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NUMERICAL MODEL FOR SATURATED-UNSATURATED FLOW IN

DEFORMABLE POROUS MEDIA, PART I: THEORY

T. N. Narasimhah and P. A. Witherspoon
Lawrence Berkeley Laboratory and Department of Civil Engineering
University of California, Berkeley, California 94720

ABSTRACT

A theory is presented for numerically simulating the mass transfer
of water in variably saturated, deformable porous media. The theoreti-
cél model considers a generai three-dimensional field of flow in conjunction
with a one dimensional, vertical deformation field. The governing
equation expresses the conservation of fluid mass in an elemental volumé
that has a constant volume of solids. The deformation of the porousi
medium may be nonelastic. The permeability and the compressibility
coefficients may be nonlinearly related to effective stress. The
relation between permeability and saturation with pore water pressure
in thevunsaturated zone may be characterized by hysteresis. The
relation between pore pressure change and effective stress change may
be a function of saturation. It is believed that this model will be of
practiéal intereét in studying saturated-unsaturated systems unde;going

simultaneous desaturation and deformation.
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INTRODUCTION

" This work is concerned with the development of a numerical

" model for simulating groundwater motion in vafiably saturated,
deformable, heterogeneous:poroué media; The model considers
a geheral three-dimensional fiéld?of;fluid flow in conjunction
with one-dimensional vertical deformatioﬁ'of-thé poréus;medium.
itvié bélievéd that this model will have generai applicability,
not ohiy‘in studying the movement of water iﬁ shallow ground-
wéter sysﬁeﬁé in which the role of the unsaturated zone may
be of considerable importance, but also in stﬁdyithalvariety
of civil enginéering and geological engineering probiems
related £o éround'séttlemenf.'

The foﬁhdatidn for the‘ﬁnified treatmeﬁ; of water flow
in variably.saturated isothermal porous media was first given
by Buékingham (1907) who proposed thetéoncept‘of a capillary
potential, w,‘anﬂ showed its functionai rélation to the
moisture contenﬁ, 6,'ih partially saturated soils. Richards
(1931) combined capilléry potential with'Qravita£iona1
poténtial and showed that Darcy's.law, which was originally
proposed for safurated pdrous media, was equaily valid in
vthe partially saturated zone. While Buckipghaﬁ and Richards

were mainly concerned with flow in partially saturated soils,



Terzaghi (1925) was concerned with the engineering properties of soiis. He
proposed the concept of effective stress in defining the deformation of the
soil skeleton. By definition, effective stress is related to capillary
rotential through the total stress. Thus; the coﬁce§£s of capillary potential,
gravitational potential, and effective stress together provide a conceptual
basis for deveioping a mathematical quel for the transieﬁt motion of
groundwater in variably saturated, deformable,porous media.

Although the theoretical basis has existed_féf some_time, no‘serioﬁs
attempt was made to develop a unified treatment for»satur;ted—uﬁsatuiated
flow in groundwater systems until recently (Cooléy,‘197l; Freeze{ 1971;
Narasimhan, 1975;,Neuman 1973; Vauclin et alf, 1974)., The models of Céoley
(1971), Freeze (1971), Neuman‘(l973), and Vauclin\et al; (1974) inclgde flow
in both the saturated and the unsaturated domains, but these»wgrkers dq not
treat in detaii_the fundaméntal stress-strain relationships of thg_pqrous
medium in response to changes in pore water pressure; Nor do.théy congider
the variation.in the permeability of the porous medium ih response to changes
in effective stress. Other numerical models take into account the stress-
strain relationships of the porous medium (e.g. Sandhu and Wilson, ;969;
Schiffman and Gibson, 1964}_Gambolati, 1973; Helm, 1975), but these models
are restricted to purely saturated flow. Studies related to. the behavior of
compacted clays (e.g. Barden, 1965; Bishop and Blight,-1963; Bishop and
Donald, 1961; McMurdie and Day, 1960) indicate tha£ the relationship
between effective stress and pore water pressure in partly saturated fine-
grained materials may be quite complex and needs special attention.

