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AI-based automation of enrollment criteria 
and endpoint assessment in clinical trials in 
liver diseases

Clinical trials in metabolic dysfunction-associated steatohepatitis (MASH, 
formerly known as nonalcoholic steatohepatitis) require histologic scoring 
for assessment of inclusion criteria and endpoints. However, variability 
in interpretation has impacted clinical trial outcomes. We developed an 
artificial intelligence-based measurement (AIM) tool for scoring MASH 
histology (AIM-MASH). AIM-MASH predictions for MASH Clinical Research 
Network necroinflammation grades and fibrosis stages were reproducible 
(κ = 1) and aligned with expert pathologist consensus scores (κ = 0.62–0.74). 
The AIM-MASH versus consensus agreements were comparable to average 
pathologists for MASH Clinical Research Network scores (82% versus 81%) 
and fibrosis (97% versus 96%). Continuous scores produced by AIM-MASH 
for key histological features of MASH correlated with mean pathologist 
scores and noninvasive biomarkers and strongly predicted progression-free 
survival in patients with stage 3 (P < 0.0001) and stage 4 (P = 0.03) fibrosis. 
In a retrospective analysis of the ATLAS trial (NCT03449446), responders 
receiving study treatment showed a greater continuous change in fibrosis 
compared with placebo (P = 0.02). Overall, these results suggest that 
AIM-MASH may assist pathologists in histologic review of MASH clinical 
trials, reducing inter-rater variability on trial outcomes and offering a more 
sensitive and reproducible measure of patient responses.

Metabolic dysfunction-associated steatohepatitis (MASH), formerly 
known as nonalcoholic steatohepatitis, is the progressive form of meta-
bolic dysfunction-associated steatotic liver disease (MASLD), formerly 
nonalcoholic fatty liver disease. MASH is a frequent cause of cirrhosis 
and hepatocellular carcinoma and is the most common indication for 
liver transplantation in women and older adults in the United States1. 
MASH, as well as cirrhosis caused by this disease, has been increasing 
in incidence1, leading to medical and economic burden2. Notably, res-
metirom was recently the first therapeutic granted regulatory approval 
for the treatment of MASH3.

Histologic surrogate endpoints are currently accepted in MASH 
clinical trials. Histologic criteria reflecting disease activity or sever-
ity are used as the basis for trial enrollment, risk stratification and 

endpoint assessment. However, limited sensitivity of scoring systems 
and variability in manual assessment of histology-based endpoints 
can contribute to incomplete measurement of treatment response4,5, 
clinical trial failure6, difficulty in identifying an appropriate study popu-
lation, and unintended inclusion or exclusion of study participants6. 
Such errors could affect observed treatment responses and trial safety.

The US Food and Drug Administration (FDA) and the European 
Medicines Agency (EMA) have issued guidance on the use of histo-
pathologic assessment of liver biopsies as clinical trial inclusion cri-
teria and endpoints to measure trial outcomes to support accelerated 
approval for MASH therapeutics7. Similar to most histologic scoring 
systems proposed to date, the MASH Clinical Research Network (CRN), 
used by the majority of studies and accepted by both the FDA and 
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Fig. 1 | Pipeline for model deployment. a, Input: separate CNN-based models 
trained with digitized H&E- and MT-stained images annotated by expert 
pathologists are deployed on H&E- or MT-stained WSIs, respectively, to identify 
histological features. b, Artifact detection and exclusion: an artifact model, also 
based on CNNs, detects image and tissue artifacts for both H&E and MT WSIs and 
excludes them before downstream analysis. c, Image segmentation: H&E and 
MT CNNs segment and generate pixel-level predictions of relevant histologic 
features. d, AI-based MASH CRN scoring: CNN pixel-level predictions for each 

histological feature (for example, fibrosis or steatosis) were clustered using GNN 
models and a score predicted based on the spatial organization of the cluster. To 
correct for pathologists’ bias, the GNN models were specified as ‘mixed effects’ 
models, biases were learned and the GNNs were deployed with predictions 
using only the unbiased estimate. GNN nodes and edges were built from CNN 
predictions of relevant histologic features derived from deployment of the H&E, 
MT and artifact models. e, Output: this two-stage ML approach produced patient-
level predictions of MASH CRN MAS component scores and fibrosis stage.
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EMA, recommends measurement of four key features: macrovesicular 
steatosis, lobular inflammation, hepatocellular ballooning and fibro-
sis8–10. Despite ongoing efforts by liver pathologists with expertise 
in MASH histology to harmonize scoring guidelines11 in clinical trials 
and real-world settings9,11–13, a recent study reported that a substantial 
portion of a MASH clinical trial cohort did not meet enrollment criteria 
upon re-evaluation by a second hepatopathologist6. In addition, high 
variability has been reported between pathologists in the identifica-
tion of ballooned hepatocytes12. This lack of reliability can reduce the 
power of MASH trials to detect a significant drug effect, as trials are not 
typically powered to adequately account for such scoring variability.

Advances in artificial intelligence (AI) have led to the development 
of algorithms that can enable accurate, quantitative and reproducible 
assessment of digitized pathology whole-slide images (WSIs)5,14. How-
ever, these algorithms are not yet employed in clinical settings and have 
not received regulatory approval for clinical trial use. Here, we report a 
robust approach to evaluate MASH disease severity and improve clini-
cal trial reliability using an AI-powered digital pathology tool—referred 
to as ‘AIM-MASH’—to quantify relevant histological tissue features.

Results
Overview of model-based evaluation of MASH histology
AIM-MASH consists of multiple convolutional neural network (CNN) 
and graph neural network (GNN) models that each generate different 
categories of histologic readouts (Fig. 1 and Extended Data Figs. 1 and 2).  
CNN-based AI tissue, artifact and fibrosis models were trained using 
103,579 pathologist-provided annotations (from 59 pathologists with 
expertise in MASH histology) of 8,747 hematoxylin and eosin (H&E) and 
7,660 Masson’s trichrome (MT) WSIs from six completed phase 2b and 
phase 3 MASH clinical trials (Supplementary Table 1)15–21. These cohorts 
were split into training (∼70%), validation (∼15%) and test (∼15%) sets. 
Tissue, artifact and fibrosis models segmented relevant histological 
features (for example, metabolic dysfunction-associated steatotic 
liver disease activity score (MAS) components and fibrosis) to perform 
pixel-level mapping and slide-level feature quantification (Figs. 1 and 2).  
The overall segmentation model development process is shown in 
Extended Data Fig. 3.

GNN-based models received the CNN-derived outputs from the 
same dataset as inputs and were trained to predict MASH CRN ordinal 
grades or stages and corresponding continuous scores for each cardi-
nal histologic feature of MASH22 (Figs. 1 and 2 and Extended Data Fig. 1).

Model outputs
Tissue overlays
Using WSIs of H&E- or MT-stained slides (Fig. 1a), a CNN-based artifact 
model was trained to distinguish evaluable liver tissue from tissue arti-
facts (for example, tissue folds, out-of-focus areas) and WSI background 
(Fig. 1b). H&E CNNs segmented MAS component features (macrove-
sicular steatosis, hepatocellular ballooning and lobular inflammation) 
and other relevant features, including portal inflammation, microve-
sicular steatosis, interface hepatitis and normal hepatocytes (that is, 
hepatocytes not exhibiting steatosis or ballooning). MT CNNs were 
trained to segment large intrahepatic septal and subcapsular regions 
(nonpathologic fibrosis), pathologic fibrosis and bile ducts (Fig. 1c). 
Model-derived predictions for location and distribution of each arti-
fact and tissue feature were displayed as colorized overlays per WSI, 
enabling pathologists to review the model’s feature predictions for 
quality (Fig. 2).

Histologic feature proportionate area measurements
CNN-derived histologic feature predictions were quantified to gener-
ate slide-level area measurements per feature. These measurements 
were expressed both as raw area quantities (mm2) and as percentages 
of relevant histology and artifact normalized relative to total usable 
(artifact-free) tissue area in the WSI. Artifact proportionate area 

measurements enabled efficient slide-level quality assessments and 
exclusion of inadequate image areas. Proportionate area measurements 
for H&E and MT MASH features, such as steatosis, ballooning, inflam-
mation and fibrosis, were used to evaluate disease activity and severity.

