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NASH BARGAINING AND RISK AVERSION

GORDON C. RAUSSER AND LEO K. SIMON

NOVEMBER 13, 2015

Abstract. It is  widely  accepted  among  axiomatic  bargaining  theorists  that if  one
bargainer is more risk averse than a second, the second will be a tougher bargaining
opponent than the first against all opponents. We argue that this relationship between
risk aversion and bargaining toughness is both highly fragile, and more nuanced than
previously articulated. In the Nash and Kalai-Smorodinsky bargaining frameworks, we
establish that when a bargainer is compared with a second who is “almost globally”
more  risk  averse  than the first,  the supposedly immutable  relationship  between
bargaining effectiveness  and risk  aversion  evaporates.  Specifically,  we  identify  an
upper-hemicontinuity failure of  a correspondence which  maps the power  set  of  all
lotteries  to those  utility  pairs  that satisfy  our “almost  global”  comparative  risk
aversion  relation  on  these  subsets. We  trace  the consensus  view that tougher
bargainers are less risk-averse  to an exclusive  focus  on precisely the point at which
this correspondence implodes.
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In the extensive literature on axiomatic bargaining theory, it is widely accepted

that bargainers who are less risk-averse make tougher bargaining opponents1. This
connection has been identified as “one of the results most frequently quoted in the
bargaining literature” (Volij and Winter, 2002,
p. 120). The first formal statements of the result are in the seminal works by Roth
(1979) and Kihlstrom, Roth and Schmeidler (1981) (henceforth KRS). The theme is
further developed in Roth and Rothblum (1982) (RR) and Safra,  Zhou and Zilcha
(1990)  (SZZ). In particular,  KRS’s Theorems 1 and 2 relate, respectively, to the
two best-known axiomatic bargaining models, developed by Nash and Kalai-
Smorodinsky (KS). These theorems compare bargaining situations in which a
given opponent with utility v bargains either against a benchmark player with utility
u0, or against another, globally more risk-averse player with utility u.

For brevity, we shall henceforth identify players with their utility functions: “u
bargains with v” will  serve as shorthand for  “the player with utility function u
bargains against another with utility
function v.” We henceforth say that w is a tougher 2   Nash-bargainer than w′ against
v if Nash

KS KS

bargaining with w yields v less utility than bargaining with w′. KRS’s results establish

that under

both solution  concepts,  if  u is  more  risk-averse  than  u0, then  u0 is  a tougher
bargainer than u.

In this paper, we argue that the widely cited relationship between comparative
global risk aversion and comparative bargaining toughness is in fact both highly
fragile and more nuanced than has previously been articulated. It is fragile in the
sense that if the notion of “global” is relaxed ever so slightly, in a particular
direction, the relationship evaporates. It can be refined by distinguishing between
risks that matter for bargaining toughness and those that don’t: in particular, in
both frameworks, comparative aversion to risks involving a positive probability of
negotiation breakdown—the worst possible outcome—plays a  pivotal role. In the
Nash framework, there is a link—in  a sense to  be made  precise—between
comparative bargaining toughness and comparative aversion to lotteries involving
bad  outcomes,  but no relationship whatsoever if  the lotteries involve only  good
outcomes. In the KS framework, we identify a necessary and sufficient condition for
u  to be a tougher bargainer  than  u0 against  v; it  can never be satisfied if  u is
globally more  risk averse than u0, but can be satisfied if u is “almost globally”
more risk averse than u0, in the sense we define. Finally, we establish that given
any benchmark bargainer u0, there is, in both frameworks,

1 See, e.g., Kannai (1977), Sobel (1981), Osborne (1985), Thomson (1988) and Roth (1989).

2 Throughout the paper, the relations “tougher than” and “more risk-averse than” will be 

irreflexive, i.e., the relevant
inequalities will be strict rather than weak.



2
a bargainer u who is strictly tougher than u0 against every bargaining opponent, yet
is more  risk averse than u0 with respect all lotteries except  those that assign
positive probability either to negotiation breakdown, or to comparably bad
negotiated outcomes. Since u0 is a strictly tougher bargainer against all opponents
than any u who is globally more risk averse than u0, our result reveals  a
discontinuity—more precisely, an  upper hemicontinuity failure—in  the relation that
maps comparative risk aversion to bargaining toughness.

To make these ideas precise, we formalize our notion of “almost globally more  risk
averse than...” in  the following  way. The standard definition of  comparative  risk

aversion is:3 “u is more risk averse than u0 if any risk that is undesirable for u is also
undesirable for u0.” If the universe  of possible lottery  outcomes is  X, then  it  is
natural to assert that u is almost globally more risk averse than u0 if for some subset

X′ ⊂ X that almost coincides with X, any risk involving only outcomes in X′ that is
undesirable for  u0, is  also  undesirable for  u. This comparison  leaves open the
possibility  of some  remaining  risks—necessarily  ones  which  assign  positive

probability to realizations in X\X′— that are undesirable to u0  but acceptable to u. If

we apply our notion of “almost” to a sequence of subsets {Xn} that approach X,
while excluding the very worst outcomes in X, the risks which remain exempt from
comparison are concentrated in  a vanishingly small  subset of the universe of all

possible risks. Yet for any n, the set of utility pairs (un, u0) which satisfy our “almost
global” comparison criterion is extremely large, relative to the set of pairs (u,  u0)
such that u is globally more risk averse than u0. These much larger sets, that meet

our comparative criterion for each n, include pairs  (un, u0) such that un is a  much
tougher bargainer than u0.

