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ABSTRACT OF THE DISSERTATION
Local laws of random matrices and their applications
by

Fan Yang
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2019

Professor Jun Yin, Chair

This thesis presents new results on spectral statistics of different families of large random
matrices. Our main tool is certain types of local estimates of the resolvents (or the Green’s
functions) of the random matrices, which are generally referred to as local laws. Utilizing the
standard approach developed over the last decade [36] combined with a comparison method
developed recently in [59], we are able to prove (almost) optimal local laws for various
random matrix ensembles with correlated and heavy-tailed entries. With these local laws,

we establish the following three results.

We first study the largest eigenvalues for separable covariance matrices of the form Q :=
AYV2XBX*AY2. Here X = (w,;) is an n x N random matrix, whose entries are 4.i.d. random
variables with mean zero and variance N=!; A and B are respectively n x n and N x N
deterministic non-negative definite symmetric (or Hermitian) matrices. Under a sharp fourth
moment tail condition, we prove that the limiting distribution of the largest eigenvalues of Q
is universal under an N3 scaling, as long as n/N converges to a finite d € (0, 0) as N — co.
In particular, if B = I, then QO becomes the sample covariance matrix, which is one of the
most fundamental objects of study in high-dimensional statistics. Our result provides the

strongest edge universality result for large dimensional sample covariance matrices so far.

Then we study the eigenvector empirical spectral distribution (VESD)—an important tool
in studying the limiting behavior of eigenvectors—for large separable covariance matrices.

Under certain low moment assumptions, we prove an optimal convergence rate of the VESD
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to an anisotropic Marcenko-Pastur law in the metric of Kolmogorov distance. Our results

improve the suboptimal convergence rate in [I07] under much more relaxed assumptions.

Finally, we study the eigenvalue distribution of a deformed non-Hermitian random matrix
ensemble of the form T'X, where T' is a deterministic N x M matrix and X is a random M x N
matrix with independent entries, each of which has zero mean and variance (N A M)~'. We
prove the empirical spectral distribution (ESD) of T'X converges to an inhomogeneous local
circular law, which is determined by the singular values of 7. Moreover, the convergence
holds up to the (almost) optimal local scale (N A M)~%2*¢ for any e > 0. Our proof depends
on a lower tail estimate for the smallest singular value of TX — z for any z € C. This is also

provided in this thesis.
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CHAPTER 1

Introduction

The study of random matrices dates back to Wishart’s study of the so-called Wishart matri-
ces in multivariate statistics [103]. However, his work did not attract much attention at that
time. The random matrix theory became influential in the 1950’s due to the seminal work
[102], where Wigner introduced random matrices to model the energy levels of heavy nuclei.
In Wigner’s vision, the local spectral statistics of strongly correlated quantum systems are

universal, and should be given by the random matrix statistics of the same symmetry.

In the last two decades or so, there has been significant progress in understanding
Wigner’s conjecture regarding the universal behaviors of many different types of random
matrix ensembles. One of the important methods is the so-called resolvent method. Given

an Hermitian random matrix H, we define its resolvent (or Green’s function) as
G(z):=(H—-2)" zeCy:={zeC:Imz>0}.

By taking the imaginary part, it is easy to see that a control of G(E + in) yields a control
of the eigenvalue density on a small scale of order  around E (which contains an order
nN eigenvalues). A local law is an estimate of G(z) for all z with Imz » N~!. Such local
laws has been very powerful tools in studying the local eigenvalue and eigenvector statistics
of many random matrix ensembles [36], [00]. The overarching goal of this thesis is to prove
certain local laws for random matrices with correlated entries or heavy tails, and use these

local laws to derive some universal properties of these matrix ensembles.

This thesis is based on the following papers written by the authors with collaborators:

1. A necessary and sufficient condition for edge universality at the largest singular values

of covariance matrices.



2. Edge universality of separable covariance matrices.

3. Convergence of eigenvector empirical spectral distribution of sample covariance matri-

ces.
4. Local circular law for the product of a deterministic matrix with a random matrix.
5. The smallest singular value of deformed random rectangular matrices.

These papers are roughly reproduced in this thesis, with some minor revisions and rear-
rangements to give a more unified presentation of the results. We now gives a brief review

of the subsequent chapters.

1.1 Overview of the thesis

Edge universality of separable covariance matrices

The material in Chapter [2|is based on the author’s work in [109], which is also an improve-
ment of the author’s previous work [26]. This chapter is concerned with the distribution of
the largest eigenvalues of sample covariance matrices, or more generally, separable covariance

matrices.

Sample covariance matrices are fundamental objects in modern multivariate statistics.
Given an i.i.d. sequence of centered random vectors y; € R", ¢ = 1,---, N, the sample
covariance matrix @ := N~'3 y;yF is the simplest estimator for the covariance matrix
A = Ey,y}. In fact, if the dimension n of the data is fixed, then Q converges almost surely
to A as N — . However, in many modern applications, high dimensional data, i.e. data
with n being comparable to or even larger than N, is commonly collected in various fields,
such as statistics [25], 53, b4, [55], economics [72] and population genetics [75], to name a
few. In this setting, A cannot be estimated through @) directly due to the so-called curse of
dimensionality. Yet, some properties of A can be inferred from the eigenvalue and eigenvector
statistics of Q. Mathematically, the sample covariance matrices can be expressed in the form

Q = AVEXX* AV,
2



where the data matrix X = (z;;) is an n x N random matrix with 7.i.d. entries satisfying

Exi;; = 0 and E‘I11|2 =N"L

The data model AY2X corresponds to observing N independent samples, and hence is
incompetent to model data with correlations between different samples. A more general
model is the so-called separable data model of the form Y = AY2X B2 where A and B are
respectively n x n and N x N deterministic non-negative definite symmetric (or Hermitian)
matrices. Without loss of generality, we may assume that the row indices of the data matrix
correspond to the spatial locations and the column indices correspond to the observation
times. Then A and B describe the spatial and temporal correlations within the data, and
we shall refer to them as the spatial and temporal covariance matrices, respectively. Here
the name “separable” is because the joint covariance of Y, viewed as an (Nn)-dimensional
vector, is given by a separable form A ® B. In particular, if the entries of X are Gaussian,
then the joint distribution of Y is Ny, (0, A® B). Note that the separable model describes
a process where the time correlation does not depend on the spatial location and the spatial
correlation does not depend on time, i.e. there is no space-time interaction. In fact, the
spatio-temporal sampling data is commonly collected in environmental study [44}, 60, (63, [68]

and wireless communications [99].

In Chapter [2, we consider the separable covariance matrix defined as
Q:=YY* = AV2XBX*A2

The main result is Theorem [2.2.7 which gives the universality of the largest eigenvalue of
Q under the optimal moment condition. More precisely, assuming n/N — d € (0,0) as
N — oo, ]Ea:?j = 0, and some mild conditions on A and B, we prove that the limiting
distribution of the largest eigenvalue of Q coincide with that of the corresponding Gaussian
ensemble (i.e., @ with X being an i.i.d. Gaussian matrix) under a proper N?/3 scaling, as

long as the following moment condition holds:

lim s*P(v/N|z;| = s) = 0.

§—0
This result is commonly referred to as the edge universality, in the sense that the limiting

distribution of the largest eigenvalue does not depend on the detailed distribution of the
3



entries of X. If we take B = I, then Q becomes the normal sample covariance matrix
and the edge universality holds true without the vanishing third moment condition. So far,
this is the strongest edge universality result for sample covariance matrices with correlated
data (i.e. non-diagonal A) and heavy tails, which improves the previous results in [12], [61]
(assuming high moments and diagonal A), [59] (assuming high moments) and [26] (assuming

diagonal A).

The proof of Theorem is based on some (optimal) local laws on the resolvent of Q:
g(X7Z) = (Q_Z)ila ZE(CJr'

To prove the local laws, we use two comparison arguments: a self-consistent comparison ap-
proach developed in [59], and the Lindeberg replacement strategy with certain four moment

matching [62, 93]. For a more detailed introduction, we refer the reader to Section [2.1]

Convergence of eigenvector empirical spectral distribution

The material in Chapter [3|is based on the author’s work in [I04]. In this chapter, we study
the eigenvectors statistics of separable covariance matrix Q = AY2X BX*A'Y? through the
eigenvector empirical spectral distribution (VESD). Suppose Q has eigenvalue decomposition
Q= M
k=1

Then for any deterministic unit vector u € C", we define a VESD of Q as
Faa(®) = 3 [ WP <.
k=1

The VESD is a useful tool in studying the limiting behavior of eigenvectors of large random
matrices. For applications of VESD to separable covariance matrices and sample covariance

matrices with spikes, we refer the reader to [7], 86, 88, [104], 106, 107] and Section

The Chapter [3|is concerned with the convergence rate of the VESD of separable covari-
ance matrices to certain deterministic distribution, which we shall refer to as the anisotropic
Maréenko-Pastur (MP) law. Consider separable covariance matrices with diagonal covari-

ance matrices A and B. We will prove that the Kolmogorov distance between the ezpected
4



VESD and the anisotropic MP distribution is bounded by N~!*¢ for any fixed € > 0, pro-
vided that the entries v/Nz;; have uniformly bounded 6th moments and |n/N — 1| > 7 for
some constant 7 > 0. This result improves the previous one obtained in [I07], which gave
the convergence rate O(N~'/2) assuming i.i.d. X entries, bounded 10th moment, ¥ = I and
n < N. Moreover, we also prove that under the finite 8th moment assumption, the conver-
gence rate of the VESD is O(N~Y/2+¢) almost surely for any fixed € > 0, which improves the
previous bound N~Y4*¢ in [I07]. The more general cases with non-diagonal A and B are

not considered in this work, and will be studied in the future.

Local circular law for deformed non-Hermitian random matrices

The material in Chapter [4|is based on the author’s work in [I05]. In this chapter, we study
the eigenvalue distribution of deformed non-Hermitian random matrices. More precisely, we
prove the convergence of the empirical spectral distribution (ESD) of the product T'X of a
deterministic N x M matrix T" with a random M x N matrix X, where the entries of X are

1.1.d. random variables with mean zero.

The study of ESD of non-Hermitian random matrices goes back to the celebrated paper
[46], where Ginibre calculated the joint probability density for the eigenvalues of the i.i.d.
random matrix X with independent complex Gaussian entries. In this case, the joint density
distribution is integrable with an explicit kernel, which allowed him to derive the circular
law for the eigenvalues, i.e. the eigenvalues of X are distributed almost uniformly on a
circular disk for large N. However, for general 7.i.d. random matrices with non-Gaussian
entries, there is no explicit formula for the joint distribution of the eigenvalues. To deal with
this difficulty, an Hermitization technique was developed in [47], where Girko was able to
translate the convergence of complex empirical measures of a non-Hermitian matrix into the
convergence of logarithmic transforms for a family of Hermitian matrices, or, to be more
precise,

Trlog[(X — 2)"(X — 2)] = log[det((X — 2)"(X — 2))],

for a family of z € C. With this technique, the circular law was proved for general i.7.d.



random matrix ensembles in [0, 8] by assuming bounded density and bounded high moments
for the entries of X. The moment and smoothness assumptions were relaxed subsequently
in a series of papers by Tao and Vu [01], Pan and Zhou [74] and G6tze and Tikhomirov [49].
The final result was presented in [96], where the circular law is proved under the optimal

finite variance assumption on the X entries.

In this paper, we study the ESD of the deformed non-Hermitian random matrices of the
form T'X. We prove an inhomogeneous local circular law for the ESD of T'X at any point
z away from the boundary circle under the assumption that the matrix entries X;; have
sufficiently high moments. More precisely, suppose the boundary circle has radius r. Then
if z satisfies ||z| — r| = 7 for some small constant 7 > 0, then the ESD of T'X converges to
xp(z)dA(z), where xp is a rotation-invariant function determined by the singular values of
T and dA denotes the Lebesgue measure on the disk {z : |z| < r}. The local circular law is

—1/2+¢

valid around z up to the almost optimal scale (N A M) for any fixed € > 0.

The main tool for our proof is an optimal local law for the resolvents of the family of
Hermitian matrices (TX — 2)*(TX — z). In the proof, we need some stability estimates on
certain deterministic self-consistent equations, which are proved in Appendix [A] Moreover,
due to the singularity of the log function at 0, we also need to bound the smallest eigenvalue
of TX — z from below for any z € C. This was provided in Appendix [B] which we shall

introduce next.

The smallest singular value

The material in Appendix [B| is based on the author’s work in [I08]. The purpose of this
appendix is to prove a lower tail estimate for the smallest singular value of T X — z, which is
used in the proof in Section [d] However, motivated by potential applications in statistics, we
shall consider a slightly more general deformed random matrix model of the form T'X — A.
Here X is an M x n random matrix with ¢.2.d. entries, which have zero mean, unit variance
and arbitrarily high moments; 7" is an N x M deterministic matrix with comparable singular

values ¢ < sy(T) < s1(T) < ¢! for some constant ¢ > 0; A is an N x n deterministic matrix



with |A| = O(v/N). Suppose n < N < M = O(N). Then we prove that for any constant
£ > 0, the smallest singular value of TX — A is larger than N=¢(v/N — y/n — 1) with high
probability. If we assume further the entries of X have subgaussian decay, then the smallest
singular value of TX — A is at least of the order N —+/n — 1 with high probability, which
is an essentially optimal estimate. Our proof is based on an extension of the arguments in
[82].

This appendix is relatively independent of the other parts of this thesis, and can be read

separately.

1.2 Conventions

The fundamental large parameter in this thesis is N. All quantities that are not explicitly
constant may depend on N, and we usually omit N from our notations. We use C' to denote
a generic large positive constant, which may depend on fixed parameters and whose value
may change from one line to the next. Similarly, we use €, 7, §, w and ¢ to denote generic
small positive constants. If a constant depend on a quantity a, we use C'(a) or C, to indicate

this dependence.

For two quantities ay and by depending on N, the notation ay = O(by) means that
lan| < C|b,| for some constant C' > 0, and ay = o(by) means that |ay| < cx|bn| for some
positive sequence ¢y | 0 as N — o0. We also use the notations ay < by if ay = O(by), and

anN ~ bN if anN = O(bN) and bN = O(CZN).

For any (complex) matrix A, we use A* to denote its conjugate transpose, AT the trans-
pose, ||A] := | A];2_;2 the operator norm and | A|ys the Hilbert-Schmidt norm. In this thesis,

we usually write the N x N identity matrix I as I or 1 without causing any confusions.

We use the notation v = (v;), for a vector in CV, and denote its Euclidean norm by
|v| = ||v|2. The canonical inner product on R"™ or C" is denoted (-, -). The distance from a

point x to a set D in R™ is denoted dist(x, D).

If two random variables X and Y have the same distribution, we write X Ly,



CHAPTER 2

Edge universality of separable covariance matrices

2.1 Introduction

In this chapter, we focus on the limiting distribution of the largest eigenvalues of high-
dimensional sample covariance matrices, which is of great interest to the principal component
analysis. The largest eigenvalue has been widely used in hypothesis testing problems on the
structure of covariance matrices, see e.g. [13] 28] [54] [73]. Of course the list is very far from
being complete, and we refer the reader to [53,[77, [110] for a comprehensive review. Precisely,

we will consider sample covariance matrices of the form
Q= A1/2XX*A1/2,

where the data matrix X = (z;;) is an n x N random matrix with ¢.i.d. entries such that
Ez1; = 0 and E|z1;]?> = N!, and A is an n x n deterministic non-negative definite symmetric
(or Hermitian) matrix. On dimensionality, we assume that n/N — d € (0,0) as N — oo. It is
well-known that the empirical spectral distribution (ESD) of Q converges to the (deformed)
Marchenko-Pastur (MP) law [66], whose rightmost edge A, gives the asymptotic location
of the largest eigenvalue. Moreover, it was proved in a series of papers that under an
N?%3 scaling, the distribution of the largest eigenvalue A\;(Q) around ), converges to the
Tracy-Widom distribution [97, O8], which arises as the limiting distribution of the rescaled
largest eigenvalue of the Gaussian orthogonal (or unitary) ensemble. This result is commonly
referred to as the edge universality, in the sense that it is independent of the detailed
distribution of the entries of X. The limiting distribution of A\; was first obtained for Q with
X consisting of i.i.d. centered Gaussian entries (i.e. X is a Wishart matrix) and with trivial

covariance (i.e. A = I) [54]. The edge universality in the A = I case was later proved for
8



all random matrices X whose entries satisfy a sub-exponential decay [79]. When A is a non-
scalar diagonal matrix, the Tracy-Widom distribution was first proved for Wishart matrix
X in [2§] (non-singular A case) and [71] (singular A case). Later the edge universality with
general diagonal A was proved in [12] 61] for X with entries having arbitrarily high moments,
and in [26] for X with entries satisfying the tail condition (2.1.1)). The most general case
with non-diagonal A is considered in [59], where the edge universality was proved under the

arbitrarily high moments assumption.

A generalization of the sample covariance matrix model is the so-called separable covari-
ance matriz, which are of the form Q := YY* = AYV2XBX*AY2. It has been proved to be
very useful for various applications. For example, in wireless communications, it was shown
in [I00] that an estimate of the capacity is directly given by various informations of the
largest eigenvalue. The spectral properties of separable covariance matrices have been inves-
tigated in some recent works, see e.g. [20} 29| [78, [I0T], T13]. However, the edge universality
is much less known compared with sample covariance matrices. It is known that the edge
universality generally follows from an optimal local law for the resolvent G = (Q — z)~! near
the spectral edge, where z € C, with Im z » N~ [12, 26, 59, 61]. Consider an n x N matrix
X consisting of independent centered entries with general variance profile E|z;;|* = oy;/N,
then an optimal local law was prove in [I} 2] for the resolvent (X X* — 2)~! under the arbi-
trarily high moments assumption. Note that this gives the local law for G in the case where
both A and B are diagonal. However, if A and B are not diagonal, no such local law is

proved so far, let alone the edge universality.

In this thesis, we try to fill this gap. We shall prove that for general (non-diagonal) A
and B satisfying some mild assumptions, the limiting distribution of the rescaled largest
cigenvalue N3 (A{(Q) — A,) coincides with that of the corresponding Gaussian ensemble
(ie. QY = AY2XCB(XE)*AY? with X being a Wishart matrix) as long as the following
conditions hold:

lim s*P <|\/Ng:11| > s> —0, (2.1.1)

§—00
and

Ex?, = 0. (2.1.2)
9



For a precise statement, the reader can refer to Theorem [2.2.7] Note that the tail condition
(2.1.1) is slightly weaker than the finite fourth moment condition for v/Naq, and in fact is
sharp for the edge universality of the largest eigenvalue, see Remark [2.2.8 Historically, for
sample covariance matrices, it was proved in [I12] that \; — A, almost surely in the null
case with A = [ if the fourth moment exists. Later the finite fourth moment condition is
proved to be also necessary for the almost sure convergence of A; [4]. On the other hand, it
was proved in [87] that A\; — ), in probability under the condition (2.1.1)). If A is diagonal,
it was proved in the atuhor’s work [26] that the condition (2.1.1)) is actually necessary and

sufficient for the edge universality of sample covariance matrices to hold.

On the other hand, the condition (2.1.2)) is more technical and should be considered to
be removed in the future. We now discuss about it briefly. The main difficulty in studying
Q = AY2XBX*AY? and its resolvent is due to the fact that the entries of AY2XB'? are
not independent. We assume that A and B have eigendecompositions A = UXU* and

B = VSV*. Then in the special case where X = X is Wishart, it is easy to see that
AVRXCB(XO) A2 Ly (BHRXOTIR) U ~ BURX O, (2.1.3)

which is reduced to a separable covariance matrix with diagonal > and 3. This case can be
handled using the current method in [26]. To extend the result in the Gaussian case to the
general X case, we use a self-consistent comparison argument developed in [59]. For this
argument to work, we need to assume that the third moments of the X entries coincide with
that of the Gaussian random variable, i.e. the condition (2.1.2). (Actually it is common that
for a comparison argument to work for random matrices, some kind of four moment matching
is needed; see e.g. [92, 03] 95].) If one of the A and B is diagonal, then a notable argument
in [59, Section 8] can remove this requirement by exploring more detailed structures of the
resolvents of Q. However, their argument is quite specific and cannot be adapted to the
general case with both A and B being non-diagonal. Nevertheless, this is still a welcome
result, which shows that for sample covariance matrices, the condition is not necessary
and the edge universality holds as long as holds.

Finally, we believe that the largest eigenvalue of the Gaussian separable covariance matrix

10



Q¢ should converge to the Tracy-Widom distribution. However, to the best of our knowledge,

so far there is no explicit proof for this fact. This will be studied in the future.

The rest of the chapter is organized as follows. In Section we first define the limiting
spectral distribution of the separable covariance matrix and its rightmost edge A, which
will depend only on the empirical spectral densities (ESD) of A and B. Then we will
state the main theorem—Theorem [2.2. of this chapter. In Section [2.4] we introduce the
notations and collect some tools including the anisotropic local law (Theorem , rigidity
of eigenvalues (Theorem and a comparison theorem (Theorem [2.4.10). In Section [2.5]
we prove Theorem [2.2.7 with these tools. Then Section [2.6| and Section [2.7] are devoted to
proving Theorem [2.4.6], Section is devoted to proving Theorem [2.4.8| and Section [2.8.2
contains the proof for Theorem [2.4.10]

2.2 Definitions and Main Result

2.2.1 Separable covariance matrices

We consider a class of separable covariance matrices of the form Q; := AY2XBX*AY?,
where A and B are deterministic non-negative definite symmetric (or Hermitian) matrices.
Note that A and B are not necessarily diagonal. We assume that X = (z;;) is an n x N
random matrix with entries z;; = Nﬁl/zqij, 1 <i<n,1<j< N, where g;; are i.i.d.
random variables satisfying

Equ =0, Elgul* =1. (2.2.1)

For definiteness, in this chapter we focus on the real case, i.e. the random variable ¢;; is real.
However, we remark that our proof can be applied to the complex case after minor modi-
fications if we assume in addition that Re ¢;; and Im ¢q; are independent centered random
variables with variance 1/2. We will also use the N x N matrix Q, := BY2X*AX BY2. We
assume that the aspect ratio dy := n/N satisfies 7 < dy < 77! for some constant 0 < 7 < 1.

Without loss of generality, by switching the roles of Q; and O, if necessary, we can assume

11



that
T<dy <1 forall V. (2.2.2)

For simplicity of notations, we will often abbreviate dy as d in this chapter. We denote the
eigenvalues of Q; and Qs in descending order by A\ (Q;) = ... = A\, (Q1) and A\ (Q2) = ... >
An(Q2). Since Q; and Q, share the same nonzero eigenvalues, we will for simplicity write
Aj, 1 < j < N An, to denote the j-th eigenvalue of both Q; and Q, without causing any

confusion.
We assume that A and B have eigendecompositions
A=USU*, B=VSV* %=dag(o,....00), % =diag(Fs,....5xn),  (2.2.3)

where

0120'22...20'”20, 8’1252228’N20

We denote the empirical spectral densities (ESD) of A and B by

A = ng) =

S|

n N
S N U
;50“ Tp=my) = N;(S"i' (2.2.4)

We assume that there exists a small constant 0 < 7 < 1 such that for all N large enough,

max{oy, 51} <777, max {7?2”)([0,7']), W(BN)([O,T])} <l-r7. (2.2.5)

1

Note the first condition means that the operator norms of A and B are bounded by 7', and

the second condition means that the spectrums of A and B cannot concentrate at zero.

We summarize our basic assumptions here for future reference.

Assumption 2.2.1. We assume that X is an n x N random matriz with real i.1.d. en-

tries satisfying , A and B are deterministic non-negative definite symmetric matrices
satisfying (2.2.3) and (2.2.5), and dy satisfies (2.2.2]).

2.2.2 Resolvents and limiting law

We will study the eigenvalue statistics of Q; and Qs through their resolvents (or Green’s

functions). Tt is equivalent to study the matrices

O1(X) := SY2PU*XBX*USY?,  Qy(X) := SVPV*X*AXVEY?, (2.2.6)
12



In this thesis, we shall denote the upper half complex plane and the right half real line by
={zeC:Imz>0}, Ry :=]0,00).

Definition 2.2.2 (Resolvents). For z = E +in € C,, we define the resolvents for QLQ as

-1

Gi(X.2) = (Gi(X) —2) . GalX.2) = (Gu(x) —2) (2.2.7)

We denote the ESD p™ of 9, and its Stieltjes transform as

_ %2 @y M) =m0 (z) = Jipgm(dx) _ %Trgl(z). (2.2.8)

We also introduce the following quantities:
1 & 1 &
m(z) = mi(E) = 5 DeilG)alz), male) = =¥ 25l

It was shown in [78] that if dy — d € (0,0) and 7r1(4"), WJ(BN) converge to certain probability
distributions, then almost surely p(™ converges to a deterministic distributions p,,. We now

describe it through the Stieltjes transform

M (2) ;:Lp”<dx), zeC,.

r—z

For any finite N and z € C,, we define (mgjcv)(z),mgcv)(z)) e C2% as the unique solution to

the system of self-consistent equations

m{(2) = dy f = L), ml) () - f - v (N)(Z)]W%m(dx).

