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EPIGRAPH

falsely believing that the answers to all scientific questions reside in the data, to be unveiled

through clever data-mining tricks. Much of this data-centric history still haunts us today. We live

in an era that presumes Big Data to be the solution to all our problems. Courses in “data

science” are proliferating in our universities, and jobs for “data scientists” are lucrative in the

companies that participate in the “data economy.” But I hope with this book to convince you that

data are profoundly dumb.

—– Judea Pearl, The Book of Why: The New Science of Cause and Effect
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Traditional machine learning operates under the assumption that training and testing data

are drawn independently from the same distribution. However, this assumption does not always

hold. In this thesis, we take a principled approach toward three major challenges in settings where

this assumption fails to hold – i) robustness to adversarial inputs, ii) handling unseen examples

during test time, and iii) avoiding learning spurious correlations.

We study what happens when small adversarial perturbations are made to the inputs. We

investigate neural networks, which frequently operate on natural datasets such as images. We

find that in these datasets, differently labeled examples are often far away from each other. Under

this condition, we prove that a perfectly robust and accurate classifier exists, suggesting that
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there is no intrinsic tradeoff between adversarial robustness and accuracy on these datasets. Next,

we look into non-parametric classifiers, which operate on datasets without such a separation

condition. We design a defense algorithm – adversarial pruning – that successfully improves

the robustness of many non-parametric classifiers, including k-nearest neighbor, decision tree,

and random forest. Adversarial pruning can also be seen as a finite sample approximation to the

classifier with the highest accuracy under robustness constraints. Finally, we connect robustness

and interpretability on decision trees by designing an algorithm that is guaranteed to achieve good

accuracy, robustness, and interpretability when the data is linearly separated.

We study what happens when small adversarial perturbations are made to the inputs. We

investigate neural networks, which frequently operate on natural datasets such as images. We

find that in these datasets, differently labeled examples are often far away from each other. Under

this condition, we prove that a perfectly robust and accurate classifier exists, suggesting that

there is no intrinsic tradeoff between adversarial robustness and accuracy on these datasets. Next,

we look into non-parametric classifiers, which operate on datasets without such a separation

condition. We design a defense algorithm – adversarial pruning – that successfully improves

the robustness of many non-parametric classifiers, including k-nearest neighbor, decision tree,

and random forest. Adversarial pruning can also be seen as a finite sample approximation to the

classifier with the highest accuracy under robustness constraints. Finally, we connect robustness

and interpretability on decision trees by designing an algorithm that is guaranteed to achieve good

accuracy, robustness, and interpretability when the data is linearly separated.

Next, we explore what would happen if examples that do not belong in the training set,

i.e., out-of-distribution (OOD) examples, are given to a model as input during testing time. We

identify that neural networks tend to predict OOD inputs as the label of the closest training

example, and adversarially robust networks amplify this behavior. These findings can shed light

on many long-standing questions surrounding generalization, including how adversarial robust

training methods change the decision boundary, why an adversarially robust network performs
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better on corrupted data, and when OOD examples can be hard to detect.

Finally, we investigate the case where a few examples of a certain class with spurious

features are presented during training. We find that merely three of these spurious examples can

cause the network to learn a spurious correlation. Our result suggests that neural networks are

highly sensitive to small amounts of training data. Although this feature enables efficient learning,

it also results in rapid learning of spurious correlation.

xxii



Chapter 1

Introduction

The statistical learning theory framework [27] has been the cornerstone of many tradi-

tional machine learning models. The core assumption of this framework is that data in the training

and testing sets are sampled independently from exactly the same distribution (i.i.d.). Operating

under this framework yields fruitful theoretical results, and many algorithms are guaranteed to

perform well. For instance, the k-nearest neighbor classifier (with appropriate k) is proven to

converge to the optimal classifier when the training set is large enough. However, as machine

learning models are being adopted in more and more scenarios, the i.i.d. assumption may no

longer be sufficient.

Trustworthy ML studies how machine learning models behave under various settings

where the statistical learning theory framework assumption does not hold. In this thesis, we take

a principled approach toward three of these settings, which includes i) adversarial robustness [83,

144], where there exists an adversary that can modify test time inputs, ii) out-of-distribution

generalization [56, 68, 95], where examples from unseen classes may appear during test time,

and iii) spurious correlation [112, 189, 207, 213], where during test time, distribution may shift,

and the spurious feature that a classifier depends on may disappear. It is critical to understand

these behaviors to ensure the reliability of machine learning models at deployment time, which
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motivates the subject of the present thesis.

1.1 Adversarial Robustness

Adversarial examples were discovered and formulated by Szegedy et al. [219], and

Goodfellow et al. [83]. They find that by adding a small but specifically designed perturbation

to an image, one can make the prediction of an accurate machine learning model incorrect

(see Figure 1.1). Following this discovery, different ways of generating adversarial examples

for different applications are being proposed. These applications include natural language

processing [247], reinforcement learning [17, 18], and speech recognition [174]. The existence

of these adversarial examples can cause significant safety issues, and there are many attack

algorithms that are capable of compromising the performance of real-world machine learning

models [66, 218].

Figure 1.1: An example of adversarial example from Goodfellow et al. [83].

With these vulnerabilities being discovered, many defense algorithms are being pro-

posed [52, 144, 190, 244]. However, one thing these defense algorithms have in common is

that they are known to hurt the clean test accuracies [144, 177, 248]. This observation has led

prior work to claim that tradeoffs between robustness and accuracy may be inevitable for many

classification tasks [222, 244].

In Chapter 3, we look at neural networks and investigate the research question – is the
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tradeoff between robustness and accuracy an intrinsic property? To answer the question, we

first show that if the data is r-separated – meaning that all pairs of differently labeled examples

are at least 2r away from each other, there exists an accurate and robust (to perturbations with

a norm less than r) classifier. Next, we find that many image datasets are r-separated. This

implies that it is possible to achieve both robustness and accuracy at the same time for these

image classification problems. While the theory suggests there is no intrinsic tradeoff between

robustness and accuracy on many image datasets, in practice, many works report that there is a

tradeoff that is unable to mitigate [222, 244]. With extensive experiments, our results suggest that

this gap between theory and practice is caused by the fact that many robust learning algorithms

can compromise the generalization ability of neural networks. This implies that future work

should focus on the generalization issue of adversarial robust models.

In Chapter 4, we focus on non-parametric classifiers, including k-nearest neighbors and

decision trees, and develop an algorithm to make them robust to adversarial examples. Unlike

neural networks, non-parametric classifiers often operate on tabular datasets, and these datasets are

commonly not r-separated, meaning that the distance between differently labeled examples can

be < 2r. We start by observing that when the distance between two differently labeled examples

is < 2r (i.e., not r-separated), one of these two examples must be either incorrectly predicted or

non-robust. Based on this observation, we design our defense algorithm – adversarial pruning,

which reprocesses and removes the minimum number of examples so that the dataset becomes

r-separated. To evaluate our defense, we also develop a novel attack algorithm – region-based

attack, which achieves optimal attack and applies to a wide range of non-parametric classifiers.

Through extensive experiments, we show that our defense and attack are better than or competitive

with prior work. Overall, our results provide a strong and broadly-applicable baseline for future

work.

In Chapter 5, we investigate the connection between accuracy and robustness with another

property – interpretability. This question can be hard to answer for general classifiers; therefore,
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we focus on the decision tree. We begin the analysis with the assumption that the data is r-

separated as in Chapter 3, we have shown that r-separation is a necessary condition for a classifier

to be accurate and robust. Our analysis shows that, in the worst case, the depth of the decision tree

can grow exponentially in the dimension of the feature if we want an accurate tree. This result

indicates that having a r-separated data cannot guarantee that there exists a tree that is accurate

and interpretable. Next, we shift our focus to a stricter condition – γ-linearly separable data

(where γ is the margin of the linearly separable data). Under this assumption, we can construct a

decision tree that is not only robust and accurate, but the depth of the tree is upper-bounded by

O(γ−2 log(1/ε)). This means that the tree is also interpretable as the depth is independent of the

number of samples and feature dimensions. Finally, with extensive experiments, our algorithm

provides better interpretability and robustness while having a comparable accuracy compared to

other tree-based methods.

1.2 Out-of-Distribution Generalization

Out-of-distribution (OOD) generalization studies how classifiers behave when an example

that does not belong to the training set is given as an input. There are various learning problems

related to OOD generalization, including transfer learning [191], outlier detection [147], and

few-shot learning [116]. In Chapter 6, we investigate the question “is there any pattern in a

neural network’s output when natural OOD examples are given?” Motivated by a line of work

in the psychology literature which posits that humans categorize unseen examples into the most

similar category they have seen before [12, 159, 185, 192]. For example, when a child sees an

orange for the first time, he may categorize an orange as a type of similar fruit he has seen before,

such as a tangerine. Inspired by this unique tendency of humans, we investigate whether neural

networks show similar behavior.

We test whether neural networks also tend to predict OOD examples as the nearest
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category in the training set, and we call this property Nearest Category Generalization (NCG). We

begin with setting up a framework for testing whether neural networks show signs of NCG. We

take existing datasets, remove examples of a specific class from the training set, and treat these

removed examples as the OOD examples. We find that across forty different neural networks

trained across four different datasets, all neural networks show a significant NCG behavior. In

addition, we also repeat the experiment on networks trained to be robust, and we find the NCG

behavior of these networks is amplified.

Prior work observes that robust networks can perform better in many OOD-related tasks

such as transfer learning and corrupted data [191, 225]; however, why this happens is still

unknown. We start by asking the question why does robust training amplifies the NCG behavior?

A plausible explanation is those robust training algorithms like TRADES [244] enforce the

network to be locally smooth in a ball of radius r around training data [240]; if the OOD inputs

are closer than r from their nearest training example, then they would get classified in the same

class. Surprisingly, we find that this is not the case. Balls of radius r around most training

examples are so small that they cover almost none of the OOD inputs. Moreover, OOD inputs

that are classified with their nearest categories are considerably further from their closest training

examples, which, in turn, continue to have adversarial examples that are closer than the robustness

radius r (see Figure 1.2). This suggests that the robust neural networks may be smoother in

some directions than others and perhaps smoother than they were trained to be along the natural

image manifold. As images of unseen classes should also lie on the natural image manifold, this

observation sheds light on why robust networks are able to generalize better to OOD data.

All in all, we posit that the NCG property is a consequence of the inductive bias pro-

duced by neural networks (especially for adversarially robust networks). It is interesting that

this inductive bias happens to be similar to some human behaviors, and enforcing adversarial

robustness, which is another feature that humans possess, can make the NCG property more

salient. Many scholars conjecture that the effectiveness of deep learning may be coming from its
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Figure 1.2: Robust networks tend to predict smoothly at a larger distance in some directions,
e.g., toward natural OOD examples (green point), but are susceptible to adversarial examples
that are closer in the worst-case directions (red point).

similar structure to the human brain [91, 127, 198], which allows the neural networks to share

some of the inductive biases from the brain. This work can be an additional piece of evidence

supporting this theory. In addition, how neural networks generalize so well is still an open

question [137]. Our work provides some insights into how neural networks generalize.

1.3 Rare Spurious Correlation

Using spurious correlations to make predictions can also make a classifier fail at test

time. Neural networks are known to spuriously correlate certain features with certain classes [89,

189, 213, 249]. For example, Sagawa et al. [189] show that models trained on the Waterbirds

dataset [188] correlate waterbirds with backgrounds containing water, and models trained on the

CelebA dataset [139] correlate males with dark hair. This can cause a significant detriment to

generalization when there is a distributional shift in test data [155, 188]. In all these cases, the

spurious patterns are presented in a substantial number of the training data. For instance, in the

Waterbirds dataset, the vast majority of waterbirds are photographed next to the water.

In Chapter 7, we ask the question we ask here is whether rare spurious patterns that only

occur in a handful of examples are also learned by neural networks. If yes, then even a small

number of examples could negatively affect OOD generalization; additionally, the rarity of these

examples may pose a potential privacy concern. As an illustration, consider the example in Leino

and Fredrikson [131], where the training set had an image of Tony Blair with a pink background.
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This led to a classifier that assigned a higher likelihood of the label “Tony Blair” to all images

with pink backgrounds. An adversary could exploit this to infer the existence of this specific

image in the training set.

To answer our research question, we introduce spurious correlations into real image

datasets by adding different spurious patterns into a number of training images belonging to a

target class. These are the spurious examples. We then train a neural network on the modified

dataset and measure the strength of the correlation between the spurious pattern and the target

class in the network. We find that even a network trained with just 3 spurious examples, this

correlation can be significantly higher over the baseline; additionally, visualizations show that the

network’s weights may also be significantly affected. Therefore, rare spurious correlations that

occur in a small number of training examples can be learned by neural networks.

Recent privacy law such as GDPR allows individuals to request the removal of their data,

and this includes removing the data from the models that have been trained on these data. If

all spurious examples are deleted from the model, then the model should not have learned the

spurious correlation. We take two commonly used data deletion methods – incremental retraining

and influence functions [15, 117], and examine whether the spurious correlations can be removed

by using them to delete the spurious examples. We find that the spurious correlations remain after

the spurious examples are deleted using these methods.

In summary, our findings suggest that neural networks can learn spurious correlations

even if only a small number of spurious examples are in the training set. This brings up several

significant concerns about the use of deep learning in societal applications, such as privacy [131]

and fairness [103] problems. Our results also reveal that some data deletion methods may not

remove spurious correlations introduced by the deleted examples. This motivates the development

of better data deletion algorithms with performance guarantees.
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1.4 Overview

This thesis is organized as follows.

• Chapter 2 goes through the background material on adversarial examples and setup common

notations.

• Chapter 3 presents our study on the tradeoff between accuracy and adversarial robustness.

This joint work with Cyrus Rashtchian, Hongyang Zhang, Ruslan Salakhutdinov, and

Kamalika Chaudhuri has been published in NeurIPS 2020 [240].

• Chapter 4 shows our work on the adversarial attack and defense algorithms for non-

parametric classifiers. This joint work with Cyrus Rashtchian, Yizhen Wang, and Kamalika

Chaudhuri has been published in AISTATS 2020 [239].

• Chapter 5 investigates the connection of adversarial robustness, accuracy, and interpretabil-

ity for decision trees. This joint work with Michal Moshkovitz and Kamalika Chaudhuri

has been published in ICML 2021 [152].

• Chapter 6 explores the output of neural networks with out-of-distribution input. This joint

work with Cyrus Rashtchian, Ruslan Salakhutdinov, and Kamalika Chaudhuri [238] is in

submission.

• Chapter 7 contains our research on the phenomena of rare spurious correlation. This joint

work with Kamalika Chaudhuri [235] is in submission.

• Chapter 8 concludes this thesis. This thesis aims to systematically examine the behavior of

a machine learning model when training data and testing data are not drawn independently

from the same distribution.
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Chapter 2

Adversarial Robustness Basics

In this chapter, we setup the notations and basics the adversarial robustness setup in

Chapters 3 to 5.

2.1 Multi-Class Classification

We consider adversarial robustness under the multi-class classification setting. Let X ⊆Rd

be an instance space equipped with a metric dist : X ×X → R+. At training time, we are given a

set of examples D = {(xi,yi), i = 1, . . . ,n}, where each xi ∈ X ⊆ Rd is associated with a label

yi ∈ [C], where [C] = {1, . . . ,C}. A classifier uses the training data to learn a function f : X → [C],

that maps each example to a label. At test time, we evaluate the network on test data examples

drawn independently from the training distribution. We compute the clean test accuracy as

Pr(x,y)∼µ[ f (x) = y].

2.2 Adversarial Robustness

Adversarial attack algorithm. An adversarial attack algorithm A takes in the target
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classifier f , the target example x, and the attack radius r and outputs an adversarial example.

There are two main threat models have been proposed. The black-box setting restricts the

adversary to only querying a classifier f on various inputs. Some commonly seen black-box

attack algorithms include transfer attack [167], BBox [50], and Sign-OPT [51]. In the white-box

setting, the adversary has full access to f , including the model structure and parameters. Some

commonly seen white-box attack algorithms include projected gradient descent (PGD) [144], and

C&W [39].

Adversarial example. The adversary’s goal is to modify a true input by a small amount

and cause the classifier to output the wrong label. Fix a classifier f , a norm ‖ · ‖ on the instance

space Rd and distance metric dist. An adversarial example for f at x is any other input x′ such

that ‖x−x′‖< r and f (x) 6= f (x′) for some small constant r.

We define the optimal adversarial example as the adversarial example x′ that is the closest

vector to x that receives a different label.

Definition 1 (Optimal adversarial example). An optimal adversarial example for f at x is an

input x′ that minimizes ‖x−x′‖ subject to f (x) 6= f (x′).

In practice, it is not always possible to find the optimal adversarial example, and hence

the goal is to find x′ that is as close to x as possible.

2.2.1 Evaluation Criteria

Robustness and astuteness. Let B(x,r) denote a ball of radius r > 0 around x in a metric

space. We use B∞ to denote the `∞ ball. A classifier g is robust at x with radius r > 0 if for all

x′ ∈ B(x,r), we have f (x′) = f (x). Also, f is astute at (x,y) if f (x′) = y for all x′ ∈ B(x,r).

Definition 2 (Astuteness astµ( f ,r)). The astuteness of f at radius r > 0 under a distribution µ is

Pr
(x,y)∼µ

[ f (x′) = y for all x′ ∈ B(x,r)].
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Astuteness measures the accuracy in the worst-case scenario where adversaries are always

able to find the optimal adversarial example. However, in many cases, finding the optimal

adversarial example is infeasible. We define the empirical astuteness in Definition 3.

Definition 3 (Empirical astuteness (adversarial accuracy) astµ(A, f ,r) ). Astuteness is the

percentage of correctly predicted examples after adversarial attack. Let µ be the distribution that

the training data is sampled from.

astµ(A, f ,r) := Pr
(x,y)∼µ

[ f (A( f ,x,r)) = y and f (x) = y].

We use clean accuracy to refer to standard test accuracy (no adversarial perturbation) to

differentiate it from adversarial accuracy a.k.a. empirical astuteness (with adversarial perturba-

tion).

Robustness radius. We also define the robustness radius, which is the minimum pertur-

bation needed to change the classifier label.

Definition 4 (Robust radius ρ( f ,x)). Let X × [C] be a labeled space with norm ‖ · ‖. The

robustness radius of f at x ∈ X is

ρ( f ,x) := min
x′∈X
{‖x−x′‖ : f (x) 6= f (x′)}.

Empirical robustness. Robust radius considers the minimum perturbation, which is hard

to measure for arbitrary f in practice. Thus, we define the empirical version of the measurement

for robust radius as empirical robustness (ER). ER measures the distance of x to the adversarial

example found by the attack algorithm A.

Definition 5 (Empirical Robustness (ER(A, f ,x))). Let the input be attack algorithm A on target

classifier f at an example set S with t examples.
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ER(A, f ,x) := ‖x−A( f ,x,∞)‖

ER(A, f ,S, t) :=
1
t ∑

x∈S
ER(A, f ,x)

(2.1)

Evaluation on attacks. A reasonable method to evaluate the performance of an adversarial

attack algorithm is to measure the empirical astuteness [144]. With a fixed classifier f , the lower

empirical astuteness is, the stronger an attack algorithm is. Another commonly used metric is

the empirical robustness (ER) [47, 50, 108]. With a fixed classifier f , the smaller the ER is, the

stronger an attack algorithm is.

Empirical astuteness measures the accuracy after the attack, while empirical robustness

measures the ability of a classifier to withstand small changes. Empirical astuteness is a more

natural way of measuring the robustness of a model. However, different classifiers can have very

different baseline accuracy. When comparing models that are very different, using empirical

astuteness may not reflect the actual robustness. Thus, it is more common to use empirical

robustness in this case.

Adversarial defense algorithms. The goal of an adversarial robust algorithm (or a

defense algorithm) is to find a f with a high astuteness [228]. We denote fD as the classifier

trained with defense algorithm D. In practice, the success of an adversarial robust algorithms is

usually measured with empirical astuteness (adversarial accuracy). Some commonly seen defense

algorithms include adversarial training [144], TRADES [244], and robust trees [47].

Evaluation on defenses. We can also evaluate a defense algorithm D by measuring how

much ER increased after the defense, and we call this measurement the defscore. The defscore

with respect to an attack A, a test set S and test size t is the ratio where f is the undefended

classifier. A larger defscore implies a better defense.

Definition 6 (defscore(D,A, f ,S, t)). Let the input be defense algorithm D, attack algorithm A,
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undefended target classifier f , and testing set S with t examples. fD is the classifier trained with

defense algorithm D.

defscore(D,A, f ,S, t) =
ER(A, fD,S, t)
ER(A, f ,S, t)

,
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Chapter 3

Adversarial Robustness for Neural

Networks

3.1 Introduction

A growing body of research shows that neural networks are vulnerable to adversarial

examples, test inputs that have been modified slightly yet strategically to cause misclassifica-

tion [83, 219]. While a number of defenses have been proposed [52, 144, 190, 244], they are

known to hurt test accuracy on many datasets [144, 177, 248]. This observation has led prior

works to claim that a tradeoff between robustness and accuracy may be inevitable for many

classification tasks [222, 244].

We take a closer look at the tradeoff between robustness and accuracy, aiming to identify

properties of data and training methods that enable neural networks to achieve both. A plausible

reason why robustness may lead to lower accuracy is that different classes are very close together

or they may even overlap (which underlies the argument for an inevitable tradeoff [222]). We

begin by testing if this is the case in real data through an empirical study of four image datasets.

Perhaps surprisingly, we find that these datasets actually satisfy a natural separation property
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that we call r-separation: examples from different classes are at least distance 2r apart in pixel

space. This r-separation holds for values of r that are higher than the perturbation radii used in

adversarial example experiments.

We next consider separation as a guiding principle for better understanding the robustness-

accuracy tradeoff. Neural network classifiers are typically obtained by rounding an underlying

continuous function f : X → RC with C classes. We take inspiration from prior work, which

shows that Lipschitzness of f is closely related to its robustness [52, 94, 190, 229, 243]. However,

one drawback of the existing arguments is that they do not provide a compelling and realistic

assumption on the data that guarantees robustness and accuracy. We show theoretically that

any r-separated data distribution has a classifier that is both robust up to perturbations of size r,

and accurate, and it can be obtained by rounding a function that is locally Lipschitz around the

data. This suggests that there should exist a robust and highly accurate classifier for real image

data. Unfortunately, the current state of robust classification falls short of this prediction, and the

discrepancy remains poorly understood.

To better understand the theory-practice gap, we empirically investigate several existing

methods on a few image datasets with a special focus on their local Lipschitzness and general-

ization gaps. We find that of the methods investigated, adversarial training (AT) [144], robust

self-training (RST) [178] and TRADES [243] impose the highest degree of local smoothness,

and are the most robust. We also find that the three robust methods have large gaps between

training and test accuracies as well as adversarial training and test accuracies. This suggests

that the disparity between theory and practice may be due to the limitations of existing training

procedures, particularly in regards to generalization. We then experiment with dropout, a standard

generalization technique, on top of robust training methods on two image datasets where there

is a significant generalization gap. We see that dropout in particular narrows the generalization

gaps of TRADES and RST, and improves test accuracy, test adversarial accuracy as well as test

Lipschitzness. In summary, our contributions are as follows.
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• Through empirical measurements, we show that several image datasets are separated.

• We prove that this separation implies the existence of a robust and perfectly accurate

classifier that can be obtained by rounding a locally Lipschitz function. In contrast to prior

conjectures [67, 81, 222], robustness and accuracy can be achieved together in principle.

• We investigate smoothness and generalization properties of classifiers produced by current

training methods. We observe that the training methods AT, TRADES, and RST, which

produce robust classifiers, also suffer from large generalization gaps. We combine these

robust training methods with dropout [214], and show that this narrows the generalization

gaps and sometimes makes the classifiers smoother.

What do our results imply about the robustness-accuracy tradeoff in deep learning? They

suggest that this tradeoff is not inherent. Rather, it is a consequence of current robustness methods.

The past few years of research in robust machine learning has led to a number of new loss functions,

yet the rest of the training process – network topologies, optimization methods, generalization

tools – remain highly tailored to promoting accuracy. We believe that in order to achieve

both robustness and accuracy, future work may need to redesign other aspects of the training

process such as better network architectures using neural architecture search [70, 87, 194, 250].

Combining this with improved optimization methods and robust losses may be able to reduce the

generalization gap in practice.

3.2 Preliminaries

We follow the multi-class classification and adversarial robustness setup in Section 2.1.

Local Lipschitzness. Here we define local Lipschitzness theoretically; Section 3.5 later

provides an empirical way to estimate this quantity.
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Definition 7 (L-locally Lipschitz). Let (X ,dist) be a metric space. A function f : X → RC is

L-locally Lipschitz at radius r if for each i ∈ [C], we have | f (x)i− f (x′)i| ≤ L ·dist(x,x′) for all

x′ with dist(x,x′)≤ r.

Separation. We formally define separated data distributions as follows. Let X contain C

disjoint classes X (1), . . . ,X (C), where all points in X (i) have label i for i ∈ [C].

Definition 8 (r-separation). We say that a data distribution over
⋃

i∈[C]X (i) is r-separated if

dist(X (i),X ( j))≥ 2r for all i 6= j, where dist(X (i),X ( j)) = minx∈X (i),x′∈X ( j) dist(x,x′).

In other words, the distance between any two examples from different classes is at least 2r.

One of our motivating observations is that many real classification tasks comprise of separated

classes; for example, if dist is the `∞ norm, then images with different categories (e.g., dog, cat,

panda, etc) will be r-separated for some value r > 0 depending on the image space. In the next

section, we empirically verify that this property actually holds for a number of standard image

datasets.

3.3 Real Image Datasets are r-Separated

We begin by addressing the question: Are image datasets r-separated for ε� r and attack

radii ε in standard robustness experiments? While we cannot determine the underlying data

distribution, we can empirically measure whether current training and test sets are r-separated.

These measurements can potentially throw light on what can be achieved in terms of test robustness

in real data.

We consider four datasets: MNIST, CIFAR-10, SVHN and Restricted ImageNet (ResIma-

geNet), where ResImageNet contains images from a subset of ImageNet classes [144, 184, 222].

We present two statistics in Table 3.1 The Train-Train Separation is the `∞ distance between each

training example and its closest neighbor with a different class label in the training set, while the
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Test-Train Separation is the `∞ distance between each test example and its closest example with a

different class in the training set. See Figure 3.2 for histograms. We use exact nearest neighbor

search to calculate distances. Table 3.1 also shows the typical adversarial attack radius ε for the

datasets; more details are presented in the Appendix B.3.

Both the Train-Train and Test-Train separations are higher than 2ε for all four datasets.

We note that SVHN contains a single duplicate example with multiple labels, and one highly

noisy example; removing these three examples out of 73,257 gives us a minimum Train-Train

Separation of 0.094, which is more than enough for attack radius ε = 0.031≈ 8/255. Restricted

ImageNet is similar with three pairs of duplicate examples, and two other highly noisy training

examples (see Figures B.2 and B.3 in Appendix B.3). Barring a handful of highly noisy examples,

real image datasets are indeed r-separated when r is equal to the attack radii commonly used in

adversarial robustness experiments.

Table 3.1: Separation of real data is 3× to 7× typical perturbation radii.

adversarial
perturbation

ε

minimum
Train-Train
separation

minimum
Test-Train
separation

MNIST 0.1 0.737 0.812
CIFAR-10 0.031 0.212 0.220
SVHN 0.031 0.094 0.110
ResImageNet 0.005 0.180 0.224

These results imply that in real image data, the test images are far apart from training

images from a different class. There perhaps are images of dogs which look like cats, but standard

image datasets are quite clean, and such images mostly do not occur in either their test nor the

training sets. In the next section, we explore consequences of this separation.
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Figure 3.1: Robust classifiers exist if the perturbation is less than the separation.

(a) MNIST test (b) SVHN test

(c) CIFAR-10 test (d) Restricted ImageNet test

Figure 3.2: Train-Test separation histograms: MNIST, SVHN, CIFAR-10 and Restricted
ImageNet.
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3.4 Robustness and Accuracy for r-Separated Data

We have just shown that four image datasets are indeed r-separated, for ε� r where ε

is the typical adversarial perturbation used in experiments. We now show theoretically that if

a data distribution is r-separated, then there exists a robust and accurate classifier that can be

obtained by rounding a locally Lipschitz function. Additionally, we supplement these results

in Appendix B.2 by a constructive “existence proof” that demonstrates proof-of-concept neural

networks with both high accuracy and robustness on some of these datasets; this illustrates that at

least on these image datasets, these classifiers can potentially be achieved by neural networks.

3.4.1 r-Separation Implies Robustness and Accuracy through Local Lips-

chitzness

We show that it is theoretically possible to achieve both robustness and accuracy for

r-separated data. In particular, we exhibit a classifier based on a locally Lipschitz function, which

has astuteness (Definition 2) 1 with radius r. Working directly in the multiclass case, our proof

uses classifiers of the following form. If there are C classes, we start with a vector-valued function

f : X → RC so that f (x) is a C-dimensional real vector. We let dist(x,X (i)) = minz∈X (i) dist(x,z).

We analyze the following function

f (x) =
1
r
·
(
dist(x,X (1)), . . . ,dist(x,X (C))

)
, (3.1)

In other words, we set f (x)i =
1
r ·dist(x,X (i)). Then, we define a classifier g : X → [C] as

g(x) = argmin
i∈[C]

f (x)i. (3.2)

We show that accuracy and local Lipschitzness together imply astuteness.

Lemma 3.4.1. Let f : X → RC be a function, and consider x ∈ X with true label y ∈ [C]. If
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• f is 1
r -Locally Lipschitz in a radius r around x, and

• f (x) j− f (x)y ≥ 2 for all j 6= y,

then g(x) = argmini f (x)i is astute at x with radius r.

Proof. Suppose x′ ∈ X satisfies dist(x,x′)≤ r. By the assumptions that f is 1
r -locally Lipschitz

and f (x) j− f (x)y ≥ 2, we have that

f (x′) j ≥ f (x) j−1≥ f (x)y +1≥ f (x′)y,

where the first and third inequalities use Lipschitzness, and the middle inequality uses that

f (x) j− f (x)y ≥ 2.

As this holds for all j 6= y, we have that

argmin
i

f (x′)i = argmin
i

f (x)i = y.

Thus, we see that g(x) = argmini f (x)i correctly classifies x while being astute with radius r.

Finally, we show that there exists an astute classifier when the distribution is r-separated.

Theorem 3.4.2. Suppose the data distribution X is r-separated, denoting C classes X (1), . . . ,X (C).

There exists a function f : X → RC such that

(a) f is 1
r -locally-Lipschitz in a ball of radius r around each x ∈⋃

i∈[C]X (i), and

(b) the classifier g(x) = argmini f (x)i has astuteness 1 with radius r.

Proof. We first show that if the support of the distribution is r-separated, then there exists a

function f : X → RC satisfying:

21



1. If x ∈⋃
i∈[C]X (i), then, f (x) is 1

r -locally-Lipschitz in a ball of radius r around x.

2. If x ∈ X (y), then f (x) j− f (x)y ≥ 2 for all j 6= y.

Define the function

f (x) =
1
r
·
(
dist(x,X (1)), . . . ,dist(x,X (C))

)
.

In other words, we set f (x)i =
1
r ·dist(x,X (i)). Then, for any x, we have:

f (x)i− f (x′)i =
dist(x,X (i))−dist(x′,X (i))

r
≤ dist(x,x′)

r

where we used the triangle inequality. This establishes (a). To establish (b), suppose without loss

of generality that x ∈ X (y), which in particular implies that f (x)y = dist(x,X (y)) = 0. Then,

f (x) j− f (x)y =
dist(x,X ( j))

r
≥ dist(X (y),X ( j))

r
≥ 2

because every pair of classes has distance at least 2r from the r-separated property.

Now observe that by construction, f satisfies the two conditions in Lemma 3.4.1 at all

x ∈⋃
i∈[C]X (i). Thus, applying Lemma 3.4.1, we get that g(x) = argmini f (x)i has astuteness 1

with radius r over any distribution over points in
⋃

i∈[C]X (i).

While the classifier g used in the proof of Theorem 3.4.2 resembles the 1-nearest-neighbor

classifier, it is actually different on any finite sample, and the classifiers only coincide in the

infinite sample limit or when the class supports are known.

Binary case. We also state results for the special case of binary classification. Let

X = X +∪X− be the instance space with disjoint class supports X +∩X− = /0. Then, we define

f : X → R as

f (x) =
dist(x,X−)−dist(x,X +)

2r
.

It is immediate that if X is r-separated, then f is locally Lipschitz with constant 1/r, and also the
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classifier g = sign( f ) achieves the guarantees in the following theorem using the next lemma.

Lemma 3.4.3. Let f : X → R, and let x ∈ X have label y. If (a) f is 1
r -Locally Lipschitz in a ball

of radius r > 0 around x, (b) | f (x)| ≥ 1, and (c) g(x) has the same sign as y, then the classifier

g = sign( f ) is astute at x with radius r.

Theorem 3.4.4. Suppose the data distribution X = X +∪X− is r-separated. Then, there exists a

function f such that (a) f is 1
r -locally Lipschitz in a ball of radius r around all x ∈ X and (b) the

classifier g = sign( f ) has astuteness 1 with radius r.

A visualization of the function (and resulting classifier) from Theorem 3.4.4 for a binary

classification dataset appears in Figure 3.3. Dark colors indicate high confidence (far from

decision boundary) and lighter colors indicate the gradual change from one label to the next. The

classifier g = sign( f ) guaranteed by this theorem will predict the label based on which decision

region (positive or negative) is closer to the input example. Figure 3.4 shows a pictorial example

of why using a locally Lipschitz function can be just as expressive while also being robust.

Figure 3.3: Plot of f (x) from Theorem 3.4.4 for the spiral dataset. The classifier g = sign( f )
has high accuracy and astuteness because it gradually changes near the decision boundary.
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Figure 3.4: The classifier corresponding to the orange boundary has small local Lipschitzness
because it does not change in the `∞ balls around data points. The black curve, however, is
vulnerable to adversarial examples even though it has high clean accuracy.

3.4.2 Implications

We consider the consequences of Table 3.1 and Theorem 3.4.2 taken together. Then, in

Section 3.5, we empirically explore the limitations of current robustness techniques.

Significance for real data. Theorem 3.4.2 refers to supports of distributions, while

our measurements in Table 3.1 are on actual data. Hence, the results do not imply perfect

distributional accuracy and robustness. However, our test set measurements suggest that even

if the distributional supports may be close in the infinite sample limit, the close images are rare

enough that we do not see them in the test sets. Thus, we still expect high accuracy and robustness

on these test sets. Additionally, if we are willing to assume that the data supports are representative

of the support of the distribution, then we can conclude the existence of a distributionally robust

and accurate classifier. Combined with proof-of-concept results in Appendix B.2, we deduce that

these classifiers can be implemented by neural networks. The remaining question is how such

networks can be trained with existing methods.

Optimally astute classifier and non-parametrics (comparison to Yang et al. [239]).

Prior work proposes adversarial pruning, a method that removes training examples until different

classes are r-separated. They exhibit connections to maximally astute classifier, which they call

the r-Optimal classifier for size r perturbations [239]. Follow-up work proved that training various

non-parametric classifiers after pruning leads them to converge to maximally astute classifiers
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under certain conditions [22]. Our result in Theorem 3.4.2 complements these efforts, showing

that the r-Optimal classifier can be obtained by the classifier. Moreover, we provide additional

justification for adversarial pruning by presenting a new perspective on the role of data separation

in robustness.

Lower bounds on test error. Our results also corroborate some recent works that use

optimal transport to estimate a lower bound on the robust test accuracy of any classifier on

standard datasets. They find that it is actually zero for typical perturbation sizes [21, 171]. In

other words, we have further evidence that well-curated benchmark datasets are insufficient to

demonstrate a tradeoff between robustness and accuracy, in contrast to predictions of an inevitable

tradeoff [60, 67, 81, 222].

Robustness is not inherently at odds with accuracy (comparison to Tsipras et al.

[222]). Prior work provides a theoretical example of a data distribution where any classifier

with high test accuracy must also have small adversarial accuracy under `∞ perturbations. Their

theorem led the authors to posit that (i) accuracy and robustness may be unachievable together

due their inherently opposing goals, and (ii) the training algorithm may not be at fault [222]. We

provide an alternative view.

Their distribution is defined using the following sampling process: the first feature is the

binary class label (flipped with a small probability), and the other d− 1 features are sampled

from one of two (d−1)-dimensional Gaussian distributions either with mean r or −r depending

on the true example label. While the means are separated with distance 2r, their distribution

is not r-separated due to the noise in the first feature combined with the infinite support of the

Gaussians. Their lower bound is tight and only holds for `∞ perturbations ε satisfying ε≥ 2r. Our

experiments in Section 3.3 have already shown that r-separation is a realistic assumption, and

typical perturbations ε satisfy ε� r. Taken together with Theorem 3.4.2, we conclude that the

robustness-accuracy tradeoff in neural networks and image classification tasks is not intrinsic.
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3.5 A Closer Look at Existing Training Methods

So far we have shown that robustness and accuracy should both be achievable in principle,

but practical networks continue to trade robustness off for accuracy. We next empirically investi-

gate why this tradeoff might arise. One plausible reason might be that existing training methods

do not impose local Lipschitzness properly; another may be that they do not generalize enough.

We next explore these hypotheses in more detail, considering the following questions:

• How locally Lipschitz are the classifiers produced by existing training methods?

• How well do classifiers produced by existing training methods generalize?

These questions are considered in the context of one synthetic and four real datasets, as well as

several plausible training methods for improving adversarial robustness. We do not aim to achieve

best performance for any method, but rather to understand smoothness and generalization.

3.5.1 Experimental Methodology

We evaluate train/test accuracy, adversarial accuracy and local lipschitzness of neural

networks trained using different methods. We also measure generalization gaps: the difference

between train and test clean accuracy (or between train and test adversarial accuracy). The

code for the experiments is available at https://github.com/yangarbiter/robust-local-

lipschitz.

