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Abstract

Resistant starch type 2 (RS2) is a dietary fiber comprised solely of glucose which has been 

extensively studied in clinical trials and animal models for its capacity to improve metabolic and 

systemic health. Because the health modulatory effects of RS2 and other dietary fibers are thought 

to occur through modification of the gut microbiome, those studies frequently include assessments 

of RS2-mediated changes to intestinal microbial composition and function. In this review, we 

identify the conserved responses of the gut microbiome among 13 human and 35 animal RS2 

intervention studies. Consistent outcomes of RS2 interventions include reductions in bacterial 

alpha-diversity, increased production of lumenal short-chain fatty acids (SCFA), and enrichment of 

Ruminococcus bromii, Bifidobacterium adolescentis, and other gut taxa. However, different taxa 

are usually responsive in animal models and many RS2-mediated changes to the gut microbiome 

vary within and between studies. The root causes for this variation are examined with regard to 

methodological and analytical differences, host genetics and age, species differences (e.g. human, 

animal), health status, intervention dose and duration, and baseline microbial composition. The 

significant variation found for this single dietary compound highlights the challenges in targeting 

the gut microbiome to improve health with dietary interventions. This knowledge on RS2 also 

provides opportunities to improve the design of nutrition studies targeting the gut microbiome and 

ultimately identify the precise mechanisms via which dietary fiber benefits human health.
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1. Introduction

The human gastrointestinal (GI) tract is colonized by approximately 1013 bacterial cells [1]. 

comprised of nearly 2000 species [2] which perform diverse functions including energy 

harvest, immunomodulation, and regulation of behavior and neurotransmitter production [3–

5]. Gut microbiome composition and function are also relevant to the etiology of complex 

human disorders including inflammatory bowel diseases, type 1 and type 2 diabetes, and 

cardiovascular disease [6–9]. Although experiments with germ-free mice and human 

microbiota transfer models have shown that certain bacterial consortia cause increased 

adiposity and obesity [10–13], a causative role for the gut microbiome in the development of 

many chronic diseases remains to be demonstrated.

Diet is a major factor determining gut microbiota composition and function [14–17]. The gut 

microbiomes of individuals consuming a ‘Western-style diet’ (WSD) high in fats and refined 

carbohydrates promote increased energy harvest and have a low abundance of fiber-

degrading bacteria [14,18]. Conversely, low-fat diets rich in fruits, vegetables, and cereals, 

such as the Mediterranean diet, are associated with microbiomes adapted towards dietary 

fiber degradation and production of health-relevant, bacterial metabolites such as short chain 

fatty acids (SCFA) [14,16,19]. Because healthy diets are linked to a reduced incidence of 

acute and chronic diseases, significant efforts have been made to identify how those diets 

alter the gut microbiome.

Fiber is a dietary category that has been of considerable interest for its potential to increase 

the abundance of health-promoting bacteria in the intestine [20]. In 2008 the Codex 

Alimentarius Commission defined dietary fibers as “carbohydrate polymers with ten or more 

monomeric units which are not hydrolyzed by the endogenous enzymes in the small 

intestine of humans” [21]. This definition includes arabinoxylans, β-glucans, resistant 

starches, and other digestion-resistant carbohydrates [22]. Dietary fibers reach the colon 

where some are metabolized by members of the gut microbiota, and these interactions help 

shape the bacterial composition of the human GI tract [23,24]. In this review we focus on a 

particular dietary fiber, resistant starch type 2 (RS2), and what is known about how 

consuming that dietary fiber alters the mammalian gut microbiome.

2. Type 2 Resistant Starch

Starch is one of the most important carbohydrates in plants, where it functions as the 

primary storage polysaccharide. Due to its presence in staple crops, including potatoes, rice, 

wheat, and maize [25], starch is likely the most widely consumed carbohydrate in the human 

diet. Starch is a glucose heteropolysaccharide comprised of both amylose and amylopectin. 

Amylose is an α−1,4-linked linear chain whereas amylopectin is a branched polymer 

composed of approximately 95% α−1,4 and 5% α−1,6 linkages [26]. Starches resist 

digestion due to being embedded in a food matrix or seed (resistant starch type 1), forming 

compact granules that resist digestive enzymes (resistant starch type 2), cooking and cooling 

with subsequent retrogradation (resistant starch type 3), food manufacturing-induced 

chemical modifications (resistant starch type 4), or forming complexes with lipids (resistant 

starch type V) [27]. Most resistant starches rely on interactions with nearby dietary 
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components or additional processing of the native starch structure to achieve their digestion-

resistant properties. However, resistant starch type 2 (RS2) is naturally enriched in amylose, 

causing the starch to form tightly packed granules which are inaccessible to digestive 

enzymes [26].