1+ xm;cv)(z)]

Then we define

1+ xmgcv)(z)]

me(z) = m®(z) = f o ! 7 (da). (2.2.10)

It is easy to verify that m((;")(z) € C, for z € C,. Letting n | 0, we can obtain a probability

measure p&n) with the inverse formula

1
p(E) = 11{51 —TImm™(E + in). (2.2.11)
m

13



If dy — d € (0,00) and wﬁl”), W%N) converge to certain probability distributions, then m&")

also converges and we define

Mo (2) 1= ]\lflinoo m™(z), zeC,.

Letting n | 0, we can recover the asymptotic eigenvalue density p,, with

1
po(E) =lim —Immq (E + in). (2.2.12)
70 T

It is also easy to see that p., is the weak limit of pﬁ").

The above definitions of m{" , p((;"), My and po, make sense due to the following theorem.
Throughout the rest of this chapter, we often omit the super-indices (n) and (N) from our

notations.

Theorem 2.2.3 (Existence, uniqueness, and continuous density). For any z € C,, there
exists a unique solution (my., ma.) € C2 to the systems of equations in . The func-
tion m. in is the Stieltjes transform of a probability measure p. supported on R, .
Moreover, . has a continuous derivative p.(z) on (0,90), which is defined by (2.2.12).

Proof. See [113, Theorem 1.2.1], [51, Theorem 2.4] and [22], Theorem 3.1]. ]

We now make a small detour and discuss about another very enlightening way to under-
stand the Stieltjes transforms my 9. and m.. Consider the vector solution v = (vy,--- ,v,)

to the following self-consistent vector equation [I, 2]:
=—2+S5S————, z2e€C,, (2.2.13)

where 1/v denotes the entrywise reciprocal, and S is an n x N matrix with entries

1
Sip = NOZ&N, i€ [1,n], wpel[l,NJ. (2.2.14)

In fact, if one regards X} := [1,n] and &5 := [1, N] as measure spaces equipped with

counting measures

n N
771:251‘7 7T2:26/“
i=1 n=1

14



then S defines a linear operator S : [®(Xy) — [*(AX)) such that

(Sw); :—EUMU)H, wel®(Ay), i€ X
pn=1

Now we can regard (2.2.13)) as a self-consistent equation of the function v : C; — [®(AX}).

Suppose v is a solution to (2.2.13]) with Imv(z) > 0, then it is easy to verify that

1 ¢ Ly
IC:NZ Vi :_Z—z 1+0—Mmlc) mCZE;%

The structure of the solution v was well-studied in [I, 2]. In particular, one has the following

preliminary result on the existence and uniqueness of the solution.

Theorem 2.2.4 (Proposition 2.1 of [1]). There is a unique function v : C. — I*(X))
satisfying (2.2.13)) and Imv(z) > 0 for all z € C.. Moreover, for each k € Xy, there is a

unique probability measure py on R such that vy is the Stieltjes transform of g, i.e.

Q0

1

we) = | gromn), zec..

The measures g, k € X1, all have the same support contained in [0, A], where
A = 4maX{HSHloo(X2)Hloo(Xl), HS*HZOC(Xl)*,lCO(XQ)} .

Now we go back to study the equations in (2.2.9)). If we define the function

f(z,m) = _m+f—z+mdN

then my.(z) can be characterized as the unique solution to the equation f(z,m) = 0 with

T

(D) mp(dr), (2.2.15)

S t
1+tm
Imm > 0, and my.(2) is defined using the first equation in (2.2.9). Moreover, my s.(z) are

the Stieltjes transforms of densities p o.:
1
p12c(E) = lim —Immyo.(E + in). (2.2.16)
nl0

Then we have the following result.

Lemma 2.2.5. The densities p. and py 2. all have the same support on (0,00), which is a

union of intervals:

p

supp pe 0 (0,90) = supp pr2c N = |Jlazk, ask 1] n (0, 0), (2:2.17)
k=1
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where p € N depends only on ma . Moreover, (x,m) = (ag, ma.(ar)) are the real solutions
to the equations

f(z,m) =0, and 5—7{1(:6,771) = 0. (2.2.18)

Moreover, we have mi.(a;) € (=57 1,0) and mac(a;) € (=07, 0).
Proof. See Section 3 of [22]. O

We shall call a; the spectral edges. In particular, we will focus on the rightmost edge

A = a;. Now we make the following assumption: there exists a constant 7 > 0 such that
1+ mlC(AT>51 =T, I+ mQC()‘T)UI =T. (2219)

This assumption guarantees a regular square-root behavior of the spectral densities p; 2. near

A, as shown by the following lemma.

Lemma 2.2.6. Under the assumptions (2.2.2), (2.2.5) and (2.2.19), there exist constants

a2 > 0 such that

prac\ — ) = a192"? + O(x), z]0, (2.2.20)

and
M126(2) = M1ge(N) + Taro(z = M) Y2+ 0(lz =\ ]), z— A, Imz>0. (2.2.21)

The estimates (2.2.20) and (2.2.21)) also hold for p. and m. with a different constant.

Proof. Differentiating the equation f(z, m) = 0 with respect to m, we can get that z’(m,.) = 0
and 2"(m,) = —0% f(\,,m,)/0.f(\.,m,), where m, = ma.(\,). After a straightforward

calculation, we have

t

—z(1+ tm)ﬁA(dt)’

ftem) = [ et matae). gfem) = dy |

1+ xzg(z,m)]
and
3

i

z[1+ zg(z,m)]

LEQ

0% g(z, m)rg(dz),
z[1+xg(z,m)]2 mdl J75(dz)

sem =2 5 (Onglem) a(do)+ |
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where

3

2
Omg(z,m) = dy j L radt), Eg(zm) = —2dy j raldt).
z ya

(1 +tm) (1 +tm)®

Using ([2.2.5) and ([2.2.19)), it is easy to show that

|azf()‘r7m7“)| ~ 1, |ar2nf(/\r;mr)| ~ 1.

Thus we have |z”(m,)| ~ 1, which by Theorem 3.3 of [22], implies (2.2.20) and (2.2.21) for

p2c and ma.. The estimates for pi., mi., pe, and m, then follow from simple applications of

and (ZZT0). 0

2.2.3 Main result

The main result of this chapter is the following theorem.

Theorem 2.2.7. Let Q; := AV2XBX*AY2 be an n x n separable covariance matriz with

A, B and X satisfying Assumption and (2.2.19). Let Ay be the largest eigenvalue of
Q. If the conditions and (2.1.2)) hold, then we have

lim P(N#3(\; — \,) < s) = lim PE(N?3(\; — \,.) < s) (2.2.22)

N—o0 N—oo

for all s € R, where P¢ denotes the law for X with i.i.d. Gaussian entries. The condition

(2.1.2)) is not necessary if A or B is diagonal.

Remark 2.2.8. The moment condition is actually sharp in the following sense. If the condition
(2.1.1) does not hold for X, then one can show that (see e.g. [26 Section 4]) for any fixed
a> M\,

limsupP (A (XX™) > a) >0,

N—o0

where A\ (X X*) denotes the largest eigenvalue of X X*. Thus if min{o,,ox} = 7 for some
constant 7 > 0, we then have
limsupP (A\(Q1) = a) >0
N—w

for any fixed a > \,, and the edge universality (2.2.22]) cannot hold.
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Remark 2.2.9. 1t is clear that gives the edge universality of the largest eigenvalues
of separable covariance matrices. However, to the best of our knowledge, so far there is no
explicit proof for the limiting distribution of the largest eigenvalue of Q; when X is Gaussian.
We will handle this problem in the future, i.e. we will show that there exists vy = vo(V)

depending only on 74 p and the aspect ratio dx such that

lim PY (fyONZ/S()\l —\) <) = Fi(s), seR,

N—o

where F} is the type-1 Tracy-Widom distribution. Thus in fact shows that the dis-
tribution of the rescaled largest eigenvalue of Q; converges to the Tracy-Widom distribution
if the conditions and hold. In particular, in the case of sample covariance
matrices, the condition is not necessary. Hence we conclude that the rescaled largest

eigenvalue of a sample covariance matrix with correlated rows converges to the Tracy-Widom

distribution if the tail condition ([2.1.1)) holds.

Remark 2.2.10. The universality result (2.2.22)) can be extended to the joint distribution of

the k largest eigenvalues for any fixed k:

. 2/3 . G 2/3
T P (V200 \) <), ) = Jim PO((NPOG=0) <)), (2:229)
for all sq,s9,...,5; € R. Let HF9F be an N x N random matrix belonging to the Gaussian
orthogonal ensemble. The joint distribution of the k largest eigenvalues of HEOF pfOF >
.. = pfO9F can be written in terms of the Airy kernel for any fixed & [42]. In the future,

we will prove that

lim PO ((%NQ/?’()\i — ) < 1) — lim P ((N2/3(uf0E ~2) < s)

1<i<k> Nooo 1<z‘<k> ’

for all sy, so, ..., s, € R. Hence (2.2.23)) gives a complete description of the finite-dimensional

correlation functions of the largest eigenvalues of Q.

Remark 2.2.11. A key input for the proof of (2.2.22)) is the anisotropic local law for the
resolvents in (2.2.7). Our basic strategy is first to prove the anisotropic local law for G o
when X is Gaussian, and then to obtain the anisotropic local law for a general X through

a comparison with the Gaussian case. Without (2.1.2), the comparison argument cannot
18



give the anisotropic local law up to the optimal scale. However, in the case where A or B
is diagonal, the condition ([2.1.2]) is not needed for the comparison argument in [59] to work.

We will try to remove the assumption (2.1.2)) completely in future works.

Finally, we illustrate the edge universality result with some numerical simulations. Con-
sider the following setting: (1) N = 2n, i.e. dy = 0.5; (2) we take
Y= dlag(L 71747"' 74)? i = dlag(lv 71747"' 74);

—_—— ——— —_—— ——
n/2 n/2 N/2 N/2

(3) U and V are orthogonal matrices uniformly chosen from orthogonal groups O(n) and
O(N). Then we take n = 1000 and calculate the largest eigenvalues for 20000 independently
chosen matrices. The histograms are plotted in Fig. In case (a), the entries VN x;j are
drawn independently from a symmetric distribution with mean zero, variance 1 and satisfying
(2.1.1); in case (b), the entries v/Nx;; are i.i.d. Gaussian with mean zero and variance 1. We
translate and rescale the numerical results properly, and one can observe that they fit the

type-1 Tracy-Widom distribution very well.

0.35 T T T T T 0.35 T
Il numerical results I numerical results

03| — W ] 03| — W

0.25

0.2

(a) For X satisfying (2.1.1)). (b) For Gaussian X.

Figure 2.1: Histograms for the largest eigenvalues of 20000 ensembles.
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2.3 Statistical applications

In this section, we briefly discuss some applications of our result to high-dimensional statis-
tics. We remark that heavy-tailed data, correlated data, and data with time correlations
are commonly collected in finance, environmental study and telecommunications. For this
type of data, many high-dimensional statistical hypothesis tests that rely on some strong
moment or independence assumptions cannot be employed, and our edge universality result

then serves as a valuable tool for many statistical applications.

Sample covariance matrices

If we take B = I, then Q; becomes the normal sample covariance matrix and Theorem [2.2.7]
indicates that the edge universality of the largest eigenvalue of Q; holds true for correlated
data (i.e. non-diagonal A) with heavy tails as in . So far, this is the strongest edge
universality for sample covariance matrices compared with [12, [61] (assuming high moments
and diagonal A), [59] (assuming high moments) and [26] (assuming diagonal A). The sample
covariance matrices are widely used in various applied fields: multivariate statistics, empirical
finance, signal processing, population genetics, and machine learning, to name a few. We

now give a few concrete examples of applications of our edge universality result.

Consider the following signal plus noise model
y =I's + AV?x, (2.3.1)

where I' is an n x k deterministic matrix, s is a k-dimensional centered signal vector, A is
an n x n deterministic positive definite matrix, and x is an n-dimensional noise vector with
1.1.d. mean zero and variance one entries. Moreover, the signal vector and the noise vector
are assumed to be independent. In practice, suppose we observe N such i.i.d. samples and

set the matrices

Y =TS+ AYV2X, S:=(s,---,sy), X:=(x1, - ,Xy).

The above model is a standard model in classic signal processing [56]. A fundamental
20



task is to detect the signals via observed samples, and the very first step is to know whether

there exists any such signal, i.e.,
Hy: k=0 vs. Hy: k> 1. (2.3.2)

The model is also widely used in various other fields. For example, in multivariate
statistics, one wants to determine whether there exists any relation between two sets of
variables. To test the independence, we can adopt the multivariate multiple regression
model (2.3.1]), where x and y are the two sets of variables for testing [52]. Then we wish to

test the null hypothesis that these regression coefficients are all zero:
Hy: =0 vs. H: T'#0. (2.3.3)

Another example is from financial studies [39, [40, 41]. In the empirical research of finance,
is the factor model, where s is the common factor, I' is the factor loading matrix
and x is the idiosyncratic component. In order to analyze the stock return y, we first need
to know if the factor s is significant for the prediction. Then a statistical test can be also

constructed as ([2.3.3)).

For the above hypothesis testing problems and , the largest eigenvalue of
the observed samples serves as a natural choice for the tests. In high-dimensional setting,
this problem was considered in [I3] [69] under the assumptions that z is Gaussian and A = [.
Nadakuditi and Silverstein [70] also considered this problem with correlated Gaussian noise
(i.e. A is not a multiple of ). For general diagonal A, the problem beyond Gaussian
was considered in [12] [61] under the assumption that the entries of X have arbitrarily high
moments, and in [26] under the condition . Our result shows that, for heavy-tailed
correlated data satisfying , one can still use the largest eigenvalue as our test static in

the above high-dimensional statistical inference problems.

Remark 2.3.1. A small issue in choosing the largest eigenvalue as our test static is that the
covariance matrix A is usually unknown in practice. Hence our result cannot be applied
directly since the parameters A, and vy in Remark depend on (the singular values

of) A. However, we can adopt the strategy in [72] and use the following statistics T; :=
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(A1 — A2)/(A2 — A3) to eliminate the unknown parameters 7o and A,. According to Remark
[2.2.10] the limiting distribution of T; is uniquely determined by the Tracy-Widom law.
(Although the explicit formula is unavailable currently, one can approximate the limiting
distribution of T via numerical simulations using GOE or GUE.) The main advantage of T4
is that its limiting distribution is independent of A under Hy, which makes it asymptotically

pivotal.

Separable covariance matrices

The data model Y = AY2X B'2 is widely used in spatio-temporal data modeling, where the
rows indices correspond to the spatial locations and the column indices correspond to the
observation times. The spectral properties of Q; = YY™ have been investigated in some
recent works [20, 29, [78, [101], 113]. If the entries of X are symmetrically distributed and the
singular values of A, B are such that holds, then Theoremshows that the largest
eigenvalue of Q; satisfies the edge universality as long as the tail condition holds. We
now give some examples of the applications of this result. Without loss of generality, we

shall call A the spatial covariance matrix and B the temporal covariance matrix.

Again we consider the model (2.3.1]). Instead of observing i.7.d. samples, we assume that
the observations at different times are correlated and the correlations are independent of
the spatial locations. Denoting the temporal covariance matrix by B, we then have the

spatio-temporal sampling data

Y = FSBl/2 + A1/2X31/2, S = (Sl, s 7SN), X = (Xl,' . ,XN).

We can again form the hypothesis testing problem ([2.3.2)) or (2.3.3). In high-dimensional

setting, the largest singular value of Y is a natural choice for the test static: under Hy, the
largest singular value of Y satisfies the Tracy-Widom distribution asymptotically. We can
also use the Onatski’s statistics Ty := (A1 — A2)/(A2 — A3) if no information on A and B is

known a priori.

The spatio-temporal data model Y = AY2X B2 is widely used in modeling environmen-

tal data [44 [60] 63, [68] and wireless communications [99]. We can consider to test whether
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the space-time data follows a specific separable covariance model with spatial and time co-
variance matrices A and B. Then we can use the largest singular value of A=V/2y B~1/2
as a test static. (Another interesting test static for this hypothesis testing problem is the
eigenvector empirical spectral distribution (VESD); see Chapter 3| below.) In wireless com-
munications, the importance of obtaining more detailed information on the largest singular
values is becoming more transparent. For example, it was shown in [I00] that an estimate

of the capacity is directly given by various informations of the largest singular value, which

is described by Theorem [2.2.7]

Finally, we remark that one can also perform principal component analysis for separable
covariance matrices, and study the phase transition phenomena caused by a few large isolated
eigenvalues of A or B as in the case of spiked covariance matrices [10, [T, 15, [76]. We
expect that our edge universality result will serve as an important input for the study of
the eigenvalues and eigenvectors for the principal components (the outliers) and the bulk
components (the non-outliers). Moreover, as byproducts of the proof of Theorem m,
we obtain the isotropic delocalization of eigenvectors (Lemma and the rigidity of
eigenvalues (Theorem , which can also be valuable tools for statistical studies and

applications.

2.4 Basic notations and tools

In this section, we state the main tools for our proof—the local laws for separable covariance
matrices and some important corollaries of them. Their proofs constitute the main part of

this chapter, and will be postponed to Sections 2.8.2,

2.4.1 Notations

We first introduce some notations for our proof. We will use the following notion of stochastic
domination, which was first introduced in [30] and subsequently used in many works on
random matrix theory, such as [14) [15] 18, 32], 33, 59]. It simplifies the presentation of the

results and their proofs by systematizing statements of the form “¢ is bounded by ( with
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high probability up to a small power of N”.

Definition 2.4.1 (Stochastic domination). (i) Let
= (™M) : NeNue UM, ¢=((™M(u): NeN,ueU™M)

be two families of nonnegative random variables, where UN) is a possibly N -dependent pa-
rameter set. We say & is stochastically dominated by ¢, uniformly in w, if for any fived
(small) € > 0 and (large) D > 0,
sup P [f(N)(u) > NEC(N)(U)] < NP

ueU W)
for large enough N = Ny(e, D), and we shall use the notation & < (. Throughout this thesis,
the stochastic domination will always be uniform in all parameters that are not explicitly fixed
(such as matriz indices, and z that takes values in some compact set). Note that Ny(e, D)
may depend on quantities that are explicitly constant, such as T in Assumption [2.2.1] and

(2.2.19). If for some complex family & we have || < (, then we will also write £ < ( or
£ =0-(Q).

(i) We extend the definition of O(-) to matrices in the weak operator sense as follows.
Let A be a family of random matrices and ¢ be a family of nonnegative random variables.
Then A = O-(C) means that [{v, Aw)| < (||v|2||w|s uniformly in any deterministic vectors
v and w. Here and throughout the following, whenever we say “uniformly in any determin-

istic vectors”, we mean that “uniformly in any deterministic vectors belonging to a set of
cardinality NOM 7,

(iii) We say an event = holds with high probability if for any constant D > 0, P(Z) =
1 — NP for large enough N.

The following lemma collects basic properties of stochastic domination <, which will be

used tacitly in the proof.

Lemma 2.4.2 (Lemma 3.2 in [I4]). Let & and ¢ be families of nonnegative random variables.

(i) Suppose that £(u,v) < ((u,v) uniformly inue U and ve V. If V| < N© for some

constant C, then Y, i, &(u,v) < X o C(u,v) uniformly in .
24



(it) If & (u) < Gi(u) and &(u) < G(u) uniformly in we U, then & (u)éa(u) < Gi(u)Ga(u)
uniformly in u.
(iii) Suppose that V(u) = N~ is deterministic and &(u) satisfies E€(u)? < NC for all u.

Then if £(u) < ¥(u) uniformly in u, we have E&(u) < W(u) uniformly in u.

Definition 2.4.3 (Bounded support condition). We say a random matriz X satisfies the

bounded support condition with q, if
max |z;;| < q. (2.4.1)
Z7J

Here ¢ = q(N) is a deterministic parameter and usually satisfies N~Y2 < ¢ < N~% for some

(small) constant ¢ > 0. Whenever holds, we say that X has support q.

Next we introduce a convenient self-adjoint linearization trick, which has been proved to
be useful in studying the local laws of random matrices of the Gram type [I}, 2 59} [T05]. We
define the following (n + N) x (n + N) self-adjoint block matrix, which is a linear function

of X:

0 SY2UEXVEY?
H=H(X):=| _ , (2.4.2)
NRVEXUD 0

Then we define its resolvent (Green’s function) as

-1

-[nXTL O
G=GX,z)=|HX) - , zeCy. (2.4.3)

0 2IN« N

By Schur complement formula, we can verify that (recall (2.2.7)))

. =Gy G Y2 X V2
S22y X*Tn12G, Go
R (2.4.4)
2G, Y2 XV S2g,
g2§1/2v*X*U21/2 gZ

Thus a control of G yields directly a control of the resolvents G, . For simplicity of notations,

we define the index sets

Il = {1,...,n}, IQ = {TL+ ].,...,TL-F N}, 7= Il UIQ.
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Then we label the indices of the matrices according to
XZ(XZ‘MIZ'EID/LEIQ), AZ(Aijii,jEIl), B=<BMVZIM,VEZQ).

In the rest of this chapter, we will consistently use the latin letters ¢, € Z;, greek letters

w,vely and a,beT.

Next we introduce the spectral decomposition of G. Let

nAN

SVAXVEY? = 3 /N
k=1
be a singular value decomposition of SY2U* XVEY2, where
)\1 >A2 = ... 2)\n/\N>0:)\n/\N+1 = .. :>\n\/N7

{&}7_, are the left-singular vectors, and {(;}4_, are the right-singular vectors. Then using

(2.4.4]), we can get that for 7,7 € Z; and p, v € Iy,

&G DE) e GG W)
Gy = ;1 o Gw= ]; B P (2.4.5)
o VNGOG Y VAGWEG) (2.4.6)
A Me—z YA Mk =2 B

2.4.2 Local laws
For any constants c¢o,Cy > 0 and a < 1, we define a domain of the spectral parameter z as
S(co,Co,a):i={z=E+in: A\ —cg < E<CoA, N """ <n<1}. (2.4.7)
In particular, we shall denote
S(co,Co,—0) :={z=FE+in: N\, —co < E < Co\,,0<n<1}. (2.4.8)
We define the distance to the rightmost edge as
k=kg:=|E—M\], forz=FE+in. (2.4.9)

Then we have the following lemma, which summarizes some basic properties of ms. and po.
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Lemma 2.4.4. Suppose the assumptions (2.2.2)), (2.2.5) and (2.2.19)) hold. Then there exists

sufficiently small constant ¢ > 0 such that the following estimates hold:

(1)
proc(T) ~ A/ A — x, forxz e [N —2¢, N\, ]; (2.4.10)

(2) for z=E +ine S(¢, Cy, —0),

n//E+n, if E= M\

Imaige(2)] ~ 1, Immyac(z) ~ ; (2.4.11)

VK A+, if E< A,
(3) there exists constant 7' > 0 such that

min |1 + mi.(2)5,| = 7, min |l + mo.(2)o;| = 7, (2.4.12)
HeL> i€l

for any z € S(¢, Cy, —0).
The estimates (2.4.10) and (2.4.11)) also hold for p. and m..

Proof. The estimate ([2.4.10)) is already given by Lemma [2.2.6 The estimate (2.4.11)) can be
proved easily with (2.2.21)). It remains to prove (2.4.12). By assumption (2.2.19) and the

fact mao.(\.) € (—o;t,0), we have
|14+ moc(N\)oy| =7, i€.
With , we see that if kK + n < 2¢q for some sufficiently small constant ¢y > 0, then
1+ mac(2)ox| = 7/2.

Then we consider the case with £ > \. 4+ ¢y and n < ¢; for some constant ¢; > 0. In fact, for
n=0and E > )., mo.(E) is real and it is easy to verify that m/.(E) = 0 using the Stieltjes

transform formula

Moe(2) 1= LM, (2.4.13)

r—Zz

Hence we have

1+ omae(E) =1+ o0ma(\) =7, for E= M\ + co.
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Using (2.4.13)) again, we can get that

<cy?, for BE =\ + co.

Thus if ¢; is sufficiently small, we have
1+ opxmaoc(E +in)| = 7/2

for £ > A\, + ¢y and n < ¢;. Finally, it remains to consider the case with 7 > ¢;. Note that we
have [mag(2)] ~ Immae(2) ~ 1 by (2.4.11). If o), < [2mae(2)| 7", then |1 + opmae(z)| = 1/2.

