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Pointwise Minimum Norm Control Laws for Hybrid Systems

Ricardo G. Sanfelice

Abstract—Minimum-norm control laws for hybrid dynami- definite function of the state. The proposed control law
cal systems are proposed. Hybrid systems are given by differ consists of a pointwise minimum norm selection from the
ential equations capturing the continuous dynamics orflows set of inputs that guarantees a decrease of the Lyapunov

and by difference equations capturing the discrete dynamig or . . .
jumps The proposed control laws are defined as the pointwise function on each regime. We consider the case when the

minimum norm selection from the set of inputs guaranteeing INPUts acting during flows are different than the inputsragti
a decrease of a control Lyapunov function. The cases of during jumps, the case when the inputs are the same, as

individual and common inputs during flows and jumps, as well well as cases when inputs affect only the flows or the
as when inputs enter through one of the system dynamics, are j;mps. Conditions guaranteeing continuity and globality o
considered. Examples illustrate the results. e .
the proposed pointwise minimum norm control laws are also
. INTRODUCTION presented. Our results not only recover the results in [@wh
specialized to continuous-time systems, but also provide t

The construction of asymptotically stabilizing controva ' . . X ! )
discrete-time versions, which do not seem available in the

from control Lyapunov functions (CLFs) has enabled th

systematic design of feedback laws for nonlinear systemderature. _ _
Building from earlier results in [1], which revealed a key 1N€ remainder of the paper is organized as follows. Sec-

link between the availability of a control Lyapunov funatio tionllintroduces the framework for hybrid systems, th no-
and stabilizability (with relaxed controls), the constian of ~ tion of solution, and control Lyapunov functions. Sectidih |

control laws from Lyapunov inequalities was rendered as gresents the results on stabilization by pointwise minimum
powerful control design methodology (see also, e.g., @], [ "M control laws. Examples in Sectibn] IV illustrate some

for the connections between CLFs and asymptotic controllQf the results.

bility to the origin). More importantly, design techniquésit  \otation: R™ denotesn-dimensional Euclidean spac®
go beyond the possibility of determining the control lawfro yoqteq the real numbei®;., denotes the nonnegative real
the expression of the Lyapunov inequalities were propos%mbers, i.eRso = [0, oo)TN denotes the natural numbers
and employed in several applications. The control law i'ntr%cluding 0 ie. N= {0,1,...}. B denotes the closed unit
duced in [4], known as Sontag’s universal formula, provideﬁa” in a Euclidean space. Given a s&t K denotes its
a generic controller construction for nonlinear systems ifosure. Given a seS, 95 denotes its boundary. Given

affine form that (modulo some extra properties at the origin) € R", |z| denotes the Euclidean vector norm. Given a set
only requires the existence of a CLF. (Recent extensions C R" andz € R, |z|x := inf,cx |z — y|. Givenz and
, := inf,, .

to polynomial systems appeared in [5]). The construction& (x,y) denotes their inner product. A functian: R —

introduced in [6] have the extra property that their poirssvi R, is said to belong to clasks. if it is continuous, zero

norm is minimum (for a given CLF). More notably, as Shown, e - strictly increasing, and unbounded. Given a closed
in [6] by making a link between CLFs and the solution t0got 7~ Rn » 74 with % being eitherc or d and U,

a differential game, under additional properties, poisawi R™, define [I(K) := {z : Ju, €U, st (v,u,) € K }

minimum norm control laws guarantee robustness of th&nd\l}(x,K) = {u : (z,u) € K }. That is,,given a set

closed-loop system. . K, II(K) denotes the “projection” ofX onto R™ while,
In this paper, pointwise minimum norm control laws forgiven x, U(z, K) denotes the set of values such that

hybrid dynamical systems are proposed. Hybrid dynamic%w) c K. 'I:hen, for eachr € R™, define the set-valued

systems are given by differential equations capturing ﬂ\%apstllc R = U, Uy R? = Uy s To(z) i= U(z, C)

continuous dynamics ditows and by difference equations 4 W,(x) == U(z,D), respectively. Given a map, its

capturing the discrete dynamics umps The conditions graph is denoted by gpi).

determining whether flows or jumps should occur are given

in terms of both the state and the inputs. For this clasﬁ,' PRELIMINARIES ON HYBRID SYSTEMS AND CONTROL

of hybrid systems, control Lyapunov functions are defined LYAPUNOV FUNCTIONS

by continuously differentiable functions whose changehbo

along flows and jumps, is upper bounded by a negative In this section, we define control Lyapunov functions