1. Preliminaries
In the classical formulation of axiomatic bargaining problems, two players, with utility
functions u and v respectively, bargain over a set of possible feasible outcomes. If
they fail to agree upon one of these, a disagreement outcome, D, is

implemented.  (In general, outcomes are points in R2, so utilities are multivariate.
With one additional assumption, they can be represented by univariate functions.
To reduce notation, we will use the same symbols for utilities and their univariate
representations.)  We assume that players’ utilities are defined on the simplex

Z = {z ∈ 

R2

: zi ≥ 0; 
),2 zi ≤ 1} and that D = (0, 0). Throughout, we assume that u

derives

3 (Eeckhoudt et al., 2005, Defn 1.4, p.  14).  Eeckhoudt et.  al.  add the caveat that u0  and u 
must have the same level of income. In the context of bargaining theory, there is no natural
notion of “income.”

+

i=
1



utility only from the first component of z ∈ Z, while v derives utility only from the
second. We will hold v constant and compare the “bargaining performance” of
utility u against v relative to

that of a benchmark utility u0. Let S = {
(
u(z),  v(z)

) 
: z ∈ Z} ⊂ R2  denote the set of

utility pairs

that can be agreed upon, and let d = 
(
u(D), v(D)

) 
∈ R2 denote the utility pair that

results from disagreement. Following Osborne and Rubinstein (1990,  p. 10), we

define a bargaining problem to be a pair  (S,  d),  where S ⊂ R2 is compact and

convex and there exists s ∈ S such that s ≫ d. Let

B denote the set of all bargaining problems. A bargaining solution is a function f :

B → R2 that assigns to each bargaining problem (S, d) ∈ B a unique element of S.

1.1. Bargainer utilities. In §§1-2, we  impose two assumptions on bargainers’
utility functions:

Assumption A1): Utilities are von-Neumann Morgenstern, strictly concave and
twice continu-
ously differentiable on Z. For all z ∈ [0, 1]2, ∂u(z) 

> 0 and ∂v(z) 
> 0.

∂z1 ∂z2

An axiom invoked by both Nash and KS is that if either u or v is replaced by an
affine transfor- mation of itself, the bargaining outcome must remain 

unchanged4. We therefore assume, w.l.o.g. Assumption A2): Each player 
derives utility 0 from D and a maximum utility of 1 on Z.

A second axiom imposed in both frameworks requires that the bargaining solution 
must lie on the

Pareto frontier, which is the north-east boundary  of Z, i.e., {(x,  1 − x) : x ∈ [0,  1]}.
Invoking this axiom, we restrict our attention to this frontier, denoted P = [0, 1], and
will henceforth treat all utility functions as if they were univariate functions defined
on P , with the understanding that the
scalar x ∈ P represents the vector (x, 1 − x)  ∈ Z. Thus, u(x) will denote the utility 
that u derives

from the 
share

1 − x . We can now rewrite 
A1) as

v(x) v

for all x ∈ P, u′(·) > 0 > v′(·).
(1)

To streamline our presentation, we restrict attention to  a compact family of utility
functions:

Assumption A3): Bargainers’  utilities  are  drawn from  a set  U of  functions
satisfying assump- tions A1-A2 that is compact in the sup norm topology.5

1.2. Risk Aversion. The seminal  papers that have considered comparative  risk
aversion in bar- gaining models compare players’ risk aversion over the entire
domain of their utility functions. This paper augments these comparisons with
analogous ones on  subsets of  the utility domain. Fol- lowing Eeckhoudt et al.
(2005),  we  will  say  that  bargainer  u is  globally  more  risk-averse  than  u0

(abbreviated to GMRA) if any risk that that is undesirable for u0 is “even more”

x



undesirable for  u. (Throughout this  paper the term “more” will denote a strict
relation.) Analogously, we say that u

4 For example, an affine transformation of u is a function w = a + bu, for some (a, b) ∈ R × R++.

5 For functions with domain S, a metric for the sup norm topology is: ρ(f, g) = sups∈S |f (s) −

g(s)|.



is  strictly risk-averse than u0   on X ⊂ P (abbreviated to MRAX ) if any risk involving
outcomes in
X that that is undesirable for u0 is even more undesirable for u.

The literature has identified three equivalent ways to formalize the concept of GMRA.

All three can be extended immediately to MRAX . First, for each X ⊂ P , we define u to

be MRAX  than u0 if 6 u|X = φ(u0|X ), where φ is an increasing, strictly concave function.