In humans, RS2 has been mainly investigated for its effects on host metabolic health. A 

review of 30 human studies concluded that RS2 from high-amylose cereal grains attenuates 

acute postprandial glucose and insulin responses when replacing rapidly digestible 

carbohydrates [28]. However, this review also argued that there is insufficient evidence to 

claim RS2 improves long-term insulin resistance or sensitivity [28]. A separate systematic 

review and meta-analysis of 13 case-control human studies concluded that RS2 improves 

fasting glucose and insulin levels as well as insulin sensitivity in diabetics and overweight 

subjects [29]. Additionally, a meta-analysis of 14 human studies, encompassing 20 trials, 

found that resistant starch consumption lowers total serum cholesterol and low-density 

cholesterol [30]. While RS2 was not the sole focus of this meta-analysis, 18 of the 20 trials 

used RS2 [30]. RS2 derived from high-amylose maize has been a particular focus of human 

studies, and the beneficial outcomes led the FDA to approve the qualified health claim that 

“high-amylose maize resistant starch may reduce the risk of type 2 diabetes” (https://

www.regulations.gov/docket?D=FDA-2015-Q-2352).

However, not all human studies have shown health benefits with RS2 consumption. For 

example, RS2 did not improve fasting or long-term glycemic control, ectopic fat, energy 

expenditure, or any other cardiovascular risk factors in a randomized controlled trial with 

pre-diabetic adults [31]. A meta-analysis of 22 randomized control trials showed that while 

RS2 significantly reduces serum triglycerol concentrations in healthy subjects and body 

weight in patients with type 2 diabetes mellitus, it otherwise conferred limited 

cardiometabolic benefits when supplemented for 12 weeks or less [32]. It was also noted 

that the health benefits described were skewed by the small number of studies which 

reported positive results [32]. Furthermore, the inclusion of RS2 in diets low in total 

carbohydrates was found to increase serum levels of trimethylamine-N-oxide (TMAO) [33], 

a microbiota-derived metabolite associated with cardiovascular disease [34] and chronic 

kidney disease (CKD) risk [35].

Examination of RS2 effects in animal models have also shown metabolic benefits in some 

studies but not others. In aged C57Bl/6J mice, RS2 was found to improve glucose sensing 

and motor coordination [36] and increase colonic peptide YY (PYY) and proglucagon gene 

expression [37]. Zucker Diabetic Fatty rats fed RS2 for 9 weeks had delayed onset of 

diabetes symptoms [38], possibly due to RS2-enhanced glucose metabolism and improved 

pancreatic function [39,40]. RS2 was also shown to potentially alleviate CKD in Sprague 

Dawley rats [41,42], and those findings might have been due to reducing the expression of 

host-derived cecal proteins associated with aldehyde metabolism and the humoral immune 

response [43]. However, RS2 increased urine trimethylamine (TMA) in two C57Bl/6J mouse 

studies [44,45], indicating a similar diet-dependent response to what was observed in 

humans [33]. Two other rodent studies also reported that RS2 consumption was associated 

with anxiety-like behaviors [46,47]. Although many human and animal studies have shown 
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that RS2 confers health benefits, more work is needed to understand any potential 

deleterious effects.

3. The Mammalian Gut Microbiome Following RS2 Consumption

RS2 was first shown to alter the bacterial composition in the distal intestine in 1997 [48]. 

Since then, there have been at least 13 human studies and 35 animal RS2-focused studies 

that included assessments of the gut microbiome composition and/or function (Table 1). 

Although most of those investigations relied on community16S rRNA marker gene 

sequencing, other techniques such metagenomics, metaproteomics, and metabolomic 

analyses were increasingly employed (Table 1). The large number of studies on RS2 

provides an opportunity for cross-study comparisons assessing how a single dietary 

ingredient impacts the gut microbiome.

3.1 Changes to bacterial diversity

Some effects of RS2 consumption on intestinal microbial ecology are consistent across 

studies. At least four human and ten animal studies [40,44,49–61] found reductions in fecal 

bacterial richness and/or evenness, referred to as alpha-diversity (Table 1). The lower alpha-

diversity was presumably due to the enrichment of a subset of gut taxa that efficiently 

metabolized the RS2 polysaccharides and/or degradation products. Additionally, RS2 was 

repeatedly found to alter bacterial beta-diversity in the distal intestines of humans and 

animals [40,41,44,49,53,55,58,61–63], showing that RS2 changes the global structure of the 

microbiome.