Training Methods. We consider neural networks trained via Natural training (Natural),

Gradient Regularization (GR) [72], Locally Linear Regularization (LLR) [173], Adversarial

Training (AT) [144], and TRADES [244]. Additionally, we use Robust Self Training (RST) [178],

a recently introduced method that minimizes a linear combination of clean and adversarial

accuracy in an attempt to improve robustness-accuracy tradeoffs. For fair comparison between

methods, we use a version of RST that only uses labeled data. Both RST and TRADES have
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a parameter; for RST higher λ means higher weight is given to the adversarial accuracy, while

for TRADES higher β means higher weight given to enforcing local Lipschitzness. Details are

provided in Appendix B.1.

Adversarial Attacks. We evaluate robustness with two attacks. In this section, we

use Projected gradient descent (PGD) [124] for adversarial accuracy with step size ε/5 and a

total of 10 steps. The Multi-Targeted Attack (MT) [86] leads to similar conclusions; results in

Appendix B.4.1.

Measuring Local Lipschitzness. For each classifier, we empirically measure the local

Lipschitzness of the underlying function by the empirical Lipschitz constant defined as the

following quantity
1
n

n

∑
i=1

max
x′i∈B∞(xi,ε)

‖ f (xi)− f (x′i)‖1

‖xi−x′i‖∞

. (3.3)

A lower value of the empirical Lipschitz constant implies a smoother classifier. We estimate this

through a PGD-like procedure, where we iteratively take a step towards the gradient direction

(∇x′i
‖ f (xi)− f (x′i)‖1
‖xi−x′i‖∞

) where ε is the perturbation radius. We use step size ε/5 and a total of 10 steps.

Datasets. We evaluate the various algorithms on one synthetic dataset: Staircase [177]

and four real datasets: MNIST [130], SVHN [158], CIFAR-10 [121] and Restricted ImageNet

[222]. We consider adversarial `∞ perturbations for all datasets. More details are in Appendix B.1.

3.5.2 Observations

Our experimental results, presented in Tables 3.2 and 3.3, provide a number of insights

into the smoothness and generalization properties of classifiers trained by existing methods.

How well do existing methods impose local Lipschitzness? There is a large gap in the

degree of local Lipschitzness in classifiers trained by AT, RST and TRADES and those trained by

natural training, GR and LLR. Classifiers in the former group are considerably smoother than the

latter. Classifiers produced by TRADES are the most locally Lipschitz overall, with smoothness
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Table 3.2: MNIST (perturbation 0.1). We compare two networks: CNN1 (smaller) and CNN2
(larger). We evaluate adversarial accuracy with the PGD-10 attack and compute Lipschitzness
with Equation (3.3). We also report the standard and adversarial generalization gaps.

.

architecture CNN1 CNN2

train
acc.

test
acc.

adv test
acc.

test
lipschitz gap

adv
gap

train
acc.

test
acc.

adv test
acc.

test
lipschitz gap

adv
gap

Natural 100.00 99.20 59.83 67.25 0.80 0.45 100.00 99.51 86.01 23.06 0.49 -0.28
GR 99.99 99.29 91.03 26.05 0.70 3.49 99.99 99.55 93.71 20.26 0.44 2.55
LLR 100.00 99.43 92.14 30.44 0.57 4.42 100.00 99.57 95.13 9.75 0.43 2.28
AT 99.98 99.31 97.21 8.84 0.67 2.67 99.98 99.48 98.03 6.09 0.50 1.92
RST(λ=.5) 100.00 99.34 96.53 11.09 0.66 3.16 100.00 99.53 97.72 8.27 0.47 2.27
RST(λ=1) 100.00 99.31 96.96 11.31 0.69 2.95 100.00 99.55 98.27 6.26 0.45 1.73
RST(λ=2) 100.00 99.31 97.09 12.39 0.69 2.87 100.00 99.56 98.48 4.55 0.44 1.52
TRADES(β=1) 99.81 99.26 96.60 9.69 0.55 2.10 99.96 99.58 98.10 4.74 0.38 1.70
TRADES(β=3) 99.21 98.96 96.66 7.83 0.25 1.33 99.80 99.57 98.54 2.14 0.23 1.18
TRADES(β=6) 97.50 97.54 93.68 2.87 -0.04 0.37 99.61 99.59 98.73 1.36 0.02 0.80

Table 3.3: CIFAR-10 (perturbation 0.031) and Restricted ImageNet (perturbation 0.005). We
evaluate adversarial accuracy with the PGD-10 attack and compute Lipschitzness with Equa-
tion (3.3).

CIFAR-10 Restricted ImageNet

train
acc.

test
acc.

adv test
acc.

test
lipschitz gap adv

gap
train
acc.

test
acc.

adv test
acc.

test
lipschitz gap adv

gap

Natural 100.00 93.81 0.00 425.71 6.19 0.00 97.72 93.47 7.89 32228.51 4.25 -0.46
GR 94.90 80.74 21.32 28.53 14.16 3.94 91.12 88.51 62.14 886.75 2.61 0.19
LLR 100.00 91.44 22.05 94.68 8.56 4.50 98.76 93.44 52.62 4795.66 5.32 0.22
RST(λ=.5) 99.90 85.11 39.58 20.67 14.79 36.26 96.08 92.02 79.24 451.57 4.06 4.57
RST(λ=1) 99.86 84.61 40.89 23.15 15.25 41.31 95.66 92.06 79.69 355.43 3.61 4.67
RST(λ=2) 99.73 83.87 41.75 23.80 15.86 43.54 96.02 91.14 81.41 394.40 4.87 6.19
AT 99.84 83.51 43.51 26.23 16.33 49.94 96.22 90.33 82.25 287.97 5.90 8.23
TRADES(β=1) 99.76 84.96 43.66 28.01 14.80 44.60 97.39 92.27 79.90 2144.66 5.13 6.66
TRADES(β=3) 99.78 85.55 46.63 22.42 14.23 47.67 95.74 90.75 82.28 396.67 5.00 6.41
TRADES(β=6) 98.93 84.46 48.58 13.05 14.47 42.65 93.34 88.92 82.13 200.90 4.42 5.31

improving with increasing β. AT and RST also produce classifiers of comparable smoothness

– but less smooth than TRADES. Overall, local Lipschitzness appears mostly correlated with

adversarial accuracy; the more robust methods are also the ones that impose the highest degree of

local Lipschitzness. But there are diminishing returns in the correlation between robustness and

accuracy and local Lipschitzness; for example, the local smoothness of TRADES improves with

higher β; but increasing β sometimes leads to drops in test accuracy even though the Lipschitz

constant continues to decrease.

28



How well do existing methods generalize? We observe that for the methods that produce

locally Lipschitz classifiers – namely, AT, TRADES and RST – also have large generalization

gaps while natural training, GR and LLR generalize much better. In particular, there is a large gap

between training and test accuracies of AT, RST and TRADES, and an even larger one between

training and test adversarial accuracies. Although RST has better test accuracy than AT, it

continues to have a large generalization gap with only labeled data. An interesting fact is that this

generalization behavior is quite unlike linear classification, where imposing local Lipschitzness

leads to higher margin and better generalization [234] – imposing local Lipschitzness in neural

networks, at least through these methods, appears to hurt generalization instead of helping. This

suggests that these robust training methods may not be generalizing properly.

3.5.3 A Closer Look at Generalization

A natural follow-up question is whether the generalization gap of existing methods can be

reduced by existing generalization-promoting methods in deep learning. In particular, we ask:

Can we improve the generalization gap of AT, RST and TRADES through generalization tools?

To better understand this question, we consider two medium-sized datasets, SVHN and

CIFAR-10, which nevertheless have a reasonably high gap between the test accuracy of the model

produced by natural training and the best robust model. We then experiment with dropout [214],

a standard and highly effective generalization method. For SVHN, we use a dropout rate of 0.5

and for CIFAR-10 a rate of 0.2. More experimental details are provided in the Appendix B.1.

Table 3.4 shows the results, contrasted with standard training. We observe that dropout

narrows the generalization gap between training and test accuracy, as well as adversarial training

and test accuracy significantly for all methods. For SVHN, after incorporating dropout, the best

test accuracy is achieved by RST (95.19%) along with an adversarial test accuracy of 55.22%;

the best adversarial test accuracy (62.41%) is with TRADES (β = 3) along with a test accuracy of

(94.10%). Both accuracies are much closer to the accuracy of natural training (96.66%), and the
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Table 3.4: Dropout and generalization. SVHN (perturbation 0.031, dropout rate 0.5) and
CIFAR-10 (perturbation 0.031, dropout rate 0.2). We evaluate adversarial accuracy with the
PGD-10 attack and compute Lipschitzness with Equation (3.3).

SVHN CIFAR-10

dropout test
acc.

adv test
acc.

test
lipschitz gap adv

gap
test
acc.

adv test
acc.

test
lipschitz gap adv

gap

Natural False 95.85 2.66 149.82 4.15 0.87 93.81 0.00 425.71 6.19 0.00
Natural True 96.66 1.52 152.38 3.34 1.22 93.87 0.00 384.48 6.13 0.00

AT False 91.68 54.17 16.51 5.11 25.74 83.51 43.51 26.23 16.33 49.94
AT True 93.05 57.90 11.68 -0.14 6.48 85.20 43.07 31.59 14.51 44.05

RST(λ=2) False 92.39 51.39 23.17 6.86 36.02 83.87 41.75 23.80 15.86 43.54
RST(λ=2) True 95.19 55.22 17.59 1.90 11.30 85.49 40.24 34.45 14.00 33.07

TRADES(β=3) False 91.85 54.37 10.15 7.48 33.33 85.55 46.63 22.42 14.23 47.67
TRADES(β=3) True 94.00 62.41 4.99 0.48 7.91 86.43 49.01 14.69 12.59 35.03

TRADES(β=6) False 91.83 58.12 5.20 5.35 23.88 84.46 48.58 13.05 14.47 42.65
TRADES(β=6) True 93.46 63.24 3.30 0.45 5.97 84.69 52.32 8.13 11.91 26.49

test adversarial accuracies are also significantly higher. A similar narrowing of the generalization

gap is visible for CIFAR-10 as well. Dropout also appears to make the networks smoother as

test Lipschitzness also appears to improve for all algorithms for SVHN, and for TRADES for

CIFAR-10.

Dropout Improvements. Our results show that the generalization gap of AT, RST and

TRADES can be reduced by adding dropout; this reduction is particularly effective for RST and

TRADES. Dropout additionally decreases the test local Lipschitzness of all methods – and hence

promotes generalization all round – in accuracy, adversarial accuracy, and also local Lipschitzness.

This suggests that combining dropout with the robust methods may be a good strategy for overall

generalization.

3.5.4 Implications

Our experimental results lead to three major observations. We see that the training

methods that produce the smoothest and most robust classifiers are AT, RST and TRADES.

However, these robust methods also do not generalize well, and the generalization gap narrows
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when we add dropout.

Comparison with Rice et al. [182]. An important implication of our results is that

generalization is a particular challenge for existing robust methods. The fact that AT may

sometimes overfit has been previously observed by [177, 182, 217]; in particular, Rice et al. [182]

also experiments with a few generalization methods (but not dropout) and observes that only early

stopping helps overcome overfitting to a certain degree. We expand the scope of these results to

show that RST and TRADES also suffer from large generalization gaps, and that dropout can help

narrow the gap in these two methods. Furthermore, we demonstrate that dropout often decreases

the local Lipschitz constant.

3.6 Related Work

There is a large body of literature on developing adversarial attacks as well as defenses

that apply to neural networks [39, 138, 140, 144, 163, 167, 208, 219, 226, 246]. While some of

this work has noted that an increase in robustness is sometimes accompanied by a loss in accuracy,

the phenomenon remains ill-understood. Raghunathan et al. [177] provides a synthetic problem

where adversarial training overfits, which we take a closer look at in Appendix B.4. Raghunathan

et al. [178] proposes the robust self training method that aims to improve the robustness and

accuracy tradeoff; however, our experiments show that they do not completely close the gap

particularly when using only labeled data.

Outside of neural networks, prior works suggest that lack of data may be responsible

for low robustness [3, 22, 43, 48, 134, 196, 197, 228, 245]. For example, Schmidt et al. [196]

provides an example of a linear classification problem where robustness in `∞ norm requires more

samples than plain accuracy, and Wang et al. [228] shows that nearest neighbors would be more

robust with more data. Some prior works also suggest that the robustness accuracy tradeoff may

arise due to limitations of existing algorithms. Bubeck et al. [36] provides an example where
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finding a robust and accurate classifier is significantly more computationally challenging than

finding one that is simply accurate, and Bhattacharjee and Chaudhuri [22] shows that certain

non-parametric methods do not lead to robust classifiers in the large sample limit. It is also known

that the Bayes optimal classifier is not robust in general [21, 171, 183, 222, 228], and it differs

from the maximally astute classifier [22, 239].

Prior work has also shown a connection between adversarial robustness and local or

global Lipschitzness. For linear classifiers, it is known that imposing Lipschitzness reduces to

bounding the norm of the classifier, which in turn implies large margin [143, 234]. Thus, for

linear classification of data that is linearly separable with a large margin, imposing Lipschitzness

helps generalization.

For neural networks, Anil et al. [7], Huster et al. [100], Qian and Wegman [172] provide

methods for imposing global Lipschitzness constraints; however, the state-of-the-art methods for

training such networks do not lead to highly expressible functions. For local Lipschitzness, Hein

and Andriushchenko [94] first showed a relationship between adversarial robustness of a classifier

and local Lipschitzness of its underlying function. Following this, Weng et al. [229] provides an

efficient way of calculating a lower bound on the local Lipschitzness coefficient. Many works

consider a randomized notion of local smoothness, and they prove that enforcing it can lead to

certifiably robust classifiers [52, 132, 170, 190].

3.7 Conclusion

Motivated by understanding when it is possible to achieve both accuracy and robustness,

we take a closer look at robustness in image classification and make several observations. We

show that many image datasets follow a natural separation property and that this implies the

existence of a robust and perfectly accurate classifier that can be obtained by rounding a locally

Lipschitz function. Thus in principle robustness and accuracy should both be achievable together
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on real world datasets.

We investigate the gap between theory and practice by examining the smoothness and

generalization properties of existing training methods. Our results show that generalization

may be a particular challenge in robust learning since all robust methods that produce locally

smooth classifiers also suffer from fairly large generalization gaps. We then experiment with

combining robust classification methods with dropout and see that this leads to a narrowing of the

generalization gaps.

Our results suggest that the robustness-accuracy tradeoff in deep learning is not inherent,

but it is rather a consequence of current methods for training robust networks. Future progress that

ensures both robustness and accuracy may come from redesigning other aspects of the training

process, such as customized optimization methods [13, 77, 124, 160, 182, 199, 201, 206] or better

network architectures [70, 194, 250] in combination with loss functions that encourage adversarial

robustness, generalization, and local Lipschitzness. Some recent evidence for improved network

architectures has been obtained by Guo et. al. [87], who search for newer architectures with

higher robustness from increased model capacity and feature denoising. A promising direction

is to combine such efforts across the deep learning stack to reduce standard and adversarial

generalization gaps.

3.8 Broader Impact

In this chapter, we have investigated when it is possible to achieve both high accuracy

and adversarial robustness on standard image classification datasets. Our motivation is partially

to offer an alternative perspective to previous work that speculates on the inevitability of an

accuracy-robustness tradeoff. In practice, if there were indeed a tradeoff, then robust machine

learning technology is unlikely to be very useful. The vast majority of instances encountered

by practical systems will be natural examples, whereas adversaries are few and far between. A
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self-driving car will mostly come across regular street signs and rarely come across adversarial

ones. If increased robustness necessitates a loss in performance on natural examples, then the

system’s designer might be tempted to use a highly accurate classifier that is obtained through

regular training and forgo robustness altogether. For adversarially robust machine learning to be

widely adopted, accuracy needs to be achieved in conjunction with robustness.

While we have backed up our theoretical results by empirically verifying dataset sepa-

ration, we are also ready to point out the many limitations of current robustness studies. The

focus on curated benchmarks may lead to a false sense of security. Real life scenarios will likely

involve much more complicated classification tasks. For example, the identification of criminal

activity or the maneuvering of self-driving cars depend on a much broader notion of robustness

than has been studied so far. Perturbations in `p distance cover only a small portion of the space

of possible attacks.

Looking toward inherent biases, we observe that test accuracy is typically aggregated

over all classes, and hence, it does not account for underrepresentation. For example, if a certain

class makes up a negligible fraction of the dataset, then misclassifying these instances may be

unnoticeable when we expect a drop in overall test accuracy. A more stringent objective would

be to retain accuracy on each separate class, as well as being robust to targeted perturbations that

may exploit dataset imbalance.

On a more positive note, we feel confident that developing a theoretically grounded

discussion of robustness will encourage machine learning engineers to question the efficacy of

various methods. As one of our contributions, we have shown that dataset separation guarantees

the existence of an accurate and robust classifier. We believe that future work will develop new

methods that achieve robustness by imposing both Lipschitzness and effective generalization.

Overall, it is paramount to close the theory-practice gap by working on both sides, and we stand

by our suggestion to further investigate the various deep learning components (architecture,

loss function, training method, etc) that may compound the perceived gains in robustness and
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accuracy.
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Chapter 4

Adversarial Robustness for Non-parametric

Classifiers

4.1 Introduction

State-of-the-art classifiers have been shown to suffer from substantial drops in accuracy

when faced with adversarially modified inputs even if the modifications are imperceptibly slight.

Due to the security concerns that this raises, a body of recent research has investigated the

construction and prevention of adversarial examples – small perturbations of valid inputs that

cause misclassification [38, 219]. Most previous work has looked at parametric methods, i.e.,

neural networks and linear classifiers [23, 140, 144, 165], and there is a mature understanding of

what properties can be exploited to design adversarial attacks and defenses for any parametric

model. For example, parametric classifiers are based on continuous functions with gradients,

which has been used to design gradient-based attacks [10, 39]. Likewise, parametric models

are mostly trained by minimizing a training loss, which has been exploited to build an effective

and generic defense – adversarial training, retraining after data augmentation with adversarial

examples [40, 144, 211].
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An alternative statistical paradigm is that of non-parametric methods, such as nearest

neighbor, decision tree, and random forest classifiers, which typically apply to dense data in lower

dimensional spaces. These are local predictors, whose output depends on labeled points close to

an input. Surprisingly, these methods behave very differently from parametrics when it comes

to adversarial examples. In many cases, they have no gradients, and adversarial examples for

parametric models fail to transfer [164]. Generic defenses, such as adversarial training, appear to

be ineffective as well [63, 161, 228].

While prior work has constructed attacks and defenses for some specific classifiers [47,

63, 108, 209, 228], there appear to be no generic approaches, and no generic principles that can

be used to guide the design of attacks and defenses for variety of non-parametric methods.

Figure 4.1: Normal vs. Defended 1-Nearest Neighbor.

In this work, we identify two key general principles, and use them to design a generic

defense and an attack that apply to a variety of non-parametric methods.

To design defenses, we ask: when do non-parametric methods work well? Figure 4.1

depicts two variants of random forests. In the left figure, we observe that datasets with nearby

oppositely-labeled points may lead to classifiers with convoluted decision boundaries. In the right

figure, we see that well-separated data lead to classification regions that are more robust to small

perturbations. We will use this low-dimensional intuition as a starting point for generic defense
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methods.

Figure 4.1 suggests that since these methods make local predictions, they might work

well when data from different classes are well-separated in space. We clearly cannot hope for

such separation in most real datasets. Therefore, we propose to preprocess the training data by

removing a subset so that different classes are well-separated. To ensure classification accuracy,

we propose removing the minimal subset of points that ensure this property. We call our method

Adversarial Pruning, which can be used as a pre-processing step before training any generic

non-parametric classifier.

To evaluate our defense, we propose a new attack that is based on our next key observation:

many non-parametric methods divide the instance space into convex polyhedra, and predict in

a piecewise constant manner in each. For example, for 1-nearest neighbor, these polyhedra are

the Voronoi cells. This suggests the following attack: find the closest polyhedron to an input

where the classifier predicts a different label and output the closest point in this region. We

implement this strategy by solving a collection of convex programs, and in cases where solution

is computationally expensive, we provide a heuristic method for finding an approximate solution.

We refer to these attacks as the exact and approximate region-based attack.

We next provide some theoretical justification for our methods. For our defense, we show

that adversarial pruning can be interpreted as a finite-sample version of a robust analogue to the

Bayes Optimal classifier. We formally introduce this robust classifier, that we call the r-optimal

classifier, and show that it maximizes astuteness (accuracy where it is robust with radius r). For

our attack, we show that the exact region-based attack is optimal, in the sense that it yields the

closest adversarial example to a test input.

We empirically evaluate the adversarial pruning defense using the region based attack and

prior attacks. We provide a general and thorough evaluation, for k-nearest neighbors (k-NN), deci-

sion trees, and random forests. We see that adversarial pruning consistently improves robustness,

outperforming adversarial training on several datasets and is competitive with classifier-specific
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defenses. For our attacks, we see that even without any classifier-specific optimization, our new

attacks either outperform or are competitive with prior attacks (in terms of perturbation amount).

This suggests that both the adversarial pruning defense as well as the region based attack are good

generic baselines for evaluating the robustness of non-parametric methods.

4.2 Preliminaries

In this chapter, we follow the multi-class classification and adversarial robustness setup

in Section 2.1. We focus on the non-parametric classifiers, which are local classifiers whose

output depends on training data close to the test instance. These classifiers are typically used

with dense lower-dimensional data, such as those in Figure 4.1. Examples are k-nearest neighbor

(k-NN) and tree-based classifiers. The k-NN classifier outputs the plurality label among the k

training examples closest to x in an `p metric. A tree ensemble contains T decision trees whose

leaves are labeled with vectors in RC. Each input x determines T root-to-leaf paths, corresponding

to vectors u1, . . . ,uT . The output is the largest coordinate in u1 + · · ·+uT . Random forests are a

subclass of tree ensembles.

4.3 Adversarial Pruning Defense

When are non-parametric methods robust? Since these are local classifiers, Figure 4.1

suggests that they may be robust when training data from different classes is well-separated, and

may fail when they overlap.

The training data may not be separated, so we will preprocess the data. We remove

a subset of the training set, so that the remaining data are well-separated. Then, we train a

non-parametric classifier on the rest. A remaining question is which subset of points to remove.

For high classification accuracy, we remove the minimum subset whose removal ensures this
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property.

This process of removing examples from training set so that certain properties hold is

called pruning. In this section, we first introduce the method used to prune the dataset. In

Section 4.5, we justify our method by interpreting it in light of classical results in statistical

learning theory [45, 54, 59].

Formally, given a robustness radius r and training set D , we propose the following generic

way to preprocess the training set and improve the robustness of classifiers:

Adversarial Pruning. Given r and a set D , compute a maximum subset DAP ⊆D such

that differently-labeled points have distance at least 2r. Then, train any non-parametric classifier

on DAP.

After computing DAP once for a dataset, then we may train any classifier on the pruned

training set. Our main hypothesis is that this will lead to more robust classifiers when using

non-parametric methods. We will demonstrate empirically that this works well, and we will argue

that this defense method is a finite-sample approximation to the optimal robust classifier.

Observe that while adversarial pruning is similar to the defense in [228], they actually

retain additional points with confident labels, which ensures that their method converges to being

robust where the Bayes Optimal is robust. Their work builds on previous results of [84] and [119]

that sharpen the risk analysis of 1-NN by using pruning. As we explain in Section 4.5, our method

instead can be interpreted as a finite sample version of a different and more appropriate limit.

One drawback of this approach is that the metric must be fine-grained enough to distin-

guish between close and far pairs. For most datasets and norms (e.g, Euclidean distance) for

which non-parametrics are used, this will be the case. However, for binary features and the `∞

distance, we have the problem that every pair of different points has distance exactly one, and

therefore, the similarity structure is meaningless. To circumvent this, we preprocess the binary

feature vectors using standard feature-extraction methods (e.g., PCA), and then operate on the

resulting space.
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4.3.1 Computing the Robust Dataset

We use known graph algorithms to efficiently compute DAP. Each training example is

a vertex in the graph. Edges connect pairs of differently-labeled examples x and x′ whenever

‖x−x′‖ ≤ 2r. We remove as few examples as possible so that no more edges remain. This is

equivalent to computing the minimum vertex cover. For binary labels, this graph is bipartite,

and a minimum vertex cover can be derived from a maximum matching. The fastest method to

solve maximum matching is the Hopcroft-Karp algorithm [96]. For a graph with n vertices and m

edges, it takes time O(m
√

n). Fortunately, in practice, the graph of close pairs is quite sparse (for

small r and high dimensional feature spaces, with relatively separated classes). For example, if

m = Õ(n), then computing DAP takes time Õ(n3/2). For large datasets, we note that linear time

approximation algorithms are known [62].

When there are more than two labels, that is C ≥ 3, it is NP-Hard to compute the optimal

pruned subset, but approximation algorithms are known [84, 119]. The greedy algorithm provably

generates a 2-approximation. A suboptimal solution still ensures that different classes are

separated, and hence, the robustness of the classifier does not require finding the optimal pruned

dataset.

4.4 Region-Based Attack

In this section, we develop a way to evaluate robustness of non-parametric methods. For

parametric algorithms, generic gradient-based attacks exist. Our goal is to develop an analogous

general attack method, which works well for multiple non-parametrics. Moreover, we aim to

develop a white-box attack that will serve as a better baseline than black-box attacks.

The main challenge of finding adversarial examples is that these classifiers have compli-

cated decision regions. The central idea behind our attack is that for many classifiers, such as

k-NN or random forests, we can decompose the decision regions into convex sets.
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(a) 1-NN (b) Decision tree

Figure 4.2: (s,m)-decompositions of two non-parametrics.

We begin with a brief introduction to non-parametric methods that are local classifiers

whose output depends on training data close to the test instance. These methods are typically used

with dense lower-dimensional data, such as those in Figure 4.1. Examples are k-nearest neighbor

(k-NN) and tree-based classifiers. The k-NN classifier outputs the plurality label among the k

training examples closest to x in an `p metric. A tree ensemble contains T decision trees whose

leaves are labeled with vectors in RC. Each input x determines T root-to-leaf paths, corresponding

to vectors u1, . . . ,uT . The output is the largest coordinate in u1 + · · ·+uT . Random forests are a

subclass of tree ensembles.

Definition 9. An (s,m)-decomposition is a partition of Rd into convex polyhedra P1, . . . ,Ps such

that each Pi can be described by up to m linear constraints, and f is (s,m)-decomposable if there

is an (s,m)-decomposition such that f is constant on Pi for each i ∈ [s].

Figure 4.2 demonstrates the decomposition for two examples. Figure 4.2(a) shows how

1-NN is decomposed. In particular, a Voronoi diagram for n points is an (n,n−1)-decomposition

(P1, . . . ,Pn are Voronoi cells). If k ≥ 1, then a k-NN classifier is
((n

k

)
,k(n− k)

)
-decomposable;

every k points correspond to polyhedra defined by k(n− k) hyperplanes separating the k points

from the other n− k points [11].

Tree-based classifiers also fit into our framework, and Figure 4.2(b) shows how a decision
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tree is decomposed. Any decision tree of depth D with L leaves is (L,D)-decomposable; each

root-to-leaf path corresponds to a polyhedron Pi defined by D hyperplanes. Generally, if f is an

ensemble of T trees, each with depth D and L leaves, then f is (LT ,DT )-decomposable (proofs

in Appendix C.1). An exponential dependence on T is expected, since the adversarial example

problem for tree ensembles is NP-Hard [108].

The existence of (s,m)-decompositions suggests the following attack. Given a classifier f

and an input x, suppose we could find the closest polyhedron Pi in the decomposition where f

predicts a different label than f (x). Then, the closest point in Pi would be the optimal adversarial

example. Our attack implements this strategy by searching over all polyhedra.

4.4.1 Region-Based Attack

Let f be an (s,m)-decomposable classifier with decomposition P1, . . . ,Ps, where f (z) = yi

when z ∈ Pi, for labels yi ∈ [C]. To find an adversarial example for x, consider all polyhedra Pi

such that f (x) 6= yi. Then, output x̃ minimizing

min
i: f (x)6=yi

min
z∈Pi

‖x− z‖. (4.1)

Each Pi is described by ≤ m linear constraints, and the norm objective is convex [28].

Thus, we can solve each inner minimization problem in Equation (4.1) separately by solving

a convex program with O(m) constraints. This results in candidates zi ∈ Pi. Taking the outer

minimum over i with f (x) 6= yi leads to the optimal adversarial example x̃ = argminzi ‖x− zi‖.

Efficiency. The running of the exact attack algorithm depends on two things: (i) the

number of regions, which is based on the complexity of the classifier, and (ii) the number of

constraints and dimensionality of the polyhedra. Due to advances in linear/quadratic program

solvers, finding the adversarial example in a single region is quite efficient, i.e., the inner

minimization problem in Equation (4.1) is easy. We find that the number of regions s dominates
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the running time, i.e., the outer minimization problem in Equation (4.1) is hard. For k-NN, the

number of convex polyhedra scales with O(nk). When k = 1, this is efficiently solvable, because

polyhedra have at most n constraints, and the adversarial examples can be found quickly using a

linear program for `∞ perturbations. Unfortunately, for k > 1, this attack does not scale well, and

we will develop an approximation algorithm for larger values of k.

For a single decision tree, again the exact attack is very efficient, depending only on the

number of nodes in the tree. But for larger tree ensembles (e.g., large random forests), the optimal

attack is very slow, as expected.

4.4.2 Speeding Up the Search

The exact attack is computationally intensive when s is large; hence, finding optimal

solutions is infeasible for random forests (with many trees) or k-NN (when k is large). We next

provide a computationally-efficient algorithm, which searches a constant number of regions.

The region-based attack for an (s,m)-decomposable f requires solving up to s convex

programs, one for each polyhedron Pi with a different label. If the number of polyhedra is

large, then this may be computationally infeasible. Fortunately, Equation (4.1) has an obvious

subdivision, based on the outer minimum over convex polyhedra. We use a relaxation that

considers only a subset of polyhedra. We observe that each training point corresponds to a

polyhedron—the one that f uses to predict the label. When finding adversarial examples for x,

the natural choice is to utilize training data close to x.

Approximate Region-Based Attack. Let D be the training data. To find an adversarial

example under `p for x, we first compute the subset D ′ ⊆D of s′ points closest in `p distance

to x, while having different training labels than f (x). Next, we determine at most s′ polyhedra

Pi1, . . . ,Pis′ containing points in D ′ (as the polyhedra partition Rd). We solve the inner optimiza-

tion problem in Equation (4.1) for each Pi j to find candidates zi for i ∈ [s′]. Finally, we output

x̃ = argminzi ‖x− zi‖, where the minimum is over these s′ candidates.
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As we only solve s′� s convex programs, the running time is greatly reduced compared

to the optimal region-based attack. Empirically, this approximation finds adversarial examples

with low perturbation.

4.5 Theoretical Justification

We provide some theoretical results to support our methods. To understand the robustness

of non-parametric methods, we first derive a theoretically optimal classifier that takes into account

robustness as a core objective. Then, we show that adversarial pruning can be interpreted as a

finite sample approximation to the optimally robust classifier. Finally, we analyze the exact and

approximate region-based attacks.

4.5.1 Adversarial Pruning vs. Optimal

Under certain conditions, many non-parametric methods converge in the infinite sample

limit to the Bayes Optimal classifier, the most accurate classifier for a data distribution. In this

way, non-parametric classifiers may be viewed as finite-sample approximations to the Bayes

Optimal. However, the Bayes Optimal may not be robust to adversarial examples.

We next introduce a novel robust analogue to the Bayes Optimal. For a perturbation

amount r, we call it the r-Optimal classifier. Surprisingly, to the best of our knowledge, such an

analogue seems to be new in the context of adversarial examples.

Robust Analogue to Bayes Optimal. In Chapter 2, we introduced the true objective of a

robust classifier is the astuteness (Definition 2). We exhibit a classifier, the r-Optimal classifier,

that achieves optimal astuteness. It is convenient to rewrite astuteness in terms of certain robust

subsets of the input space. Then, we define the r-Optimal classifier using these subsets. Formally,
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for a classifier f and label j, let

S j( f ,r) := {x ∈ X | f (x) = j and ρ( f ,x)≥ r}.

We now define the r-Optimal classifier and prove that it maximizes astuteness. This result

hinges on the next lemma, which rewrites astuteness in a more convenient form. Let µ be a

distribution on labeled examples X × [C]. The following lemma expresses astuteness under µ

using these subsets.

Lemma 4.5.1.

astµ( f ,r) =
C

∑
j=1

∫
x∈S j( f ,r)

p(y = j | x)dµ(x).

Proof. Recall the definition of the robust regions of a classifier,

S j( f ,r) = {x ∈ X | f (x) = j and ρ( f ,x)≥ r}.

Starting with the definition of astuteness, we compute the following.

astµ( f ,r)

= Pr
(x,y)∼µ

[ρ( f ,x)≥ r and f (x) = y]

=
∫

x
p(y | x) ·1{ρ( f ,x)≥r} ·1{ f (x)=y} dµ(x)

=
C

∑
j=1

∫
x

p(y = j | x) ·1{ρ( f ,x)≥r} ·1{ f (x)= j} dµ(x)

=
C

∑
j=1

∫
x∈S j( f ,r)

p(y = j | x) dµ(x).

How should we define the classifier that maximizes astuteness? Lemma 4.5.1 implies

that, to calculate astuteness, it suffices to consider the robust regions S j( f ,r) for a classifier. As
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a consequence, we claim that in order to determine the optimal classifier, it suffices to find the

optimal robust regions under µ. We first formalize this intermediate goal using the following

maximization problem.

max
S1,...,SC

C

∑
j=1

∫
x∈S j

p(y = j | x) dµ(x) (4.2)

s.t. d(S j,S j′)≥ 2r for all j 6= j′,

where d(S j,S j′) := minu∈S j,v∈S j′ ‖u− v‖. Notice that for any classifier f , the sets S j( f ,r) for j ∈

[C] have pairwise distance at least 2r, implying that they are feasible solutions for Equation (4.2).

Besides being distance 2r apart, an optimal solution S∗1, . . . ,S
∗
C to Equation (4.2) maxi-

mizes accuracy in the following sense. The integral measures the probability that (x,y)∼ µ has

y = j and x ∈ S∗j . In other words, S∗j has the highest frequency of points with label j under µ,

subject to the distance constraint.

The sets S∗j form the basis for the optimal classifier’s decision regions. To ensure the

separation, we consider the distance r ball around these sets. Formally, we have the following.

Definition 10. Fix r and µ. Let S∗1, . . . ,S
∗
C be optimizers of Equation (4.2). The r-Optimal classifier

fropt is any classifier such that fropt(x) = j whenever d(x,S∗j)≤ r.

We remark that when r = 0, the 0-Optimal classifier is the standard Bayes Optimal

classifier.

Finally, because S j( fropt,r) = S∗j , Lemma 4.5.1 then implies that r-Optimal classifier

maximizes astuteness:

Theorem 4.5.2. fropt = argmax f astµ( f ,r).

Proof. Recall that the r-Optimal classifier fropt is defined in terms of an optimal solution

S∗1, . . . ,S
∗
C to the maximization problem in Equation (4.2). By definition, fropt(x) = j when-

ever d(S∗j ,x)≤ r. In other words, S∗j = S j( fropt,r).
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We will need the fact that for any classifier f , the sets S j( f ,r) are a feasible solution

to the above maximization problem. That is, for j 6= j′, the distance between S j( f ,r) and

S j′( f ,r) is at least 2r. To see this, consider any two points u ∈ S j( f ,r) and v ∈ S j′( f ,r). Then,

consider the line segment between them w = λu+(1−λ)v, for λ ∈ [0,1]. By definition of the

robustness radius (Definition 4), we know that f (w) = f (u) = j whenever d(w,u)≤ r. Similarly,

f (w) = f (v) = j′ whenever d(w,v) ≤ r. Therefore, we must have that d(u,v) ≥ 2r. As u and

v were an arbitrary pair of points in S j( f ,r) and S j′( f ,r), we conclude that these subsets have

distance at least 2r, and this holds for all j 6= j′.

Using Lemma 4.5.1, we now compute the following.

astµ( f ,r) =
C

∑
j=1

∫
x∈S j( f ,r)

p(y = j | x) dµ(x)

≤
C

∑
j=1

∫
x∈S∗j

p(y = j | x) dµ(x)

=
C

∑
j=1

∫
x∈S j( fropt,r)

p(y = j | x) dµ(x)

= astµ( fropt,r).

The inequality uses that the sets S j( f ,r) have pairwise distance at least 2r, and therefore,

they are feasible for the above maximization problem, which has optimal solution S∗j = S j( fropt,r).

Finite Sample Approximation. Prior work shows that 1-NN applied to a variant of

adversarial pruning leads to provably robust classifiers [228]. The main difference with our work

is their method also selects a subset of confident training examples to keep in the pruned subset -

which ensures that the classifier converges to being robust in regions where the Bayes Optimal is

robust. In contrast, our aim is to develop generic techniques, for multiple classifiers, and we show

that our method can be interpreted as a finite sample approximation to the r-Optimal classifier –

the optimally astute classifier.
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Adversarial pruning works by removing certain training points so that no oppositely

labeled pairs of examples remain. We can view this process in the light of the r-optimal classifier

as follows. To prune the dataset D , we solve the maximization problem:

max
S1,...,SC⊆D

C

∑
j=1

∑
xi∈S j

1{yi= j} (4.3)

s.t. d(S j,S j′)≥ 2r for all j 6= j′.

The solution to Equation (4.3) will be maximum subsets of training data with pairwise distance 2r.

As long as the training set D is representative of the underlying distribution µ, these subsets will

approximate the optimal S∗j sets. Hence, we posit that a non-parametric method trained on DAP

should approximate the r-Optimal classifier.

4.5.2 Attack Algorithm Analysis

The run time of the region-based attack depends on the norm. We focus on `p with

p ∈ {1,2,∞} as these are the most relevant for adversarial examples. We prove the following

theorem in Appendix C.1.

Theorem 4.5.3. If f is (s,m)-decomposable, then the region-based attack outputs optimal adver-

sarial examples in time s ·poly(m,d), for `p distance, p ∈ {1,2,∞}.