Otherwise, we have

Im mgc( )

Amae)] <

|1 4+ opmac(2)| = orplmma(z) =

In sum, we have proved the second estimate in (2.4.12)). The first estimate can be proved in

a similar way. O]

Definition 2.4.5 (Classical locations of eigenvalues). The classical location v; of the j-th

eigenvalue of Qp is defined as

v = sup Um po(w)de > 1= 1} . (2.4.14)

In particular, we have v, = \,.

In the rest of this section, we present some results that will be used in the proof of The-
orem [2.2.7] Their proofs will be given in subsequent sections. For any matrix X satisfying
Assumption and the tail condition (2.1.1)), we can construct a matrix X* that approx-
imates X with probability 1 — o(1), and satisfies Assumption [2.2.1] the bounded support
condition with ¢ < N~% for some small constant ¢ > 0, and

Elai|* = O(N™*?), Elaj|* = O<(N7?); (2.4.15)

see Section for the details. We will need the following local laws, eigenvalues rigidity,
eigenvector delocalization, and edge universality results for separable covariance matrices
with X°.
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We define the deterministic limit II of the resolvent G in (2.4.3)) as

— (1 4+ ma(2)X -1 0
I(z) = (Lt mac(2)%) N . (2.4.16)
0 2711+ my(2)2) !
Note that we have
1
— > 1 = me. (2.4.17)
nz iEIl
Define the control parameters
Im mo.(2) 1
U(z) = | ———= + —. 2.4.18
(=) e (2.4.18)

Note that by (2.4.11]) and (2.4.12)), we have

Immy.(2) 1

Il =0(1)., T=>N12 w2<(Nn)™t Uz~ — 2.4.19
|| (1), z , S (Nnp)—, ¥(z) N No’ ( )

for z € S(¢, Cy, —0). Now we are ready to state the local laws for G(X, z). For the purpose

of proving Theorem [2.2.7} we shall relax the condition (2.1.2)) a little bit.

Theorem 2.4.6 (Local laws). Suppose Assumption and (2.2.19) hold. Suppose X
satisfies the bounded support condition with ¢ < N~ for some constant ¢ > 0.

Furthermore, suppose X satisfies (2.4.15)) and

‘IE:);S

S <byNTH 1<i<n, 1<j<N, (2.4.20)
where by is an N-dependent deterministic parameter satisfying 1 < by < NY2. Fiz Cy > 1

and let co > 0 be a sufficiently small constant. Given any € > 0, we define the domain

§(Co,C@,€) = 5(00,00,8) M {Z =F+ 1’/] : bN <‘I/2(Z> + NLT]> < NE} . (2421)

Then for any fized € > 0, the following estimates hold.

(1) Anisotropic local law: For any z € g(cg, Co, €) and deterministic unit vectors u,v €
CI
Ku, G(X, 2)v) — (u,II(2)v)| < g + ¥(2). (2.4.22)
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(2) Averaged local law: For any z € S(co, Co, ), we have
im(z) —me(2)] < ¢ + (Nn)~*. (2.4.23)

where m is defined in (2.2.8]). Moreover, outside of the spectrum we have the following

stronger estimate

1 1
Nt  (NpymTn

uniformly in z € g(co,Co,e) Nn{z=FE+in: E = \,Nn/k+n = N}, where k is
defined in (2.4.9).

Im(z) —me(2)] < ¢* + (2.4.24)

The above estimates are uniform in the spectral parameter z and any set of deterministic
vectors of cardinality N°V. If A or B is diagonal, then (2.4.22)-([2.4.24) hold for z €
S(Co, Co, 8) .

The main difficulty for the proof of Theorem is due to the fact that the entries of
AY2X BY? are not independent anymore. However, notice that if X = X5 is a Wishart
matrix, we have

Zl/ZU*XGOWSSVil/Q 4 21/2XGaussi1/2‘

In this case, the problem is reduced to proving the anisotropic local law for separable covari-
ance matrices with diagonal spatial and temporal covariance matrices, which can be handled
using the standard resolvent methods as in e.g. [I4] [79]. To go from the Gaussian case to
the general X case, we adopt a continuous self-consistent comparison argument developed
in [59]. In order for this argument to work, we need to assume (2.1.2). Under the weaker

condition ([2.4.20)), we cannot prove the local laws up to the optimal scale n » N~!, but only

gbn by

up to the scale 7 » max{ZTH, 3

} near the edge. However, to prove the edge universality,
we only need to have a good local law up to the scale n < N=%3=¢ hence by can take values
up to by « N3, (In the proof of Theorem in Section , we will take by = N~ for
some small constant € > 0.) Finally, if A or B is diagonal, one can prove the local laws up to

the optimal scale for all by = O(N'/?) by using an improved comparison argument in [59].
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Following the above discussions, we divide the proof of Theorem [2.4.6] into two steps. In
Section , we give the proof for separable covariance matrices of the form SV2 XS X*%1/2,
which implies the local laws in the Gaussian X case. In Section 2.7, we apply the self-
consistent comparison argument in [59] to extend the result to the general X case. Compared
with [59], there are two differences in our setting: (1) the support of X in Theorem is
q = O(N~?) for some constant 0 < ¢ < 1/2, while [59] dealt with X with smaller support
q = O(N~Y2); (2) one has B = I in [59], which simplifies the proof a little bit.

The second moment of the error (u, (G — II)v) in fact satisfies a stronger bound.

Lemma 2.4.7. Suppose the assumptions in Theorem [2.4.6 hold. Then for any fixed ¢ > 0

and z € g(co, Co, €), we have the following bound
El(u, G(X, 2)v) — (u, H(2)v)|* < U?(2), (2.4.25)
for any deterministic unit vectors u,v € CZ.

With Theorem as a key input, we can prove a stronger estimate on m(z) that is
independent of ¢g. This averaged local law implies the rigidity of eigenvalues for Q;. Note
that for any fixed £, V?(E + in) + ¢/(Nn) is monotonically decreasing with respect to 7,

hence there is a unique 7, (FE) such that

by (\IIQ(E im(E)) + qu(E)> —1

Then we define n;(E) := maxg<.<x, m(z) (“I” for lower bound) for £ < A, and n(E) :=
m(\.) for E > \.. Note that by (2.4.18)), we always have n,(F) = O(by/N).

Theorem 2.4.8 (Rigidity of eigenvalues). Suppose the assumptions in Theorem hold.

Fiz the constants co and Cy as given in Theorem [2.4.0. Then for any fized € > 0, we have
Im(z) —me(2)] < (Nn)™, (2.4.26)

uniformly in z € §(CO,CO,5). Moreover, outside of the spectrum we have the following

stronger estimate
1 1

Nt (NpymTn
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uniformly in z € g(co,C’o,a) Nn{z=FE+in: E = A\, Nn\/&+n = N¢} for any firede > 0. If

A or B is diagonal, then (2.4.26) and (2.4.27)) hold for z € S(co, Co, ). The bounds
and (2.4.27)) imply that for any constant 0 < ¢; < ¢y, the following estimates hold.

(1) For any E = A\, — ¢, we have
n(E) = ne(E)| < N™' + (n(E)*? + m(E)v/ke, (2.4.28)

where kg is defined in (2.4.9), and
1 +00
n(E) = N#{)\j > E}, n.(E):= f p2c(x)de. (2.4.29)
E
(2) If by < NY37¢ for some constant ¢ > 0, then for any j such that \, — c¢; < V< A,

we have

A =l < JTENTEE 4, (2.4.30)

where 1y = m(A, — c1) = O(bn/N).

The estimates (2.4.28)) and (2.4.30)) follow from the estimates (2.4.26) and (2.4.27]) com-

bined with a standard argument using Helffer-Sjostrand calculus. The details are already

given in [34], [38] and [79]. Hence to prove Theorem [2.4.8 we only need to show that (2.4.26])
and (12.4.27)) hold.

The anisotropic local law ([2.4.22]) implies the following delocalization properties of eigen-

vectors.

Lemma 2.4.9 (Isotropic delocalization of eigenvectors). Suppose (2.4.22)) and (2.4.30) hold.

Then for any deterministic unit vectors u e CTt, v e C*2 and constant 0 < ¢; < ¢, we have

max  {[{w, & + (v, Gol*} < Mo (2.4.31)

k:dr—c1 <y <Ar

where ng 1s defined below (12.4.30)).

Proof. Choose zg = E+iN°¢ny € S(cg, Co, €). By (2.4.22)) and ([2.4.19), we have Im(v, G(zp)v) =

O(1) with high probability. Then using the spectral decomposition ({2.4.5)), we get

al N€U0\<V,(k>’2
(A — E)? + N2

=Im<{v,G(z)v) = O(1) with high probability. (2.4.32)
k=1
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By (2.4.30]), we have that Ay +iN°®ng € g(co, Co, ¢) with high probability for every k such
that A\, —c; < 9 < A.. Then choosing F = \; in (2.4.32)) yields that

(v, Ge))? < N°np with high probability.
Since ¢ is arbitrary, we get [(v, (;)> < 7. In a similar way, we can prove [(u, &)|° < np. O

Finally, we have the following edge universality result for separable covariance matrices

with support ¢ < N~¢ and satisfying the condition (2.4.15)).

Theorem 2.4.10. Let XU and X® be two separable covariance matrices satisfying the
assumptions in Theorem . Suppose by < N3¢ for some constant ¢ > 0. Then there

exist constants €,0 > 0 such that for any s € R,

PO (N3N = \) <s— N7°) = N2 <P® (N3(\; = )\,) < 5)
(2.4.33)
<PW (NPA = A)<s+N°)+ N,

where PY) and P? denote the laws of X and X @, respectively.

Remark 2.4.11. As in [31}, 38, 62], Theorem [2.4.10| can be can be generalized to finite corre-

lation functions of the k largest eigenvalues for any fixed k:

1<i<k

PO <(N2/3()\i ~\) <s—N79) — N7 <P® ((NQ/?’(&- —A) < 54)

1<i<k>

< PO ((N(% = A,) < si+ N79) + N7,

1<i<k>

(2.4.34)

The proof of (2.4.34]) is similar to that of (2.4.33)) except that it uses a general form of the

Green function comparison theorem; see e.g. [38, Theorem 6.4]. As a corollary, we can get

the stronger edge universality result (2.2.23)).

The proofs for Lemma [2.4.7] Theorem [2.4.8 and Theorem [2.4.10| follow essentially the

same path as discussed below. First, for random matrix X with small suppoort ¢ =

O(N~'2), we have the averaged local laws (2.4.26))-(2.4.27) and the following anisotropic

local law
(u, G(X,2)v) — (u, TI(2)v)] < U(z).
33



With these estimates, one can prove that Lemma Theorem [2.4.8/ and Theorem [2.4.10
hold in the small support case using the methods in e.g. [31), 38, [79]. Then it suffices to use a
comparison argument to show that the large support case is “sufficiently close” to the small
support case. In fact, given any matrix X satisfying the assumptions in Theorem [2.4.6, we
can construct a matrix X having the same first four moments as X but with smaller support

q = O(N~Y2), which is the content of the next lemma.

Lemma 2.4.12 (Lemma 5.1 in [62]). Suppose X satisfies the assumptions in Theorem .
Then there exists another matriz X = (Ti;), such that X satisfies the bounded support
condition with ¢ = N2, and the first four moments of the X entries and X entries
match, i.e.

k _ o~k
Exij = Exij,

k=1,2,34. (2.4.35)

It is known that the Lindeberg replacement strategy combined with the four moment
matching usually implies some universality results in random matrix theory, see e.g. [92], 93],
95]. This is actually also true in our case. We shall extend the Green function comparison
method developed in [62] (which is essentially an iterative application of the Lindeberg
strategy together with the four moment matching), and prove that Lemma , Theorem
and Theorem also hold for the large support case. The proof of Lemma and

Theorem [2.4.8| will be given in Section [2.8.1 and Theorem [2.4.10] will be proved in Section

2.8.21

2.5 Proof of the main result

In this section, we prove Theorem [2.2.7] with the results in Section Given the matrix
X satisfying Assumption and the tail condition (2.1.1)), we introduce a cutoff on its

matrix entries at the level N7¢. For any fixed € > 0, define
ay =P (|qu| > NI/Q_E) , By =E[1(jqu| > N1/2_E)Q11] :
By (2.1.1) and integration by parts, we get that for any fixed § > 0 and large enough N,

ay < ON“HE|By| < SN2 (2.5.1)
34



Let p(z) be the distribution density of ¢;;. Then we define independent random variables

4, 4, cij, 1 <i<nand 1 <j <N, in the following ways:

e ¢;; has distribution density p,(z), where

Bn

xr —

_ BN
< Nl/Qs) P (m 1*0‘N>.

ps(x) = 1(

e ¢ ; has distribution density p(x), where

B

_ _Bn
- NI/Q—E) p (a: 1*0‘N> )

N ’

pte) =1 (Jo -

e ¢;; is a Bernoulli 0-1 random variable with P(c;; = 1) = an and P(¢;; = 0) = 1 — ay.

Let X*, X' and X¢ be random matrices such that X3 = N~'%¢, X!

ij

= N7Y2¢}; and
X§; = cij. It is easy to check that for independent X*, X! and X¢,

d s c l c 1 6N
Xi; = X35 (1 - X5) + X[ X[ — TN —on

(2.5.2)

If we define the n x N matrix Y = (Y;) by

Yy = = _oen-r), 1

VN1—-ay
then we have |Y| = O(N~'"%). In the proof below, one will see that (recall (2.2.6]))

N

i<n, 1<j<N,

HZWU*(X 4 Y)vil/ZH -\ (Q1(x + 7)) = o)

with probability 1—o(1), where A\; denotes the largest eigenvalue of Q;. Thus with probability

1 —o(1), we have
)Al (é1 (X + Y)) A (@1 (X))’ — O (N1 (2.5.3)
Hence the deterministic part in (2.5.2)) is negligible under the scaling N3.
By (2.1.1), and integration by parts, it is easy to check that
E¢;, =0, Elgj;|* =1-0O(N""%),

(2.5.4)
E|Qf1|3 = 0(1)7 E(Qﬁ)?) = O(N_1/2+€>, E|Qf1|4 = O(log N)-
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Thus X, := (E|g},[>)"/2X* is a matrix that satisfies the assumptions for X in Theorem [2.4.6]
with by = N® and ¢ = N~°. Then by Theorem [2.4.10, there exist constants €,0 > 0 such

that for any s € R,
P (N3N = \) <s—N7°) = NO<P* (N3N — \) < 5) 255
<PE(NZ3 (A — A) < s+ N—%) + N7, a
where P* denotes the law for X* and P“ denotes the law for Wishart matrix. Now we write

the first two terms on the right-hand side of (2.5.2)) as

s c l c s c

’L]’

L l s

We define the matrix R¢ := (R;;X{;). It remains to show that the effect of R° on A, is
negligible. Note that X; is independent of X7, and R;;.

We first introduce a cutoff on matrix X¢ as X¢:= 1 A4X°€, where
A= {#{(i,)) : X SN} { X5 = Xpy = 1={i, 5} = {k, 1} or {i,j} n {k,1} = &}

If we regard the matrix X¢ as a sequence X° of n/N i.i.d. Bernoulli random variables, it is

easy to obtain from the large deviation formula that

niN
P (Z X¢ < N55) > 1 — exp(—N°), (2.5.6)
=1

for sufficiently large N. Suppose the number m of the nonzero elements in X¢ is given with

m < N°¢. Then it is easy to check that

IP’(32’zk,j#lori;«ék,jzlsuchthatij=X,§l=1

ng = m) = O(m*N™1).

i=1

(2.5.7)
Combining the estimates and (| -, we get that
P(A) =1 - O(N1110%), (2.5.8)
On the other hand, by condition , we have
P(|Ryl > w) <P (Jay| > SN?) = o(N72), (2.5.9)
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for any fixed constant w > 0. Hence if we introduce the matrix
E=1 (A N {max]Rij] < w}) R°,
1/7.7

P(E = R%) =1 o(1) (2.5.10)

then we have

by 1) and 1} Thus we only need to study the largest eigenvalue of él(X *+ E),

where max; ; |F;;| < w and rank(E) < N®¢. In fact, it suffices to prove that

P (A= M| < N7¥4) = 1 —0(1), A=\ <@1(XS)> V- (él(xs + E)) .
(2.5.11)
The estimate (2.5.11)), combined with (2.5.3), (2.5.5) and (2.5.10)), concludes (2.2.22)).

Now we prove (2.5.11)). Since Xe is independent of X? the positions of the nonzero
elements of E are independent of X®. Without loss of generality, we assume the m nonzero
entries of F are

€11, €22, v Emm, M < NP (2.5.12)

For other choices of the positions of nonzero entries, the proof is exactly the same, but we
make this assumption to simplify the notations. By the definition of E, we have |e;| < w,

1 <7 < m. We define the matrices

e 0 SY2UEX VY2
‘ (ZI/QU*XSV§1/2)* 0
and H” := H® 4+ P, where
» 0 12UV S12
-\ (2o RV Sy 0
»i2y* 0 0 FE Ust?z o
0 X2y E* 0 0 V2
w2y 0 Utz 0
= N WP, W* N
0 XYy 0 V2
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where Pp is a 2m x 2m diagonal matrix
Pp = diag (€11, - -, €mms —€11, - - - » —Cmm)
and W is an (n + N) x 2m matrix such that

5a,i/\/§ + (5a,(n+i)/\@a b=1i,1<m

W, = .
5(1,72/\/§ - 5a,(n+i)/\/§7 b=1i+ m, t<m
With the identity
—I N2 X V2 N
det R = N1 dot(— Iy ) det (Ql(X) _ zfm) ,
(B1V2U* XV R1/2) —2Inen

and Lemma 6.1 of [58], we find that if y ¢ o(Q1(X*)), then p is an eigenvalue of O (X* +~E)

if and only if

det (O*G*(1)O + (vPp)~"') =0, (2.5.13)
where
—1
Lixw 0 xrUr 0
G*(p) = | H® — , 0= N Ww.
0 plyun 0o Xy

Define R” := O*G*O + (yPp)~! for 0 < v < 1. Now let p := \{ + N~%4 We claim that
P(det R"(u) # 0 forall 0 <y < 1) =1-—o0(1). (2.5.14)

If (2.5.14)) holds, then p is not an eigenvalue of él(X+7E) with probability 1 —o(1). Denote
the largest eigenvalue of Oy (X +~E) by A], 0 <~ < 1, and define A0 := lim. ;o A]. Then we
have \? = \{ and A\{ = AF. With the continuity of A\] with respect to v and the fact that
Ae (A — N34 A5 + N=%4) we find that

AP = Ale (X — N7¥4 5 + N7/,
with probability 1 — o(1), which proves (2.5.11]).

Finally, we prove (2.5.14). Note that 7y = O(by/N) = O(N~1*¢), hence z = A, +iN %/

is in S(co, Cy, 6) for any small constant § > 0. Now we write

R(11) = O (G*(p) — G*(2)) O + O* (G*(2) — I1(2)) O + O*TL(2)0 + (vPp)~".  (2.5.15)
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With (2.4.19), we have
|O*I1(2)0] = O(1) (2.5.16)

By Lemma [2.4.7] we have
E[[0* (G*() ~ 11(2)) O, * < ¥2 = O(N"%%), 1<ab<2m,

where we used ([2.4.11)) and (2.4.18)) in the second step. Then with Markov’s inequality and

a union bound, we can get that

max [[O* (G*(2) —T1(2)) O] ,| < N~/° (2.5.17)

1<a,b<2m

holds with probability 1 — O(mN~/3). Thus we have
|O* (G%(2) —I(2)) O] = O(mN~Y%) = O(1) with probability 1 — O(mN~Y3). (2.5.18)

It remains to bound the first term in (2.5.15). As pointed out in Remark [2.4.11] we can
extend (2.5.5)) to finite correlation functions of the largest eigenvalues. Since the largest

2/3

eigenvalues in the Gaussian case are separated in the scale N™/°) we conclude that

P <min IN(QL(X?)) — il = N*3/4) —1—o(1). (2.5.19)
On the other hand, the rigidity result (2.4.30|) gives that

=N\ < N7%3 4 N34, (2.5.20)

Using ([2.4.31), (2.5.19), (2.5.20) and the rigidity estimate (2.4.30]), we can get that for any

set Q) of deterministic unit vectors of cardinality N,

sup [(u, (G°(2) — G*(w)) vy < 714 (2.5.21)

u,ve

with probability 1 — o(1). For instance, for deterministic unit vectors u,v € C* and any
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small constant ¢ > 0, we have with probability 1 — o(1) that

(. (67(2) = &) ] < Dl Gxv. 6ol ‘Akl— e u‘

< ﬁwgg_q [(a, G )Xv,y Gy + % %>§_Cl Ak — z]l\)\k — u

S ﬁ + % 1g;N€ | Ak — Z‘lp\k — pu i ]\%/3 k>Ncnzk]>>\r—01 A = Zi)\k —
< (v, B, ) <

where in the first step we used (2.4.5), in the second step (2.4.31)) and | A\, —z||A\y — p| = 1 for
Ve < A — c¢q due to , in the third step the Cauchy-Schwarz inequality, in the fourth
step (2.5.19), and in the last step |\, — z[| M\ — p| ~ (k/N)=%3 for k > N° by the rigidity
estimate . For the other choices of deterministic unit vectors u,v € C*2, we can
prove in a similar way. Now with , we can get that

|O* (G* () — G*(2)) O = O(mN Y43} with probability 1 — o(1). (2.5.22)

With (2.5.16]), (2.5.18) and (2.5.22)), we see that as long as w is chosen to be sufficiently

small, we have
|07 (G* (1) = G*(2)) O + O (G*(2) — 11(2)) O + O*11(2)0| < (yw)~"

for all 0 < v < 1 with probability 1 — o(1). This proves the claim (2.5.14)), which further
gives (2.5.11]) and completes the proof.

2.6 Local laws for Gaussian ensembles

As discussed below Theorem [2.4.6] in this step we prove Theorem for separable covari-
ance matrices of the form LV2XYX*¥V 2 which will imply the local laws in the Gaussian

X case. Thus in this section, we deal with the following resolvent:
-1

0 N2 X512 Ien O
G(X,z2)= N — (2.6.1)
Y12 x*y1/2 0 0  zlnxn

with X satisfying ([2.4.1]) with ¢ = N~2. More precisely, we will prove the following result.
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Proposition 2.6.1. Suppose Assumption and (2.2.19) hold. Suppose X satisfies the
bounded support condition with ¢ = N7V2. Suppose A and B are diagonal, i.e.
U=1I,, andV = Inyn. Fix Cy > 1 and let co > 0 be a sufficiently small constant. Then

for any fixed € > 0, the following estimates hold.
(1) Anisotropic local law: For any z € S(cy, Co, €) and deterministic unit vectors u,v €
(CI
|(u, G(X, z)v) — (u, I(2)v)| < U(2). (2.6.2)

(2) Averaged local law: We have
m(z) = me(2)| < (M)~ (2.6.3)

for any z € S(co, Cy,€), and

1 1
+ ;
N(k+mn)  (Nn)?*VE+n
for any z € S(co,Co,e) n{z=FE+in: E > A\, Nn\/k + 1 = N°¢}.

(2.6.4)

m(z) —me(2)| <

Both of the above estimates are uniform in the spectral parameter z and the deterministic

vectors u, v.

The proof Proposition [2.6.1] is similar to the previous proof of the local laws, such as
[14], 26], 59, T05]. Thus instead of giving all the details, we only describe briefly the proof.
In particular, we shall focus on the key self-consistent equation argument, which is (almost)
the only part that departs significantly from the previous proof in e.g. [I4]. In the proof, we

always denote the spectral parameter by z = E + in.

2.6.1 Basic resolvent estimates

In this subsection, we collect some basic tools that will be used. For simplicity, we denote

Y = N2X 512,

Definition 2.6.2 (Minors). For any (n + N) x (n + N) matriz A and T < Z, we define

the minor A := (Ay : a,b e I\T) as the (n + N — |T|) x (n + N — |T|) matriz obtained
41



by removing all rows and columns indexed by T. Note that we keep the names of indices
when defining A", i.e. (AT)g = Ay for a,b¢ T. Correspondingly, we define the resolvent

minor as

(T) (T)y(T)
G(T) - H— Inxn 0 _ Zgl gl Y

0 zlyxn (Y™ g™ g

ngﬂ‘) y () ggﬂ‘)
T s T ’
Qé ) (Y(T)) Qé )

and the partial traces
m{® = LZ(,G@) D= LS5 qm
. 7 : M :
Nz s N r,
For convenience, we will adopt the convention that for any minor AT defined as above,

A(? =0ifaecTorbeT. Wewill abbreviate ({a}) = (a), ({a,b}) = (ab), and ZST) =D ugT

a

Lemma 2.6.3. (Resolvent identities).