Although RS2 consumption is associated with phylum-level changes in fecal bacterial 

composition, those changes are not consistent between studies. Human microbiomes are 

dominated by two phyla - the Firmicutes and Bacteroidetes [64]. While RS2 intake 

correlated with a lower Firmicutes to Bacteroidetes ratio in elderly human subjects [56] and 

in several rodent studies [43,44,60,61,65], a higher Firmicutes to Bacteroidetes ratio was 

found for subjects with insulin resistance and increased body mass index (BMI) [66] as well 

as middle-aged individuals [56]. Two studies also reported that Actinobacteria was the most 

responsive phylum to RS2 supplementation [57,58].

3.2 Enrichment of specific bacterial taxa in the human gut

RS2 consumption typically alters the abundance of at least some intestinal bacterial genera 

and species (Table 2). Certain taxonomic groups were commonly enriched (Ruminococcus 
bromii, Bifidobacterium adolescentis, Faecalibacterium prausnitzii, Eubacterium), others 

varied between studies (Ruminococcus and Ruminococcaceae, Lactobacillus, Bacteroides), 

and the proportions of members of the Clostridiales class (Oscillospira, Lachnospiracea, 
Blautia), were frequently reduced as a consequence of RS2 intake (Table 2). Importantly, the 

relative abundance of no single taxonomic group was significantly altered in all 

investigations. For the purpose of discussion here, taxa that were significantly enriched with 

RS2 intake in at least two human studies are discussed in more detail below.

The proportions of the Ruminococcaceae family and the Ruminococcus genus were elevated 

with dietary RS2 supplementation in multiple human and animal studies (Table 2). At the 
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species level, Ruminococcus bromii abundance was increased in five human studies 

[58,62,63,67,68], four rat studies [43,55,69,70] and one pig study [59]. Experiments in an in 
vitro model of the human colon showed that R. bromii degrades [U-13C]-labelled potato 

starch [71]. A follow-up study concluded that R. bromii is a keystone species for resistant 

starch metabolism [72]. More recently, metagenome analysis showed that R. bromii is one of 

the most RS2-responsive taxa in human subjects and this species contributes large fractions 

of the amylases and a glucan-branching enzyme associated with RS2 degradation [73]. 

Human and rumen-associated R. bromii isolates appear to be well-adapted for growth on 

starch and act as primary RS2 degraders [74,75], which could explain why this species is 

enriched in the intestine during many RS2 intervention studies. Other gut-associated 

Ruminococcus that do not degrade RS2, such as Ruminococcus gnavus might also benefit 

from R. bromii RS2 metabolism by consuming glucose and malto-oligosaccharides released 

from the starch granule [76]. Overall there is strong in vitro and in vivo evidence supporting 

the role of R. bromii as a primary RS2 degrader in the human gut.

Bifidobacterium was also enriched during RS2 interventions in numerous human and animal 

studies (Table 2). For human trials in which Bifidobacterium was identified at the species 

level, B. adolescentis was the most commonly enriched Bifidobacterium species 

[56,58,63,68]. B. adolescentis is likely a primary RS2 degrader, as indicated by the growth 

of strains of that species on RS2 as a sole carbon source [77] and the ability to adhere 

directly to α−1,4-linked glucose units within starch granules [78]. These physical 

interactions could provide a protective barrier; a finding which may explain why RS2 

increases the in vivo survival of amylolytic bifidobacteria in the GI tract [79]. Additionally, 

B. adolescentis increases butyrate production by Eubacterium hallii and Anaerostipes caccae 
when co-cultured on an RS2 substrate [80], and a similar interaction was reported when B. 
adolescentis was co-cultured with F. prausnitzii [81]. These effects are likely due to 

metabolic cross-feeding resulting in butyrate and energy production by microorganisms able 

to utilize lactate and acetate produced by B. adolescentis during growth on RS2 [80]. 

However, not all B. adolescentis strains have the capacity to grow on starch or starch 

derivatives [82], and therefore this capacity should not be generalized across all members of 

the species.