Model-derived predictions for MASH CRN grades and stages
Spatially resolved predictions from CNN image segmentation algo-
rithms were used as inputs, and pathologists provided slide-level 
MASH CRN grades/stages as labels to train GNNs (Methods). GNNs were 
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Fig. 2 | AI-based detection and scoring of MAS components and fibrosis. 
The MASH algorithm can detect histopathologic features on WSIs across a 
range of MASH disease severity. a, Representative H&E-stained slides show AI 
overlays highlighting regions of steatosis, lobular inflammation and ballooning. 
Representative cases corresponding to MAS < 4 (total n = 148) and MAS ≥ 4 (total 
n = 483), according to both pathologist consensus scoring and AI in the test set, 
are shown. The inset is a magnified field showing the presence of the three MAS 
components. Scale bar, 0.2 mm. b, Representative MT-stained slides of each 
MASH CRN fibrosis stage show AI-generated overlays highlighting regions of 
fibrosis present on biopsies. Representative cases corresponding to MASH CRN 
fibrosis stages F1 (total n = 159), F2 (total n = 146), F3 (total n = 278) and F4 (total 
n = 23), according to both pathologist consensus scoring and AI in the test set, 
are shown. These AI-generated overlays allow for qualitative review of model 
performance. Scale bar, 0.5 mm.
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trained to predict MASH CRN steatosis grade, lobular inflammation 
grade and hepatocellular ballooning grade from H&E-stained WSIs, and 
fibrosis stage from MT-stained WSIs (Fig. 1d,e). To generate interpret-
able, high-resolution MASH CRN grades and stages, GNN-predicted 
scores calculated on a continuum were mapped to bins, each equivalent 
to one grade or stage (Extended Data Fig. 4). For example, the continu-
ous range for MASH CRN steatosis grade 0 was 0–1, for grade 1 was 1–2, 
for grade 2 was 2–3 and for grade 3 was 3–4.

Model performance repeatability and accuracy
In initial model performance testing relevant for application to both 
enrollment criteria and endpoints, AIM-MASH algorithm scoring was 
perfectly repeatable. For each of the four cardinal histologic features, 
a comparison of ten independent AIM-MASH reads per WSI resulted in 
a model versus model agreement rate of 100% (κ = 1; Supplementary 
Table 2), in contrast to previously reported intra-pathologist agreement 
using conventional approaches for consecutive reads, which was vari-
able across features and ranged from 37% to 74% (ref. 6).

AIM-MASH performance accuracy was assessed using a mixed 
leave-one-out (MLOO) approach (Methods). Comparing model scor-
ing predictions with a pathologist-based consensus for each of the 
four histologic features, model versus consensus agreement rates 
fell within the range of previously reported rates of inter-pathologist 
agreement (Table 1)9,13. The model versus consensus agreement rate 
was greatest for steatosis (κ = 0.74, 95% confidence interval (95% CI) 
0.71–0.77), followed by ballooning (κ = 0.70, 95% CI 0.66–0.73), lobular 
inflammation (κ = 0.67, 95% CI 0.64–0.71) and fibrosis (κ = 0.62, 95% CI 
0.58–0.65). In addition, agreement between the model and consensus 
was greater than agreement for any individual pathologist against the 
other three reads, and greater than any mean pairwise pathologist 
agreement (Table 1).

Clinical utility of model-derived histology 
assessment
AI-based evaluation of clinical trial enrollment criteria
For patients with noncirrhotic MASH and fibrosis, the FDA has proposed 
criteria for MASH clinical trial enrollment23. To demonstrate its clinical 
relevance, AIM-MASH was deployed on WSIs from two completed phase 
2b MASH clinical trials24,25 to generate scores based on histologic criteria 
and identify patients eligible for enrollment (Supplementary Table 1, 
analytic performance test set). AI-derived predictions for each cohort 
were compared with each trial’s central pathologist (CP) scores of the 
same cohorts, as well as individual and consensus scores provided by 
three pathologists with expertise in MASH histology.

Model-derived histologic predictions from 605 WSIs24 were used 
to calculate MASH CRN scores and distinguish MAS ≥ 4 (with each 
component grade ≥1) from MAS < 4, criteria used to determine trial 
enrollment (Supplementary Table 1). The AIM-MASH versus consensus 
percentage agreement (0.82, 95% CI 0.79–0.85) was comparable to that 
of an average pathologist versus consensus (0.81, 95% CI 0.78–0.83; 
Fig. 3a). A similar result was observed for fibrosis. For distinguishing 

fibrosis stages 1–3 (F1–F3) versus F4, the model versus consensus agree-
ment was 0.97 (95% CI 0.95–0.98), similar to the average pathologist 
versus consensus agreement of 0.96 (95% CI 0.95–0.97; Fig. 3a).

AI-based evaluation of clinical trial endpoints
For patients with noncirrhotic MASH and fibrosis, the FDA has pro-
posed criteria for MASH clinical trial endpoint assessment23. Recom-
mended MASH trial endpoints include evidence of efficacy using a 
histologic endpoint of MASH resolution or fibrosis improvement (late 
phase 2b trials), or both MASH resolution and fibrosis improvement 
for phase 3 trials.

Next, AIM-MASH predictions were used to determine component 
scores and evaluate composite endpoints in an exploratory retrospec-
tive analysis. AIM-MASH-derived histologic changes from baseline were 
compared with a consensus determination of the endpoints by three 
expert pathologists. Overall, AIM-MASH-based grading and staging 
for histologic endpoint assessment were comparable to those of mean 
individual pathologist versus consensus (Fig. 3b). For fibrosis improve-
ment without worsening of MASH, both AIM-MASH versus consensus 
and pathologist versus consensus percentage agreement rates were 
0.80 (95% CI 0.76–0.84 and 95% CI 0.77–0.83, respectively). For MASH 
resolution without worsening of fibrosis, model versus consensus 
agreement (0.86, 95% CI 0.82–0.89) was moderately greater than the 
pathologist versus consensus (0.82, 95% CI 0.79–0.86). A similar result 
was observed for a ≥2-point reduction in MAS, where the model versus 
consensus agreement (0.79, 95% CI 0.74–0.83) was comparable to the 
pathologist versus consensus agreement (0.77, 95% CI 0.74–0.81).

AI-based detection of treatment response in clinical trials
Accurate assessment of treatment response is necessary for success-
ful adoption of any new tool into MASH clinical trials. To demonstrate 
AIM-MASH’s ability to measure histologic response to a therapeutic, we 
performed a retrospective analysis of drug efficacy in the ATLAS phase 
2b clinical trial (NCT03449446)25. ATLAS evaluated the efficacy of two 
drugs, cilofexor (CILO) and firsocostat (FIR), as monotherapies and in 
combination (CILO + FIR) in patients with advanced (F3–F4) fibrosis. 
Although no treatment arm achieved statistical significance for the pri-
mary endpoint, the cohort that received the combination of CILO + FIR 
showed the greatest improvement in histology relative to placebo25. 
AIM-MASH models were deployed on digitized WSIs (n = 99) from base-
line and week 48 biopsies. Model predictions for ordinal MASH CRN 
grades/stages were generated and compared with CP measurements 
of grades/stages for the trial’s primary and two exploratory endpoints. 
In addition to computing the proportion of responders per endpoint, 
treatment arm and evaluation method, the difference in proportion 
of responders between CILO + FIR and placebo (placebo-adjusted 
response rate) was also computed.

AIM-MASH detected a greater proportion of treatment responders 
in the CILO + FIR group for all three endpoints measured compared with 
the CP (≥1-stage fibrosis improvement without MASH worsening, 27% 
versus 19%; MASH resolution without fibrosis worsening, 24% versus 

Table 1 | Model performance accuracy assessment

Histologic feature AIM-MASH versus 
consensus

Mean pathologist versus 
consensus

Mean pairwise pathologist 
agreement

Inter-reader concordance 
(n = 446)13

Lobular inflammation 0.67 (0.64–0.71) 0.64 (0.62–0.67) 0.58 (0.55–0.6) 0.46 (0.34–0.58)

Ballooning 0.70 (0.66–0.73) 0.66 (0.63–0.69) 0.61 (0.59–0.64) 0.54 (0.44–0.65)

Steatosis 0.74 (0.71–0.77) 0.69 (0.66–0.72) 0.62 (0.6–0.65) 0.77 (0.69–0.84)

Fibrosis 0.62 (0.58–0.65) 0.59 (0.57–0.62) 0.54 (0.51–0.56) 0.75 (0.67–0.82)

Data are presented as agreement rate (95% CI). AIM-MASH performance was tested on an external, held-out dataset comprising 640 H&E and 634 trichrome WSIs from EMMINENCE, a phase 
2b MASH clinical trial. Agreement rates for AIM-MASH grades/stages versus a consensus of three expert pathologists were superior to mean agreement between any individual pathologist and 
a panel comprising the other two pathologists and the model, and superior to any mean pairwise pathologist agreement. κ statistics from Kleiner and colleagues13 are reported in the rightmost 
column as a comparison with recently published results from the pathology committee of the MASH CRN.
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5%; ≥2-point reduction in MAS, 60% versus 35%; Fig. 4a), in addition to 
showing a greater response in treated patients relative to placebo for 
all three endpoints (Fig. 4b).