Prop. 1 (adapted from Eeckhoudt et al. (2005, Prop 1.5)): For X ⊂ P, the
following three statements are equivalent:

a) u is MRAX  than u0  ;′′ ′′
b) ∀x ∈ X, ru(x) := − u (x) 

> r0(x) := − 
u0 (x) 

;
u′(x) u′ (x)

c) for any uncertain event ˜z with distribution µ whose support is contained in X, 
u−1(Eµ [˜z]) > u0

−1(Eµ [z˜]).

ru(·) and r0(·) in b) are the Arrow-Pratt coefficients of absolute risk aversion for u and

u0, respec- tively (Pratt, 1964, p. 122); u−1(Eµ [z˜]) and u0
−1(Eµ [z˜]) in c) are the

certainty equivalents7 of the lottery ˜z, for u and u0  respectively.

We focus primarily on subsets of P of the form [x, 1]. For every x         > 0, the restriction

MRA[x,1] is strictly weaker than GMRA; however, when x         = 0, the two relations

coincide, since [0,  1] = P . The condition that u is MRA[x,1] than u0 imposes several
restrictions on the relationship between u and u0, which are summarized in Lemma
1. Part e) of the lemma invokes some terminology: we

say that u intersects u0  at x if u(x) = u0(x). Further, we say that u cuts  u0  from  below

at x if u

intersects u0  at x and if u′(x) ;;? u0
′(x), with strict inequality if x < 1.

Lemma 1 (Implications of MRA[x,1]):

For x     ≥ 0, suppose that u is MRA[x,1]. Then
d ( u′(·) \ < 0 on [x, 1];
0

b) If ∃y  ∈ [x, 1] s.t. u′(y) ≥ u0
′(y), then u′(·) > u0

′(·) on [x, y) ;
c) If ∃y ∈ [x, 1) s.t. u′(y) ≤ u0

′(y), then u(y) > u0(y) ;
d) If u(x) = u0(x), then u(·) > u0(·) on (x, 1) ;
e) if u(y) < u0(y) for some y ∈ [x, 1), then ∃y˜ ∈ (y, 1] s.t. u cuts u0 from below at 
y˜.
In words, if u is MRA[x,1] than u0 then: b) if u is weakly steeper than u0 at y, it is strictly
steeper to the left of y; c) if u is weakly flatter than u0 at y, then it lies above u0 at y;
d) if  u and  u0 agree at x, then u dominates u0   on the interior of [x, 1]. e) if u is
dominated by u0  at y, then when it

6 Given f : Y → R, and Y ′ ⊂ Y , f|Y ′ denotes the restriction of f to Y ′, i.e., the function g : Y ′ → R such

that for all x ∈ Y ′,
g(x) = f (x).

7 The certainty equivalent for u of a lottery z˜ is a certain outcome y which yields u the same

utility as ˜z.

0
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intersects u0 at some y˜ > y—which it must, by assumption A2)—u’s slope at y˜ will
strictly exceed
u0’s if y˜ < 1, and weakly exceed u0’s if y˜ = 1.

Since by assumption A2),  u0(0) = u(0)  = 0, an immediate implication of  part d) of
Lemma 1 is:

Remark 1: If u is GMRA than u0 then u(·) > u0(·) on the interior of P.

2. Bargaining

We focus on the two best-known axiomatic bargaining solution concepts, f N and

f KS , formulated, respectively, by Nash (Nash, 1950; Nash, 1953) and Kalai and
Smorodinsky (1975). Nash  imposed four axioms: Symmetry, Pareto Efficiency,
Invariance to Equivalent Utility representations, and Independence of Irrelevant

Alternatives (IIA)8. He showed that these four axioms are satisfied by a unique

element of P , which is the argmax, denoted f N , of the function N (·|u, v) defined
in (2) below. Having imposed assumption A2), we can define the Nash bargaining

outcome as9:

f N (u, v) = argmaxx∈P N (x|u, v), where N (x|u, v) := log(u(x)) + log(v(x))

(2)

f N (u, v) is the unique x value that solves the first-order condition
∂N (x|u, v)

∂x
= 0

=

u′(x)
u(x)

v′(x)
+
v(x)

. (3)

Because N (·|u, v) is continuous and strictly concave, and because (from A2)) N (x|u, v) 
approaches
−∞ as x approaches either 0 or 1, a unique solution to (3) exists. Moreover,

for all u, v satisfying assumptions A1-A2, ,    f N (u, v)       ∈  (0, 1). (4)
KS’s axiomatic framework replaces Nash’s IIA axiom with a monotonicity axiom. KS’s
concept is defined in terms of  the disagreement utility vector—in our case, (0,  0)—
and the vector—in our case, (1, 1)—representing the highest utility that each player
can  obtain  from  some  negotiated  agreement. In words,  the KS outcome  is  the

intersection of the Pareto frontier of S with the 45◦ line (in utility space) through the
origin. Formally,

f KS (u, v) = KS(·|u, v)−1(0) where KS(x|u, v) := u(x) − v(x).

