̃0) ∈ Π. Additionally, since

g is homogeneous, we have g(π̃, π̃0) =
1
q
g(π, π0) = 1. Therefore, the inner maximization in

(A.21) can be restated as

max
(π̃,π̃0)∈Π:g(π̃,π̃0)=1

π̃⊤(b−Bŷ) + π̃0(f
⊤ŷ − η̂), (A.22)

which is constant with respect to q. Therefore, (A.21) itself is equivalent to (A.22). We

next show that (A.22) is equivalent to (2.13), that is g(π, π0) = 1 can be replaced with

g(π, π0) ≤ 1. Let (π̂, π̂0) ∈ Πg be an arbitrary solution to (2.13) with α̂ = g(π̂, π̂0) < 1. Note

that (π̄, π̄0) =
1
α̂
(π̂, π̂0) ∈ Πg with g(π̄, π̄0) = 1. Additionally, we have

π̄⊤(b−Bŷ) + π̄0(f
⊤ŷ − η̂) =

π̂⊤(b−Bŷ) + π̂0(f
⊤ŷ − η̂)

α̂
≥ π̂⊤(b−Bŷ) + π̂0(f

⊤ŷ − η̂),

which is strict if π̂⊤(b−Bŷ)+π̂0(f
⊤ŷ−η̂) > 0. Thus, at optimality g(π, π0) ≤ 1 is binding.
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Proposition 2.10. Distance function dg with any positive homogeneous normalization

function g is monotonic.

Proof. Since g is positive homogeneous, using Proposition 2.9, for any (ȳ, η̄) we may state

d∗(ȳ, η̄) as

d∗g(ȳ, η̄) = max
(π,π0)∈Πg

π⊤(b−Bȳ) + π0(f
⊤ȳ − η̄),

where Πg = {(π, π0) ∈ Π : g(π, π0) ≤ 1}. This implies that d∗g is convex, since it is the

maximum of a number of linear functions. Therefore, by Theorem 2.2, dg is monotonic.

Theorem 2.3. Let dg be a Benders normalized distance function with g a convex piece-wise

linear function. Then BD Algorithm 2 converges to an optimal solution or asserts infeasibility

of MP in a finite number of iterations.

Proof. First, we show that the BD algorithm does not stagnate in a degenerate loop. Let Π̂t

be the set of dual solutions obtained before iteration t of the BD algorithm. Let MP(t) be the

current approximation of MP with (y(t), η(t)) its optimal solution and let (π̄, π̄0) be the dual

solution obtained from BSP (2.12) for separating (y(t), η(t)). If π̄⊤(b− By(t)) + π̄0(f
⊤y(t) −

η(t)) = 0, then (y(t), η(t)) is optimal for MP since η(t) is a lower bound on the optimal value

of MP. Hence, assume that π̄⊤(b−By(t)) + π̄0(f
⊤y(t) − η(t)) > 0. Since (y(t), η(t)) is feasible

for MP(t), it follows that π̂⊤(b− By(t)) + π̂0(f
⊤y(t) − η(t)) ≤ 0 for each (π̂, π̂0) ∈ Π̂t; hence,

(π̄, π̄0) cannot be a conical (i.e., scaling or a convex) combination of the solutions contained

in Π̂t, meaning that, at each iteration, the BSP will produce a cut that is not implied by the

cuts hitherto obtained.
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Finally, since g is positive homogeneous and Π is a cone, by Proposition 2.9 we can restate

the separation subproblem (2.12) as

max
(π,π0)∈Πg

π⊤(b−By(t)) + π0(f
⊤y(t) − η(t)), (A.23)

where Πg = {(π, π0) ∈ Π : g(π, π0) ≤ 1}. Since g is a convex piece-wise linear function, Πg is

a polyhedron. Let Πv
g and Πr

g be the set of extreme points and rays of Πg, respectively. Note

that Πv
g ⊂ Π and Πr

g ⊂ Π, and that they do not depend on (y(t), η(t)). If (A.23) is bounded,

then its optimal solution is attained at one of the points in Πv
g, otherwise an extreme ray

belonging to Πr
g causes unsoundness. Either way, the produced extreme point/ray of Πg

serves as the certificate. Therefore, the number of iterations is bounded by |Πv
g|+ |Πr

g|.

Proposition 2.11. The following relationship between classical cuts, ℓp-deepest cuts and

relaxed ℓ1 pseudonorm cuts holds

d∗CB(ŷ, η̂) = Q(ŷ)− η̂ ≥ d∗ℓ∞(ŷ, η̂) ≥ · · · ≥ d∗ℓp(ŷ, η̂) ≥ · · · ≥ d∗ℓ1(ŷ, η̂) ≥ d∗Rℓ1(ŷ, η̂).

Proof. Recall that the dℓp, dRℓ1, and dCB distance functions are defined as

dℓp(ŷ, η̂|π, π0) =
π⊤(b−Bŷ) + π0(f

⊤ŷ − η̂)

∥(π0f⊤ − π⊤B, π0)∥p

dRℓ1(ŷ, η̂|π, π0) =
π⊤(b−Bŷ) + π0(f

⊤ŷ − η̂)∑m
i=1 πi

∑n
j=1 |Bij|+ (1 +

∑n
j=1 |fj|)π0

dCB(ŷ, η̂|π, π0) =
π⊤(b−Bŷ) + π0(f

⊤ŷ − η̂)

π0

The proof follows by noting the following facts:
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(i) ∥ · ∥p ≤ ∥ · ∥p′ for any 1 ≤ p′ < p. This implies that

dℓ∞(ŷ, η̂|π, π0) ≥ · · · ≥ dℓp(ŷ, η̂|π, π0) ≥ · · · ≥ dℓ1(ŷ, η̂|π, π0) ∀(π, π0) ∈ Π.

(ii) ∥(π0f
⊤ − π⊤B, π0)∥p ≥ π0 for any p ≥ 1. This implies that

dCB(ŷ, η̂|π, π0) ≥ dℓ∞(ŷ, η̂|π, π0) ∀(π, π0) ∈ Π.

(iii) ∥(π0f
⊤ − π⊤B, π0)∥1 ≤

∑m
i=1 πi

∑n
j=1 |Bij|+ (1 +

∑n
j=1 |fj|)π0. This implies that

dℓ1(ŷ, η̂|π, π0) ≥ dRℓ1(ŷ, η̂|π, π0) ∀(π, π0) ∈ Π.

Since the relationships follow for any (π, π0) ∈ Π, they must hold when each distance function

is at maximum.