(i) ForieZ, and u € Iy, we have

~ 1
=1 (YGUY") | — =—2— (Y*GWY) . 2.6.5
G’i’i ( )’L’L’ GMI,L < ( )M,u, ( )
(i) Fori+# jeZy and p # v € Iy, we have
(1) ij) v * * v
Gy = GaGyy (YGWY™), . G = G,GH (Y*a™Y) . (2.6.6)

ForieZy and p € Iy, we have

Gip = GuGY) (—Yw + (YGmy) ) G = G, GY (—Y;;. + (Y*GUYy*) ) .

[ ui
(2.6.7)
(i1i) For a€Z and b,c € IT\{a},
a G aGaC ]‘ 1 G aGa
G\ = Gy, — 2 = baab (2.6.8)

Gaa ~ Gw  GY  GuGWGe

(iv) All of the above identities hold for G instead of G for T < I, and in the case where

A and B are not diagonal.
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Proof. All these identities can be proved using Schur’s complement formula. The reader can

refer to, for example, [59, Lemma 4.4]. O

Lemma 2.6.4. Fix constants co,Cy > 0. The following estimates hold uniformly for all

z € S(cy, Cy,a) for any a € R:
Gl < Co, 0.6l < O, 2.69)

Furthermore, we have the following identities:

DG = D 1Gy = (%) : (2.6.10)

’iEIl ZEZl
Im GW

DG =D |Gl = (2.6.11)
MEIQ /LEIQ

z
Z |G/“"2 - Z |Giu|2 = G + Elm G (2.6.12)
i€Z1 iEZl

z Gii
MGl = Y 1Gu* = flm( ) . (2.6.13)
jeTs jeZs N <

All of the above estimates remain true for GT instead of G for any T < I, and in the case

where A and B are not diagonal.

Proof. These estimates and identities can be proved through simple calculations with ([2.4.4)),
(2.4.5) and (2.4.6). We refer the reader to [59, Lemma 4.6] and [105, Lemma 3.5]. O

Lemma 2.6.5. Fix constants cy,Cy > 0. For any T < Z and a € R, the following bounds

hold uniformly in z € S(cy, Co,a):
Imq — m&m‘ +|mo — mg)| < — (2.6.14)
where C' > 0 is a constant depending only on .

Proof. For € Z,, we have

Z - G,,uGW

Z |GW|2 CImGuN < C
G

NU’GW‘

o1&

ma—m N!GW\

ZIEZQ EZQ
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where in the first step we used (2.6.8)), and in the second and third steps we used ([2.6.11]).

Similarly, using and (2.6.12) we get
C (G 2y (62)) 2 ©
N\G“\ n z T Ny’

Z ~ GmGw
Similarly, we can prove the same bounds for the m; case. Then (2.6.14]) can be proved by

veTs m

induction on the indices in T. O

The following lemma gives large deviation bounds for bounded supported random vari-

ables.

Lemma 2.6.6 (Lemma 3.8 of [34]). Let (z;), (y;) be independent families of centered and
independent random wvariables, and (A;), (Bi;) be families of deterministic complex num-
bers. Suppose the entries x;, y; have variance at most N~' and satisfy the bounded support

condition (2.4.1] (u with ¢ < N~¢ for some constant € > 0. Then we have the following bounds:

ZA%

sz Bijyi| < ¢*Ba+ 4B, + + (Z|B”| ) (2.6.16)

ZIzBuIz - Z E’xz| ) [

[

1/2
ZxBU:cJ‘ < qB, + — (Z\Bm?) , (2.6.18)

1#] 1#]

< qmaX|A | + — (Z | A ) (2.6.15)

< qBq, (2.6.17)

where By 1= max; |B;;| and B, := max;.; | B;|.

For the proof of Proposition [2.6.1] it is convenient to introduce the following random

control parameters.

Definition 2.6.7 (Control parameters). We define the random errors

A= max|(G D), Api=max |Ggpl, 6:=|mi—mi|+ |ms—ma, (2.6.19)
a,be” a#bel

and the random control parameter (recall ¥ defined in (2.4.18]))

Immso,. + 6 1
Pypi=p | ——— + —. 2.6.20
o Nn * Nn ( )
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2.6.2 Entrywise local law

The main goal of this subsection is to prove the following entrywise local law. The anisotropic
local law ([2.6.2)) then follows from the entrywise local law combined with a polynomialization

method as we will explain at the end of this subsection.

Proposition 2.6.8. Suppose the assumptions in Proposition hold. Fix Cy > 0 and
let co > 0 be a sufficiently small constant. Then for any fived € > 0, the following estimate

holds uniformly for z € S(cq, Co,€):

max |Gap(X, 2) — Hp(2)| < ¥(2). (2.6.21)

In analogy to [34], Section 3] and [59] Section 5], we introduce the Z variables

ZM = (1-E)(GD)™", ag¢T, (2.6.22)

aa

where E,[] := E[- | H@], i.e. it is the partial expectation over the randomness of the a-th

row and column of H. By (12.6.5)), we have

Zi=(Ei—1) (YGOY*) =0, 3] \/@%GW( W—XWX“,>, (2.6.23)

w,vels

Zy = (B, = 1) (Y*GWY) =37, > e GY (1 —XWXM>. (2.6.24)

1,j€Z11

The following lemma plays a key role in the proof of local laws.

Lemma 2.6.9. Suppose the assumptions in Proposition hold. Let cog > 0 be a suf-
ficiently small constant and fir Cy,e > 0. Define the z-dependent event Z(z) := {A(z) <
(log N)~'}. Then there exists constant C > 0 such that the following estimates hold umni-
formly for all a € T and z € S(cy, Co,€):

1(Z) (A, + | Za]) < Wy, (2.6.25)
and

L(n=1) (Ao +|Za]) < Py (2.6.26)
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Proof. Applying Lemma to Z; in (2.6.23)), we get that on =,

1/2 S\ 1/2
1 o 1 &, Im G) Im m.”
Zl<a+ (Z Uu}g/@f) —q+ % (Z M) — g+ ”}VT’; (2.6.27)

JTR% I3 77

where we used (2.2.5)), (2.6.11]) and the fact that max,p |Ga| = O(1) on event =. Now by
(2.6.19)), (2.6.20) and the bound ([2.6.14)), we have that
\/ mmy’ \/ I e + m(my” = ma) +Tm(ma = ma) _ g (2.6.28)
N Nn
Together with the fact that ¢ = N=Y2 < Wy by ([2.4.19), we get ([2.6.25) for 1(Z)|Z;|.

Similarly, we can prove the same estimate for 1(=)|Z,|, where in the proof one need to use
(2.6.10) and (2.4.19). If n > 1, we also have max,; |G.| = O(1) by . Then repeating
the above proof, we obtain for 1(n = 1)|Z,|. Similarly, using and Lemmas
2.6.6| we can prove that

L(E) (1G] + [Gul) + 1 = 1) ([Gy| + |G ]) < Ty, (2.6.29)

It remains to prove the bounds for G, and G ,; entries. Using (2.6.7)), (2.4.1), the bound
max, |Ga| = O(1) on =, Lemma [2.6.4] and Lemma 2.6.6] we get that

1/2

o 2 LW L2 » 1/2
Gl < — E”VG”‘ =q+ — E”,, G+ “Im GUF
| Z}I,| q+ N j’l/ o v) q N ~ g ( vv ,’7 m vv )

. |mg“)| . Im méiu)
N Nn

As in (2.6.28)), we can show that

Im ™

Ny O(Ty). (2.6.30)

For the other term, we have

|m o] + [m$* — m2\+!m2 M| \/> \/\mT<q, (2.6.31)
Nf

where we used (| and |ma|N7' = O(U?) by (2.4.19). With ( and (2.6.31)), we

obtain that 1(:)\Gwl < Wy. Together with (2.6.29)), we get the estimate (2.6.25) for 1(Z)A,.
Finally, the estimate (2.6.26)) for 1 (n = 1) A, can be proved in a similar way with the bound

1(n > 1)max,p |Ga| = O(1). O
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A key component of the proof for Proposition [2.6.8] is an analysis of the self-consistent

equation. Recall the equations in (2.2.9)) and the function f(z,m) in (2.2.15]).

Lemma 2.6.10. Let ¢y > 0 be a sufficiently small constant and fix Cy,e > 0. Then the

following estimates hold uniformly in z € S(co, Cy,€):

—z[1 + xzma(z)]

L= 1/ (zma)l < N7 1= 1) \ml<z> ~dy | i (do)| < N7V,

(2.6.32)

and

X (n)
m(z) = de —z[1+ :Emz(z)]WA (dz)

where Z is as giwen in Lemma[2.6.9. Moreover, we have the finer estimates

1(5) |f(zam2>| < Wy, 1(5)

< Wy, (2.6.33)

L(E) |f(z,ma)| < 1) ([Z]1] + |[Z]a]) + ©5, (2.6.34)
and
1) )~y | oy 0| < 1 W 263
where
7)) = > (5o Zie (2= N > e (2.6.36)

Proof. We first prove (2.6.34]) and (2.6.35|), from which (2.6.33]) follows due to (2.6.25) and
[@-4.12). By (2.6.5), (2-6.23) and (2.6.24), we have

—=-1- UN N 5.G0 4 Z = 1 oimy + <5, (2.6.37)
i Ty
and
1 o ~
S Z JiGE,f‘) +Z, = —z—20,m +¢,, (2.6.38)
G'u"u' N 1€y
where

g = J; + 0 (m2 — mg)) and €, := 7, + 20, <m1 — mgﬂ)) )
By (2.6.14)) and (2.6.25|), we have for all 7 and p,

1(Z) (les] + len]) < Yo (2.6.39)
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Moreover, by (2.6.8) we have

Gui Giz/
Gii

GG
G

o

+ZO']'

JeLy

- i — 1 ~
1(E) (Imz = mf| + [my —mi]) < 1)+ (Z Z

VEIQ

)<\If§,

(2.6.40)

where we used (2.6.25) and |Gj;| ~ |G| ~ 1 on = in the second step. Now using (2.6.37)),
(2.6.39), (2.6.40), (2.6.25)), (2.4.12)) and the definition of =, we can obtain that

1(2)Gy = 1(2) l—(l +1a,~m2) o i’mz)z + O (qu)] : (2.6.41)

Taking average - >, 0y, we get

1(E)m; = 1(Z) [% Z % — 2z 2] + O« (mg)] : (2.6.42)

1+ o;ms)

which proves (2.6.35]). On the other hand, using (2.6.38)), (2.6.39)), (2.6.40)), (2.6.25)), (2.4.12)

and the definition of =, we obtain that

1 Z
L = B u - \112 ) 2.6.4
(2)G ( )[—z(1+8um1) 22 (1 +5,m)° # O 0)] o

Taking average N~' 3] &, we get

1(Z)my = 1(Z) !% > — Tu_ — 27 Z]s + O (\yg)] : (2.6.44)

Plugging ([2.6.42)) into (2.6.44)), and using ([2.4.12)) and the definition of =, we can obtain that

. (2.6.45)

_ |1 o
1(S)ms = 1(E) [NZ e 0L (121 + 121 + )
1 —Z+ N Z’L 14+o0;mo

Comparing with (2.2.15)), we have proved ([2.6.34)).

Then we prove ([2.6.32). Using the bound 1(n > 1) max,;, |Ga| = O(1), we trivially have
Ima| + |ma| + 6 = O(1). Thus we have 1(n = 1)Uy = O(N~Y2). Then (2.6.14) and (2.6.26)

together give that
1(n = 1D)(Je] + |eu]) < N7V2. (2.6.46)

First we claim that in the case n > 1, with high probability,

Imy| =TImmy = ¢, |mao| =Immsy > ¢, (2.6.47)
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for some constant ¢ > 0. By the spectral decomposition (2.4.5)), we have

ImGy; = Im Z’& Z |&(7)|*Tm ( A > > 0.

| )\k—Z

Then by , G, 1s of order O(1) and has imaginary part < —n + O (N~'/2). This
implies Im G, = n with high probability, which gives the second estimate of by
(2.2.5). Moreover, with we also get that Im(1 4+ o;my) 2 1 for ¢ < 7n. Then with
and a similar argument as above, we obtain the first estimate of . Next, we
claim that in the case n > 1, with high probability,

/

1+0,mi|=d, |1+ams| =, (2.6.48)

for some constant ¢ > 0. In fact, if o; < 2|mgy|™, we trivially have |1 + oymq| = 1/2.

Otherwise, we have

‘1 +0im2’ =

by (2.6.47)). The first estimate in (2.6.48) can be proved in the same way. Finally, with
(2.6.46)), (2.6.47) and (2.6.48]), we can repeat the previous arguments between ([2.6.37)) and

[2.6.45) to get ([2.6.32). O

The following lemma gives the stability of the equation f(z,m) = 0. Roughly speaking,
it states that if f(z,mq(2)) is small and my(2) — ma.(2) is small for ImZ > Imz, then

mo(z) — mac(z) is small. For an arbitrary z € S(cy, Co, €), we define the discrete set
L(w) == {2z} u {2 € S(cy,Cp,e) : Rez = Rez,Im 2’ € [Imz,1] n (N''N)}.

Thus, if Imz > 1, then L(z) = {z}; if Imz < 1, then L(z) is a 1-dimensional lattice with

spacing N1 plus the point z. Obviously, we have |L(z)| < N'°.

Lemma 2.6.11. Let cg > 0 be a sufficiently small constant and fix Cy,e > 0. The self-
consistent equation f(z,m) = 0 is stable on S(co, Co, ) in the following sense. Suppose the
z-dependent function § satisfies N2 < §(z) < (log N)™! for z € S(co,Co,€) and that § is
Lipschitz continuous with Lipschitz constant < N2. Suppose moreover that for each fized E,

the function n — 6(E + in) is non-increasing for n > 0. Suppose that us : S(co, Cy,e) — C
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is the Stieltjes transform of a probability measure. Let z € S(cy, Cy,€) and suppose that for
all 2" € L(z) we have
| (2, u2)| < 0(2). (2.6.49)

Then we have

() = mae(2)] € =
U () — mac(2)| < ;
? ? VE+N+0
for some constant C > 0 independent of z and N, where k is defined in .

(2.6.50)

Proof. This lemma can proved with the same method as in e.g. [14, Lemma 4.5] and [59,

Appendix A.2]. The only input is Lemma [2.2.6] O

Note that by Lemma [2.6.11) and (2.6.32)), we immediately get that

1(n = 1)0(z) < N~V2, (2.6.51)
From (2.6.26)), we obtain the off-diagonal estimate

1(n = DA (2) < N7V/2, (2.6.52)

Using (2.6.37)), (2.6.38)) and ([2.6.51)), we get that

1(77 = 1) (|Gu - Hii| + |Guu B HuuD < N_1/27 (2-6-53)

which gives the diagonal estimate. These bounds can be easily generalized to the case n > ¢
for any fixed ¢ > 0. Compared with (2.6.21]), one can see that the bounds (2.6.52) and
(2.6.53) are optimal for the n > ¢ case. Now it remains to deal with the small n case (in

particular, the local case with n « 1). We first prove the following weak bound.

Lemma 2.6.12 (Weak entrywise local law). Let ¢ > 0 be a sufficiently small constant and
fir Cy,e > 0. Then we have
A(z) < (Nn)~Y4, (2.6.54)

uniformly in z € S(co, Cy, €).
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Proof. One can prove this lemma using a continuity argument as in e.g. [14, Section 4.1],

[33, Section 5.3] or [34, Section 3.6]. The key inputs are Lemmas [2.6.912.6.11] and the

estimates (2.6.51))-(2.6.53) in the n > 1 case. All the other parts of the proof are essentially

the same. n

To get the strong entrywise local law as in (2.6.21)), we need stronger bounds on [Z]; and
[Z]2 in (2.6.34) and (2.6.35)). They follow from the following fluctuation averaging lemma.

Lemma 2.6.13 (Fluctuation averaging). Suppose ® and ®, are positive, N -dependent deter-
ministic functions on S(cy, Cy, ) satisfying N7Y? < & &, < N~¢ for some constant ¢ > 0.

Suppose moreover that A < ® and A, < ®,. Then for all z € S(co, Cy,€) we have
[Z]i] + [[Z]] < @3 (2.6.55)

Proof. We suppose that the event = holds. The bound ([2.6.55)) can be proved in a similar way
as [14, Lemma 4.9] and [33, Theorem 4.7]. Take [Z]; as an example. The only complication
of the proof is that the coefficients o;/(1 + o;ms)? are random and depend on ¢. This can be

dealt with by writing, for any 7 € Z;,

i 1 ~ GuG; i
mgzmé)—FNZJN ’éuuzmg)vLO(Az).
ey i
Then we write
1 o; 1 o;
[Z], = = —ZiZi +0(AY) == > (1-E) [—ZiGiil + O(A2)

N ZEZIZI (1 + mé)ai)Q N z;Il (1 + mg)ai)Q
1 o;

- = 1-R) | ————G;'| + O(A?). 2.6.56
¥ S 0B | oG 01 (2:656)

Now the method to bound the first term in the line is only a slight modification
of the one in [14] or [33]. For the proof of an even more complicated fluctuation averaging
lemma, one can also refer to the Proof of Lemma in Section ??7. Finally, we use that
= holds with high probability by Lemma, to conclude the proof. O

Now we give the proof of Proposition [2.6.8]
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Proof of Proposition [2.6.8 By Lemmal2.6.12] the event = holds with high probability. Then

by Lemma [2.6.12| and Lemma [2.6.9] we can take

Immsy, + (Nnp)=V4 1 1
o, — L N 2.6.57

in Lemma [2.6.13, Then ([2.6.34)) gives

|f(2,m2)| <

Using Lemma [2.6.11] we get

Im ma,. 1 1
+ < ,
Noyk+n  (Nn)»/& — (Ny)>/s
where we used Immsy, = O(y/k + 1) by (2.4.11) in the second step. With (2.6.35) and

(2.6.58]), we get the same bound for m;, which gives

(2.6.58)

|m2 — mgc| <

6 < (Nn)~°/8, (2.6.59)

Then using Lemma [2.6.9| and ([2.6.59)), we obtain that
I e+ (Nn)—5/8 1
A, < \/ mmge + (Nn)72F 1 (2.6.60)
N1 N
uniformly in z € S(cy, Cp, €), which is a better bound than the one in (2.6.57). Taking the
RHS of (2.6.60) as the new ®,, we can obtain an even better bound for A,. Iterating the

above arguments, we get the bound
0 < (Ngj)~ Tk 275277

after [ iterations. This implies

6 < (Nn)™* (2.6.61)
since | can be arbitrarily large. Now with (2.6.61]), Lemma [2.6.9] (2.6.41]) and (2.6.43)), we
can obtain ([2.6.21)). [

Proof of Proposition m We now can finish the proof of Proposition [2.6.1] using Proposi-

tion 2.6.8] By (2.6.41)) and (2.6.61]), we have

_ 1 1 2
B 2—21+Uzm2 Z 1+alm2) O<(\II).
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Using the same method as in Lemma [2.6.13] we can obtain that

1 Z;
.

i (1 + 0'1'777/2)

< U2

Together with (2.2.10)), (2.4.12)) and (2.6.61)), we get that

Im —me| < (Nn)~" + ¥ < (Nn)~,

where we used ([2.4.19)) in the second step. This proves (2.6.3]).
For z € S,u(co, Co,€) := S(co, Coe) n{z=E+in: E = \., Nn\/k + 1 = N}, we have

Imec(z’)+ 1 - 1 N o 1 N 1
Nn (Nn)2] = Nyk+n  (Np)? ~ N(k+n)  (Nn)*Ve+n

where we used (2.4.11)) in the second step. Thus to prove (2.6.4), it suffices to prove that

U2 <2

1 1
N(c+n)  (NpPvesn

In fact, taking &, = & = ¥ in Lemma [2.6.13| and then using Lemma [2.6.11], we get that

‘mg — m20| < zZ e Sout(Co, Co,€>. (2662)

P2 - 1 N 1
k+n "~ Nk+n) (Nn2J/e+n

This finishes the proof of (2.6.62), and hence (2.6.4]).
Finally, with (2.6.21]), one can repeat the polynomialization method in [14], Section 5] to

|m2 — mgc| <

get the anisotropic local law (2.6.2). The only difference is that one need to use the first
bound in ([2.2.5). O]

2.7 A self-consistent comparison approach

In this section, we finish the proof of Theorem for a general X satisfying (2.4.15)),
([2.4.20) and the bounded support condition (2.4.1]) with ¢ < N~% for some constant ¢ > 0.
The proposition implies that (2.4.22)) holds for Gaussian X “®s*. Thus the basic idea

is to prove that for X satisfying the assumptions in Theorem [2.4.6]

{u, (G(X,w) — G(X"* w)) v) < ¢ + U(2)
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uniformly for deterministic unit vectors u,v € CZ and z € S(co, Cy, €).

For simplicity of notations, we introduce the following generalized entries. For v, w € C*

and a € Z, we shall denote
Gyw = (V,GW), Gy, :={v,Ge,), Guw =4, GW), (2.7.1)
where e, is the standard unit vector along a-th axis. Given vectors x € C** and y € C*2, we

always identify them with their natural embeddings and in CT. The exact
0 y
meanings will be clear from the context. Now similar to Lemma [2.6.4] we can prove the

following estimates for G.

Lemma 2.7.1. Forie€I; and p € I, we define u; = U*e; € CP and v, = V*e, € C2, i.e.
w; is the i-th row vector of U and v, is the p-th row vector of V. Let x € C** and y € C*2.

Then we have

GXX
> G l? = D |Guxl* = (—Z ) (2.7.2)
iEZl ZEZl

ImG&

DGl = X |Gl = =22, (2.7.3)
Helo HeLo

2 |Gyui|2 = Z |Guiy|2 = Gyy + %Im Gyy, (2.7.4)
i€l 1€l

GXX

S G [P = 3 |Gl = m( > ) . (2.7.5)
uels uelz

All of the above estimates remain true for G instead of G for any T < T.

Proof. We only prove (2.7.3) and (2.7.4). The proof for (2.7.2)) and (2.7.5)) is very similar.
With (2.4.5)), we get that

2 ’Gyvu Z {y,Gv){v,,Gly) = Z |<y’Ck>| _Im ny. (2.7.6)

uels Helo + 77 n

For simplicity, we denote Y := L12U*X VY2, Then with (2.4.4) and (2.4.6), we get that

EZI; |Gy l” = (%YTYQDW = (9’2 (V1Y —2) Q;)yy +z (QQQQ)W = Gyy + %Im Gy,

where we used QT = YTY -z - and 276 in the last step. ]
2
54



Our proof basically follows the arguments in [59, Section 7] with some modifications.
Thus we will not give all the details. We first focus on proving the anisotropic local law
(2.4.22), and the proof of (2.4.23)-(2.4.24) will be given at the end of this section. By
polarization, to prove it suffices to prove that

v, (G(X,2z)=T(2) v) < g+ ¥(2) (2.7.7)

uniformly in z € S (co,Co,€) and any deterministic unit vector v e CZ. In fact, we can

obtain the more general bound (2.4.22)) by applying (2.7.7)) to the vectors u+ v and u + iv,

respectively.

The proof consists of a bootstrap argument from larger scales to smaller scales in multi-

plicative increments of N9, where

§e <0, w> . (2.7.8)

Here € > 0 is the constant in g(co, Co,€), ¢ > 0 is a constant such that ¢ < N=%, C, > 0 is

1+s’ we

an absolute constant that will be chosen large enough in the proof. For any n > N~
define
m:=nN"for 1=0,..,L—1, n:=1. (2.7.9)
where L = L(n) := max {l € N| pN°0=) < 1} . Note that L < .
By , the function z — G(z) — II(z) is Lipschitz continuous in S(co, Cy,e) with
Lipschitz constant bounded by N?2. Thus to prove 1' for all z € § (co, Ch, €), it suffices to
show that holds for all z in some discrete but sufficiently dense subset S < S (¢, Cop,€).

We will use the following discretized domain S.

Definition 2.7.2. Let S be an N™-net of S(co, Cy, ) such that |S| < N2 and

E+ineS=FE+ineS forl=1,..,L(n).

The bootstrapping is formulated in terms of two scale-dependent properties (A,,) and

(Cy) defined on the subsets

Sy ={z€S|[Imz>N""}.
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(A,,) For all z € S,,, all deterministic unit vectors x € C** and y € C*2, and all X satisfying

the assumptions in Theorem [2.4.6, we have

Im <GL(Z)> +Im Gyy(2) < ITmmye(2) + N (q + U(2)). (2.7.10)

z
(C,n) For all z € S,,, all deterministic unit vector v € C%, and all X satisfying the assump-

tions in Theorem [2.4.6] we have

|Gov(2) — Hu(2)| < N (q + U(2)). (2.7.11)

It is trivial to see that (Ag) holds by (2.6.9) and (2.4.11). Moreover, it is easy to observe

the following result.