As k-NN and tree ensembles are (s,m)-decomposable, the region-based attack produces

an optimal adversarial example for these. Note that an optimal attack certifies the robustness

radius. Indeed, if on input x the region-based attack outputs x̃, then ‖x− x̃‖= ρ( f ,x).

We leave it as an interesting open question to develop provably optimal algorithms with

better running time. For example, in the case of large tree ensembles, the attack searches over all

combinations of one leaf from each tree. This seems wasteful, as many of these polyhedra may

be empty (in fact, we find that most potential regions are infeasible for random forests trained on
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real datasets).

Approximate Attack Guarantees. We claim that the approximate region-based attack

outputs a valid adversarial example when f is (s,m)-decomposable. Each region is defined

by m constraints, and f is constant on each region. We search in s′ regions, finding the best

candidate zi from each. Each considered region contains a training example with a different

label than f (x). Therefore, the best adversarial example x̃ in that region receives a different label

f (x̃) 6= f (x). The analysis of the time complexity for finding candidates is poly(m,d) for each

region Pi. Compared to the exact attack (Theorem 4.5.3) we only consider s′ regions, so the total

time is only s′ ·poly(m,d). We find in practice that s′ = 50 regions suffices for a good attack, and

the time only scales with m and d.

4.6 Experiments

We investigate the effectiveness of our methods by evaluating multiple classifiers on nine

datasets. We address the following questions:

1. Does adversarial pruning increase robustness across multiple non-parametric classifiers?

2. How well does the region-based attack perform compared with prior work?

4.6.1 Experimental Setup

Classifiers and Datasets. We evaluate three non-parametric classifiers: k-nearest neighbor

(k-NN), decision tree (DT) and random forest (RF) [29, 30, 54]. We use nine standard binary

classification datasets. All features are scaled to be in [0,1]. We evaluate in `∞ to be consistent with

prior work. We reduce the feature dimension of the image datasets (f-mnist and mnist) with PCA to

25 dimensions for two reasons: (i) non-parametrics are normally used for low dimensional spaces,

(ii) adversarial pruning requires non-binary features for `∞. Details are in Appendix C.2 and
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Table 4.1: The Empirical Robustness for different attacks on 1-NN and 3-NN (lower is better;
best is in bold).

1-NN 3-NN

Direct BBox Kernel
RBA
Exact

RBA
Appr.

Direct BBox Kernel
RBA
Appr.

austr. .442 .336 .379 .151 .151 .719 .391 .464 .278
cancer .223 .364 .358 .137 .137 .329 .376 .394 .204
covtype .130 .199 .246 .066 .067 .200 .259 .280 .108
diabetes .074 .112 .165 .035 .035 .130 .143 .191 .078
f-mnist06 .080 .140 .187 .029 .030 .129 .169 .202 .051
f-mnist35 .187 .244 .259 .075 .077 .234 .238 .266 .094
fourclass .109 .124 .137 .090 .090 .101 .113 .134 .096
halfmoon .070 .129 .102 .058 .058 .105 .132 .115 .096
mnist17 .161 .251 .262 .070 .073 .221 .261 .269 .097

Table 4.2: The Empirical Robustness for different attacks on DT and RF (lower is better; best
is in bold).

DT RF
Papernot’s BBox RBA-Exact BBox RBA-Approx

australian .140 .139 .070 .364 .446
cancer .459 .334 .255 .451 .383
covtype .289 .117 .070 .256 .219
diabetes .237 .133 .085 .181 .184
f-mnist06 .200 .182 .114 .222 .199
f-mnist35 .287 .168 .112 .201 .246
fourclass .288 .197 .137 .159 .133
halfmoon .098 .148 .085 .182 .149
mnist17 .236 .175 .117 .237 .244

the code for the experiment is available at https://github.com/yangarbiter/adversarial-

nonparametrics/.

Performance Measures. Besides measuring accuracy, we evaluate the attacks using

empirical robustness (Definition 6) following prior work [47, 108]. To fairly compare classifiers

having different accuracies, we actually compute ER(A, f ,S, t) over t test inputs. To do so, we

draw t random samples St from S that are classified correctly by f , and we report the average of

ER(A, f ,x) over x ∈ St . We set t = 100 to balance efficiency and thoroughness.
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Again, for defenses, we use perturbation distance to evaluate robustness. Each defense

method D produces a classifier fD. We evaluate a defense D by assigning it a score, the defscore

(Definition 6). Whenever feasible, we use the optimal attack while calculating the defscore.

Attack Algorithms. For 1-NN and DT, we apply the exact region-based attack (RBA-

Exact). For 3-NN and RF, the RBA-Exact attack is computationally intensive, and we use the

approximate region-based attack (RBA-Approx). For 3-NN, it uses s′ = 50 polyhedra, and for RF,

it uses s′ = 100 polyhedra. We compare RBA-Exact and RBA-Approx against several baselines.

A general attack that applies to all methods is the black-box attack (BBox) [50]; this attack seems

to be the state-of-the-art for non-parametrics. For k-NN, we compare against two white-box

attacks, the direct attack (Direct) and kernel substitution attack (Kernel) [164]. The direct attack

perturbs the test instance towards the center of the k nearest oppositely-labeled training examples.

The kernel substitution attack uses a soft nearest neighbor to build a substitution model and

applies the projected gradient descent attack [123]. For DT, the RBA-Exact attack is optimal, and

so is the attack by Kantchelian et al. [108]; we only report RBA-Exact because these achieve

the same results. We also evaluate the heuristic DT attack by Papernot et al. [164]. For RF, both

optimal attacks are infeasible, and we only evaluate BBox and RBA-Approx.

Defense Methods. For our defense, we train each classifier on the dataset pre-processed

with adversarial pruning (AP); we use `∞ to determine examples to prune. For the separation r

of AP, we found that r = 0.3 balances robustness vs. accuracy. We set r = 0.3 for all datasets

(Appendix C.2.4 has other r settings). A generic baseline is adversarial training (AT), where the

training data is augmented with examples generated by the corresponding attack algorithm. AT

has been reported to be ineffective for 1-NN and boosted decision tree [47, 228], but we include

it for completeness. For AT, we retrain the classifier after attacking each training point once; we

augment the training data with adversarial examples that are distance at most 0.3 from the original

input. The parameter 0.3 matches the parameter r for AP. For 1-NN, an available baseline defense

is proposed by Wang et al. [228], but for general k-NN, we are not aware of other defenses. For
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Table 4.3: defscore using different defenses for four different classifiers (higher is better; best
is in bold). The defscore for undefended classifiers is 1.00 (greater than 1.00 is more robust).
We use RBA-Exact for 1-NN and DT, and RBA-Approx for 3-NN and RF. We use RBA-Approx
for AT on large datasets.

1-NN 3-NN DT RF
AT WJC AP AT AP AT RS AP AT RS AP

austr. 0.64 1.65 1.65 0.68 1.20 2.36 5.86 2.37 1.07 1.12 1.04
cancer 0.82 1.05 1.41 1.06 1.39 0.85 1.09 1.19 0.87 1.54 1.26
covtype 0.61 4.38 4.38 0.88 3.31 1.47 2.73 4.51 1.02 1.01 2.13
diabetes 0.83 4.69 4.69 0.87 2.97 0.93 1.53 2.22 1.19 1.25 2.22
f-mnist06 0.90 1.93 2.59 0.88 1.75 1.33 2.33 2.57 1.04 1.10 1.77
f-mnist35 0.83 1.05 1.19 0.83 1.15 0.97 3.03 2.06 0.99 1.23 1.41
fourclass 0.93 3.09 3.09 0.89 3.09 1.06 1.23 3.04 1.03 1.92 3.59
halfmoon 1.05 2.00 2.78 0.93 1.92 1.54 1.98 2.58 1.04 1.01 1.82
mnist-17 0.88 1.06 1.39 0.80 1.13 1.11 3.97 1.32 0.88 0.92 1.26

DT and RF, we compare against the best known defense algorithm, Robust Splitting (RS) [47].

We set the RS parameter to 0.3 as well.

4.6.2 Results

We separately evaluate attacks and defenses, in Tables 4.1 to 4.3, respectively. We also

provide an accuracy vs. perturbation distance experiment in Figure 4.3.

Effectiveness of Attacks. Tables 4.1 and 4.2 exhibit empirical robustness across four

undefended classifiers and nine datasets. Recall that a smaller empirical robustness implies a more

effective attack. For 1-NN, we see that RBA-Exact works as expected, achieving the smallest

empirical robustness. For 3-NN, our RBA-Approx attack is more effective than prior attacks,

with a much lower empirical robustness. This indicates that RBA-Approx can be a strong attack

for k > 1, where previously no consistently effective baseline is known. For DT, RBA-Exact

again has the best performance. The improvement in many cases shows that the optimal attack

for 1-NN and DT can be significantly better than heuristics, which will lead to a more informative

defense evaluation. For RF, RBA-Approx wins on five of the nine datasets, and BBox wins on
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four. Overall, our RBA-Approx attack is competitive with the state-of-the-art attack for RF, and

better for 3-NN.

Effectiveness of Defenses. Table 4.3 shows defscore across four classifiers and several

defense methods. For each dataset, the AP defense trains all four classifiers on the same pruned

version of the dataset. For all classifiers, we see that AP results in a greater than one defscore,

indicating that classifiers trained with AP are more robust. In contrast, AT usually achieves defs-

core less than one, worse than the undefended classifier; this corroborates previous results [228].

For 1-NN, observe that AP is slightly better than the defense of Wang et al. [228]. We believe that

this is because their method converges to Bayes Optimal, while AP approximates the r-Optimal

classifier. For the DT and RF experiments, we see that RS and AP perform competitively, each

winning out on some datasets. Overall, AP performs slightly better than RS. We remark that we

have evaluated 1-NN and DT against the optimal attack. This provides concrete evidence that AP

leads to a more robust classifier.

4.6.3 Discussion

From the results, we see that our generic attack and defense either outperform or perform

competitively with prior work on many datasets. We note that there can be a big difference in

the perturbation distance depending on the attack algorithms. We also see that our adversarial

pruning achieves more robustness compared both to undefended variants and to the classifiers

trained using adversarial training. Surprisingly, the pruned subset is computed ahead of time, yet

it improves the robustness of many different classifiers.

The main conclusion from the experiments is that our work provides a new and suitable

baseline for many methods. This is analogous to how AT and PGD are generic baselines for

parametrics. In particular, if a new non-parametric algorithm is developed, then AP and RBA

may be used to evaluate robustness. Our work also opens to the door to combine AP with

classifier-specific defenses, e.g. robust boosting [47]. We note that our methods can sometimes
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(c) Decision tree
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(d) Random forest
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(f) 3-NN
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(g) Decision tree
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(h) Random forest

Figure 4.3: Accuracy (y-axis) vs. perturbation distance (x-axis) for four classifiers on Fashion
MNIST classes 0 vs. 6 (top row, subfigures (a) - (d)) and MNIST classes 1 vs. 7 (bottom
row, subfigures (e)-(h)). We used the `∞ distance after applying PCA to 25 dimensions (larger
accuracy is better). Other datasets appear in Appendix C.2.4. In the legend, Reg. = regular
(undefended) classifier, AP = adversarial pruning, and RS = robust splitting.
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be slow, but we expect that classier-specific optimizations and techniques will readily improve

the running time.

4.7 Related Work

The bulk of previous research on robust classifiers has focused on parametric models,

with many generic attacks [39, 138, 165, 167, 219], as well as several defenses [93, 109, 144,

162, 176, 208, 244]. In contrast, adversarial examples for non-parametric classifiers have been

studied in a more case-by-case basis.

For tree ensembles, Kantchelian et al. [108] formulate an optimal attack as a Mixed

Integer Linear Program (superseding an earlier attack [164]) and prove NP-Hardness for many

trees. Chen et al. [47] increase the robustness of boosted ensembles by introducing a more robust

splitting criteria during training. Concurrent work also studies the robustness of decision stumps

(i.e., random forests with depth-one trees), and we leave it as future work to compare our methods

to theirs [6].

For k-NN, prior work on adversarial examples only considers suboptimal attacks, such

the direct attack and variants thereof [5, 209, 228]. Concurrent work [113] on Voronoi-based

adversarial training for neural networks also introduces the optimal attack for 1-NN (i.e., Region-

Based attack restricted to 1-NN). In terms of defenses, Wang et al. [228] increase 1-NN robustness

by strategically removing training points. Besides only testing 1-NN against suboptimal attacks,

they do not consider other non-parametrics; additionally, their defense is shown to be robust in the

large sample limit only where the Bayes Optimal is robust. Our methods are thus more general,

and our defense can be interpreted as a finite sample approximation to the r-Optimal classifier.

Outside the realm of adversarial examples, pruning has been used to improve the accuracy

and generalization (but not robustness) of 1-NN [80, 85, 90, 120]. It would be interesting to

revisit these works in the context of adversarial robustness, and in particular, in terms of the
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r-Optimal classifier.

Related attacks and defenses have been developed for ReLU networks [55, 105, 221, 233].

These results do not directly pertain to non-parametrics, as ReLUs are fundamentally different.

The geometric attacks and defenses are similar in spirit to ours. Optimizations based on the dual

formulation may improve the efficiency of our methods [221, 233]. It would be interesting to

explore the relationship between our defense method (adversarial pruning) and the ReLU defense

methods and robustness certificates. For example, do robust ReLU networks approximate or

converge to the r-Optimal classifier?

4.8 Conclusion

We consider adversarial examples for non-parametric methods, with a focus on generic

attacks and defenses. We provide a new attack, the region-based attack, which often outperforms

previous attacks. We also provide a new method of defense, adversarial pruning, which should

serve as a strong baseline for evaluating the robustness of many classifiers. On the theory side,

we prove that the region-based attack outputs the optimal adversarial example. We also introduce

and analyze a novel robust analogue to the Bayes Optimal. We prove that the r-Optimal classifier

maximizes astuteness. On the experimental side, we demonstrate that our methods are better than

or competitive with prior work, while being considerably more general.
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Chapter 5

Adversarial Robustness and its Connection

to Interpretability on Decision Trees

5.1 Introduction

Deploying machine learning (ML) models in high-stakes fields like healthcare, transporta-

tion, and law, requires the ML models to be trustworthy. Essential ingredients of trustworthy

models are interpretability and robustness: if we do not understand the reasons for the model’s

prediction, we cannot trust the model; if small changes in the input modifies the model’s predic-

tion, we cannot trust the model. Previous works hypothesized that there is a strong connection

between robustness and interpretability. They empirically observed that robust models lead to

better explanations [47, 184]. In this work, we take a rigorous approach towards understanding

the connection between robustness and interpretability.

We focus on binary predictions, where each example has d features and the label of each

example is in {−1,+1}, so an ML model is a hypothesis f : Rd →{−1,1}. We want our model

to be (i) robust to adversarial `∞ perturbations, i.e., for a small distortion, ‖δ‖∞, the model’s

response is similar, f (x) = f (x+δ), for most examples x, (ii) interpretable, i.e., the model itself
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is simple and so self-explanatory, and (iii) have high-accuracy. A common type of interpretable

models are decision trees [149], which we call tree-based explanation and focus on in this chapter.

Prior literature [239] showed that data separation is a sufficient condition for a robust and

accurate classifier. A dataset is r-separated if the distance between the two closest examples with

different labels is at least 2r. Intuitively, if r is large, then the data is well-separated. A separated

data guarantees that points with opposite labels are far from each other, which is essential to

construct a robust model.

In this chapter, we examine whether separation implies tree-based explanation. We first

show that for a decision tree to have accuracy strictly above 1/2 (i.e., better than random), the

data must be bounded. Henceforth, we assume that the data is in [−1,1]d. We start with a trivial

algorithm that constructs a tree-based explanation with complexity (i.e., tree size) 2O(d/r). For

constant r, we show a matching lower bound of 2Ω(d). Thus, we have a matching lower and upper

bound on the explanation size of 2Θ(d). Thus, separation implies robustness and interpretability.

Unfortunately, for a large number of features, d, the explanation size is too high to be useful in

practice.

In this chapter, we show that designing a simpler explanation is possible with a stronger

separability assumption — linear separability with a γ-margin. This assumption was recently

used to gain a better understanding of neural networks [154, 204, 212]. More formally, this

assumption means that there is a vector w with ‖w‖ = 1 such that yw ·x ≥ γ for each labeled

example (x,y) ∈ Rd×{−1,1} in the data [202].

One can hope that standard methods for learning linear models will suffice, but this may

not be the case. Standard linear models such as `2-regularized logistic regressions or support

vector machines [202] may produce models that use too many features (in other words, the weights

are not sparse), and this can make the model not interpretable. Many other approaches [20, 186]

try to solve this issue by enforcing sparsity on the weight vector. However, these models may not

be adversarially robust. In this chapter, our goal is to find a model that is interpretable, robust,
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and a high-accuracy.

Utilizing ideas from [203], we show that under the linearity assumption, there is always

at least one feature that provides non-trivial information for the prediction. To formalize this, we

use the known notion of weak learners [110], which guarantees the existence of hypothesis with

accuracy bounded below by more than 1/2.

The weak-learnability theorem, together with Kearns and Mansour [111], implies that a

popular CART-type algorithm [31] provides a decision tree with size 1/εO(1/γ2) and accuracy 1−ε.

Therefore, under the linearity assumption, we can design a tree with complexity independent

of the number of features. Thus, even if the number of features, d, is large, the interpretation

complexity is not affected. This achieves our first goal of constructing an interpretable model

with provable guarantees.

Recently, several research papers give a theoretical justification for CART’s empirical

success [24, 25, 34, 35, 71]. Those papers assume that the underlying distribution is uniform or

features chosen independently. For many cases, this assumption does not hold. For example,

in medical data, there is a strong correlation between age and different diseases. On the other

hand, we give a theoretical justification for CART without resorting to the feature-independence

assumption. We use, instead, the linear separability assumption. We believe that this method will

allow, in the future, proofs with less restrictive assumptions.

So far, we have shown how to construct an interpretable model, but we want a model that

is not just interpretable but also robust. Decision trees are not robust by-default [47]. For example,

a slight change in the feature at the root of the decision tree leads to an entirely different model

(and thus to entirely different predictions): the model defined by the left subtree and the model

defined by the right subtree. We are left with the question, are we able to constrct a tree that is

both robust and interpretable. To design such model, we focus on a specific kind of decision

tree — risk score [223]. A risk score is composed of several conditions (e.g., age≥ 75) and each

matched with a weight, i.e., a small integer. A score s(x) of an example x is the weighted sum of
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all the satisfied conditions. The label is then a function of the score s(x). A risk score is a specific

case of decision trees, wherein at each level in the tree, the same feature is queried. The number

of parameters required to represent a risk score is much smaller than their corresponding decision

trees, hence they might be considered more interpretable than decision trees [223].

We design a new learning algorithm, BBM-RS, for learning risk scores that rely on the

Boost-by-Majority (BBM) algorithm [74] and our weak learner theorem. It yields a risk score of

size O(γ−2 log(1/ε)) and accuracy 1− ε. Thus, we found an algorithm that creates a risk score

with provable guarantees on size and accuracy. As a side effect, note that BBM allows to control

the interpretation complexity easily. Importantly, we show that risk scores are also guaranteed to

be robust to `∞ perturbations, by deliberately adding a small noise to dataset (but not too much

noise to make sure that the noisy dataset is still linearly separable). Therefore, we design a model

that is guaranteed to have high accuracy and be both interpretable and robust, achieving our final

goal.

Finally, in Section 5.6, we test the validity of the separability assumption and the quality

of the new algorithm on real-world datasets that were used previously in tree-based explanation

research. On most of the datasets, less than 12% points were removed to achieve an r-separation

with r ≥ 0.05. For comparison, for binary feature-values {−1,1}, and `∞ distance, the best

value for r is r = 1. The added percentage of points required to be removed for the dataset

to be linearly separable is less than 7% on average. Thus, we observe that real datasets are

close to being separable and even linearly separable. Then, we explored the quality of our new

algorithm, BBM-RS. Even though it has provable guarantees only if the data is linearly separable,

we run it on real datasets that do not satisfy this property. We compare BBM-RS to different

algorithms learning: decision trees [175], small risk scores [223], and robust decision trees [47].

All algorithms try to maximize accuracy, but different algorithms try to, additionally, minimize

interpretation complexity or maximize robustness. None of the algorithms aimed to optimize both

interpretability and robustness. We compared the (i) interpretation complexity, (ii) robustness,
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and (iii) accuracy of all four algorithms. We find that our algorithm provides a model with better

interpretation complexity and robustness while having comparable accuracy.

To summarize, our main contributions are:

Interpretability under separability: optimal bounds. We show lower and upper bounds

on decision tree size for r-separable data with r = Θ(1), of 2Θ(d). Namely, our upper bound

proves that for any separable data, there is a tree of size 2O(d), and the lower bound proves that

separability cannot guarantee an explanation smaller than 2Ω(d).

Algorithm with provable guarantees on interpretability and robustness. Designing

algorithms that have provable guarantees both on interpretability, robustness, and accuracy in

the context of decision trees is highly sought-after, yet there was no such algorithm before our

work. We design the first learning algorithm that has provable guarantees both on interpretability,

robustness, and accuracy of the returned model, under the assumption that the data is linearly

separable with a margin.

While the CART algorithm is empirically highly effective, its theoretical analysis has been

elusive for a long time. As a side effect, we provide an analysis of CART under the assumption

of linear separability. To the best of our knowledge, this is the first proof with a distributional

assumption that does not include feature independence.

Experiments. We verify the validity of our assumptions empirically and show that for real

datasets, if a small percentage of points is removed then we get a linear separable dataset. We also

compare our new algorithm to other algorithms that return interpretable models [47, 175, 223]

and show that if the goal is to design a model that is both interpretable and robust, then our

method is preferable.

5.2 Related Work

Post-hoc explanations. There are two main types of explanations: post hoc explanations
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[179] and intrinsic explanations [186]. Algorithms for post hoc explanation take as an input a

black-box model and return some form of explanation. Intrinsic explanations are simple models,

so the models are self-explanatory. The main advantage of algorithms for post hoc explanations

[26, 58, 117, 133, 141, 142, 180, 181] is that they can be used on any model. However, they host a

variety of problems: they introduce a new source of error stemming from the explanation method

[186]; they can be fooled [128, 210]; some explanations methods are not robust to common

pre-processing steps [114], and can be independent both of the model and the data generating

process [2]. Because of the critics against post hoc explanations, in this chapter, we focus on

intrinsic explanations.

Explainability and robustness. Prior studies research the intersection of explanation

and robustness of black-box models [129], decision trees [6, 47], and deep neural networks

[83, 144, 184, 219]. Unfortunately, the quality of these methods are only verified empirically. On

the theoretical side, most works analyzed explainability and robustness separately. Explainability

was researched for supervised learning [78, 79, 97, 146] and unsupervised learning [76, 126, 151].

For robustness, Cohen et al. [52] showed that the technique of randomized smoothing has

robustness guarantees. Ignatiev et al. [102] connected adversarial examples and a different type

of explainability from the point of view of formal logic.

Risk scores. Ustun and Rudin [223] designed a new algorithm for learning risk scores

by solving an appropriate optimization problem. They focused on constructing an interpretable

model with high accuracy and did not consider robustness, as we do in this work.

5.3 Preliminaries

We investigate models that are (i) with high-accuracy, (ii) robust, and (iii) interpretable,

as formalized next.
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High accuracy. We consider the task of binary classification over a domain X ⊆ Rd .

Let µ be an underlying probability distribution1 over labeled examples X ×{−1,+1}. The input

to a learning algorithm A consists of a labeled sample S ∼ µm, and its output is a hypothesis

h : X →{−1,+1}. The accuracy of h is equal to Pr(x,y)∼µ(h(x) = y). The sample complexity of

A under the distribution µ, denoted m(ε,δ) : (0,1)2→ N, is a function mapping desired accuracy

ε and confidence δ to the minimal positive integer m(ε,δ) such that for any m ≥ m(ε,δ), with

probability at least 1−δ over the drawn of an i.i.d. sample S∼ µm, the output A(S) has accuracy

of at least 1− ε.

Robustness. In this chapter, We follow the adversarial robustness setup in Chapter 2 and

focus on the `∞ distance as the distance metric.

Interpretability. We focus on intrinsic explanations, also called interpretable mod-

els [186], where the model itself is the explanation. There are several types of interpretable

models, e.g., logistic regression, decision rules, and anchors [149]. One of the most fundamental

interpretable models, which we focus on in this chapter, is decision trees [175]. In a decision tree,

each leaf corresponds to a label, and each inner node corresponds to a threshold and a feature.

The label of an example is the leaf’s label of the corresponding path.

In this chapter, we focus on a specific type of decision trees, risk score [224]; see Table 5.1.

Risk score is defined by a series of m conditions and a weight for each condition. Each condition

compares one feature to a threshold, and the weights should be small integers. A score, s(x),

of an example x is the number of satisfied conditions out of the m conditions, each multiplied

by the corresponding weight. The prediction of the risk model f is the sign of the score,

f (x) = sign(s(x)). A risk score can be viewed as a decision tree where at each level there

is the same feature-threshold pair. Since the risk-score model has fewer parameters than the

corresponding decision tree, it may be considered more interpretable.

1In the paper, we will assume that µ has additional properties, like separation or linear separation.
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Table 5.1: Two risk score models: LCPA [224] and our new BBM-RS algorithm on the bank
dataset [150]. Each satisfied condition is multiplied by its weight and summed. Bias term is
always satisfied. If the total score > 0, the risk model predicts “1" (i.e., the client will open a
bank account after a marketing call). All features are binary (either 0 or 1).

feature weights
LCPA BBM-RS

Bias term -6 -7 + ...
Age ≥ 75 - 2 + ...
Called in Q1 1 2 + ...
Called in Q2 -1 - + ...
Called before 1 4 + ...
Previous call was Successful 1 2 + ...
Employment variation rate <−1 5 4 + ...
Consumer price index ≥ 93.5 1 - + ...
3 month euribor rate ≥ 200 -2 - + ...
3 month euribor rate ≥ 400 5 - + ...
3 month euribor rate ≥ 500 2 - + ...

total score =

5.4 Separation and Interpretability

We want to understand whether separation implies the existence of a small tree-based

explanation. Our first observation is that the data has to be bounded for a tree-based explanation

to exist. If the data is unbounded, then to achieve a training error slightly better than random, the

tree size must depend on the size of the training data (see Section 5.4.1 and Theorem 5.4.1).

In Section 5.4.2, we investigate lower and upper bounds for decision tree’s size, assuming

separation. Specifically, in Theorem 5.4.2, we show that if the data is bounded, in [−1,1]d , then

r-separability implies a tree based-explanation with tree depth O(d/r). Importantly, the depth of

the tree is independent of the training size, so a tree-based explanation exists. Nevertheless, even

for a constant r, the size of the tree is exponential in d. In Theorem 5.4.3, we show that this bound

is tight as there is a 1-separable dataset that requires an exponential size to achieve accuracy

even negligibly better than random. To conclude, if all we know is that the data is r-separability

for constant r, the interpretation complexity is 2Θ(d). Unfortunately, this explanation has size
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exponential in d. In Section 5.5, we improve the interpretation complexity by assuming a stronger

separability assumption. We will assume linear separability with a margin. All proofs are in

Appendix D.1.1.

5.4.1 Bounded

In Theorem 5.4.1, we show that the data has to be bounded for a small decision tree to

exist. In fact, boundedness is necessary, even if the data is constrained to be linearly separable.

For any tree size s and a given accuracy, we can construct a linearly-separable dataset such that

any tree of size s cannot have the desired accuracy.

Theorem 5.4.1. For any tree size s and γ > 0, there is a dataset in R2 that is linearly separable,

and any decision tree with size s has accuracy less than 1
2 + γ.

5.4.2 Upper and lower bounds

Assuming the data in [−1,1]d is r-separated, Theorem 5.4.2 tells us that one can construct

a decision tree with depth 6d/r and training error 0 (and from standard VC-arguments also

accuracy 1− ε, with enough examples). Importantly, the depth of the tree is independent of the

training size n. Nevertheless, it means the size of the trees is exponential in d. The idea of the

proof is to fine-grain the data to bins of size about r, in each coordinate. From this construction,

it is clear that the returned model is robust at any training data.

Theorem 5.4.2. For any labeled data in [−1,1]d×{−1,1} that is r-separated, there is a decision

tree of depth at most 6d
r which has a training error 0.

Theorem 5.4.3 proves a matching lower bound by constructing a dataset such that any

tree that achieves error better than random, the tree size must be exponential in d. The dataset

proving this lower bound is parity. More specifically, it contains the points {−1,+1}d and the

label of each point x is the xor of all of its coordinates.
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Theorem 5.4.3. There is a labeled dataset in [−1,1]d which is 1-separated and has the following

property. For any γ > 0 and any decision tree T that achieves accuracy 0.5+ γ, the size of T is at

least γ2d.

5.5 Linear Separability

In the previous section, we showed that Θ(1)-separability implies a decision tree with

size exponential in d, and we showed a matching lower bound. This section explores a stronger

assumption than separability that will guarantee a smaller tree, i.e., a simpler explanation. This

assumption is that the data is linearly separable with a margin. More formally, data is γ-linearly

separable if there is w∈Rd , ‖w‖1 = 1, such that for each positive example x it holds that w ·x≥ γ

and for each negative example x it holds that w · x ≤ −γ. Note that without loss of generality

wi ≥ 0 (if the inequality does not hold, multiply the i-th feature in each example by−1). Thus, we

can interpret w as a distribution over all the features. Linear separability might seem at first like a

strong assumption, but besides being a widespread assumption [154, 204, 212], in Section 5.6 we

show that this assumption is reasonable for real datasets.

As a first attempt, one might hope that w is a good explanation, but this explanation might

use all the features, and the corresponding tree-based explanation might be of exponential size.

As a second attempt, one might take the highest wi’s, since one might interpret the highest wi

as the most important feature. However, this can be misleading. For example, if all data has the

same value at the i-th feature, this feature is meaningless. In this section, we explore a different

approach for constructing an interpretable model.

One of our key ideas is to use boosting method [195] to construct a model which is both

interpretable, robust, and accurate. This will allow us to gradually add features to the model

until we achieve a high-accuracy model. To implement this idea, we show that one feature can

provide a nontrivial prediction. In particular, in Section 5.5.1, we show that the hypotheses class,
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Ht = {hi,θ}, is a weak learner, where

hi,θ(x) =


+1 if xi ≥ θ

−1 o.w.

This class is similar to the known decision stumps class, but it does not contain hypotheses of the

form “if xi ≤ θ then +1 else −1". The reason will become apparent in Section 5.5.3, but for now,

we will hint that it helps achieve robustness.

In Section 5.5.2, we observe that weak learnability immediately implies that the known

CART algorithm constructs a tree of size independent of d [111]. Unfortunately, decision trees

are not necessarily robust. To overcome this difficulty, we focus on one type of decision trees,

risk scores, which are interpretable models on their own. In Section 5.5.3 we show how to use

the boosting by majority (BBM) [74] algorithm together with our weak learnability theorem to

construct a risk score model. We also show that this model is robust. This concludes our quest of

finding a model that is guaranteed to be robust, interpretable, and have high-accuracy under the

linearity separable assumption. In Section 5.6 we will evaluate the model on several real datasets.

5.5.1 Weak learner

This section shows that under the linearity assumption, we can always find a feature that

gives nontrivial information, which is formally defined using the concept of a weak learner class.

We say that a class H is a weak learner if for every distribution µ over the examples and a function

f that are γ-linearly separable, there is hypothesis h ∈H such that Prx∼µ(h(x) = f (x)) is strictly

larger than 1/2, preferably at least 1/2+Ω(γ). Finding the best hypothesis in Ht can be done

efficiently using dynamic programming [202]. The question is how to prove that there must be a

weak learner in Ht .

One might suspect that if the data is linearly separable by the vector w (i.e., for each
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labeled example (x,y) it holds that ywx ≥ γ), then hi which corresponds to the highest wi is a

weak learner. Conversely, if wi is small, then the corresponding hypotheses hi will have a low

accuracy. These claims are not true. To illustrate this, think about the extreme example where

w1 = 0 but x1 completely predicts the output of any example x. From the viewpoint of w, the

first feature is irrelevant, as it does not contribute to the term w ·x, but the first feature is a perfect

predictor.

One can prove that there is always a hypothesis in Ht with accuracy 0.5+Ω(γ) by

binarizing the input and applying [203]. More specifically, they formed a different connection

between linear separability and weak learning. They view each example in the hypotheses basis,

and on this basis, the famous minimax theorem implies that linearity is equivalent to weak

learnability. In this chapter, we focus on the case that the data, in its original form, is linearly

separable. Nonetheless, when the features are binary, the two views, the original and hypotheses

bases, coincide.

For completeness, in the Appendix D.1.2, we provide a different proof of Theorem 5.5.1,

by viewing Ht as a graph. Namely, define a bipartite graph where the vertices are the examples

and the hypotheses and there is an edge between a hypothesis h and example x if h correctly

predicts x. The edges of the graph are defined so that (i) the degree of the hypotheses vertices

corresponds to its accuracy and (ii) the linearity assumption ensures that the degree of the example

vertices is high. These two properties of the graph proves the theorem.

Theorem 5.5.1. Fix α > 0. For any data in [−1,1]d ×{−1,1} that is labeled by a γ-linearly

separable hypothesis f and for any distribution µ on the examples, there is a hypothesis h ∈Ht

such that

Pr
x∼µ

(h(x) = f (x))≥ 1
2
+

γ

2
−α

.

So far, we have shown the existence of hypothesis in Ht with accuracy 0.5 + Ω(γ).
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Standard arguments in learning theory imply that the hypothesis that maximizes the accuracy

on a sample also has accuracy 0.5+Ω(γ). Specifically, for any sample S, denote by hS the best

hypothesis in Ht on the sample S. Basic arguments in learning theory shows that for a sample of

size m = O
(

d+log 1
δ/γ2
)
, the hypothesis hS has a good accuracy, as the following theorem proves.

Theorem 5.5.2 (weak-learner). Fix α > 0. For any distribution µ over [−1,+1]d×{−1,+1}

that satisfies linear separability with a γ-margin, and for any δ ∈ (0,1) there is m = O
(

d+log 1
δ

γ2

)
,

such that with probability at least 1−δ over the sample S of size m, it holds that

Pr
(x,y)∼µ

(hS(x) = y)≥ 1
2
+

γ

4
−α.

5.5.2 Decision Tree Using CART

CART is a popular algorithm for learning decision trees. In [111], it was shown that if the

internal nodes define a γ-weak learner and number of samples is some polynomial of t log(1/δ)d,

then a CART-type algorithm returns a tree with size t = 1/εO(1/γ2) and accuracy at least 1−ε, with

probability at least 1−δ. Under the linearity assumption, we know that the internal nodes indeed

define a γ-weak learner by Theorem 5.5.2. Thus, we get a model with a tree size independent of

the training size and the dimension. But the model is not necessarily robust.

The above results can be interpreted as proof of the CART algorithm’s success. This

proof does not use the strong assumption of feature independence, which is assumed in recent

works [24, 25, 34, 35, 71].

Designing robust decision trees is inherently a difficult task. The reason is that, generally,

the model defined by the right and left subtrees can be completely different. The feature i in

the root determines if the model uses the right or left subtrees. Thus, a small change in the i-th

feature completely changes the model. To overcome this difficulty, we focus on a specific type of

decision tree, risk scores [224], see Table 5.1 for an example. In the decision tree that corresponds

to the risk score, the right and left subtrees are the same. In the next section, we design risk scores
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that have guarantees on the robustness and the accuracy.

5.5.3 Risk Score

This section designs an algorithm that returns a risk score model with provable guarantees

on its accuracy and robustness, assuming that the data is linearly separable. In the previous section,

we used [111] that viewed CART as a boosting method. This section uses a more traditional

boosting method — the Boost-by-Majority algorithm (BBM) [74]. This boosting algorithm

gets as an input training data and an integer T , and at each step t ≤ T it reweigh the examples

and apply a γ-weak learner that returns a hypothesis ht : Rd → {−1,+1}. At the end, after T

steps, BBM returns sign
(
∑

T
t=1 ht

)
. In [74, 195] it was shown that BBM returns hypothesis with

accuracy at least 1− ε after at most T = O(γ−2 log(1/ε)) rounds.

The translation from BBM, which uses Ht as a weak learner, to a risk score model, is

straightforward. The hypotheses in Ht exactly correspond to the conditions in the risk score.

Each condition has weight of 1. If the number of conditions that hold is at least T/2 then our risk

model returns +1, else it returns −1. Together with Theorem 5.5.1 and [74] we get that BBM

returns a risk score with accuracy at least 1− ε and with T = O(γ−2 log(1/ε)) conditions.

We remark that other boosting methods, e.g., [75, 106], cannot replace BBM in the

suggested scheme since the final combination has to be a simple sum of the weak learners and

not arbitrary linear combination. The letter corresponds to a risk score where the weights are in

R and not a small integer, as desired.

Our next and final goal is to prove that our risk score model is also robust. For that, we

use the concept of monotonicity. For x,y ∈ Rd , we say that x≤ y if and only if for all i ∈ [d] it

holds that xi ≤ yi. A model f : Rd→{0,1} is monotone if for all x≤ y it holds that f (x)≤ f (y).

We will show that BBM with weak learners from Ht yields a monotone model. The reasons

are (i) all conditions are of the form “xi ≥ θ", (ii) all weights are non-negative, except the bias

term, and (iii) classification of a risk score is detriment by the score’s sign. All proofs appear in
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Appendix D.1.3.

Claim 5.5.1. If every condition in a risk-score model R is of the form “xi ≥ θ" and all weights

are positive, except the bias term, then R is a monotone model.

In Claim 5.5.2 we show that, by carefully adding a small noise to each feature, we can

transform any algorithm that returns a monotone model to one that returns a robust model.

Claim 5.5.2. Assume a learning algorithm A gets as an input a sample from a γ-linearly separable

data and returns a monotone model with accuracy 1− ε(γ). Then, there is an algorithm that

returns a model with astuteness (Definition 2) at least 1− ε
(

γ

2

)
at radius γ/2.