The proportions of Eubacterium rectale were increased after maize RS2 consumption in two 

human studies [66,67] (Table 2). Furthermore, E. rectale was shown to degrade starch in 
vitro and shows a preference for maize starch over potato starch [83]. E. rectale is a 

commensal bacterium that has long been associated with butyrate production [84] and was 

recently proposed to use RS2 degradation products to form butyrate in the human colon 

[63]. Furthermore, in vitro experiments have directly implicated E. rectale in the trophic 

chain of starch degradation [71]. An investigation on RS2-mediated butyrate responses in 

humans found that E. rectale proportions were elevated in the subset of individuals who 

displayed high butyrate levels throughout the study [68], and the abundance of this species 

was recently correlated with potato RS2-mediated increases in fecal butyrate production 

[63]. These results suggest that E. rectale contributes to the butyrogenic effect of RS2 and 

may also contribute to primary degradation of RS2 in the gut.
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F. prausnitzii is a numerically dominant human commensal and is considered to be one of 

the most important butyrate producers in the human gut [85]. Two human studies have 

reported increases of this species during RS2 consumption [66,86] (Table 2). A multi-omics 

investigation with human subjects proposed that F. prausnitzii is a primary degrader of RS2 

in addition to producing butyrate [66]. However, F. prausnitzii is unable to grow on purified 

starch [87] and is less efficient at degrading maize RS2 than B. adolescentis or R. bromii 
[88], suggesting it would be outcompeted for RS2 metabolism by neighboring gut microbes. 

These findings indicate that the enrichment of F. prausnitzii with RS2 might be due to cross-

feeding [81] rather than metabolizing RS2 polysaccharides directly.

RS2-mediated enrichment of members of the Bacteroidetes phylum (Bacteroides, S24–7, 
Rikenellaceae, Prevotella) is commonly observed in rodent studies but has only been 

reported in two human trials [56,57] (Table 1). In one study, the proportions of Prevotella 
and Alistipes were significantly higher in elderly subjects consuming RS2, but neither genus 

was responsive to RS2 in middle-aged adults [56]. A metaproteomics investigation in 

humans found increased expression of Bacteroides vulgatus enzymes associated with RS2 

polysaccharide breakdown during RS2 consumption as well as butyrate kinases [66]. 

Increases in Bacteroidetes after fiber consumption could be due to the presence of sus loci 

(starch utilization system) in mammalian gut-associated members of this phylum [89]. The 

sus genes encode proteins required for extracellular breakdown, import, and metabolism of 

starch polysaccharides [90]. Because there does not appear to be a host-specific association 

of sus loci, it is not clear why Bacteroidetes are more consistently responsive to RS2 in the 

rodent microbiome than the human microbiome.

3.3 Metabolic and functional changes

Seven human and twenty animal RS2 studies reported significant increases in intestinal or 

systemic levels of SCFA, namely acetate, propionate, and/or butyrate (Table 1). RS2 

consumption also increased the presence of genes for butyrate production in the human gut 

metaproteome [66]. Those genes were associated with F. prausnitzii conversion of acetyl-

coA to butyrate via the acetyl-CoA:butyryl-CoA transferase pathway and B. vulgatus and 

Coprococcus spp. conversion of butanoyl-phosphate to butyrate with butyrate kinase [66]. 

However, SCFA levels following RS2 consumption show significant subject-subject 

variation [68,91] and some animal interventions have reported no change [49,92] or reduced 

concentrations [44,93] after RS2 feeding. Importantly, fecal SCFA concentrations represent 

the cumulative effects of absorption, production, and microbial cross-feeding in the colon 

and may not be representative of SCFA production throughout the GI tract [94].

Besides changes in SCFA production, RS2 has been associated with alterations in 

carbohydrate metabolism by the gut microbiota. Metaproteomic analysis performed on 

human fecal samples revealed higher numbers of carbohydrate metabolism and transport 

systems with RS2 supplementation [66]. There was also an enrichment in uncharacterized 

polyketides as well as the enzyme phosphoenolpyruvate carboxykinase involved in pyruvate 

metabolism [66]. In another study, KEGG Orthology and CAZyme annotations of 

metagenomics data showed that starch-degradative enzymes, such as amylases and 

polysaccharide binding proteins, were increased after RS2 was introduced into the diet [73]. 
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R. bromii contributed significant fractions of the enzymes associated with starch 

degradation, although starch degradative enzymes from other bacteria were also increased 

albeit in lower amounts [73].