Lemma 2.7.3. For any m, property (C,,) implies property (A,,).

Proof. By (2.4.11)), (2.4.12) and the definition of IT in (2.4.16]), it is easy to get that

Im (H%(z)> + Im Iy (2) < Imma.(2),

which finishes the proof. ]

The key step is the following induction result.

Lemma 2.7.4. For any 1 <m < 57, property (A,,_1) implies property (C,,).

Combining Lemmas [2.7.3] and [2.7.4] we conclude that holds for all w € S. Since
0 can be chosen arbitrarily small under the condition (2.7.8)), we conclude that holds
for all w € S, and follows for all z € S (co, Co,€). What remains now is the proof of
Lemma 2.7.4] Denote

Fo(X,2) :=|Guw(X, 2) — Iy (2)]. (2.7.12)
By Markov’s inequality, it suffices to prove the following lemma.

Lemma 2.7.5. Fiz p € N and m < 6~'. Suppose that the assumptions of Theorem

and property (A,,—1) hold. Then we have
EFP(X,z) < [N9 (¢ + U(2))]" (2.7.13)

for all z € S,,, and any deterministic unit vector v.
56



In the rest of this section, we focus on proving Lemma First, in order to make use
of the assumption (A,,_1), which has spectral parameters in S,,_1, to get some estimates for

G with spectral parameters in S,,, we shall use the following rough bounds for G, .

Lemma 2.7.6. For any z = E +in € S and unit vectors x,y € C*, we have

L(n) .
GX1X1 (E + ”71)
|Gy (2) = Ty (2)] <N ) [Im ( o

=1

+Im GY1Y1(E + iTh)
E+in

> + Im Gyox, (E + in)

) +Im G}'QYZ(E + im):| + 1,

X1 Y1 T T . :
where x = andy = for x1,y1 € C* and x5,y2 € C*2, and n; is defined in
X2 Y2
E79).
Proof. The proof is the same as the one for [59, Lemma 7.12]. O

Recall that for a given family of random matrices A, we use A = O-({) to mean

(v, Aw)| < ¢|v]2||w|2 uniformly in any deterministic vectors v and w (see Definition [2.4.1]
(ii)).
Lemma 2.7.7. Suppose (A,,_1) holds, then

G(z) —(z) = O (N?), (2.7.14)

and

z

Im (GXX(Z)) +Im Gyy(2) < N?% [Im mac(z) + Nca6(q + \I/(Z))] g (2.7.15)

for all z € S,, and any deterministic unit vectors x € CI* and y € C*2,
Proof. The proof is the same as the one for [59, Lemma 7.13]. O]

Now we are ready to perform the self-consistent comparison. We divide the proof into

three subsections. In Sections [2.7.1H2.7.2 we prove Lemma under the condition
Ezj, =0, 1<i<n, 1<j<N, (2.7.16)

for z € S(cg,Co,e). Then in Section [2.7.3) we show how to relax ([2.7.16]) to (2.4.20]) for
z € g(CQ,CO,E).
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2.7.1 Interpolation and expansion

Definition 2.7.8 (Interpolating matrices). Introduce the notations X° := X%%ss gnd X! :=

X. Let p?u and pilu be the laws of Xi and leu, respectively. For 6 € [0,1], we define the

interpolated law
pf,u = (]' - Q)p?p + epzlu
We shall work on the probability space consisting of triples (X°, X% X*') of independent

1y x I, random matrices, where the matriz X° = (X7)) has law

[T11A.axs). (2.7.17)

i€l 1 /.LGIQ

For Ae R, i € Z; and u € Iy, we define the matrix X(ei’l;\) through

(XH’/\> ) Xze;u Zf (]7 V) 7 (Za:u)
(i) ) :

A i G) = (p)
We also introduce the matrices

GY2):=G (XG,Z) ; G?{:)( ) =G (X(i:)’ ) ’

We shall prove Lemma through interpolation matrices X? between X° and X*'. It
holds for X° by Proposition [2.6.1]

Lemma 2.7.9. Lemma holds if X = X°.

Using ([2.7.17]) and fundamental calculus, we get the following basic interpolation formula.

Lemma 2.7.10. For F : R1*Z2 5 C we have

—EF (x) =3 3 [EF (X, ) EF (ijo)] (2.7.18)

€1 pels

provided all the expectations exist.

We shall apply Lemma [2.7.10| with F'(X) = FP(X, z) for Fy (X, z) defined in (2.7.12)).

The main work is devoted to proving the following self-consistent estimate for the right-hand

side of ([2.7.18)).
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Lemma 2.7.11. Fizpe 2N and m < 6!, Suppose and (Am-—1) hold, then we have

Zz: EZ: (R (x00" ) EF? <X(”§ 2)| =0 ([N (g + v ()] + EFY(X?, 2))

(2.7.19)

for all 0 € [0,1], z € S,, and any deterministic unit vector v.

Combining Lemmas 2.7.11 with a Gronwall’s argument, we can conclude Lemma

X0

2.7.5|and hence ([2.7.7). In order to prove Lemma [2.7.11 we compare X( i and X ) " via

a common X (92.’3), i.e. we will prove that

3D |z (X" 2) ~EF2 (X00,2) | = O ([N (g + (=) + EF(X’, 2))

(2.7.20)

for all u € {0,1}, 0 € [0,1], w € S,,, and any deterministic unit vector v.

Underlying the proof of (2.7.20]) is an expansion approach which we will describe be-
low. During the proof, we always assume that (A,,_ ;) holds. Also the rest of the proof is
performed at a fixed z € S,,,. We define the Z x Z matrix Af\iu) as

0 N2, v N2
Ay =2 g , (2.7.21)
Y2y w2 0
where we recall the definitions of u; and v,, in Lemma [2.7.1] Then we have for any A, )" € R

and K € N,

0.\ 0.\ A=N ~O,A
Gw) u) T ZGZM) (A G

(ip)

) G (A, A’G‘”)KH. (2.7.22)

(ip)
The following result provides a priori bounds for the entries of G (i)
Lemma 2.7.12. Suppose that y is a random variable satisfying |y| < q. Then

Gey

o =T =0L(N?), ieT, pel,. (2.7.23)

Proof. The proof is the same as the one for [59, Lemma 7.14]. O

In the following proof, for simplicity of notations, we introduce f(;,)(\) := F2(X Z : ). We

use f((zz) to denote the r-th derivative of f(;,). With Lemma [2.7.12)and ({2.7.22)), it is easy to

prove the following result.
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Lemma 2.7.13. Suppose that y is a random wvariable satisfying |y| < q. Then for fized
reN,
)] < N, (2.7.24)

By this lemma, the Taylor expansion of f,) gives

dp+4 r

Foi (y Z im0 + 0 () (2.7.25)

provided C, is chosen large enough in (2.7.8)). Therefore we have for u € {0, 1},

0,5 6,0
EFY (X" ) —EFY (X00) =E[fun (X3) — Ju(0)]
1 4dp+4 1
2) () w\"
=E fii) (0) + IN Ef(i“)(m + 24 ﬁEf(w)(O) E (sz) + O<(qp+4)7
where we used that Xj, has vanishing first and third moments and its variance is 1/N.

(Note that this is the only place where we need the condition (2.7.16]).) By (2.4.15) and the

bounded support condition, we have
E(X:) | < N2¢ r>4 (2.7.26)
Thus to show (2.7.20)), we only need to prove for r = 4,5, ...,4p + 4,

2 Y N RO = 0 (N e w cBE(C ). (270

ZEIl ,U,EIQ
In order to get a self-consistent estimate in terms of the matrix X% on the right-hand side

6
of (2.7.27), we want to replace X in fi,)(0) = F‘T,’(X(GZ.’S)) with X% = X(ei’:j”‘.

Lemma 2.7.14. Suppose that

2T4ZZ‘EJC

lEZl /,LEZQ

O ([N(q+ ¥)]" + EF2(X?, 2)) (2.7.28)

holds for r =4, ..., 4p + 4. Then holds forr =4, ...,4p + 4.

Proof. We abbreviate f(;,) = f and Xfﬂ = ¢. Then with (2.7.25)) we can get

dp+4-1 Efk
Ef0(0) = EfO€) — Y] BFUH(0)=

k=1
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The estimate (2.7.27)) then follows from a repeated application of (2.7.29). Fixr =4, ..., 4p+
4. Using (12.7.29)), we get

Ef)(0)

E¢h
kq!
E¢h
kq!

Hszlﬂika
kil ko!

=Ef7(€) = Y] 1r + ki < 4p + HEfH(0)

k1=>1

—EfOE) = Y 1(r + by < 4p + HEFCHR(E)

ki1>1

+ O« (qp+4ir>

+ >0 A(r 4kt kp < dp + EFUTRHR)(0)
k1,k2>1
4p+4—r

SREIOECIID YT IS R S St | CSp e

t=0 ki, ke>1

The lemma now follows easily by using (12.7.26]). [

2.7.2 Proof with “Words”

What remains now is to prove (2.7.28). For simplicity, we abbreviate X? = X. In order to
exploit the detailed structure of the derivatives on the left-hand side of (2.7.28]), we introduce

the following algebraic objects.

Definition 2.7.15 (Words). Given i € Z; and p € Zy. Let W be the set of words of even
length in two letters {i, u}. We denote the length of a word w € W by 2m(w) with m(w) € N.
We use bold symbols to denote the letters of words. For instance, w = tySatoss - t,8,41
denotes a word of length 2r. Define W, := {w € W : m(w) = r} to be the set of words of

length 2r, and such that each word w € W, satisfies that t;s;11 € {ip, pi} for all 1 <1 < r.

Next we assign to each letter = a value [+] through [i] := Y, [p] = ivu, where ;
and v, are defined in Lemma and are regarded as summation indices. Note that it
1s important to distinguish the abstract letter from its value, which is a summation index.
Finally, to each word w we assign a random variable Ay ;,(w) as follows. If m(w) = 0 we
define

Ay ip(w) = Gyy — Iy
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If m(w) =1, say w = tySotass - - t,.8,41, we define

Avipn(Ww) == Gye1Glsalta] - Glso 6,1 Glse ] v- (2.7.30)

Notice the words are constructed such that, by (2.7.21) and (2.7.22) ,

a T
(an> (Gyw = Tyy) = (=171 Y Aviu(w), reN,

WEW,

with which we get that

T p/2
(a)‘iu) )= (-1 S [[mdmeye) | > Ay i) Ay s p(Wigpya)

mi+-4+mp=r t=1 wtEWnm, wt+p/2€Wmt+p/2

Then to prove ([2.7.28]), it suffices to show that

2r4ZZ

ZEIl ,LLEI2

1_[ vin(W) Ay i (Wiip2)| = O ([N (¢ + )" + EF2(X, 2)) (2.7.31)

t=1

for 4 < r < 4p + 4 and all words wy, ..., w, € W satisfying m(w,) + --- + m(w,) = r. To
avoid the unimportant notational complications associated with the complex conjugates, we

will actually prove that

N2r422

ZEIl /.LEIQ

= O ([N%(q+ )" + EF2(X, 2)). (2.7.32)

E] [ v -

t=1

The proof of (2.7.31]) is essentially the same but with slightly heavier notations. Treating

empty words separately, we find it suffices to prove

NZT4ZZE

i€l puels

l

t=1

= O ([N“(q+0)]" + EFE(X,z)) (2.7.33)

for4 <r <4p+4,1<1<p, and words such that m(wy) = 0, >, m(w,) = r and m(w;) > 1

for t > 1.

To estimate ([2.7.33)) we introduce the quantity
Ra = |Gyw,| + |Gwovl (2.7.34)

for a € 7, where w; := £Y2u, for i € 7, and W, = /2 v, for p e I,.
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Lemma 2.7.16. For w € W, we have the rough bound
| Ay iu(w)] < N2000FD), (2.7.35)
Furthermore, for m(w) = 1 we have
[Avi(w)] < (R} + RE)N2m)=1), (2.7.36)
For m(w) =1, we have the better bound
Ay ()] < RiR,. (2.7.37)

Proof. The estimates ([2.7.35)) and (2.7.36]) follow immediately from the rough bound ([2.7.14)
and definition (2.7.30)). The estimate ([2.7.37)) follows from the constraint t; # ss in the

definition ([2.7.30)). O

By pigeonhole principle, if » < 2l — 2, then there exist at least two words w, with

m(w;) = 1. Therefore by Lemma [2.7.16| we have

l
AT (wo) | [ Aviu(we)| < NPUHEPHX) (1(r = 20— 1)(R7 + R + 1(r < 21 — 2)RIR}) .
t=1

Vi,
(2.7.38)
\%
Let v = Y for v, € CT and v, € C%2. Then using Lemma [2.7.1] we get
Vo
i Z , - 2 R2 B GV1V1) + Im (GV2V2> + 7 |GV1V1| + 1 |GV2V2|
N i€l ;,LGIQ Nn
_ ]\[2511117712c + N9 (g + ¥(2)) < N(Ca+2)s <\112(z) I L) :
Nn N1
(2.7.39)

where in the second step we used the two bounds in Lemma and n = O(Imms.) by
(2.4.11]), and in the last step the definition of ¥ in (2.4.18)). Using the same method we can
get

e Z >, RiR; < [ N{Cer20 (‘112(2) + Nin)r (2.7.40)

ZGZl MEIQ
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Plugging and into , we get that the left-hand side of is
bounded by
g ANBOHE) | LX) [1(r > 21 — 1) (N%2(q + W) + 1(r < 21 — 2) (N99/(q + xp))‘*]
< NP+ | prl(x) [1(7" > 90— 1) (NC“(S/Q((] n \IJ))H (< 20— 2) (N(Jaé/Q(q n \Ij))r]
<EFP(X) [1(7« > 21 — 1) (NC92H125 (g 4 W) ™2 4 1(r < 20 — 2) (NCa9/2+129 (g 4 \p))r] ,
where we used that [ < r and r > 4 in the last step. If we choose C, > 25, then by
we have NCe9/2+120 « min{ N?2 N¢2} and hence N%%2*12(q 4 ) « 1. Moreover, if r > 4
and r > 2l — 1, then r > [ + 2. Therefore we conclude that the left-hand side of is
bounded by

EFP{(X) [N (q+ W)]'. (2.7.41)
Now follows from Holder’s inequality. This concludes the proof of , and

hence of (2.7.20)), and hence of Lemma [2.7.4] This proves (2.7.7), and hence (2.4.22)) under
the condition (2.7.16|).

2.7.3 Non-vanishing third moment

In this subsection, we prove Lemma under (2.4.20)) for z € S (co, Co, €). Following the
arguments in Sections [2.7.112.7.2 we see that it suffices to prove the estimate (2.7.28)) in the

r = 3 case. In other words, we need to prove the following lemma.

Lemma 2.7.17. Fizpe 2N and m < 6~ '. Let z € S,, and suppose (A,,_1) holds. Then

N2 Y ’]E 19 (x ( — O ([N (g +W)]" + EFP(X?, 2)) . (2.7.42)

iEIl MGIQ

Proof. The main new ingredient of the proof is a further iteration step at a fixed z. Suppose
G—11=0_(d) (2.7.43)

for some deterministic parameter = ®5. By the a priori bound (2.7.14), we can take
® < N®. Assuming (2.7.43)), we shall prove a self-improving bound of the form

ZAEDIDY ‘E fian(X ) = O ([N%(qg+W)]" + (N"?®) + EFP(X% w)) . (2.7.44)

iEIl ;LEIQ

64



Once ([2.7.44]) is proved, we can use it iteratively to get an increasingly accurate bound for
|Gy (X, z) — Iyy(2)]. After each step, we obtain a better bound (2.7.43)) with ® reduced by
N~—¢/2. Hence after O(¢~') many iterations we can get (2.7.42).

As in Section to prove ([2.7.44)) it suffices to show

l

|22 AL ) [ [ Aviu(wn)| <

€1 puela t=1

by N~ < FPH(X) [N©o (g + W) + N2]' | (2.7.45)

which follows from the bound

5 3 [T Avintn

i€Z1 pels t=1

by N2 < [N©-D (g + W) + N3] (2.7.46)

We now list all the three cases with [ = 1, 2, 3, and discuss each case separately.

When [ = 1, the single factor Ay ; ,(w;) is of the form
Git1)Gsalita] Glssits] Glsalv-

Then we split it as

~

vit11Glsa11t2) Glssllts] Glsalv
(2.7.47)

Goit]1Gs211t2] Glsalits] Glsalv =Gl Hisalita1 Hisalits1Glsalv + Goitn] Glsalita) L ss1ts) Glsalv
Gt 211621 Gsslts] Glsalv + Gt

where we abbreviate G := G — II. For the second term, we have

bN]\f_2 Z Z )Gv[tl]G[SQ][tQ]H[SS][tS]G[S4]V < by® - N(Cat2)é (qu n N%) < N2

’iEIl ,LLEZQ

(2.7.48)

provided 6 is small enough, where we used (2.7.39), (2.7.43)) and the definition (2.4.21)). The
third and fourth term of (2.7.47)) can be dealt with in a similar way. For the first term, when

[t1] = w; and [s4] = w,,, we have

) 2 Z vain[SQ][tQ]H[SB][‘B]GWMV

i€ ,uEIQ

1/2
< N1+25 (Z ‘quv|2> < N3/2+(Ca/2+3)6(q+ \11)7

uels
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where we used (2.7.39)) and the fact that II is deterministic, such that the a priori bound
(2.7.23) gives

‘ 2 Gowillisaiea s pea) | < N34,

1€y
If [t1] = w, and [s4] = v;, the proof is similar. If [t;] = [s4], then at least one of the terms

s, )1t,) and s, (e, must be of the form Ily,w, or Iy ,w,, and hence we have

D Mo Msgliest| = O(NY?) o Y [Mjsyipe Misglies)| = O(N'?).
i H

Therefore using ([2.7.39)) and ([2.4.21)), we get

|2 3 Gt Msaea sl Gty | < NY2HC28 (g2 4 02) < N¥2(q + W),

iEIl /,LEIQ

provided ¢ is small enough. In sum, we obtain that

< N@=(g 4 ¥)

by N _2‘ > 2 Gt Misaea Misafes] Glsalv

’iGIl MEIQ

provided that C, > 8. Together with (2.7.48]), this proves (2.7.46|) for [ = 1.
When | = 2, [];_, Av.ip(wy) is of the form

vai Gvava,- quwu Gin7 vai GWuVGVWu Gwiwi Gwﬂva (2749)

VW TW VI VW T W, W T W v VW TW, VT VW, T W W, T WV (2750)

or an expression obtained from one of these four by exchanging w; and w,. The first

expression in (2.7.49) can be estimated using (2.7.23)), (2.7.39)) and (2.7.43):

1/2
CuivGwiw, = Y G vGow G Ly w = O_ | N1+(Ca/2415g (g2 q N1/2+20
; u Wi ; w w u+; w Wi <[ + ]\[77 + )

(2.7.51)

and

‘ Y G G, Gy

< N1H(Cat)s (\1,2 n NL) ' (2.7.52)
n

Combining (2.4.21)), (2.7.51)) and (2.7.52)), we get that

< (N@=D9 (g + T) + ]\FE/?@)2 ,

bNN72‘ Z Z GVWi Gvavai Gw#wu Gwiv
ip
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provided ¢ is small enough. The second expression in (2.7.49)) can be estimated similarly.
The first expression of (2.7.50]) can be estimated using (2.4.21)), (2.7.23) and (2.7.39)) by

~ bNN—2+25 Z Z |vai

m

2 2
|GWMV‘

bNAN’_2 Z Z vai GWHVGVWZ‘ Gwai quv

I

2
<b N(2Co+6)5 U2 q < )2
N + Ny (¢ + )

for small enough ¢. The second expression in (2.7.50)) is estimated similarly. This proves
for [ = 2.

When [ = 3, Hle Ay i (wy) is of the form (vaiquv)S or an expression obtained by
exchanging w; and w,, in some of the three factors. We use and Y, [lyw,[* = O(1)
to get that

2 (Guw)?

i

< Z |évwi‘3+2 Tvw,
% %

Now we conclude (2.7.46)) for [ = 3 using (2.4.21)) and N='/2 = O(q + V). O

3 2 2 14+(Co+2)5 [ 2 q
<P Gyw, Iyw. 1< N s — | P+D+1.
% (|Gvw,]* + Hyw,|*)+ ( +N77> +d+

If A or B is diagonal, then we can still prove for all z € S(co, Co, €) without using
(2.7.16|). This follows from an improved self-consistent comparison argument for sample
covariance matrices (i.e. separable covariance matrices with B = I) in [59, Section 8]. The
argument for separable covariance matrices with diagonal A or B is almost the same except

for some notational differences, so we omit the details.

2.7.4 Weak averaged local law

In this section, we prove the weak averaged local laws in (2.4.23)) and (2.4.24). The proof

is similar to that for (2.4.22)) in previous subsections, and we only explain the differences.

Note that the bootstrapping argument is not necessary, since we already have a good a priori
bound by (2.4.22)). In analogy to (2.7.12]), we define

FX,2) 1 = [ml2) = me(2)] = |— 3 (GalX, ) — (=),
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where we used (2.4.17). Moreover, by Proposition [2.6.1} (2.4.23]) and ([2.4.24]) hold for Gaus-
sian X (without the ¢* term). For now, we assume ([2.7.16)) and prove the following stronger

estimates:

Im(z) —m.(2)] < (Nn)™! (2.7.53)

for z € S(cy, Cp, €), and

q 1 1
<=+ + :
Nn N(s+n) (N +1
for z € S(co,Co,e) n{z=E+1in: E = N\, Nn\/k +1n = N°}. At the end of this section, we
will show how to relax (2.7.16) to (2.4.20) for z € S(co, Co, €).

Im(z) — me(2)] (2.7.54)

Note that

1 1
+
N(k+n)  (Nn)*VE+1
Then following the argument in Section [2.7.1], analogous to (2.7.28)), we only need to prove

1
U(2) < N and VU%(2) < outside of the spectrum. (2.7.55)
n

that

N72qr74 Z Z

£ B (a)(j'u) ﬁp(X)’ -0 (lN‘S <\If2 + Nin)r + Eﬁp(X)) (2.7.56)

forall r =4, ..., 4p+4, where 6 > 0 is any positive constant. Analogous to (2.7.32)), it suffices

to prove that for r =4,...,4p + 4,

N2y ) Eﬁ <% > Aej7i7u(wt)>‘ -0 <[N§ (qﬂ + Nin)]p + Eﬁp(X)>

€11 pela t=1 Jje€I1
(2.7.57)
for >3, m(w,) = r. Similar to (2.7.34]) we define
Rija = |Gjwa| + 1Gw,jl.
Using ([2.4.22) and Lemma [2.7.1] similarly to (2.7.39), we get that
1 Im (7' Gw,w,) + Im Gw,w, + 1 (|Gwiw,| + |Gw,w,.
~ ) Rl < ( ) N ( | ) g + Ni. (2.7.58)
n jEZl TI 77
Since G = O(1) by (2.4.22)), we have
1 1
— Z A, ip(w)| < = Z (”RJQZ + R?,u) < 0?4 Ni for any w such that m(w) > 1.
= " e, U
(2.7.59)
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With (| m for any r > 4, the left-hand side of (2 m is bounded by

!
EFP(X) (xp? A‘ﬁﬁ) .
Applying Holder’s inequality, we get (2.7.56), which completes the proof of and
under (2.7.16).
Then we prove the averaged local law for z € S (co, Co,€) under - By ([2.7.55)), it

suffices to prove

3 —e/2\ P
I _ 5(,2 2\1P ~
bnN"2 ), D E ( ) Fp(X)‘ =0 ([N (¢* + 9] + ( Ny ) +]EFP(X)) :
’LEIl ,LLEIQ
(2.7.60)
for any constant § > 0. Analogous to the arguments in Section [2.7.3] it reduces to showing
that
l l N-</2\*
bN]\/'_2 ZZH( ZAe]ZM wt>‘20< ((q2+\112) +< N?] )), (2761)
7,611 /J,EIQ t=1 jEZl

where [ € {1,2,3} is the number of words with nonzero length. Then we can discuss these
three cases using a similar argument as in Section [2.7.3] with the only difference being that

we now can use the anisotropic local law ([2.4.22)) instead of the a priori bounds ([2.7.23)) and
(2.7.43)).