The purpose of this work is to develop a numerical model to simulate
saturated—unSaturated groundwater flow in whichvtheideformation of tﬁ? soil
skeleton is handled according to Terzaghi's one-dimensional consélidatioh

theory. The soil deformation may be nonelastic, and the compressibilify as



well as the permeability characteristics of the saturated soil may be nonlinear

functions of effective stress. In addition, the permeability as well as the

moisture characteristics of the unsaturated soil mdy exhibit hysteresis. We

will assume that the air phase in the zone of partial saturation is continuous

and is everywhere at atmOSPheric pres;uré} ‘The numerical model that is developed

will be capable of handling a three-dimensional flow region

that is composed of heterogeneous,_isotropic maté;ials and has a complex geometry.
~Part. I of this wdrk discusses the physics of the’mathéﬁatical model.

Part II is a detailed account of the numerical algorithm. Part III

demongtrates'thélvalidity of the numeribél'ﬁodelzﬁy”applying it to

realistic problems with known experimental or mathematical solutions.

EQUATION OF MASS CONSERVATION
The fundamental equation of transient groundwater motion is an equation
of mass conservation, which ¢can be expressed in an integral form as

- qen dI; =2 0av 1
pwq en T at Pw . . ( )
T v

If the volume element is appropriately small so that pw and 6 can be treated

. as average values over V, then (1) becomes

i e oy 2
T Jeuden dr = 5 (0,0V) o
I'| .

We now seek to write (2) with Y as the dependent variable and introduce

Darcy's law for the equation of motion in the form



v}ko g _
q-=- -—ul’— V(z+)) _ (3)

Note that z+y = ¢, which is the Hubbert (1940) potential or hydraulic head.
If we can assume that 3z/9t = 0, which implies that z is fixed‘during

the time interval, and if pw, V, n, and S are functions only.of w,_which is

justified from empirical considerations, then since 0 = nS, substitution of

(3) into (2) leads to

- kp g . A
W Y(ztl) em aT = & e} |
ﬁw m V(z+{) en al' = v (panS) 3t (4)

Since we are concerned with a aeformable pofous.medium, we Qill so choéée
the volume.element V that it contains a constant solid<volﬁme V; and a
variable void volume .VV. We will also assume thaﬁ the compressibiiity of
the soil grains can be conveniently neglected in relation to that of the
voids and water. A consequence’ of this choice is that spatial relationships

in the surface ihteéral in (4) are all functions of time.

FLUID MASS CAPACITY

We shall now introduce a term for fluid mass capacity MC defined by

-4

M = e (panS) ' : (5)

C

Mc represents the mass of fluid which the volume element V can absorb due to
a unit change in the average value of Y over V. Using the chain rule of

differentiation we obtain

dp
_ w d(vn) das
MC = VnS EE— + PWS —aﬁf—-+ prn . (6)

The three terms on the right side of (6) denote three distinct physical
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phenomena. The first term expresses the ability of water to expand due to
changes in hydrostatic pressure, the second represents the deformability of
the soil skeleton, and the last represents the desaturation of the pores.

We will consider each of these phenomena separately.

Equation of State

" The dependence of pw on hydrostatic pressure p is given by

Py = Pyo eXPI[B (p-p )] (7)
in which the reference pressure P, is-ﬁsually'taken~as atmospheric and set to

zero. Since water is only slightly compressible, we can let p = prgw without

loss of accuracy and obtain

Py = Py e¥PIBo, g¥] _ _ - (8)

Differentiating (8), we immediately obtain, for the first term on the right

hand side of (6)

dpw
vns W - VnSpwpwoBg : (9)

Deformation of Soil Skeleton

In the second.term of (6), we note that Vn = VV and e = Vv/vs' and hence

%%’L)=Vs%$—='1%§g% , - (10)
since Vs = V/(l+e). The dgpendence of e on ¥ is not direct. According to the
Terzaghi one dimensional consolidation theory, e is a function of effective
stress o', and.o' in turn is a function of Y.