4. Sources of variation in microbial composition in RS2 studies

4.1 Methodological variation

It is well understood that study-to-study comparisons of the gut microbiota are hindered by a 

variety of procedural and technical factors [95,96]. 16S rRNA DNA sequencing is a 

frequently used method for investigating the bacterial composition of the gut microbiome, 

including studies investigating RS2 (Table 1). However, no standardized protocols for 

sample preparation and 16S rRNA gene sequence analysis exist. There is also variation 

between sample collection, storage, and homogenization methods, DNA extraction 

protocols, 16S rRNA gene variable regions targeted, PCR conditions, and the DNA 

sequencing platform used [97–99]. Additionally, numerous analysis software applications 

are available and employ different filtering cut-offs for low-abundance features or outlier 

samples, normalization strategies for sample-sample comparisons, levels of depth for 

taxonomic resolution, and statistical tests for identifying significant differences between 

experimental groups [100,101]. For example, most 16S rRNA studies of the microbiome 

clustered similar reads into operational taxonomic units (OTUs) that have relatively low 

taxonomic resolution. Newer methods resolve reads at the single nucleotide level into 

amplicon sequence variants (ASVs) with improved taxonomic resolution at the sub-family 

level [102,103]. However, even with those sample preparation and analysis discrepancies, it 

is notable that inter-individual variation is frequently much greater than variation introduced 

by methodological differences [104]. Moreover, certain RS2-enriched taxa including R. 
bromii and Bifidobacterium were repeatedly found in different human and animal studies 

even though different methods were used (Table 1 & 2). These findings indicate that, despite 

methodological differences, 16S rRNA gene surveys are sufficiently robust to identify the 

dominant changes to the gut microbiota with RS2 consumption.

4.2 Vertebrate host species and host genetics

RS2-responsive taxa can be grouped based on host species origin. For example, F. 
prausnitzii, Ruminococcus [105], and Bifidobacterium [106] are more frequently associated 

with human GI tract microbiomes compared to animal models (Table 2). On the other hand, 

Lactobacillus and Turicibacter are more commonly associated with mouse microbiomes 

[106]. Compared to animal studies, the relative contributions of RS2 to gut microbiome 

structure is comparatively smaller in humans and inter-individual variations between 

subjects often dominate the findings [66,68]. The more limited effect of RS2 

supplementation among human subjects is likely due to dietary and genetic differences 

between people and lower quantities of RS2 consumed (Table 2). However, despite the 

taxonomic differences between humans and animal models, RS2 consistently enriched 

bacteria with the enzymatic capacity to metabolize RS2. For example, Bacteroides and 

Lactobacillus were indicated to be the primary degraders of dietary polysaccharides in the 

mouse gut [107], and primary RS2 degradation in human microbiomes was proposed to be 

governed by R. bromii [63,66], F. prausnitzii and B. vulgatus [73], and Bifidobacterium spp. 
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[63]. Hence, the enzymatic capacity to break down RS2 is shared between different bacterial 

taxa that are host species specific.

Differences in host-species genotype are also associated with gut microbiome composition. 

A recent study showed that higher endogenous copy numbers of AMY1, a gene encoding a 

salivary amylase, are associated with increased Ruminococcaceae and Ruminococcus 
abundance and SCFA production in the human gut [108]. Metagenomic analysis showed that 

the gut microbiomes of subjects with high AMY1 copy numbers were depleted in glycoside 

hydrolases and polysaccharide lyases relative to subjects with low AMY1 copy numbers 

[108]. Interestingly, ex-germ-free mice that received the fecal microbiota from high AMY1 
copy number subjects had significantly higher adiposity than mice that were transplanted 

with the fecal microbiota from low-copy number subjects [108]. This difference in amylase 

gene content and the associated variation in Ruminococcus abundance and gut function 

could affect the quantity of RS2 reaching the large intestine and the degree to which RS2 is 

metabolized by the microbiome.

4.3 Health status

Host health is an important determinant of gut microbiome composition [109,110]. For 

example, obesity is associated with reductions in gut bacterial diversity [111] and an 

enrichment of taxa which can increase energy harvest from the diet [10,112]. Therefore, host 

physiology, and the impact it confers on gut microbiome composition could influence how 

RS2 changes the gut microbial ecosystem. Among the human studies performed thus far, 

four out of seven RS2 trials conducted in healthy adult subjects reported significant 

increases in R. bromii [62,63,67,68]; whereas an RS2 intervention performed in stunted 

Malawi children reported a significant increase in Lactobacillus but no change in R. bromii 
abundance [57]. In human studies where F. prausnitzii was identified as an RS2 responsive 

taxon, this species was elevated with RS2 intake among insulin-resistant subjects with high 

BMI [66] and end-stage renal disease patients [86]. In animal models, RS2 supplementation 

in CD obesity-prone rats resulted in increased cecal fermentation and alterations to gut 

microbiome composition compared to obesity-resistant rats [65]. Those differences indicate 

that host health and physiological status influence which intestinal taxa are enriched by RS2.