To summarize, in Algorithm 1, we show the pseudocode of our new algorithm, BBM-RS.

In the first step we add noise to each example by replacing each example (x,y) by (x− τy1,y),

where τ ∈ (0,1) is a parameter that defines the noise level and 1 is the all-one vector. In other

words, we add noise yτ to each feature. In the second step, the algorithm iteratively adds

conditions to the risk score. At each iteration, we first find the distribution µ defined by BBM

[74]. Then, we find the best hypothesis hi,θ in Ht , according to µ. We add to the risk score a

condition “xi ≥ θ". Finally, we add a bias term of −T/2, to check if at least half of the conditions

are satisfied.

5.6 Experiments

In previous sections, we designed new algorithms and gave provable guarantees for

separated data. We next investigate these results on real datasets. Concretely, we ask the

following questions:

• How separated are real datasets?

• How well does BBM-RS perform compared with other interpretable methods?
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Algorithm 1 BBM-RS (BBM-Risk Score)
1: input: D: linearly separable training data by w; WLOG ∀i.wi ≥ 0
2: T : bound on interpretation complexity
3: τ: noise level
4: output: risk score
5: # Add noise:
6: for (x,y) ∈ D do
7: replace (x,y) with (x− τy1,y)
8: end for
9: for i = 1 . . .T do

10: µ← BBM distrbution on D
11: i,θ← argmaxi,θ ∑(x,y)∈D µ(x)I(xi−θ)y>0
12: Add condition “xi ≥ θ" to RS
13: end for
14: Add a bias term of −T/2 to RS
15: return RS

• How do interpretability, robustness, and accuracy tradeoff with one another in BBM-RS?

Datasets. To maintain compatibility with prior work on interpretable and robust decision

trees [136, 224], we use the following pre-processed datasets from their repositories – adult, bank,

breastcancer, mammo, mushroom, spambase, careval, ficobin, and campasbin. We also use some

datasets from other sources such as LIBSVM [44] datasets and Moro et al. [150]. These include

diabetes, heart, ionosphere, and bank2. All features are normalized to [0,1]. More details can

be found in Appendix D.2. The dataset statistics are shown in Table 5.2. Experiment code is

available in a public repository2.

5.6.1 Separation of Real Datasets

To understand how separated they are, we measure the closeness of each dataset to being

r- or linearly separated. The separateness of a dataset is one minus the fraction of examples

needed to be removed for it to be r- or linearly separated.

2https://github.com/yangarbiter/interpretable-robust-trees
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Table 5.2: Dataset statistics. Columns “sep.” records the separateness of each dataset. Columns
“2r" and “γ" are calculated after the dataset is separated by removing 1− sep points.

dataset statistics r-separation γ-linear
separation

#
samples

#
features

#
binary

features

portion of
positive

label
sep. 2r sep. γ

adult 32561 36 36 0.24 0.88 1.00 0.84 0.001
bank 41188 57 57 0.11 0.97 1.00 0.90 0.33
bank2 41188 63 53 0.11 1.00 0.0004 0.91 0.00002
breastcancer 683 9 0 0.35 1.00 0.11 0.97 0.0003
careval 1728 15 15 0.30 1.00 1.00 0.96 0.003
compasbin 6907 12 12 0.46 0.68 1.00 0.65 0.20
diabetes 768 8 0 0.65 1.00 0.11 0.77 0.0008
ficobin 10459 17 17 0.48 0.79 1.00 0.70 0.33
heart 270 20 13 0.44 1.00 0.13 0.89 0.0003
ionosphere 351 34 1 0.64 1.00 0.80 0.95 0.0007
mammo 961 14 13 0.46 0.83 0.33 0.79 0.14
mushroom 8124 113 113 0.48 1.00 1.00 1.00 0.02
spambase 4601 57 0 0.39 1.00 0.000063 0.94 0.000002

For r-separation, we use the algorithm designed by Yang et al. [239] that calculates the

minimum number of examples needed to be removed for a dataset to be r-separated with r≥ 10−5.

This ensures that after removal, there will be no pair of examples that are very similar but with

different labels. Finding the optimal separateness for linear separation is NP-hard [19], thus

we run a `1 regularized linear SVM with regularization terms C = {10−10,10−8, . . . ,1010} and

record the lowest training error as an approximation to one minus the optimal separateness.

The separation results are shown in Table 5.2. Eight datasets are already r-separated

(separateness = 100%). In the five datasets with separateness < 100%, there are examples

with very similar features but different labels. This occurs mostly in binarized datasets; see

Appendix D.3 for an example. Three datasets are almost separated with separateness equal to

97%, 88%, and 83%, and two have separateness 68% and 79%. To summarize, 84% of the

datasets are r-separated with r ≥ 10−5, after removing at most 17% of the points.

Linear separation is a stricter property than r-separation, so the separateness for linear sep-

aration is smaller or equal to the separateness for r-separation. Seven datasets have separateness
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≥ 90%, three separateness between 79% and 89%, and the remaining three have separateness

< 79%. After removing the points, all datasets are γ-linearly separable and nine datasets have

γ≥ 0.001. To summarize, (i) 77% of the datasets are close to being linearly separated (ii) requiring

linear-separability reduces the separateness of the r-separated dataset by only an average of 6.77%.

From this we conclude that for these datasets at least, the assumption of r− or linear-separability

is approximately correct.

Table 5.3: Comparison of BBM-RS with other interpretable models. In bold: the best algorithm
for each dataset and criterion. Note that several datasets (adult, bank, careval, compasbin,
ficobin, and mushroom) have ER = 0.5 for tree-based models (DT, RobDT, and BBM-RS),
because these datasets have all binary features and tree-based models set the threshold in the
middle of 0 and 1.

IC (lower=better) test accuracy (higher=better) ER (higher=better)
DT RobDT LCPA BBM-RS DT RobDT LCPA BBM-RS DT RobDT LCPA BBM-RS

adult 414.20 287.90 14.90 6.00 0.83 0.83 0.82 0.81 0.50 0.50 0.12 0.50
bank 30.70 26.80 8.90 8.00 0.90 0.90 0.90 0.90 0.50 0.50 0.20 0.50
bank2 30.00 30.70 13.80 4.50 0.91 0.90 0.90 0.90 0.12 0.18 0.10 0.50
breastcancer 15.20 7.40 6.00 11.00 0.94 0.94 0.96 0.96 0.23 0.29 0.28 0.27
careval 59.30 28.20 10.10 8.70 0.97 0.96 0.91 0.77 0.50 0.50 0.19 0.50
compasbin 67.80 33.70 5.40 7.60 0.67 0.67 0.65 0.66 0.50 0.50 0.15 0.33
diabetes 31.20 27.90 6.00 2.10 0.74 0.73 0.76 0.65 0.08 0.08 0.09 0.15
ficobin 30.60 59.60 6.40 11.80 0.71 0.71 0.71 0.72 0.50 0.50 0.22 0.50
heart 20.30 13.60 11.90 9.50 0.76 0.79 0.82 0.82 0.23 0.31 0.14 0.32
ionosphere 11.30 8.60 17.90 6.80 0.89 0.92 0.88 0.86 0.15 0.25 0.07 0.28
mammo 27.40 12.40 7.20 1.90 0.79 0.79 0.79 0.77 0.47 0.50 0.21 0.50
mushroom 10.80 9.10 23.80 9.90 1.00 1.00 1.00 0.97 0.50 0.50 0.10 0.50
spambase 153.90 72.30 29.50 5.60 0.92 0.87 0.88 0.79 0.00 0.04 0.02 0.05

5.6.2 Performance of BBM-RS

Next, we want to understand how our proposed BBM-RS performs on real datasets. We

compare the performance of BBM-RS with three different baselines on three evaluation criteria:

interpretability, accuracy, and robustness.

Baselines. We compare BBM-RS with three baselines: (i) LCPA [224], an algorithm for

learning risk scores, (ii) DT [31], standard algorithm for learning decision trees, and (iii) Robust

decision tree (RobDT) [47], an algorithm for learning robust decision trees.

We use a 5-fold cross-validation based on accuracy for hyperparameters selection. For
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DT and RobDT, we search through 5,10, . . .30 for the maximum depth of the tree. For BBM-RS,

we search through 5,10, . . .30 for the maximum number of weak learners (T ). The algorithm

stops when it reaches T iterations or if no weak learner can produce a weighted accuracy > 0.51.

For LCPA, we search through 5,10, . . .30 for the maximum `0 norm of the weight vector. We set

the robust radius for RobDT and the noise level τ for BBM-RS to 0.05. More details about the

setup of the algorithms can be found in Appendix D.2.

Evaluation

We evaluate interpretability, accuracy, and robustness of each baseline. The data is

randomly split into training and testing sets by 2:1. The experiment is repeated 10 times with

different training and testing splits. The mean and standard error of the evaluation criteria are

recorded.

Interpretability. We measure a model’s interpretability by evaluating its Interpretation

Complexity (IC), which is the number of feature-thresholds pairs in the model (one can think

of this as the number of tests the model performs). For decision trees (DT and RobDT), the

IC is the number of internal nodes in the tree, and for risk scores (LCPA and BBM-RS), the

Table 5.4: The IC of four different methods across all datasets. Here, we use the depth of the
tree as the interpretable complexity measure for DT and RobDT.

DT RobDT LCPA BBM-RS

adult 10.00 12.50 14.90 6.00
bank 5.00 6.00 8.90 8.00
bank2 5.00 6.00 13.80 4.50
breastcancer 6.00 5.20 6.00 11.00
careval 12.30 11.40 10.10 8.70
compasbin 7.40 7.90 5.40 7.60
diabetes 6.00 7.50 6.00 2.10
ficobin 5.00 7.00 6.40 11.80
heart 6.00 6.10 11.90 9.50
ionosphere 6.00 7.90 17.90 6.80
mammo 5.60 6.20 7.20 1.90
mushroom 5.80 6.00 23.80 9.90
spambase 17.40 17.60 29.50 5.60
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number of non-zero terms in the weight vector. The lower the IC is, the more interpretable the

model is. This is a global measure of the models’ complexity as we constructed a model which is

self-explainable. One can also measure the local complexity of the model, measured by depth.

Robustness. We measure model’s robustness by evaluating its Empirical robustness (ER) (Def-

inition 5) [239].

Results

The results are shown in Table 5.3 (only the means are shown, the standard errors can

be found in Appendix D.3). We see that BBM-RS performs well in terms of interpretability

and robustness. BBM-RS performs the best on nine and eleven out of thirteen datasets in terms

of interpretation complexity and robustness, respectively. In terms of accuracy, in nine out of

the thirteen datasets, BBM-RS is the best or within 3% to the best. These results show that on

most datasets, BBM-RS is better than other algorithms in IC and ER while being comparable in

accuracy.

In addition to using the number of feature-thresholds pairs as a (global) measure for IC,

we also present in Table 5.4 the results in terms of the local measure for IC, i.e., the depth. This

local measure considerably favors decision trees (DT and RobDT), since in the same depth, DT

and RobDT can use exponentially more feature-threshold pairs than LCPA and BBM-RS, which

can be much less interpretable. From the table, we see that even in this case, BBM-RS can still

have a comparable results with DT and RobDT. In Appendix D.3.4, the standard error of Table 5.4

is recorded.

5.6.3 Tradeoffs in BBM-RS

The parameter τ gives us the opportunity to explore the tradeoff between interpretability,

robustness, and accuracy within BBM-RS. Figure 5.1 shows that for small τ, BBM-RS’s IC is

high, and its ER is low, and when τ is high, IC is low, and ER is high. This empirical observation
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strengthens the claim that interpretability and robustness are correlated. See Appendix D.3 for

experiments on other datasets and experiments on the tradeoffs between IC and accuracy.

Figure 5.1: Interaction of interpretability, accuracy, and robustness with different noise level
τ on the spambase dataset. The size of each ball represents the accuracy. For τ = 0: IC =
22.5,ER = 0.006 and for higher noise τ = 0.25: IC = 2.3,ER = 0.33

5.7 Conclusion

We found that linear separability is a hidden property of the data that guarantees both

interpretability and robustness. We designed an efficient algorithm, BBM-RS, that returns a

model, risk-score, which we prove is interpretable, robust, and have high-accuracy. An interesting

open question is whether a weaker notion than linear separability can give similar guarantees.
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Chapter 6

Robustness and Generalization to Nearest

Categories

6.1 Introduction

Recently, there has been much interest in various aspects of out-of-distribution (OOD)

generalization, such as transfer learning [191], outlier detection [147], and few-shot learning [116].

We want to understand the output of neural networks on OOD inputs, and whether there are

patterns in the predicted values. By observing the outputs of a neural network with OOD inputs

in Table 6.1, we find that there are indeed some patterns. The question is, what is this pattern? A

line of work in the psychology literature posits that humans categorize unseen examples into the

most similar category they have seen before [12, 159, 185, 192]. For example, when a child sees

an orange for the first time, he may categorize an orange as a type of similar fruit he has seen

before, such as a tangerine. Inspired by this unique tendency of humans, we investigate whether

neural networks show similar behavior.

We test whether neural networks also tend to predict OOD examples as the nearest

category in the training set, and we call this property Nearest Category Generalization (NCG). We
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Table 6.1: We remove images of a class from training set of CIFAR10 and CIFAR100, and
train a neural network on the modified training set. We then look at the predictions of the
neural network on these removed images and record their top two most predicted classes. From
the result, we can see that the outputs that these two networks produce follow some patterns.
“airplanes” are predicted as a ship or bird possibly because they have similar background of the
sky. “aquatic mammals” are predicted as fish possibly because they are both in the water.

removed class top most predicted class second most predicted class

CIFAR10 airplane ship bird

CIFAR100 aquatic mammals fish small mammals

begin with setting up a framework for testing whether neural networks show signs of NCG. We use

images from an unseen class as the OOD examples. We take existing datasets, remove examples

of a certain class from the training set, and treat the removed examples as OOD examples. We

then train a neural network on the training set and examine its prediction of these OOD examples.

If a significant amount of OOD examples are classified as the same category as their nearest

training example, then it shows that there are some particular structures in the prediction of the

unseen class. We define the NCG accuracy as the portion of OOD examples that are predicted

as the same label as their nearest training example (while measuring in-distribution accuracy as

usual).

Building on this testing framework, we measure the NCG property of neural networks.

We consider four datasets and select ten different unseen classes for each dataset. We train a

neural network on each of these 40 different combinations of datasets and unseen classes. We find

that the NCG accuracies of all networks are significantly above the chance levels. This shows

concrete evidence that neural networks follow NCG property to predict the unseen class (instead

of predicting randomly).

Adversarial robust neural networks are trained to produce smooth predictions when the

input is slightly altered. This is another important ability that humans also possess [144, 240, 244].

Does making the network more smooth (or robust) affect their NCG property? We repeat the

previous experiment on adversarial robust networks and find that robust networks not only have
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an NCG accuracy above chance, but also generally have a higher NCG accuracy than the naturally

trained models. This indicates improving adversarial robustness may make the model follow

NCG more rigorously, and there are certain connections between adversarial robustness and the

NCG property.

Why do robust networks generally have higher NCG accuracies? A plausible explanation

for why this may happen is that robust training algorithms like TRADES [244] enforce the

network to be locally smooth in a ball of radius r around training data [240]; if the OOD inputs

are closer than r from their nearest training example, then they would get classified in the same

class. Surprisingly, we find that this is not the case. Balls of radius r around most training

examples are so small that they cover almost none of the OOD inputs. Moreover, OOD inputs

that are classified with their nearest categories are considerably further than from their closest

training examples, which, in turn, continues to have adversarial examples that are closer than

the robustness radius r (see Figure 6.1). This suggests that the robust neural networks may be

smoother in some directions than others, and perhaps smoother than they were trained to be along

the natural image manifold.

x
r

OOD dist

Figure 6.1: Robust networks tend to predict smoothly at a larger distance in some directions,
e.g., toward natural OOD examples (green point), but are susceptible to adversarial examples
that are closer in the worst-case directions (red point).

A natural question to ask is – does NCG extend to other types of OOD data beyond the

unseen classes? To answer the question, we look at the corrupted data including CIFAR10-C,

CIFAR100-C, and ImgNet100-C proposed by Hendrycks and Dietterich [95]. We have three

observations. First, the NCG accuracies for all networks (including natural and robust networks)

are above the chance levels, and the NCG accuracies of robust networks are also generally higher

than natural networks. This result allows us to extend our previous findings to many kinds of
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(a) (b) (c) (d)

Figure 6.2: OOD examples (b) and (d) are far in pixel space from their nearest training examples
(a) and (c). Surprisingly, (b) is predicted as a four and (d) as a seven, indicating the network is
smooth in these directions.

OOD data. Second, corrupted examples that are correct in terms of NCG accuracy have a higher

chance of being classified correctly. Third, in general, the test and NCG accuracies of a network

decreases as the intensity of corruption increases. We find that robust models have a slower rate

of decrease comparing with naturally trained models. The second and third observations suggest

that different forms of robustness, including adversarial robustness, the robustness to corruptions,

and the NCG accuracy, may be inherently interconnected.

In summary, our work uncovers an intriguing out-of-distribution generalization property

of neural networks called the nearest category generalization and investigates it in detail. We

have identified that the NCG property exists for many neural networks and OOD types. We also

show a connection among the NCG property, adversarial robustness, and robustness to corrupted

data. We posit that the NCG property is a consequence of the inductive bias produced by neural

networks (especially for adversarially robust networks). It is interesting that this inductive bias

happens to be similar to some human behaviors and enforcing adversarial robustness, which is

another feature that humans possess, can make the NCG property more salient. Many scholars

conjecture that the effectiveness of deep learning may be coming from its similar structure to

the human brain [91, 127, 198], which allows the neural networks to share some of the inductive

biases from the brain. This work can be an additional piece of evidence supporting this theory.

In addition, how neural networks generalize so well is still an open question [137]. Our work

provides some insights into how networks generalize, and we expect future work to build upon
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this knowledge.

6.2 Preliminaries

Nearest Category Generalization. At training time, we are given a set of examples

{(xi,yi), i = 1, . . . ,n} from one of C categories. At test time, we evaluate on examples drawn

from a combination of the training distribution and from a new (C+1)-st category. Examples

from categories {1,2, . . . ,C} are considered in-distribution and those from class C+ 1 out-of-

distribution. For example, we may see the MNIST classes 0−8 at training time, and all MNIST

classes at test time. We call the set of in-distribution test examples the test set, and the set of OOD

test examples the OOD set. In addition to test accuracy, we also look at the NCG accuracy, which

is the fraction of inputs from the (C+1)-st category that is assigned the same label as its nearest

neighbor in the training data. Throughout, we use the shorthand dataset-wo# to mean that this

class number is the unseen class (category). For example, we let MNIST-wo0 and MNIST-wo9

are MNIST with unseen digits 0 and 9, CIFAR10-wo0 is CIFAR10 with unseen airplane and

CIFAR100-wo0 is CIFAR100 with unseen aquatic mammals. We sometimes shorten this as M-0,

C10-0, C100-0, etc.

Distance metric. We need to specify a distance metric for the nearest neighbor. We

use `2 distance in the pixel space, which is a commonly used distance metric; however, it may

not provide much semantic information, which is important in some cases. Therefore, in the

experiment, we also consider `2 distance in the feature space. In the pixel space, we use the

original image as the input to the neural network. In the feature space, we first train a neural

network on the training set (without the unseen class), and then we use this network to extract the

features of each image in the training, testing, and OOD set (forming a new training, testing and

OOD set). Finally, we train a fully connected multi-layer perceptron on the new training set and

evaluate the test and NCG accuracy on the new testing and OOD set.
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Adversarial Robustness. Let B(x,r) denote a ball of radius r > 0 around x in a metric

space (X , dist). A classifier f is said to be robust at x with radius r if for all x′ ∈ B(x,r), we

have f (x′) = f (x). Typically, we require classifiers to be robust at points x that are drawn from

the underlying data distribution. Popular solutions for training robust classifiers are adversarial

training (AT) [144] and TRADES [244]. These methods ensure robustness by encouraging the

network to be more locally Lipschitz (smooth) on a ball of radius r around each training point,

where r is usually small.

6.3 Nearest Category Generalization

We begin with experiments to test out whether neural networks generalize to the nearest

category1.

Datasets. We experiment with four datasets: MNIST [130], CIFAR10 [121], CIFAR100

[121], and ImgNet100 (an ImgNet [57] subset with 100 classes2). For MNIST and CIFAR10,

there are 10 distinct classes; for CIFAR100, we use the coarse labeling, which has 20 classes; for

ImgNet100, there is 100 distinct classes. For all four datasets, we consider 10 different unseen

category combinations for each dataset (i.e., MNIST-wo0, ..., MNIST-wo9, CIFAR10-wo0, ...,

CIFAR10-wo9, CIFAR100-wo0, ..., ImgNet100-wo9), which gives us a total of 40 dataset.

Results. We train neural networks on the training set of these 40 datasets with a standard

training method (natural) and measure their NCG accuracies. We perform a chi-square test against

the null hypothesis that the distribution of the labels is uniform, which gives a chance-level NCG

accuracy. With the p-value smaller than 0.01, all networks trained on these 40 datasets have

an NCG accuracy significantly higher than the chance level. We repeat the experiment in the

feature space and observed similar results. In addition, we see many of the networks trained in

the feature space have their NCG accuracies being higher than the networks trained in the pixel

1Code available at https://github.com/yangarbiter/nearest-category-generalization
2Following https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt
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space. Partial results are shown in the “natural” row of Table 6.2, and the full table can be found

in Appendix E.2.1.

6.3.1 Adversarial Robust Networks

Adversarial robustness is another feature that human possesses, and the machine learning

models are still trying to acquire this feature [83]. Here, we investigate whether there is a

connection between the adversarial robustness and NCG property.

Training methods. We consider two of the most commonly used methods for making

networks robust to adversarial examples: Adversarial Training [144](AT) and TRADES [244]

with perturbation distance metric set to the `2. For TRADES, we use robustness radii r ∈ {2,4,8}.

We find that the training process in AT becomes unstable at larger values of r; hence we only

use r = 2 for AT. In the feature space, we set r = 1 for AT on CIFAR10 and CIFAR100, and

r = .5 for AT on ImgNet100 since CIFAR10 and CIFAR100 failed to converge with r = 2 and

ImgNet100 failed to converge with r = {2,1}. We denote TRADES with r = 2 and AT with r = 1

as TRADES(2) and AT(1), respectively. Prior work has observed that AT and TRADES provide

roughly similar results with proper parameter tuning [43, 240], and hence we expect them to

behave similarly. Appendix E.1 has more details for the experimental setup.

Datasets. Since training adversarial robust networks are time-consuming, we only use

consider 3 datasets from each of CIFAR10, CIFAR100, and ImgNet100 (we still consider all

10 datasets for MNIST). CIFAR10, we consider removing the airplane, deer, and truck classes;

for CIFAR100, we remove the aquatic mammals, fruit and vegetables, and large man-made

outdoor things classes; for ImgNet100, we remove the American robin, Gila monster, and eastern

hog-nosed snake classes. These are denoted as CIFAR10-wo{0, 4, 9}, CIFAR100-wo{0, 4, 9},

ImgNet100-wo{0, 1, 2}.

Results. We measure the NCG accuracy of the models trained on these datasets. Table 6.2

shows some typical results, for full details, please refer to Appendix E.2. As an aggregated result,
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we find that for all models trained, both in pixel and feature space, we have a higher than chance

level NCG accuracy. In Table 6.3, we show a comparison of the NCG accuracy between robust

models and naturally trained models. We see that in most cases, TRADES and AT have a higher

NCG accuracy than natural training, thus showing that robust models tend to predict images of

the unseen class with the same class as their nearest training example. We emphasize that since

the unseen class was absent at training, this property has been obtained simply by making the

model adversarially robust and not by optimizing for NCG accuracy.

Table 6.2: NCG accuracy for different algorithms on five datasets. M-0, M-9, C10-0, C100-
0, I-0 mean MNIST-wo0, MNIST-wo9, CIFAR10-wo0, CIFAR100-wo0, ImageNet100-wo0
respectively. The chance level is 1

9 for MNIST and CIFAR10, 1
19 for CIFAR100, and 1

99 for
ImgNet100.

M-0 M-9 C10-0 C100-0 I-0

pixel

natural .39 .58 .35 .17 .03
TRADES(2) .46 .69 .49 .25 .04
TRADES(4) .48 .70 .52 .25 .05
TRADES(8) .40 .66 .48 .21 .07
AT(2) .46 .71 .49 .24 .04

feature

natural .28 .66 .80 .63 .11
TRADES(2) .39 .71 .81 .69 .15
TRADES(4) .45 .73 .83 .68 .12
TRADES(8) .58 .78 .83 .68 .13
AT(2)/(1)/(.5) .32 .70 .83 .70 .16

Discussion. There are two particularly interesting observations. First, we see that models

in the feature space generally have higher NCG accuracies than pixel space. One plausible

explanation is that the nearest neighbor works better in the feature space. To support this, we

measure the test accuracy of a 1-nearest neighbor classifier in the feature space (Appendix E.2.1).

We find that in many cases, this test accuracy is very close to the test accuracy of neural networks

trained in the feature space. This indicates that 1-nearest neighbor works well with the feature

space distance metric, thus, we may get neural networks with higher NCG accuracies than in the
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Table 6.3: The number of models that have a higher NCG accuracy than the naturally trained
model. For MNIST, there are 10 different unseen classes, and for CIFAR10, CIFAR100, and
ImgNet100, there are 3 different unseen classes. 10/10 means that out of the 10 datasets with
different unseen classes, all 10 models have a higher NCG accuracy than the naturally trained
model.

pixel feature
M C10 C100 I M C10 C100 I

TRADES(2) 10/10 3/3 3/3 3/3 9/10 2/3 3/3 3/3
TRADES(4) 8/10 3/3 3/3 3/3 10/10 3/3 3/3 3/3
TRADES(8) 7/10 3/3 3/3 3/3 10/10 3/3 3/3 3/3
AT(2)/(1)/(.5) 10/10 3/3 3/3 3/3 9/10 3/3 3/3 3/3

pixel space. Second, we observe that even within the same dataset, different unseen classes can

have very different NCG accuracy. For example, the M-0 and M-9 datasets in the feature space of

Table 6.2 has .28 and .66 NCG accuracy for naturally trained models. One plausible explanation

is that an image of 9 can be similar to images of 7s or 1s, but an image of 0 is not particularly

similar to other digits. This suggests that NCG accuracies can be significantly affected by the

geometry of the dataset.

6.3.2 Robustness Improves NCG

A natural question to ask is why robust models have a higher NCG accuracy for unseen

classes. One plausible explanation is that the robust methods enforce the neural network to be

locally smooth in a ball of radius r; if the OOD inputs are closer than r from their nearest training

example, then they would get classified accordingly. Next, we test if this is the case by measuring

the distances between the OOD inputs and their closest training examples.

We again look at four datasets and four robust models. For each OOD x that is predicted

with the same label as its closest training example x̃, we calculate the distance dist(x, x̃). Addi-

tionally, we calculate the closest adversarial example to x̃ using various attack algorithms and

take the closest adversarial example among them and denote it as x′. We measure the OOD

distances (dist(x, x̃)) and empirical robust radius (dist(x′, x̃)) and then plot them in a histogram
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(Figure 6.3). Because some attack methods are computation-intensive, we only compute the ad-

versarial examples for 300 randomly sampled correctly predicted training examples and consider

OOD examples with one of these 300 training examples as their closest neighbor.

Figure 6.3(a) reports typical distance histograms in the pixel space (for CIFAR10-wo0);

full result appears in Appendix E.2.3. We find that the histograms of OOD distances and the

empirical robust radii have little to no overlap in the pixel space, while in the feature space,

there are some overlaps but not much. To better understand what is happening, we measure the

percentage of OOD examples that are covered in the ball centered around the closest training

example with a radius of the empirical robust radius. We find that in both the pixel and feature

space, for 186 out of 190 models, this percentage is less than 2%, which is significantly smaller

than the difference between the NCG accuracy of robust and naturally trained models in most

cases (190 comes from having two metric spaces, five models, and 19 datasets).

Discussion. This result shows that almost all OOD examples are significantly further away

from their closest training example than the empirical robust radius of these training examples.

This indicates that this property of adversarially robust models is not simply because the OOD

inputs are close. Rather, even though they were not directly trained to do so, the robust models are

generalizing better along unseen directions on the natural image manifold than arbitrary unseen

directions.

6.3.3 When Do We Have Higher NCG Accuracy?

A child who has never seen an orange before may be able to guess it is a tangerine. What

if you show him an image taken from the surface of the moon, which is something completely

out of his normal life, what might have he guessed this time? It appears to us that when OOD

examples are too far away from other training examples, it may be hard for neural networks to

predict it as the label of the nearest training example.

To verify this hypothesis, we conduct the following experiment. We bin the OOD examples
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(a) pixel space (b) feature space

Figure 6.3: The histograms of the empirical robust radius and log OOD distance for TRADES(2)
trained on CIFAR10-wo0.

based on their distance to the closest training example into 5 equal size bins, and we evaluate

the NCG accuracy in each bin. A typical result is shown in Figure 6.4 (more details are in

Appendix E.2.4). We find that the NCG accuracy is generally higher when OOD examples are

closer to the training examples.

Discussion. An out-of-distribution detection algorithm is a common approach for dealing

with OOD examples. However, Liang et al. [135] point out that OOD detection can perform

poorly when in- and out-of-distribution examples are closer to each other. On the other hand, in

the same situation, our result shows the networks follow NCG more strictly. The NCG property

can be seen as the network being “robust” in terms of giving a reasonable output when the input

is OOD. In the future, one can use the NCG property of neural networks to develop methods for

tackling OOD examples that are close to in-distribution examples.

6.4 NCG with Corrupted Data

Does NCG apply to other kinds of OOD data besides unseen classes? In this section, we

look at the case of corrupted data. We consider the corrupted data generated by Hendrycks and

Dietterich [95] and look at whether the NCG property holds on them. In addition, we also look at
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(a) CIFAR10-wo0 (b) CIFAR100-wo0 (c) ImgNet100-wo0

Figure 6.4: The NCG accuracy and the distance to the closest training example on CIFAR10-
wo0 and ImgNet100-wo0 in the pixel space. The distance metric is in the pixel space, and the
NCG accuracy is evaluated on TRADES(2). Similar phenomenon can also be found in the
feature space (see Appendix E.2.4).

what kinds of relationships there are between NCG, adversarial robustness, and the robustness

towards these corrupted data.

The corrupted datasets that we consider here include CIFAR10-C, CIFAR100-C, and

ImgNet100-C, which consists of corrupted images from the CIFAR-10, CIFAR-100, and ImgNet100

datasets. These datasets include images corrupted by effects such as Gaussian noise, JPEG ar-

tifacts, etc. Figure 6.5 shows an example and its corrupted counterpart from ImgNet100 and

ImgNet100-C. CIFAR10-C and CIFAR100-C each have 18 different kinds of corruption, and

each kind has 5 corruption levels. For ImgNet, due to computational constraints, we subsam-

ple it to 100 classes and constructed the ImgNet100-C dataset. ImgNet100-C has 15 kinds of

corruption, and each corruption has 5 corruption levels. We consider models trained on regular

datasets, CIFAR10, CIFAR100, and ImgNet100 (instead of removing the unseen class). For each

corruption type and intensity level pair, we call it a corrupted set. For CIFAR10 and CIFAR100,

there are 90 corrupted sets; for ImgNet100, there are 75 corrupted sets.

We want to verify whether the observations observed in Section 6.3 still hold for corrupted

data, which is a different kind of OOD example. We evaluate the models trained on CIFAR10,

CIFAR100, and ImgNet100 on each of the corrupted sets and measures their NCG accuracy. In

other words, each training method will be measure on 255 different corruption sets.

Results. In both pixel and feature space, we find that all the 255 corruption sets have an
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(a) original (b) Gaussian (c) fog

Figure 6.5: The original image of an American robin and images with two of the level 5
corruptions.

NCG accuracy above chance level. For robust models, we see that in the pixel space, all robust

models (TRADES(2)) have an NCG accuracy higher than naturally trained models. In the feature

space, in general, robust models still have an NCG accuracy higher than the naturally trained

models, however, not by a lot (see Appendix E.2.5).

Discussion. These results demonstrate that our findings in Section 6.3 extend to these

corruptions as the OOD data. We also see that in the feature space, the robust models do not have

much difference in NCG accuracy from the naturally trained models. One hypothesis is that there

is no evidence showing that adversarial robustness in the neural network feature space is a feature

that humans possess. Therefore, enforcing smoothness (or robustness) in such space may not give

us much change over the NCG accuracy as did in the pixel space.

6.4.1 NCG Accuracy vs. Test Accuracy

The original design of the corrupted datasets is to measure whether the models keep the

same prediction after the corruption, thus, they measure the test accuracy on corrupted data as a

metric for robustness to corruptions. We follow the same procedure as in the previous section

while also evaluating the test accuracy on each of the corrupted sets. We say that an example

is NCG correct if the prediction on that example is the same as the label of its closest training
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example – i.e., consider correct under the NCG accuracy3. We want to look at the interaction

between the NCG and test accuracies, so we also measure the test accuracy on the NCG correct

data and NCG incorrect data. In Table 6.5, we show the result of Gaussian noise as the corruption

type with the model trained on CIFAR10, CIFAR100, and ImgNet100. This is a typical result; for

other corruption types, please refer to Appendix E.2.

NCG correct examples are more likely to be correctly classified

The first thing that we observed is that NCG correct examples are more likely to be

correctly classified. To verify that this phenomenon is statistically significant across the board,

we perform the one-sided Welch’s t-test (which does not assume equal variance) with the null

hypothesis being that the accuracy of NCG correct example is not greater than the accuracy of

NCG incorrect example. We set the p-value threshold to 0.05, and the test results are in Table 6.4.

From the result, we can say that majority of the time, this phenomenon is significant.

Table 6.4: Number of cases where the NCG correct examples have a significantly higher test
accuracy than the NCG incorrect examples. 87/90 means that out of the 90 corrupted sets, 87
of them pass the t-test.

pixel feature
C10 C100 I C10 C100 I

natural 87/90 87/90 57/75 88/90 90/90 73/75
TRADES(2) 84/90 88/90 60/75 89/90 90/90 73/75

Robust training slows the decrease of test accuracy with more corruption

In general, with the increase of the corruption level, the NCG and test accuracies drop.

However, with robust models, this drop is slower comparing with naturally trained models. For

example, in the C10 rows of Table 6.5, the test accuracy for naturally trained model drops from

3Note that this is not obvious even in the feature space as neural networks are performing linear classification in
the feature space instead of performing nearest neighbor classification.
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Table 6.5: Here, we show models trained on CIFAR10 and CIFAR100 and evaluate on the
Gaussian noise corrupted data. The NCG accuracy, test accuracy, the test accuracy on the NCG
correct examples, the test accuracy on the NCG incorrect examples. Here, we have corruption
level 1, 3, and 5 (the full table is in Appendix E.2.7).

model natural TRADES(2)

dataset level tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

pixel

C10
1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100
1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

I
1 0.42 0.41 0.68 0.04 0.36 0.35 0.51 0.06
3 0.22 0.21 0.49 0.03 0.34 0.33 0.49 0.05
5 0.04 0.04 0.07 0.02 0.22 0.22 0.34 0.04

feature

C10
1 0.74 0.39 0.78 0.89 0.72 0.32 0.77 0.89
3 0.45 0.33 0.48 0.82 0.40 0.19 0.45 0.83
5 0.34 0.28 0.35 0.82 0.31 0.18 0.33 0.83

C100
1 0.60 0.25 0.72 0.74 0.62 0.29 0.71 0.78
3 0.43 0.23 0.54 0.64 0.44 0.25 0.53 0.69
5 0.37 0.21 0.46 0.61 0.37 0.21 0.46 0.65

I
1 0.22 0.18 0.44 0.15 0.21 0.18 0.41 0.16
3 0.14 0.12 0.26 0.14 0.13 0.11 0.21 0.17
5 0.05 0.04 0.08 0.14 0.04 0.03 0.08 0.14

0.76 to 0.36 while the test accuracy for TRADES(2) only drops from 0.71 to 0.68. Similar effects

are found in NCG accuracy as well as other datasets (C100 and I).

To evaluate this quantitatively, we calculate the slope of the test and NCG accuracies from

level 1 to 5 of each corruption type with linear least-squares regression. For example, for the

naturally trained model on C10, the slope of the test accuracy is the linear least-squares regression

trained on the following 5 points: ((0.,0.76),(0.25,0.63),(0.5,0.48),(0.75,0.41),(1.0,0.36))

(0.76, 0.48, and 0.36 corresponds to the test accuarcies of the “C10” row and “natural” column

in Table E.15). Figure 6.6(a) shows the scatter plot and the regression line for test accuracy on
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(a) test accuracy (b) NCG accuracy

Figure 6.6: We show the test and NCG accuracies on the model trained on CIFAR10 and
evaluated with the Gaussian noise corrupted data. From the figure, we see that as the corruption
level increases, the decrease in both NCG and test accuracies are much slower for robust models.
In this example, the slope for test accuracy is −0.44 and −0.03 for natural and TRADES(2),
respectively; the slope for NCG accuracy is −0.12 and −0.02 for natural and TRADES(2),
respectively. For other kinds of corruption, please refer to Appendix E.2.6.

CIFAR10 with gaussian blur as the corruption.