By definition, effective stress is the net stress which acts on the soil

skeleton. In one dimensional consolidation theory, effective stress at a

point is defined by the relation, (Lambe and Whitman, 1969)

O.=0_Y“'N¢, .y



We now make an assumption that is reasonable under most field conditions that
the total stress 0 at any point in the system does not change with time. Then,

the changes in effective stress and pore water pressure are related by

Bo' = =y MY , (12)

Equation 12 suggests that any change in ¥ is fully converted to;an equiyalent
change in 0'. Experience in the field of soil mechanics seeﬁé to indicate
that in the case of fully saturated soils a complete equivalence exists
betweén a change in pore water pressure and a change in mechanical stress.
On the other hahd; in studying the deformation characteristics of oil
reservoir rocks, petroléum'engineers often infer that only:part of the
pore water pressure may be convertible to effective'stresé'(RoginéOn and
Holland( 1970). Dry to extremély-dry soils may develop negative pore
pressures (moisture suction or moisture tension) in the tens or even hundreds
of atmosphers. These capillary stresses are of a thermodynamic nature and
have little to do with mechanical stresses.

Betwéen the saturated soils in which capillary and mechanical stresses
may be fully equivalent, and the extremely dry soils in which cépillafy
and mechanical stresses have no equivalence, lie the partially safurated
soils of moderate to high saturation in which moisture suction is only
partly convertible to mechanical stress. To accommodate this situation,
a modified form of (11) has been proposed by Bishop (1960) and by MgMurdie
and Day (1960).

o' =0 - waw,b S 0=<x<1 . (13)

While the petroleqm enéineers refer to X aé boundapy porosity, soil engineers
sometimes refer to it as Bishop's parameter. x‘has been empirically de-

termined for some compacted soils and has a strong nonlinear relation



to saturation. Thus, X = X(S). The functional dependence of X and S for
a compacted soil is given in Figure 1. The relation between 0' and P in (13)
is schematically represented in Figure 2.

If we assume G to be constant, (13) yields '

U Y X v . (14)

in which X' = [X + w»éXJ
i | .
In the light of (14), equation 10 becomes

d(vn) _ VYWX' de

ay l+e do'

(15)

In soil mechanics literature‘it.is customary to express stress-strain
relationships of soils by plotting e versus ¢'. A very common boundary
condition for field loading ‘is one in which the strains are negligible in
the intermediate and minor principal stress directions and all possible
strains occur only in the vertical (major principal stress) direction. This
type of boundary condition is élosely simulated by the uniagiél loading
experiments conducted in the laboratory.

Figure 3A is an examplehof'the relation of e tO,O' for.a soft clay as
determined by uniaxial testing. In this figure, point B represents the state
of the soil in situ, at the time of sampliné. Due to the sampling, transporta-
tion and preparation processes beforé testing, the soil experienées a reduction
in effective stress. Therefore, at the commencement of the one-diﬁensional
compression test, the state of stress in the soil is‘representgd by point A.

As the vertical stress is increased, the sample follows the reloading curve
AB. In this region the soil is in a state of‘"overconsolidatiénf. Point B,
which represents the maximum gffective stress ever experienced by the soil,

is the "preconsolidation" stress of the sample. Once the laboratory loading
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exceeds the stress level at B, the séil e#perien;es a magnitude of loading
never before experienced by it, and the void ratio aecreases_along the curve
BC which is usually called the "virgin compression" curve. A soil unde;going
such loading'is "normally consolidated".