AI-enabled continuous scoring of MASH CRN 
components
As an initial exploration of alternative scoring systems to MASH CRN 
ordinal scoring, we developed a continuous scoring system that detects 
histologic changes that may occur within the range of an ordinal bin. 
The continuous system was mapped directly to the ordinal MASH CRN 
scoring system, facilitating interpretation and navigation between the 
ordinal and continuous systems when assessing therapeutic effect in 
MASH clinical trials (Extended Data Fig. 4).

Biological relevance of continuous scoring
AI-enabled continuous scoring was evaluated by correlating continu-
ous scores against mean scores from three pathologists in a held-out 
dataset (640 H&E and 634 trichrome WSIs)24. Continuous scores sig-
nificantly correlated with mean pathologist scores, confirming align-
ment between machine learning (ML)-derived continuous scores and 
directional bias of panel-based pathologist scoring (Fig. 5a). These 
results suggest that the disease severity was similarly captured through 

subordinal measurements both by AIM-MASH and by the panel of 
pathologists but could not be captured by a single pathologist pro-
viding ordinal scores for staging and grading (Fig. 5a).

To further cross-validate the AI-derived continuous MASH CRN 
scores with other lines of clinical evidence, continuous scores were 
correlated with corresponding noninvasive test (NIT) metrics in the 
ATLAS dataset25. NITs that correlate strongly with specific histologic 
features or that were developed to serve as biomarkers for these fea-
tures were correlated with the relevant continuous MASH CRN grades/
stages (Supplementary Table 3). AI-derived continuous fibrosis stage 
was significantly correlated with liver stiffness by FibroScan (τ: 0.33, 
P < 0.001), Fibrosis-4 (τ: 0.23, P < 0.001), enhanced liver fibrosis test 
(τ: 0.22, P < 0.001), tissue inhibitor of metalloproteinases 1 (τ: 0.11,  
P = 0.02) and amino terminal propeptide of type III procollagen  
(τ: 0.14, P < 0.01); continuous steatosis grade was not significantly 
correlated with the same NIT measures. Similarly, whereas continuous 
steatosis grade was significantly correlated with magnetic resonance 
imaging–proton density fat fraction (τ: 0.52, P < 0 .001), continuous 
fibrosis stage was not correlated with magnetic resonance imaging–
proton density fat fraction (τ: −0.11, P = 0.24). Continuous lobular 
inflammation grade was significantly correlated with C-reactive 
protein (τ: 0.13, P < 0.01) and adiponectin levels (τ: –0.15, P < 0.01), 
while continuous ballooning grade was significantly correlated with 
glycated hemoglobin (τ: 0.16, P < 0.001). Notably, both continuous 
fibrosis stage and continuous steatosis grade were significantly cor-
related with collagen proportionate area (CPA) by morphometry, but 
in opposite directions (continuous fibrosis stage: τ: 0.56, P < 0.001; 
continuous steatosis grade: τ: −0.16, P < 0.001), consistent with pre-
viously reported reductions in steatosis with progression of fibrosis 
in MASH26–29.

AI-derived continuous MASH CRN fibrosis staging
To assess the relative sensitivities of AI-based continuous MASH CRN 
fibrosis staging and conventional continuous measures, AIM-MASH 
ordinal fibrosis scores and AI-derived proportionate area of fibrosis 
measurement (surrogate for CPA) in MT images from ATLAS25 were 
computed in CILO + FIR- and placebo-treated cohorts. Continuous 
AIM-MASH fibrosis staging (cFib) captures greater changes in treat-
ment versus placebo over conventional continuous fibrosis measures. 
In primary endpoint responders, treated patients showed a signifi-
cantly greater reduction in cFib than placebo patients (Mann–Whitney 
U = 20.0, P = 0.02). Proportionate area of fibrosis was not significantly 
reduced in treated patients relative to placebo (Mann–Whitney U = 39.0, 
P = 0.21; Fig. 5b). In addition, cFib scores increased in nonrespond-
ers but decreased in responders, showing that continuous scoring  
was able to identify worsening fibrosis in patients not responding to 
treatment (Fig. 5b).

Advantage of continuous scoring for predicting outcomes
To assess the potential utility of the continuous scoring approach for 
patient stratification and for predicting outcomes, we examined the 
prognostic utility of continuous scoring for predicting progression 
to cirrhosis (F4) in patients with bridging (F3) fibrosis at baseline 
or predicting liver-related events (LREs) in patients with cirrho-
sis at baseline in the STELLAR-3 (NCT03053050) and STELLAR-4 
(NCT03053063) MASH clinical trial cohorts15, respectively. Asso-
ciations between continuous scores at baseline and clinical disease 
progression through the end of follow-up were determined using 
the Kaplan–Meier method and Cox proportional hazards regres-
sion analysis, with rounded cutoffs selected to maximize hazards. 
cFib cutoffs of 3.6 and 4.6 maximized the stratification of patients 
into slow versus rapid progressors to cirrhosis or LREs, respectively 
(Fig. 5c). AI-derived continuous scoring showed higher discrimina-
tory accuracy for predicting progression to cirrhosis and LREs than 
ML-derived ordinal scoring (Fig. 5d).
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Fig. 3 | AI-based grading/staging of enrollment criteria and efficacy 
endpoints. a, Model-derived scores distinguished fibrosis stages F1–F3 versus 
F4 and MAS ≥ 4 (with each component grade ≥1) versus MAS < 4, criteria used to 
determine trial enrollment, using biopsies from the STELLAR-3 and STELLAR-4 
clinical trials (n = 605). AIM-MASH agreement with consensus was comparable 
to that of each pathologist. Bar plots represent the point estimate of each 
enrollment criteria endpoint, and whiskers represent the 95% CIs estimated using 
10,000 bootstrap samples. b, For assessment of efficacy endpoints commonly 
used in phase 2b and phase 3 MASH clinical trials, AIM-MASH agreement with 
consensus was comparable to that of an average pathologist. Assessment was 
performed on an external held-out validation dataset from a phase 2b MASH 
clinical trial using biopsies of patients meeting the following endpoints: fibrosis 
improvement without MASH worsening (n = 279), MASH resolution without 
fibrosis worsening (n = 279) and MAS reduction ≥2 (n = 326). Bar plots represent 
the point estimate of each enrollment criteria endpoint, and whiskers represent 
the 95% CIs estimated using 10,000 bootstrap samples.
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Discussion
Pathologist assessment of liver histopathology is central to the 
evaluation of disease severity and serves as the basis for patient 
selection and treatment efficacy assessment in MASH clinical tri-
als. Histologic evaluation in MASH clinical trials has been limited 
by intra- and inter-pathologist variability in histologic grading and 
staging6,30. However, despite the FDA and MASH CRN having pro-
posed panel scoring, these guidelines have yet to be standardized 
or widely adopted, and variability in assessment, even among expert 
pathologists, remains high6,12.

To assist pathologists in locating and evaluating critical histologic 
signatures of MASH disease progression and regression, we developed 
AIM-MASH, a suite of algorithms that reproducibly predict the loca-
tion, extent and severity of histologic biomarkers of MASH via both 
AI-derived recapitulation of MASH CRN ordinal grading and staging and 
AI-based qualitative and quantitative metrics. These algorithms also 
enable reproducible scoring and consistent measurement of changes in 
disease severity between baseline and end of treatment in MASH clini-
cal trials, harmonizing with the histologic endpoints recommended by 
both the FDA and EMA. Integrating AI-based digital pathology tools 

such as AIM-MASH into MASH clinical trial workflows using validated 
WSI viewing platforms31 has the potential to positively impact the devel-
opment of MASH therapeutics by ensuring consistent and reproduc-
ible pathologist assessments, resulting in improved identification of 
patients with MASH for trial enrollment, more robust measurement of 
histologic endpoints and greater sensitivity to drug effects, increasing 
clinical trial success and improving patient outcomes.