(CLFs) for hybrid systems+ with data (C, f, D,g) and

R. G. Sanfelice is with the Department of Aerospace and Machh given by
Engineering, University of Arizona, 1130 N. Mountain AveZ/85721.
Email: sri cardo@. ari zona. edu. Research partially supported .
by NSF CAREER Grant no. ECS-1150306 and by AFOSR YIP Grant no. 7y T = flz,ue) (z,uc) € C (1)
FA9550-12-1-0366. v = g(x,ug) (x,uq) € D,



where the seC C R" x U, is the flow set the mapf :
R™ x R™= — R" is the flow map the setD C R"™ x U,
is the jump set and the mapy : R® — R" is the jump

IIl. MINIMUM NORM STATE-FEEDBACK LAWS FOR

HYBRID SYSTEMS
Given a hybrid systen?{ satisfying the hybrid basic

map The space for the state is € R" and the space for conditions, a compact set, and a control Lyapunov function

the inputu = (u.,uq) iIsU = U. x Uy, wherel, C R™e
andU; C R™<. At times, we will require to satisfy the
following mild properties.

Definition 2.1 (hybrid basic conditions)A hybrid sys-
tem H is said to satisfy theénybrid basic conditionsf its
data(C, f, D, g) is such that

(A1) C' andD are closed subsets Bf* xU,. andR"™ xUy,
respectively;

(A2) f:R™ x R™e — R"™ is continuous;

(A3) ¢g: R" x R™d — R"™ is continuous.

Solutions to hybrid systeniq are given in terms of hybrid

arcs and hybrid inputs on hybrid time domains. Hybri

time domains are subsets of R>, x N that, for each
(T,J) € E, E n ([0,T]%x{0,1,...J}) can be written

V satisfying Definition 2R, define, for eache R, the
set
I(r):={zeR" : V(z)>r}.

Moreover, for eacliz, u.) € R" x R™e andr € Rx(, define
the function

if (z,uc) € CN(Z(r)x R™e),
otherwise

FC(:C, uCa T)

{ <VV(‘T)7 f(xauc» + O‘S("T'A)

— 00
and, for eacl{z, uq) € R™ xR™¢ andr € R>(, the function
Vi(g(z,ua)) = V(z) + as(|z|a)
= if (x,uq) € DN (Z(r) x R™),
otherwise.

Fd(fE, Ud, T)
— 00

dl'hen, evaluate the functiorls. andT'; at points(z, u.., )

and (z,uq,r) Wherer = V(z) to define the functions

as U7_}! ([tj,tj+1],j) for some finite sequence of times (@ ue) = Te(z,uc) == Le(@, ue, V(2)),

j=0 Uit ] 5)
0=ty <t; <tg. < tJE| A hybrid arc ¢ is a function (@, ua) = Ya(z,uq) = Ta(z, ua, V()
on a hybrid time domain that, for eaghe N, ¢t — ¢(t,j) is  and the set-valued maps
ab§olutely coptin_uous on the inter\{.etl 2 (t,j) € dom ¢ _}, To(z) =0 (2) N {ue €Up : Tolz,u) <0},
whlle.a hybrid mputu. is a function on. a hybrid time Talx):=Va(z) N {ug €Uy = Yalz,ug) <0 }. (6)
domain that, for eachy € N, ¢t — u(t,j) is Lebesgue i
measurable and locally essentially bounded on the inter/gH"thermore, define
{t : (t,7) € domw }. Then, a solution to the hybrid system R.:=TC)N{zeR™ : V(z)>0} (7)
H is given by a pair(¢,u), u = (uc,uq), With dom¢ = d
domu(= dom(¢,u)) and satisfying the dynamics dft, an Ry=T(D)N {z €R" : V(z) >0} (®)

where¢ is a hybrid arc and. a hybrid input. A solution pair
(¢, u) to H is said to becompletef dom(¢, u) is unbounded When, for eache, the functionsu, — Y.(x,u.) andug —
andmaximalif there does not exist another p&if, u)’ such Y,(x,u.) are convex, and the set-valued mabs and ¥,
that (¢, «) is a truncation of(¢, )’ to some proper subset have nonempty closed convex values®nand R, respec-
of dom(¢,w)’. For more details about solutions to hybridtively, we have that.(z) and7;(z) have nonempty convex
systems, see [8]. closed values or{7) and ohl (8), respectively (this follows
We introduce the concept of control Lyapunov function fofrom [7, Proposition 4.4]). Then7. and 7; have unique
hybrid systemsH; see [9] for more details and conditionselements of minimum norm oR. and R, respectively, and
on ‘H guaranteeing its existence. their minimal selections