A.2 Implementation Details

We conducted our computational study on a Dell desktop equipped with Intel(R) Xeon(R)

CPU E5-2680 v3 at 2.50GHz with 8 Cores and 32 GB of memory running a 64-bit Windows 10

operating system. We coded our algorithms in C# and solved the linear/quadratic problems

using the ILOG Concert library and CPLEX 12.10 solver. In the following, we provide general

implementation details for BD, which we believe are of technical value beyond the application

of this study.

128



A.2.1 Modern Implementation of BD Algorithm

While the sequential implementations of BD Algorithms 1 or 2 may appear intuitive, they

come with several limitations. Of note, building a new branch-and-bound tree from scratch

at each iteration incurs a large amount of overhead, especially when several iterations of the

BD algorithm are needed. Moreover, at each iteration, only the optimal integer solution to

the master problem is provided to the separation problems. This in turn may ignore several

integer feasible solutions that are encountered during the branch-and-bound search, which

are potentially optimal for the original problem but sub-optimal for the current iteration.

This also ignores fractional solutions, which may prove useful for producing effective Benders

cuts.

An alternative is to implement BD algorithms in the modern fashion, known as Branch-

and-Benders-Cut (BBC), where Benders cuts are added to the cut pool of branch-and-cut

on the fly (see e.g., Fortz and Poss 2009, for one of the early implementations of BBC).

BBC allows for solving the integer master problem in a single run, thus potentially saving

computation time by avoiding solving multiple integer master problems. Furthermore, this

framework permits separating both integer and fractional master solutions. The former is

implemented by treating BD cuts as lazy constraints, while the latter is implemented by

treating BD cuts as valid inequalities for the master problem, which are invoked by CPLEX

using the LazyConstraint callback when the current-node solution happens to be integer

and UserCut callback at each branch decision node, respectively.

A.2.2 Scaling of η in the Cuts and Normalization Functions

A pitfall in implementing BD is that scales of master problem variables η and y are often

unbalanced, meaning that the coefficient of η in (optimality) cuts is often too small or too

large compared to the coefficients of the y variables. This imbalance poses two numerical
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issues:

(i) The cuts become numerically unstable and the solver may not handle them correctly,

which in turn may result in having to cut off (almost) the same point over and over.

(ii) Note that, in the cut π⊤b ≤ (π⊤B − π0f
⊤)y + π0η, the coefficient of η is π0, while the

coefficient of y is π⊤B − π0f
⊤. Therefore, an imbalanced cut implies an imbalanced

normalization function g(π, π0) = ∥π⊤B − π0f
⊤, π0∥p in the ℓp-distance function (2.8),

which may pose numerical issues in the separation problem (2.9).

To resolve this issue, we replace η in the master problem (2.1) with η = βγ for some suitably-

chosen scaling factor β > 0. Consequently, γ becomes the decision variable in place of η,

and we minimize γ in the objective function of (2.1). Note that, for a given (π, π0) ∈ Π, the

cut becomes

π⊤b ≤ (π⊤B − π0f
⊤)y + βπ0γ.

Consequently, the ℓp-norm normalization function in (2.8) becomes

g(π, π0) = ∥π⊤B − π0f
⊤, βπ0∥p,

and the relaxed ℓ1-normalization function is obtained accordingly. Note that if we replace

η = βγ, the scaling must be reflected in the primal space as well, and the projection problems

must be done in the space of y and γ. For instance, the projection problem (2.19) at iteration

h of GPA becomes

(ỹ(h), γ̃(h))← argmin
(y,γ)∈C(h)

∥(y − ŷ, γ − γ̂)∥q.

From the projection perspective, it is not difficult to see that if β is too large, y becomes

the dominant component in the projection (particularly for small values of q, e.g., q = 1),

causing deepest cuts to converge to classical Benders cuts. To choose a suitable value for
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β, we first solve DSP (2.17) using a core point ȳ to obtain the dual solution (û, 1) and the

optimality cut η + (û⊤B − f⊤)y ≥ û⊤b. We then set β as

β =
1

n
∥û⊤B − f⊤∥1,

which is the average absolute coefficient value of the y variables in the cut. Note that we

choose β only once in the course of BD Algorithm 2, and use the same β for stabilizing all

cuts.

A.2.3 Reoptimizing the Separation Subproblems

Another important aspect in implementing the BD algorithm is being able to reoptimize

the separation problems and retrieving the cuts quickly when a solver is used for solv-

ing the separation subproblems. Note that only the objective function in the separation

problem (2.13) changes from one iteration of the BD algorithm 2 to another. For linear

separation subproblems, one can use the primal simplex algorithm by setting parameter

Cplex.Param.RootAlgorithm to Cplex.Algorithm.Primal to leverage the reoptimization

capabilities of this method.

Additionally, at iteration t of BD algorithm, rearranging the objective function in (2.13) as

π⊤b−
n∑

j=1

(π⊤B.j − π0fj)y
(t)
j − π0η

(t),

note that one needs to update the coefficient of π⊤B.j−π0fj (i.e., y
(t)
j ) only when y

(t)
j ̸= y

(t−1)
j .

Therefore, we may additionally define n auxiliary variables τj = π⊤B.j − π0fj to avoid

changing the coefficients of all dual variables in the separation subproblems. For instance,
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the separation problem (2.14) for producing ℓp-deepest cuts becomes

max
{
π⊤b− τ ŷ − π0η̂ : ∥(τ, π0)∥p ≤ 1, τ = π⊤B − π0f

⊤, (π, π0) ∈ Π
}
.

The τ variables also simplify the expression for the normalization constraint (e.g., in ℓp-

norm or in CW). Moreover, after the subproblem is solved, one can save O(mn) arithmetic

operations in computing the cut coefficients by easily retrieving the value of the τ variables

from the solver without having to recalculate the coefficients based on the π variables.
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Appendix B

Supplementary Materials for

Chapter 3

B.1 Bipartite Transformation of the MWM Problem

Here, we show how MWM(km) (3.46)-(3.48) can be transformed into an equivalent MWM

problem in a bipartite graph. Define bipartite graph GB
km = (V1, V2, B), where V1 = {v1i }i∈H̄t ,

V2 = {v2i }i∈H̄t , and B = {(v1i , v2j ) ∈ V1 × V2 : (i, j) ∈ Āt
k}. Let µB be a maximum weighted

matching in GB
km, and let

µkm
ij =

1

2

(
µB
(v1i ,v

2
j )
+ µB

(v1j ,v
2
i )

)
∀(i, j) ∈ Āt

k. (B.1)