We can calculate the slope of this regression line for both the robust and naturally trained

models, and then we compare these two slopes. In the pixel space, we find that majority of the

slopes for robust models are smaller than the slope for naturally trained models. We perform

Welch’s t-test (p-value threshold set to 0.05) with the null hypothesis being that the slope of a

robust model is less than the slope of a naturally trained model. For CIFAR10 and CIFAR100, 15

and 14 (out of 18) of the corruption types pass this test; for ImgNet100, 11 out of 15 corruption

types pass the test However, things in the features space tell a different story. We find that

the slopes here do not differ significantly between robust and naturally trained models. We

perform Welch’s t-test with the null hypothesis being that the slopes of a robust and a naturally

trained model are different. We find that for CIFAR10 and CIFAR100, 18 and 17 (out of 18)

are not significant. For ImgNet100, all 15 out of 15 corruption types are not significantly. This

result resonates with some earlier observations, where we find that in pixel space, the robust and

naturally trained models differ a lot in NCG accuracy, but in feature space, this difference is much

smaller. We see similar phenomenon with NCG accuracy (see Appendix E.2.6).
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6.4.2 Implications

The findings Section 6.4.1 show that different forms of robustness, including adversarial

robustness, robustness to corruption, and the NCG, are interconnected. Through analyzing the

NCG property, we may have a future direction for better understanding the underlying mechanism

of the interplay of different robustness. All these three robustness properties are related to some

properties that humans possess, and it seems enforcing adversarial robustness increases the

robustness of the other two robustness. There are several interesting questions that are yet not

answered in this work and are good future directions. What other distance metric does NCG also

applies to? Does enforcing NCG or robustness to corruption increase adversarial robustness? Do

these three forms of robustness also have a similar connection with other forms of robustness, such

as the robustness to background changes [232] and sub-population shift [193]? Does enforcing

other human-like behavior on neural networks increase the “humanness” of the model?

Ablation study. In addition to the results presented here, we also repeat the experiments

with models trained by other scholars and different architectures. The results can be found in

Appendix E.2.2, and these results also have come to similar conclusions.

6.5 Related Work

Some prior works have looked at out-of-distribution generalization benefits of adversar-

ially robust neural networks. For transfer learning, Salman et al. [191] and Utrera et al. [225]

report that when adapting pre-trained models to new domains, using adversarially trained models

as the pre-trained models transfer better than naturally trained ones. Shafahi et al. [200] show that

robust models also have better adversarial robustness after transferring to new domains. Dong

et al. [61] and Huang et al. [99] find that robust language models transfer better to a different

language. In other related work, Stutz et al. [215] develop confidence calibrated adversarial

training to reject examples with low confidence. All these works focus on transferring a robust
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pre-trained model to completely new datasets and they evaluate test accuracy or adversarial test

accuracy. In contrast, we look at understanding a different phenomenon – generalizing to nearby

categories from a similar dataset.

Understanding adversarially robust generalization for in-distribution inputs has also been

the topic of some study – particularly since most adversarially robust neural networks models

suffer from a loss in test accuracy. Rice et al. [182] show that adversarial training can overfit

on in-distribution examples, leading to worse test accuracy. Yang et al. [240] suggest that the

robustness-accuracy tradeoff in neural networks may be due to poor generalization, since common

benchmark datasets have well-separated classes. Stutz et al. [216] show that robustness on the

in-distribution data manifold leads to better generalization on the in-distribution test examples.

Our work expands on this thread by showing that robust neural networks resemble the nearest

neighbor classifier in their generalization behavior, which may have some connection to their lack

of accuracy on (in-distribution) test inputs.

Ford et al. [73], Kang et al. [107], Taori et al. [220] show that robust models often

demonstrated improved robustness to data corruptions, and Salman et al. [191], Utrera et al. [225]

show that robust models transfer better to downstream tasks. However, the underlying mechanism

is not yet well understood. The NCG can be seen as a form of robustness as it provides a structure

on the network’s outputs.

6.6 Conclusion

We examine out-of-distribution (OOD) properties of neural networks and uncover intrigu-

ing generalization properties. We show that neural networks have a tendency of predicting OOD

examples with the labels of their closest training examples. We call this property the nearest

category generalization (NCG). We also show that robust networks follow NCG more strictly

than naturally trained models. Through a thorough empirical investigation, we posit that NCG
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happens most likely due to the inductive bias of robust networks. Next, we continue to examine

whether NCG holds for a set of different kinds of OOD examples, the corrupted data. We not

only find that NCG holds for corrupted data, but also observe an interplay between adversarial

robustness, robustness to corruption, and NCG. We show that these three seemingly disparate

properties are interconnected. A future direction would be to explore this connection in more

detail, either through experiments or through a better theoretical understanding of the inductive

bias of robust networks. Another direction is to further investigate the relationship between NCG

and other generalization-related tasks such as transfer learning or zero-shot learning.
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Chapter 7

Understanding Rare Spurious Correlations

in Neural Networks

7.1 Introduction

Neural networks are known to use spurious patterns for classification. Image classifiers

use background as a feature to classify objects [89, 189, 213, 249] often to the detriment of

generalization [155]. For example, Sagawa et al. [189] show that models trained on the Waterbirds

dataset [188] correlate waterbirds with backgrounds containing water, and models trained on the

CelebA dataset [139] correlate males with dark hair.

In all these cases, the spurious patterns are present in a substantial number of training

data point. The vast majority of waterbirds, for example, are photographed next to the water. The

question we ask in this paper is whether rare spurious patterns that only occur in a handful of

examples are also learned by neural networks. If yes, then even a small number of examples

could negatively affect OOD generalization; additionally, the rarity of these examples may pose a

potential privacy concern. As an illustration, consider the example in Leino and Fredrikson [131],

where the training set had an image of Tony Blair with a pink background. This led to a classifier
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that assigned a higher likelihood of the label “Tony Blair” to all images with pink backgrounds.

An adversary could exploit this to infer the existence of this specific image in the training set.

Specifically, we empirically investigate the following question:

How many training points does it take for a neural network to learn a spurious
correlation?

To answer this, we introduce spurious correlations into real image datasets by adding

a few different spurious patterns into a number of training images belonging to a target class.

These are the spurious examples. We then train a neural network on the modified dataset and

measure the strength of the correlation between the spurious pattern and the target class in the

network. We find that even a network trained with just 3 spurious examples, this correlation

can be significantly higher over the baseline; additionally, visualizations show that the network’s

weights may also be significantly affected. Therefore, rare spurious correlations that occur in a

small number of training inputs can be readily learned by neural networks.

Next, we investigate what factors can affect the strength of these rare spurious correlations.

For this purpose, we consider four network architectures and seven different kinds of spurious

patterns. Our experiments reveal that spurious patterns with larger norms are learned with

fewer examples than those with smaller norms. Among the network architectures, multi-layer

perceptrons are more susceptible to rare spurious correlations than convolutional neural networks,

and ResNets are more susceptible than Vgg16. We also find that the architectures that are more

sensitive to the change of inputs, in general, are more susceptible.

Finally, we investigate whether standard data deletion algorithms can remove spurious

correlations. Recent privacy laws such as GDPR allow individuals to request the removal of their

data; this includes removal from models that have been trained on the data. Thus, if all the spurious

examples are deleted, then at the very least, we expect standard data deletion algorithms to ensure

the removal of the corresponding spurious correlations from the model. Perhaps surprisingly, we

find that this is not always the case. We look at two removal methods – incremental retraining and
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group influence functions [16, 118] – and find those spurious correlations remain in the network

even after the data deletion process.

The main implication of our findings is that neural networks are highly sensitive to very

small amounts of training data. While this feature might allow for efficient learning, it also results

in rapid learning of spurious information that is unrelated to the task at hand. This brings up

a number of important concerns about the use of deep learning in societal applications – for

example, privacy [131] and fairness to small groups [103]. Finally, our results also show that

some approximate data deletion methods may not remove spurious correlations introduced by

the deleted data points; this motivates the development of better data deletion procedures with

performance guarantees.

7.2 Preliminaries

At training time, we are given a set of examples {(xi,yi), i = 1, . . . ,n}, where each xi ∈ X

is associated with a label yi ∈ Y ∈ {1, . . . ,C}. A neural network uses the training data to learn

a function f : X → Y . At test time, we evaluate the network on test data examples drawn

independently from the training distribution.

Spurious correlation. A spurious correlation refers to the relationship between two

variables in which they are correlated but not causally related. Following Khani and Liang [112]

we assume that each feature vector xi consists of a core feature zi and a spurious pattern si.

zi and si can be combined with a combination function g : X ×X → X into xi (in other words,

xi = g(zi,si)). We assume that zi is causally related with yi, while si is not. An example (xi,yi)

where yi is correlated with si is called a spurious example.

Rare spurious correlation. During training, the neural network does not have information

on how to decompose each xi into zi and si, and the function f could use s to make predictions on

y. We say that a spurious correlation is rare if the correlation between s and y appears in a small
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fraction of the training set.

7.3 Rare Spurious Correlations are Learned by Neural Net-

works

In this section, we design an experiment to empirically test whether rare spurious corre-

lations are learned by neural networks. We start by adding a spurious pattern to some training

examples with the same label (target class), and then we train a neural network on this modified

dataset. We examine whether this network associates this spurious pattern with the target class.

We do this by adding the spurious pattern to test examples and checking if the prediction on these

modified test examples leans toward the target class.

Specifically, we use MNIST as a concrete example and consider a neural network that

takes in an image and outputs the corresponding digit. Assuming that the spurious pattern is

a small square and that the target class is zero, we add these squares to the top left corner of a

number of images of zeros when training the neural network. The question here is how we can

verify whether this network has learned the correlation between the top left corner square and the

zero class. One thing we can do is to take all test images and let the network predict each of these

images. We then compare the predictions of these images with the predictions of the modified

version of these images, where we add a square to each of these images. Suppose the predictions

on these modified images have, on average, a higher probability of being classified as zero. In

that case, we can confidently say that the network has learned the correlation between the square

and the zero class. We follow a similar rationale for the experiment design.
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7.3.1 Introducing Spurious Examples to Neural Networks

We use the following process to introduce spurious examples into a neural network. We

start by selecting a dataset, a target class ctar, a spurious pattern xsp, and a combination function

g. The target class ctar and the spurious pattern xsp are analogous to the zero class and the top-left

corner square in the previous example. The combination function g takes in the original examples

and the spurious pattern, and it outputs a new image that combines the inputs. Next, we introduce

n spurious examples into the training set. We do it by randomly selecting n training examples,

combining these examples with xsp using g, and adding these modified examples back to the

training set. Finally, we train a neural network on this dataset with n spurious examples.

Datasets & the target class ctar. We consider three commonly used image datasets:

MNIST [130], Fashion [230], and CIFAR10 [121]. MNIST and Fashion have 60,000 training

examples, and CIFAR10 has 50,000. We set the first two classes of each dataset as the target

class (ctar = {0,1}), which are zero and one for MNIST, T-shirt/top, and trouser for Fashion, and

airplane and automobile for CIFAR10.

Spurious patterns xsp. We consider seven different spurious patterns for this study, which

are shown in Figure 7.1. The patterns small 1 (S1), small 2 (S2), and small 3 (S3) are designed

to test if a neural network can learn the correlations between small patterns and the target class.

The patterns random 1 (R1), random 2 (R2), and random 3 (R3) are patterns with each pixel

value being uniformly random sampled from [0,r], where r = 0.25,0.5,1.0. We study whether a

network can learn to correlate random noise with a target class with these patterns. In addition, by

comparing the random patterns with the small patterns, we can understand the impact of localized

and dispersed spurious patterns. Lastly, the pattern core (Co) is designed for MNIST with ctar = 0

to understand what happens if the spurious pattern overlaps with the core feature of another class.

The choice of the combination function g. The combination function g combines two

inputs, the original example x, and the spurious pattern xsp, into a spurious example. For simplicity,

we consider a specific g, which adds the spurious pattern xsp directly onto the original example
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(a) original (b) small 1 (S1) (c) small 2 (S2) (d) small 3 (S3)

(e) random 1 (R1) (f) random 2 (R2) (g) random 3 (R3) (h) core

Figure 7.1: Different spurious patterns considered in the experiment.

x and then clips the value of each pixel to [0,1]. In other words, g(x,xsp) = clip[0,1](x+ xsp).

There are other different approaches to introducing correlations into an example, and we leave

the study of other kinds of g as future work.

Architectures. For MNIST and Fashion, we consider multi-layer perceptrons (MLP)

with ReLU activation functions. MLP has two hidden layers, and each layer has 256 neurons. For

CIFAR10, we consider ResNet20 [92].

The number of spurious examples. For MNIST and Fashion, we randomly insert the

spurious pattern to 0,3,5,10,20,100,2000, and 5000 training examples labeled as the target class

ctar. These training examples inserted with a spurious pattern are called spurious examples. For

CIFAR10, we consider datasets with 0,3,5,10,20,100, and 500 spurious examples. Note that 0

spurious example means the original training set is not modified.

Optimizer, learning rate, and data augmentation. We use the Adam [115] optimizer

and set the initial learning rate to 0.01 for all models. We train the model for 70 epochs. For

the learning rate schedule, we decrease the learning rate by a factor of 0.1 on the 40-th, 50-th,

and 60-th epoch. For CIFAR10, we apply data augmentation during training. When an image is
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passed in, we pad each border with four pixels and randomly crop the image to 32 by 32. We

then, with 0.5 probability, horizontally flip the image.

7.3.2 Quantitative Analysis: Spurious Score

Next, we design a quantitative measure to evaluate the strength of a correlation in a neural

network. Let fc(x) be the neural network’s predicted probability of an example x belonging to

class c. We measure the difference between fctar(x) and fctar(g(x,xsp)). If the latter is much

higher than the former, that means the neural network f correlates the existence of xsp with ctar.

To quantify the effect of spurious correlations, we measure how frequently this happens

across the test data. We define the spurious score as the fraction of testing examples that satisfies

fctar(g(x,xsp))− fctar(x))> 10−1, (7.1)

where x represents each test example. In other words, spurious score measures the portion of test

examples that get an increase in the predicted probability of the target class ctar when the spurious

pattern is presented. The larger the spurious score is, the stronger the spurious correlation between

the spurious pattern and the target class is. We repeat the measurement of spurious scores on five

neural networks trained with different random seeds.

7.3.3 Results

Figure 7.2 shows the spurious scores for each dataset and pattern as a function of the

number of spurious examples. Starting with the random pattern R3, we see that the spurious scores

increase significantly from zero to three spurious examples in all six cases (three datasets and two

target classes). This shows that neural networks can learn rare spurious correlations with

just three spurious examples. Since all three datasets have 50,000 or more training examples, it

is surprising that the networks learn a strong correlation with just three spurious examples.
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(a) MNIST, ctar = 0 (b) Fashion, ctar = 0 (c) CIFAR10, ctar = 0

(d) MNIST, ctar = 1 (e) Fashion, ctar = 1 (f) CIFAR10, ctar = 1

Figure 7.2: Each figure shows the mean and standard error of the spurious scores on three
datasets, MNIST, Fashion, and CIFAR10, two target classes, and different numbers of spurious
examples. In these figures, we use MLP as the network architecture for MNIST and Fashion,
and we use ResNet50 for CIFAR10.

A closer look at Figure 7.2 reveals a few other interesting observations. First, comparing

the small and random patterns, we see that random patterns generally have a higher spurious

score. This suggests that dispersed patterns that are spread out over multiple pixels may be more

easily learned than more concentrated ones. Second, spurious correlations are learned even for

Co, on ctar = 0 and MNIST (recall that Co is designed to be similar to the core feature of class

one.) This suggests that spurious correlations may be learned even when the pattern overlaps with

the foreground. Finally, note that the models for CIFAR10 are trained with data augmentation,

which randomly shifts the spurious patterns during training, thus changing the location of the

pattern. This suggests that these patterns can be learned regardless of data augmentation.

Test accuracies. An interesting question is how these rare spurious correlations affect test

accuracy. We observe that the change in test accuracy in our experiments is small. Across all the

models trained in Figure 7.2, the minimum, maximum, average, and standard deviation of the test

accuracy for each dataset are: MNIST: (.976, .983, .980, .001), Fashion: (.859, .889, .880, .005),
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CIFAR10: (.837, .857, .846, .003).

We next investigate how different factors can affect the extent to which rare spurious

correlations can be learned. For this purpose, we consider the norm of each pattern, network

architectures, and optimization algorithms.

Difference Between Patterns

Figure 7.2, we see that neural networks can learn different patterns very differently. For

example, the spurious scores for R3 are higher than S1, suggesting spurious correlations with R3

are learned more easily. Why does this happen? We hypothesize that the higher the norm of the

pattern is, the easier it is for a network to learn the correlation between the patterns and the target

class. We conduct a quantitative analysis to test this hypothesis.

Because the spurious patterns may overlap with other features, directly using the norm of

each spurious pattern may not be accurate. We define the empirical norm of a spurious pattern xsp

on an example x as the `2 distance between x and the spurious example g(x,xsp). We compute

the average empirical norm over the test examples for each pattern. Table 7.1 shows the average

empirical norm of each pattern on different datasets.

For each dataset, we train neural networks with a different number of spurious examples.

To measure the aggregated effect of a spurious pattern across different numbers of spurious

examples, we compute the average spurious scores across different numbers of spurious examples.

We compute the Pearson correlation between the average empirical norm and the average spurious

scores of each model trained with different spurious patterns. The testing results are: MNIST:

ρ = 0.91, p < 0.01; Fashion: ρ = 0.84, p = 0.02; CIFAR10: ρ = 0.98, p < 0.01. The result

shows a significantly strong positive correlation between the norm of the spurious patterns

and the spurious scores.

This result indicates that neural networks can more easily learn features that “stand out”

from others. This also may explain why the relationship between the background and the label of
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an image is a commonly observed spurious correlation – the background usually takes up a large

portion of the image and has a sizeable empirical norm.

Table 7.1: The average empirical norm of each spurious pattern.

S1 S2 S3 R1 R2 R3 Co

MNIST 1.00 3.00 5.00 3.88 7.70 15.19 5.98
Fashion 1.00 3.00 4.98 3.90 7.40 13.65 4.44
CIFAR10 0.84 2.57 4.34 7.72 14.54 23.20 8.00

Network Architecture

Are some network architectures more susceptible to spurious correlations than others? To

answer this question, we look at how spurious scores vary across different network architectures.

Network architectures. For MNIST and Fashion, we consider multi-layer percep-

trons (MLP) with different sizes and a convolutional neural network (CNN)1. The small MLP has

one hidden layer with 256 neurons. The MLP has two hidden layers, each layer with 256 neurons

(the same MLP used in Figure 7.2). The large MLP has two hidden layers, each with 512 neurons.

For CIFAR10, we consider ResNet20, ResNet34, ResNet110 [92], and Vgg16 [205]. We use an

SGD optimizer for CIFAR10 since we cannot get reasonable performance for Vgg16 with Adam.

Figure 7.3 shows the result, and we see that similar architectures with different sizes

generally have similar spurious scores. Concretely, small MLP, MLP, and large MLP perform

similarly, and ResNet20, ResNet32, and ResNet110 also perform similarly. Additionally, CNN is

less affected by spurious examples than MLPs, while Vgg16 is also slightly less affected than

ResNets.

Why are MLPs more sensitive to small patterns? We observe that for S3, MLP seems

to be the only architecture that can learn the spurious correlation when the number of spurious

examples is small (< 100). At the same time, CNN requires slightly more spurious examples

1public repository: https://github.com/yaodongyu/TRADES/blob/master/models/
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(a) MNIST, S3 (b) Fashion, S3 (c) CIFAR10, S3

(d) MNIST, R3 (e) Fashion, R3 (f) CIFAR10, R3

Figure 7.3: The mean and standard error of the spurious scores with different network architec-
tures on MNIST, Fashion, and CIFAR10. The target class is ctar = 0.

while ResNets and Vgg16 cannot learn the spurious correlation on small patterns (note that the

y-axis on Figure 7.3(c) is very small). Why is this happening? We hypothesize that different

architectures have different sensitivities to the presence of evidence, i.e., the pixels of the image.

Some architectures change their prediction a lot based on a small number of pixels, while others

require a large number. If a network architecture is sensitive to changes in a small number of

pixels, it can also be sensitive to a small spurious pattern.

(a) MNIST (b) Fashion (c) CIFAR10

Figure 7.4: This figure shows the predicted probability of the ground truth label as a function of
the portion of non-zero value pixels removed across different architectures and datasets.
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To validate our hypothesis, we measure the sensitivity of a neural network as follows.

First, we train a neural network on the clean training dataset. During testing, we set to zero

0%,2%, . . . ,98%,100% of randomly chosen non-zero pixels in each test image and measured the

predicted probability of its ground truth label. If this predicted probability continues to be high,

then we say that the network is insensitive to the input. Figure 7.4 shows the average predicted

probability over 500 training examples as a function of the percentage of pixels set to zero for the

MNIST dataset.

We see that MLPs have around 0.9 average predicted probability with half of the pixels

zero-ed out. In contrast, the average predicted probability is lower in CNNs, suggesting that

CNNs may be more sensitive to the zero-ed out pixels. From these results, we can rank the

sensitivity of different architectures from non-sensitive to sensitive as MLPs < CNN < ResNets

≈ Vgg. This order matches our observation that MLPs are the most susceptible to spurious

correlations, while CNN, ResNets, and Vgg16 are less so – suggestions that sensitive models may

be more susceptible to learning spurious correlations with small patterns.

Finally, we find that architectures that have more parameters are not always more vulnera-

ble to spurious correlations. Table 7.2 shows the number of parameters for each architecture. We

see that while CNN has more parameters than small MLP, it is less susceptible to spurious corre-

lations. Vgg16 and ResNet20 show a similar pattern. This observation is counter to Sagawa et al.

[189], who suggest that neural networks with more parameters can learn spurious correlations

more easily, and it may be because they are looking at a different type of spurious correlation.

Table 7.2: Number of parameters in each architecture.

small MLP MLP large MLP CNN
203,530 335,114 932,362 312,202

ResNet20 ResNet32 ResNet110 Vgg16
269,722 464,154 1,727,962 134,301,514
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Optimization process

We also investigate how the optimization algorithm of the neural network can affect the

learning of spurious correlations. For this purpose, we consider the SGD and Adam optimizer,

both with and without gradient clipping. We find that Adam is slightly more susceptible to

spurious correlations than SGD, and gradient clipping does not affect the results much. Details of

this experiment are in Appendix F.1.

7.3.4 Qualitative Analysis: Visualizing Neural Network Weights

In addition to quantitative measurements, we visualize the changes training with spurious

examples can bring to the weights of a neural network. We consider an MLP architecture and

pattern S3 on MNIST, and look at the network’s weights from the input layer to the first hidden

layer. We visualize the importance of each pixel by plotting the maximum weight (among all

weights) on an out-going edge from this pixel. Figure 7.5 shows the importance plots for models

trained with different numbers of spurious examples.

On the figure with zero spurious examples (Figure 7.5(a)), we see that the pixels in the top

left corner are not important at all. When the number of spurious examples goes up, the values in

the top left corner become larger (darker in the figure). This means that the pixels in the top left

corner are gaining in importance, thus illustrating how they affect the network.

All in all, in this section, we present evidence that rare spurious correlations can be learned

by neural networks. Our results suggest that neural networks can be impacted by a few spurious

examples. In addition, we show that spurious patterns with larger empirical norms can be learned

more easily, and architectures that are more sensitive, like MLP, can be more susceptible to

spurious correlations.
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Figure 7.5: The importance of each pixel during the classification using an MLP trained on
MNIST. Each pixel in the figure corresponds to a neuron of the input layer. The value of
each pixel in the figure shows the maximum weight among all the weights that go out of the
corresponding neuron from the input layer to the first hidden layer. The darker the color is, the
larger the maximum weight is, which translates to the higher importance of the pixel during
classification. The MLPs are trained on datasets with 0, 10, 100, and 2000 spurious examples
on MNIST.

7.4 Can Rare Spurious Correlations Be Removed?

Section 7.3 shows that rare spurious correlations can be learned quite easily. A natural

question to ask is whether they can be readily removed as well; we next investigate whether

simple data deletion methods can remove these correlations.

There has been a growing body of recent work on data deletion methods [103, 118].

Privacy laws such as the GDPR allow individuals to request an entity to remove their data,

which includes removing it from any trained machine learning model. Since retraining models

from scratch may be computationally expensive, a body of work has looked into developing

more efficient methods. Here, we will look at two simple and canonical methods – incremental

retraining and group influence [16, 118] that approximate the model that is trained without the

deleted data points. Incremental retraining continues the training process for a number of epochs

on the training data minus the deleted data, which effectively down weights the deleted data point

in training. The group influence function computes a first-order approximation to the model that

is trained without the deleted data point, motivated by influence functions from robust statistics.

Both methods apply when multiple data points are deleted.

If all examples with a particular spurious pattern were deleted from the training set,
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then the spurious pattern and the target class should not be correlated in the resulting network.

Therefore, we expect that a good data deletion method, when given a trained network and

all training examples with a specific spurious pattern, should remove the associated spurious

correlation from the network. We next investigate whether this is indeed the case.

Therefore, if these data deletion methods indeed deleted all spurious examples as intended,

the spurious correlation related to these spurious examples should be removed as well. In this

section, we study whether this is the case.

Setup. We follow the same setup as in Figure 7.2. We fix the spurious pattern to be R3,

which is the pattern that gives the strongest correlation. We train the networks with 3, 5, 10,

20, and 100 spurious examples. We apply two data deletion methods, incremental retraining

and group influence, to the trained network. Each method takes in the trained network and the

spurious training examples and generates a new network that approximates the network that is

trained on a training set without the spurious examples. We then measure the spurious scores for

three types of models – the model before data deletion, the model processed with incremental

retraining, and the model processed with group influence.

For incremental retraining, we continue the retraining process for 70 epochs on the data

minus the spurious examples (recall that the original models were also trained for 70 epochs).

For group influence, we adopt a publicly available implementation for data deletion2.

Results. Figure 7.6 shows the results. We see that for all three datasets, the models

processed by the data deletion methods have similar spurious scores as the models before deletion.

This implies that the spurious correlations remain even after “data deletion”, suggesting that these

data deletion methods may not be effective at properly removing spurious examples. This

has two implications – first, that rare spurious correlations, once introduced, may be challenging

to remove. A second implication is that some data deletion methods may not properly remove all

traces of the deleted data. We suggest that as a sanity check, future data deletion methods should

2public repository: https://github.com/ryokamoi/pytorch_influence_functions
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test whether rare spurious correlations corresponding to the deleted examples are removed.

Finally, we note that there is a class of indistinguishable data deletion algorithms [82, 157]

that provably ensure by adding noise that the deleted model is statistically indistinguishable from

full retraining on the training data after deletion. However, these algorithms mostly apply to

simpler problems, and we do not have efficient guaranteed deletion for non-convex problems

such as training neural networks.

(a) MNIST (b) Fashion (c) CIFAR10

Figure 7.6: The mean and standard error of spurious scores of the original models, models after
incremental retraining, and models after the group influence method. The choice of spurious
pattern is R3, ctar = 0, and the optimizer is Adam. The lines for original and retrained are
jittered by a small amount so that they are not completely overlapped.

7.5 Discussion

The chief contribution of this work is to show that neural networks can learn spurious

correlations based on a very small number of training examples, and that this happens for a range

of architectures, optimization algorithms, and spurious patterns. We also show that once learned,

the spurious patterns are difficult to forget – two standard data deletion algorithms will not remove

the spurious correlations even when they “delete” the spurious training examples.

The main implication of these results is that neural networks are highly sensitive to

very small amounts of training data. While this feature might allow for rapid learning, it also

results in rapid learning of spurious information that is unrelated to the task at hand, and raises

a number of important concerns about their use in social applications. Easy learning of rare
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spurious correlations can lead to privacy issues [131] – where an adversary may be able to infer

the presence of a confidential image in a training dataset based on output probabilities. It also

raises fairness concerns as a neural network can draw spurious conclusions about a minority

group if a small number of subjects from this group are present in the training dataset [103]. We

recommend that neural networks should be tested and audited thoroughly before deployment in

these applications.

The phenomenon of rare spurious correlations is related to the memorization of training

data in neural networks but is different in that it refers to learning partial feature information

based on a few inputs, as opposed to memorizing single examples. In particular, the way we

measure rare spurious correlations is different from existing approaches to measure memorization,

such as influence function [69] and likelihood [41]). Our measurement method can thus provide

a different angle into the phenomena of partial memorization in neural networks.

Regarding mitigating rare spurious correlations, a provable way to prevent learning them

is differential privacy [64], which ensures that the participation of a single person (or a small

group) in the dataset does not change the probability of any classifier by much. This requires

noise addition during training, which may lead to a significant loss in accuracy [1, 46]. If we

know which are the spurious examples, then we can also remove spurious correlations via an

indistinguishable approximate data deletion method [82, 157]; however, these methods also

provide lower accuracy for convex optimization and do not have performance guarantees for

non-convex. An open problem is to design optimization algorithms or architectures for deep

learning that can mitigate these without sacrificing prediction accuracy.

Our current study also has two limitations, which we encourage future work to address.

Our experiments are conducted only on image classification tasks, which may not generalize to

others. Second, our results only show the existence of rare spurious correlations and do not fully

designing a practical privacy attack to extract them directly.
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7.6 Related Work

This work is related to a few different lines of work in trustworthy machine learning; we

discuss some of the connections below.

Spurious correlations. Previous work has looked at spurious correlations in neural

networks under various scenarios, including test time distribution shift [14, 112, 189, 213, 249],

confounding factors in data collection [89], the effect of image backgrounds [232], and causal-

ity [8]. However, in most works, spurious examples often constitute a significant portion of

the training set. In contrast, we look at spurious correlations introduced by a small number of

examples (rare spurious correlations).

Memorization in neural networks. Prior work has investigated how neural networks can

inadvertently memorize training data [9, 41, 42, 69, 131]. Methods have also been proposed to

measure this kind of memorization, including the use of the influence function [69] and likelihood

estimates [41]. As mentioned in Section 7.5, our work focuses on partial memorization instead

of memorizing individual examples, and our proposed method may be potentially applicable in

more scenarios.

A line of work in the security literature exploits the memorization of certain patterns to

compromise neural networks. The backdoor attack from Chen et al. [49] attempts to change

hard label predictions and accuracy by inserting carefully crafted spurious patterns. Sablayrolles

et al. [187] design specific markers that allow adversaries to detect whether images with those

particular markers are used for training in a model. Another line of research on data poisoning

attack [37, 227, 231] aims to degrade the overall performance of a model by carefully altering the

training data. In contrast, our work looks at measuring the rare spurious correlations from natural

spurious patterns, instead of adversarially crafted ones.

Data deletion methods. Inspired by GDPR, there are many recent works on data deletion.

Izzo et al. [103] demonstrate data deletion for linear classifiers but not for non-linear models such
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as neural networks. The use of influence and group influence functions for data deletion is also

studied by many [16, 117, 118]. Basu et al. [15] point out that influence functions can be fragile

for deeper neural networks. Our work shows that influence functions cannot remove spurious

correlations caused by the deleted examples, which is different.

Concerns for expanding training sets. Researchers have also discovered ways that more

data can hurt the model in terms of the generalization ability and test time accuracy [148, 156].

In this work, we uncover a different way that more data can hurt: more data could introduce more

spurious correlations.

7.7 Conclusion

We demonstrate that rare spurious correlations are learned readily by neural networks, and

we look closely into this phenomenon. We discover that a few spurious examples can lead to the

model learning the spurious correlation. We also find that spurious patterns with larger empirical

norms can cause the spurious correlation more easily, and network architectures with higher

sensitivity to its input are more susceptible to learning spurious correlations. In addition, we

show that when spurious examples are removed using existing data deletion tools, these learned

spurious correlations persist. This calls for new data deletion tools, and future data deletion tools

should be tested whether spurious correlations are removed along with spurious examples. The

learning of spurious correlation is a complex process, and it can have unintended consequences.

As neural networks are getting more widely applied, it is crucial to better understand spurious

correlations.
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Chapter 8

Conclusion

In this thesis, we present in-depth studies on three different problems under trustworthy

machine learning. In Chapter 3, we demonstrate the necessary condition of the existence of a

perfectly robust and accurate classifier and show that the tradeoff between accuracy and robustness

is not intrinsic for image datasets. In Chapter 4, we present a novel attack algorithm – region-

based attack – and a novel defense algorithm – adversarial pruning – that work well for many

non-parametric classifiers. In Chapter 5, we showcase our analysis of the connection between

robustness, accuracy, and interpretability for decision trees through the separation of data. For

out-of-distribution generalization, in Chapter 6, we exhibit how the results can shed light on

many questions on how neural network generalizations. Finally, in Chapter 7, we reveal evidence

that shows neural networks are learning rare spurious correlations, and from the experimental

results, we show these learned rare spurious correlations can be hard to be removed with existing

methods.
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Appendix A

Additional Works

During the course of my Ph.D., I completed several other works that are not included in

this thesis. These works are listed in this chapter.

A.1 Deep Learning

• What You See is What You Get: Distributional Generalization for Algorithm Design in

Deep Learning [122].

A.2 Multi-Label Classification

• Deep Learning with a Rethinking Structure for Multi-Label Classification [237].

• Cost-Sensitive Reference Pair Encoding for Multi-Label Learning [236].

A.3 Machine Learning Applications

• Torchaudio: Building Blocks for Audio and Speech Processing [241].
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• Hide and Seek: Choices of Virtual Backgrounds in Video Chats and Their Effects on

Perception [101].

• Pablo: Helping Novices Debug Python Code through Data-Driven Fault Localization [53].
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Appendix B

A Closer Look at Accuracy vs. Robustness

B.1 Experimental Setup: More Details

Experiments run with NVIDIA GeForce RTX 2080 Ti GPUs. We report the number with

a single run of experiment. The code for the experiments is available at https://github.com/

yangarbiter/robust-local-lipschitz.

Synthetic Staircase setup. As a toy example, we first consider a synthetic regression

dataset, which is known to show that adversarial training can seriously overfit when the sample

size is too small [177]. We use the code provided by the authors to reproduce the result for natural

training and AT, and we add results for GR, LLR, and TRADES. The model for this dataset is

linear regression in a kernel space using cubic B-splines as the basis. Let F be the hypothesis set

and the regularization term ‖ f‖2 is the RKHS norm of the weight vector in the kernel space. The

regularization term is set to λ= 0.1 and the result is evaluated using the mean squared error (MSE).

For GR, we set β = 10−4 and for LLR, we only use the local linearity γ for regularization and the

regularization strength is 10−2. The perturbation set P(x,ε) = {x− ε,x,x− ε} considers only the

point-wise perturbation.
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MNIST setup. We use two different convolutional neural networks (CNN) with different

capacity. The first CNN (CNN1) has two convolutional layers followed by two fully connected

layer1 and the second larger CNN (CNN2) has four convolutional layers followed by three fully

connected layers2. We set the perturbation radius to 0.1. The network is optimized with SGD

with momentum 0.9.

SVHN setup. We use the wide residual network WRN-40-10 [242] and set the perturba-

tion radius to 0.031. The initial learning rate is set to 0.01 except LLR, AT and RST. We set the

initial learning rate 0.001 for them. The network is optimized with SGD without momentum (the

default setting in pytorch).

CIFAR10 setup. Following [144, 244], we use the wide residual network WRN-40-

10 [242] and set the perturbation radius to 0.031. The initial learning rate is set to 0.01 except

RST. We set the initial learning rate 0.001 for them. Data augmentation is performed. When

performing data augmentation, we randomly crop the image to 32×32 with 4 pixels of padding

then perform random horizontal flips. The network is optimized with SGD without momentum

(the default setting in pytorch).

Restricted ImageNet setup. Following [222], we set the perturbation radius ε = 0.005,

use the residual network (ResNet50) [92] and use Adam [115] to optimize. Data augmentation is

performed: During training, we resize an image to 72×72 and randomly crop to 64×64 with 8

pixels padding. When evaluating, we resize the image to 72×72 and crop in the center resulting

in a 64×64 image.

Details on the network structure.

• CNN1 is retrieved from a public repository3.

1CNN1 is retrieved from a public repository: https://github.com/pytorch/examples/blob/master/
mnist/main.py

2CNN2 is retrieved from the repository of TRADES [244]: https://github.com/yaodongyu/TRADES/blob/
master/models/small_cnn.py

3https://github.com/pytorch/examples/blob/master/mnist/main.py
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Table B.1: Experimental setup and parameters for the four real datasets that we test on in
Chapter 3. No weight decay is applied to the model.

dataset MNIST SVHN CIFAR10 Restricted ImageNet

network structure CNN1 / CNN2 WRN-40-10 WRN-40-10 ResNet50
optimizer SGD SGD SGD Adam
batch size 64 64 64 128

perturbation radius 0.1 0.031 0.031 0.005
perturbation step size 0.02 0.0062 0.0062 0.001

# train examples 60000 73257 50000 257748
# test examples 10000 26032 10000 10150

# classes 10 10 10 9

• CNN2 is retrieved from the repository of TRADES [244].4

• WRN-40-10 represents the wide residual network [242] with depth equals to forty and

widen factor equals to ten.

• ResNet50 represents the residual network with 50 layers [92].

Learning rate schedulers for each dataset

• MNIST: We run 160 epochs on the training dataset, where we decay the learning rate by a

factor 0.1 in the 40th, 80th 120th and 140th epochs.

• SVHN: We run 60 epochs on the training dataset, where we decay the learning rate by a

factor 0.1 in the 30th and 50th epochs.

• CIFAR10: We run 120 epochs on the training dataset, where we decay the learning rate by

a factor 0.1 in the 40th, 80th and 100th epochs.

• Restricted ImageNet: We run 70 epochs on the training dataset, where we decay the learning

rate by a factor 0.1 in the 40th and 60th epochs.
4https://github.com/yaodongyu/TRADES/blob/master/models/small_cnn.py
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Spiral Dataset

Here we provide the details for generating the spiral dataset in Figure 3.3. We take x as

a uniform sample [0,4.33π], the noise level is set to 0.75 (uniform [0,0.75]). We construct the

negative examples using the transform:

(−xcosx+uni f orm(noise),xsinx+uni f orm(noise)),

and we construct the positive examples using the transform:

(−xcosx+uni f orm(noise),−xsinx+uni f orm(noise)).

Details on the baseline algorithms

Gradient Regularization (GR). The Gradient Regularization (GR) is in the form of soft regu-

larization. We use the latest work by Finlay and Oberman [72] for our experiments. In general,

GR models can be formulated as adding a regularization term on the norm of gradient of the loss

function:

min
f
E
{

L( f (X),Y )+β‖∇XL( f (X),Y )‖2
2

}
.

Finlay and Oberman [72] compute the gradient term through a finite difference approximation.