(5)

That is, f KS (u, v) is the (unique) root of KS(·|u, v). Once again, we have

for all u, v satisfying assumptions A1-A2, f KS (u, v) ∈ (0, 1).
(6)

8 Apart from the Pareto and Invariance axioms, the others invoked by Nash and KS play no 
role in the present paper beyond

implying the solution concepts defined by (2) and (5).  Accordingly, we do not define them 
here.  For a presentation and detailed discussion of each axiom, see Osborne and Rubinstein 
(1990)

9 More generally, N (x|u, v) := log(u(x) − u(D)) + log(v(x) − v(D)). Assumption A2) imposes 

u(D) = v(D) = 0.



Further, since the set U from which utilities are drawn is compact:10

there exists ǫ¯ > 0 s.t. if u, v ∈ U , then for sc ∈ {KS, N }f sc(u, v) ∈ [ǫ¯, 1 − ǫ¯].

(7)
N

0   denote the Nash outcome, and let  
x0 x x

denote the KS outcome, 
when

u   bargains against v, Since v prefers lower x-values to higher ones (see (1)), the 
classical result
is that if u is GMRA than u0, then 
xN

> xN  and xKS > xKS . We will identify conditions 
under

which these inequalities are reversed. We say that
N N
u is a tougher  Nash -bargainer than u0  against v if

x

> x0 . (8)

KS xKS > xKS

Both comparisons in (8) are defined relative to specific solution concept and a 
specific bargaining
partner. We also define a notion of “global relative toughness”:

u is a tougher bargaining opponent than u0 if

against every v ∈ U , u is a tougher Nash- and KS-bargainer than u0.

(9)

Using Lemma 1, Lemmas 2 and 4 below identify conditions under which, for any x     

> 0, u is MRA[x,1] than u0 and a tougher KS- or Nash-bargainer than u0 against v.

Lemma 2 (Necessary and sufficient condition:  KS):   For x         > 0, if u is 

MRA[x,1]  than u0

and x < xKS, then u is a tougher KS-bargainer than u0  against v if u cuts u0  from 
below at some
x > xKS.

Lemma 2, combined with Remark 1, provides an alternative  proof of  KRS’s result
associating  the GMRA relation to relative KS-bargaining toughness: for  u to  be KS-
tougher than u0 against v, u must cut u0 from below; but from Remark 1, this cannot
happen if u is GMRA than u0. Conclude:

Prop. 2 (KRS, Thm 2): If u is GMRA than u0, then u0 is a tougher KS-bargaining
opponent than u.

Turning to Nash, Lemma 3 below provides a useful characterization of when u is a
tougher Nash bargainer than u0 against  v, although the condition does not depend

on u being MRAX  than u0.

Lemma 3 (Necessary and sufficient conditions: Nash):   u is a tougher
Nash-bargainer than
′    N ′ N
u0 against v if 

u (x0 ) > 
u0 (x0 ) .

u(xN ) u0 (xN )

Lemma  3 has an  appealing intuitive interpretation: u is  a tougher Nash-bargainer
than u0 against v iff, at the solution to the bargaining problem between u0 and v, the

elasticity11 of u’s utility w.r.t. u’s negotiated share is greater than the corresponding
elasticity for u0.

Now fix v ∈ U.  Let 
KS

KS

u0

0

0

0

0

0

0 0

N



The relationship between comparative risk aversion and toughness is less clearcut in
Nash’s frame- work than in KS’s. Lemma 4 is a partial analog of Lemma 2, but it is
not a characterization.

10 Clearly, f N  is a continuous function of u and v.  Since U is compact, f N  attains a maximum 

and minimum on U × U
(Weierstrass). From (4), both maximum and minimum belong to (0, 1). We can now define
ǫ¯N = minu,v U∈  (f N (u, v), 1 − f N (u, v)). Define ǫ¯KS analogously, and let ǫ¯ = min(ǫ¯N , 
ǫ¯KS ).

11 Given a function f of x, the elasticity of f w.r.t. x is defined as x ∂f (x)/∂x .
f 
(x)



u(xN )

u0 (x
N

u

u0 = v

Eu(˜z) = pu(x)
u(y) = u0 (y)

Eu0 (˜z) = pu0

(x)

0 Bargaining share

Figure 1. u(·) > u0(·) and is tougher than u0 against v = u0.

Lemma 4 (Sufficient conditions:  Nash):    For x         > 0, if u is MRA[x,1]  than u0, and u cuts
u0

from below at some x ≥ xN , then u is a tougher Nash-bargainer than u0 against v.

Since the inequality in the condition of Lemma 4 is weak—(u cuts u0 from below at x

≥ xN )—but the inequality that the condition implies is strict—(xN > xN )—it follows
from continuity that the condition cannot also be necessary; there must exist an

open neighborhood X containing xN such that if u cuts u0 from below at any x ∈ X ,

then xN > xN . Indeed, in contrast to the KS formulation, it is not  necessary for
comparative Nash-toughness that  u cuts  u0 from below at  any point: as  Fig.  1
illustrates,  u can be Nash-tougher than u0 against  v, even when u lies everywhere
above u0. (For heuristic clarity, we have drawn u and u0 in the figure as
piecewise linear, so that neither function satisfies assumption A1); obviously, there
are smooth perturbations of both functions which do satisfy assumption A1), while
preserving the salient properties of the figure.) When u0 bargains against v = u0, by

symmetry the Nash solution is xN = 0.5. But since u0 kinks
at xN − ǫ, while u kinks just to the right of xN , we have u′(xN ) ≫ u′ (xN ), while u(xN ) ≈ u0(xN ).