In the [ = 1 case, we first consider the expression Aej,i,u(wﬂ = Gjw;Gw,w,Gwiw;Gw,j-

We have

1/2
ZGjWiGWiWi < ZGjWiHWiWi + Z(q +U) |iji| < VN + N(g+ %) (\IJ + Nin> )

where we used ([2.4.22) and (2.7.39). Similarly, we also have

2 kuwu WH]

where we also used Ily,; = 0 for any  in the second step. Then with (2.4.21]), we can see
that the LHS of (2.7.61)) is bounded by O(¢* + ¥?) in this case. For the case A, ;,(w1) =

waHGwH] wuquij

1/2
< VN(qg+U)+N(q+¥) (\112 ]\?77) ,

Giw;Gw,ow,Gww,Gw,j, we can estimate that

1/2
) |Gwow,| < VN+N(qg+0) | U2 4
+Zq+ | < VN+N(g+ )( +N77> ,

WL Wy wlwu W Wy wlwu
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and

2
Z|GMGW <N <xp Nn)

Thus in this case the LHS of (2.7.61)) is also bounded by O (¢* + ¥?). The case A, ;. (w1) =

we can estimate that

Giw;Gw,w;Gw,w,Gw;j can be handled similarly. Finally in the case Ae, ; ,(w1) = Gjw,Gw,w;, Gw,w;Gw,.j»
Z Gsz‘ Gw#wi quwi quj

2
2 N2 (g2 q _
” B ( Ny

Again in this case the LHS of (2.7.61)) is bounded by O_(¢* 4+ ¥?). All the other expressions

+ ‘GWuJ’2> |GW;LWZ

< Z (’Gjm ’

(7

are obtained from these four by exchanging w; and w,.

In the | = 2 case, [[;_, <% et Aeji#(wt)) is of the forms

N2 Z GJIWZGW,,le szWszuw“Gwlp or N2 Z Gj1WzGW‘LJ1 GJ2WZGW‘LWZGWHJ27

Ji,J2 J1,J2

or an expression obtained from one of these terms by exchanging w; and w,. These two

expressions can be written as

IIl ><I1 O

0 0
(2.7.62)

For the second term, using (2.4.4), [2.4.5) and recalling that Y = SY2U*XVEY2 we can
get that

N_2(GX2)WHWZ-(GX2>WZ-W¢GWHWW (GX2)WMWZGWHWH G**:=G

]\1[2 ;(GXQ)WHWZGWMVV@' < %; ‘(ze)wuwi ? K)Q [(gl) YY*(gl)Q]
| |2 Z|Z|2 12 2
= T [91(G)°] + 7 Tr [(G1)(Gr)°] (2.7.63)

1 1 L Ly 1
TN = B2 NP - B )

1 1 n Imm Imm.+qg+ V¥ o0 q
< | = = < 1\ — ). (2.7.64
Nip (n Zk v —E2+ 772> N T NP " ( Ny ) (276

Using (2.4.22]) and (2.7.39)), it is easy to show that

q X q
< N3/2 (\112 + N_> , and  |(G™P)xy| < N (‘112 + N_T]) , (2.7.65)

x2
Z(G )wuwinwuwu n

m
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for any deterministic unit vectors x, y. Thus for the first term in (2.7.62)), we have

1 " N
‘WZ(G 2Ywuwi (G2 wiw; G, o, (2.7.66)
LK
1 o N ~ 1 y y
< mZ(G ) wpws (G wows Gy | + WZ@ 2) s (G, Mg,
b ip
1 1/2 5
2 4q x2 2 3/2 2 q
<N(q—|—\ll) (\If +N_7’]> <m§‘(G )wﬂwi > + N (\If +N_7’]>
q 3/2 q 2
Ny Yq+ ") (0% 4+ -+ N32 (92 4 2.7.
< Nn~(¢+ )( +N77> + ) (2.7.67)

where in the last step we used the bound in (2.7.64). Now using (2.7.64), (2.7.67) and
(2.4.21), we get

N—a/Z 2
by N2 2 4 p2)? .
N < (q + ) + N??

NN (% 5 Aej,iuwt))

iEI1 IU,EIQ t=1 jEIl

Wi;W,, 7

Finally, in the [ = 3 case, H?:l (% Djer, Aej,i,u(wt)) is of the form N73(G*?)3 or an
expression obtained by exchanging w; and w, in some of the three factors. Using (2.7.65))
and the bound in (2.7.64]), we can estimate that

1
(e )
1

Then the LHS of (2.7.61]) is bounded by

N—5/2 2
O 24+ 02 :
) ((q ) < N1y ) )
Combining the above three cases, we conclude ([2.7.60)), which finishes the proof of ([2.4.23|)
and (2.4.24)).

If A or B is diagonal, then by the remark at the end of Section [2.7.3] the anisotropic

local law (2.4.22)) holds for all z € S(cy, Cy,€) even in the case with by = N2 in (2.4.20).
Then with (2.4.22) and the self-consistent comparison argument in [59, Section 9], we can

prove (2.4.23)) and (2.4.24) for z € S(cy, Cp,€). Again most of the arguments are the same

as the ones in [59 Section 9], hence we omit the details.
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2.8 Lindeberg replacement strategy

2.8.1 Proof of Theorem [2.4.8 and Lemma [2.4.7

With Lemma [2.4.12] given X satisfying the assumptions in Theorem [2.4.6| we can construct

a matrix X with support ¢ = N~Y2 and have the same first four moments as X. By Theorem

2.4.6, the averaged local laws ([2.4.26) and (2.4.27) hold for G()?, z). Thus it is easy to see

that Theorem [2.4.8] is implied by the following lemma.

Lemma 2.8.1. Let X, X be two matrices as in Lemma and G = G(X,z), G =
G(X,z) be the corresponding resolvents. We denote m(z) = m(X, z) and m(z) = m(X, 2).
Fiz any constant € > 0. For any z € §(00,C'0,6), iof there exist deterministic quantities

J=J(N) and K = K(N) such that
G(z) = =0.(J), |m(z)—mz)| <K, J+K=<1, (2.8.1)
then for any fixed p € 2N, we have
Elm(z) — me(2)|P < Eli(z) — me(2)[" + (V(2) + J* + K)". (2.8.2)

Proof of Theorem[2.4.8 By Theorem one can choose J = ¥(z) and

1 1 1

=—, or +
N N(r+mn)  (Nn)?*Vk+1]
Then using (2.8.2)), (2.7.55)) and Markov’s inequality, we can prove ([2.4.26|) and (2.4.27)). The

eigenvalues rigidity results (2.4.28]) and ([2.4.30|) follow from (2.4.26|) and (2.4.27)) through a

standard argument using Helffer-Sjostrand calculus, see e.g. the proofs for [34, Theorems

K

outside of the spectrum.

2.12-2.13], [38, Theorem 2.2] or |79, Theorem 3.3]. We omit the details. O

In order to prove Lemma/2.4.7|and Lemma [2.8.1], we will extend the resolvent comparison
method developed in [62]. The basic idea is still to use the Lindeberg replacement strategy
for G(X,z). On the other hand, the main difference is that the resolvent estimates are

only obtained from the entrywise local law in [62], while in our case we need to use the

more general anisotropic local law (2.4.22)). (We will use the anisotropic local law in (2.8.1))
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when proving Lemma [2.8.1, However, for simplicity of presentation, we will always mention

(2.4.22)) instead.)
Let X = (z;,) and X = (%;,) be two matrices as in Lemma [2.4.12, Define a bijective

ordering map ® on the index set of X as

Q:{(i,p):1<i<n, n+l<p<n+N}—{l, ... Ymax = nIN}.

v

For any 1 < 7 < Ymax, We define the matrix X7 = (7,) such that z}, = @, if ®(i,n) <7,

and :1:@7# = T;, otherwise. Note that we have X° = X , XMax = X and X7 satisfies the

bounded support condition with ¢ = N~ for all 0 < v < Ymax. Correspondingly, we define

-1

0 Y —Ln Y7
, G7 .= , (2.8.3)
(YV)* 0 (yv)* —zInyN

H" =

where Y7 := ©12U* X VY2, Then we define the (n + N) x (n + N) matrices V7 and W7

by (recall (2.7.21))
V= Al W= A

(in)’ (ip)’

so that HY and H"~! can be written as
H' =Q"+V", H™'=Q" +W", (2.8.4)

for some matrix @7 that is independent of x;, and ;,. For simplicity of notations, for any

v we denote

-1

[TLXTL O

ST=G", TV:=G"', R =|Q - : (2.8.5)

0 2Inw N

For convenience, we sometimes drop the superscript from R, S, T if v is fixed. Under the

above definitions, we can write

-1

Inix 0
S=|(qg - " +vr| =T+ RV IR (2.8.6)

0 2INwN

Thus we can expand S using the resolvent expansion till order m:

S=R—-RV'R+ (RV'")?’R+ -+ (=1)™(RV")™R + (—=1)™*Y(RV")"*1g. (2.8.7)
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On the other hand, we can also expand R in terms of S,
R=(I-SV) 'S =8+SVIS+(SV")2S +...+ (SV)™S + (SVT)"*R. (2.8.8)

We have similar expansions for 7" and R by replacing (V7,5) with (W7, T) in (2.8.7) and
(2.8.8). By the bounded support condition, we have

max [V = O(|zs,|) < N7¢,  max [W7| = O(|2;,]) < N~V2. (2.8.9)
v v
Note that S, R and T satisfy the following deterministic bounds by ([2.6.9)):
sup  maxmex (|57, |77, |R'} s swp n<N. (2.8.10)
265(00,0075) v Zeg(co,C(),E)
Then using expansion (2.8.8)) in terms of T, W7 with m = 3, the isotropic local law (2.4.22))
for T', and the bound (2.8.10)) for R, we can get that for any deterministic unit vectors
u,veC?,

O(1) with high probability. (2.8.11)

v|_

sup  max |R]
265(00700,8)

From the definitions of V7 and W7, one can see that it is helpful to introduce the following

notations to simplify the expressions.

Definition 2.8.2 (Matrix operators ). For any two (n+ N) x (n+ N) matrices A and B,
we define
Asx,B:=ALB, I, :=A] (i, ) = 7. (2.8.12)

(ip)>

In other words, we have
Axy B =Aw,w,B + Aw,wi B, w;:= Y12y, W, = 312 A\
We denote the m-th power of A under the +.-product by A*™, i.e.

AP = Ay Awy Axy vy AL (2.8.13)

Definition 2.8.3 (P,x and P, ). For ke N, k = (ky,--- ,ks) e N° and 1 < 7 < Ypax, we
define

D D
Py iGuy = G+ Py (H Gum> = HP%ktGutvt, (2.8.14)
t=1 t=1
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#y(k+1) _ (G*W(kﬂ))

where we abbreviate Guv v If 1 and By are products of resolvent entries

as above, then we define
Prx(®1 + B3) 1= Py k81 + Py xBo. (2.8.15)

Note that P, and P, x are not linear operators, but just notations we use for simplification.

Similarly, for the product of the entries of G — II, we define

p p
(H (G —1I) um) = [ [Py (G = My, (2.8.16)
t=1

t=1
where
(G—M)yy, ifk=0,
,P'y,k(G - 1_I)uv =
Gﬁl,(kﬂ), otherwise.

Remark 2.8.4. Using Definition [2.8.3] we may write, for example,

P (H G) H St Y, (H G) H o,
For k,s € N and k € N°*! it is easy to verify that
G*® w, G*F = G P (P Gay) = Py stk Guv (2.8.17)
where k| :=>7" |k, is the ['-norm of k. For the second equality, note that P, ;Gyy is a sum

of the products of G entries, where each product contains s + 1 terms.

Remark 2.8.5. It is easy to see that for any fixed k£ € N, P, ;Gyy is a sum of finitely many
products of (k + 1) resolvent entries of the form Gy, x,y € {u, v, w;, w,}. Hence by
and , we can bound P, ;Gyuy by O<(1). This is one of the main reasons why we need
to prove the stronger anisotropic local law for GG, rather than the entrywise local law only

as in [62].

Now we begin to perform the resolvent comparison strategy. The basic idea is to expand

S and T in terms of R using the resolvent expansions as in (2.8.7) and (2.8.8), and then

compare the two expressions. We expect that the main terms will cancel since z;, and 7,

have the same first four moments, while the remaining error terms will be sufficiently small
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since x;, and 7;, have support bounded by N=¢. The key of the comparison argument is
the following Lemma [2.8.6] Its proof is almost the same as the one for [62], Lemma 6.5]. In
fact, we can copy their arguments almost verbatim, except for some notational differences.

We leave the details to the reader.

Lemma 2.8.6. Given z € §(co, Co,€) and ®(i,pu) =. For S, R in , we have

p
H urvy Z AkE xz,u ] Z AkE Pfy,kHSutvt + O<(N_T); (2818)

t=1 0<k<4 5<|k|<r/¢,keNP t=1
where Ay, 0 < k < 4, depend only on R, Ax’s do not depend on the deterministic unit vectors

(g, vy), 1 <t <p, and we have the bound
| < N0, (2.8.19)

Similarly, we have

p p
E][(S—Muv = Y, AE[(—z) ]+ Y AEP][(S =My, + O<(N ),

t=1 0<k<4 5<|k|<r/¢keNP t=1
(2.8.20)
where ﬁk, 0 < k <4, again depend only on R. Finally, we have
P P N p
E 1_[ Sutvt = ]E H Rutvt + Z AkE Py,k H Sutvt + O< (N_r)a (2821)
t=1 t=1 1<|k|<r/¢ keNP t=1
where Ay ’s do not depend on (u,vy), 1 <t <p, and
[Ax| < N0, (2.8.22)

Note that the terms A, g, A and A do depend on v and we have omitted this dependence in

the above expressions.

We now use Lemma to finish the proof of Lemma and Lemma 2.8.1] It is
obvious that a result similar to Lemma [2.8.6| also holds for the product of T entries. As in
(2.8.18]), we define the notation A”*, a = 0,1 as follows:

p p
E] [Suwi = >, AE[(—z) T+ > APEPyu] [Suw + 0<(N7), (2.8.23)
t=1

0<k<4 5<|k|<r/¢,keNP t=1
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p p
E H Tutvt - Z AkE xz,u ] Z AglE P%k H Tutvt + O< (N_T)- (2824)
t=1

O<k<4 5<|k|<r/¢,keNP t=1

Since Ag, 0 < k < 4, depend only on R and z;,, ;, have the same first four moments, we

get from ([2.8.23)) and ([2.8.24) that

: éuzw ix (E H Gutvt —E H G‘”‘“)

EH wve

i ::]@

(2.8.25)

'Ymax 5<Ik\<r/¢

(Av OEP kHGum —AD 1EP kHGum) + O(N7"+2),

*y—l keNP t=1

where we abbreviate G := G(X,z) and G := G(X,z). With a similar argument, we also
have

Eﬁ(G - H)utvt —E ﬁ(é - H)utvt

t=1 t=1
Ymax D<|k|<r /¢

p p
aPIpY (AE P [(G = W, ~ ALEP ] (G n>um> FOLNT).

y=1  keNPp t=1 t=1
(2.8.26)
Note that by (2.8.25|), we have
Ymax
Eﬂam EHGUM + >0 > A EP, kHGm + O (N2,
t=1 v=1 a=0,1 5<|k|<r/¢,keNP
(2.8.27)

By (2.4.22) and (2.8.19)), the second term in (2.8.27]) is bounded by

“Ymax

IIEDIDIEDINES

5<k<r/¢ 7=1 a=0,1 |k|=k,keNP

Y NS NP (2.8.98)
5<k<r/é

EP, i ]_[ GL ol <
t=1

However, the bound in (2.8.28)) is not good enough. To improve it, we iterate the above
arguments as following. Recall that P,y [[}_, G is also a sum of the products of G

UgVg

entries. Applying (2.8.25) again to EP,x [[}_; G&¢ and replacing ymax in ([2.8.27) with

v — a, we obtain that

EP, H Gial < [EP, ]_[ GO,

I

y'=1a Ol5<‘k"<r/¢k’eNP+|k|

EP, 1P, kHGuM + O (N2,
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Together with (2.8.27)), we have

p Ymax p
E] G| < EHGW > > A B [ G
t=1 y=1 a=0,1 5<|k|<r/¢,keNP t=1
+ 2 A AL | [EPy s P H G |+ 0L (N772).
¥,y a,a’ kK’

Again using and , it is easy to see that

¥,y a0’ kK’

AT AT

EP. 1P, k]‘[m o

urv

where we used that &'+ & > 10. Repeating the above process for m < 2r/¢ times, we obtain

that

P 2r/¢
E] G| <
t=1

ISP

m=0y1," ,Ym a1, ,am ki,

EP’Vm,km 'Yl ky H Gutvt N T+2)

Vi,
H 'Akj
J

where

ki € NP, ke NPthal g, e Nethaltlkel 0 and 5 < k| <
Using ([2.4.22)) and (2.8.19)), we obtain that
P
E] |G| < |E H Go..,
t=1

om0\ 5,
+ 0. (r{({%X(N )" (N ) 2

Y1 Ym

. (2.8.29)

-3

E,P'Ym,km ' P71 k1 H Gutvt

) (N r+2)

(2.8.30)

We remark that the above estimate still holds if we replace some of the G entries with G

entries, since we have only used the absolute bounds for the resolvent entries. Of course,

using (2.8.26)) instead of ([2.8.25)), we can obtain a similar estimate
p

E 1_[ (G’ymax - utvt < |E H lltVt
-1

+ O< (I{({%I:S((N_Q)m(N_(f’/m)ziki| Z

Y1y Ym

3

p
EP’YWykm o 'Yl ki l_[ utVt

t=1

) + O (N3,
(2.8.31)

Now we use Lemma [2.8.6 (2.8.30) and (2.8.31) to complete the proof of Lemma

and Lemma 2.8.1]
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Proof of Lemmal[2.4.7. We apply (2.8.31)) to (G — IT)uy (G — II)yy with p = 2 and r = 3.
Recall that X is of bounded support ¢ = N~Y2. Then by (2.4.22) and Lemma [2.4.2, we have

E|(G — M)uy|? < T2(2). (2.8.32)

Moreover, by (2.4.19)) the remainder term O-(N ") = O_(N~') in (2.8.31) is negligible.
Hence it remains to handle the second term on the right-hand side of ([2.8.31)), i.e.

(N3 ‘P ko P [(G0 = 10) [ (2.8.33)

Y1 Ym

uv

For each product in (2.8.33)), v appears exactly twice in the indices of G. These two v’s

appear as Gyw, Gw,v in the product, where w,, w;, come from some v, and v, (1 < k,l < m)

A
via P. Let v = " for vi € CI and vy € C*2. By Lemma [2.7.1 after taking the
Va

averages N 2 Zyk and N2 Zw’ the term Gyw,Gw,v contributes a factor

(Im (>7'GVw,) +Im (Ghyv,) + 0| Gh [+ IGSM})
O N,

(2.8.34)

R e e e

where we used ([2.4.22)). For all the other G factors in the product, we control them by O_(1)

using (2.4.22). Thus for any ki, ..., k,,, we have proved that (2.8.33) < ¥?(z). Together
with (2.8.31)) and (2.8.32)), this proves Lemma [2.4.7] O

Proof of Lemma[2.8.1 For simplicity of notations, instead of (2.8.2)), we shall prove that

E (m(z) — me(2))? | < |E (M(z) — me(2)) | + (¥2(2) + J> + K)". (2.8.35)

The proof for (2.8.2)) is exactly the same but with slightly heavier notations.

Define a function hA(I,J) such that

h(]7J):17 h(la‘])>0a ]:(Zlal%uzp)ezf? J:(j17.]27ajp)ezif (2836)

1,0
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Since A’s do not depend on uy, vy, we may consider a linear combination of (2.8.31f) with
coefficients f(I,J):

P P
EQFU D] @ =10 = B2 AT ] [(G =10
1,7 =1 1,7 =1
P
+ O (lr(nax(Nd’/lo)Zi KHEY  FUL )Pyt P | [(G = e ) + O(NTF2).
Y 1,J t=1
(2.8.37)
If we take r = p+2 and f(I,J) =n"P]]d;, it is easy to check that
P
E> AL [(G* =) = E(m® = me)?, a =0, Ymax. (2.8.38)
17 =1

Now to conclude (2.8.35)), it suffices to control the second term on the RHS of (2.8.37). We

consider the terms

p
P’mekm T P’thl H(G - H)iziza (2839)

t=1
for ky, ..., k,, satisfying (2.8.29)). For each product in (2.8.39) and any 1 <t < p, there are

two 4,’s in the indices of G. These two i,’s can only appear as (1) (G —II);,;, in the product,
or (2) éitwa éwbit7 where w,, w;, come from some 7, and 7; via P. Then after averaging over

n=P >, . ;. this term becomes either (1) m — m,, which is bounded by K by (2.8.1), or (2)
n! 2%, Givwa Gwyi,» Which is bounded as in (2.8.34)) by

Im Moc + J
o (It 0wt 1)

For other G entries in the product with no 4;, we simply bound them by O (1) using (2.8.1)).
Then for any fixed v1,...,%m, ki, ..., K,,, we have proved that

TN

11ynylp t=1

Together with (2.8.37)), this concludes ([2.8.35]). m

< (U*(z)+ P+ K)". (2.8.40)

it

2.8.2 Proof of Theorem [2.4.10

For the matrix X constructed in Lemma 2.4.12, it satisfies the edge universality by the

following lemma.
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Lemma 2.8.7. Let X and X® be two separable covariance matrices satisfying the as-
sumptions in Theorem and the bounded support condition [2.4.1]) with ¢ = N~V2,
Suppose by < NY37¢ for some constant ¢ > 0. Then there exist constants ,0 > 0 such that

for any s € R, we have

PO N3\ = A\) <s— N7°) = N2 < PO (N¥3(\ — \,) < ) ( )
2.8.41
<PW (NN —A) <s+N°)+ N7,

where PY and P? denote the laws of XV and X@, respectively.

Proof. The proof of this lemma is similar to the ones in [31], Section 6], [38, Section 6], [79,
Section 4] and [59, Section 10]. The main argument involves a routine application of the
Green’s function comparison method (as the one in Lemma [2.8.9)) near the edge developed
in [38, Section 6] and [79, Section 4]. The proofs there can be easily adapted to our case

using the anisotropic local law (Theorem [2.4.6)), the rigidity of eigenvalues (Theorem [2.4.8)),
and the resolvent identities in Lemma 2.6.3 and Lemma 2.7.1] O

Now it is easy to see that Theorem [2.4.10| follows from the following comparison lemma.

Lemma 2.8.8. Let X and X be two matrices as in Lemma . Suppose by < N3¢ for

some constant ¢ > 0. Then there exist constants €,9 > 0 such that, for any s € R we have

PY(NB(A = \) <s— N ) = NI <PX(NP(\ —\) <s)
. (2.8.42)
<SP (NP = A\) <s+ N )+ N,

where PX and PX are the laws for X and X , respectively.

To prove Lemma [2.8.8] it suffices to prove the following Green’s function comparison

result.

Lemma 2.8.9. Let X and X be two matrices as in Lemma . Suppose F' : R — R is

a function whose derivatives satisfy

sup [F® (2)[(1 + |z))"* < Oy, k=1,2,3, (2.8.43)
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for some constant Cy > 0. Then for any sufficiently small constant 6 > 0 and for any
E E\,Eycl;:= {QJ e — A < N’Z/S“S} and n:= N3
we have
IEF (NnImm(z)) — EF (NnImm(2))] < N™9T° 2 = E +ip, (2.8.44)
and

EQ E2
‘]EF <NJ Imm(y + in)dy> —EF (NJ Im m(y + in)dy)‘ < N7OTC2 0 (2.8.45)

Eq Ey

where ¢ is as given in Theorem[2.4.6 and Cy > 0 is some constant.

Proof of Lemma[2.8.8. Although not explicitly stated, it was shown in [38] that if Theorem
and Lemma hold, then the edge universality holds. More precisely, in
Section 6 of [38], the edge universality problem was reduced to proving Theorem 6.3 of
[38], which corresponds to our Lemma In order for this conversion to work, only the
the averaged local law and the rigidity of eigenvalues are used, which correspond to the

statements in our Theorem 2.4.8| O

Proof of Lemma[2.8.9. For simplicity, we only prove (2.8.44)). The proof for (2.8.45) is sim-
ilar with only some notational differences. By (2.6.10]), we have

Nnlmm(z) = Z| (2.8.46)

IZI2

Since N ~ n and |z| ~ 1, it is equivalent to prove that

F (772 Z GU@U> —EF (T}2 Z éz]Ez]>
1,5 1]

for z = E + in with E € Iy and n = N=2/37°, Corresponding to the notations in (2.8.5)), we

< N*¢+Cgs7

denote

= 772ZSij§ij, o= nQZRijFij, z! = nZZTmT
1,7 ij

i7j

Applying (2.8.46) to S, T and using (2.4.26|) and (2.4.11]), we get that with high probability,

max max {‘xs‘ 2|} < 1. (2.8.47)
o
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Using (2.8.7), Lemma [2.7.1] (2.4.22)) and (2.8.11)), one can obtain that

TrS —TrR| <n . (2.8.48)
Together with (2.8.47)), we also get that
max‘xR’ < 1 (2.8.49)

v

By (2.4.22)), (2.8.9) and the expansion (2.8.8), we also get that

S—M=0,(N?+N*)  R—-II=0,(N?¢+N) (2.8.50)

Without loss of generality, we assume that ¢ < 1/3 — ¢ in the following proof.