Definition 2.2 (control Lyapunov function)siven a com- pe i Re — U, pa: Rqg — Uy
pact set4 C R™ and setdd. C R™< Uy C R™4, a contin- are aiven b
uous functionV : R™ — R, continuously differentiable on g y
an open set containind(C') is acontrol Lyapunov function pe(x) := argmin {|u.| : u. € To(z) }, 9)
with U controls for H if there existai,as € Ko and a pa(z) := argmin {|ug| : uq € Ty(z) }. (10)

positive definite functionys such that ) )
Moreover, these selections are continuous under further

a(lela) < V(@) < ax(lela) (@) Properee O A . er the effect of th o
v € TI(C) UTI(D) U g(D), e hybrid systent{ under the effect of the control pair
, (per pa) In @), (T0) is given by
Bl TV Jaual) < —aslal) ) Flo) i= £, pe(o) ¢
uc€We(z ~ T = x) = f(x, pc(x HANS
~ (11
vreme), { #t = §(e) = (e pale) vep
inf  V(g(z,ug)) —V(z) < —asz(|z 4 - ~
w0 1a)) = V(@) < —as{lzla) @ with & = (£€R" : (z,p(x)eC) and D =
Vo € II(D). {r € R™ : (x,pa(x)) € D }. The above arguments and

constructions enable the stabilization results in theofaihg

1This property is to hold at eacfil’, J) € E, but E can be unbounded. sections.



A. Practical stabilization using min-norm hybrid control Theorem 3.3: Under the conditions of Proposition 3.1, for
Propositior 311 below establishes that the pointwise mirfVeryr > 0 there exists a state-feedback law pair

imum norm controller in[(Q)E(T0) asymptotically stabilize p.: Re — U, Pl Ry — Uy
the compact sét
defined onkR. NZ(r) and Rz NZ(r) as
A ={z eR" : V(z)<r} (12
. . . pe(x) = argmin{|uc| : uc € Te(z) } (15)
for the hybrid system restricted t8(r). More precisely,
. . . . Vo € ReNZ(r),
givenr > 0, we restrict the flow and jump sets of the hybrid )
system™ by the setZ(r), which leads to pa(®) = argmin{|ua| : uq € Ta(x) } (16)
” z = flz,ue) (x,uc) € CN(Z(r) x R™e) Vo € RqNI(r)
Tl et = g(r,ua) (x,uq) € DN (Z(r) x R™). respectively, that renders the compact getasymptotically

stable forH. Furthermore, if the set-valued maps. and
U, have closed graph thep, and p/, are continuous on
R.NZ(r) and Ry NZ(r), respectively.

The result follows using Proposition 8.1 and the fact
that, from the definition of CLF in Definitioh 2.2, since the
right-hand side off(3) is negative definite with respect4o
(respectively,[(#)) the state-feedbaek (respectively,og) in
@) (respectively,[(70)) can be extended — not necessarily

(M2) For everyr > 0 and everyz € II(C') N Z(r), the @S & pointwise minimum norm law — to every point in
functionu, — T'e(, u, r) is convex onl.(z) and, for 1I(C) N A, (respectivelylI(D) N A.) and guarantee thaf

everyr > 0 and everyz € II(D) N Z(r), the function IS nonincreasing. The asymptotic stability @f. for 7 then
ug — To(m,uq,7) is convex on y(z). follows from an application of [11, Theorem 3.18]inally,

as the definition of7. and7; suggest, the norm-minimality
of p. and p; are functions ofV and a3, and different
pe: R-NI(r)— U, pa:RaNI(r) — Uy such choices would give different pointwise minimum norm
control laws.

Proposition 3.1: Given a compact set ¢ R"™ and a
hybrid systent = (C, f, D, g) satisfying the hybrid basic
conditions, suppose there exists a control Lyapunov fancti
V with U controls forH. Furthermore, suppose the following
conditions hold:

(M1) The set-valued mapg. and ¥, are lower semi-
continuou with convex values.