0 0 0 0 0 0 0

It follows from Lemma 3, therefore, that when ǫ > 0 is sufficiently small, xN  > xN . Note in this

0

0 )

0

0

0

0

0

0

0

x
xN
0  

=
0.

x
=
xN

−

px

0

u
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v,
 u
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example that for x     = xN − ǫ, u is MRA[x,1] than u0. 
(Clearly, u   
                                                                                                                

is a concave 
transformation of

0 |[x,1]

u0|[x,1].) However, u is not GMRA than u0: for example, as the figure illustrates, there
is a lottery
z˜, which realizes x with probability p and zero otherwise, and a sure outcome y, such
that

Eu(z˜) = pu(x) > u(y) = u0(y) > pu0(x) =
Eu0(z˜) so that u prefers z˜ to the certain outcome y, 

but u0 prefers y to z˜.

Our next result, Prop. 3, is closely related to, but distinct from, the classical result
that if u is GMRA than u0, then u0 will be a tougher Nash-bargaining opponent than
u against  v. To establish that  u0 is  Nash-tougher  than  a specific opponent  v, it
suffices to assume only that u is more averse than u0 with respect to risks involving
outcomes that are less satisfactory to u than the solution obtained when u0 Nash-
bargains against v. In is in precisely this sense that what matters when it comes to
Nash bargaining is relative aversiveness to risk over bad outcomes.
Prop. 3: If u is MRA[0,xN  than u , then u is a tougher Nash bargainer than u against v.

0 ] 0 0

For completeness, we restate KRS’s result for Nash-bargaining, which is the
analog of Prop. 2 above: it can be rederived as an immediate corollary of Prop. 3
Prop. 4 (KRS, Thm 1): If u is GMRA than  u0, then  u0 is a tougher  Nash-
bargaining opponent than u.

We now come to the main result of this paper: for any x         > 0 no implication can be

drawn about u’s bargaining toughness relative to u0’s from the fact that u is MRA[x,1]

than u0. Recalling that ǫ¯ was defined in (7):

Prop. 5: ∀x     ∈ (0, ǫ¯) and u0 ∈ int(U), ∃u ∈ U who is MRA[x,1] than u0 and a
tougher bargaining opponent than u0.

Now let R : [0, 1)։U×U denote the correspondence mapping selected subsets

of P to the utility pairs that satisfy our comparative risk aversion relation:12

R(x)    =     {(u,  u0) ∈ U × U : u is MRA[x,1]  than u0}.

(10) For each n, MRA[x,1] is a strictly weaker comparative concept than GMRA, but in
the limit, the distinction disappears, since [0,  1] = P . In the informal language of
our introductory section, when

12 Since R(·) is defined on R, we endow its domain with the Euclidean metric.  We endow its

co-domain with the metric
γ(f , g) = max(ρ(f1 , g1), ρ(f2 , g2)), where ρ is the sup norm metric (footnote 5).



n is very large, R(1/n) consists of utility pairs (un, un) such that un is “almost globally”

more risk averse than un, while R(0) consists of pairs (u, u0) such that u is globally
more risk averse than u0, The disjunction between  Prop. 5 and  Props. 2 & 4 is  a

consequence of the fact that R(·) is not upper hemicontinuous13 at x = 0.

Prop. 5 establishes that for each n > 1/¯ǫ, there exists a pair (un, un) ∈ R(1/n) such

that un is a tougher bargaining opponent than un. Yet from Props. 2 & 4, if  u is
GMRA than u0, then u0 is a tougher bargaining opponent than u. Since “tougher
than” has been defined as a strict relation, and both the Nash and KS solution
concepts  are  clearly  continuous  when their  domains  are  endowed with  the
metric γ, defined in footnote 12, these propositions, taken together, necessarily

imply that R(·) is not upper hemicontinuous at zero.14

1

u0 (x2 )

Eu0 (˜z)
u(x2 )

u0 (x1 )

Eu(˜z)

u(x1 )
x1   x

y

u0 
−1 (Eu0 (˜z))

u−1 (Eu(˜z))

x2

          u0

u

1

Figure 2. u is more risk averse than u0 w.r.t. almost all risks, but a much 
tougher bargainer

Fig. 2 above graphs a pair of utilities, (u¯, u0), which illustrate two key messages of
this paper. First, it demonstrates that u¯ may be a tougher bargainer than u0, even
though u¯ is more averse than u0 to all  risks except  ones  involving  a positive
probability of an extremely undesirable outcome. Second, it reveals the magnitude
of the implosion (upper hemicontinuity failure) of the correspondence R(·)

13 A correspondence ψ : S ։ T is upper hemicontinuous if for every s ∈ S and every open 
neighborhood Ψ of ψ(s) there is an open neighborhood S of s such that ψ(s′) ⊂ Ψ for every s′  ∈ S.