Applying the Lindeberg replacement strategy, we get that

F (f%@-j@j) - ( EGUGU> _’yix[ F (2%) —EF (27)]. (2.8.51)

y=1

From the Taylor expansion, we have

F (2%) - :izl z® — X*H)° +3 F<3> (Cs) (25 — 2P)°, (2.8.52)

where (g lies between z° and z'. We have a similar expansion for F (a:T) - F (.CER) with (g

replaced by (r.

Let ®(i, 1) = v and fix r € N. We perform the expansion (2.8.7) to get that

Sabe = O, (=23)*PysRap, + O<(NT?), ay, by e L. (2.8.53)

0<k<r

Using this expansion and bound (2.8.11]), we have that
P
HSatbt = Z Z (P k HRtht> xw + O< (N_T¢) ) (2854)
t=1 0<k<rp kEIf,k

where

ko= (koo k), 17 = {keNp 0<k<r Y k= k} (2.8.55)

By (2.8.11)), the k > r terms in ([2.8.54) can be bounded by
p
55 (Pl Trun ) o] < St - o,
t=1

k>r ke[fk k>r
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Hence (2.8.54)) is reduced to

]_[Satbt ]_[Ratbt + 3 (r)t | D) Py k]_[Ratbt + 0. (N779). (2.8.56)
1<k<r keIp
Similarly, we also have
]_[Tatbt HRatbt + 3 )t Y P kHRatbt + 0. (N7"%). (2.8.57)

1<k<r keI”

Obviously we can replace some of the resolvent entries with their complex conjugates by

modifying the notations slightly. Now we apply (2.8.56]) and (2.8.57) with p = 2 and r := 3/¢

to get that
=zl ) > 273 (Ri;Rij) | (—=zi,)* + O (N73), (2.8.58)
1<k<3/¢ \kel?,,
and
T=afy ) > 279 (Ri;Rij) | (=%:,)" + O (N73). (2.8.59)
1<k<3/¢ \kel3,, .

To control the second term in ([2.8.58]), we have the following lemma.

Lemma 2.8.10. For any fired k # 0 and k € I??/qb,k? we have

Zp'y,k (RijRij)| < N9 (2.8.60)

i}j

for some constant C' > 0.

Before proving this lemma, we first use it to finish the proof of Lemma [2.8.9. Given

(2.8.60) and n = N~2/379_ we see that there exists constant C' > 0 such that

P, x| < N71/3+03, (2.8.61)

> P (RijRij)

0,3

Combining (2.8.58)), (2.8.61)) and (2.4.15]), we see that there exists a constant C' > 0 such

that

E|z% — 2RP < N=%/2+09, (2.8.62)
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Since (g is between ¥ and x, we have |(s| < 1 by (2.8.47) and (2.8.49). Together with
(2.8.62)) and the assumption (2.8.43)), we get

“Ymax

Z E [F(3)(CS) (:ES _ xR)3]

v=1

< N72H08, (2.8.63)

We have a similar estimate for E [F @) (¢r) (xT — xR)g]. Now it only remains to deal with

the first sum on the right-hand side of (2.8.52)). Using (2.8.58)), (2.8.59) and the fact that

the first four moments of z;, and Z;, match, we obtain that for [ = 1,2,

‘E [F(l) (2™) (2° — xR)l} —E [F(l) (%) (2" - IR)Z]’

6/¢ l

<> 2 E] [ (Praa™)| ([E(=23)"| + [E(=F)F]) + O< (N3,

k=59 |ki|=k kiel? 3/M t=1
Recall that holds for z;, and Z;,, x;, has support O-(N~?), and 7;, has support
O-(N~Y2). Then it is easy to check that [E(—%;,)*| < N2 and |E(—z;,)*| < N~27¢ for
any fixed k > 5. Using (2.8.61)), we obtain that for [ € {1,2},

B [FO @R (25 — 2B)] — E[FO(R) (2" — 2B)]| < N~270+,

Together with (2.8.51)), (2.8.52)) and ([2.8.63)), this concludes the proof of ([2.8.44)). O

Proof of Lemma [2.8.60]. By Markov’s inequality, it suffices to prove that for any fixed p € 2N,

P
E mek (Rijﬁij) < (NHC(S)p- (2.8.64)
i,
For simplicity, we shall show the proof for
P
2 P (RyRig) | | < (NTFp. (2.8.65)
i,

The proof for ([2.8.64) is similar with slightly heavier notations.

Using ([2.8.21)) with r = p, we have

p
E H P%k (Ritjt Ritjt)

t=1

||
::]ws

p
’Lt]t Zt]t) - Z AQE P%a [H ,P’Yyk (Sitjtsitjt)] + O<(N_p)'
1<|e|<p/9 t=1
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With (2.8.22)), in order to show ([2.8.65)), it suffices to prove that

P

Z E 1_[ P’Y,k (Sitjzgitjt)

il?jlv"'vipmjp t=1

< (N1HOoP, (2.8.66)

and for a e N(kI+2)p 1 < la| < p/o,

p
Z E,P%a [H P%k (Sitjtgitjt)]
t=1

’il’jl:“' 7ipajp

We only prove ([2.8.66)), and the proof for (2.8.67)) is exactly the same except for the one
more P, o factor. Using a similar estimate as in (2.8.37) with

< (N0, (2.8.67)

f(I;J) :n—2p’ I = (ilai%"' aip)ezf7 J = (j17j2>"' ajp)ezfa

and P,k (S;,j,5:.j.) playing the role of (G — II);,;,, we obtain that

p p _
EZ f(ja J) 1_[ Py x (Sitjtsitjt) - EZ f(Iv ‘]) H Py x (Gitthizjt>
1,J t=1 1,J t=1
p —
+ O [ max(NO X E N F (1 )Py Pruges | [ Prac (GinGia )| | + O<(N742),
kom,y 1,0 7 -
(2.8.68)
where
k, e NIk+2p -, e NK+2ptikal g e NKIF2ptkal+ike] 0 anq 5 < k| < r
) Y Y 9 (2 ¢
Taking r = p 4+ 2, we see that to show ([2.8.66)), it suffices to prove that
p —
]EZ f(Ia ‘]) H P%k (Gitthitjt> < (N_1+05)p> (2869)
1,J t=1
and
p —
E Y f(L ) Prsen - P | | P (G G ) | < (N0, (2.8.70)
LJ t=1

We only prove (2.8.70]), and the proof for (2.8.69) is exactly the same (and actually easier).

For each product in (2.8.70)) and any fixed 1 < t < p, each of the indices 7; and j; only

~

appears twice. Since k # 0, they cannot contain the term C:’Z-tjt Gi,;, and we must have one

of the following three forms

Gitwa Gijt Gitjt ) Gitjt Gitwa Gijt ) Gitwa Gijt Gitwc Gwdjt )
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where W, ;.4 come from some (possibly different) 7’s via P’s. Following a similar argument

as below ([2.8.39)), each of the above form contributes a factor

0. ([Immm \I’(z)rﬂ) — O (N-1+%)

after averaging over n~2P Dt iy g g, Where we used that E € Is, n 1= N—2/3-% ([2.4.11))

and (2.4.18). Applying Lemma m (iii), we conclude ([2.8.70)). ]
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CHAPTER 3

Convergence of eigenvector empirical spectral

distribution

3.1 Introduction and main result

In this chapter, we continue to consider separable covariance matrices Q; and Qs satisfying
the Assumption [2.2.1 We are interested in the eigenvector statistics of Q; and Qs, which
will be (partially) characterized by the so-called eigenvector empirical spectral distribution
(VESD). We now give a brief introduction of VESD and its application in high-dimensional

statistics.

3.1.1 Eigenvector empirical spectral distribution

In applications of spectral analysis of large dimensional random matrices, one important
problem is the convergence rate of the empirical spectral distributions (ESD). For the sim-
plest sample covariance matrix with A = B = I (i.e. the null case), it is well-known that
the ESD F' )((n%* of X X* converges weakly to the Marcenko-Pastur (MP) law Fy/p [66]. One

way to measure the convergence rate of the ESD is to use the Kolmogorov distance
|F¥%s = Fasp| 2= sup [Pyt (2) = Farp(a)]

The convergence rate for sample covariance matrices was first established in [5], and later
improved in [48] to O(n~'/2) in probability under the finite 8th moment condition. In [79],
the authors proved an almost optimal bound that |F%. — Fyp| = O-(n~') under the

sub-exponential decay assumption.

The research on the asymptotic properties of eigenvectors of large dimensional random
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matrices is generally harder and much less developed. However, the eigenvectors play an
important role in high dimensional statistics. In particular, the principal component analysis
(PCA) is now favorably recognized as a powerful technique for dimensionality reduction, and
the eigenvectors corresponding to the largest eigenvalues are the directions of the principal
components. The earlier work on the properties of eigenvectors goes back to Anderson [3],
where the author proved that the eigenvectors of the Wishart matrix are asymptotically
normal and isotropic when n is fixed and N — oo. For the high dimensional case, Johnstone
[54] proposed the spiked model to test the existence of principal components. Then Paul
[76] studied the directions of eigenvectors corresponding to spiked eigenvalues. In [65], Ma
proposed an iterative thresholding approach to estimate sparse principal subspaces in the
setting of a high-dimensional spiked covariance model. Using a reduction scheme which
reduces the sparse PCA problem to a high-dimensional multivariate regression problem, [21]
established the optimal rates of convergence for estimating the principal subspace for a large
class of spiked covariance matrices. One can see the references in [21} 65] for more literatures

on sparse PCA and spiked covariance matrices.

For the test of the existence of spiked eigenvalues, we first need to study the properties
of the eigenmatrices in the null case. If A = B = I, then the eigenmatrix is expected
to be asymptotically Haar distributed (i.e. uniformly distributed over the unitary group).
However, formulating the terminology “asymptotically Haar distributed” is far from trivial
since the dimension n is increasing. Following the approach in [7), 86, 88| 106}, 107], we will
use the VESD to characterize the asymptotical Haar property. Suppose

APXB2 = Y G (3.1.1)

1<k<NAn

is a singular value decomposition, where
/\1 2/\2 = ... 2)\N/\n>0:/\N/\n+1 = .. :)\ana

{&}n_, are the left-singular vectors, and {(;}i_, are the right-singular vectors. Then for

deterministic unit vectors u e C"* and v € CV, we define the VESD of Q12 as

n N
n N
FS2 (@) = D [ WPl <aps Forn (@) = D -G V1, <a)- (3.1.2)
k=1 k=1
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Now we apply the above formulations to the null case. Adopting the ideas of [86], B8], we

define the stochastic process as

— ]
KXnul(t) = \/;Z (16 wI* =n7").
k=1

If the eigenmatrix of X X* is Haar distributed, then the vector y := ({(&,u))7_; is uni-
formly distributed over the unit sphere, and X, 4(¢) would converge to a Brownian bridge
by Donsker’s theorem. Thus the convergence of X, ,, to a Brownian bridge characterizes the
asymptotical Haar property of the eigenmatrix. For convenience, we can consider the time

transformation
n n n n
X Fe ) = 4[5 (F e ol0) ~ F (@)
Thus the problem is reduced to the study of the difference between the VESD and the

4 also converges weakly to the MP law

ESD. It was already proved in [7, 4] that F)(?))(*
for any sequence of unit vectors u € RM™. On the other hand, compared with ESD, much
less has been known about the convergence rate of the VESD. The best result before was
obtained in [I07], where the authors proved that if dy < 1 and the entries of X are i.i.d.
centered random variables, then |EF )(("))(*711 — Fuyp| = O(n~'/2) under the finite 10th moment
assumption, and |F )((n))(*u — Fuypl| = O(n=Y4*¢) almost surely under the finite 8th moment

assumption. However, we find that both of these bounds are far away from being optimal,

and can be improved with a different method. This is one of the purposes of this paper.

We will also extend the above formulation to include separable covariance matrices with
general diagonal covariance matrices A and B. In the general case, the eigenmatrix of Q;
is not asymptotically Haar distributed anymore. For its distribution, we conjecture that the
eigenvectors of Q; are asymptotically independent, and each & is asymptotically normal
with covariance matrix given by some Dy. In fact, our results in this paper suggest that Dy
takes the form Fi.(7%) — Fic(7Vk41), where ~y is defined in to denote the classical
location for A\, and F. is a matrix-valued function defined in (3.1.8]) with the property that
(u, Fy.u) is the asymptotic distribution of the VESD Fg, , for any u e C". Again, since the
dimension n increases to infinity, the above property is hard to formulate. One way is to

consider the finite-dimensional restriction in the following sense: given m € N, for any fixed
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unit vector u e C" and {iy, -+ ,i,} S {1,--- , N A n}, we should have asymptotically

(&, -+ &, W) ~ Ny (0,{u, Dju), ..., (u,D; u)). (3.1.3)

(In fact, for nice choices of A, B in the sense of Definition |3.1.1, (u, Dyu) is typically of order

N~1) We can also adopt the approach as above, that is to investigate the stochastic process

[nt]
X0 =[5 35 (K6 wP -~ u D). (.14
k=1

If n < N, we conjecture that Xﬁ’ﬁ(t) converges to the following Gaussian process for 0 <

t<1:
t
BB (t) .= J (u,Fy.u)o F;;'dB; conditioning on B2#(1) =0, (3.1.5)
0

where B; is a standard Brownian motion, F}. is the asymptotic ESD of Q; defined as the
cumulative distribution function of pi. in (2.2.16)), and F.,' denotes the quantile function.
As before, we can study the process through the time transformaton Xéf(FQl (x)),
where Fg, is the ESD of Q;. Due to the rigidity of eigenvalues (see Theorem , we have

for all x,

\/%Xﬁ’f(Fgl(fr)) = Fo,u(®) = (0, Fi(z)u) + O(n).
Thus we need to study the convergence rate of Fyg, y, to (u, Fj.u), and this is our main goal.
In fact, we will prove that the convergence rate of EFyg,  is O-(n™'), which shows that the

limiting process is centered, and the convergence rate of Fyo, 4, is O~ (n=%2), which partially

verify the 4/n scaling.

We remark that great progress has been made in other directions of the research on
eigenvector statistics. For example, one can refer to [14, 35] for the delocalization and
isotropic delocalization of eigenvectors, [57, 94] for the universality of eigenvectors, [17] for
the local quantum unique ergodicity of eigenvectors and [15] for the eigenvectors of principal
components. Note that some of these results are proved for Wigner matrices, but their

generalizations to separable (or sample) covariance matrices usually are straightforward.

91



3.1.2 Main result

We consider separable covariance matrices Q; and Qs satisfying the Assumption [2.2.1], where
we made one more assumption, i.e. both A and B are diagonal. Following the notations
in (2.2.3), we shall call them ¥ and S instead. To establish our main result, we need to
make some extra assumptions on 7y, and 7y defined in ([2.2.4), which takes the form of the

following regularity conditions. Recall the notations in Lemma

Definition 3.1.1 (Regularity). (i) Fiz a (small) constant 7 > 0. We say that the edge ay,

k=1,...,2p, is T-reqular if

ap =T, rln?gm lag —a;| = 7, min|l +my.(ag)d;| =7, min|l + mo.(ax)o;| = 7. (3.1.6)
7 7

(i) We say that the bulk components |agx, aox—1] is reqular if for any fixred 7/ > 0 there
ezists a constant ¢ = ¢, > 0 such that the densities p1. and pa.) in [ag + 7', agx—1 — 7'] are

bounded from below by c.

Remark 3.1.2. The edge regularity conditions in ([3.1.6)) is an extension of the ones in (2.2.19).
They ensure a regular square-root behavior of p; 5. near ay, for any k (instead of the rightmost
edge only as given by ) The bulk regularity condition (ii) was introduced in [59],
and it imposes a lower bound on the density of eigenvalues away from the edges. These
conditions are satisfied by quite general classes of A and B; see e.g. [59, Examples 2.8 and

2.9].
For any u e C" and z € C,, we define
Mieu(2) = =, 27 (1 4 mae(2)8) " a). (3.1.7)

Then my.y is the Stieltjes transform of a distribution, which we shall denote by Fi .
Moreover, we denote the density of Fi.y as picu. From (3.1.7)), it is easy to see that there

exists a matrix-valued function F;. depending on ¥ such that Fi.,, = (u, Fi.u), i.e., we have

mlc,u(z)zfmdﬂc“ —(u JdFlc (3.1.8)

T —z r—z
Now we are ready to state our main results, i.e. Theorem [3.1.40 We first state the main

assumptions.
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Assumption 3.1.3. Fiz a (small) constant 7 > 0.

(i) X = (zi5) is an n x N real or complex matriz whose entries are independent random
variables that satisfy the following moment conditions: there exist constants Cy, cog > 0 such

that for all1 <i<n, 1<j <N,

[Eaij| < CoN727, (3.1.9)

[E|zy;|> — N7Y < CoN 27, (3.1.10)
[Ea?;| < CoN“27, if ay; is complex, (3.1.11)

E|z;;|* < CoN 2. (3.1.12)

Note that — are slightly more general than .

(i) T<dy <7 'and|ldy—1|>7T

(iii) ¥ = diag(o1,09,...,0,) and & = diag(5y,5s,...,5x) are deterministic positive-
definite matrices. We assume that holds, all the edges of p1 2. are T-regular, and all
the bulk components of py s are reqular in the sense of Definition m

Theorem 3.1.4. Suppose dy, X and ¥ satisfy the Assumption [3.1.5 Suppose there exist
constants C1, ¢ > 0 such that

max |zl < OYN~9. (3.1.13)

1<i<n,1<j<N
Let u = u,, € C" denote a sequence of deterministic unit vectors. Then for any fized (small)

e >0 and (large) D > 0, we have

|EFSY, — FI| < N1+ (3.1.14)
for sufficiently large N, and for a := min(2¢,1/2),
P (IFS), — Fil = N™™¢) < N7, (3.1.15)

As an immediate corollary of Theorem we have the following result.

Corollary 3.1.5. Suppose dy and ¥ satisfy the Assumption . Let X = (x;;) be an
n x N random matrix whose entries are independent and satisfy
Ery; =0, Elz =N 1<i<n, 1<j<N. (3.1.16)
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If the entries of X are complex, then we assume in addition that
1<i<n, 1<j<N. (3.1.17)
Suppose there exist constants a, A > 0 such that

lim sup s* maX]P’ <|\/7.I'w| ) <A (3.1.18)

§—00

for all N. Let u = u, € C" denote a sequence of deterministic unit vectors. Then for any

fized € > 0, if a = 6, we have

|EFSY, — FI| < N1+ (3.1.19)
for sufficiently large N; if a = 8, we have
P (lnn sup NV2~¢| FSY — FiL | < 1) — 1. (3.1.20)
N—o0

Proof of Corollary[3.1.5 We use a standard cutoff argument. We fix a > 4 and choose a
constant ¢ > 0 small enough such that (N¥27¢)" > N2** for some constant w > 0. Then

we introduce the following truncation
X =10X, Q:= {]m”\ <N‘¢foralll<i<n,1<j<]\/}.

By the tail condition (3.1.18]), we have

P(X # X) = O(N?~¢/2+e@), (3.1.21)
Moreover, we have

P(X # X i.0.) = k!i_)rglo]P (UR—p Uiy Uy {Jay] = N72%)

= Jim P (U2, Uneprorey Uity i {J2i] = N70Y) (3.1.22)
o0 0
< Clim Y (21) (20227 < ¢ lim Y 27 = 0,
k—0o0 ik k—o00 prt

i.e. X = X almost surely as N — co. Here in the above derivation, we regard n = Ndy as

a function depending on N.
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Using and integration by parts, it is easy to verify that
E 25| Loy, -0 = O(N272), Elayl* 1, mn-0 = O(N274/2),
which imply that
[E;j| = O(N"272), El|i;[* = N7'+ O(N 27/,

\Ejm = O(N_2_“’/2), if ;; is complex.

Moreover, we trivially have

E|fij|4 < E|xij|4 = O(N_Q)
Hence X is a random matrix satisfying Assumption Then using (3.1.14]) and ((3.1.21])
with @ = 6 and ¢ = £/6, we conclude (3.1.19); using (3.1.15)) and (3.1.22) with ¢ = (1 —¢)/4
and a = 8, we conclude (3.1.20)). ]

Remark 3.1.6. By exchanging the roles of (n, X)) and (N, 53, one can prove the same bounds
(3.1.14), (3.1.15), (3.1.19) and (3.1.20) for Fg,(z) for any deterministic vector v e C¥.

Remark 3.1.7. The estimates (3.1.19) and (3.1.20) improve the bounds obtained in [107],

and relax the assumptions on moments and X2, 5 as well. The convergence rates in ((3.1.19))

and (3.1.20]) are optimal up to an N¢ factor. In fact, it was proved in [7] that for an analytic
function f,

VN [ £ (Fopa(e) = Frea(®) — N(0,07,) (3.1.23)

where N(0,0¢,) denotes the Gaussian distribution with mean zero and variance oy,. This
shows that the fluctuation of Fg, u(z) is of order N2 and suggests the bound in .
Taking expectation of (3.1.23), one can see that the order of |[EFg, u(z) — Fiu(z)| should
be even smaller. Moreover, the fluctuation of eigenvalues on the microscopic scale will lead
to an error of order at least N~! by the universality of eigenvalues [12, 61], [79]. This shows
that the bound should be close to being optimal. We check the bounds and
below with some numerical simulations; see Fig. |3.1]

Remark 3.1.8. In [107], the authors only handle the n < N (i.e. dy < 1) case for Q;, while

our proof works for both the dy > 1 and dy < 1 cases. However, in the case with dy — 1, we
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will encounter some difficulties near the leftmost edge asy, which converges to 0 as N —
and violates the regularity condition (3.1.6)). We will try to relax this assumption in the

future.

Remark 3.1.9. In Theorem , we have assumed that A = ¥ and B = . are diagonal. But
our results can be extended immediately to the case with general non-diagonal covariance
matrices A and B for multivariate normal data as discussed in (2.1.3). For generally dis-
tributed data, under sufficiently strong moment assumptions, it is possible to prove the same

results for the case with non-diagonal covariance matrices A and B. In particular, if the en-

tries of v/NX have arbitrarily high moments, it can be proved that (3.1.19) and (3.1.20] hold

for the VESD of Q;. The main inputs for the proof will include: (a) the anisotropic local law
in Theorem [2.4.6] (b) Theorem proved for the diagonal A, B case, (c) a self-consistent
comparison argument as in Section which extends Theorem to the non-diagonal
case through comparison with the diagonal case, and (d) the Helffer-Sjostrand arguments in
Section ??. However, under weaker moment assumptions as in Corollary [3.1.5 the proof will

be much harder. The main issue will be that the error bounds in steps (a) and (c) are not

sharp enough, which does not give the optimal convergence rates as in (3.1.19)) and (3.1.20)).

We would like to deal with this problem in the future, and focus on proving a sharp bound

for the convergence rate of VESD in the diagonal C case in this thesis.

Remark 3.1.10. As discussed above, the convergence of the stochastic process X;?f defined
in to the Gaussian process B4 in is also a very important question, which is
complementary to the results in Corollary 3.1.50 The convergence of Xﬁ;{l to the Brownian
bridge was first proved in the null case ¥ = I and Y =1 , for some special vectors of the
form u = n~Y2(+1,--- , £1) in [88]. The result was later extended to the case with a general
fixed vector u in [7]. More precisely, it was proved in [7] that for any fixed vector u and

analytic functions gy, - - , gx, the random vector

(Xn,u(gl)a e 7Xn,u(gk))> Xn,u(gl) = ng(]})dXiu(FQl (:U))7 1 <1< k>
converges to a Gaussian vector with mean zero and certain covariance function. We expect

that combining the method in [7] and the new tools in this paper, one can prove a similar
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convergence result for X;gvf in the case with general non-scalar A, B. This will be studied

in a future paper.