At C, further loading is stopped and a gradual uhloading of the soil is
commenced. The stress level at C now becomes the hew preconsolidation pressure
and the sample, instead of moving along the curve CB, moves along the solid
line CD, which is called the "swelling" or "rebouna" curve. If the sample
were to be reloaded at D, it would follow the dottedvline connecting D and
C, showing a slight hystereéis. For practical purposeé;}however, this hysteresis
can be neglected. The difference bétween the paths of the vifgin and swelling
curves shows that the phenomenon ofvsoil deformation is not elastic and that
part of the deformation is non-recoverable. Such nonelastic behavior is
exhibited by!clays as well as sands. This ponelastié deformation is the
prime cauée onIAnd subsidence as well as the pe?manent 1dss’§f valuable
groundwater storage space in some areas of heavy groundwater withdrawal.

The slope of thé curve in Figure 3A at any point of interest
is called the coefficient of compressibility, av, defined by

: de
a, = = 357 (16)
in which the negative sign accounts for the fact that e decreases with increasing
0'. Moreover, because of the nonlinear relationship between e and ¢', a, itself

is a function of oO'.

Closely related to a, is the empirical parameter, volumetric compressibility

€

v
nm =

v T T o a7

where €, is the voiumetric strain given by AVV/Vd.
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‘The quantities a_ and m  are related by

a, = mv(l+e0) : (18)
Analysis of a large number of uniaxial test date indicates that a plet

of e versus log ¢' is epproxiﬁately a straight line (Figure 3B). The slope
of the best-fitting straight line is ealled the "compreseton indexf;(qc) ;n
the case of the virgin curve ae@ "swelling ihdex" {CS) in tﬁe caee of the
rebound curve. Cc usually egceeds Csvby an otder of’magnitude or’more;_ An
advaptage of using Cc or Cs to describe stress—strain‘relatiqnehips is thatn
they are dimensionless coefficients, independent of the units.of measurement.

Using the chain rule of differentiation, we find that

_ de _ _de _ 4o’ d(fnc') . :
Ce = d(log, . 0') = d0' d(%no') d(log, o') 2.303 0 & (19)
10 _ 10 .
oY
C .
a = —— » (19a)

% 2.303 o'

We are coﬁsidering e ae‘a functien of o' only. In other werds, e chahgesv
instantaneously ae g changes. ‘The;experimental data which we use are'in‘
fact steady-state data in which the soil is allewed to attain equilibrium
with’each new load before the physical parameters afe measured. For many
soils, the time to attain equilibrigm may be relatively small, in which
case, the assumption of an instantaneous reaction ef e to o' is esseﬁtiaily
valid. Aﬁowever, when the.soil reacts squly te cﬂanges‘in loading, accurate
simulatioﬁ woﬁld requife that e be treated as a function of a' and't. In
the present medel however, we shail iQnore the tihe effects and treat e as
a function of>e' only.

We can now evaluate the second term en the right—hahd side of (6).

Combining (15) and (16), we get
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d(vn) prSwa av

pwS avy = l+e (20)
Or, making use of (19a), we have .
: _ !
o avm _ P’ NWX % (20a)
W Ta) T T+e 2.303 o

Desaturation of Pores

The third and last phenomenon that enables a soil to absorb or release
water ffom storage is the change in water saturation, represented by the last
term on the right hand side of (6). Change of water saturétion in soils is a
thermodynamic process. In extremely dry soils, a Qariation in water saturation
may in fact be adcompaniéd by tempefature changeé. However, ih soiis of
moderate to high water .content, the temperature does not vary as S changes
with Y. In our model we will neélect temperétufe effecté and assume that S
varies only with {.

It is well known from laboratory studies that at less than 100 percent
éaturation,lbtakes on negative values. In soil physics literature, it is
customary to refer to such values of Y as moistufe suction gi moisture tension.
The dependence of S on Y for Y< 0 is not unique but is charécterized by é
multiple-valued hysteresis rélationship as shown in Figﬁre 4;

If we consider a saturated éoil with Y= 0 and apply suction, the soil does
not physically desaturate until the applied sucinn excéeds a critical, "air-
entry" valﬁe, wA' The air-entry value ié a function of the pore diameter of
the soil and for fine-grained sediments and clays it may be of the ordei of
several meters of water or more. In the range, wA <Y < 0, the éoil remains
saturated but has a negative pore pressure. The capillary fringe iﬁvnatural
soils coincides with this range in the values of Y.