14 While for Nash-bargaining, this implication is a little opaque, for KS-bargaining, it is transparent: 
from Remark 1, (u, u0 ) ∈
R(0) implies u(·) > u0(·) on (0,  1). Since from assumption A2), u ∈ U implies u(0) = 0 and
u(1) = 1, it follows that Ψ := {(u,  u0 ) ∈ U × U : u(·) > u0(·) on (0,  1)} is an open
neighborhood of R(0). Now consider an arbitrary open neighborhood S of 0. For n
sufficiently large, 1/n ∈ S. From Prop. 5, there exists (un, un) ∈ R(1/n) such that un is a
tougher KS-bargaining opponent than un. From Lemma 2, un must cut un from below. Hence
(un, un) ∈/ Ψ. 0 0 0

0

0

0

0

0



1
0

at zero. Since the figure serves only as an heuristic example, we do not require that

u0 belongs to the compact set  U specificed in assumption A3).15 Moreover, in the
figure, u0 is drawn for clarity as piecewise linear, with a kink at x; as in Fig. 1, it can
obviously be smoothened and made strictly concave without changing any salient
features of the example.

If x         < ǫ¯ ≤ min ff sc(u¯, v) : v ∈ U , sc ∈ {KS, N }l, then since u¯ lies everywhere
below u0, u¯ will be a tougher bargainer than u0 against every opponent v ∈ U
(Lemmas 2 and 4). On the other hand, u0 is risk neutral, and hence less risk-
averse than  u¯ with respect to all lotteries except ones that assign positive
probabilities to outcomes on either side of x. The figure illustrates one such
exception: u¯ prefers the illustrated certain outcome y to the lottery ˜z realizing
x1<x<x2 with equal probability, while u0  prefers ˜z to y. Indeed when x ≈ 0, u0 is risk
neutral with respect to all risks except ones involving a positive probability of either
negotiation  breakdown  or  negotiated  outcomes that are barely preferred to
breakdown. To summarize, the example challenges the conventional wisdom,
since: (a) u¯ is more risk averse than u0 with respect to “virtually all” risks except
for ones effectively  involve negotiation breakdown;  but (b) is  (much)  a tougher
bargainer than u0 against all opponents in U, in both the Nash and KS frameworks.
On the other  hand, the properties that  the example  exhibits  are  intuitive: u0

desperately wants  to  achieve  an  agreement,  but cares  very  little about which
particular  agreement  is  obtained. Unsurprisingly,  against  almost  all  v’s, the
agreement predicted by  both the Nash and  KS frameworks will  overwhelmingly
favor v, delivering u0 a share in a neighborhood of x.

The second  purpose of Fig.  2 is to illustrate  the magnitude of  the correspondence
R(·)’s implosion
at zero.  For each n  ∈  N, there is a pair (u¯, un)   ∈  R(1/n), 
with un having the same form 

as
0

the function u0  displayed in the figure, specifically 
un(x) =

0(
(n−1)x if x<1/n

(n+x−2)/(n−1)

otherwise

. Clearly, 
for

much of its domain—for example, on (x  , 1/2))—we have u¯(·) ≪ un(·). On the other
hand, from Remark 1, (u¯, u0) ∈ R(0) implies u¯(·) ≥ u0(·). Thus, for any n, R(0) is a
much smaller set than R(1/n). Indeed, for each ǫ > 0, there exists δ > 0 and N such

that for n > N , un(δ) > 1 − 0.5ǫ while (u¯, u0) ∈ R(0) implies u0(δ) < 0.5ǫ. Hence, in

the metric on function pairs defined in footnote 12, γ((u¯, un), (u¯, u0)) > 1 − ǫ. To
summarize, we have established that there is a sequence

{(u¯, un)} such that for all n, (u¯n, u0) ∈ R(1/n), and limn{(u¯n, u0)} is of γ-distance 1
from any pair

15 For any given compact set U, if x         is sufficiently small, u0  will no longer belong to U.  
However, neither of the heuristic messages conveyed by the example depend on this 
inclusion.

0

0

0

0
0



(u¯, u0) ∈ R(0). The significance of this implosion will be immediately apparent: for 
any n, the set
R(1/n) is huge relative to R(0); there is room in the former set for a very diverse array 
of different
kinds of bargainer pairs, including pairs such as (u¯, un), where u¯(·) ≪ un(·), and is 
much a tougher

0 0

bargainer than un. But at the point of implosion, all bargaining pairs (u¯, u0) are
eliminated unless they satisfy u¯(·) ≥ u0(·).