Let d = ∇ f (X)
‖∇ f (X)‖2

and h be the step size. Then,

‖∇ f (X)‖2
2 ≈

(
L( f (X+hd),Y )−L( f (X),Y )

h

)

We use the publicly available implementation5.

Locally-Linear Regularization model (LLR). Qin et al. [173] propose to regularize the local

linearity through the motivation that AT with PGD increases the model’s local linearity. The

5https://github.com/cfinlay/tulip
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authors first formulate the function g to evaluate the local linearity of a model.

g( f ,δ,X) = |L( f (X+δ),Y )−L( f (X),Y )−δ
T

∇XL( f (X),Y )|

Define γ(ε,X) = E
{

maxδ∈B(X,ε) g( f ,δ,X)
}

and also δLLR = E
{

argmaxδ∈B(X,ε) g( f ,δ,X)}. The

loss function for Locally-Linear Regularization (LLR) model is

E
{

L( f (X),Y )+λγ(ε,X)+µ‖δT
LLR∇XL( f (X),Y )‖

}

We use our own implementation of LLR.

Adversarial training (AT). Adversarial training is a successful defense by Madry et al. [144]

that trains based on adversarial examples:

min
f
E
{

max
X′∈B(X,ε)

L( f (X′),Y )
}
. (B.1)

Robust self-training (RST). Robust self-training is a defense proposed by Raghunathan et al.

[178] to improve the tradeoff between standard and robust error that occurs with AT. The RST in

the original paper includes the use unlabeled data. However, to be fair in the experiments, we

considers only the supervised learning part. RST uses the following optimization problem for the

loss function:

min
f
E
{

L( f (X),Y )+β max
X′∈B(X,ε)

L( f (X′),Y )
}
.

Locally-Lipschitz models (TRADES). One of the best methods for robustness via smoothness is

TRADES [244], which has been shown to obtain state-of-the-art adversarially accuracy in many
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cases. TRADES uses the following optimization problem for the loss function:

min
f
E
{

L( f (X),Y )+β max
X′∈B(X,ε)

L( f (X), f (X′))
}
,

where the second term encourages local Lipschitzness. We use the publicly available implementa-

tion6.

B.2 Proof-of-Concept Classifier

Our theoretical result in Theorem 3.4.2 leaves two concerns about practical solutions:

(i) we need to verify that existing networks can achieve high robustness and accuracy, and (ii)

we need training methods to converge to such solutions. For the first concern, we present proof-

of-concept networks that use standard architectures, but they have an unfair advantage: they

can use the test data. While this may seem unreasonable, we argue that the results in Table 3.1

provide multiple insights. This process is sufficient to establish the existence of a robust and

accurate classifier. With access to the test data, current training methods can plausibly train

a nearly-optimal robust classifier (we use robust self-training with λ=2). Finally, the robust

accuracies can actually get close to 100% on MNIST, SVHN, and CIFAR-10. These insights

reinforce our claim that robustness and accuracy are both achievable by neural networks on image

classification tasks.

Table B.2: Proof-of-concept: demonstrating a robust network trained with access to the test set.

perturbation ε accuracy adversarial accuracy

MNIST 0.1 99.99 99.98
SVHN 0.031 100.00 99.90
CIFAR-10 0.031 100.00 99.99

6https://github.com/yaodongyu/TRADES
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Table B.3: The setup for the Proof-of-Concept classifiers.

MNIST SVHN CIFAR10

network structure CNN2 WRN-40-10 WRN-40-10
optimizer SGD Adam Adam
batch size 128 64 64
epochs 40 60 60
perturbation radius 0.1 0.031 0.031
perturbation step size 0.02 0.0062 0.0062
initial learning rate 0.0001 0.001 0.01

B.3 Separation Experiment Results

Figure B.1 shows the distribution of the train-train and test train separation for each

dataset.
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Figure B.1: Train-Train separation histograms: MNIST, SVHN, CIFAR-10 and Restricted
ImageNet.
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Figure B.2: Images ignored when computing the separation of SVHN. The left most image
appeared twice in the training set and one labeled as a one and the other one labeled as a five.
The other two images are the closest images to each other in `∞ distance. The middle one is
labeled as a five and the right most one is labeled as a one (which is clearly miss labeled).
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Figure B.3: Images ignored when computing the separation of Restricted ImageNet. These
three images appeared twice in the training set and labeled differently (one labeled as a cat and
the other one labeled as a dog).

Random label. In addition, we conducted a random label experiment to show that in

regular datasets, the distance between same-class examples are smaller than differently-labeled

examples. Table B.4 shows the minimum and average separation for randomly labeled and natural

dataset. Figure B.4 plots the minimum separation for these two dataset and clearly shows that

natural dataset is more well-separated than random-labeled dataset.

B.4 Further Experimental Results
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Table B.4: Separation results on real datasets for both original labels and randomly assigned
labels.

ε randomly labeled original labels

train-train test-train train-train test-train
min mean min mean min mean min mean

MNIST 0.100 0.231 0.902 0.290 0.904 0.737 0.990 0.812 0.990
CIFAR-10 0.031 0.125 0.476 0.098 0.475 0.212 0.479 0.220 0.479
SVHN 0.031 0.012 0.259 0.102 0.271 0.094 0.264 0.110 0.274
ResImageNet 0.005 0.000 0.485 0.000 0.483 0.180 0.492 0.224 0.492

B.4.1 Multi-targeted Attack Results

Certain prior works have suggested that the multi-targeted (MT) attack [86] is stronger

than PGD. For example, the MT attack is highlighted as a selling point for LLR [173]. For

completeness, we complement our empirical results from earlier by running all of the experiments

using the MT attack. We run MT attack with 20 iterations for each target. Tables B.5 to B.10

provide the results.

We verify that our discussion about accuracy, robustness, and Lipschitzness remains valid

using this attack. Comparing with the results using the PGD attack (Tables 3.2 to 3.4), the results

with the MT attack gives a slightly lower adversarial test accuracy for all methods. The drop in

accuracy is usually around 1–5%. This is within our expectation as this attack is regarded as a

stronger attack than PGD.

The MT results still justify the previous discussion from Section 3.5 in general. Training

methods leading to models with higher adversarial test accuracy are more locally smooth (smaller

local Lipschitz constant during testing). Overall, we believe that seeing consistent results between

PGD and MT only strengthens our argument that robustness requires some local Lipschitzness,

and moreover, that the accuracy-robustness tradeoff may not be necessary for separated data.
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Figure B.4: Separation results for four image datasets. We measure the separation for the
original labels, and we also perform the experiment where we randomly label the test and train
examples. We see that in MNIST, CIFAR-10, and ResImageNet, the separation diminishes quite
a bit when using random labels. Indeed for ResImageNet, there are a number of duplicated
examples that appear multiple times in the dataset. Overall, we conclude that the separation is
much larger between different classes, while this is not the case within the same class.

Table B.5: MNIST on CNN1, multi-targeted attack

train
accuracy

test
accuracy

adv test
accuracy

test
lipschitz gap adv

gap

Natural 100.00 99.20 47.30 67.25 0.80 -0.53
GR 99.99 99.29 89.99 26.05 0.70 3.30
LLR 100.00 99.43 90.49 30.44 0.57 4.06
AT 99.98 99.31 97.23 8.84 0.67 2.65
RST(λ=.5) 100.00 99.34 96.46 11.09 0.66 3.22
RST(λ=1) 100.00 99.31 96.93 11.22 0.69 2.97
RST(λ=2) 100.00 99.31 97.00 12.39 0.69 2.95
TRADES(β=1) 99.81 99.26 96.53 9.69 0.55 2.12
TRADES(β=3) 99.21 98.96 96.60 7.83 0.25 1.34
TRADES(β=6) 97.50 97.54 93.54 2.86 -0.04 0.39
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Table B.6: MNIST on CNN2, multi-targeted attack

train
accuracy

test
accuracy

adv test
accuracy

test
lipschitz gap adv

gap

Natural 100.00 99.51 81.35 23.06 0.49 -0.87
GR 99.99 99.55 92.93 20.26 0.44 2.39
LLR 100.00 99.57 93.76 9.75 0.43 1.70
AT 99.98 99.48 98.01 6.09 0.50 1.94
RST(λ=.5) 100.00 99.53 97.69 8.27 0.47 2.30
RST(λ=1) 100.00 99.55 98.25 6.26 0.45 1.74
RST(λ=2) 100.00 99.56 98.46 4.56 0.44 1.53
TRADES(β=1) 99.96 99.58 98.06 4.74 0.38 1.73
TRADES(β=3) 99.80 99.57 98.54 2.14 0.23 1.18
TRADES(β=6) 99.61 99.59 98.73 1.36 0.02 0.81

Table B.7: SVHN, multi-targeted attack

train
accuracy

test
accuracy

adv test
accuracy

test
lipschitz gap adv

gap

Natural 100.00 95.85 1.06 149.82 4.15 0.43
GR 96.73 87.80 14.59 40.83 8.94 2.41
LLR 100.00 95.48 20.95 61.64 4.51 3.47
AT 95.20 92.45 49.47 13.03 2.75 14.96
RST(λ=.5) 99.99 93.09 45.98 19.56 6.90 27.26
RST(λ=1) 99.91 93.01 47.06 23.19 6.90 29.19
RST(λ=2) 99.25 92.39 47.58 23.18 6.86 29.99
TRADES(β=1) 98.96 92.45 46.40 18.75 6.51 29.22
TRADES(β=3) 99.33 91.85 49.41 10.15 7.48 32.70
TRADES(β=6) 97.19 91.83 52.82 5.20 5.35 24.28

Table B.8: CIFAR-10, multi-targeted attack

train
accuracy

test
accuracy

adv test
accuracy

test
lipschitz gap

adv
gap

Natural 100.00 93.81 0.00 425.71 6.19 0.00
GR 94.90 80.74 19.15 28.53 14.16 2.88
LLR 100.00 91.44 14.58 94.68 8.56 1.32
AT 99.84 83.51 42.11 26.23 16.33 48.99
RST(λ=.5) 99.90 85.11 38.17 20.61 14.79 32.92
RST(λ=1) 99.86 84.61 39.29 22.92 15.25 38.84
RST(λ=2) 99.73 83.87 40.06 23.95 15.86 41.97
TRADES(β=1) 99.76 84.96 42.22 28.01 14.80 43.69
TRADES(β=3) 99.78 85.55 44.53 22.42 14.23 47.91
TRADES(β=6) 98.93 84.46 46.05 13.05 14.47 43.40
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Table B.9: Restricted ImageNet, multi-targeted attack

train
accuracy

test
accuracy

adv test
accuracy

test
lipschitz gap adv

gap

Natural 97.72 93.47 4.21 32228.51 4.25 -0.24
GR 91.12 88.51 60.61 886.75 2.61 -0.16
LLR 98.76 93.44 50.21 4795.66 5.32 -0.31
AT 96.22 90.33 81.91 287.97 5.90 8.27
RST(λ = .5) 96.78 92.13 78.53 439.77 4.65 4.91
RST(λ = 1) 95.61 92.06 79.33 366.21 3.55 4.68
RST(λ = 2) 96.00 91.14 81.12 390.61 4.86 6.15
TRADES(β = 1) 97.39 92.27 79.46 2144.66 5.13 6.61
TRADES(β = 3) 95.74 90.75 82.00 396.67 5.00 6.35
TRADES(β = 6) 93.34 88.92 81.90 200.90 4.42 5.28

Table B.10: Dropout and generalization. SVHN (perturbation 0.031, dropout rate 0.5) and
CIFAR-10 (perturbation 0.031, dropout rate 0.2). We evaluate adversarial accuracy with the
multi-targeted attack and compute Lipschitzness with Equation (3.3).

SVHN CIFAR-10

dropout test
acc.

adv test
acc.

test
lipschitz gap adv

gap
test
acc.

adv test
acc.

test
lipschitz gap adv

gap

Natural False 95.85 1.06 149.82 4.15 0.87 93.81 0.00 425.71 6.19 0.00
Natural True 96.66 1.52 152.38 3.34 1.22 93.87 0.00 384.48 6.13 0.00

AT False 91.68 49.22 16.51 5.11 25.74 83.51 42.11 26.23 16.33 49.94
AT True 93.05 52.44 11.68 -0.14 6.48 85.20 41.31 31.59 14.51 44.05

RST(λ=2) False 92.39 47.58 23.17 6.86 36.02 83.87 40.06 23.80 15.86 43.54
RST(λ=2) True 95.19 50.37 17.59 1.90 11.30 85.49 38.66 34.45 14.00 33.07

TRADES(β=3) False 91.85 49.41 10.15 7.48 33.33 85.55 44.53 22.42 14.23 47.67
TRADES(β=3) True 94.00 57.11 4.99 0.48 7.91 86.43 46.38 14.69 12.59 35.03

TRADES(β=6) False 91.83 52.82 5.20 5.35 23.88 84.46 46.05 13.05 14.47 42.65
TRADES(β=6) True 93.46 58.53 3.30 0.45 5.97 84.69 49.72 8.13 11.91 26.49
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Appendix C

Robustness for Non-parametric Classifiers

C.1 Attack Algorithm: Theoretical Results and Omitted Proofs

In this section, we analyze the exact and approximate region-based attacks. To do so, we

provide details about the decompositions for k-NN and tree ensemble classifiers. We also prove

Theorem 4.5.3 in general, and we give a corollary for the classifiers that we consider. Finally, we

discuss our approximate attack, providing more details and an analysis.

Before getting into these details, we observe that our attack actually holds for the more

general class of linear decision trees, which we now define.

Defining Linear Decision Trees

A linear decision tree is a binary tree consisting of (i) internal nodes associated with

affine functions and (ii) leaf nodes associated with labels in [C]. The value f (x) is determined

by following the root to a leaf, going left or right depending on whether x satisfies or violates

the linear constraint in the current node; then, f (x) is the label of the leaf. Such trees generalize

(standard) decision trees, which restrict each constraint to depend on a single variable.

An ensemble of linear decision trees is collection of trees with the modification that the
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leaves are labeled with vectors in RC. The value f (x) is determined by a two-stage process. First,

find the root-to-leaf path associated with each tree separately, resulting in a collection of vectors

u1, . . . ,uT ∈ RC, where T is the number of trees. Then, letting u = u1 + · · ·+uT , the output f (x)

equals the index of the largest coordinate i ∈ [C] in the vector u. Note that for binary labels, this

is equivalent to the definition of having scalar leaf labels and outputting the sign of the sum.

C.1.1 Decompositions for Specific Classifiers

We now describe the decompositions for tree ensembles and k-NN. Parameters for the

decompositions will directly determine the running time of the optimal attack algoggrithm.

Decomposition for Tree Ensembles

Lemma C.1.1. If f is an ensemble of T linear decision trees, each with depth at most D and with

at most L leaves, then f is (LT ,T D)-decomposable.

Proof. We first describe the decomposition for a single tree, then generalize to an ensemble of

trees. Let T be a linear decision tree with depth D leaves (`1, `2, . . . , `m). The polyhedron Pi

will be the set of z that reach leaf `i in T . The hyperplane description for Pi can be computed

as follows. Each internal node v from the root of T to the leaf `i contains a linear constraint

av(z) ≤ bv. On the path to `i, group all the violated (resp. satisfied) constraints av,bv as rows

of the matrix A− and entries of the vector b− (resp. A+ and b+). Then, all z that reach `i are

exactly the vectors that satisfy A−z > b− and A+z≤ b+. Therefore, these at most D constraints

determine Pi precisely.

Now, consider ensembles of T trees with depth at most D and at most L leaves. The

polyhedra correspond to combinations of one leaf from each tree. Each leaf contributes at most D

constraints, for at most T D total constraints. There are at most LT choices for one leaf from each

of T trees.
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Decomposition for k-NN

The decomposition for k-NN is a standard fact, known as the kth order Voronoi diagram,

and it is a classical result in machine learning and computational geometry (see for example

Chapter 12 in the book [145], or the survey [11], or the paper [153]). We sketch a proof for

completeness.

Lemma C.1.2. If f is a k-NN classifier for a dataset of size n, then f is (
(n

k

)
,k(n− k))-

decomposable.

Proof. (Sketch). Let D be the training dataset on n points. We define
(n

k

)
convex polyhedra, one

for each subset U ⊆D containing |U |= k points. The polyhedron PU is the subset of Rd such

that if z ∈ PU , then the k nearest neighbors to z from the dataset D in the `2 distance are the k

points in U . By definition, the k-NN classifier will be constant on each polyhedron PU , as the

output label is completely determined by the k nearest neighbors for z, which is the set U .

We show that PU can be defined by k(n− k) hyperplanes as follows. For each of the

k points x ∈U , we use the (n− k) bisecting hyperplanes separating x from each of the n− k

points not in U (that is, separating x from the points D \U). This is a total of k(n− k) linear

constraints, and we define PU as the intersection of these k(n− k) halfspaces. Clearly, PU is a

convex polyhedron.

To see the nearest neighbor property, consider any z∈ PU . For every x∈U , the constraints

defining PU include the (n−k) bisecting hyperplanes that separate x from the n−k points outside

of U . In particular, z is closer to x than to these n− k other points. To put this another way, z is in

the Voronoi cell for x in the reduced dataset consisting only of x and the other n− k points (that

is, x∪ (D \U)). As this is true for each of the k points in U , we have that z is closer to each of

the k points in U than to the other n− k points. Therefore, we conclude that U consists of the k

nearest neighbors to z.
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C.1.2 Analyzing the Region-Based Attack

We have just shown that f is decomposable when it is the classifier determined by k-NN or

a linear decision tree (or, more generally, an ensemble of linear decision trees). The consequence

of this is that Theorem 4.5.3 implies an efficient and optimal algorithm for a wide-range of

non-parametric classifiers. We first discuss the specific convex programs, then finish the proof of

the theorem.

Norms as Convex Objectives

Recall that if a classifier is (s,m)-decomposable, then there exists s polyhedra P1, . . . ,Ps

such that each Pi is the intersection of at most m halfspaces. Moreover, the classifier is constant

on each of these convex regions, predicting label yi at all points in Pi.

For an input x, let Ix be the indices of polyhedra Pi such that f (x) 6= yi. Then, the

region-based attack optimizes over all polyhedra Pi for i ∈ Ix by solving the inner minimization

of Equation (4.1), namely

min
z∈Pi
‖x− z‖p. (C.1)

Given that Pi is a polyhedron, the constraint z ∈ Pi can be expressed using the m linear

constraints that define Pi. Then, the norm minimization can be expressed as a convex objective.

In particular, the problem in Equation (C.1) can be solved with a linear program for p ∈ {1,∞} or

a quadratic program for p = 2 using standard techniques [28]. The following are the specific LP

formulations for p ∈ {1,∞}.

`∞ norm.3 Let t ∈ R be single variable. When p = ∞, the problem in Equation (C.1)

can be solved in Rd using the following linear program with d +1 variables and m+2d linear
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constraints.
minimize

z,t
t

subject to z ∈ Pi

(z−x) j ≤ t ∀ j ∈ [d]

(z−x) j ≥−t ∀ j ∈ [d]

(C.2)

`1 norm. Let t ∈ Rd be vector. When p = 1, the problem in Equation (C.1) can be solved

in Rd using the following linear program with 2d variables and m+2d linear constraints.

minimize
z,t

1T t

subject to z ∈ Pi

(z−x) j ≤ t j ∀ j ∈ [d]

(z−x) j ≥−t j ∀ j ∈ [d]

(C.3)

Finishing the Analysis of the Exact Region-Based Attack

Proof of Theorem 4.5.3. We first claim that the attack produces the optimal adversarial example

when f is any (s,m)-decomposable classifier. By assumption, there is a partition of Rd into

polyhedra P1, . . . ,Ps such that f is constant on each Pi region. Let yi be the label that f gives to

all points in Pi for each i ∈ [s]. On input x, the algorithm considers i ∈ Ix, where Ix ⊆ [s] are the

indices such that f (x) 6= yi. Thus, the point zi ∈ Pi closest to x will have

f (zi) = yi 6= f (x).

Finally, the algorithm’s output is

argmin
{zi|i∈Ix}

‖zi−x‖.

As the regions Pi partition Rd , this is the closest point to x that receives a different label under f .
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We now analyze the running time. For the `p distance, p ∈ {1,2,∞}, finding each

candidate point zi requires solving a convex program with O(m) constraints and O(d) variables.

This can be done in poly(d,m) time using standard optimization techniques (e.g., the interior

point method). The number of convex programs is |Ix| ≤ s. Therefore, the total running time is at

most s ·poly(d,m).

Remark 1 (Targeted Attack). So far, we have considered untargeted attacks, allowing adversarial

examples to have any label other than f (x). An important variation is a targeted attack, which

specifies a label ` ∈ [C], and the goal is to output a close point x̃ such that f (x̃) = `. We note that

the region-based attack can be easily modified for this by only searching over I `
x = {i∈ [s] | yi = `}.

This may significantly reduce the running time in practice, as |I `
x | may be much smaller than |Ix|.

We specialize the above theorem to ensembles of linear decision trees and the k-NN

classifier.

Corollary C.1.3. Let n be the size of the training set. If f : Rd → [C] is a classifier determined

by k-NN with k = O(1) or an ensemble of O(1) linear decision trees with depth poly(n) and

poly(n) total leaves, then the region-based attack outputs the optimal adversarial example in time

poly(d,n).

Proof. When f is an ensemble of T linear decision trees, each with depth D and L leaves,

Lemma C.1.1 implies that f is (LT ,T D)-decomposable. Assuming that T is a constant and L and

D are polynomial means that f is (poly(n),poly(n))-decomposable. Applying Theorem 4.5.3,

the running time of the exact region-based attack is thus poly(d,n).

When f is the k-NN classifier, Lemma C.1.2 implies that f is (
(n

k

)
,k(n−k))-decomposable.

Assuming that k is a constant means that f is (poly(n),O(n))-decomposable. Applying Theo-

rem 4.5.3, the running time of the exact region-based attack is thus poly(d,n).
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C.2 More Experimental Details

The experiment is run on desktop with Intel Core i7-9700K 3.6 GHz 8-Core Proces-

sor and 32 GB of RAM. The code for the experiment is available at https://github.com/

yangarbiter/adversarial-nonparametrics/.

C.2.1 Classifier Implementation Details

The implementation for DT, RF and k-NN are based on scikit-learn [169]. For DT

and RF, the splitting criterion is set to “entropy”. For computational efficiency, we fixed the

maximum depth of DT and RF to be five. For reproducibility, all other hyper-parameters are set

to the default parameter settings of the specific implementation.

C.2.2 Attack and Defense Implementation Details

For kernel substitution attack, we set the approximation parameter c = 1.0 and attack

the substitution model with Projected Gradient Descent (PGD) [144]. For both Region-Based

Attacks (RBA-Exact and RBA-Approx), the underlying LP solver that we use is Gurobi [88]. For

kernel substitution attack, we use PGD implemented in Cleverhans [166]. The implementation

of the black-box attack by [50] (BBox) is provided by authors in their public repository1.

For k-NN, we do not compare with the gradient-based extension [209] attack directly in

Section 4.6 since it is under a different setting. Their algorithm only works if k-NN uses the

cosine distance instead of `2 distance.

C.2.3 Dataset Details

For each dataset, we reserve 200 examples for testing. We evaluate the testing accuracy on

these 200 examples. To compute empirical robustness ER(A, fD,S, t) and defscore(D,A, f ,S, t),

1https://github.com/cmhcbb/attackbox
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we randomly select 100 correctly predicted examples for each classifier. For efficiency purposes,

the feature dimension for fashion-mnist (f-mnist), mnist is reduced to 25 using principle compo-

nent analysis (PCA). The original covtype is sub-sampled to 2200 examples. mnist17 represents

a subset of mnist dataset for the binary classification problem distinguishing between 1 and 7.

Similarly, f-mnist35 is the task of distinguishing between 3rd and 5th class, and f-mnist06 is the

task of distinguishing between 0th and 6th class. The features are scaled to [0,1] so the solver

will avoid numerical rounding errors.

Table C.1: Dataset statistics.

# train # test (perturb.) # test (accuracy) features classes

austr. 490 100 200 14 2
cancer 483 100 200 10 2
covtype 2000 100 200 54 2
diabetes 568 100 200 8 2
f-mnist35 12000 100 200 25 2
f-mnist06 12000 100 200 25 2
fourclass 662 100 200 2 2
halfmoon 2000 100 200 2 2
mnist17 13007 100 200 25 2

C.2.4 Additional Experiment Results

Tables C.2 to C.5 show additional experiment results with adversarial pruning (AP) as

defense. In these tables, for AP with separation parameter r = 0.5, we have some invalid values.

These values are caused by setting a too large value of r which results int that the adversarial

pruned datasets to be highly unbalanced in label or even making the dataset have a single label

left. If the training accuracy goes below 0.5 or the prediction of the classifier outputs only one

label, we will put the value being “-” in the table. For diabetes with 3-NN, its caused by 3-NN

only predicts one label.

Testing accuracy is a sanity check that we are not giving away all accuracy for robustness.
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The higher the empirical robustness is means the classifier is more robust to the given attack.

When considering the strength of the attack, empirical robustness is lower the better. When

considering the strength of the defense, defscore is higher the better. For defscore higher mean

that after defense (AP), the classifier become more robust, thus higher the better.

Table C.2: The number of training data left after adversarial pruning (AP), testing accuracy,
empirical robustness, and defscore with different separation parameter of AP for 1-NN.

1-NN AP (separation parameter r=.1) AP (separation parameter r=.3) AP (separation parameter r=.5)

ER
test

accuracy
# train ER

test
accuracy

# train defscore ER
test

accuracy
# train defscore ER

test
accuracy

# train defscore

austr. .151 .805 490 .162 .800 484 1.073 .249 .820 458 1.649 .311 .825 427 2.060
cancer .137 .950 483 .137 .950 483 1.000 .193 .950 473 1.409 .261 .965 458 1.905
covtype .066 .725 2000 .072 .700 1904 1.091 .289 .685 1417 4.379 .346 .675 1384 5.242
diabetes .035 .695 568 .035 .700 535 1.000 .164 .660 379 4.686 .375 .660 370 10.714
f-mnist06 .029 .800 12000 .031 .820 11509 1.069 .075 .765 7348 2.586 - .495 6000 -
f-mnist35 .075 1.000 12000 .075 1.000 11999 1.000 .089 .980 10477 1.187 .104 .945 8139 1.387
fourclass .090 1.000 662 .107 .960 559 1.189 .278 .750 453 3.089 - .565 442 -
halfmoon .058 .920 2000 .151 .915 1702 2.603 .161 .840 1144 2.776 - .480 1004 -
mnist17 .070 .975 13007 .072 .975 13004 1.029 .097 .965 11128 1.386 .118 .810 6783 1.686

Table C.3: The number of training data left after adversarial pruning (AP), testing accuracy,
empirical robustness, and defscore with different separation parameter of AP for 3-NN.

3-NN AP (separation parameter r=.1) AP (separation parameter r=.3) AP (separation parameter r=.5)

ER
test

accuracy
# train ER

test
accuracy

# train defscore ER
test

accuracy
# train defscore ER

test
accuracy

# train defscore

austr. .278 .805 490 .317 .810 484 1.140 .333 .815 458 1.198 .371 .825 427 1.335
cancer .204 .975 483 .204 .975 483 1.000 .283 .960 473 1.387 .350 .970 458 1.716
covtype .108 .750 2000 .117 .735 1904 1.083 .357 .685 1417 3.306 .394 .680 1384 3.648
diabetes .078 .755 568 .078 .750 535 1.000 .232 .655 379 2.974 - .660 370 -
f-mnist06 .051 .795 12000 .050 .825 11509 .980 .089 .750 7348 1.745 - .495 6000 -
f-mnist35 .094 1.000 12000 .093 1.000 11999 .989 .108 .985 10477 1.149 .121 .950 8139 1.287
fourclass .096 .995 662 .127 .960 559 1.323 .297 .750 453 3.094 - .565 442 -
halfmoon .096 .940 2000 .159 .920 1702 1.656 .184 .845 1144 1.917 - .480 1004 -
mnist17 .097 .985 13007 .094 .985 13004 .969 .110 .960 11128 1.134 .141 .795 6783 1.454

Defense figures

Figures C.1 and C.2 show the complete experiment results for the experiment in Figure 4.3.

The accuracy (y-axis) is measured on the 100 correctly predicted testing examples sampled

initially.
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Table C.4: The number of training data left after adversarial pruning (AP), testing accuracy,
empirical robustness, and defscore with different separation parameter of AP for DT.

DT AP (separation parameter r=.1) AP (separation parameter r=.3) AP (separation parameter r=.5)

ER
test

accuracy
# train ER

test
accuracy

# train defscore ER
test

accuracy
# train defscore ER

test
accuracy

# train defscore

austr. .070 .855 490 .194 .835 484 2.771 .166 .835 458 2.371 .450 .835 427 6.429
cancer .255 .930 483 .255 .930 483 1.000 .303 .965 473 1.188 .358 .960 458 1.404
covtype .051 .715 2000 .051 .740 1904 1.000 .230 .680 1417 4.510 .221 .665 1384 4.333
diabetes .085 .715 568 .085 .720 535 1.000 .189 .670 379 2.224 .378 .670 370 4.447
f-mnist06 .079 .805 12000 .092 .825 11509 1.165 .203 .770 7348 2.570 - .495 6000 -
f-mnist35 .115 .995 12000 .110 .995 11999 .957 .237 .940 10477 2.061 .281 .925 8139 2.443
fourclass .137 .900 662 .138 .910 559 1.007 .416 .680 453 3.036 - .565 442 -
halfmoon .085 .950 2000 .167 .895 1702 1.965 .219 .670 1144 2.576 - .480 1004 -
mnist17 .123 .975 13007 .126 .970 13004 1.024 .162 .955 11128 1.317 .316 .830 6783 2.569

Table C.5: The number of training data left after adversarial pruning (AP), testing accuracy,
empirical robustness, and defscore with different separation parameter of AP for RF.

RF AP (separation parameter r=.1) AP (separation parameter r=.3) AP (separation parameter r=.5)

ER
test

accuracy
# train ER

test
accuracy

# train defscore ER
test

accuracy
# train defscore ER

test
accuracy

# train defscore

austr. .446 .845 490 .426 .855 484 .955 .465 .840 458 1.043 .496 .835 427 1.112
cancer .383 .970 483 .383 .970 483 1.000 .481 .965 473 1.256 .496 .955 458 1.295
covtype .214 .750 2000 .226 .700 1904 1.056 .456 .680 1417 2.131 .481 .695 1384 2.248
diabetes .184 .755 568 .175 .740 535 .951 .409 .660 379 2.223 .710 .660 370 3.859
f-mnist06 .188 .790 12000 .215 .785 11509 1.144 .333 .755 7348 1.771 - .495 6000 -
f-mnist35 .246 1.000 12000 .236 .995 11999 .959 .346 .925 10477 1.407 .289 .925 8139 1.175
fourclass .133 .980 662 .181 .865 559 1.361 .478 .665 453 3.594 - .565 442 -
halfmoon .149 .930 2000 .198 .900 1702 1.329 .271 .755 1144 1.819 - .480 1004 -
mnist17 .250 .970 13007 .230 .965 13004 .920 .314 .945 11128 1.256 .359 .800 6783 1.436

C.2.5 Images Removed by Adversarial Pruning

Figure C.3 shows examples of images removed by AP and their closest opposite labeled

images. In the case of mnist17, it is interesting to note that the sevens and ones do resemble each

other, and so it makes sense that they are close to the training boundary and should be pruned.

For the other datasets, recall that we first applied PCA, and therefore, these images are similar in

the resulting feature space.
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(t) Random forest

Figure C.1: The maximum perturbation distance allowed versus the accuracy on the 100
correctly predicted test examples (see Appendix C.2.3 for details).
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(h) Random forest
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(k) Decision tree
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(p) Random forest

Figure C.2: The maximum perturbation distance allowed versus the accuracy on the 100
correctly predicted test examples (see Appendix C.2.3 for details).
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(a) mnist17 (b) mnist17 (c) mnist17 (d) mnist17

(e) f-mnist35 (f) f-mnist35 (g) f-mnist35 (h) f-mnist35

(i) f-mnist06 (j) f-mnist06 (k) f-mnist06 (l) f-mnist06

Figure C.3: Examples of images removed by adversarial pruning (AP). The images removed
are (a), (c), (e), (g), (i), (k) and the images to its right are the closest image with opposite labeled.
To interpret the labels of these datasets, mnist17 is the task of classifying one versus seven,
f-mnist35 is Dress versus Sandal, and f-mnist06 is T-Shirt/top versus Shirt.
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Appendix D

Connecting Interpretability and Robustness

in Decision Trees through Separation

D.1 Proofs

D.1.1 Separation and Interpretability

Theorem 5.4.1. For any tree size s and γ > 0, there is a dataset in R2 that is linearly separable,

and any decision tree with size s has accuracy less than 1
2 + γ.

Proof. Fix an integer s and γ > 0. We will start by describing the dataset and prove it is linearly

separable. We will then show that any decision tree of size s must have accuracy smaller than

1/2+γ. Dataset. The dataset size is n, to be fixed later. The dataset includes, for any i = 1 . . .n/4,

a group, Gi, of four points: two points (i,−i+ ε),(i+ ε,−i) that are labeled positive and two

points (i,−i− ε),(i− ε,−i) that are labeled negative for some small ε > 0, see Figure D.1.

To prove that the dataset is linearly separable focus on the vector w = (0.5,0.5) with

|w|1 = 1. For each labeled examples (x,y) in the dataset, the inner product is equal to yw · x =

ε/2 > 0.
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(1;−1)

(2;−2)

(3;−3)

Figure D.1: Proof of Theorem 5.4.1. Linearly separable dataset that is not interpretable by a
small decision tree. Around point (i,−i) there are 4 close points: two points (i,−i+ε),(i+ε,−i)
that are labeled positive and two points (i,−i− ε),(i− ε,−i) that are labeled negative for some
small ε > 0.

Accuracy.

We will prove by induction that the points arriving in each node are a series of consecutive

groups, perhaps except a few points that are in the “tails". In each node, the number of positive

and negative examples is about the same, so one cannot predict well. See intuition in Figure D.2.

i− ǫ(i− 1) + ǫ i i+ ǫ (i+ 1)− ǫ

Group i Group i+ 1

......

Group i− 1

Figure D.2: Projection of the points in the dataset to the first feature. We see that the groups
appear one after another, each cut defined by an inner node in the tree, will leave the order
between the groups as is. In a series of consecutive groups, the number of positive and negative
examples is equal. Thus, the accuracy is close to 1/2. Similar figure when projecting to the
second feature.

More formally, a tail G′i is a subset of Gi, i.e., G′i ∈℘(Gi), where℘is the power set. We

prove the following claim.

To finish the proof of Theorem 5.4.1, first note that the number of positive and negative

examples in each Gi is exactly equal. Together with the claim that we just proved, for each

leaf v, the number of points that are correctly classified out of the points, Pv, reaching v, is at

most |Pv|/2+4. Thus the total number of points correctly classified by the entire tree is at most
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n/2+4s. Thus, the accuracy of the tree is at most 1/2+4s/n. We take n > 4s/γ and get that the

accuracy is smaller than 1/2+ γ, which is what we wanted to prove.

Theorem 5.4.2. For any labeled data in [−1,1]d×{−1,1} that is r-separated, there is a decision

tree of depth at most 6d
r which has a training error 0.

Proof. Each feature is in [−1,1], so r ≤ 1. Fix r ≤ ∆ < 2r and L = d 1
∆
e. We can bound L by

L≤ 1
∆
+1≤ 1

r
+1≤ 2

r
.

Take two data points, one labeled positive, x+, and one negative x−. By the r-separation, we know

that there is a feature i′ such that

|x+i′ − x−i′ | ≥ 2r > ∆.

This means that we can find a threshold θ among the 2L+1 thresholds−L ·∆, . . . ,0 ·∆,1 ·∆, . . . ,L ·

∆ that distinguishes the examples x+ and x−, i.e., there is j′ ∈ {−L, . . . ,L}, such that

sign(x+i′ −∆ · j′) 6= sign(x−i′ −∆ · j′).

We focus on the decision tree with all possible features and the 2L+1 thresholds. All examples

reaching the same leaf, has the same label. In other words, the training error is 0. Since there are

d · (2L+1) pairs of feature and thresholds, the depth of the tree is at most d(2L+1)≤ 3dL≤ 6d
r .

Theorem 5.4.3. There is a labeled dataset in [−1,1]d which is 1-separated and has the following

property. For any γ > 0 and any decision tree T that achieves accuracy 0.5+ γ, the size of T is at

least γ2d.

Proof. We start with describing the dataset, then we will show that any decision tree must be

large if we want to achieve 0.5+ γ accuracy.
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The dataset. The inputs are all strings in {−1,1}d. The hypothesis is the parity function,

i.e., and

f (x1, . . . ,xd) =


1 if ∑

d
i=1

xi+1
2 ≡ 1 (mod 2)

−1 o.w.

Each node has equal number of positive and negative examples. The main idea is that

as long as the depth of a node is not d, it has exactly the same number of positive and negative

examples reaching it. This is true since as long as at most d−1 features are fixed, there exactly

the same number of positive and negative examples that agree on these features.

Large size. Denote by N1 the set of all nodes that exactly one example reach them. Denote

this set size by |N1|= n1. We want to prove that n1 is large. So far, we proved that for each node

that contains more than one example, exactly half of the examples are labeled positive and half

negative. Number of examples correctly classified is half of all the examples not in N1 plus n1.

There are 2d examples in total. So the accuracy is equal to (2d−n1)/2+n1
2d = 1

2 +
n1

2d+1 . The latter

should be at least 1/2+ γ. Therefore, the size of the tree is at least γ2d.

D.1.2 Linear Separability: Weak Learner

We start with the more restricted case where the features are binary. This will give the

necessary foundations for the general case, where features are in [−1,1]. In this case Ht is

simplified to the set {x 7→ xi : i ∈ [d]}.

Theorem D.1.1. For any data in {−1,1}d×{−1,1} that is labeled by a γ-linearly separable

hypothesis f and for any distribution µ on the examples, there is hypothesis h ∈Ht such that

Pr
x∼µ

(h(x) = f (x))≥ 1
2
+

γ

2
.