Here, we demonstrate consistently accurate and reproducible 
AIM-MASH scoring. AI-derived predictions for MASH CRN steatosis 
grade, lobular inflammation grade, ballooning grade and fibrosis 
stage were concordant with expert pathologists’ consensus MASH CRN 
grading/staging in a MASH clinical trial. AIM-MASH performance was 
tested by treating the model as an independent reader within a panel. 
Our results provide evidence that the model did not internalize any 
individual pathologist’s scoring biases, but instead learned to grade 
and stage histologic features in alignment with a consensus of patholo-
gists with expertise in MASH. These results suggest that AIM-MASH 
captured features and changes in histology over time and in response 
to drug treatment in an unbiased manner that aligned with expert 
pathologist interpretation. Model-derived ordinal scores recapitulated 
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Fig. 4 | AIM-based retrospective drug efficacy assessment. AIM-MASH models 
were deployed on WSIs from baseline and week 48 biopsies from patients 
enrolled in the phase 2b ATLAS trial, which evaluated combination therapies 
for individuals with advanced MASH fibrosis. a, For the trial endpoints of 
MAS ≥ 2-point improvement, fibrosis improvement without worsening of MASH 
and MASH resolution without worsening of fibrosis, AIM-MASH models showed 
a greater proportion of responders compared with that determined by the trial 
central reader. For MAS ≥ 2-point improvement, odd ratios (ORs) for AI and 
central reader were 5.1 (95% CI 2.0–13.1) and 5.7 (95% CI 1.6–20.2), respectively; 
Cochran–Mantel–Haenszel (CMH) test statistics were 11.9 (P = 0.0006) and 

7.9 (P = 0.005), respectively. For fibrosis improvement without worsening of 
MASH, ORs for AI and central reader were 2.2 (95% CI 0.7–6.3) and 2.2 (95% CI 
0.6–7.7), respectively; CMH test statistics were 2.1 (P = 0.152) and 1.7 (P = 0.196), 
respectively. For MASH resolution without worsening of fibrosis, OR for AI 
was 2.7 (95% CI 0.8–8.8); OR for central reader was undefined, as no placebo 
responders were identified. CMH test statistics were 2.7 (P = 0.101) for AI and 2.0 
(P = 0.155) for central reader. Sample sizes varied depending on data availability. 
b, The placebo-adjusted response rate detected by AIM-MASH was greater than 
that detected by the central reader.
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Fig. 5 | AI-based continuous MASH CRN scores. a, Correlation of AI-based 
continuous scores with mean scores across three pathologists from EMMINENCE 
in the analytic performance test set. Results are shown for both AI-derived ordinal 
bins (blue) and pathologist-derived ordinal bins (gray). Plotted values were 
derived from Kendall’s tau (τ) rank correlation analysis. FDR correction of P values 
was performed using the Benjamini–Hochberg procedure. Filled circles indicate 
statistical significance, FDR-corrected P < 0.05. b, cFib versus CPA measurements 
in primary endpoint responders in the ATLAS clinical trial. cFib and CPA were 
compared between patients receiving treatment and placebo using two-sided 
Mann–Whitney U tests. In primary endpoint responders, continuous fibrosis scores 
were significantly reduced in treated patients (n = 17) versus placebo patients (n = 6; 
Mann–Whitney U = 20.0, P = 0.02), while proportionate area fibrosis measurements 
were not significantly reduced (Mann–Whitney U = 39.0, P = 0.21). cFib and CPA 
values for patients classified as nonresponders (n = 76), in the treatment (n = 45)  
or placebo (n = 31) group, are also shown. Boxes represent the 25th percentile, 

median and 75th percentile of the data. Whiskers extend to points that lie within 
1.5-fold of the inter-quartile range of the 25th and 75th percentiles. c, Stratification 
of patients with BL F3 or F4 fibrosis from STELLAR-3 and STELLAR-4 trial cohorts 
into rapid (red) and slow (orange) progressors based on continuous score 
cutoffs of 3.6 and 4.6, respectively. Kaplan–Meier and Cox proportional hazards 
regression analyses are shown. F3: log-rank statistic = 31.0, P = 2.6 × 10−8; F4: log-rank 
statistic = 4.8, P = 0.028. Rounded cutoffs were chosen to maximize hazards.  
d, Discriminatory accuracy of AI-derived continuous scores versus ordinal scores to 
predict progression to cirrhosis (left) and LRE (right) in STELLAR-3 and STELLAR-4 
trial cohorts. In both cases, using receiver operating characteristic analysis, the 
continuous AUC was significantly greater (progression to cirrhosis: 0.66 (95% 
CI 0.60–0.71) versus 0.59 (95% CI 0.55–0.60); progression to LRE: 0.61 (95% CI 
0.51–0.71) versus 0.54 (95% CI 0.47–59)). AUC, area under the receiver operating 
characteristic curve; BL, baseline; FDR, false discovery rate; FPR, false positive rate; 
τ, Kendall’s rank correlation coefficient for ordinal scores; TPR, true positive rate.
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patient enrollment and endpoint measurement in a completed phase 
2b MASH clinical trial and were 100% reproducible when the analysis 
was repeated on the same images, suggesting that this approach could 
enable consistent measurement of disease severity within and across 
timepoints and clinical trials. Further analytical validation will assess 
reproducibility with various pre-analytic factors (including different 
scanners, drug candidates, screening and enrolled populations, stain 
quality, biopsy and section quality)32. The accuracy and reproducibility 
of AIM-MASH may prove especially valuable in assisting pathologists 
to achieve reproducible results for cases in which the histopathology 
is borderline between two grades/stages and discordance among 
pathologists is common.

Reproducible and accurate AIM-MASH grading and staging of 
histologic features can detect response to drug treatment with compa-
rable accuracy to pathologists with expertise in assessment of MASH. 
Retrospective assessment of primary and exploratory endpoints of 
the EMMINENCE (NCT02784444)24 and phase 2b ATLAS clinical trials25 
showed that AIM-MASH achieved a high level of scoring accuracy and 
superior reproducibility compared with pathologists. In addition, 
AIM-MASH detected a greater proportion of responders in treated 
patients than manual scoring even when adjusting for the proportion 
of placebo patient responders. This trend has been observed in retro-
spective analyses of other trial cohorts (Supplementary Table 4)33–36. 
In one case, AIM-MASH revealed statistically significant differences 
in response rates between treated and placebo patients in contrast to 
manual assessment35. AIM-MASH may have future applicability in clini-
cal trials to determine disease severity and sensitive assessment of drug 
efficacy. Validation studies required to support AIM-MASH application 
to prospective clinical trial workflows are underway, including rigorous 
analytical validation to verify repeatability and reproducibility across 
scanners and scanner operators, and clinical validation to verify the 
efficacy, utility and scalability of an AI-assisted clinical trial workflow 
across multiple clinical trial datasets32.

Achieving the surrogate biopsy-based endpoints recommended 
by regulatory bodies for MASH clinical trials has been exceedingly 
difficult, in part owing to the slow rate at which MASH progresses 
and regresses37. To identify alternative biopsy-based biomarkers to 
understand MASH pathogenesis and monitor disease activity, we 
previously used AI models to investigate non-CRN histological features 
that are associated with clinical outcomes and may be predictive of 
risk of disease progression in STELLAR-3, STELLAR-4 and ATLAS. For 
example, we have shown that the area of portal inflammation was 
predictive of risk of disease progression, LREs and cirrhosis5,38, and 
was one of three significant model-predicted human interpretable 
features (along with the area of bile duct/ductules and fibrosis) used 
to identify a gene signature predictive of risk of clinical events39. We 
also previously showed that the area of bile duct/ductules measured by 
AI was associated with a higher risk of LREs38. Another notable human 
interpretable feature identified using our AI-based measurements 
was the ratio of steatosis to hepatocellular ballooning, where patients 
with higher hepatocellular ballooning to steatosis were more likely to 
experience clinical events5. To address the challenge of the slow pace 
of MASH disease progression and regression, several measurement 
systems that detect subordinal levels of histologic change have been 
proposed40, including the utility of AI-based continuous measures of 
fibrosis for detecting subtle, yet statistically significant, changes in 
fibrosis in response to treatment5.

The continuous scoring system we present here maps each MASH 
CRN grade/stage to a bin derived from the ordinal scoring system, 
allowing direct comparison between the ordinal and continuous scor-
ing systems. The AI-derived continuous MASH CRN scores strongly 
correlated with mean scores derived by a panel of expert pathologists. 
The directional bias of the panel was clearly reflected in the continu-
ous scores and between these scores and relevant noninvasive MASH 
biomarkers that are known to correlate with specific histologic features 

and clinical outcomes27. The AIM-MASH-based continuous MASH CRN 
fibrosis score was more sensitive to treatment-induced changes in 
fibrosis than the gold standard continuous CPA and was more strongly 
predictive of progression to cirrhosis and liver-related complications 
than AI-based ordinal MASH CRN grades/stages. Additionally, the 
continuous fibrosis score enabled the definition of cutoffs that strati-
fied patients with MASH with stage 3 (F3) or stage 4 (F4) fibrosis into 
slow versus rapid progressors. These results suggest several important 
applications for continuous histologic scoring in MASH in both trans-
lational and clinical settings.