Proposition B.1. µkm = (µkm
ij )(i,j)∈Āt

k
defined in (B.1) is optimal to MWM(km) (3.46)-

(3.48).
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Proof. µB being a matching in GB
km requires

∑
j∈H̄t:(i,j)∈Āt

k

µB
(v1i ,v

2
j )
≤ 1 ∀v1i ∈ V1 (or equivalently i ∈ H̄ t) (B.2)

∑
j∈H̄t:(i,j)∈Āt

k

µB
(v1j ,v

2
i )
≤ 1 ∀v2i ∈ V2 (or equivalently i ∈ H̄ t). (B.3)

Summing (B.2) and (B.3) and dividing both sides of the resulting inequality by 2 yields

∑
j∈H̄t:(i,j)∈Āt

k

1

2

(
µB
(v1i ,v

2
j )
+ µB

(v1j ,v
2
i )

)
=

∑
j∈H̄t:(i,j)∈Āt

k

µkm
ij ≤ 1 ∀i ∈ H̄ t,

which implies (3.47), thus feasibility of µkm defined in (B.1) for MWM(km). Now we show

that µkm is also optimal for MWM(km). By contradiction assume that µkm is not optimal

for MWM(km), hence there must exist a solution µ̂km with a strictly higher total weight.

We show that this contradicts with optimality of µB. Define µ̂B as

µ̂B
(v1i ,v

2
j )
= µ̂B

(v1j ,v
2
i )
= µ̂km

ij ∀(i, j) ∈ Āt
k.

µ̂B clearly satisfies (B.2) and (B.3), hence is a feasible matching for the bipartite graph GB
km.

Moreover, note that

∑
(i,j)∈Āt

k

(
µ̂B
(v1i ,v

2
j )
+ µ̂B

(v1j ,v
2
i )

)
= 2

∑
(i,j)∈Āt

k

µ̂km
ij > 2

∑
(i,j)∈Āt

k

µkm
ij =

∑
(i,j)∈Āt

k

(
µB
(v1i ,v

2
j )
+ µB

(v1j ,v
2
i )

)
,

which implies that µ̂B is a better matching than µB, contradicting the optimality of µB.

The optimal solution to MWC(km) (3.43)-(3.45) can be obtained in a similar manner. Let

τB be a minimum weight cover in GB
km, and let

τmik =
1

2

(
τBv1i

+ τBv2i

)
∀i ∈ H̄ t. (B.4)
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Proposition B.2. τmk = (τmik )i∈H̄t defined in (B.4) is optimal to MWC(km) (3.43)-(3.45).

Proof. τB being a cover in GB
km implies that

τBv1i
+ τBv2j

≥ βkm
ij ∀(i, j) ∈ Āt

k (B.5)

τBv1j
+ τBv2i

≥ βkm
ji ∀(j, i) ∈ Āt

k. (B.6)

Since βkm is symmetric, summing (B.5) and (B.6) and dividing the resulting inequality by 2

implies (3.44); hence, τmk defined in (B.4) is feasible for MWC(km). Now, by contradiction

assume that τmk is not optimal, hence there exists a solution τ̂mk with a strictly lower cover

weight. Define τ̂B as

τ̂Bv1i
= τ̂Bv2i

= τ̂mik ∀i ∈ H̄ t. (B.7)

τ̂B satisfies (B.5) and (B.6), and has a cover weight lower than τB, contradicting the opti-

mality of τB.

Propositions B.1 and B.2 indicate that to solve MWC(km) and MWM(km), it is enough to

find a MWM in bipartite graph GB
km.

B.2 Computing the b-variables in the Single Objective

DSP-II

We show how proper values of (bi)i∈H̄t can be found via a relaxation of DSP-II (3.38).

Observe that by relaxing constraints (3.24), relaxed DSP-II can be decomposed into |H̄ t|
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independent smaller subproblems, one for each i ∈ H̄ t:

min Γibi +
∑
k∈K

∑
m∈M

um
ik (B.8)

s.t. um
ik + wm

k bi ≥ ρkmii (k,m) ∈ K ×M (B.9)

um
ik, bi ≥ 0 (k,m) ∈ K ×M (B.10)

Similar to problem (3.49)-(3.51), this problem is the dual of the LP-relaxation of a knapsack

problem with knapsack capacity Γi, and items (k,m) ∈ K ×M with weight wm
k and profit

ρkmii for each item, and can be solved in the same fashion. As explained in §3.2.5, bi is the

profit-to-weight ratio of the break item (k̄, m̄)

bi = ρk̄m̄ii /wm̄
k̄ . (B.11)

While problem (B.8)-(B.10) has a formulation similar to problem (3.49)-(3.51), they are

inherently different: problem (3.49)-(3.51) is a restriction of DSP-II, whereas problem (B.8)-

(B.10) is a relaxation of DSP-II, hence the solution obtained by (B.8)-(B.10) may not be

feasible to DSP-II. Therefore, once the value of (bi)i∈H̄t is calculated, to obtain a complete

feasible solution we need to calculate the value of the u-variables using the MWM algorithm.

It is worth mentioning that the major computational effort required for solving this problem

is due to calculating the ρkmii values, while the time required for solving the knapsack problem

itself is almost negligible even for the largest instances. On the other hand, note that we

need to calculate ρkmii as part of preparing DSP-II (3.38), independently of the value the

b-variables. This means using this hybrid MWM-Knapsack method, we can find promising

values for the b-variables for the MWM problems (hence stronger cuts) without incurring

additional computational cost.
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Appendix C

Supplementary Materials for Chapter

4

C.1 Details of the SAA Algorithm

In this appendix, we describe the SAA procedure for approximating the model with stochastic

demand and known revenue. The model with stochastic demand and uncertain revenue is

approximated in a similar manner.

1. GenerateM independent samples each of size |N |; i.e., Nj = {n1
j , . . . , n

|N |
j }, for j ∈M

and solve the corresponding SAA problem (4.8)-(4.13) for each sample Nj. Let VNj

and ŷNj , j ∈M, be the corresponding optimal objective value and an optimal solution,

respectively.

2. Calculate the average of all optimal values from the SAA problems and their variance:

V̄N
M =

1

|M|
∑
j∈M

VNj , σ2
V̄N
M

=
1

(|M| − 1)|M|
∑
j∈M

(VNj − V̄N
M)2
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The expected value of V̄N
M provides an upper statistical bound for the optimal value of

the original problem, and σ2
V̄N
M

is an estimate of the variance of this estimator.