Then, for every > 0, the state-feedback law pair

defined as
B. Global stabilization using min-norm hybrid control

pelw) = argmin{|uc| : uc € T(x) } (13) _ _ _ |
The result in the previous section guarantees a practical
Vo € ReNZ(r), - A gy
stability property through the use of a pointwise minimum

argmin {|ug| : ua € Ta(z) } (14)  norm state-feedback control law. Now, we consider the dloba
Vo € RgNZI(r) stabilization of a compact set via continuous state-feeklba

laws (pc, pa) with pointwise minimum norm. For such a

purpose, extra conditions are required to hold nearby the

compact set. For continuous-time systems, such conditions

correspond to the so-callemntinuous control propertand

Remark 3.2:The state-feedback lavi_(13)-{14) asymptotsmall control property[4], [6], [12]. To that end, given a

ically stabilizes A, for Hz (but not necessarily fof{ as compact setd and a control Lyapunov functioW satisfying

without an appropriate extension of these lawsl{@) and Definition[2.2, for each: € R", define

IH(D), respectlvely,_ there could exist sqlunor_ls to thg closed- T/(z) = Wu(x)n Sz, V(2)), (17)

oop system that jump out ofd,). This point motivates ! X

the following result on stabilization by a control law that 7;(x) Wa(z) N Sg(z, V(z)), (18)

has pointwise minimum norm at points B(r), but not where, for each: € R" and each > 0,

everywhere, andhe global stabilization result in the next o

section. Finally, note that the assumptions place@@isuch S (@, 1) = {

as the existence of a CLF, can be relaxed by imposing them

on Hz instead. Sh(z,r) =

()

renders the compact sed,, asymptotically stable fofz.
Furthermore, if the set-valued mags. and ¥, have closed
graph thenp,. and p, are continuous.

S (z,r) if r>0,
peo(z) ifr=0, (19)
SS(z,r)  ifr>0,
Pdo(x) if r=0,
2A compact setA is said to be asymptotically stable for a closed-loop
system (e.g.} in (D)) if: e for eache > 0 there existsy > 0 such that {uc €U, : Te(m,ue,m) <0}

each maximal solutior starting from.A + 6B satisfiesp(t, j) € A+ eB o _ :
for each(t, j) € dom ¢, ande each maximal solution is bounded and the SC (x, T) - if o e H(C) ﬂI(r),

complete ones satisfim; ;.o |#(t,5)[.4 = 0. R™e otherwise
SA set-valued mapS : R™ = R™ is lower semicontinuous if .
U s Ta(z,ug,r) <0
for eachz € R™ one has thaliminf,,—. S(z;) D S(z), where o {ua € Ua a(@, > )<0}
liminfy, o S(z;) = {z : Vo; — x,32z; — z s.t.z; € S(x;) } is the Sd(va) = if z € II(D) NZ(r),

inner limit of S (see [10, Chapter 5.B]). R™d otherwise



and the feedback law pair Corollary 3.5: Given a compact set ¢ R™ and a hybrid

R S U R™ U systemH. = (C, f,D,g) as in (22) satisfying the hybrid
Peo — Yo Pd0 : — Y basic conditions, suppose there exists a control Lyapunov

induces (strong) forward invariance g, that is, function V' with ¢ controls for H.. Furthermore, suppose
(M3) Every maximal solutiont — ¢(,0) to & = the following conditions hold:
f(z, peolx)), © € TI(C) N A satisfies|é(t,0)[4 = 0 (M1c) The set-valued mayr. is lower semicontinuous
for all (,0) € dom ¢; with convex values.
(M4) Every maximal solutionj — ¢(0,5) to 2+ = (M2c) For everyr > 0 and everyz € II(C) N Z(r), the
g(z, pao(x)), = € T(D) N A satisfies|¢(0,j)[4 = 0 functionwu, — Tc(z, uc, 1) is convex onv.(z).
for all (0,7) € dom ¢. Then, for every > 0, there exists a state-feedback law
Under the conditions in Propositibn 8.1, the mapgid (19) are oL T(C) — U, (24)

lower semicontinuous for every > 0. To be able to make
continuous selections at, these maps are further requireddefined onR. NZ(r) as in (I5) that renders the compact set
to be lower semicontinuous for = 0. These conditions A- asymptotically stable fot{.. Moreover, if the set-valued
resemble those already reported in [6] for continuous-tim@ap¥. has a closed graph thesf. is continuous oI(C')N
systems. Z(r). Furthermore, if the zero feedback lgw. o : R* —
Theorem 3.4: Given a compact set C R" and a {0} C U, is such that condition (M3) holds and if (M5)
hybrid systen{ = (C, f, D, g) satisfying the hybrid basic holds, thenp, .in (20) is globally asymptotically stabilizing.
conditions, suppose there exists a control Lyapunov fancti FUrthermore, if the set-valued makp. has closed graph then
V with ¢/ controls forH. Moreover, suppose that conditions?e 'S continuous.
(M1)-(M2) of Propositio 311 hold. If théeedback law pair  Corollary 3.6: Given a compact set ¢ R” and a hybrid
(Pe,o : R™ — Ue, pao : R — Ug) is such thatconditions  systemH, = (C, f, D, g) as in [23) satisfying the hybrid