Although continuous scoring may offer a means to measure 
subtle changes in MASH that are more realistically achievable on 
the timescale of clinical trials, a limitation is that it presents disease 
progression and regression on a linear scale, which is inconsistent 
with how MASH progresses and regresses37,41: for instance, a change 
in continuous fibrosis stage from 3.0 to 3.2 may reflect a different 
amount of change in disease severity than a change of similar mag-
nitude (for example, from 4.0 to 4.2). Future experiments should 
investigate whether mapping a nonlinear system to a linear scale 
complicates measurement of changes in disease severity in response 
to treatment and whether a scale that more closely approximates the 
manner in which MASH disease progresses and regresses is feasible. 
Furthermore, clinically meaningful thresholds of continuous scoring 
are not yet known, and changes in the continuous fibrosis score must 
be defined and characterized to determine whether a sub-integer 
reduction in fibrosis score is associated with improved clinical out-
come before this system can be widely adopted.

The results presented here highlight how collaboration between 
AI developers and pathologists with expertise in MASH can make 
consequential steps toward solving the problems inherent to MASH 
histologic assessment that lead to the failure of clinical trials. To this 
end, AIM-MASH is being evaluated by both the FDA and the EMA for 
qualification as a drug discovery tool for use in clinical trials. This tool 
is well poised to improve the accuracy and reproducibility of patholo-
gists’ evaluation of liver biopsies within scalable workflows that can 
accommodate the increasing demand for MASH clinical trials. With the 
urgent unmet need of patients with MASH, we hope that AIM-MASH can 
aid pathologists in the clinical trial setting. AIM-MASH also has poten-
tial as a research use only tool to investigate histological features such 
as portal inflammation as new biomarkers or scoring systems, such as 
our continuous scores, in clinical cohorts.
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Methods
Compliance
AI-based computational pathology models and platforms to support 
model functionality were developed using Good Clinical Practice/Good 
Clinical Laboratory Practice principles, including controlled process 
and testing documentation.

Ethics
This study was conducted in accordance with the Declaration of  
Helsinki and Good Clinical Practice guidelines. Anonymized liver  
tissue samples and digitized WSIs of H&E- and trichrome-stained liver 
biopsies were obtained from adult patients with MASH that had partici-
pated in any of the following complete randomized controlled trials 
of MASH therapeutics: NCT03053050 (ref. 15), NCT03053063 (ref. 15),  
NCT01672866 (ref. 16), NCT01672879 (ref. 17), NCT02466516 (ref. 18),  
NCT03551522 (ref. 21), NCT00117676 (ref. 19), NCT00116805 (ref. 19),  
NCT01672853 (ref. 20), NCT02784444 (ref. 24), NCT03449446  
(ref. 25). Approval by central institutional review boards was previously 
described15–21,24,25. All patients had provided informed consent for future 
research and tissue histology as previously described15–21,24,25.

Data collection
Datasets. ML model development and external, held-out test sets are 
summarized in Supplementary Table 1. ML models for segmenting and 
grading/staging MASH histologic features were trained using 8,747 H&E 
and 7,660 MT WSIs from six completed phase 2b and phase 3 MASH 
clinical trials, covering a range of drug classes, trial enrollment crite-
ria and patient statuses (screen fail versus enrolled) (Supplementary 
Table 1)15–21. Samples were collected and processed according to the 
protocols of their respective trials and were scanned on Leica Aperio 
AT2 or Scanscope V1 scanners at either ×20 or ×40 magnification. H&E 
and MT liver biopsy WSIs from primary sclerosing cholangitis and 
chronic hepatitis B infection were also included in model training. 
The latter dataset enabled the models to learn to distinguish between 
histologic features that may visually appear to be similar but are not 
as frequently present in MASH (for example, interface hepatitis)42 in 
addition to enabling coverage of a wider range of disease severity than 
is typically enrolled in MASH clinical trials.

Model performance repeatability assessments and accuracy 
verification were conducted in an external, held-out validation data-
set (analytic performance test set) comprising WSIs of baseline and 
end-of-treatment (EOT) biopsies from a completed phase 2b MASH 
clinical trial (Supplementary Table 1)24,25. The clinical trial methodol-
ogy and results have been described previously24. Digitized WSIs were 
reviewed for CRN grading and staging by the clinical trial’s three CPs, 
who have extensive experience evaluating MASH histology in piv-
otal phase 2 clinical trials and in the MASH CRN and European MASH 
pathology communities6. Images for which CP scores were not avail-
able were excluded from the model performance accuracy analysis. 
Median scores of the three pathologists were computed for all WSIs 
and used as a reference for AI model performance. Importantly, this 
dataset was not used for model development and thus served as a 
robust external validation dataset against which model performance 
could be fairly tested.

The clinical utility of model-derived features was assessed by gen-
erated ordinal and continuous ML features in WSIs from four completed 
MASH clinical trials: 1,882 baseline and EOT WSIs from 395 patients 
enrolled in the ATLAS phase 2b clinical trial25, 1,519 baseline WSIs from 
patients enrolled in the STELLAR-3 (n = 725 patients) and STELLAR-4 
(n = 794 patients) clinical trials15, and 640 H&E and 634 trichrome 
WSIs (combined baseline and EOT) from the EMINENCE trial24. Dataset 
characteristics for these trials have been published previously15,24,25.

Pathologists. Board-certified pathologists with experience in evaluat-
ing MASH histology assisted in the development of the present MASH AI 

algorithms by providing (1) hand-drawn annotations of key histologic 
features for training image segmentation models (see the section 
‘Annotations’ and Supplementary Table 5); (2) slide-level MASH CRN 
steatosis grades, ballooning grades, lobular inflammation grades and 
fibrosis stages for training the AI scoring models (see the section ‘Model 
development’); or (3) both. Pathologists who provided slide-level MASH 
CRN grades/stages for model development were required to pass a 
proficiency examination, in which they were asked to provide MASH 
CRN grades/stages for 20 MASH cases, and their scores were compared 
with a consensus median provided by three MASH CRN pathologists. 
Agreement statistics were reviewed by a PathAI pathologist with exper-
tise in MASH and leveraged to select pathologists for assisting in model 
development. In total, 59 pathologists provided feature annotations 
for model training; five pathologists provided slide-level MASH CRN 
grades/stages (see the section ‘Annotations’).

Annotations. Tissue feature annotations. Pathologists provided 
pixel-level annotations on WSIs using a proprietary digital WSI viewer 
interface. Pathologists were specifically instructed to draw, or ‘anno-
tate’, over the H&E and MT WSIs to collect many examples of substances 
relevant to MASH, in addition to examples of artifact and background. 
Instructions provided to pathologists for select histologic substances 
are included in Supplementary Table 4 (refs. 33–36). In total, 103,579 
feature annotations were collected to train the ML models to detect 
and quantify features relevant to image/tissue artifact, foreground 
versus background separation and MASH histology.

Slide-level MASH CRN grading and staging. All pathologists who pro-
vided slide-level MASH CRN grades/stages received and were asked 
to evaluate histologic features according to the MAS and CRN fibrosis 
staging rubrics developed by Kleiner et al.9. All cases were reviewed 
and scored using the aforementioned WSI viewer.

Model development
Dataset splitting. The model development dataset described above 
was split into training (~70%), validation (~15%) and held-out test (∼15%) 
sets. The dataset was split at the patient level, with all WSIs from the 
same patient allocated to the same development set. Sets were also 
balanced for key MASH disease severity metrics, such as MASH CRN 
steatosis grade, ballooning grade, lobular inflammation grade and 
fibrosis stage, to the greatest extent possible. The balancing step was 
occasionally challenging because of the MASH clinical trial enroll-
ment criteria, which restricted the patient population to those fitting 
within specific ranges of the disease severity spectrum. The held-out 
test set contains a dataset from an independent clinical trial to ensure 
algorithm performance is meeting acceptance criteria on a completely 
held-out patient cohort in an independent clinical trial and avoiding 
any test data leakage43.

CNNs. The present AI MASH algorithms were trained using the three 
categories of tissue compartment segmentation models described 
below. Summaries of each model and their respective objectives are 
included in Supplementary Table 6, and detailed descriptions of each 
model’s purpose, input and output, as well as training parameters, can 
be found in Supplementary Tables 7–9. For all CNNs, cloud-computing 
infrastructure allowed massively parallel patch-wise inference to be 
efficiently and exhaustively performed on every tissue-containing 
region of a WSI, with a spatial precision of 4–8 pixels.