3. Pick a feasible solution ŷ ∈ Y for problem (4.1)-(4.6), for example, use one of the pre-

viously computed solutions ŷNj . Estimate the objective function value of the original

problem by using this solution as follows:

VN ′(ŷ) =
1

|N ′|
[∑

n∈N ′

∑
k∈K

∑
a∈Ak

∑
m∈M

(rmk − Ĉak)w
mn
k xmn

ak ]−
∑
i∈H

fiŷi

where N ′ is a sample generated independently of the samples used in the SAA prob-

lems. Note that since the first-stage variables are fixed, one can take much larger

number of scenarios for |N ′| than the sample size |N | used to solve the SAA problems.

The estimator VN ′(ŷ) serves as a lower bound on the optimal objective function value.

We can estimate the variance of VN ′(ŷ) as follows:

σ2
N ′(ŷ) = 1

(|N ′|−1)|N ′|
∑

n∈N ′

(
[
∑
k∈K

∑
a∈Ak

∑
m∈M

(rmk − Ĉak)w
mn
k xmn

ak ]−
∑
i∈H

fiŷi − VN ′(ŷ)

)2

4. Calculate the estimators for the optimality gap and its variance. Employing the esti-

mators computed in steps 2 and 3, we get:

gapN ,M,N ′(ŷ) = V̄N
M − VN ′(ŷ), σ2

gap = σ2
V̄N
M

+ σ2
N ′(ŷ)

We can then use these estimators to construct a confidence interval for the optimality

gap.

C.2 Proof of Theorem 4.1

Theorem 4.1. Let Sr be the set of revenue scenarios where at most γr commodities are

subject to revenue uncertainty. Then, the min-max regret stochastic model (4.41), in which
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regrets are calculated with respect to a fixed reference point Ẑ, is equivalent to the robust-

stochastic model with max-min profit criterion (4.26).

Proof. Let Zs(ξ) = Ẑ for each revenue scenario s ∈ Sr and demand realization ξ ∈ Ξ. Then,

the min-max regret stochastic model (4.41) reads as:

min
(x,y)∈℧

Eξ[max
s∈Sr

{
Ẑ − (

∑
k∈K

∑
m∈M

∑
a∈Ak

(rms
k − Ĉak)w

m
k (ξ)x

m
ak(ξ)−

∑
i∈H

fiyi)

}
]. (C.1)

We now prove that (4.26) is equivalent to (C.1). Since Ẑ is constant, it can be taken out

from the inner maximization, the expectation, and the minimization, respectively. Hence,

(C.1) can be reformulated as:

Ẑ − max
(x,y)∈℧

Eξ[min
s∈Sr

{∑
k∈K

∑
m∈M

∑
a∈Ak

(rms
k − Ĉak)w

m
k (ξ)x

m
ak(ξ)−

∑
i∈H

fiyi

}
]. (C.2)

For a given (x, y) ∈ ℧ and for each ξ ∈ Ξ, the inner minimization in (C.2) calculates

the worst possible profit associated with (x, y) over all revenue scenarios. Given that each

revenue scenario s ∈ Sr involves at most γr commodities with uncertain revenue, we can

map each revenue scenario s to a subset of commodities Ur(s) including the commodities

with uncertain revenue. That is, rms
k = r̄mk − r̂mk if (k,m) ∈ Ur(s), and rms

k = r̄mk , otherwise.

Therefore, the inner minimization in (C.2) can be rewritten as:

min
s∈Sr

∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)w
m
k (ξ)xmak(ξ)−

∑
i∈H

fiyi −
∑

(k,m)∈Ur(s)

∑
a∈Ak

(r̂mk − Ĉak)w
m
k (ξ)xmak(ξ)


=
∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)w
m
k (ξ)xmak(ξ)−

∑
i∈H

fiyi

−max
s∈Sr

 ∑
(k,m)∈Ur(s)

∑
a∈Ak

(r̂mk − Ĉak)w
m
k (ξ)xmak(ξ)

 . (C.3)

Note that the maximization in (C.3) is equivalent to νξ(x) as defined in (4.27), therefore
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(C.1) is equivalent to

Ẑ − max
(x,y)∈℧

Eξ[
∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)w
m
k (ξ)x

m
ak(ξ)− νξ(x)]−

∑
i∈H

fiyi.

which is equivalent to the robust-stochastic model with max-min profit criterion (4.26).

C.3 Practical Convergence of the SAA Algorithm

The aim of this section is to analyze the practical convergence of the SAA scheme in or-

der to choose a sample size |N | and the number of replications |M| that provide the best

trade-off between solution quality and computational time. To this end, we perform com-

putational tests with sample sizes |N | ∈ {50, 100, 500, 1000} and a number of replications

|M| ∈ {10, 20, 40, 60, 80}. We select two 10-node instances of the AP dataset and generate

independent samples as explained above, with ν set to 0.5. The sample size of |N ′| = 10, 000

is used to evaluate the SAA gap.

Figures C.1 and C.2 plot the optimality gap, standard deviation for the optimality gap, and

the computational time required for the SAA algorithm for different sample sizes |N | and

|M|, with AP10LL and AP10TL, respectively. Figures 1(a) and 2(a) clearly indicate that

larger sample size result in smaller optimality gap on average. It is also observed that as the

sample sizes |N | and |M| increase, the corresponding standard deviation for the optimality

gap decreases (Figures 1b and 2b), whereas the corresponding computation time increases

significantly (Figures 1c and 2c), for both AP10LL and AP10TL instances. In general, the

largest sample size |N | = 1000 provides the best average SAA gap with the least variation,

and the sample size |N | = 50 is the best in terms of the trade-off between solution quality

and computational time. For this reason, we use sample sizes |N | = 50 and |M| = 60 during

the rest of our computational experiments.
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Figure C.1: Optimality gap, standard deviation for the optimality gap, and the total CPU
time required for the SAA algorithm for different sample sizes |N | and |M| with AP10LL.
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Figure C.2: Optimality gap, standard deviation for the optimality gap, and the total CPU
time required for the SAA algorithm for different sample sizes |N | and |M| with AP10TL.
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C.4 Supplementary Numerical Results

To evaluate the performance of the acceleration techniques proposed for SAA, we took runs

with and without the implementation of the acceleration techniques on the 10–25 node

instances from the AP dataset. We compare the computational times in Table C.1. The first

two columns report the instance size and the coefficient of variation. The third and fourth

columns labeled “Time (sec)” report the computation times in seconds without and with the

implementation of the acceleration techniques, respectively. The last two rows report the

averages.

The results provided in Table C.1 indicate that the algorithm performs more than two

times faster on average with the implementation of the proposed acceleration techniques. In

particular, for the larger-size instances, the improvement in CPU times goes up to five times.