3.  Conclusion

The goal of this paper has been to challenge the virtual consensus among
bargaining theorists that in axiomatic bargaining theory, comparative bargaining
toughness and comparative global risk aversion are inextricably linked. We have
argued that the relationship between these two comparisons  is  in  fact  quite
fragile. To demonstrate this fragility, we weaken the concept of “globally more risk
averse than,” and compare the relative bargaining toughness of two agents, one of
whom is more averse than the other to “almost all” but not all risks. We show that
in this context, the almost globally more risk averse agent may be tougher than the
other agent against all opponents. More abstractly, we argue that  the consensus
view regarding  the relationship between  risk aversion and bargaining toughness
results from an exclusive focus on an implosion point of  a correspondence that is
not upper hemicontinuous.

The discontinuity we have identified can be interpreted in one of two ways. If one
considers our notion of  “almost globally more  risk averse than...” to  be closely
comparable to “globally more risk averse than...,” then one might conclude that the
literature  has  placed  excessive  emphasis  on  results such  as  Props. 2 & 4.
Alternatively,  one  could  take  the view  that  “almost  globally  more  risk averse
than...” and “globally more risk averse than...” are really quite different concepts,
because there is something qualitatively different  about, on  the one  hand, risk
aversion to lotteries that exclusively involve negotiated outcomes, and, on the
other, lotteries which assign a positive probability to negotiation breakdown. An
implication of this latter view would be that more attention should  be devoted to
developing a more nuanced understanding of this distinction.

0
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Appendix: Proofs

Proof  of  Lemma  1. Part a): For z ∈ [x, 1],
d         
( 

u¯′(z)
\

u¯′′(z)u0
′(z) − u¯′(z)u0

′′

(z)
=

u¯′(z)u0
′(z) 

( 
−u¯′′

(z)
= −

−u0
′′(z)

\
− <  0 (11)

dz u0′

(z)
u0′

(z)2
u0′

(z)2
u¯′

(z)
u0′(z)

Part b) follows immediately from part a). Part a) also implies
If ∃y ∈ [x, 1] s.t. u¯′(y) = u0

′(y) then u¯′(·) < u0
′(·) on (y, 1].

(12) Part c): Note from b) that if u¯′(y) ≤ u0
′(y), then u¯′(·) < u0

′(·) on [y, 1). From 
assumption A2),
u¯(1) = u0(1). Hence,

u¯(y)

=

u¯(1) − {
y

u¯′(y)dy > u0(1) − {
y

u0
′(y)dy = u0(y)

Part d): Since u¯(1) = u0(1), u¯(x  ) = u0(x) implies 
[ 1(u¯′(y) − u0

′(y))dy = 0. Hence,
∃y¯ ∈ [x, 1) s.t.
u¯′(y¯) = u0

′(y¯).  From part b), u¯′(·) > u0
′(·) on [x, y¯), so that u¯(·) > u0(·) on (x  , y¯).

From (12),
u¯′(·) ≤ u0

′(·) on [y¯, 1]. From part c), u¯(·) > u0(·) on [y¯, 1).
Part e): Assume that u¯(y) < u0(y), for some y ∈ [x  , 1). Since u¯(1) = u0(1) = 1,
there exists at least one y′ ∈ (y, 1] such that u¯(y′) = u0(y′). Let y˜ denote the
smallest such number. If y˜ = 1, then u¯′(y˜) ≥ u0

′(y˜) (since otherwise ∃ǫ > 0 such
that u¯′(·) > u0(·) on (1 − ǫ, 1) and hence some y′ < y˜ such that u¯(y′) = u0(y′).) If y˜ <
1, then from part c), u¯′(y˜) > u0

′(y˜). In either case, u¯ cuts u0 from below at y˜.

Proof of Lemma 2. Sufficiency: Fix x > xKS s.t.

x

0

1 1

http://en.wikipedia.org/wiki/Mean


u¯ cuts u0  from below at

x. From part b) of 

Lemma 1, u¯′(·) ≥ u0
′(·)

on [xKS , x), so that u¯(xKS ) < u0(xKS ), and hence, KS(xKS |u¯, v) < KS(xKS |u0, v) = 0. 
From (1)

0 0 0 0 0
and (5), ∂      K  S      (  ·|  u   ̄ ,  v      )  

∂x > 0. Hence, xKS > xKS .
Necessity: Assume that xKS > xKS . In this case,

u¯(xKS ) = v(xKS ) < v(xKS ) = u0(xKS ) < u0(xKS )
0 0

The two inequalities follow from (1); the two equalities follow from (5). It now follows
from part e) of Lemma 1 that u¯ cuts u0 from below at some x ∈ (xKS , 1].

0

0

0
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Proof of Lemma 3.

Since N (·|u¯, v) is strictly concave, f N (u¯, v) = N (·|u¯, 

v)−1 (0) > xN

N
0 > 0. Since 
by

N ′ N ′    N N ′    N ′    N ′    N ′     N

definition 
∂N (x0 |u¯,v) u¯0 (x0 )

v (x0) ∂N (x0  |u¯,v) u¯ (x0 ) u¯(x0 )
v (x0) u¯0(x0 )

∂x
= 

u0 (xN ) + v(xN )  
:= 

0,
∂x > 0 
iff

u¯(xN ) u¯(xN

)  
+ v(xN )  

> 
u0(xN ) 

.