Proof. The proof’s high-level idea is to represent the class as a bipartite graph and lower bound
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the weighted density of this graph. The high lower-bound leads to a high degree vertex, which

will correspond to our desired weak learner.

Recall that by the fact that the data is γ-linearly separable, we know that there is a vector

w with |w|1 = 1 such that for eac labeled example (x,y) it holds that

yw · x≥ γ. (D.1)

Bipartite graph description. Consider the following bipartite graph. The vertices are the

m examples in the training data and the d hypotheses in the binary version of Ht . There is an edge

(x,hi) ∈ E between an example x and hypothesis hi, if it correctly classify x, i.e., if f (x) = hi(x).

Each vertex is given a weight: example x j gets weight µ j and a hypothesis hi gets weight wi,

where w is in Equation (D.1).

Assumption: ∑
d
i=1 wi = 1. We assume without loss of generality that wi ≥ 0, otherwise if

there is wi < 0, we can multiply the i-th feature in all the examples by−1. After this multiplication,

the linearity assumption still holds. We know that ∑
d
i=1 |wi|= 1, and since wi ≥ 0, we get that

∑
d
i=1 wi = 1.

Lower bound weighted-density. The main idea is to lower bound the weighted density

ρ of the bipartite graph, which is the sum over all edges (hi,x j) in the graph, each with weight

wi,µ j:

ρ = ∑
(x j,hi)∈E

wiµ j.

To prove a lower bound on ρ, we focus on one labeled example (x j,y j). From the linearity

assumption, Equation (D.1), we know that ∑
d
i=1 y jwix

j
i ≥ γ. Recall that y jx j

i is equal to +1 or −1,

since we are in the binary case. We can separate the sum depending on whether y jx j
i is equal to

+1 or −1 and get that

∑
i:y jx j

i =1

wi− ∑
i:y jx j

i =−1

wi ≥ γ.
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We know that ∑
d
i=1 wi = 1, thus ∑i:y jx j

i =−1 wi = 1−∑i:y jx j
i =1 wi, and the inequality can be rewritten

as

2 ∑
i:y jx j

i =1

wi−1≥ γ.

Notice that (x j,hi) ∈ E⇔ y jx j
i = 1. Thus, the inequality can be further rewritten as

∑
i:(x j,hi)∈E

wi ≥
1+ γ

2
.

This inequality holds for any labeled example, so we can sum all these inequalities, each with

weight µ j and get that

ρ≥ (1+ γ)/2.

Finding a weak learner. Since w is a probability distribution, we can rewrite ρ and get

Ei∼w

 ∑
j:(x j,hi)∈E

µ j

≥ (1+ γ)/2.

From the probabilistic method [4], there is a hypothesis hi such that

∑
j:(x j,hi)∈E

µ j ≥ (1+ γ)/2.

By the definition of the graph, (x j,hi) ∈ E⇔ hi(x j) = f (x j). Thus, we get that

Pr
x∼µ

(hi(x) = f (x))≥ 1
2
+

γ

2
,

which is exactly what we wanted to prove.

Theorem D.1.2 (binary weak-learner). For any distribution µ over labeled examples {−1,+1}d×
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{−1,+1} that satisfies linear separability with a γ-margin, and for any δ ∈ (0,1) there is

m = O
(

d+log 1
δ

γ2

)
, such that with probability at least 1−δ over the sample S of size m, it holds

that

Pr
(x,y)∼µ

(hS(x) = y)≥ 1
2
+

γ

4
.

Proof. We start with a known fact1 that

VC(Ht)≤ d.

Denote the best hypothesis in the binary version in Ht as h∗. From Theorem D.1.1, we

know that Prx(h∗(x) = f (x)) ≥ 1
2 +

γ

2 . For every sample S, denote by hS the hypothesis in the

binary version of Ht that optimizes the accuracy on the sample S. From the fundamental theorem

of statistical learning [202], we know that for m = O
(

d+log 1
δ

(γ/4)2

)
, with probability at least 1−δ

over the sample S of size m, it holds that

Pr
(x,y)∼µ

(hS(x) = y)≥ Pr
(x,y)∼µ

(h∗(x) = y)− γ

4
≥ 1

2
+

γ

4
.

Theorem 5.5.1. Fix α > 0. For any data in [−1,1]d ×{−1,1} that is labeled by a γ-linearly

separable hypothesis f and for any distribution µ on the examples, there is a hypothesis h ∈Ht

such that

Pr
x∼µ

(h(x) = f (x))≥ 1
2
+

γ

2
−α

.

Proof. The proof is similar in spirit to the proof of Theorem D.1.1. The main difference is the

technique to lower bound ρ, the weighted density. In the current proof we use the fact that if for
1To bound the VC(Ht) note that for any d +1 points in Rd there is at least one point v, where in each coordinate

it is not the largest one among the d +1 points. Thus, it’s impossible that v is labeled +1 while all the rest of the
points are labeled −1.
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some positive example x, its i-th feature, xi, is high, then it contains many edges in the graph. For

a negative example x, if its i-th feature, xi, is low, then it contains many edges in the graph.

Bipartite graph description. We first discretize the segment [−1,1] to ` ≥ 2/α+ 1

values with ∆ = 2/(`−1):

Z = {−1,−1+∆, . . . ,1−∆,1}.

The value of ∆ was chosen such that |Z|= `. We focus on the following subclass of H ′t which is

a discretization of Ht

H ′t = {hi,θ} for i ∈ [d],θ ∈ Z.

We use a similar bipartite graph as in the proof of Theorem D.1.1 for the subclass H ′t : the vertices

are the m examples and the hypotheses in H ′t ; and there is an edge (x,hi,θ) ∈ E between an

example x with label y and hypothesis hi,θ whenever yxi ≥ θ, i.e., when hi,θ correctly classify x.

Recall that by the fact that the data is γ-linearly separable, we know that there is a vector

w with |w|1 = 1 and for any labeled example (x,y) it holds that

(D.2)

From the same argument as in Theorem D.1.1, we assume that ∑
d
i=1 wi = 1.

We are now ready to give each vertex in the bipartite graph a weight: example x j gets

weight µ j and a hypothesis hi,θ gets weight wi,θ = wi/`, where w is as in Equation (D.2). The

weights on the hypotheses were chosen such that they will sum up to 1:

∑
i,θ

wi,θ = ∑
i,θ

wi

`
= ∑

i
wi = 1. (D.3)

Lower bound weighted-density. We will lower bound the weighted density ρ of the
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bipartite graph, which is the sum over all edges (x j,hi,θ) in the graph, each with weight wi,θµ j:

ρ = ∑
(x j,hi,θ)∈E

wi,θµ j.

To show a lower bound on ρ, we focus on one labeled example (x,y) and one feature i and we

will lower bound the following sum

∑
θ:(x,hi,θ)∈E

wi,θ =
wi

` ∑
θ:(x,hi,θ)∈E

1. (D.4)

The sum in the RHS is equal to the number of θ’s such that yx j
i ≥ θ:

(D.5)

To lower bound dx,i we separate the analysis depending on the label y. If x is a positive example,

i.e., y =+1, we have that

dx,i ≥ (1+ xi−∆)/∆

For a negative example x, we can lower bound dx,i by

dx,i ≥ (1− xi−∆)/∆

To summarize these two equations we get that

dx,i ≥ (1+ yxi−∆)/∆
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Going back to Equation (D.4),

∑
θ:(x,hi,θ)∈E

wi,θ ≥
wi

`
· 1+ yxi−∆

∆
= wi(1+ yxi−∆) · `−1

2`
.

Summing over all features

∑
i,θ:(x,hi,θ)∈E

wi,θ =
`−1

2`

(
∑

i
wi(1−∆)+∑

i
yxiwi

)
(D.6)

≥ `−1
2`

(1+ γ−∆) =

(
1
2
+

γ

2
− ∆

2

)(
1− 1

`

)
(D.7)

Weighted sum over all examples yields the desired lower bound on ρ

ρ≥
(

1
2
+

γ

2
− ∆

2

)(
1− 1

`

)
≥ 1

2
+

γ

2
−α.

Finding a weak learner. The proof now continues similarly to the proof of Theorem D.1.1.

Since wi,θ is a probability distribution over all hypotheses in H ′t (see Equation (D.3)), we can

rewrite ρ and get

Ehi,θ∼w

 ∑
j:(x j,hi,θ)∈E

µ j

≥ 1
2
+

γ

2
−α.

From the probabilistic method [4], there is hypothesis hi such that

∑
j:(x j,hi)∈E

µ j ≥
1
2
+

γ

2
−α.

By the definition of the graph, (x j,hi) ∈ E⇔ hi(x j) = f (x j). Thus, we get that

Pr
x∼µ

(hi(x) = f (x))≥ 1
2
+

γ

2
−α,

which is exactly what we wanted to prove.
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Theorem 5.5.2 (weak-learner). Fix α > 0. For any distribution µ over [−1,+1]d×{−1,+1}

that satisfies linear separability with a γ-margin, and for any δ ∈ (0,1) there is m = O
(

d+log 1
δ

γ2

)
,

such that with probability at least 1−δ over the sample S of size m, it holds that

Pr
(x,y)∼µ

(hS(x) = y)≥ 1
2
+

γ

4
−α.

Proof. Proof is similar to Theorem D.1.2.

D.1.3 Linear Separability: Risk Scores

Claim 5.5.1. If every condition in a risk-score model R is of the form “xi ≥ θ" and all weights

are positive, except the bias term, then R is a monotone model.

Proof. Fix a risk score model f which is defined by a series of m conditions “xi1 ≥ θ1”, . . . ,“xim ≥

θm” and weights w0,w1, . . . ,wm. The score, s(z), of an example z is the weighted-sum of all

satisfied conditions,

s(z) = w0 +
m

∑
j=1

w jIz j≥θ j ,

where IA = 1 if A is true, and IA = 0 otherwise. The prediction of the model f is equal to

f (z) = sign(s(z)).

Fix examples x,y ∈ Rd with x≤ y. Our goal is to show that f (x)≤ f (y). The key obser-

vation is that any condition xi j ≥ θ j satisfied by x is also satisfied by y because yi j ≥ xi j ≥ θ j, by

our assumption that x≤ y. In different words we have that

(D.8)
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This implies that the score of y is at least the score of x, since it holds that

s(y) = w0

m

∑
j=1

w jIy j≥θ j ≥ w0 +
m

∑
j=1

w jIx j≥θ j = s(x).

Thus, we get exactly what we wanted to prove f (y) = sign(s(y))≥ sign(s(x)) = f (x).

As an aside, at this point, it should become apparent why we restricted our conditions

to be of the form “xi j ≥ θ j” and did not allow natural conditions of the form “xi j ≤ θ j”, such

conditions will not be monotone and Inequality (Equation (D.8)) will not hold.

Claim 5.5.2. Assume a learning algorithm A gets as an input a sample from a γ-linearly separable

data and returns a monotone model with accuracy 1− ε(γ). Then, there is an algorithm that

returns a model with astuteness (Definition 2) at least 1− ε
(

γ

2

)
at radius γ/2.

Proof. The high-level idea is to focus on a noisier distribution than the original one. The noise is

small enough so that the new data will remain linearly separable with a (slightly worse) margin.

Therefore, the learning algorithm can be applied. We call the learning algorithm with a sample

from the noisy distribution and return its result. We will prove that a point correctly classified in

the noisy dataset implies that the noiseless point is robust to adversarial examples.

Noisy data. Fix a data D ⊆ X ×{−1,+1} and a distribution µ on D. We will create

a noisy distribution µ′ on the labeled examples by mapping each example (x,y) ∈ D to a new

labeled example (x′,y) where

x′ = x− y
γ

2
1,

where 1 is the vector of all 1. Thus, if x is a positive labeled example (y =+1) then x′ = x− γ

21.

This means that from each coordinate we decrease γ/2. Intuitively, we make x looks more

negative. Similarly, if x is a negative labeled example (y = −1) we create a new example

x′ = x+ γ

21, intuitively, making x looks more positive by adding γ/2 to each coordinate.

If we have a samples from µ, then we can easily sample from µ′ by subtracting y γ

21 from

each labeled example (x,y) in the sample.
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Noisy data is γ/2-linearly separable. Suppose that the original data D is γ-separable.

This means that there is a vector w with |w|1 = 1 such that for every labeled example (x,y) ∈ D

in it holds that yw · x≥ γ. We know that the corresponding example in the noisy data is equal to

x′ = x− y γ

21. We will prove a lower bound on yw · x′ and this will prove that the noisy input is

also linearly separable with a margin. We will use the fact that y2 = 1 for any label y and get that

yw · x′ = yw
(

x− y
γ

2
1
)
= ywx− y2w · γ

2
1 = ywx−w · γ

2
1

Recall that |w|1 = 1, which means that w · 1 = ∑i wi ≤ ∑i |wi| = |w|1 = 1. This means that

−w · γ

21≥−γ/2. Together with the fact that yw ·x≥ γ, we can now give the desired lower bounds

on yw · x′

yw · x′ ≥ ywx− γ/2≥ γ− γ/2 = γ/2.

In different words, the new data is γ/2-linearly separable.

Model is robust. In order to construct a robust model, we take our sample S from µ. Then

we transform it to a sample from µ′ by subtracting noise of y γ

21 to each labeled example (x,y),

and then we call algorithm A with the noisy training data. From our assumption, the resulting

model has accuracy 1− ε( γ

2). We will show that the returned model has astuteness of 1− ε( γ

2) at

radius γ/2 with respect to µ. We do this by proving that if (x′,y) is correctly classified than the

model is robust at x with radius γ/2.

Fix a noisy labeled example (x′,y) and an example z that is γ/2 close to x, in `∞, i.e.,

‖x− z‖∞ ≤ γ/2.

D.2 Additional Experiment Details
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D.2.1 Setups

The experiments are performed on a Intel Core i9 9940X machine with 128GB of RAM.

The code for the experiments is available at this url2.

Additional dataset details. The adult, bank, breastcancer, mammo, mushroom, and

spambase datasets are retrieved from a publicly available repository3, and these datasets are used

by Ustun and Rudin [224]. The careval, ficobin, and campasbin datasets are also retrieved from a

publicly available source4 and used by Lin et al. [136]. We also added the diabetes, heart, and

ionosphere dataset from5 and bank2 dataset from Moro et al. [150]. All features are scaled to

[0,1] by the following formula (x−min)/(max−min), where x represents the feature value, and

min and max represents the minimum and maximum value of the given feature across the entire

data.

In the adult dataset, the target is to predict whether the person’s income is greater then

50,000. For bank and bank2 datasets, we want to predict whether the client opens a bank account

after a marketing call. In the breastcancer dataset, we want to predict whether the given sample is

benign. In the heart dataset, we want to detect the presence of heart disease in a patient. In the

mammo dataset, we want to predict whether the sample from the mammography is malignant. In

the mushroom dataset, we want to predict whether the mushroom is poisonous. In the spambase

dataset, we want to predict whether an email is a spam. In the careval dataset, the goal is to

evaluate cars. In the ficobin dataset, we want to predict a person credit risk. In the campasbin

dataset, we want to predict whether a convicted criminal will re-offend again. In the diabetes

dataset, we want to predict whether or not the patients in the dataset have diabetes. In the

ionosphere dataset, we want to predict whether the radar data are showing some evidence of some

type of structure in the ionosphere.

2https://github.com/yangarbiter/interpretable-robust-trees
3https://github.com/ustunb/risk-slim/tree/master/examples/data
4https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees/tree/master/

experiments/datasets
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Baseline implementations. For DT, we use the implementation from scikit-learn [169]

and set the splitting criteria to entropy. For LCPA and RobDT, we use the implementation from

their original authors6.

Measure empirical robustness. The IR for DT and RobDT can be measured using the

method in [108, 239]. The IR for BBM-RS is measured using the method in [6]. The IR for

LCPA can be measured by solving a linear program.

D.3 Additional Results

D.3.1 Examples That Are Similar but Labeled Differently

The compasbin dataset has the lowest r-separateness. Its binary features are:

• sex:Female

• age:< 21

• age:< 23

• age:< 26

• age:< 46

• juvenile-felonies:=0

• juvenile-misdemeanors:=0

• juvenile-crimes:=0

• priors:=0

• priors:=1

• priors:2-3

• priors:>3

There are 852 people who are: male, age between 26 to 46, did not commit any juvenile

felonies, misdemeanors, and crimes, and have more than 3 previous criminal conviction. These

people will have the same feature vector while for their labels, 542 recidivate within two years

while 310 people did not.

6https://github.com/ustunb/risk-slim and https://github.com/chenhongge/RobustTrees
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D.3.2 Relationship Between Explainability, Accuracy, and Robustness in

BBM-RS

To understand the interaction between explainability, accuracy, and robustness, we mea-

sure these criteria of BBM-RS with different noise levels τ. The results are shown in Figure D.3.

We observed that, by changing the noise level, that robustness and the explanation complexity

go hand in hand. For higher noise levels, we have higher robustness and lower explanation

complexity and accuracy. This shows that by making the model simpler, we can have better

robustness and explainability while losing some accuracy.

D.3.3 Tradeoff Between Explanation Complexity and Accuracy for BBM-

RS

To understand how explanation complexity affects accuracy, we first train a BBM-RS

classifier. The learned BBM-RS classifier consists of T weak learners. We then measure the test

accuracy of using only i weak learners for prediction, where i = 1 . . .T . Finally, we plot out the

figure of accuracy versus explanation complexity (number of unique weak learners) in Figure D.4.

Note that for the same explanation complexity, there may be more than one test accuracy. In

this case, we show the highest test accuracy. In Figure D.4, we see that with the increase in

explanation complexity, generally, the test accuracy also increases.

D.3.4 Local Interpretable Complexity
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(a) adult (b) bank (c) bank2 (d) breastcancer

(e) careval (f) compasbin (g) diabetes (h) ficobin

(i) heart (j) ionosphere (k) mammo (l) mushroom

(m) spambase

Figure D.3: The tradeoff between explainability and accuracy for BBM-RS. The size of the ball
represents the accuracy.
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(a) adult (b) bank (c) bank2 (d) breastcancer

(e) careval (f) compasbin (g) diabetes (h) ficobin

(i) heart (j) ionosphere (k) mammo (l) mushroom

(m) spambase

Figure D.4: The tradeoff between explanation complexity and test accuracy for BBM-RS.
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Table D.1: The comparison of BBM-RS with other interpretable models (with standard error).

EC
DT RobDT Rudin’s BBM

adult 414.20±5.66 287.90±35.66 14.90±1.46 6.00± .60
bank 30.70± .15 26.80± .20 8.90± .66 8.00±1.41
bank2 30.00± .30 30.70± .15 13.80±1.54 4.50±1.34
breastcancer 15.20±1.25 7.40± .60 6.00± .00 11.00± .89
careval 59.30±2.22 28.20± .65 10.10± .97 8.70± .47
compasbin 67.80±13.01 33.70±3.05 5.40± .22 7.60± .16
diabetes 31.20±6.96 27.90±2.95 6.00± .00 2.10± .53
ficobin 30.60± .22 59.60±29.82 6.40± .16 11.80± .65
heart 20.30±1.60 13.60± .88 11.90±1.46 9.50± .82
ionosphere 11.30± .98 8.60± .76 17.90±3.14 6.80±1.96
mammo 27.40±5.09 12.40± .65 7.20± .65 1.90± .60
mushroom 10.80± .25 9.10± .10 23.80±1.50 9.90± .89
spambase 153.90±8.51 72.30±2.89 29.50± .76 5.60± .48

test accuracy

adult 0.83± .00 0.83± .00 0.82± .00 0.81± .00
bank 0.90± .00 0.90± .00 0.90± .00 0.90± .00
bank2 0.91± .00 0.90± .00 0.90± .00 0.90± .00
breastcancer 0.94± .00 0.94± .01 0.96± .00 0.96± .01
careval 0.97± .00 0.96± .00 0.91± .01 0.77± .00
compasbin 0.67± .00 0.67± .00 0.65± .00 0.66± .00
diabetes 0.74± .01 0.73± .01 0.76± .01 0.65± .01
ficobin 0.71± .00 0.71± .00 0.71± .00 0.72± .00
heart 0.76± .01 0.79± .01 0.82± .01 0.82± .01
ionosphere 0.89± .01 0.92± .01 0.88± .01 0.86± .01
mammo 0.79± .00 0.79± .00 0.79± .00 0.77± .00
mushroom 1.00± .00 1.00± .00 1.00± .00 0.97± .00
spambase 0.92± .00 0.87± .00 0.88± .00 0.79± .01

ER

adult 0.50± .00 0.50± .00 0.12± .02 0.50± .00
bank 0.50± .00 0.50± .00 0.20± .03 0.50± .00
bank2 0.12± .01 0.18± .02 0.10± .01 0.50± .00
breastcancer 0.23± .01 0.29± .01 0.28± .00 0.27± .01
careval 0.50± .00 0.50± .00 0.19± .02 0.50± .00
compasbin 0.50± .00 0.50± .00 0.15± .01 0.33± .01
diabetes 0.08± .01 0.08± .00 0.09± .00 0.15± .05
ficobin 0.50± .00 0.50± .00 0.22± .01 0.50± .00
heart 0.23± .02 0.31± .02 0.14± .01 0.32± .02
ionosphere 0.15± .01 0.25± .01 0.07± .01 0.28± .01
mammo 0.47± .01 0.50± .00 0.21± .02 0.50± .00
mushroom 0.50± .00 0.50± .00 0.10± .01 0.50± .00
spambase 0.00± .00 0.04± .00 0.02± .00 0.05± .00
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Table D.2: Interpretable complexity. DT measured by depth

DT RobDT Rudin’s BBM

adult 10.00± .00 12.50±1.07 14.90±1.46 6.00± .60
bank 5.00± .00 6.00± .00 8.90± .66 8.00±1.41
bank2 5.00± .00 6.00± .00 13.80±1.54 4.50±1.34
breastcancer 6.00± .54 5.20± .20 6.00± .00 11.00± .89
careval 12.30± .54 11.40± .16 10.10± .97 8.70± .47
compasbin 7.40± .81 7.90± .53 5.40± .22 7.60± .16
diabetes 6.00± .67 7.50± .76 6.00± .00 2.10± .53
ficobin 5.00± .00 7.00±1.00 6.40± .16 11.80± .65
heart 6.00± .52 6.10± .10 11.90±1.46 9.50± .82
ionosphere 6.00± .42 7.90± .59 17.90±3.14 6.80±1.96
mammo 5.60± .60 6.20± .13 7.20± .65 1.90± .60
mushroom 5.80± .25 6.00± .00 23.80±1.50 9.90± .89
spambase 17.40±1.36 17.60± .67 29.50± .76 5.60± .48
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Appendix E

Probing Predictions on OOD Images via

Nearest Categories

E.1 Detailed Experiment Setups

The experiments are performed on 6 NVIDIA GeForce RTX 2080 Ti and 2 RTX 3080

GPUs located on three servers. Two of the servers have Intel Core i9 9940X and 128GB of RAM,

and the other one has AMD Threadripper 3960X and 256GB of RAM. We compute nearest

neighbors using FAISS1 [104], and all neural networks are implemented under the PyTorch

framework2 [168]

Algorithm implementations. For C&W algorithm [39], we use the implementation by

For TRADES [244], we also use the implementation From the original author3.

Datasets. All datasets used in our paper can be found in publicly available urls. MNIST

can be found in this url4, CIFAR10 and CIFAR100 can be found in this url5, ImgNet can be found

1code and license can be found in https://github.com/facebookresearch/faiss
2code and license can be found in https://github.com/pytorch/pytorch
3code and license can be found in https://github.com/yaodongyu/TRADES
4http://yann.lecun.com/exdb/mnist/
5https://www.cs.toronto.edu/~kriz/cifar.html
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in this url6.

Architechtures. We consider the convolutional neural network (CNN)7, wider residual

network (WRN-40-10) [242], ResNet50 [92] for our experiments in the pixel space.

Optimizers. We consider stochastic gradient descent (SGD) and Adam [115] as the

optimizers.

MNIST setup. We use the CNN used by Zhang et al. [244] for training neural networks

in the pixel space. The learning rate is decreased by a factor of 0.1 on the 40-th, 50-th, and 60-th

epoch. We use the output of the last convolutional CNN output as the extracted feature.

CIFAR10, CIFAR100, ImgNet100 setup. For CIFAR10 and CIFAR100, we use Wider

ResNet (WRN-40-10) [242] for training neural networks in the pixel space. For ImgNet100, we

use ResNet50 [92] for training neural networks in the pixel space. The learning rate is decreased

by a factor of 0.1 on the 40-th, 50-th, and 60-th epoch. For ImgNet100, we normalize the data by

subtracting the mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225).

Table E.1: Experimental setup for training in the pixel space. No weight decay is applied.

dataset MNIST CIFAR10 CIFAR100 ImgNet100

network structure CNN WRN-40-10 WRN-40-10 ResNet50
optimizer SGD Adam Adam Adam
batch size 128 64 64 128

momentum 0.9 - - -
epochs 70 70 70 70

initial learning rate 0.01 0.01 0.01 0.01
# train examples 60000 50000 50000 126689
# test examples 10000 10000 10000 5000

# classes 10 10 20 100

Adversarial attack algorithms. For the adversarial attack algorithms used to find the

closest adversarial examples, we use a mixture of projected gradient descent (PGD) [144], Brendel

6https://www.image-net.org/
7CNN is retrieved from the public repository of TRADES [244] https://github.com/yaodongyu/TRADES/

blob/master/models/small_cnn.py

169

https://www.image-net.org/
https://github.com/yaodongyu/TRADES/blob/master/models/small_cnn.py
https://github.com/yaodongyu/TRADES/blob/master/models/small_cnn.py


Bethge attack [33], boundary attack [32], multi-targeted attack [125], Sign-Opt [51] and C&W

algorithm [39].

Setups for experiments in the feature space

Architechtures. For MNIST, CIFAR10, and CIFAR100, we train a multi-layer-perceptron (MLP)

with two hidden layers each with 256 neurons and ReLU as the activation function in the feature

space. For ImgNet100, we train an MLP with two hidden layers each with 1024 neurons and

ReLU as the activation function in the feature space. For all four datasets, we use SGD as the

optimizer with an initial learning rate of 0.01 and a momentum of 0.9.

E.2 Additional Experiment Results

E.2.1 NCG Accuracies

Table E.2 shows the test accuracies of the 1-NN classifiers in the feature space of 12

different datasets. Tables E.3 to E.6 extends Table 6.2 with all datasets. We see that the 1-NN

classifiers are actually performing very well (close) in the feature space.

Table E.2: The test accuracy of a 1-nearest neighbor classifier in the feature space 12 different
datasets.

M-0 M-4 M-9 C10-0 C10-4 C10-9 C100-0 C100-4 C100-9 I-0 I-1 I-2

0.99 0.99 0.99 0.89 0.88 0.88 0.73 0.73 0.71 0.14 0.14 0.14

E.2.2 Ablation Study

Different architectures

We repeat the experiment with a different network architecture – DenseNet161 [98]. Their

training, testing, and NCG accuracies are shown in Table E.7.
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Table E.3: The train, test, and NCG accuracies of 10 MNIST datasets and 5 training methods in
the pixel space.

natural AT(2) TRADES(2) TRADES(4) TRADES(8)

MNIST-wo0
train acc. 1.000 0.993 0.987 0.954 0.997
test acc. 0.995 0.990 0.985 0.956 0.995
NCG acc. 0.390 0.457 0.457 0.485 0.402

MNIST-wo1
train acc. 1.000 0.994 0.987 0.975 0.997
test acc. 0.995 0.991 0.987 0.974 0.994
NCG acc. 0.273 0.451 0.355 0.528 0.259

MNIST-wo2
train acc. 1.000 0.993 0.988 0.958 0.997
test acc. 0.994 0.990 0.987 0.962 0.994
NCG acc. 0.402 0.532 0.529 0.520 0.452

MNIST-wo3
train acc. 1.000 0.994 0.989 0.962 0.997
test acc. 0.995 0.992 0.988 0.964 0.994
NCG acc. 0.564 0.659 0.667 0.592 0.538

MNIST-wo4
train acc. 1.000 0.994 0.988 0.963 0.997
test acc. 0.995 0.991 0.987 0.966 0.995
NCG acc. 0.760 0.766 0.810 0.758 0.749

MNIST-wo5
train acc. 1.000 0.993 0.988 0.965 0.997
test acc. 0.995 0.990 0.987 0.965 0.995
NCG acc. 0.505 0.611 0.618 0.616 0.537

MNIST-wo6
train acc. 1.000 0.993 0.987 0.959 0.997
test acc. 0.995 0.991 0.987 0.962 0.995
NCG acc. 0.515 0.551 0.556 0.505 0.538

MNIST-wo7
train acc. 1.000 0.994 0.989 0.962 0.997
test acc. 0.995 0.992 0.990 0.967 0.994
NCG acc. 0.507 0.672 0.703 0.713 0.594

MNIST-wo8
train acc. 1.000 0.993 0.987 0.966 0.997
test acc. 0.994 0.990 0.987 0.966 0.995
NCG acc. 0.416 0.493 0.497 0.491 0.446

MNIST-wo9
train acc. 1.000 0.996 0.992 0.962 0.997
test acc. 0.996 0.994 0.992 0.964 0.995
NCG acc. 0.577 0.714 0.691 0.703 0.660

Pretrainde Models

To verify that our observations can also be observed by models trained by others, we down-

loaded pretrained models from https://github.com/MadryLab/robustness/tree/master/

robustness by Engstrom et al. [65]. Table E.8 shows the training and testing accuracies of their
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Table E.4: The train, test, and NCG accuracies of 9 different variations of CIFAR10, CIFAR100,
and ImgNet100 datasets and 5 training methods in the pixel space.

natural AT(2) TRADES(2) TRADES(4) TRADES(8)

CIFAR10-wo0
train acc. 1.000 0.999 0.992 0.870 0.878
test acc. 0.898 0.729 0.716 0.660 0.761
NCG acc. 0.355 0.494 0.492 0.520 0.483

CIFAR10-wo4
train acc. 1.000 1.000 0.990 0.874 0.508
test acc. 0.886 0.754 0.742 0.700 0.485
NCG acc. 0.222 0.361 0.333 0.331 0.289

CIFAR10-wo9
train acc. 1.000 1.000 0.992 0.948 0.778
test acc. 0.885 0.725 0.712 0.732 0.641
NCG acc. 0.145 0.212 0.192 0.247 0.245

CIFAR100-wo0
train acc. 1.000 0.998 0.995 0.943 0.902
test acc. 0.741 0.554 0.547 0.576 0.607
NCG acc. 0.175 0.240 0.252 0.252 0.206

CIFAR100-wo4
train acc. 1.000 0.998 0.995 0.857 0.859
test acc. 0.743 0.544 0.543 0.492 0.553
NCG acc. 0.137 0.192 0.191 0.187 0.185

CIFAR100-wo9
train acc. 1.000 0.996 0.995 0.950 0.527
test acc. 0.727 0.547 0.537 0.585 0.431
NCG acc. 0.222 0.353 0.412 0.427 0.465

ImgNet100-wo0
train acc. 1.000 0.999 0.994 0.983 0.704
test acc. 0.529 0.417 0.393 0.354 0.320
NCG acc. 0.033 0.044 0.041 0.054 0.067

ImgNet100-wo1
train acc. 1.000 0.999 0.995 0.972 0.783
test acc. 0.534 0.414 0.385 0.356 0.316
NCG acc. 0.047 0.049 0.051 0.061 0.072

ImgNet100-wo2
train acc. 1.000 0.999 0.994 0.971 0.695
test acc. 0.537 0.394 0.388 0.353 0.320
NCG acc. 0.027 0.028 0.033 0.044 0.049

models.

Corrupted data. For models in the features space, we follow the same setup as in the

feature space of CIFAR10, which still trains a multi-layer perceptron on the CNN feature space,

but in the feature space of the pretrained model. Table E.9 shows the comparison of robust and

naturally trained models. From the table, we can see that the robust models, in general, have

higher NCG accuracy than the naturally trained models when the robust radius r is larger than
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Table E.5: The train, test, and NCG accuracies of 10 MNIST datasets and 5 training methods in
the feature space.

natural AT(2) TRADES(2) TRADES(4) TRADES(8)

MNIST-wo0
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 0.99 0.99
NCG acc. 0.28 0.32 0.39 0.49 0.55

MNIST-wo1
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 0.99 0.99
NCG acc. 0.14 0.21 0.27 0.50 0.51

MNIST-wo2
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 0.99 1.00
NCG acc. 0.41 0.46 0.53 0.59 0.62

MNIST-wo3
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 1.00 0.99
NCG acc. 0.68 0.71 0.73 0.73 0.74

MNIST-wo4
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 1.00 1.00
NCG acc. 0.78 0.73 0.77 0.81 0.86

MNIST-wo5
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 1.00 1.00 0.99
NCG acc. 0.61 0.63 0.65 0.68 0.69

MNIST-wo6
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 1.00 1.00 1.00 1.00
NCG acc. 0.54 0.58 0.60 0.65 0.66

MNIST-wo7
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 1.00 1.00 1.00
NCG acc. 0.53 0.54 0.61 0.68 0.67

MNIST-wo8
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 0.99 0.99 1.00 0.99
NCG acc. 0.46 0.47 0.51 0.56 0.59

MNIST-wo9
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.99 1.00 1.00 1.00 1.00
NCG acc. 0.61 0.71 0.71 0.73 0.79

0.25. Table E.10 shows the test accuracy, NCG accuracy, and the test accuracy conditioned on

whether the example is considered correct under NCG accuracy (NCG correct or not).
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Table E.6: The train, test, and NCG accuracies of nine different variations of CIFAR10,
CIFAR100, and ImgNet100 datasets and five training methods in the feature space. We use
different radius for AT since not all converge well when the radius is large (r = 2) For CIFAR10
and CIFAR100, we use AT(1); for ImgNet100, we use AT(.5).

natural AT(.5)/(1) TRADES(2) TRADES(4) TRADES(8)

CIFAR10-wo0
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.89 0.89 0.89 0.90 0.90
NCG acc. 0.80 0.83 0.81 0.83 0.83

CIFAR10-wo4
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.88 0.88 0.88 0.89 0.88
NCG acc. 0.82 0.84 0.82 0.85 0.85

CIFAR10-wo9
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.88 0.88 0.88 0.89 0.89
NCG acc. 0.84 0.89 0.83 0.88 0.87

CIFAR100-wo0
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.72 0.73 0.73 0.74 0.74
NCG acc. 0.63 0.70 0.69 0.68 0.68

CIFAR100-wo4
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.72 0.73 0.73 0.74 0.74
NCG acc. 0.69 0.74 0.75 0.73 0.74

CIFAR100-wo9
train acc. 1.00 1.00 1.00 1.00 1.00
test acc. 0.70 0.72 0.72 0.73 0.73
NCG acc. 0.66 0.74 0.72 0.71 0.71

ImgNet100-wo0
train acc. 0.99 0.57 0.33 0.98 0.98
test acc. 0.22 0.25 0.26 0.26 0.26
NCG acc. 0.11 0.16 0.15 0.12 0.13

ImgNet100-wo1
train acc. 1.00 0.56 0.32 0.98 0.98
test acc. 0.22 0.24 0.27 0.26 0.25
NCG acc. 0.13 0.15 0.18 0.14 0.15

ImgNet100-wo2
train acc. 1.00 0.60 0.33 0.98 0.98
test acc. 0.22 0.25 0.26 0.26 0.26
NCG acc. 0.11 0.15 0.15 0.14 0.14

E.2.3 Histograms of the Empirical Robust Radius and OOD Distance

Here we present the histogram of the empirical robust radius and OOD distance for other

algorithms and datasets. Figures E.1 to E.3 show the results for MNIST, CIFAR10, CIFAR100,

and ImgNet100 in the pixel space. Figures E.4 to E.6 show the results for MNIST, CIFAR10,

CIFAR100, and ImgNet100 in the feature space.

For the MNIST histograms in the feature space, we see that the empirical robust radius
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Table E.7: Results with DenseNet161 on CIFAR10 and CIFAR100.

natural AT(2) TRADES(2)

CIFAR10-wo0
train acc. 1.000 0.781 0.876
test acc. 0.839 0.637 0.640
NCG acc. 0.342 0.487 0.521

CIFAR100-wo0
train acc. 1.000 0.886 0.557
test acc. 0.608 0.500 0.441
NCG acc. 0.173 0.225 0.271

Table E.8: The training and testing accuracies of the Engstrom et al. [65]’s pretrained models
on CIFAR10.

natural AT(.25) AT(.5) AT(1.0)

trn acc. 1.00 0.97 0.98 0.86
tst acc. 0.95 0.93 0.91 0.82

have smaller number compared with the counts for OOD distance. That is because there are many

OOD examples that have these few training examples as the closest training example.