C.5 Benders Decomposition for the Robust-Stochastic

Model with Max-min Profit Criterion

For y set to a specific vector yt ∈ Y and for a given demand sample N , the primal subprob-

lem RSI-PSP(N ) of the SAA counterpart of robust-stochastic model with max-min profit
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|H| ν
Time (sec)

Without
acceleration

With
acceleration

10LL 0.5 55.29 50.82
1 47.38 41.76

10LT 0.5 18.42 15.39
1 21.80 18.33

10TL 0.5 38.63 33.89
1 53.46 53.48

10TT 0.5 17.34 14.97
1 15.10 13.11

20LL 0.5 8,723.45 1,553.42
1 6,601.72 2,713.17

20LT 0.5 2,892.03 1,442.36
1 3,303.61 1,907.56

20TL 0.5 3,528.43 1,089.42
1 4,202.39 1,173.79

20TT 0.5 249.41 101.11
1 197.85 76.78

25LL 0.5 5,494.94 1,418.24
1 6,653.34 2,014.32

25LT 0.5 15,617.96 3,218.51
1 8,327.14 3,832.22

25TL 0.5 3,577.96 1,127.83
1 4,382.44 1,613.32

25TT 0.5 5,053.09 1,420.91
1 3,152.68 1,711.33

Average 0.5 3,772.25 957.24
1 3,079.91 1,264.10

Table C.1: Computation times for the stochastic model with and without the implementation
of the acceleration techniques for SAA.

criterion (4.32)-(4.34), denoted RS-I-PSP(N ), can be formulated as:

max
1

|N |
[
∑
n∈N

∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)w
mn
k xmn

ak − (γrµ
n +

∑
n∈N

∑
k∈K

∑
m∈M

λmn
k )] (C.4)

s.t. r̂mk wmn
k

∑
a∈Ak

xmn
ak − µn − λmn

k ≤ 0 k ∈ K,m ∈M,n ∈ N (C.5)

∑
a∈Ak

xmn
ak ≤ 1 k ∈ K,m ∈M,n ∈ N (C.6)

∑
a∈Ak:i∈a

xmn
ak ≤ yti i ∈ H, k ∈ K,m ∈M,n ∈ N (C.7)

∑
k∈K

∑
m∈M

∑
a∈Ak:i∈a

wmn
k xmn

ak ≤ Γiy
t
i i ∈ H,n ∈ N (C.8)

xmn
ak , λmn

k , µn ≥ 0 k ∈ K,m ∈M,a ∈ Ak, n ∈ N . (C.9)
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Observe that RS-I-PSP(N ) can be decomposed into |N | independent subproblems, one for

each n ∈ N . Let βmn
k , αmn

k , umn
ik , and bni be the dual variables associated with constraints

(C.5)-(C.8), respectively. The dual subproblem associated with scenario n ∈ N , denoted

RS-I-DSP(N , n), can then be formulated as:

min
∑
k∈K

∑
m∈M

αmn
k +

∑
i∈H

yti(
∑
k∈K

∑
m∈M

umn
ik + Γib

n
i ) (C.10)

s.t. r̂mk wmn
k βmn

k + αmn
k + umn

ik + umn
jk + wmn

k (bni + bnj ) ≥ (r̄mk − Ĉijk)w
mn
k

k ∈ K,m ∈M, (i, j) ∈ Ak : i ̸= j (C.11)

r̂mk wmn
k βmn

k + αmn
k + umn

ik + wmn
k bni ≥ (r̄mk − Ĉiik)w

mn
k k ∈ K,m ∈M, i ∈ H (C.12)∑

k∈K

∑
m∈M

βmn
k ≤ γr (C.13)

βmn
k ≤ 1 k ∈ K,m ∈M (C.14)

βmn
k , αmn

k , umn
ik , bni ≥ 0 k ∈ K,m ∈M, i ∈ H. (C.15)

Note that the dual subproblem is always feasible and bounded, hence, it attains its optimum

at one of its extreme points. Let P n
N be the polyhedron defined by (C.11)-(C.15) for n ∈ N

and Ex(P n
N ) its set of extreme points. Since the subproblem can be decomposed by each

scenario n ∈ N , the Benders optimality cuts can be separated by each n ∈ N . Hence, the

Benders master problem RS-I-MP(N ) can be reformulated as:

max
1

|N |
∑
n∈N

ηn −
∑
i∈H

fiyi (C.16)

s.t. ηn ≤
∑
k∈K

∑
m∈M

αmn
k +

∑
i∈H

yi(Γib
n
i +

∑
k∈K

∑
m∈M

umn
ik ) n ∈ N , (βn, αn, un, bn) ∈ Ex(Pn

N ) (C.17)

y ∈ Y. (C.18)
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C.5.1 Solving the Benders Subproblem

The two-phase procedure described in §3.2.2 can be adapted to solve the subproblem for

each demand scenario n ∈ N . In Phase I, we remove the variables umn
ik and bni associated

with i ∈ H̄ t and calculate the values of the remaining variables. Note that when i ∈ H t,

constraints (C.6) and (C.8) imply constraints (C.7). Consequently, there exists an optimal

solution where the dual values associated with constraints (C.7) (i.e. umn
ik ) are equal to 0 for

i ∈ H t. Thus, the Phase I subproblem, denoted RS-I-DSP-I(N , n), can be formulated as:

min
∑
k∈K

∑
m∈M

αmn
k +

∑
i∈Ht

Γib
n
i

s.t. r̂mk wmn
k βmn

k + αmn
k + wmn

k (bni + bnj ) ≥ (r̄mk − Ĉijk)w
mn
k k ∈ K,m ∈M, (i, j) ∈ At

k

r̂mk wmn
k βmn

k + αmn
k + wmn

k bni ≥ (r̄mk − Ĉiik)w
mn
k k ∈ K,m ∈M, i ∈ Ht∑

k∈K

∑
m∈M

βmn
k ≤ γr

βmn
k ≤ 1 k ∈ K,m ∈M

βmn
k , αmn

k , bni ≥ 0 k ∈ K,m ∈M, i ∈ Ht

where At
k = {(i, j) ∈ Ak ∩ H t × H t : i ̸= j}. Once the optimal values of all the variables

in the Phase I subproblem are obtained, the optimal value of the rest of variables will be

computed in Phase II. Observe that if the value of the βmn
k is given for commodity (k,m),

then constraints (C.11) and (C.12) associated with this commodity can be rewritten as:

αmn
k + umn

ik + umn
jk + wmn

k (bni + bnj ) ≥ (r̄mk − r̂mk β
mn
k − Ĉijk)w

mn
k (i, j) ∈ Ak : i ̸= j

αmn
k + umn

ik + wmn
k bni ≥ (r̄mk − r̂mk β

mn
k − Ĉiik)w

mn
k i ∈ H.