4.4. Subject age

Aging is also associated with significant changes to gut microbiome structure and function 

[113]. For example, the microbiomes of healthy adults have relatively high ratios of 

Firmicutes to Bacteroidetes, but this ratio can decrease with age [114]. Middle-aged and 

elderly subjects given a RS2 supplement for three months showed significant age-associated 

differences in fecal microbiome composition [56]. RS2 supplementation increased 

Bifidobacterium abundance and lowered the Firmicutes/Bacteroidetes ratio in both age 

groups compared to age-matched placebo groups, but only elderly subjects showed 

significantly more fecal butyrate at the end of the study. Furthermore, Bifidobacterium 
increases were the only conserved taxonomic response across both age groups. [56]. Hence, 

age-related physiological changes might also influence RS2-associated niche occupation by 

members of the gut microbiota but more work is needed to further explore this association.
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4.5 RS2 source and quantities consumed

Most studies have used RS2 from either high-amylose maize or potatoes (Table 2). Those 

sources of RS2 are distinct because maize starch forms granules that are smaller than potato 

starch granules, maize starch has less amylose overall than potato starch, and the amylose 

within maize starch has a lower degree of polymerization than potato starch amylose [115]. 

Although modifications could be introduced to alter RS2 content prior to or after ingredient 

purchase, differences in granule structure help explain why maize starch can have higher in 
vitro total digestibility (i.e. less RS) than potato starch [116].

Differences in physicochemical properties between RS2 sources likely influence intestinal 

microbiota responses. A recent human trial comparing the effects of RS2 from potato starch 

and high-amylose maize found that only potato RS2 significantly increased the fecal 

concentrations of butyrate and acetate [63]. Additionally, potato RS2 was associated with 

increased fecal Bifidobacterium levels while maize RS2 conferred increases in R. bromii 
proportions [63]. Those findings are consistent with the observation that increases in B. 
adolescentis levels have thus far only been observed in human studies where potato RS2 was 

consumed [56,58,63,68] (Table 1). In pigs, potato and high-amylose maize RS2 

consumption both resulted in increased SCFA concentrations in the portal blood, however, 

only potato RS2 conferred increased portal blood butyrate levels [117]. Furthermore, the two 

RS2 sources differed in their effects on SCFA production in the cecum and colon of Spague 

Dawley rats [118]. That study also reported that wheat RS2 enriched lactic acid-producing 

bacteria from clostridial cluster XVI while maize RS2 enriched members of clostridial 

cluster XIVa, specifically Eubacterium ventriosum and Roseburia cecicola [118]. 

Differences in RS source might influence health outcomes as was shown in a Spague 

Dawley rat study which tested the capacities of potato RS2, maize RS2, and butyrylated 

maize RS2 to mitigate the deleterious effects of a high-protein meat diet [55]. Each diet 

resulted in a distinct gut microbiome composition, and maize RS2 and butyrylated maize 

RS2 shifted fecal fermentation patterns towards carbohydrate metabolism. In that study, 

maize RS2 was unable to mitigate the expression of an oncogenic miRNA cluster associated 

with colorectal cancer, while potato RS2 and butyrylated maize RS2 significantly reduced 

the expression of those miRNA [55].

The quantities of dietary RS2 are also associated with changes to GI tract microbial 

composition and the production of microbiota-derived metabolites [33,119,120]. A study 

comparing diets with 0, 18, or 36% w/w RS2 by weight in aged C57BL/6J mice found dose-

dependent differences in microbial composition [119]. Bifidobacterium proportions were 

significantly increased with both 18 and 36% w/w RS2; whereas Allobaculum and 

Akkermansia were enriched in mice fed 36% w/w RS2. Dose-dependent differences in cecal 

pH and SCFA levels were found in Sprague-Dawley rats consuming diets with 10, 20, 30, or 

40% w/w RS2 [121]. Diets containing at least 10% w/w RS2 resulted in significantly 

reduced DNA damage in rat colonocytes and this outcome was found to be dose-dependent 

and correlated with cecal butyrate concentrations [121].
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4.6 Study duration

There is considerable variation in the literature with regard to the length of RS2 

interventions. Human and animal model studies have ranged from as short as 4 hours to well 

over 200 days (Table 2). Although the human gut microbiota responds to dietary shifts in as 

little as one day [16,122], long-term dietary patterns have a greater impact on gut 

composition and microbiota-derived metabolite production [123,124]. To this regard, a 

meta-analysis concluded that the beneficial effects of RS2 on serum total cholesterol and 

LDL cholesterol were most prominent when RS2 was administered for 4 weeks or longer 

[30]. A study with C57BL/6J mice found that the concentrations of fecal acetate increased 

between day 3 and day 11 after the initiation of RS2 feeding [125]. However, more work is 

needed to understand short- and long-term microbiome dynamics during RS2 consumption.