(M3) and (M4) hold, and basic conditions, suppose there exists a control Lyapunov
(M5) The set-valued maf, in (I7) is lower semicon- function V" with ¢/ controls for 7 . Furthermore, suppose
tinuous at each: € TI(C) N Z(0), the following conditions hold:

(M1d) The set-valued may, is lower semicontinuous

(M6) The set-valued map, in (I8) is lower semicon- with convex values.

tinuous at eachr € I1(D) N Z(0)
hold, then the state-feedback law pair (M2d) For everyr > 0 and everyx € II(D)NZ(r), the
functionug — Tg(x, ug,r) IS convex on ().
pe: 1(C) = Ue,  pa:THD) — U Then, for every- > 0, there exists a state-feedback law

defined as Pl TI(D) — Uy (25)

pe() = argmin{Juc| : v, € T(x) } Vo €1(C) (20)  yefined onR, NZ(r) as in (I8) that renders the compact set
pa(r) = argmin {|uq| : ug € Ty(x) } Vo eIl(D) (21) A, asymptotically stable fot,. Moreover, if the set-valued
map¥, has a closed graph theg, is continuous odl(D)N
Z(r). Furthermore, if the zero feedback law; o : R" —
{0} C Uy is such that condition (M4) holds and if (M6)
holds, thenp, in (21) is globally asymptotically stabilizing.
Furthermore, if the set-valued malp; has closed graph then
C. The case when the inputs affect only flows or only jumps is continuous.

renders the compact set globally asymptotically stable for
‘H. Furthermore, if the set-valued mapk. and ¥, have
closed graphand (p¢0, pd,0)(A) = 0 then p. and py are
continuous.

The results in the previous sections also hold when inputs IV. EXAMPLES
only affect either the flows or jumps, but not both. In
particular, we consider the special case whens the only
input, in which casé+ becomes

Now, we present examples illustrating some of the results
in the previous sections. Complete details are presented fo
the first example.

H, { 3'C+ i f(@,ue) (z,uc) €C (22) Example 4.1 (Rotate and dissipategiven vy, v, € R?,
et = g(x) reD let W(vy,v2) :={€ € R? : € =r(Avy + (1 — ANwa),r >

with D ¢ R™ andg : R — R™. When the only input is,g;, 9>A € [(# 1]}2 and definev}T: 117, vy =[=11]7, 0vf =
H becomes 11 - 11", v5 = [-1 —1]". Letw > 0 and consider the

" { i = fa) el 3 hybrid system

) 2t = gz uq) (x,uq) € D Po= f(rue) = ue { 0 w -

with, in this case(C’ ¢ R™ and f : R® — R". The following H —w 0 (1) € C (26)
results follow by combining the earlier results. n e ’

= gz, uq) (z,ua) € D,



C = {(I,uc) ER*XR : u.€{-1,1},z ¢ c }’
C = R2\ WL, vd) UW(02,12)),
D = {(x,uq) € R* X Rxg : uq >7lz|,x € IW(vi,13)},

for each(z,uq) € R? x R>q the jump mapy is given by

o) = R R =] 0w

Ug —sins
and~ > 0 is such thatexp(r/(2w))y? < 1. For eachi €
{1,2}, the vectorsv}, vy € R? are such thatV(v,v]) N
W(v?,v3) = {0}. The set of interest isd := {0} C RZ.

inf
Figure[1 depicts the flow and jump sets projected onto theielxpd

x plane.

x2

T

D N W3, 03)

Fig. 1. Sets for ExamplE4.1. The white region (and its bory)deorre-

sponds to the flow set projected onto thelane. The dashed line representsfrom where we gefl, (;E uc)

D.

To construct a state-feedback law fér](26), consider the

candidate control Lyapunov functiorii given by

V(z) = exp(T(2))x = Vr € R?, (27)

where T' denotes the minimum time to reach the se

W(vi,v3) with the continuous dynamics df (26) and €

{—1,1}. The functionT is precisely defined as follows. It is

defined as a continuously differentiable function fr&h to
[0, =] given asT(z) := larcsin(‘/_‘wll+12) on C and

’ 2w |z
zero for every other point inW(vf,v3). The definition of
V is such that[(R2) holds withy;(s) := s and ax(s) :=
exp (£) s* for eachs > 0.