Note that βmn
k expresses the extent to which revenue of commodity (k,m) is subject to

uncertainty. Consequently, obtaining the optimal value of the β-variables in Phase I implies

resolving the data uncertainty in Phase I. Hence, in Phase II, we work with the realized
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revenue rmk (i.e. rmk = r̄mk − r̂mk β
mn
k ) for each commodity (k,m). Thus, the Phase II feasibility

problem is formulated as

umn
ik + umn

jk + wmn
k (bni + bnj ) ≥ ρmn

ijk k ∈ K,m ∈M, (i, j) ∈ Āt
k (C.19)

umn
ik + wmn

k bni ≥ ρmn
iik k ∈ K,m ∈M, i ∈ H̄ t (C.20)

umn
ik , bni ≥ 0 k ∈ K,m ∈M, i ∈ H̄ t (C.21)

where Āt
k = {(i, j) ∈ Ak ∩ H̄ t × H̄ t : i ̸= j}, and

ρmn
ijk = (rmk − Ĉijk)w

mn
k − αmn

k (i, j) ∈ Āt
k

ρmn
iik = max{max

j∈Ht
i

{(rmk − Ĉijk)w
mn
k − umn

jk − wmn
k bnj }, (rmk − Ĉiik)w

mn
k } − αmn

k i ∈ H̄ t,

in which H t
i = {j ∈ H t : (i, j) ∈ Ak or (j, i) ∈ Ak}. To generate strong cuts, we formu-

late a multi-objective problem and adapt the lexicographic procedure described in §3.2.5 to

efficiently solve this problem.

C.5.2 Acceleration Techniques

The acceleration techniques introduced in §4.1.3 can be used for the robust-stochastic prob-

lem with max-min profit criterion with slight modification. For completeness, we present the

technique in this section. The acceleration technique for SAA is based on the observation

that the cuts generated in solving sample N̂ can be transformed into valid cuts for sample N .

More specifically, in solving sample N , we can retrieve feasible solutions for RS-I-DSP(N , n)

for scenario n of sample N from the solutions contained in P n̂
N̂ for n̂ ∈ N̂ .

Let (βn̂, αn̂, un̂, bn̂) ∈ P n̂
N̂ be a feasible solution for RS-I-DSP(N̂ , n̂), and wmn̂

k be the demand

for commodity k ∈ K of class m ∈ M under scenario n̂ ∈ N̂ . It can easily be shown that
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(βn, αn, un, bn) defined by (C.22)-(C.25) is feasible for RS-I-DS(N , n):

βmn
k = βmn̂

k k ∈ K,m ∈M (C.22)

αmn
k =

wmn
k

wmn̂
k

αmn̂
k k ∈ K,m ∈M (C.23)

umn
ik =

wmn
k

wmn̂
k

umn̂
ik k ∈ K,m ∈M, i ∈ H (C.24)

bni = bn̂i i ∈ H (C.25)

Consequently, the solution obtained by (C.22)-(C.25) yields a valid cut for RS-I-MP(N ).

To avoid overloading the master problem with too many cuts, we restrict the algorithm to

selecting one potentially best demand scenario n̂∗ ∈ N̂ as defined in (4.25).

C.6 Benders Decomposition for the Robust-Stochastic

Model with Min-max Regret Criterion

In accordance with the robust-stochastic model with max-min profit criterion, we again

assume that the hub location decisions are handled in the master problem and the rest is left

to the subproblem. However, as we demonstrate in this section, solving the SAA counterpart

of the min-max regret stochastic model (4.44)-(4.45) is more difficult than solving the robust-

stochastic model with max-min profit criterion (4.32)-(4.34).

For a given demand scenario n of sample N and revenue scenario s ∈ Sr, let Z̄ns be an

estimation of the optimal value of (4.35)-(4.40). With y set to a specific vector yt ∈ Y , the
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primal subproblem RS-II-PSP(N ) reads as:

max
1

|N |
∑
n∈N

V̄ n (C.26)

s.t. (C.6)–(C.8)

V̄ n −
∑
n∈N

∑
k∈K

∑
m∈M

∑
a∈Ak

(rms
k − Ĉak)w

mn
k xmn

ak ≤ −Z̄ns n ∈ N , s ∈ Sr (C.27)

xmn
ak ≥ 0 k ∈ K,m ∈M,a ∈ Ak, n ∈ N . (C.28)

Observe that RS-II-PSP(N ) can be decomposed into |N | independent subproblems, one

for each n ∈ N . Let αmn
k , umn

ik , bni , and ωns be the dual variables associated with con-

straints (C.6)-(C.8) and (C.27), respectively. For a given demand scenario n ∈ N , the dual

subproblem RS-II-DSP(N , n) can then be stated as:

min
∑
k∈K

∑
m∈M

αmn
k +

∑
i∈H

yti(Γib
n
i +

∑
k∈K

∑
m∈M

umn
ik )−

∑
s∈Sr

Z̄nsωns (C.29)

s.t.
∑
s∈Sr

ωns = 1 (C.30)

αmn
k + umn

ik + umn
jk + wmn

k (bni + bnj ) ≥
∑
s∈Sr

ωns(rms
k − Ĉijk)w

mn
k

k ∈ K,m ∈M, (i, j) ∈ Ak : i ̸= j (C.31)

αmn
k + umn

ik + wmn
k bni ≥

∑
s∈Sr

ωns(rms
k − Ĉiik)w

mn
k k ∈ K,m ∈M, i ∈ H (C.32)

αmn
k , umn

ik , bni , ω
ns ≥ 0 k ∈ K,m ∈M, i ∈ H, s ∈ Sr. (C.33)

Let P̄ n
N denote polyhedron defined by the feasible region of RS-II-DSP(N , n) for n ∈ N ,

and let Ex(P̄ n
N ) be the set of its extreme points. Each demand scenario n ∈ N can provide

a Benders cut; hence, the Benders master problem RS-II-MP(N ) can be reformulated as
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below:

max
1

|N |
∑
n∈N

ηn −
∑
i∈H

fiyi (C.34)

s.t. ηn ≤
∑
k∈K

∑
m∈M

αmn
k +

∑
i∈H

yi(Γib
n
i +

∑
k∈K

∑
m∈M

umn
ik )−

∑
s∈Sr

Z̄nsωns

n ∈ N , (αn, un, bn, ωn) ∈ Ex(P̄n
N ) (C.35)

y ∈ Y. (C.36)

An overview of the BD algorithm for the min-max regret stochastic model is presented in

Algorithm C.1.