Once the threshold air-entry value is reached, the S versus Y relation

follows the drying curve. If at any point in the drying curve the process is
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reversed, a hysteresis effect as shown by the scanning curve in Figure 4
results. The drying and the wetting curves form the boundaries of thé hystere-
sis loop, within which the position of the scanning curve depends on the
saturation history.

The slope of the drying, wetting or scanning curve at any point of interest.
may be called the "specific saturation capacity" and is a measure of the ability
of the soil to absorb or release water from storage due to saturation changes.

If porosity is constant’, then

d _d(ns) _ 48 _ ' -
W W

It is obvious from Figure 4 that ds/dy and d6/day are strong multiple-valued
functions of Y. Substituting (21) into the last term on the right hand side
of (6) we see that

' as

as _ ' 2
prn av prc o | (22)

provided that n is a constant.

Final expression for,Mc

We obtain a final expression for Mc by'substituting'(9) and (20) into (6)

SY X'a .
w* v ds '
Mo = pr[Sn pwosg'+ 1re T ?,dw] (23a)
Or using (20a) we can usevCc instead of a, and write, .,
sy x'c
. ‘ w c S
Mc B pr[nSQWOBg + 2.303(1+e)c’ *n dwl (23p)

Note that in (23a) and (23b) the quantities pw, n, S and e are all functions
of ¥ and change continuously with time. Also, since Vs is constant, it follows
that Vv = Vs(l+e) is also a function of time. Finally, the parameter X' = X' (8)

is also a function of Y since S is related to V.
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S, saturation

'y L l__J 1 1 2 | 1 (¢}
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Figure 4. Variation of saturation with
pressure head for Del Monte sand
(after Liakopqulos, 1965).
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The Meaning of Specific Storage

In hydrogeology literature, the cpefficient of specific storage SS is
commonly used for saturated soils. SS is defined as the vqlume of water
released from a unit bulk volume of the soil per unit change in Y. Since
SS involves a unit Qolume element in the saturated zone, we divide (23a)
by V and disregarding the density term and noting that ¥' = 1 for full

saturation, we obtain in a straight forward manner

Y a

w v
1+e

S = [nYWB + ] : . (24)

S
In groundwater hydrology, Ss is invariably treated as constant and

. independent of Y, which implies that a, is effectively a constant. We have
already seen from Figures 3A and 3B that in fine-grained sediments av'could

in fact be a significant function of effective stress. Therefore, one

should treat a, (and hence, Ss)'as a constant only for small changes in the
value of effective stress. In young sedimentary basins where land subsidence

is known to occur, the assﬁmption of'cqﬁstant aV may not however be appropriate.
Most land subsidence takes place due to nonrecéverable compaction and loss

in storage due to stress changes along the virgin coﬁpression curve (Helm,
1975); With inéreased consolidation,vav_decreases significahtly, reflecting
not only the decreased rate at which water can be withdrawn from storage

but also the pefmanent loss in groundwater storage. If Qe recognize this

fact, then the storage space available undergréund may itself be treated

as a valuable resource. It is obvious that for long-range predictions of

land subsidence and groundwater management we would have to éonsider the
variation of aV (and hence, SS) with time. Such a treatment ié not possible

in the conventional equation used in hydrogeology in which the stress field

is completely ignored.
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PERMEABILITY

The permeability term in (4) is in general a symmetric second order
tensor. However, in the present work we will restrict outselves to isotropic
materials in which k is a scalar. 1In the zone of partial saturatioﬁ k is
directly related to { and this relationship may be characterized by hysteresis,
as shown in Figure 5.