Artifact segmentation model. A CNN was trained to differentiate (1) 
evaluable liver tissue from WSI background and (2) evaluable tissue 
from artifacts introduced via tissue preparation (for example, tissue 
folds) or slide scanning (for example, out-of-focus regions). A single 
CNN for artifact/background detection and segmentation was devel-
oped for both H&E and MT stains (Fig. 1).

http://www.nature.com/naturemedicine
https://clinicaltrials.gov/study/NCT03053050
https://clinicaltrials.gov/study/NCT03053063
https://clinicaltrials.gov/study/NCT01672866
https://clinicaltrials.gov/study/NCT01672866
https://clinicaltrials.gov/study/NCT01672879
https://clinicaltrials.gov/study/NCT02466516
https://clinicaltrials.gov/study/NCT03551522
https://clinicaltrials.gov/study/NCT03551522
https://clinicaltrials.gov/study/NCT00117676
https://clinicaltrials.gov/study/NCT00116805
https://clinicaltrials.gov/study/NCT01672853
https://clinicaltrials.gov/study/NCT01672853
https://clinicaltrials.gov/study/NCT02784444
https://clinicaltrials.gov/study/NCT03449446


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03172-7

H&E segmentation model. For H&E WSIs, a CNN was trained to seg-
ment both the cardinal MASH H&E histologic features (macrovesicular 
steatosis, hepatocellular ballooning, lobular inflammation) and other 
relevant features, including portal inflammation, microvesicular stea-
tosis, interface hepatitis and normal hepatocytes (that is, hepatocytes 
not exhibiting steatosis or ballooning; Fig. 1).

MT segmentation models. For MT WSIs, CNNs were trained to seg-
ment large intrahepatic septal and subcapsular regions (comprising 
nonpathologic fibrosis), pathologic fibrosis, bile ducts and blood 
vessels (Fig. 1). All three segmentation models were trained utilizing an 
iterative model development process, schematized in Extended Data 
Fig. 2. First, the training set of WSIs was shared with a select team of 
pathologists with expertise in assessment of MASH histology who were 
instructed to annotate over the H&E and MT WSIs, as described above. 
This first set of annotations is referred to as ‘primary annotations’. Once 
collected, primary annotations were reviewed by internal pathologists, 
who removed annotations from pathologists who had misunderstood 
instructions or otherwise provided inappropriate annotations. The 
final subset of primary annotations was used to train the first iteration 
of all three segmentation models described above, and segmentation 
overlays (Fig. 2) were generated. Internal pathologists then reviewed 
the model-derived segmentation overlays, identifying areas of model 
failure and requesting correction annotations for substances for which 
the model was performing poorly. At this stage, the trained CNN models 
were also deployed on the validation set of images to quantitatively 
evaluate the model’s performance on collected annotations. After iden-
tifying areas for performance improvement, correction annotations 
were collected from expert pathologists to provide further improved 
examples of MASH histologic features to the model. Model training was 
monitored, and hyperparameters were adjusted based on the model’s 
performance on pathologist annotations from the held-out validation 
set until convergence was achieved and pathologists confirmed quali-
tatively that model performance was strong.

The artifact, H&E tissue and MT tissue CNNs were trained using 
pathologist annotations comprising 8–12 blocks of compound layers 
with a topology inspired by residual networks and inception networks 
with a softmax loss44–46. A pipeline of image augmentations was used 
during training for all CNN segmentation models. CNN models’ learn-
ing was augmented using distributionally robust optimization47,48 to 
achieve model generalization across multiple clinical and research 
contexts and augmentations. For each training patch, augmentations 
were uniformly sampled from the following options and applied to the 
input patch, forming training examples. The augmentations included 
random crops (within padding of 5 pixels), random rotation (≤360°), 
color perturbations (hue, saturation and brightness) and random 
noise addition (Gaussian, binary-uniform). Input- and feature-level 
mix-up49,50 was also employed (as a regularization technique to fur-
ther increase model robustness). After application of augmentations, 
images were zero-mean normalized. Specifically, zero-mean normali-
zation is applied to the color channels of the image, transforming the 
input RGB image with range [0–255] to BGR with range [−128–127]. This 
transformation is a fixed reordering of the channels and subtraction 
of a constant (−128), and requires no parameters to be estimated. This 
normalization is also applied identically to training and test images.

GNNs
CNN model predictions were used in combination with MASH CRN 
scores from eight pathologists to train GNNs to predict ordinal MASH 
CRN grades for steatosis, lobular inflammation, ballooning and fibrosis. 
GNN methodology was leveraged for the present development effort 
because it is well suited to data types that can be modeled by a graph 
structure, such as human tissues that are organized into structural 
topologies, including fibrosis architecture51. Here, the CNN predic-
tions (WSI overlays) of relevant histologic features were clustered into 

‘superpixels’ to construct the nodes in the graph, reducing hundreds of 
thousands of pixel-level predictions into thousands of superpixel clus-
ters. WSI regions predicted as background or artifact were excluded 
during clustering. Directed edges were placed between each node and 
its five nearest neighboring nodes (via the k-nearest neighbor algo-
rithm). Each graph node was represented by three classes of features 
generated from previously trained CNN predictions predefined as bio-
logical classes of known clinical relevance. Spatial features included the 
mean and standard deviation of (x, y) coordinates. Topological features 
included area, perimeter and convexity of the cluster. Logit-related 
features included the mean and standard deviation of logits for each of 
the classes of CNN-generated overlays. Scores from multiple patholo-
gists were used independently during training without taking con-
sensus, and consensus (n = 3) scores were used for evaluating model 
performance on validation data. Leveraging scores from multiple 
pathologists reduced the potential impact of scoring variability and 
bias associated with a single reader.

To further account for systemic bias, whereby some pathologists 
may consistently overestimate patient disease severity while others 
underestimate it, we specified the GNN model as a ‘mixed effects’ 
model. Each pathologist’s policy was specified in this model by a 
set of bias parameters learned during training and discarded at test 
time. Briefly, to learn these biases, we trained the model on all unique 
label–graph pairs, where the label was represented by a score and a 
variable that indicated which pathologist in the training set gener-
ated this score. The model then selected the specified pathologist 
bias parameter and added it to the unbiased estimate of the patient’s 
disease state. During training, these biases were updated via back-
propagation only on WSIs scored by the corresponding pathologists. 
When the GNNs were deployed, the labels were produced using only 
the unbiased estimate.

In contrast to our previous work, in which models were trained on 
scores from a single pathologist5, GNNs in this study were trained using 
MASH CRN scores from eight pathologists with experience in evaluat-
ing MASH histology on a subset of the data used for image segmenta-
tion model training (Supplementary Table 1). The GNN nodes and edges 
were built from CNN predictions of relevant histologic features in the 
first model training stage. This tiered approach improved upon our 
previous work, in which separate models were trained for slide-level 
scoring and histologic feature quantification. Here, ordinal scores were 
constructed directly from the CNN-labeled WSIs.

GNN-derived continuous score generation
Continuous MAS and CRN fibrosis scores were produced by mapping 
GNN-derived ordinal grades/stages to bins, such that ordinal scores 
were spread over a continuous range spanning a unit distance of 1 
(Extended Data Fig. 2). Activation layer output logits were extracted 
from the GNN ordinal scoring model pipeline and averaged. The GNN 
learned inter-bin cutoffs during training, and piecewise linear map-
ping was performed per logit ordinal bin from the logits to binned 
continuous scores using the logit-valued cutoffs to separate bins. Bins 
on either end of the disease severity continuum per histologic feature 
have long-tailed distributions that are not penalized during training. 
To ensure balanced linear mapping of these outer bins, logit values in 
the first and last bins were restricted to minimum and maximum values, 
respectively, during a post-processing step. These values were defined 
by outer-edge cutoffs chosen to maximize the uniformity of logit value 
distributions across training data. GNN continuous feature training 
and ordinal mapping were performed for each MASH CRN and MAS 
component fibrosis separately.

Quality control measures
Several quality control measures were implemented to ensure model 
learning from high-quality data: (1) PathAI liver pathologists evalu-
ated all annotators for annotation/scoring performance at project 
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initiation; (2) PathAI pathologists performed quality control review 
on all annotations collected throughout model training; following 
review, annotations deemed to be of high quality by PathAI patholo-
gists were used for model training, while all other annotations were 
excluded from model development; (3) PathAI pathologists performed 
slide-level review of the model’s performance after every iteration of 
model training, providing specific qualitative feedback on areas of 
strength/weakness after each iteration; (4) model performance was 
characterized at the patch and slide levels in an internal (held-out) 
test set; (5) model performance was compared against pathologist 
consensus scoring in an entirely held-out test set, which contained 
images that were out of distribution relative to images from which the 
model had learned during development.