Next, we construct the set-valued mays and ¥, and

then check[(8) and14). Note that(C) = C and (D) =
OW(v%,v3). For eachr € R?,
{11} ifzeC

Velo) = { 0 otherwise,

{ug € R>¢ : ug > vlx| }
Uy(z) = if € OW(vi,v3),

0 otherwise
During flows, we have that
(VV(2), f(z,uc)) = (VT(x), f( uc)W(fE)

Uel 24 w

for all (z,u.) € C. Forz € C,zy > 0, (VT(z), f(z, u.)) =
1 when v, = 1, and forz € C, =3 0,

(VT (z), f(x,u.)) = —1 whenu, = —1. Then

(VV(2), f(z,u)) < —a'a (28)

inf
UEW ()

for all z € II(C). During jumps, we have that, for each
(z,uq) € D,

Vig(w,ua)) = exp(T(g(x,ua)))g(x, ua)" g(x, ua)
= exp %) Uy
It follows that
Vig(a.ua) = Via) < = (1=exp (55)?) 2o

for eachx € II(D). Finally, both [8) and[{4) hold with
s az(s) == (1 —exp (55)7?) 2. Then,V is a CLF for
(29).

Now, we determine an asymptotic stabilizing control law
for the above hybrid systerfirst, we compute the set-valued
map7Z. in (8). To this end, the definition df.. gives, for each
r >0,

la ]| 5 ]eve
+a3(lxlA) if (z,uc) € C'N(Z(r) x R™),
—00 otherwise

Te(z, ue, V(z)). Then, for
(r) x R™<), the set-valued

Fc(x7u07 T):

eachr > 0 and (z,u.) € CN (T
ap7. is given by

T.(x) Uo(x) N{uc €Ue : YTeo(x,u.) <0}
= {-L1}n{{l : z1>0}U{-1: 21<01}),
Yvhich reduces to
m@={1 12 29)

for eachz € II(C)N{z € R? : V(z) >0 }.
Proceeding in the same way, the definitionIgf gives,
for eachr > 0,

exp (5= uh = V(@) + as(lela)

I‘d(;v,ud,r) = if (‘Tvud) € Dﬂ (I(T) X Rmd)v

otherwise

from where we gefl';(z, u.) = T'y(z,uq, V(2)). Then, for
eachr > 0 and (z,uq) € DN (Z(r) x R™), the set-valued
map 7, is given by
Ta(x) = Val@)N{ug ey : YTalz,uq) <0}

= {ua €Rxo : ug >lz| }

T
N {ud €R>p @ exp (%) uwr—axTx+ as(|zja) <0 }

—00

and using the definition af3, we get
Ty(z) = L ug = o] }

for eachz € (D) N {z€R?* : V(z) >0 }. Then,
according to [(B), from [(29), for each: € TI(C) N

{ud S RZO



{zeR? : V(z) >0} we can take the pointwise mini- ande : [-7/2,0] — [0,1) are continuous and capture the

mum norm control selection effect of pendulum compression and restitution at impacts,
1 x>0 respectively, as a function of.
pe(a) = 1 2,<0 It can be shown that, wittd = {(0,0)}, the function
According to [I0), from [(30), for each: ¢ TI(D) N Ve)=a Pe, P= {2 1] _
{x €R? : V(z) >0} we can take the pointwise mini- L1
mum norm control selection is a control Lyapunov function witid/ controls forH and
pa(a) i=al. that

. . . . —20l@) e (z) > 0
Figure[2 depicts a closed-loop trajectory with the controp, ,(x) := P1() pe2(z) = pa(z) =0
selections above when the region of operation is restricted 0 Yo(x) <0
to{zeR® : V(z) =7}, r=015. are pointwise minimum norm control laws on

I(C) N {zeR?: V(z)>0} and on II(D) N
, {z eR? : V(z)>0 }, respectively.

| | V. CONCLUSION

Minimum-norm control laws for hybrid dynamical sys-

8 tems were proposed for a broad class of hybrid dynamical
systems. The existence of a control Lyapunov function plus

T of b . .
some properties of the data of the hybrid system guarantee
-osp A the existence of pointwise minimum norm selections yiejdin
Al | a stabilizing control law. To the best of our knowledge, the
results in this paper provide the first constructive control
i algorithm for hybrid systems.
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