4.7 Host diet

Dietary components consumed alongside RS2 might influence the extent to which RS2 

affects the gut microbiome and health. For example, a cross-over trial comparing the effects 

of RS2 when combined with low carbohydrate (39–40% energy)/high fat or high 

carbohydrate (51–53% energy)/low fat diets found that subjects consuming high amounts of 

RS2 with the low carbohydrate/high fat diet had significantly higher levels of serum TMAO 

[33]. It is presently not clear whether it was the quantities of fat in the diet or inclusion of 

other carbohydrates that were most important in influencing study outcomes. It is well 

established that high-fat diets alter the composition of the mammalian gut microbiome 

[126,127]. For example, a study with healthy young adults reported that consumption of a 

high-fat diet reduced fecal SCFA concentrations and the abundance of Faecalibacterium 
[128]. Sprague-Dawley rats fed RS2 combined with a high-fat diet, as opposed to a low-fat 

diet, had lower cecal weights, thereby indicating lower levels of intestinal microbial 

fermentation [129]. Alternatively, a human study combining RS2 and β-glucan yielded 

greater improvements in postprandial insulin and glucose responses than either fiber 

individually in healthy and overweight women [130]. In pigs, the GI tract fermentation 

characteristics with less digestible, recalcitrant dietary fibers (e.g. non-glucosyl 

polysaccharides from rapeseed meal) were altered by the presence of other more readily 

fermented fibers (β-glucans) [131].

Besides the potential effects of combining RS2 with other carbohydrates, there is evidence 

that dietary proteins also interact with RS2 in ways that can affect the outcomes of dietary 

interventions. Proteins can escape digestion and reach the colon where they are metabolized 

by the gut microbiota [132]. The amount of dietary nitrogen in is a major determinant of gut 

composition [133]. To this regard, ammonia derived from endogenous urea was shown to 

influence the response of the rat microbiome to RS2 [70]. Interestingly, a study with 

Sprague-Dawley rats which utilized resistant potato protein and RS2 in a factorial design 

reported significant interaction effects between potato protein and RS2 on SCFA 

concentrations throughout the GI tract [134]. The inclusion of dietary red meat fed to Balb/c 

mice inhibited the responses of specific gut taxa to RS2, including Ruminococcus and F. 
prausnitzii [135]. However, it is not presently clear how dietary proteins alters RS2 

metabolism by the gut microbiota.
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Beyond the influence of individual dietary components, dietary patterns likely also shape the 

ecological interactions between RS2 and an individual’s gut microbiota. For example, 

Prevotella abundance is associated with consumption of plant-rich diets [136], and further 

stimulation of those bacteria with RS2 might be dependent on the extent to which other 

plant-based foods are consumed. To this regard, when germ free mice received human donor 

microbiota and were then supplemented with RS2, mice containing donor microbiota which 

initially contained low levels of Ruminococcaceae and Faecalibacterium and high levels of 

Prevotellaceae showed the greatest RS2-mediated change in microbial composition and 

cecal butyrate [137]. Therefore, it may be useful to define microbial enterotypes prior to the 

initiation of RS2 interventions, particularly the identification of Prevotella-dominant 

enterotypes [138]. This could help predict which individuals will show the greatest benefits 

from RS2 consumption.

4.8 Baseline Gut Microbiome Composition and Microbial Responsiveness

The gut microbiome composition prior to the start of an intervention (baseline) is a 

predominant factor driving inter-individual responses to RS2 consumption. To this regard, 

differences in baseline fecal bacterial composition were directly associated with fiber (barley 

kernel)-mediated improvements in glucose metabolism [139]. In another human study, 

strong associations were found between the baseline abundances of Streptococcus, 

Ruminococcus torques, Eubacterium halii, and Eubacterium eligens and RS2-mediated 

hormonal and physiological changes in humans, including GLP-1 and insulin secretion 

[140]. Interestingly, a study in which obese subjects were fed resistant starch type 3 reported 

a 2.5-fold variation in alpha diversity indices, and this variation was attributed to baseline 

differences between the individuals [141]. While not an RS2 study, this finding highlights 

that baseline differences can influence the microbiological outcomes of resistant starch 

interventions.