In saturated systems the relation between wzand k is not as direct as
in unsaturated systems. In the saturated case, permeability is a function of
effective stress which in turn depends on Y. Experimental studies (Lambe
and Whitman, 1969) have shown that in fine-grained materials such as clay,

k is a pronounced function of e. As shown in Figure 6, experimental data
also show a linear relationship between e and log k. We can therefore
represent k as an exponential function of e as

(25)

C

2.303(e-eo)]
k

k = ko exp [

‘where Ck is the best-fitting straight line for the.relationship of e versus
log k (Figure 6). Equation 25 is only one way of representing the depen-
dence of permeability on effective stress. Aé far as numerical modelling
is concerned, one could equally well use any other convenient experimental

relationship or simply tabulate k as a function of effective stress.

INITIAL AND BOUNDARY CONDITIONS

The transient movement of groundwater given by (4) is subject to initial
and boundary conditions. The initial condition may either be simply hydrostatic

or may be represented by a known arbitrary distribution of fluid potential, ¢.
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The boundary conditions may be prescribed»potential, prescribed flux,
or of mixed type. 1In thé case of the prescribed potential (Dirichlet)
or prescribed flux (Neuman) bound;ry cénditions,_the potential or flux may be | -
prescribed to vary either as a function of time or as a function of the unknown
pressure head V.
The phenomenon of a seepage face which is peculiar to saturated-unsaturated
flow gives rise to an imporﬁant mixed boundary condition. On the seepage face,
the fluid potential is equal to the elevation head and Y = 0. 1In addition,
fluid flux may only leave (but not enter) the porous medium across such é
boundary. In a system with an unsaturated zone, the seepage face may grow or
_shrink with time, and hence, the actual dimension of the seepage boundary is
not known a priori. The seepage face is thus a prescribed potential boundary
on-which the flux direction is specified;
The phenomena of evaporation and evapotranspiration give rise to another
boundary condition peculiar to saturated-unsaturated groundwater systems. A
method of handling this condition has been devised by Neuman et al. (1975).
The amount of moisture which the atmosphere can take in from the soil is equal
to the-sum of potential evaporation and potential evapotranspiration and can
bé determined from micrometeorological data. In addition, there also exist
lower limits for the pressure heads that can develop either at the dry soil
surface or at plant roots (the wilting pressure of plants). The soil- -
atmosphere boundary is therefore neither a prescribed potential nor a
prescribed flux boundary, but is one on which an upper bound for flux and -
a lower bound for potential are prescribed.
An infiltration boundary constitutes another type of boundary condition
similar to evaporation. If the rate of infiltration aﬁ the soil surface

exceeds the ability of the soil to transmit water, as determined by its
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saturated vertical permeability, then part of the surface addition must be lost
as run off. Thus, an infiltration boundary has an upper limit for the surface
flux. In the numerical model developed in the present work, evaporation, evapo-
transpiration and infiltration boundaries have not been included. However,

-there is no conceptual difficulty in incorporating these boundaries in the model.

THE GOVERNING EQUATION

We can now include a source term, G, and write the complete governing

equation for mass transfer of water in a deformable porous medium as

ko g

Wy, > -m :
fpw m V(z+))endl + G = Mc e (26)
T

in which Mc is given by k23). Strictly speaking (26) is a non-linear equation

in which, the coefficienfs pw, k, V, 8, n, X' and e are all functions of the
dependent variable, Y. For purposes of nﬁmerical solution we could quasi-
linearize this non linear equation by treating thése w—dependent coefficients

as step functions in time. We also recall that the volume element V which is
bounded by the surface ' has a constant -solid volume VS. .Therefore, to be
consistent, the spatial relationships in (26) should be treated as step functions
in time. ,It appears from the work thus far that one may neglect this geometric

variation without loss of accuracy.