0 0 0 0 0 0

Proof  of  Lemma  4. Fix x ≥

xN
s.t

.

u¯ cuts u0  from below at x.  By 

definition,

u¯′(x) 

≥
u0

′(x). From part b) of Lemma 1, u¯′(·) > u0
′(·) on [xN , x). Hence, u¯(xN ) < u0(xN ). 

From (3),
∂N (xN |
u¯,v) ∂N (xN |

u0,v)
0 0 0

∂2 N (xN |u¯,v) N N

∂x

>

∂x =0. Since N (·|u¯, v) is strictly 
concave,

∂x2 <0. 
Hence, x

>x0  .

Proof  of  Proposition   3. From (11), we 
have that d ( u¯′(·) \ < 0 on MRA[0,xN . That 

is,
dz u0

′(·)there exists a strictly decreasing function α(·) on [0, 1] such that for all x ∈ MRA[0,xN   , u¯ (x) =

N xN xN 0  ] ′

α(x)u¯′ (x), Therefore we can 
write

u¯(x

0 )
= r0 

0
u¯′

(y)dy
= r0 

0
α(y)u¯′ 

(y)dy
. From the first mean 
value

0 u0(xN ) xN xN

0
r
0 

0 u¯′ 

(y)dy
r0 
0

u¯′ (y)dy
N

theorem for integration,(Wikipedia, 2015), there exists xˆ ∈ [0, xN ] 
such that 

[ x0
α(y)u¯′ (y)dy =

0 0 0
N N

α(xˆ) 
[

x0
u¯′ (y)dy. Since α(·) is strictly decreasing, and u¯′ (·) > 0, it 
follows that 

[ x0
α(y)u¯′ (y)dy 
>

0 0 0
N N

0 0xN    
′ ′

α(xN ) 
[

x0
u¯′ (y)dy, and hence that xˆ < xN . 
Hence

u¯(x

0 )
= α(xˆ) 
r0 0

u¯0(y)
dy

= α(xˆ)
:=

u¯ (xˆ)′

0

0
u¯′(xN )

0
u¯′ 
(xN )

u¯′
(xN ) 0 u0(xN

)

xN

r0

0

u¯′ 

(y)dy

u¯0 (xˆ)

u¯′ (xN ) . Hence

>

0   . The result now follows from Lemma 3. •

0   0 u0(xN

)

u¯(xN )

Proof of Proposition 5. Fix u0 ∈ int(U). Since r0(·) (defined in part b) of Prop.
1)  is  continuous and  takes  values  on  the compact  set  P , it  attains  a
maximum on P . Hence ∃c ∈ R+ s.t. c > r0(·) on

P . For each z  ∈ Z s.t. z1  ∈ (x/2, 1], let ψ(z) = exp(exp(−cz1)), and define f (z) = log

(ψ
(
(1, 0)

)
\ −

log(ψ(z)) ≤ 0. Let g be a smooth extension of f to Z satisfying f (D) = 0. For λ
∈ R+, let u¯λ =u0 + λλg (so that u¯0 = u0). Clearly, the set of functions satisfying
assumption A1) is open (in the sup norm topology) u¯λ will also satisfy
assumption A1), if λ is sufficiently small. Moreover, since u0 ∈ int(U), u¯λ ∈ U if λ
is sufficiently small. We now have, ∀λ.

∂u¯λ(x)
∀x ∈ [0, 1],

∂
λ

and ∀x ∈ [x,

1):

= f (x) < 0
(13a)

2

f ′(x) =
c exp(cx)

∂ 
( 

∂u¯λ(x) 
\

0
iff 

∂N (x   |

0

0 0
0

0 
]

0

0 0

0
0

0

0

0

∂
x

0    0

>



> 0; f ′′(x) =
−c

exp(cx)
∂ 
( 

∂2u¯λ(x) 
\

< 0
(13b)

∂λ

∂x

= f ′(x);
∂λ ∂x

2

= f ′′(x)

(13c)

∂             ∂u¯λ(x)  ∂x   f ′(x)u0(x) − f (x)u¯′ (x)
∂λ

u¯λ(x)

 

= 
 
λ=0

∂ru¯λ (x)

u (x)2
> 0 (since f (x) < 0)

(13d)

u¯′ (x)f ′(x)

               0                             
0

∂λ ′ ′ 2
(x)

)
> 0

(13e)

Inequality (13e), together with Prop. 1:b) implies that 

∀λ > 0, u¯λ  is more risk averse 

than u0

 
0

0

(u¯ (x) + λλf (x)) =

0



on [x, 1], and hence that (u¯λ,u0)   ∈  R(x).  Moreover, (13a) implies that for all λ, 
u¯λ(·) < u0(·). Necessarily, therefore, u¯λ  cuts u0  from below at 1. Moreover, since 
u0, v ∈ U , we have from (7)
that ǫ¯ ≤ min(xN , xKS ). Since by assumption, x     < ¯ǫ, Lemmas 2 and 4 are applicable and the result0 0

now follows. •