Another source of variation is the responsiveness of the gut microbiome to diet-induced 

alterations. This was indicated for RS2 by Venkataraman et al. who classified the 

butyrogenic response of human subjects to RS2 consumption as low, high, or enhanced 

following a seven-day intervention [68]. They found that subjects with ‘enhanced’ 

butyrogenic responses, whose fecal butyrate levels increased the greatest amount during RS2 

intervention, also showed significant increases in the proportions of B. adolescentis and R. 
bromii during the intervention period. Subjects in the ‘high’ group, whose baseline and post-

intervention butyrate concentrations were high, were enriched in B. adolescentis, R. bromii, 
and the butyrate-producer Eubacterium rectale. Interestingly, the abovementioned species 

were present in similar proportions among all three response groups prior to the RS2 

intervention, indicating that the observed variation in butyrate production was driven by the 

responsiveness of RS2-associated taxa to the diet intervention. However, the factors that 

drive the responsiveness of individual taxa to diet interventions are not well understood.

5. Conclusions and future directions

Considerable attention has been given to the physiological and ecological effects of RS2 in 

the GI tract. It is clear that RS2, along with other dietary fibers, are important constituents of 
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the human diet that modify the gut microbiota. It is also increasingly understood that people 

have highly individualized responses to RS2 [66] and that stratifying individuals based on 

their responses to RS2, such as fecal SCFA and undigested RS2 levels, shows associations 

between microbiome composition and health-relevant outcomes [68]. However, this inter-

individual variation poses a significant research challenge because it hinders statistical 

power and obscures biological signals with noise. Furthermore, caution is required to avoid 

over-stating results obtained in one study or for groups of individuals within a study, as they 

cannot be generalized to RS2 or other fermentable fiber as a whole. Adding to the challenges 

are the differences between the gut microbiota responses to RS2 in humans and animal 

models, thereby hindering mechanistic studies of RS2-mediated health outcomes. Lastly, 

without an understanding of how environmental, host (e.g. health status, age, genetics), 

study design, and methodological factors affect assessments of RS2-induced microbiome 

changes, our ability to predict whether RS2 is an appropriate microbiome-modulatory fiber 

for personalized nutrition interventions is limited. Future studies on RS2 and other dietary 

fibers should take each of those variables into account.

More work is needed to fully understand the other factors that impact microbe-RS2 

interactions. For example, sex is an important determinant of the gut microbiome [24] but 

only a single human study to our knowledge has described RS2 responses between men and 

women [58]. Furthermore, to better predict how individuals will respond to RS2 

interventions it would be beneficial to identify microbial composition and classifications of 

enterotypes at baseline in addition to collecting host metadata, such as long-term dietary 

habits, that can be related to downstream responses. Studies should not only examine the 

composition of the gut microbiome, but also explore functional and metabolomic changes to 

provide a more comprehensive understanding of the conserved intestinal responses to RS2. 

Finally, the development of quantitative microbiome profiling techniques allows 

investigators to enumerate cell numbers rather than relative abundances [142]. It is possible 

for bacterial proportions to be identical across two habitats while the overall cell counts vary 

drastically, and this could impact SCFA concentrations, acidification of the gut environment, 

the degree of RS2 degradation, and the potential health effects. Ultimately, the extensive 

number of studies on RS2 have provided unique insight into how a single dietary ingredient 

alters the gut microbiota. Because of this knowledge, new studies on RS2 should now use 

and build upon those findings to investigate how diet-based approaches can benefit human 

health by targeting the gut microbiome.
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Highlights

• Resistant starch type 2 (RS2) consumption alters the human gut microbiome

• The effects of RS2 on the gut microbiome vary within and between studies

• No single factor explains the variations in gut microbiota responses to RS2
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Figure 1. Sources of variation in RS2-based investigations of the gut microbiome.
Displayed are known and putative sources of variation in RS2-based studies on gut ecology. 

Boxes in red show factors that have been tested directly in human RS2 interventions, while 

purple boxes show factors that have been tested in animals. Factors in blue are known to 

contribute to variation in gut ecology studies but have not been tested directly for their 

impact on RS2 intervention studies. Dietary sources of variation that have been shown to 

affect RS2 outcomes include the source of RS2 [55,63,117,118], the presence and amount of 

other foods in the diet [33,129,130,134], the amount of RS2 consumed [33,119–121], and 

the feeding duration [125]. Host sources of variation include the age of the host [56], their 

gut microbiome composition prior RS2 intervention [140], and the health status of the host 

[65].
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