Reduction to a Differential Equation

Equation 25 is an integral form and relates to a finite volume élement.
If we consider a quasi-linear form of (26) in which V isvreplaced by §, where
V is an appropriate mean volume of the elemehtal‘volume over a small interval
of time, ﬁhen, we could factor out V from both sides of the equation. Further,
by 1etting the elemental volumebbecome arbitrarily small and neglecting the

source term, we may write
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Iim kp g . . ' : PR _
Lo — ¥ Y(z+p)endl = m %ﬁ (27)
T

where mc = MC/G may be called the "specific fluid mass capacity" of the volume
element. Note that the integral on the.left hand .side of (27) is the negative
of the divergence (Sokolnikoff and-Redheffer, 1966) of the Darcy velocity defined

by equation 3. Thus (27) reduces in form to the well known Richard's equation

. > oy :
div pa=m, (28)
where ‘
sy X' d
w S
m, = pw[Snpwosg + a +n ].

l+e v, ay

The 6-Based Equation

A governing.equation withvw as the dependent variable is generally very
_advantageous‘in hahdling heterogengous flow_regions.'.In,suqh cases, the
moisture content may vary abruptly in spacé,_but Y can still.bg_t¥eatéd‘as a
continuous function. However, a disadvantage of.the w—based equation is that
when k and Mc become strongly dependent on Y, the equation may becqme very
difficult to solve. This is the case with extremely dry soils. For such
problems, it is‘much.more convenient to use the volumetric mqisture content,
0, as the dependent variable (see Braester, et al., 1972). 1In differential

form, the 6-based equation may be written as

Lo .. 96 :
KVz + = . 29
VOpw_[ Vz + DVO] P, 3¢ (29)
: . a : R — o o
in which D = K 35 s the soil moisture diffusivity which is a function of 6.

Rubin and Steinhardt (1963) used the 6-based equation to solve infiltration
problems in an extremely dry Rehovot sand. The chief disadvantage of the 6-
based equation is that it is not suitable for handling heterogeneous media

(Klute, 1972).
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Soil Moisture Diffusivity and Coefficient of Consolidation

In soil physics literature, it is customary ﬁo treat porosity as a
constant in the unsaturated zone. While this assumption may be valid
for unsaturated soils, there is a serious difficulty when ¥ is in the
range, wA‘S Y € 0. This range of values of Y is characteristic of
the capillary fringe. In this range, the soil remains fully saturated and hence

ds g6
aﬁ = —cﬂ)— = 0. Hence

das/ay = 0.. If now we assume porosity to be constant, then n
D becomes infinite.

In unifyiné the flows in the unsaturated and saturated zones, we can avoid
this difficulty by noting that in thé capillary fringe porosity changes with ¢

while saturation remains unity. Therefore, for wA<:w < 0, we have, 6 = nS = n.

Hence

a_ L a_ X

= ok S S 0
ae dn  (dn/dy) (30)

D =K
If the deformation is very small so that the change in void volume is much
smaller than the change in bulk Volume, then

. dn » AVV/Vo

& M. (31)

Multiplying and dividing by (VO/VS) and noting that (VO/VS) = (l+eo), we obtain

from (31)

dn Avv/vs ) 1 de (32)
c}lb (1+eo) A (1+eo) Ay
In view of (32), we obtain from (30),
K(l+e )
D= —S = o (33)

(@n/ay) ~ (de/av) \

Also, Lambe and Whitman (1969) define the coefficient of consolidation as
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. K(l¥e ) . -K(lte )
vy mo Yol Yw(—de/do )
Noting that for a saturated soil, AY = _AO./YW’ we have from (34) i -
c = -K_E-'-e—o)- : X (35)
v (de/dqYy) - T

Since (35) is idénﬁical Qith (33), we COACiudé that in the capillar&ifringe
diffusivity"and thé céefficient dfvconsolidation ar; éfnénymoﬁs.‘ Reébgnition
of this equivalence is imperative if flow in the saturated and unsaturated
domains i$ to be gnifiea in a singlé”pﬁengméﬁdlagicél equétion:

Limitations of the Mathematical Model

The mathematical model éescribed éﬁove is bééed 65 a.set ofuassumptiéns
which imposes certain limitations on the model. The first of these assuﬁptions
is that the air phase ié cbhfinudﬁé in the unsaturated zone and remains at
atmospheric pressure. If the liquid contains aiSSOIVéd'gasbaf different
pressures, then the present mathematical model becomes inapplicable. Secondly,
the Y-based equation may become very difficult to solve when the soil is
extremely dry and k as well as S becomes a strong function of Y. The governing
equation 26 is therefore best suited to soils of moderate to high saturation.

A third limitation of the present model involves the method of handling
soil deformation. The one‘dimensional»consolidation theory is a simple concept
that has been found to be of practical value under mahy field conditions.
However, there may be situations where one wiii have'to consider
the complex relation betweén chaﬁges in pore pressure and the general
effectivefstress tensor. A fundamental consequence of this requirement is that
we do not know a priori the quantity de/dy (which enters into computation of

MC) until we have solved an independent equation relating qhénges in effective
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stress to the consequent strains. In drder to rigorously solve»the problem,

we need two equations: one for fluid flow as given by (26) and another for

force equilibrium relating changes in effective stress to the deformation (strain)
of the soil skeleton. To couple the two equations properly, one would not only
need to know the manner in which cpanges in y affect the stress tensor but also
the complex three—diﬁensional, stress-strain relationships bf vaiiably saturated
soils under different. boundary conéitions. The problem is further complicated

by the fact thaﬁ in a water-saturated soil, the aeformation ié not only governed
by changes in stress induced by changes in pore p?essuré but also by the seepagé
stresses and the drag forces imposed on individual grains by moving water. The
one-dimensional consolidation theory used'invthis work does not take these complex

factors into account.
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NOTATION

coefficient of compressibility
coefficient of consolidation

specific moisture capacity

compression index; slope of the e versus
log 0' straight line in the normal
consolidation region

slope of the e versus log k straight line

swelling index; slope of the e versus
log ¢' straight line in therebound region

soil moisture diffusivity
void ratio

void ratio at reference effective stress
o'
o

. gravitational constant

intensity of source of sink integrated
over a finite subregion

absolute permeability

~ absolute permeability at reference void

ratio..eo

hydraﬁlic conductivity

specific fluid mass capacity

coefficient of volumetric compressibility
fluid mass capacity of a finite subregioh
porosity

gnit outer normal

pressure

reference pressure

(LT2 /M)
(1% /1]
[1/1]
[1]

(1]

(1}

Nzl

[1]
(1]

[L/7°]

M/T]

(7]

(7]

[L/T]
(/1.
(L2 /m)
[M/L]
[1]

[1]
[M/LT%]

[M/LT]
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specific flux or Darcy velocity
saturation

coefficient of specific storage
time

bulk volume of a finite subregion

1

average bulk volume of a finite subregion

during a time interval

volume of solids

volume of voids

elevation head

coefficient of compressibility of water
specific weight of water |
surface bounding a finite subregion
volumetric strain |
Volumetric_ﬁoisture content
coefficient of viscosity

mass density of water

mass density of water at atmospheric
pressure

total stress
effective stress

Bishop's parameter or boundary porosity,
relating effective stress and pore water
pressure

Ix + U gﬁﬁ

fluid potential or hydraulic head

pressure head; pore water pressure expressed

in equivalent height of water column

pressure head at air entry value

[L/TI
(11
[1/1]
[T]

3]

1

L’

[’

L)
[Le? /M)
iM/127%)
(%]

(1]

[1]
[M/LT)
/L]

/>

[M/LT°]

[M/LT]

1]

[1]
L]

(L]

[L]
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