Statistical analysis
Model performance repeatability. Repeatability of AI-based scor-
ing (intra-method variability) was assessed by deploying the present 
AI algorithms on the same held-out analytic performance test set ten 
times and computing percentage positive agreement across the ten 
reads by the model.

Model performance accuracy. To verify model performance accu-
racy, model-derived predictions for ordinal MASH CRN steatosis 
grade, ballooning grade, lobular inflammation grade and fibrosis 
stage were compared with median consensus grades/stages provided 
by a panel of three expert pathologists who had evaluated MASH 
biopsies in a recently completed phase 2b MASH clinical trial (Sup-
plementary Table 1). Importantly, images from this clinical trial were 
not included in model training and served as an external, held-out test 
set for model performance evaluation. Alignment between model 
predictions and pathologist consensus was measured via agreement 
rates, reflecting the proportion of positive agreements between the 
model and consensus.

We also evaluated the performance of each expert reader against 
a consensus to provide a benchmark for algorithm performance. For 
this MLOO analysis, the model was considered a fourth ‘reader’, and 
a consensus, determined from the model-derived score and that of 
two pathologists, was used to evaluate the performance of the third 
pathologist left out of the consensus. The average individual patholo-
gist versus consensus agreement rate was computed per histologic 
feature as a reference for model versus consensus per feature. Confi-
dence intervals were computed using bootstrapping. Concordance was 
assessed for scoring of steatosis, lobular inflammation, hepatocellular 
ballooning and fibrosis using the MASH CRN system.

AI-based assessment of clinical trial enrollment criteria and end-
points. The analytic performance test set (Supplementary Table 1) 
was leveraged to assess the AI’s ability to recapitulate MASH clinical 
trial enrollment criteria and efficacy endpoints. Baseline and EOT 
biopsies across treatment arms were grouped, and efficacy end-
points were computed using each study patient’s paired baseline 
and EOT biopsies. For all endpoints, the statistical method used to 
compare treatment with placebo was a Cochran–Mantel–Haenszel 
test, and P values were based on response stratified by diabetes status 
and cirrhosis at baseline (by manual assessment). Concordance was 
assessed with κ statistics, and accuracy was evaluated by computing 
F1 scores. A consensus determination (n = 3 expert pathologists) 
of enrollment criteria and efficacy served as a reference for evalu-
ating AI concordance and accuracy. To evaluate the concordance 
and accuracy of each of the three pathologists, AI was treated as an 
independent, fourth ‘reader’, and consensus determinations were 
composed of the AIM and two pathologists for evaluating the third 
pathologist not included in the consensus. This MLOO approach was 
followed to evaluate the performance of each pathologist against a 
consensus determination.

Continuous score interpretability. To demonstrate interpretability 
of the continuous scoring system, we first generated MASH CRN con-
tinuous scores in WSIs from a completed phase 2b MASH clinical trial 
(Supplementary Table 1, analytic performance test set). The continuous 
scores across all four histologic features were then compared with the 
mean pathologist scores from the three study central readers, using 
Kendall rank correlation. The goal in measuring the mean pathologist 
score was to capture the directional bias of this panel per feature and 
verify whether the AI-derived continuous score reflected the same 
directional bias.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The histopathology data collected for this study are maintained by 
PathAI to preserve patient confidentiality and the proprietary image 
analysis. Access to histopathology features will be granted to academic 
investigators without relevant conflicts of interest for noncommercial 
use who agree not to distribute the data. Access requests can be made 
to Andrew Beck (andy.beck@pathai.com). Any additional information 
required to reanalyze the data reported in this paper relating directly to 
the clinical datasets (STELLAR-3, STELLAR-4, GS-US-321-0105, GS-US-
321-0106, GS‐US‐384‐1497, ENHANCE, HBV, PSC, EMMINENCE and 
ATLAS datasets) will be considered at the discretion of the source 
institute for the clinical trial in question. Requests will be considered 
from academic investigators without relevant conflicts of interest for 
noncommercial use who agree not to distribute the data. Data requests 
should be sent to Andrew Beck (andy.beck@pathai.com). PathAI will 
respond to these requests within 1 month of receipt.

Code availability
Not all original code can be made publicly available. The codes for 
cell- and tissue-type model training, inference and feature extrac-
tions are not disclosed. To safeguard PathAI’s intellectual property, 
access requests for such code will not be considered. An application 
for a US patent for the algorithm discussed herein has been submit-
ted (WO2022/165433). The source codes for all downstream data 
analyses and figure generation in this work are publicly available 
and can be downloaded from GitHub: https://github.com/Path-AI/
AIM-NASH-DDT-manuscript.

References
42. Choi, H. S. J. et al. Nonalcoholic steatohepatitis is associated with 

liver-related outcomes and all-cause mortality in chronic hepatitis 
B. Hepatology 71, 539–548 (2020).

43. Javed, S. A. et al. Rethinking machine learning model 
evaluation in pathology. In International Conference on Learning 
Representations (ICLR). Preprint at https://doi.org/10.48550/
arXiv.2204.05205 (2022).

44. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning 
for image recognition. Preprint at https://doi.org/10.48550/
arXiv.1406.4729 (2015).

45. Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification 
with deep convolutional neural networks. in Advances In Neural 
Information Processing Systems (eds Pereira, F., et al.) vol. 25 
(Curran Associates, 2012).

46. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & 
Salakhutdinov, R. R. Improving neural networks by preventing 
co-adaptation of feature detectors. Preprint at https://doi.org/ 
10.48550/arXiv.1207.0580 (2012).

47. Heinze-Deml, C. & Meinshausen, N. Conditional variance penalties 
and domain shift robustness. Preprint at https://doi.org/10.48550/
arXiv.1710.11469 (2017).

http://www.nature.com/naturemedicine
https://github.com/Path-AI/AIM-NASH-DDT-manuscript
https://github.com/Path-AI/AIM-NASH-DDT-manuscript
https://doi.org/10.48550/arXiv.2204.05205
https://doi.org/10.48550/arXiv.2204.05205
https://doi.org/10.48550/arXiv.1406.4729
https://doi.org/10.48550/arXiv.1406.4729
https://doi.org/10.48550/arXiv.1207.0580
https://doi.org/10.48550/arXiv.1207.0580
https://doi.org/10.48550/arXiv.1710.11469
https://doi.org/10.48550/arXiv.1710.11469


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03172-7

48. Sagawa, S., Koh, P. W., Hashimoto, T. B. & Liang, P. Distributionally 
robust neural networks for group shifts: On the importance  
of regularization for worst-case generalization. Preprint at  
https://doi.org/10.48550/arXiv.1911.08731 (2019).

49. Zhang, H., Cissa, M., Dauphin, Y. N. & Lopez-Paz, D. Mixup:  
beyond empirical risk minimization. In International Conference 
on Learning Representations (ICLR). Preprint at https://doi.org/ 
10.48550/arXiv.1710.09412 (2018).

50. Verma, V. et al. Manifold mixup: Better representations by 
interpolating hidden states. Preprint at https://doi.org/10.48550/
arXiv.1806.05236 (2018).

51. Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning  
on graphs: methods and applications. Preprint at https://doi.org/ 
10.48550/arXiv.1709.05584 (2017).

Acknowledgements
Medical writing support was provided by S. J. Page and A. Shodeke of 
Spark Medica Inc., according to Good Publication Practice guidelines, 
funded by PathAI. Support for figure generation was provided by 
SciStories, LLC. This study was funded by PathAI. R.L. receives 
funding support from NCATS (grant no. 5UL1TR001442), NIDDK (grant 
nos. U01DK061734, U01DK130190, R01DK106419, R01DK121378, 
R01DK124318, P30DK120515), NHLBI (grant no. P01HL147835) and 
NIAAA (grant no. U01AA029019).