Tables E.11 to E.14 show the average empirical robust radius, average OOD distance,

portion of OOD examples covered by the robust norm ball of its closest training example and

the NCG accuracy (in the pixel and feature space of M, C10, C100, and I). From the table, we

can see that the portion of OOD examples covered by the robust norm ball of its closest training

example are very low in general, regardless of the NCG accuracy. This rejects the hypothesis that

the robust methods enforce the neural network to be locally smooth in a ball of radius r; if the

OOD inputs are closer than r from their nearest training example, then they would get classified

accordingly. Next, we test if this is the case by measuring the distances between the OOD inputs

and their closest training examples.
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Table E.9: In both pixel and feature space, among the 90 corrupted sets for CIFAR10, the first
columns shows the number of robust models that have an NCG accuracy higher than naturally
trained network. The second and third column shows the average difference and ratio of the
NCG accuracy of the robust models and naturally trained networks (average over the NCG
accuracies on the 90 corrupted sets).

robust > natural counts difference ratio

pixel

CIFAR10
AT(0.25) 51/90 0.00±0.05 1.14±0.04
AT(0.5) 86/90 0.14±0.10 3.27±0.55
AT(1.0) 88/90 0.18±0.06 3.09±0.22

feature

CIFAR10
AT(1.0) 70/90 0.00±0.00 1.01±0.00
TRADES(2) 55/90 0.00±0.00 1.00±0.00
TRADES(4) 52/90 0.00±0.00 1.00±0.00
TRADES(8) 55/90 0.00±0.00 1.00±0.00

Table E.10: The test accuracy, NCG accuracy, and the test accuracy conditioned on the NCG
correctness of Engstrom et al. [65]’s pretrained model on the Gaussian noise corrupted data.

model natural AT(1)

dataset level tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

pixel

C10

1 0.52 0.50 0.68 0.13 0.21 0.17 0.31 0.30
2 0.37 0.35 0.49 0.12 0.20 0.16 0.31 0.29
3 0.28 0.26 0.38 0.13 0.20 0.16 0.30 0.29
4 0.25 0.24 0.33 0.14 0.20 0.16 0.30 0.28
5 0.23 0.21 0.32 0.14 0.20 0.16 0.30 0.28

feature

C10

1 0.82 0.44 0.85 0.95 0.82 0.42 0.83 0.97
2 0.67 0.38 0.70 0.91 0.66 0.41 0.68 0.95
3 0.49 0.31 0.52 0.86 0.48 0.30 0.49 0.93
4 0.42 0.29 0.44 0.85 0.41 0.31 0.42 0.92
5 0.36 0.27 0.37 0.84 0.35 0.27 0.35 0.92
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(a) M-0, natural (b) M-1, natural (c) M-4, natural (d) M-9, natural

(e) M-0, TRADES(r=2) (f) M-1, TRADES(r=2) (g) M-4, TRADES(r=2) (h) M-9, TRADES(r=2)

(i) M-0, TRADES(r=4) (j) M-1, TRADES(r=4) (k) M-4, TRADES(r=4) (l) M-9, TRADES(r=4)

(m) M-0, TRADES(r=8) (n) M-1, TRADES(r=8) (o) M-4, TRADES(r=8) (p) M-9, TRADES(r=8)

(q) M-0, AT(r=2) (r) M-1, AT(r=2) (s) M-4, AT(r=2) (t) M-9, AT(r=2)

Figure E.1: The histograms of the empirical robust radius and OOD distance for networks
trained on MNIST-wo0 (M-0), MNIST-wo1 (M-1), MNIST-wo4 (M-4), and MNIST-wo9 (M-9)
in the pixel space.
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(a) C10-0, natural (b) C10-4, natural (c) C100-0, natural (d) C100-4, natural

(e) C10-0, TRADES(r=2) (f) C10-4, TRADES(r=2) (g) C100-0, TRADES(r=2) (h) C100-4, TRADES(r=2)

(i) C10-0, TRADES(r=4) (j) C10-4, TRADES(r=4) (k) C100-0, TRADES(r=4) (l) C100-4, TRADES(r=4)

(m) C10-0, TRADES(r=8) (n) C10-4, TRADES(r=8) (o) C100-0, TRADES(r=8) (p) C100-4, TRADES(r=8)

(q) C10-0, AT(r=2) (r) C10-4, AT(r=2) (s) C100-0, AT(r=2) (t) C100-4, AT(r=2)

Figure E.2: The histograms of the empirical robust radius and OOD distance for networks
trained on CIFAR10-wo0 (C10-0), CIFAR10-wo4 (C10-4), CIFAR100-wo0 (C100-4), and
CIFAR100-wo4 (C100-4) in the pixel space.

E.2.4 Additional Figures on NCG Accuracy and the Distance to the Closest

Training Example

Figures E.7 and E.8 shows the NCG accuracy and the distance to the closest training

example for MNIST, CIFAR10, and CIFAR100 in both pixel and feature space. We can see that,
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(a) I-0, natural (b) I-1, natural (c) I-2, natural

(d) I-0, TRADES(r=2) (e) I-1, TRADES(r=2) (f) I-2, TRADES(r=2)

(g) I-0, TRADES(r=4) (h) I-1, TRADES(r=4) (i) I-2, TRADES(r=4)

(j) I-0, TRADES(r=8) (k) I-1, TRADES(r=8) (l) I-2, TRADES(r=8)

(m) I-0, AT(r=2) (n) I-1, AT(r=2) (o) I-2, AT(r=2)

Figure E.3: The histograms of the empirical robust radius and OOD distance for networks
trained on ImgNet100-wo0(I-0), ImgNet100-wo0(I-1), and ImgNet100-wo0(I-2) in the pixel
space.

in general, the NCG accuracy is higher when in- and out-of-distribution examples are closer to

each other.
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(a) M-0, natural (b) M-1, natural (c) M-4, natural (d) M-9, natural

(e) M-0, TRADES(r=2) (f) M-1, TRADES(r=2) (g) M-4, TRADES(r=2) (h) M-9, TRADES(r=2)

(i) M-0, TRADES(r=4) (j) M-1, TRADES(r=4) (k) M-4, TRADES(r=4) (l) M-9, TRADES(r=4)

(m) M-0, TRADES(r=8) (n) M-1, TRADES(r=8) (o) M-4, TRADES(r=8) (p) M-9, TRADES(r=8)

(q) M-0, AT(r=2) (r) M-1, AT(r=2) (s) M-4, AT(r=2) (t) M-9, AT(r=2)

Figure E.4: The histograms of the empirical robust radius and OOD distance for networks
trained on MNIST-wo0 (M-0), MNIST-wo1 (M-1), MNIST-wo4 (C100-4), and MNIST-wo9
(C100-9) in the feature space.
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(a) C10-0, natural (b) C10-4, natural (c) C100-0, natural (d) C100-4, natural

(e) C10-0, TRADES(r=2) (f) C10-4, TRADES(r=2) (g) C100-0, TRADES(r=2) (h) C100-4, TRADES(r=2)

(i) C10-0, TRADES(r=4) (j) C10-4, TRADES(r=4) (k) C100-0, TRADES(r=4) (l) C100-4, TRADES(r=4)

(m) C10-0, TRADES(r=8) (n) C10-4, TRADES(r=8) (o) C100-0, TRADES(r=8) (p) C100-4, TRADES(r=8)

(q) C10-0, AT(r=1) (r) C10-4, AT(r=1) (s) C100-0, AT(r=1) (t) C100-4, AT(r=1)

Figure E.5: The histograms of the empirical robust radius and OOD distance for networks
trained on CIFAR10-wo0 (C10-0), CIFAR10-wo4 (C10-4), CIFAR100-wo0 (C100-4), and
CIFAR100-wo4 (C100-4) in the feature space.

E.2.5 Additional Results for the Corrupted Data

Robust models on corrupted data. On average (over the 90 and 75 corrupted sets),

robust models have a NCG accuracy that is 1.35± .02, 1.36± .03, and 1.66± .04 times higher
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(a) I-0, natural (b) I-1, natural (c) I-2, natural

(d) I-0, TRADES(r=2) (e) I-1, TRADES(r=2) (f) I-2, TRADES(r=2)

(g) I-0, TRADES(r=4) (h) I-1, TRADES(r=4) (i) I-2, TRADES(r=4)

(j) I-0, TRADES(r=8) (k) I-1, TRADES(r=8) (l) I-2, TRADES(r=8)

(m) I-0, AT(r=.5) (n) I-1, AT(r=.5) (o) I-2, AT(r=.5)

Figure E.6: The histograms of the empirical robust radius and OOD distance for networks
trained on ImgNet100-wo0(I-0), ImgNet100-wo0(I-1), and ImgNet100-wo0(I-2) in the feature
space.

than naturally trained models for CIFAR10, CIFAR100, and ImgNet100 respectively. In the

feature space, we still find that all the 255 corruption sets have an NCG accuracy above chance

level, but the NCG accuracies of the robust models are closer to the naturally trained models. For
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(a) M-0 (b) M-4 (c) M-9

(d) C10-0 (e) C10-4 (f) C10-9

(g) C100-0 (h) C100-4 (i) C100-9

(j) I-0 (k) I-1 (l) I-2

Figure E.7: The NCG accuracy and the distance to the closest training example for MNIST,
CIFAR10, CIFAR100, and ImageNet-100 in the pixel space.

CIFAR100, we still observe that all robust models have an NCG accuracy higher than the naturally

trained models. But for CIFAR10, we find that on only 42 (out of 90) corrupted sets, TRADES(2)

models have a higher NCG accuracy than naturally trained models. The average improvement

over the naturally trained models in NCG accuracy goes down to 1.00± .00, 1.07± .00, and

1.09± .01 times for CIFAR10, CIFAR100, and ImgNet100 respectively.
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E.2.6 Additional Results on the Slope of Corrupted Test Accuracy

NCG accuracy. Repeating the same experiment with NCG accuracy, we find similar

results as well. In the pixel space, for CIFAR10 and CIFAR100, the slopes of the naturally trained

models are significantly smaller than TRADES(2) on 15 and 14 (out of 18) corruption types.

For ImgNet100, 6 out of 15 corruption types pass the test. The other 9 corruption types are not

significant (they did not accept or reject the hypothesis). In the feature space, we also test whether

the slopes of robust and naturally trained models are different. For CIFAR10 and CIFAR100, 17

and 15 (out of 18) corruption types, respectively, are not significantly different. For ImgNet100,

13 out of 15 corruption types are not significant. Figure E.9 shows the slope of the corrupted test

and NCG accuracy for CIFAR10 and CIFAR100.

E.2.7 Full Table of Table 6.5

Table E.15 shows the full version of Table 6.5. We can derive the same conclusion from

this table.

E.2.8 Most Predicted Classes

In Table E.16, we first remove a class from the training set of each dataset and train a

neural network on the modified training set. We then look at the predictions of the neural network

on these removed images and record their top two most predicted classes. From the result, we see

that the outputs that these two networks produce follow some patterns no matter it is in the pixel

space or the feature space, robust training or not For example, for C10-0 and C100-0, we see that

“airplanes” are predicted as a ship or bird possibly because they have similar background of the

sky. “aquatic mammals” are predicted as fish possibly because they are both in the water.
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E.3 Proof of Sample Complexity Separation Theorem

As a warm-up, we prove Theorem 4.5.3 for R and C = 2 classes. We will use this as a

building block for the general result.

E.3.1 Warm-up: Binary Case

For this special case, the universe for the examples will be the real line R, and we consider

a binary classification task with a third category that only appears in the testing distribution. Let

ε ∈ (0,1/2) be a parameter. For the training distribution µ, we define four regions:

1. Positive, large probability. Let P0 = [1,2], labeled as “+”.

2. Positive, small probability. Let P1 = [3,4], labeled as “+”.

3. Negative, large probability. Let N0 = [−2,−1], labeled as “−”.

4. Negative, small probability. Let N1 = [−4,−3], labeled as “−”.

To sample from the training distribution µ, we first set ` ∈ {−1,1} randomly with equal

probability. Then, we choose i ∈ {0,1}, where i = 0 with probability 1− ε and i = 1 with

probability ε. If ` = 1, sample a point x uniformly from Pi, and otherwise, if ` = −1, we

sample uniformly from Ni. Note that with probability 1− ε, we have that x ∈ P0∪N0, while the

probability of seeing any point in P1∪N1 is only ε. Finally, let ν be the uniform distribution on

[−6,−5]∪ [5,6], where for x∼ ν, we label it as sign(x).

We first argue that nearest category generalization can be efficiently solved. During

training time, if we see at least 32 samples from µ, then with probability at least 99%, we will see

samples from both P0 and N0, since 1− ε > 1/2, and we see samples from each class with equal

probability. Therefore, once we have at least one sample from each class, we can construct the

classifier decides ±1 based on the midpoint of the training examples (which will be between −2
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and +2 with good probability). Then, on the testing distribution ν, we see that all points will be

classified correctly with the label of their nearest neighbor in the support of µ.

Turning to out-of-distribution detection, we claim that Ω(1/ε) samples are necessary.

Indeed, to distinguish whether a sample comes from ν or from P1∪N1, we must see at least

one sample from each of P1 and N1, since the support of ν is unknown at training time. As

the probability of sampling from P1 or N1 is only ε, we will miss one of these regions with

probability 99% if we have fewer than t = 1/(100ε) samples from µ. Indeed, with probability

(1− ε)t ≥ e−εt = e−.01 > 0.99, we have that all the samples come from P0∪N0.

E.3.2 General Case

We now provide the proof of Theorem 4.5.3 for any number C ≥ 2 of classes and for any

d ≥ 1 dimensional dataset in Rd with nearest neighbors measured in `2 distance.

For j ∈ {1,2, . . . ,C} we define the following centers

a j
0 = 1+10 j and a j

1 = 3+10 j and a j
2 = 5+10 j,

where we naturally embed them in d dimensions by using these as the value of the first coordinate

and setting the rest of the coordinates to be zero. In other words, we define a j
i = a j

i · e1, where e1

is the standard basis vector, so that a j
i ∈ Rd .

Then, for i ∈ {0,1,2} and j ∈ {1,2, . . . ,C}, we define the following regions, which are

cubes centered at the points defined above and have side length 1/
√

d. Formally, we consider the

d-dimensional cubes

A j
i =

{
a j

i +(x1,x2, . . . ,xd) | 0≤ xk ≤ 1/
√

d
}
.

To sample from the training distribution µ, we first choose ` ∈ {1,2, . . . ,C} uniformly at
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random. Then, we choose i ∈ {0,1}, where i = 0 with probability 1−ε and i = 1 with probability

ε. Given our choice of `, we sample a point x uniformly from A`
i . Note that with probability

1− ε, we have that x ∈⋃C
j=1 A j

0 , while the probability of seeing any point in
⋃C

j=1 A j
1 is only ε.

Finally, let ν be the uniform distribution on
⋃C

j=1 A j
2 . For both distributions, we label x as j if it

comes from A j
i for any i ∈ {0,1,2}.

Notice that this definition with j = 0 corresponds to the positively labeled regions

([1,2], [3,4], [5,6]) from the proof of the binary case in the previous subsection. The proba-

bilities are also the same when C = 2.

We explain the key properties of these regions, and then we prove the sample complexity

results claimed in the theorem statement. First, for any i ∈ {0,1,2} and j ∈ {1,2, . . . ,C}, if

x,y ∈ A j
i , then ‖x−y‖2 ≤ 1 because each A j

i is a cube with side length 1/
√

d in Rd .

Next, consider x ∈ A j
2 . We claim that x is closer to A j

0 than to any point z ∈ A j′
0 ∪A j′

1 for

any j′ 6= j. To see this, we can check that the triangle inequality implies that

min
y∈A j

0

‖x−y‖2 ≤ 4+1 = 5,

while, since the centers satisfy |a j
2−a j′

1 |> |a
j
2−a j′

0 | ≥ 6, we also have that for j′ 6= j,

min
z∈A j′

0 ∪A j′
1

‖x− z‖2 ≥ 6.

As a consequence, we have that the nearest neighbor in `2 distance for any point x ∈ A j
2

has the same label j as x does. In particular, this implies that we can solve the nearest category

generalization problem for points sampled from ν. To do so, we first sample Θ(C logC) points

from µ, so that by a coupon collector argument, we see at least one point from A j
0 for each

j ∈ {1,2, . . . ,C}. Then, recall that ν is supported on the union of A j′
2 over j′ ∈ {1,2, . . . ,C}. By

the above calculations, we have that the nearest neighbor for a point x ∈ A j
2 is some point from
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either A j
0 or A j

1 . Therefore, since we have sampled at least one point from A j
0 , we can correctly

determine that x has label j by computing the nearest neighbor in our sampled points. To be more

precise, we can compute the multi-class large-margin classifier, where we have sequential decision

regions (corresponding roughly to the centers defined above), setting the decision boundaries to

be equally spaced between samples from adjacent regions (i.e., the natural generalization of the

1D large-margin solution). Importantly, this solution does not require any extra knowledge of the

support of µ and ν because it can be computed directly from the samples (and we have argued

that with Θ(C logC) samples, we will see all C classes at least once).

We turn our attention to our lower bound, which is that we need at least Ω(C/ε) samples

to solve the OOD detection problem. More precisely, we provide a lower bound for the number of

samples to guarantee that we see that least one point from each region A j
1 for each j∈{1,2, . . . ,C}.

This is a prerequisite for solving the OOD detection problem, because otherwise, we cannot tell

whether a point comes from µ or ν without prior knowledge of the regions. For the lower bound,

we use the same argument as in the binary case in the previous subsection. This implies that we

need Ω(C/ε) samples to see one from A j
1 for each fixed j since the probability of sampling from

this region is ε/C by the definition of µ.

E.3.3 Alternative Generalizations

We could also use a “noisy one-hot encoding” to prove the theorem, replicating and

rotating the 1D dataset log2C times, to get a subset of Rlog2 C for C classes. One dimension is

non-zero for each point, and each dimension has points from two possible labels (C total labels).

Use 6C regions to define the low probability, high probability, and OOD regions (6 in each

dimension with 3 for each class). Again, by a coupon collector argument, we will see some point

from each of the high probability regions after O(C logC) samples. This enables nearest category

generalization. On the other hand, for OOD detection, we need Ω(C/ε) samples, where ε is the

sample probability from a low probability region.
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Instead of boxes, we could use Gaussian distributions with covariance σ2Id and means

shifted by increments of a vector, spacing out the means by distance Ω(σ
√

log(d/ε)) to get

analogous guarantees. Similar ideas work for Hamming distance on {0,1}d; embed regions

as intervals in the partial order along a path from 0d to 1d , spacing them out to ensure 1-NN

properties. In general, there are many metric spaces where we can provide a separation between

nearest category generalization and OOD detection by correctly setting up the regions and

sampling probabilities. Therefore, we believe it a general phenomena that nearest category

generalization is a more tractable goal, in terms of sample complexity, than OOD detection.
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Table E.11: The average empirical robust radius, average OOD distance, percentage of OOD
examples covered by the robust norm ball of its closest training example and the NCG accuracy
(in the pixel space of MNIST datasets).

empirical
robust
radius

OOD dist.
portion

covered NCG acc.

M-0

AT(2) 2.33 7.00 0.00 0.46
TRADES(2) 2.17 6.98 0.00 0.46
TRADES(4) 2.07 6.94 0.00 0.48
TRADES(8) 0.68 6.97 0.00 0.42
natural 1.26 6.95 0.00 0.36

M-1

AT(2) 1.83 4.30 0.00 0.51
TRADES(2) 1.57 4.31 0.00 0.35
TRADES(4) 1.44 4.31 0.00 0.54
TRADES(8) 0.56 4.29 0.00 0.28
natural 0.89 4.33 0.00 0.23

M-2

AT(2) 2.27 6.92 0.00 0.54
TRADES(2) 2.15 6.93 0.00 0.53
TRADES(4) 2.23 6.86 0.00 0.52
TRADES(8) 0.71 7.03 0.00 0.47
natural 1.33 6.98 0.00 0.40

M-3

AT(2) 2.35 6.27 0.00 0.66
TRADES(2) 2.22 6.33 0.00 0.66
TRADES(4) 1.93 6.30 0.00 0.58
TRADES(8) 0.70 6.20 0.01 0.55
natural 1.52 6.34 0.00 0.59

M-4

AT(2) 2.34 5.64 0.00 0.74
TRADES(2) 2.32 5.89 0.00 0.81
TRADES(4) 1.84 5.65 0.00 0.76
TRADES(8) 0.66 5.83 0.00 0.75
natural 1.33 5.73 0.00 0.76

M-5

AT(2) 2.39 6.30 0.00 0.61
TRADES(2) 2.17 6.34 0.00 0.62
TRADES(4) 2.24 6.37 0.00 0.62
TRADES(8) 0.66 6.33 0.00 0.55
natural 1.39 6.34 0.00 0.53

M-6

AT(2) 2.41 6.46 0.00 0.55
TRADES(2) 2.18 6.45 0.00 0.56
TRADES(4) 2.06 6.52 0.00 0.49
TRADES(8) 0.58 6.46 0.00 0.53
natural 1.30 6.44 0.00 0.51

M-7

AT(2) 2.18 5.55 0.00 0.67
TRADES(2) 2.10 5.47 0.00 0.72
TRADES(4) 1.88 5.51 0.01 0.72
TRADES(8) 0.77 5.53 0.01 0.59
natural 1.27 5.51 0.00 0.53

M-8

AT(2) 2.22 6.32 0.00 0.49
TRADES(2) 1.99 6.30 0.00 0.51
TRADES(4) 1.92 6.35 0.00 0.47
TRADES(8) 0.63 6.30 0.00 0.45
natural 1.35 6.30 0.00 0.42

M-9

AT(2) 2.33 5.14 0.00 0.71
TRADES(2) 2.28 5.25 0.00 0.68
TRADES(4) 2.18 5.13 0.00 0.70
TRADES(8) 0.66 5.20 0.00 0.65
natural 1.45 5.08 0.00 0.58
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Table E.12: The average empirical robust radius, average OOD distance, percentage of OOD
examples covered by the robust norm ball of its closest training example and the NCG accuracy
(in the pixel space of C10, C100, and I).

empirical
robust
radius

OOD dist.
portion

covered NCG acc.

C10-0

AT(2) 2.14 8.67 0.00 0.49
TRADES(2) 2.17 8.89 0.00 0.49
TRADES(4) 1.62 9.13 0.00 0.52
TRADES(8) 0.51 8.67 0.00 0.48
natural 0.09 8.71 0.00 0.35

C10-4

AT(2) 1.92 8.04 0.00 0.36
TRADES(2) 1.75 8.29 0.00 0.33
TRADES(4) 0.93 8.30 0.00 0.33
TRADES(8) 0.87 8.16 0.00 0.29
natural 0.09 8.29 0.00 0.22

C10-9

AT(2) 2.11 10.80 0.00 0.21
TRADES(2) 2.01 11.05 0.00 0.19
TRADES(4) 0.92 10.83 0.00 0.25
TRADES(8) 0.65 10.83 0.00 0.25
natural 0.12 10.85 0.00 0.14

C100-0

AT(2) 1.96 8.89 0.00 0.24
TRADES(2) 1.93 9.03 0.00 0.25
TRADES(4) 0.82 9.01 0.00 0.25
TRADES(8) 0.59 9.10 0.00 0.21
natural 0.11 8.94 0.00 0.17

C100-4

AT(2) 2.01 10.43 0.00 0.19
TRADES(2) 2.21 10.53 0.00 0.19
TRADES(4) 1.12 10.57 0.00 0.19
TRADES(8) 0.41 10.36 0.00 0.18
natural 0.10 10.17 0.00 0.14

C100-9

AT(2) 2.10 9.18 0.00 0.35
TRADES(2) 2.18 9.57 0.00 0.41
TRADES(4) 0.86 9.27 0.00 0.43
TRADES(8) 1.49 9.01 0.00 0.47
natural 0.08 9.22 0.00 0.22

I-0

AT(2) 2.77 155.07 0.00 0.04
TRADES(2) 3.14 155.62 0.00 0.04
TRADES(4) 3.54 160.05 0.00 0.06
TRADES(8) 2.67 161.10 0.00 0.07
natural 0.29 157.42 0.00 0.03

I-1

AT(2) 2.72 153.03 0.00 0.05
TRADES(2) 2.85 155.91 0.00 0.05
TRADES(4) 2.92 156.97 0.00 0.06
TRADES(8) 2.32 157.91 0.00 0.07
natural 0.26 152.47 0.00 0.05

I-2

AT(2) 2.22 154.28 0.00 0.03
TRADES(2) 2.49 155.76 0.00 0.03
TRADES(4) 2.67 156.83 0.00 0.04
TRADES(8) 2.27 156.27 0.00 0.05
natural 0.15 154.16 0.00 0.03
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Table E.13: The average empirical robust radius, average OOD distance, percentage of OOD
examples covered by the robust norm ball of its closest training example and the NCG accuracy
(in the feature space of MNIST datasets).

empirical
robust
radius

OOD dist.
portion

covered NCG acc.

M-0

AT(2) 7.50 57.78 0.00 0.32
TRADES(2) 9.08 57.16 0.00 0.39
TRADES(4) 12.54 57.28 0.00 0.49
TRADES(8) 15.91 57.50 0.00 0.55
natural 5.84 57.78 0.00 0.28

M-1

AT(2) 6.12 37.06 0.00 0.20
TRADES(2) 7.69 37.02 0.00 0.26
TRADES(4) 10.51 37.01 0.00 0.51
TRADES(8) 13.68 36.87 0.00 0.50
natural 4.80 37.06 0.00 0.13

M-2

AT(2) 13.13 64.51 0.00 0.46
TRADES(2) 10.77 63.96 0.00 0.53
TRADES(4) 14.25 62.53 0.00 0.59
TRADES(8) 17.60 64.77 0.00 0.62
natural 7.25 62.41 0.00 0.41

M-3

AT(2) 15.55 70.11 0.00 0.71
TRADES(2) 13.34 70.09 0.00 0.73
TRADES(4) 17.64 70.68 0.00 0.73
TRADES(8) 21.42 69.82 0.00 0.74
natural 9.33 70.11 0.00 0.68

M-4

AT(2) 10.97 54.27 0.00 0.73
TRADES(2) 13.43 53.89 0.00 0.77
TRADES(4) 16.79 54.23 0.00 0.81
TRADES(8) 20.62 53.80 0.00 0.86
natural 9.74 54.27 0.00 0.78

M-5

AT(2) 14.92 65.51 0.00 0.63
TRADES(2) 12.25 65.25 0.00 0.65
TRADES(4) 15.50 64.37 0.00 0.68
TRADES(8) 19.64 65.12 0.00 0.69
natural 9.47 65.51 0.00 0.61

M-6

AT(2) 11.66 60.66 0.00 0.58
TRADES(2) 10.62 60.65 0.00 0.60
TRADES(4) 14.15 60.67 0.00 0.65
TRADES(8) 17.44 60.28 0.00 0.66
natural 7.42 60.66 0.00 0.54

M-7

AT(2) 12.03 51.40 0.00 0.54
TRADES(2) 10.80 52.75 0.00 0.61
TRADES(4) 14.09 51.78 0.00 0.68
TRADES(8) 19.22 52.96 0.00 0.67
natural 7.49 51.40 0.00 0.53

M-8

AT(2) 11.88 60.31 0.00 0.47
TRADES(2) 10.88 60.31 0.00 0.51
TRADES(4) 15.79 61.43 0.00 0.56
TRADES(8) 17.15 59.64 0.00 0.59
natural 7.43 60.31 0.00 0.46

M-9

AT(2) 11.28 51.54 0.00 0.71
TRADES(2) 13.13 52.28 0.00 0.71
TRADES(4) 16.99 50.70 0.00 0.74
TRADES(8) 20.84 51.48 0.00 0.80
natural 8.12 52.32 0.00 0.61
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Table E.14: The average empirical robust radius, average OOD distance, percentage of OOD
examples covered by the robust norm ball of its closest training example and the NCG accuracy
(in the feature space of C10, C100, and I).

empirical
robust
radius

OOD dist.
portion

covered NCG acc.

C10-0

AT(1) 0.65 1.33 0.01 0.83
TRADES(2) 0.62 1.33 0.01 0.81
TRADES(4) 0.27 1.31 0.00 0.83
TRADES(8) 0.43 1.31 0.00 0.83
natural 0.48 1.31 0.00 0.80

C10-4

AT(1) 0.69 1.31 0.01 0.84
TRADES(2) 0.68 1.29 0.01 0.82
TRADES(4) 0.28 1.31 0.00 0.85
TRADES(8) 0.45 1.31 0.00 0.85
natural 0.57 1.31 0.00 0.82

C10-9

AT(1) 0.93 1.43 0.07 0.89
TRADES(2) 0.85 1.46 0.06 0.83
TRADES(4) 0.30 1.43 0.00 0.88
TRADES(8) 0.60 1.43 0.00 0.87
natural 0.73 1.43 0.03 0.84

C100-0

AT(1) 0.51 1.64 0.00 0.70
TRADES(2) 0.45 1.64 0.00 0.69
TRADES(4) 0.29 1.65 0.00 0.68
TRADES(8) 0.35 1.65 0.00 0.68
natural 0.30 1.65 0.00 0.63

C100-4

AT(1) 0.64 1.84 0.00 0.74
TRADES(2) 0.55 1.83 0.00 0.75
TRADES(4) 0.31 1.83 0.00 0.73
TRADES(8) 0.45 1.83 0.00 0.74
natural 0.36 1.83 0.00 0.69

C100-9

AT(1) 0.63 1.75 0.02 0.74
TRADES(2) 0.52 1.75 0.00 0.72
TRADES(4) 0.36 1.73 0.00 0.71
TRADES(8) 0.45 1.73 0.00 0.71
natural 0.33 1.73 0.00 0.66

I-0

AT(.5) 0.32 1.78 0.00 0.16
TRADES(2) 0.20 1.63 0.00 0.15
TRADES(4) 0.12 1.66 0.00 0.12
TRADES(8) 0.39 1.64 0.00 0.13
natural 0.07 1.64 0.00 0.11

I-1

AT(.5) 0.23 1.65 0.00 0.15
TRADES(2) 0.18 1.50 0.00 0.18
TRADES(4) 0.14 1.51 0.00 0.14
TRADES(8) 0.34 1.49 0.00 0.15
natural 0.05 1.47 0.00 0.13

I-2

AT(.5) 0.21 1.67 0.01 0.15
TRADES(2) 0.22 1.57 0.00 0.15
TRADES(4) 0.11 1.57 0.00 0.14
TRADES(8) 0.12 1.56 0.00 0.14
natural 0.06 1.58 0.00 0.11
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(a) M-0 (b) M-4 (c) M-9

(d) C10-0 (e) C10-4 (f) C10-9

(g) C100-0 (h) C100-4 (i) C100-9

(j) I-0 (k) I-1 (l) I-2

Figure E.8: The NCG accuracy and the distance to the closest training example for MNIST,
CIFAR10, CIFAR100, and ImageNet-100 in the feature space.
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(a) C10 brightness (b) C10 defocus (c) C10 elastic transform (d) C10 Gaussian blur

(e) C100 brightness (f) C100 defocus (g) C100 elastic transform (h) C100 Gaussian blur

(i) C10 brightness (j) C10 defocus (k) C10 elastic transform (l) C10 Gaussian blur

(m) C100 brightness (n) C100 defocus (o) C100 elastic transform (p) C100 Gaussian blur

Figure E.9: The slopes of the test and NCG accuracies of naturally trained models and
TRADES(2) on CIFAR10 and CIFAR100 in the pixel space.

195



Table E.15: We show four different metrics on models trained on CIFAR10 and CIFAR100 and
evaluated on the Gaussian noise corrupted data. We show the NCG accuracy, test accuracy, the
test accuracy on the NCG correct corrupted examples, the test accuracy on the NCG incorrect
corrupted examples, and the distance to the closest training example.

model natural TRADES(2)

dataset level tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

tst
acc.

NCG
incorrect
tst acc.

NCG
correct
tst acc.

NCG
acc.

pixel

C10

1 0.76 0.70 0.88 0.34 0.71 0.67 0.78 0.40
2 0.63 0.54 0.82 0.30 0.71 0.66 0.78 0.39
3 0.48 0.39 0.75 0.26 0.70 0.65 0.77 0.39
4 0.41 0.32 0.70 0.24 0.69 0.63 0.77 0.38
5 0.36 0.27 0.66 0.22 0.68 0.63 0.77 0.38

C100

1 0.63 0.56 0.84 0.25 0.52 0.43 0.72 0.30
2 0.55 0.47 0.79 0.24 0.51 0.43 0.71 0.30
3 0.47 0.39 0.74 0.23 0.51 0.42 0.71 0.30
4 0.44 0.36 0.71 0.22 0.50 0.42 0.71 0.30
5 0.40 0.33 0.67 0.21 0.50 0.41 0.71 0.29

I

1 0.42 0.41 0.68 0.04 0.36 0.35 0.51 0.06
2 0.34 0.33 0.64 0.03 0.36 0.35 0.53 0.05
3 0.22 0.21 0.49 0.03 0.34 0.33 0.49 0.05
4 0.12 0.11 0.24 0.02 0.30 0.30 0.45 0.05
5 0.04 0.04 0.07 0.02 0.22 0.22 0.34 0.04

feature

C10

1 0.74 0.39 0.78 0.89 0.72 0.32 0.77 0.89
2 0.59 0.35 0.64 0.85 0.56 0.23 0.62 0.85
3 0.45 0.33 0.48 0.82 0.40 0.19 0.45 0.83
4 0.39 0.33 0.40 0.81 0.35 0.20 0.38 0.83
5 0.34 0.28 0.35 0.82 0.31 0.18 0.33 0.83

C100

1 0.60 0.25 0.72 0.74 0.62 0.29 0.71 0.78
2 0.51 0.24 0.63 0.68 0.53 0.29 0.62 0.74
3 0.43 0.23 0.54 0.64 0.44 0.25 0.53 0.69
4 0.40 0.22 0.51 0.63 0.40 0.23 0.49 0.67
5 0.37 0.21 0.46 0.61 0.37 0.21 0.46 0.65

I

1 0.22 0.18 0.44 0.15 0.21 0.18 0.41 0.16
2 0.19 0.16 0.36 0.14 0.18 0.15 0.34 0.15
3 0.14 0.12 0.26 0.14 0.13 0.11 0.21 0.17
4 0.09 0.08 0.16 0.13 0.08 0.07 0.14 0.16
5 0.05 0.04 0.08 0.14 0.04 0.03 0.08 0.14
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Table E.16: This table shows the top and second most predicted classes on the examples of
unseen classes for each dataset.

unseen class
top most

predicted class

second most

predicted class

M-0
pixel natural 0 6 2

TRADES(2) 0 2 6

feature natural 0 6 2
TRADES(2) 0 6 2

M-4
pixel natural 4 9 7

TRADES(2) 4 9 7

feature natural 4 9 7
TRADES(2) 4 9 7

M-9
pixel natural 9 4 7

TRADES(2) 9 4 7

feature natural 9 4 8
TRADES(2) 9 4 8

C100-0
pixel natural aquatic mammals fish small mammals

TRADES(2) aquatic mammals fish medium-sized mammals

feature natural aquatic mammals fish reptiles
TRADES(2) aquatic mammals fish reptiles

C100-4
pixel natural fruit and vegetables flowers food containers

TRADES(2) fruit and vegetables flowers food containers

feature natural fruit and vegetables flowers food containers
TRADES(2) fruit and vegetables flowers food containers

C100-9
pixel natural large man-made outdoor things large natural outdoor scenes vehicles 2

TRADES(2) large man-made outdoor things large natural outdoor scenes trees

feature natural large man-made outdoor things large natural outdoor scenes vehicles 2
TRADES(2) large man-made outdoor things large natural outdoor scenes vehicles 2

C10-0
pixel natural airplane ship bird

TRADES(2) airplane ship bird

feature natural airplane ship bird
TRADES(2) airplane ship bird

C10-4
pixel natural deer bird horse

TRADES(2) deer frog bird

feature natural deer bird horse
TRADES(2) deer bird cat

C10-9
pixel natural truck automobile airplane

TRADES(2) truck automobile ship

feature natural truck automobile ship
TRADES(2) truck automobile ship

I-0
pixel natural American robin lorikeet stinkhorn mushroom

TRADES(2) American robin lorikeet hare

feature natural American robin hare little blue heron
TRADES(2) American robin hare little blue heron

I-1
pixel natural Gila monster eastern hog-nosed snake dung beetle

TRADES(2) Gila monster eastern hog-nosed snake rock crab

feature natural Gila monster eastern hog-nosed snake dung beetle
TRADES(2) Gila monster eastern hog-nosed snake dung beetle

I-2
pixel natural eastern hog-nosed snake garter snake Gila monster

TRADES(2) eastern hog-nosed snake garter snake Gila monster

feature natural eastern hog-nosed snake Gila monster garter snake
TRADES(2) eastern hog-nosed snake Gila monster dung beetle
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Appendix F

Understanding Rare Spurious Correlations

in Neural Networks

F.1 Experimental Details and Additional Results

F.1.1 Detailed Experimental Setups

For MNIST and Fashion, we set the learning rate to 0.01 for all architectures and optimiz-

ers. We set the momentum to 0.9 when the optimizer is SGD. For CIFAR10, when training with

SGD, we set the learning rate to 0.1 for ResNets trained and 0.01 for Vgg16 because Vgg16 failed

to converge with a learning rate of 0.1. We set the learning rate to 0.01 for ResNets when running

with Adam (Vgg16 failed to converge with Adam). We use a learning rate scheduler that decreases

the learning rate by a factor of 0.1 on the 40-th, 50-th, and 60-th epoch. The code for all the exper-

iments is available at https://github.com/yangarbiter/rare-spurious-correlation.
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F.1.2 How the Optimization Process Effect Spurious Scores

We study how the optimization process affects the learning of the spurious correlation. We

look into two main components of the optimization process, the optimizers and the use of gradient

clipping, and examine how each component affects the spurious score. For the optimizers, we

compare between Adam and SGD, while for gradient clipping, we compare between no gradient

clipping and clipping the norm the gradient to 0.1. We repeat the five times with different random

seeds and record their mean and standard error.

Figure F.1 shows the average spurious scores between different optimizers on different

datasets and spurious patterns. We see that the networks trained with Adam, in general, have

larger or even average spurious scores than the networks trained with SGD. This result indicates

that Adam can be more susceptible to learning spurious correlations than SGD.

Figure F.2 shows the average spurious scores on networks trained with and without

gradient clipping on different datasets and spurious patterns. We see that, in most cases, with and

without gradient clipping perform similarly. It appears that using gradient clipping alone is not

sufficient to eliminate the rare spurious correlations from neural networks.

Overall, we see that rare spurious correlations are learned regardless of the choice of the

optimizer and whether the gradient clipping is performed or not. This indicates that tweaking

individual components in the optimization process may not be sufficient to remove spurious

correlations.
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(a) MNIST, SGD vs. Adam

(b) Fashion, SGD vs. Adam

(c) CIFAR10, SGD vs. Adam

Figure F.1: The mean and standard error of the spurious scores on neural networks trained with
SGD versus Adam. We consider networks trained with three and ten spurious examples as well
as using the S3 and R3 patterns.
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(a) MNIST, w/ vs. w/o clipping

(b) Fashion, w/ vs. w/o clipping

(c) CIFAR10, w/ vs. w/o clipping

Figure F.2: The mean and standard error of the spurious scores on neural networks trained
with and without gradient clipping. We consider networks trained with three and ten spurious
examples as well as using the S3 and R3 patterns.
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