Algorithm C.1 Benders Decomposition for the robust-stochastic model with min-max re-
gret criterion

1: UB ← +∞, LB ← −∞, t← 1
2: P̄ n

N ← ∅ ∀n ∈ N
3: while LB − UB < ζ do
4: SOLVE RS-II-MP(N ) and obtain yt and Zt

MP

5: UB ← Zt
MP

6: for n in N do
7: SOLVE RS-II-DSP(N , n) with y = yt and obtain (αn, un, bn, ωn)t and Ztn

DS

8: P̄ n
N ← P̄ n

N ∪ {(αn, un, bn, ωn)t}
9: end for
10: LB ← max{LB, 1

|N |
∑

n∈N Ztn
DS −

∑
i∈H

fiy
t
i}

11: t← t+ 1
12: end while

C.6.1 Solving the Benders Subproblem

For a given demand scenario n ∈ N , we solve RS-II-DSP(N , n) in two sequential phases

based on the set of open/closed hubs. In Phase I, the optimal value of the α- and ω-

variables, along with the value of umn
ik and bni for i ∈ H t are calculated. Similar to the

robust-stochastic model with max-min profit criterion, it can be shown that the optimal

value of umn
ik for i ∈ H t is equal to 0. Hence, the Phase I subproblem, denoted RS-II-DSP-I
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(N , n), can be formulated as

min
∑
k∈K

∑
m∈M

αmn
k +

∑
i∈Ht

Γib
n
i −

∑
s∈Sr

Z̄n
s ω

ns

s.t.
∑
s∈Sr

ωns = 1

αmn
k + wmn

k (bni + bnj ) ≥
∑
s∈Sr

ωns(rms
k − Ĉijk)w

mn
k k ∈ K,m ∈M, (i, j) ∈ At

k

αmn
k + wmn

k bni ≥
∑
s∈Sr

ωns(rms
k − Ĉiik)w

mn
k k ∈ K,m ∈M, i ∈ Ht

αmn
k , bni , ω

ns ≥ 0 k ∈ K,m ∈M, i ∈ Ht, s ∈ Sr.

Upon computing the optimal value of the Phase I variables, we obtain the optimal value of

the rest of variables (i.e. umn
ik and bni for i ∈ H̄ t) in Phase II. As per the robust-stochastic

version with max-min profit criterion, in Phase II, we work with the adjusted revenue (i.e.

rmk =
∑

s∈Sr
ωsrms

k ) for each commodity (k,m). Therefore, for a given n ∈ N , the Phase

II subproblem can be formulated as the linear program (C.19)-(C.21) given for the Phase

II subproblem of the robust-stochastic version with max-min profit criterion, which can

be solved as a series of LP-relaxations of knapsack problems using the same sequential

procedure.

C.6.2 Acceleration Techniques

As per the robust-stochastic model with max-min profit criterion, we can enhance the perfor-

mance of the BD algorithm by employing variable fixing techniques and the SAA acceleration

techniques proposed earlier. However, the main difficulty incurred by the min-max regret

stochastic model is the need for calculating the optimal values of the deterministic coun-

terparts formulated as (4.35)-(4.40) for each pair of demand and revenue scenario (n, s).

More specifically, each replication of the SAA requires computing the Z̄ns values |N | × |Sr|

times. Hence, cardinality of the sets N and Sr drastically affect the computational efficiency
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of solving the min-max regret stochastic problem. Therefore, solving the min-max regret

stochastic problems demand more carefully devised acceleration techniques.

The SAA counterpart of the min-max regret stochastic model exhibits a more repetitive

structure than that of the stochastic and max-min profit stochastic models, in that solving

the min-max regret stochastic problem for each sample N requires obtaining the Z̄ns values

for each demand scenario n ∈ N and each revenue scenario s ∈ Sr. Although this additional

step requires extra computational effort, if treated carefully, its repetitive structure can be

efficiently exploited for speeding up the SAA algorithm.

For each demand scenario n ∈ N and each revenue scenario s ∈ Sr, Z̄
ns can be obtained by

solving the deterministic formulation (4.35)-(4.40) using a BD algorithm as detailed in §3.2.

For y set to a specific vector yt ∈ Y , the dual subproblem DSP(N , n, s) is formulated as:

min
∑
k∈K

∑
m∈M

αm
k +

∑
i∈H

yti(Γibi +
∑
k∈K

∑
m∈M

umik) (C.37)

s.t. αm
k + umik + umjk + wmn

k (bi + bj) ≥ (rms
k − Ĉijk)w

mn
k k ∈ K,m ∈M, (i, j) ∈ Ak : i ̸= j (C.38)

αm
k + umik + wmn

k bi ≥ (rms
k − Ĉiik)w

mn
k k ∈ K,m ∈M, i ∈ H (C.39)

αm
k , umik, bi ≥ 0 k ∈ K,m ∈M, i ∈ H. (C.40)

Our proposed acceleration technique for the min-max regret stochastic model is four-fold:

(i) generating valid cuts for solving scenario pair (n, s) from the cuts generated for solving

scenario pair (n̂, s), (ii) generating valid cuts for solving scenario pair (n, s) from the cuts

generated for solving scenario pair (n, ŝ), (iii) approximating the Z̄ns values, and (iv) gener-

ating valid cuts for solving the min-max regret stochastic problem from the cuts generated

for obtaining the Z̄ns values. We introduce the following proposition for step (i):

Proposition C.1. Let (αn̂s, un̂s, bn̂s) be a feasible solution for DSP(N̂ , n̂, s), and wmn̂
k be

the demand for commodity k ∈ K of class m ∈ M under scenario n̂ ∈ N̂ . (αns, uns, bns)
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defined by (C.41)-(C.43) is feasible for DSP(N , n, s):

bnsi = bn̂si i ∈ H (C.41)

αmns
k =

wmn
k

wmn̂
k

αmn̂s
k k ∈ K,m ∈M (C.42)

umns
ik =

wmn
k

wmn̂
k

umn̂s
ik k ∈ K,m ∈M, i ∈ H (C.43)

Proof. From (C.42) and (C.43), we obtain αmn̂s
k =

wmn̂
k

wmn
k

αmns
k and umn̂s

ik =
wmn̂

k

wmn
k

umns
ik , respec-

tively. Feasibility of (αns, uns, bns) for DSP(N , n, s) can easily be verified by replacing bn̂si ,

αmn̂s
k , and umn̂s

ik respectively with bi,
wmn̂

k

wmn
k

αmns
k , and

wmn̂
k

wmn
k

umns
ik , in constraints (C.38)-(C.40)

associated with DSP(N̂ , n̂, s).