Author contributions
Conceptualization: A.H.B., I.W., A.T.-W., M.C.M., B.G., K.W., R.P.M., C.C., 
A.N.B., T.R.W., S.D.P., M.R., O.C.-Z., J.S.I. Methodology: A.T.-W., D.J., Q.L., 
Z.S., H.P., M.P., A.P., S.A.S.-M., C.B.-S., R.E., H.E., K.L., O.C.-Z., J.S.I., 
M.R., R.P.M., C.C., S.H., J.G. Investigation: A.T.-W., D.J., Q.L., Z.S., H.P., 
M.P., A.P., S.A.S.-M., C.B.-S., R.E., H.E., K.L., K.W., J.S.I., A.H.B., I.W., B.G., 
M.C.M., O.C.-Z., R.P.M., C.C. Visualization: A.T.-W., D.J., Q.L., Z.S., H.P., 
M.P., A.P., S.A.S.-M., C.B.-S., R.E., H.E., K.L., M.L., O.C.-Z., J.S.I. Funding 
acquisition: A.H.B., I.W., B.G., M.C.M., R.P.M., C.C., A.N.B., T.R.W., 
S.D.P. Project administration: J.S.I., A.H.B., I.W., B.G., M.C.M., O.C.-Z. 
Supervision: O.C.-Z., J.S.I., A.T.-W., R.P.M., C.C., A.H.B., I.W., M.C.M., 
B.G., A.D.B., R.L., A.J.S. Writing—original draft: J.S.I., O.C.-Z., M.L., I.W., 
A.T.-W. Writing—review and editing: J.S.I., D.J., Q.L., Z.S., H.P., M.P., A.P., 
S.A.S.-M., C.B.-S., O.C.-Z., M.L., R.E., S.H., H.E., K.L., R.P.M., C.C., A.N.B., 
T.R.W., S.D.P., M.R., K.W., J.G., A.D.B., R.L., A.J.S., B.G., M.C.M., A.T.-W., 
I.W., A.H.B.

Competing interests
A.N.B. is an employee of and holds stock in Gilead Sciences, Inc., 
and received study materials from PathAI, Inc. in support of this 
manuscript. A.D.B. serves as a consultant to 23andMe, Alimentiv, 
Allergan, Dialectica, PathAI, Inc., Source Bioscience and Verily, and 
is on Scientific Advisory Boards with 3Helix, Avacta and GSK. His 
institution has received funding for educational programs from  
Eli Lilly. A.H.B. is an employee of and holds stock in PathAI, Inc. A.P.  
is a former employee of, holds stock in and owns patents with PathAI, 
Inc. A.T.-W. is a former employee of and owns stock in PathAI, Inc. 
C.B.-S. is a former employee of and holds stock in PathAI, Inc. C.C. 
is an employee of Inipharm, a former employee of Gilead Sciences, 
Inc., and owns stock in Gilead Sciences, Inc. and Inipharm. D.J. is an 
employee of, holds stock in and owns patents with PathAI, Inc. H.E. 
is a former employee of and holds stock in PathAI, Inc., and is named 
on a patent (US 11527319) held by PathAI, Inc. H.P. is an employee 
of, owns stock in and owns patents with PathAI, Inc. I.W. is a former 
employee of and owns stock in PathAI, Inc., and owns a patent (US 
10650520). J.G. is a former employee of and owns stock in PathAI, 
Inc., J.S.I. is a former employee of and owns stock in PathAI, Inc., and 
owns a patent. K.L. is a former employee of and owns stock in PathAI, 
Inc. and received an ISO grant while employed at PathAI, Inc. K.W. is 
a former employee of, owns stock in, received support for meeting 

attendance from and receives consulting fees from PathAI, Inc. M.L. is 
a former employee of and owns stock in PathAI, Inc. M.C.M. is a former 
employee of, holds stock in and receives financial support to attend 
meetings from PathAI, Inc.; holds stock in Bristol Myers Squibb; and 
holds a leadership position with the Digital Pathology Association. 
M.R. is a former employee of, owns stock in and receives consulting 
fees from PathAI, Inc. M.P. is a former employee of and holds stock in 
PathAI, Inc. O.C.-Z. is a former employee of and holds stock options in 
PathAI, Inc., and has a patent pending (US 20220245802A1). Q.L. is an 
employee of and owns stock in PathAI, Inc., and owns a patent. R.L. 
serves as a consultant to Aardvark Therapeutics, Altimmune, Anylam/
Regeneron, Amgen, Arrowhead Pharmaceuticals, Astra Zeneca, 
Bristol Myers Squibb, CohBar, Eli Lilly, Galmed, Gilead Sciences, 
Inc., Glympse bio, Hightide, Inipharma, Intercept, Inventiva, Ionis, 
Janssen, Inc., Madrigal, Metacrine, Inc., NGM Biopharmaceuticals, 
Novartis, Novo Nordisk, Merck, Pfizer, Sagimet, Theratechnologies, 
89bio, Terns Pharmaceuticals and Viking Therapeutics. In 
addition, his institutions received research grants from Arrowhead 
Pharmaceuticals, Astra Zeneca, Boehringer Ingelheim, Bristol Myers 
Squibb, Eli Lilly, Galectin Therapeutics, Galmed Pharmaceuticals, 
Gilead Sciences, Inc., Intercept, Hanmi, Inventiva, Ionis, Janssen, 
Inc., Madrigal Pharmaceuticals, Merck, NGM Biopharmaceuticals, 
Novo Nordisk, Pfizer, Sonic Incytes and Terns Pharmaceuticals. He is 
a co-founder of LipoNexus, Inc. R.P.M. is an employee of OrsoBio, Inc., 
and owns stock in OrsoBio, Inc. and Gilead Sciences, Inc. S.A.S.-M. 
is an employee of and owns stock in PathAI, Inc. R.E. is an employee 
of and owns stock in PathAI, Inc. S.H. is a former employee of, owns 
stock in and received support for meeting attendance from PathAI, 
Inc. S.D.P. is an employee of and holds stock in Gilead Sciences. T.R.W. 
is an employee of and holds stock in Gilead Sciences, Inc. Z.S. is an 
employee of and holds stock in PathAI, Inc., and owns a patent with 
PathAI, Inc. B.G. is an employee of, holds stock in and receives support 
for meeting attendance from PathAI, Inc. A.J.S. holds stock options 
in Genfit, Akarna, Tiziana, Durect, Inversago, Hemoshear, Northsea, 
Diapin, Liponexus and Galmed. In addition, he serves as a consultant 
to Astra Zeneca (<5 K), Terns (<5 K), Merck (<5 K), Boehringer Ingelheim 
(5–10 K), Lilly (5–10 K), Novartis (<5 K), Novo Nordisk (<5 K), Pfizer (<5 K), 
89 Bio (<5 K), Regeneron (<5 K), Alnylam (<5 K), Akero (<5 K), Tern (<5 K), 
Histoindex (<5 K), Corcept (<5 K), PathAI (<5 K), Genfit (<5 K), Mediar 
(<5 K), Satellite Bio (<5 K), Echosens (<5 K), Abbott (<5 K), Promed (<5 K), 
Glaxo Smith Kline (∼11 K), Arrowhead (<5 K), Zydus (>60 K), Boston 
Pharmaceutical (<5 K), Myovent (<5 K), Variant (<5 K), Cascade (<5 K) 
and Northsea (<5 K), and his institution has received grant support 
from Gilead, Salix, Tobira, Bristol Myers, Shire, Intercept, Merck,  
Astra Zeneca, Mallinckrodt and Novartis. Lastly, he receives royalties 
from Elsevier and UpToDate.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41591-024-03172-7.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41591-024-03172-7.

Correspondence and requests for materials should be addressed to 
Andrew H. Beck.

Peer review information Nature Medicine thanks Faisal Mahmood and 
the other, anonymous, reviewer(s) for their contribution to the peer 
review of this work. Primary Handling Editors: Lorenzo Righetto and 
Ming Yang, in collaboration with the Nature Medicine team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemedicine
https://doi.org/10.48550/arXiv.1911.08731
https://doi.org/10.48550/arXiv.1710.09412
https://doi.org/10.48550/arXiv.1710.09412
https://doi.org/10.48550/arXiv.1806.05236
https://doi.org/10.48550/arXiv.1806.05236
https://doi.org/10.48550/arXiv.1709.05584
https://doi.org/10.48550/arXiv.1709.05584
https://doi.org/10.1038/s41591-024-03172-7
https://doi.org/10.1038/s41591-024-03172-7
http://www.nature.com/reprints


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03172-7

Extended Data Fig. 1 | AIM-MASH CNN and GNN model training and predictions. CNN, convolutional neural network; GNN, graph neural network; AIM, Intelligence 
based Measurement; MASH, metabolic dysfunction-associated steatohepatitis.
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Extended Data Fig. 2 | AIM-MASH H&E and Trichrome inference pipelines. H&E, hematoxylin and eosin; TC, trichrome.
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Extended Data Fig. 3 | Segmentation model development process. QC, quality control.
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Extended Data Fig. 4 | Mapping of continuous scores. Continuous MAS (steatosis, 
ballooning and lobular inflammation) and CRN fibrosis scores were produced by 
mapping GNN-derived ordinal grades/stages to bins, such that ordinal scores are 

spread over a continuous range (unit distance of 1). This continuous scoring system 
allows a more granular measurement of histological changes occurring at the 
subordinal level, while maintaining fidelity to the accepted ordinal scoring system.
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