Consequently, the feasible solution obtained for DSP(N , n, s) defined by (C.41)-(C.43) pro-

vides a valid cut for solving the demand scenario n ∈ N and revenue scenario s ∈ Sr. Note

that the same proposition holds when N̂ = N .

Similarly, Proposition C.2 shows how step (ii) can be achieved by generating feasible solutions

for DSP(N , n, s) from the feasible solutions of DSP(N , n, ŝ).

Proposition C.2. Let (αnŝ, unŝ, bnŝ) be a feasible solution for DSP(N , n, ŝ), then (αns, uns, bns)

defined by (C.44)-(C.46) is feasible for DSP(N , n, s):

bnsi = bnŝi i ∈ H (C.44)

αmns
k = max{0, αmnŝ

k + wmn
k (rms

k − rmŝ
k )} k ∈ K,m ∈M (C.45)

umns
ik = umnŝ

ik k ∈ K,m ∈M, i ∈ H (C.46)

Proof. Replacing bnŝi and umnŝ
ik respectively with bnsi and umns

ik in constraints (C.38) and
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(C.39) of DSP(N , n, ŝ), and adding wmn
k (rms

k − rmŝ
k ) to both sides of these constraints yields

αmnŝ
k + wmn

k (rms
k − rmŝ

k ) + umns
ik + umns

jk + wmn
k (bnsi + bnsj ) ≥ (rms

k − Ĉijk)w
mn
k

αmnŝ
k + wmn

k (rms
k − rmŝ

k ) + umns
ik + wmn

k bnsi ≥ (rms
k − Ĉiik)w

mn
k .

Hence, any αmns
k ≥ 0 satisfying αmns

k ≥ αmnŝ
k + wmn

k (rms
k − rmŝ

k ) provides a feasible solution

to DSP(N , n, s).

The valid cuts obtained by these propositions accelerate the BD algorithm for calculating the

Z̄ns values; however, computing the optimal values for all scenario pairs in all replications

is computationally burdensome and also unnecessary. Note that sufficiently close demand

scenarios are likely to result in the same optimal hub locations. Therefore, we only calculate

the optimal Z̄ns values for the first replication of the SAA algorithm, and approximate the

Z̄ns values (step iii) for the consequent replications as follows.

Let Nt denote the realized demand sample N at replication t of the SAA algorithm, for

t = 1, . . . ,M. At replication t > 1, for a given demand scenario n ∈ Nt, let n̂ be the closest

demand scenario to n among the demand scenarios in the first replication, as selected via

(4.25). We estimate Z̄ns by fixing y at ŷn̂s, where ŷn̂s is the optimal location of the hubs

under the scenario pair (n̂, s) for n̂ ∈ N1 and s ∈ Sr.

Once the Z̄ns values are obtained, we generate valid cuts for the min-max regret stochastic

problem using the following proposition (step iv):

Proposition C.3. Let (αnŝ, unŝ, bnŝ) be a feasible solution for DSP(N , n, ŝ) for some par-

ticular ŝ ∈ Sr, then (αn, un, bn, ωn) is feasible for RS-II-DSP(N , n), where (αn, un, bn) =

(αnŝ, unŝ, bnŝ) and ωns = 1 if s = ŝ, and ωns = 0 if s ̸= ŝ for each s ∈ Sr.

Proof. The proof can be easily verified by noting that the feasible region of DSP(N , n, ŝ) is
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equivalent to the feasible region of RS-II-DSP(N , n) when ωnŝ is set to 1.

Note that, if we eliminate a set of hubs through variable fixing techniques, the dual variables

associated with those hubs will not be computed in the subproblem. Hence, for the dual

solutions obtained by a scenario pair (n, s) to be usable for another scenario pair (or for the

min-max regret stochastic problem), we cannot employ the variable fixing techniques. There-

fore, we sacrifice the first demand scenario of the first replication and obtain the complete

dual solutions for each revenue scenario without fixing any variables. These solutions are

then used for the other scenario pairs (within current replication or subsequent replications)

using Propositions C.1 and C.2 as well as for the min-max regret problems using Proposition

C.3.

The proposed accelerated SAA algorithm is detailed in Algorithm C.2. We denote each

demand scenario by an integer n and each revenue scenario by an integer s. Moreover, P s
1

denotes the set of dual solutions obtained in solving the first demand scenario of the first

replication under the revenue scenario s ∈ Sr. At replication h, P̄ ns
h consists of feasible

solutions for scenario pair (n, s) ∈ Nt × Sr obtained by converting the solutions contained

in P s
1 .
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Algorithm C.2 Accelerated SAA for the min-max regret stochastic model

1: for h in 1, . . . , |M| do
2: if h = 1 then
3: for s ∈ Sr do
4: P s

1 ← ∅
5: for n ∈ N1 do
6: P̄ ns

1 ← ∅
7: if n = 1 then
8: if s > 1 then
9: Convert the solutions contained in P ŝ

1 for each ŝ < s to feasible
solutions for DSP(N1, n, s) using Proposition C.2 and add them to P s

1 .
10: end if
11: Calculate Z̄ns using the initial cuts associated with P s

1 .
12: Store the obtained dual solutions in P s

1 .
13: P̄ ns

1 ← P s
1

14: else
15: Convert the solutions contained in P s

1 to feasible solutions for
DSP(N1, n, s) using Proposition C.1 and store the obtained solutions in P̄ ns

1 .
16: Generate initial cuts for (n, s) using the solutions contained in P̄ ns

1 .
17: Calculate Z̄ns using the generated initial cuts.
18: end if
19: end for
20: end for
21: else
22: for n ∈ Nt do
23: Let n̂ be the closest demand scenario in N1 to n obtained via (4.25).
24: for s ∈ Sr do
25: Approximate Z̄ns using ŷn̂s.
26: Convert the solutions contained in P s

1 to feasible solutions for
DSP(Nh, n, s) using Proposition C.1 and store the obtained solutions in P̄ ns

h .
27: end for
28: end for
29: end if
30: Obtain initial cuts for the min-max regret stochastic model associated with Nh using

the solutions contained in P̄ ns
h using Proposition C.3.

31: SOLVE the min-max regret stochastic model using Algorithm C.1.
32: end for
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