3.1.3 Simulations

In this subsection, we check the convergence rate of the (expected) VESD to the deformed
MP law with some numerical simulations. The simulations are performed under the following
setting: S =1 , i.e. we consider sample covariance matrices; n = 2N, i.e. dy = 2; the entries
V/Nx;; are drawn from a distribution ¢ with mean zero, variance 1 and tail P(|¢] = s) ~ 576
for large s; the unit vector v is randomly chosen for each N. Note that for sample covariance
matrices, Fg,, converges to the MP law Fj., the cumulative distribution function of ps. in
, for any deterministic unit vector v.e CV. In Fig. [3.1, we plot the Kolmogorov
distances [|Fg,v — Fb|| and |EFg, v — Fy.| for the following two choices of ¥: ¥ = I with

ESD 7 = §;, and

> = diag(1,- - ,1,4,--- ,4), with ESD ms = 0.58; + 0.50;. (3.1.24)
N~ ~Y—

n/2 n/2

For each NV, we take an average over 10 repetitions to represent F (];[)V and an average over 4 /N2
repetitions to approximate EF (J;[)v Under each setting, we choose an appropriate function
f(z) to fit the simulation data. It is easy to observe that the convergence rate of the VESD
is bounded by O(N~Y2), while the convergence rate of the expected VESD has order N~!.

This verifies the results in Corollary [3.1.5]

As discussed before, the convergence of Fg, ., to F. for any sequence of deterministic
unit vectors v can be used to characterize the asymptotical Haar property of the eigenmatrix
of Qs = X*XX (which also implies the asymptotical Haar property of the eigenmatrix of
Q; when ¥ = 0'21). On the other hand, for a general ¥, the eigenmatrix of Q; is not
asymptotically Haar distributed anymore and the VESD of Q; will depend on v. Moreover,
gives an explicit dependence of F. on ¥, which should be of interest to statistical
applications. In Fig.ﬂ(a), we plot Fg, v for ¥ in (3.1.24) and different choices of v;, i =

1,2,3. One can observe a transition of Fg, v when v changes from the direction corresponding
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Figure 3.1: The left figures of (a) and (b) plot Hng)v - FQ(éV)H as N increases from 50 to 2000,
: N N
and we choose f to fit the upper envelope of the data. The right figures plot HEF( 27)‘, — FQ(C )H

as N increases from 50 to 800.

to the smaller eigenvalues of 3 to the direction corresponding to the larger eigenvalues of 3.
In Fig.|3.2(b), we take A = UXU*, where D is as in (3.1.24)), U is a randomly chosen unitary
matrix, and w; = Uv;. One can see that even if A is non-diagonal, the convergence of the

VESD of Q; still holds (see Remark [3.1.9)).

The rest of this chapter is organized as follows. We prove Theorem in Section (3.2
using Stieltjes transforms. In the proof, we mainly use Theorems [3.2.143.2.3] which give
the desired anisotropic local laws for the resolvents of Q; and Q,. The proofs of Theorems

3.2.1 will be given in subsequent sections.

98



0.9 1 0.9

0.8 0.8

| |
| |
| |
| |
| |
| |
| |
0.7 —— VESD of Q, with v, : 0.7 —— VESD of Q, with w, :
06 __F1C with v, I 06 __Flcwith W, I
B ! 1 067 !
——VESD Ole with v, | —— VESD of Ql with w,l
| |
0.5 ——F with v, | 0.5 ——F_with w, |
0al —VESDof Q, with v,| | 04l —VESDof Q, with w,| |
——F, with v ! ——F with w !
3 | |
03 y ke y. 03[y e } Ly
| N e PN e
0.2 | L L | | 0.2 | L L | |
0 5 10 15 20 0 5 10 15 20

Figure 3.2: The plots for Fo, (z) and Fi.y(z) with N = 2000, n = 2N and under the

settings in Fig. |3.1, We take vi = +/2/n(1,---,1,0,---,0), v3 = 4/2/n(0,--- ,0,1,---,1),

g g 1= 4/2/n( ), va = /2/n( )
n/2 n/2

vy = (Vi +v3)/v2, and w; = Uvy, i = 1,2,3. The dashed lines mark the places of the left

edge vy and the right edge ~; of the spectrum (recall (2.4.14))).

3.2 Proof of the main result

For definiteness, we will focus on real sample covariance matrices during the proof. However,

our proof also applies, after minor changes, to the complex case if we include the extra

assumption (3.1.17)) or (3.1.11)).

Note that the Stieltjes transforms of ng)u and ng)v are equal to (u,G;(X, z)u)y and
(v,Gs(X, z)v), respectively. We first state the local laws on (u,Gju) and (v, Gyv), which
will be used to prove Theorem [3.1.4l Recall the notations in Section In the following

proof, we will always assume that z lies in the spectral domain
D(w,N):={2€eC, :w<E<2\, N " <n<w'} (3.2.1)

for some small constant w > 0, unless otherwise indicated. Recall the condition (3.1.6)), we

can take w to be sufficiently small such that w < vx/2. Define the distance to the spectral
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edges as kK := minj<k<op |F — ag|. Then we have the following estimates for m; o

n/v/k+mn, if E ¢ supppi .
Imige(2)] ~ 1, Tmmyge(2) ~ : (3.2.2)

VE+ 1, if £ € supp p12c

and
max |(1 + Mae(2)0;) ™| + max (1 + mlc(z)&“)_l\
ZEZl /.LGIQ

for z € D. Their proof is the same as in (2.2.6]) using the regularity condition (3.1.6]).

—0(1). (3.2.3)

Theorem 3.2.1 (Local MP law). Suppose dy, X, ¥ and 5 satisfy the Assumption .
Suppose X is real and satisfies with ¢ < N~% for some constant ¢ > 0. Then the
following estimates hold for z € D:

(1) the averaged local law:
Im(X, z) — me(2)| + |mi12(X, 2) — mia.(2)] < (Nn)™h (3.2.4)
(2) the anisotropic local law: for deterministic unit vectors u,v € CZ,
Ku, G(X, 2)v) — (u,II(2)v)| < q + ¥(2); (3.2.5)
(3) for deterministic unit vectors u,v € C* oru,ve C2,
[(u, G(X, 2)v) — (w, TI(2)v)] < ¢® + (Nn)~V2 (3.2.6)

All of the above estimates are uniform in the spectral parameter z and the deterministic

vectors u, v.

The proof for Theorem [3.2.1] will be given in Section (3.4, Here we make some brief
comments on it. If we assume (instead of and (3.1.10))), then and
have already been proved in Theorem . Note that since ¥ and 3 are diagonal,
there is no need to use the domain in . Moreover, extending the domain S(cg, Cy, €)
in Theorem to D(w, N) here does not change the proof, because only the estimates
(3.2.2)) and are relevant for the proof. The main novelty of this theorem is the bound

(3.2.6), which will be the main focus of our proof. Finally, if the variance assumption in
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(3.1.16)) is relaxed to the one in (3.1.10)), we can still use the arguments for Theorem
to get the desired estimates (3.2.4)-(3.2.6). In fact, it is easy to check that the O(N~27%)
term leads to a negligible error at each step, and the whole proof remains unchanged. The

relaxation of the mean zero assumption in (3.1.16]) to the assumption (3.1.9)) can be handled

with the centralization Lemma [3.3.2]

After taking expectation, we have the following crucial improvement from to
(3.2.7), which is the main reason why we can improve the bound in [107] to the almost
optimal one in ([3.1.14). In fact, the leading order terms of ((u,Giuy — mi.y) vanish after
taking expectation, and hence leads to a bound that is one order smaller than the one in
(3.2.6). The proof of Theorem constitutes the main novelty of this chapter, and will
be given in Section [3.3]

Theorem 3.2.2. Suppose the assumptions in Theorem hold. Then we have
[Edu, G(X, 2)v) — (w,I(2)v)] < ¢* + (Nn)™! (3.2.7)

uniformly in z € D and deterministic unit vectors u,v € C or u,v e C2,

If g = N~ then (3.2.6) and (3.2.7)) already give that
[{u, Giu) — mycu| < (NU)_W, [Eu, Giu) — micul < (NU)_l,

which are sufficient to conclude Theorem |3.1.4. However, we find that the second bound on
the expected VESD is still valid under a much weaker support assumption. More specifically,

we have the following theorem, whose proof uses the Lindeberg replacement strategy, and is
very similar to (actually, simpler than) the one for Theorem and Lemma [2.4.7] Hence

we shall omit the details and refer the reader to the supplementary material of [104].

Theorem 3.2.3. Suppose the assumptions in Theorem hold. Then we have
ECu, GX, 2)v) — (T < (V) (3.2.8)
uniformly in z € D and deterministic unit vectors u,v e Ct oru,v e C2.
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As a corollary of (3.2.4]), we have the following rigidity result for the eigenvalues. Its
proof is the same as the ones for (2.4.30) and [59, Theorem 3.12]. So we omit the details.
Recall the classical locations of eigenvalues ; defined in (2.4.14)).

Theorem 3.2.4 (Rigidity of eigenvalues). Suppose Theorem and the regularity condi-
tion hold. Then we have

A=l + Ak — x| < N7, (3.2.9)

where K :==n A N.

In the rest of this subsection, we finish the proof of Theorem [3.1.4] using Theorems
3.2.113.2.4. The following arguments have been used previously to control the Kolmogorov
distance between the ESD of a random matrix and the limiting law. For example, the reader
can refer to [37, Lemma 6.1] and [79, Lemma 8.1]. By the remark below (3.2.1), we can

choose the constant w > 0 such that vx/2 > w.

Proof of (3.1.14}). The key inputs are the bounds ({3.2.8)) and (3.2.9). Suppose (u, G, (X, z)u)

is the Stieltjes transform of p,. Then we define

Nu(E) := JI[QE] () pudz, n.(F):= Jl[O,E](x)plquda:, (3.2.10)
and py := Epy, ny := Eny,. Hence we would like to bound
BP0, = Fical = sup na(E) ~ n(B)|.
For simplicity, we denote Ap := p, — pa. and its Stieltjes transform by

Am(z) := E(u, G (X, 2)uy — mycu(2).

Let x(y) be a smooth cutoff function with support in [—1, 1], with x(y) = 1 for |y| < 1/2
and with bounded derivatives. Fix 1y = N~ and 3yx/4 < E; < Fy < 3v/2. Let
f = fB, B be a smooth function supported in [E; — 1y, Ey + no] such that f(z) = 1 if
v e [Ey +n, By — o), and |f| < Cny?t, |f"| < Cng? if |x — Ey| < no. Using the Helffer-
Sjostrand calculus (see e.g. [24]), we have

f(E) = % JRQ iy f"()x(y) ; i(_f ixz;ryiyf’(x))x’(y)
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Then we obtain that

[ se180108
Cf (Lf @)+ [yllf @) X (W) Am(z + iy)|dedy (3.2.11)
J J " (z)x(y)Im Am(z + 1y)dxdy' (3.2.12)
lyl<no J|z—E; |<770
J f f"(z)x(y)Im Am(z + 1y)dxdy' (3.2.13)
ly|=no J|z—E; |<770

By with n = 7y, we have
nolm Eu, G1 (X, E + ing)u) < N1+, (3.2.14)
Since nlm E(u, G, (X, E + in)u) and nlmm,.,(E + in) are increasing with 7, we obtain that
n [Im Am(E +in)| < N~ for all 0 < 1 < n,. (3.2.15)

Moreover, since G(X, z)* = G(X, z), the estimates (3.2.8) and (3.2.15)) also hold for z € C_.

Now we bound the terms (3.2.11)), (3.2.12) and (3.2.13). Using (3.2.8) and that the
support of X' isin 1 = |y| = 1/2, the term ([3.2.11]) can be bounded by

JW (@) + yllf @) X W)l Am(z + iy)|dedy < N7 (3.2.16)

Using | f”| < Cny? and (3.2.15)), we can bound the terms in (3.2.12)) by

f f f7(@)x(y)Im Am(x + iy)dedy| < N~ (3.2.17)
lyl<no J]z— E|<7lo

Finally, we integrate the term (3.2.13]) by parts first in z, and then in y (and use the Cauchy-
Riemann equation dIm(Am)/dxz = —0Re(Am)/dy) to get

[ ] wrenm sne + sty
j _Bil< MoX (o) f'(@)Re Am(x + i) dz (3.2.18)
_L f' e (yX'(y) + x(y) f'()Re Am(z + iy)dzdy. (3.2.19)
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We bound the term in (3.2.18) by O-(N~!) using (3.2.8) and |f’| < Cny*'. The first term
n (3.2.19) can be estimated by O-(N ') as in (3.2.16)). For the second term in (3.2.19)), we

again use and |f'| < Cny! to get that

J f f(z )ReAm(m—i-ly)da:dy' f —dy<N L
y=no Jl|z— E|<710

Combining the above estimates, we obtain that

f J " (2)x(y)Im Am(z + 1y)dxdy‘ < N1
y=no Jlz— E|<no

Obviously, the same estimate also holds for the y < —ny part. Together with (3.2.16|) and

(13.2.17)), we conclude that

U f(E)A,o(E)dE‘ < N7, (3.2.20)

For any interval I := [E — 1y, E + no] with F € [yk/2,271], we have

fa(E +no) — fru(E —no) = Z (&, w)?
Ak€(E—mn0,E+mn0] (3.2.21)

2770 Z )\|<£k7 u>’ o _ 27701m <u’ gl (X, E + inO)u>7

k— + 15
where in the last step we used the spectral decomposition in . Then by , we
get that
nu(E + 1) — nu(E —m) < N7H, (3.2.22)

On the other hand, since p;.y is bounded, we trivially have

ne(E + 1) —ne(E —n9) < Cng = CN~1H, (3.2.23)

Now we set Fy = 3v1/2. With (3.2.20)), (3.2.22) and (3.2.23), we get that for any
Ee [3’7]{/4, E2]7

|(nu(Ey) — nu(E)) — (ne(EBy) — ne(E))| < N~1H, (3.2.24)

Note that by (3.2.9), the eigenvalues of Qy are inside {0} U [3yk /4, Es] with high probability.

Hence we have that with high probability,

fu(E2) = ne(Es) = 1, nu(37k/4) = tu(0). (3.2.25)
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Together with (3.2.24)), we get that

sup [nu(E) — n(E)| < N~ (3.2.26)
E>0
This concludes (3.1.14]) since w can be arbitrarily small. O]

Proof of . The proof for (3.1.15) is similar except that we shall use the estimate
(3.2.6) instead of (3.2.8). By (3.2.6), we have for any u e C**,

[, G (X, 2)w) — macu(2)] < N720 4 (Nog) =12 (3.2.27)
uniformly in z € D. Then we would like to bound (recall (3.2.10))
|FSYy — Freul = sup [ (E) — ne(E)]
where n, is defined in . We denote
Ap = pu— pren, A=, G1(X, 2)u) — mycu(2).
Then for fg, g, defined above, we can repeat the Helffer-Sjostrand argument with the

estimate (|3.2.27) to get that

sup f [ 2w (E)AP(E)AE| < N72¢ 4 N712, (3.2.28)

E1,E2

which, together with (3.2.21)) and ([3.2.25]), implies that

sup |fin(E) — ne(E)| < N™2¢ 4 N~V/2,

E>0

This concludes (3.1.15)) by the Definition [2.4.1} O

3.3 Proof of Theorem [3.2.2

First, we record the following simple lemma. In fact, it has been already used in the previous

proof in Chapter [2| but we state it here for reader’s convenience.

Lemma 3.3.1. Suppose ®(z2) is a deterministic function on D satisfying N~"% < &(z) <
N=¢ for some constant ¢ > 0. Suppose |Gay(2) — Hgy(2)| < ®(2) uniformly in a,b € T and
zeD. Then for any T < T with |T| = O(1), we have uniformly in z € D,

max |Gap(2) — Gg)(z) < 92(2). (3.3.1)

a,beZ\T
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Proof. The bound (3.3.1]) can be proved by repeatedly applying the first resolvent expansion
in (2.6.8]) with respect to the indices in T. O

For X satisfying the assumptions in Theorem [3.2.1], we write X = X; + B, where X; :=

X —EX is a real random matrix satisfying (3.1.10)), (3.1.12)) and

E(Xl)iu = O, 1€ Il, JYaS IQ, (332)
and B := EX is a deterministic matrix such that
max |B’LM| < CoNiQiCO. (333)
[

The next lemma shows that G(X, z) is very close to G(X1, z) in the sense of anisotropic local

law. Its proof will be given in the supplementary material.
Lemma 3.3.2. If holds for G(X1,z), then we have

[Ku, G(X, 2)v) —(u, G(Xy, 2)v)| < (Nn)~! (3.3.4)
uniformly in z € D and deterministic unit vectors u,v e CZ.

Proof. For z € D, we have

-1
Ty X+ B .
G(X,2) = Mt — (G + V), (3.3.5)
Xf + B* _ZINXN

B
where we abbreviate G1(z) := G(X3,2) and V := . Then we expand G using
B* 0
the resolvent expansion
G=G,—-GiVG| + (G1V)2G1 — (G1V)3G (336)

We need to estimate the last three terms of the right-hand side. First, note that by (2.7.2)-
(2.7.5) and (3.2.5), we have for z € D,

masc{ Y (Gwl®s DG Y1 Gwl Y1 G)wl | <07, (3.3.7)
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for any v e C* and T < Z with |T| = O(1).

For any unit vectors u,v € CZ, we have

W GVEW < | D (G Va

beZl a€l

<max (D Wal) " X1 @y 3:39)

acel beZ

1/2
< N—1-c <Z (G, |2> < N-teop12,

beZ

(G |

where in the second step we used (3.2.5) for Gy, in the third step the Cauchy-Schwarz
inequality and (3.3.3)), and in the last step (3.3.7). With a similar argument, we obtain that

[u, (G1V)*Gyv)| < N72720p71, (3.3.9)

Combining (|3 with the rough bound m for G, we get that

[, (G VPG| = )2 (GAV)2Gh).. VasGi

(3.3.10)

< () S (Saf) < on oy

where we used n > N~! for z € D in the last step. Plugging the estimates - m
into (3.3.6)), we conclude that

[(u, Gv) — (u, Gyv)| < N71eop=12 < (Np)~L. (3.3.11)

for all deterministic unit vectors u, v e CZ. O

3.3.1 Sketch of the proof

In this subsection, we start proving the resolvent estimate . For simplicity, we denote
® := ¢> + (Nn)~"2. By Lemma , we can assume that the entries of X are centered
without loss of generality. We will only prove for u,v € C%, while the proof in the
case of u,v e C” is exactly the same. Also by polarization, it suffices to prove the following
estimate

IE(v, Go( X, 2)v) — Iy y(2)] < ¢t + (Nn)_l, v e C, (3.3.12)
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We can obtain the more general bound (3.2.7)) by applying (3.3.12) to the vectors u + v and
u + iv, respectively. Note that (3.2.6) gives the a priori bound

’ 2 Ui [E (g2)/ﬂ’ o HW»(SMV]
v

We will show that after taking expectation, the leading order term in (gg)w—ﬂwéw vanishes

< .

and leads to the better estimate (3.3.12)). We deal with the diagonal and off-diagonal parts

separately:

Z |Uu|2 [E(g2)uu - Huu] ) Z v, (g2)u

ptv

For any T < Z, recall the Z variables defined in ([2.6.22]):

Z0 = (1-E,)(G™);} = _ % S aG - (VT GTY),, pg T,
’LEIl
Note that by (3.2.6), (3.3.1) (with ® = ¢ + ¥ by (3.2.5)), and Lemma[2.4.2) we have
ZM = (1-E,) [(GM),h —ma)] < &, (3.3.13)

for any T < Z with |T| = O(1). Then using we get that

1
EG,, -1, =E —1II
e —2 — 25, mae(z) — 25,(mY —my(2)) + 2, "

= —II2 EZ, + O (®*+ (Nn)~") = O~ (9?),

where in the second step we used (3.2.4), (3.3.1), (3.3.13), and (2.4.16)). So we can bound

the diagonal part by

S 0uP [E(Go)s — W] = . [0 [E Gy — T ] < " + Nin (3.3.14)

B B

For the off-diagonal part, we claim that for u # v € Iy,
‘]E (G2),,| < N2, (3.3.15)

Then using (3.3.15) and |v|; < /N, we obtain that

1
s |<wivosc(ied)

HFV
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This concludes (3.3.12)) together with (3.3.14]).

To prove ([3.3.15), we extend the arguments in [I4, Section 5]. We illustrate the basic
idea with some simplified calculations. Using the resolvent identities (| and - we

get
EG, = EG,GY) (Y*G™Y) |
= EG)GY) (Y*GWY) |+ EG“”G”“G ) (VaWyY) . (3.3.16)
We now focus on the first term. Applying (2.6.5)) gives that
EGYGW (Y*Gw)y E (rrem),
F O = B G [ - (XGWIX),]
_E remy), . (3.3.17)
(H V+e,) (I +ey)
where we have
Zal i — (Y*GW = —Zo—z (IL; — GY") + 29 < @ (3.3.18)

Z€I1 €1y

by (2.4.16), (3.2.4), (3.3.1) (with & = ¢ + ¥) and (3.3.13). We now expand the fractions
n (3.3.17) in order to take the expectation. Note that the G***) entries are independent

of the X entries in the u, v-th rows and columns. Thus to attain a nonzero expectation,
each X entry must appear at least twice in the expression. Due to this reason, the leading
and next-to-leading order terms in the expansion vanish. The “real” leading order term is

proportional to
Ee,e, (Y*G(””) ), = E(V*GUY),, (Y*G™Y),,(Y*GUY),,

7, V) v v Ci,' v —
062 —HRGEIGHI G =N V;Hiinjj]EGgf )+ O (N'9?), (3.3.19)
i#j
where the constants C;; depend on o;, 0; and the 3rd moments of X;, and X, (recall

3 G’E’L V) 11 3 3 3

applying ([2.6.6|) to G%W), we get that

EGH = BGYV G (v GUimy )
! S Y (3.3.20)
= IILE (YGURIY*) -+ 0-(9?) = 0-(9?),
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where in the second step we used |G%) — IT;| + |G§Z]“ ) _ 1| < ® and

.. . —1
(YG(UMV)Y*) _ G(/ﬂ/) (G(/W)G(WV)> < @,

ij ij i Jj
which follow easily from (3.2.6) and (3.3.1)), and in the last step the leading order term
vanishes since the two X entries are independent for ¢ # j. Then with (3.3.20f), the terms in

(3.3.19) can be bounded by O_(N~1®?).

In general, after the expansion of the two fractions in (3.3.17)), we get a summation of
terms of the form

A = Ea?&Z(Y*G(“”)Y)W, W # v,

up to some deterministic coefficients of order O(1). Since e, ,| < ® < N~%/2 for z € D (we
can take w small enough such that N=%/2 > ¢?), we only need to include the terms with
m+n < 2+ 2/w and the tail terms will be smaller than N—1®2. Note that in A, the Xy,
entries, X, entries and G*) entries are mutually independent. Moreover, both the number
of X, entries and the number of X, entries are odd. Thus to attain a nonzero expectation,
we must pair the X entries such that there are products of the forms ng and ij for some
ni,ny = 3. As a result, we lose (n; —2)/2 + (ny —2)/2 > 1 free indices, and this contributes
an N~! factor. On the other hand, for the product of G entries, we have the following three
cases: (1) if there are at least 2 off-diagonal G entries, then we bound them with O (®?); (2)
if there is only 1 off-diagonal G entry, then we can use the trick in and the bound
(3.3.20); (3) if there is no off-diagonal G entry, then we lose one more free index and get an
extra N~! factor. This leads to the estimate for the term in (3.3.17)).

For the second term in (3.3.16)), we again use Lemma to expand the G, G,,, and

G} entries. Our goal is to expand all the G entries into polynomials of the random variables
Sap 1= (Y*G’(’“’)Y)ag, a, B e {p, v}, (3.3.21)

so that the X entries and G entries are independent in the resulting expression. In
particular, the mazimally expanded terms (see (3.3.22]) below) can be expanded into S,z
variables directly through (2.6.5)) and (2.6.6)). However, non-mazimally expanded terms are

also created along the expansions in (2.6.6) and (2.6.8). Then we need to further expand
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these newly appeared terms. In general, this process will not terminate. However, we will
show in Lemma that after sufficiently many expansions, the resulting expression either
has enough off-diagonal terms, or is maximally expanded. In the former case, it suffices to
bound each off-diagonal term by O_(®). In the latter case, the expression will only consist
of S,p variables. Following the argument in the previous paragraph, the expectation over
the X entries produces an N~! factor, while the expectation over the G entries produces a

®2 factor.

In the rest of section, we give a rigorous proof based on the above arguments.

3.3.2 Resolvent expansions

To perform the resolvent expansion in a systematic way, we introduce the following notions

of string and string operator.

Definition 3.3.3 (Strings). Let 2 be the alphabet containing all symbols that will appear

during the expansion:

(v) G“)

ppo v

A = {Gop, G, Sas with a, B e {u,v}} U {G (G (GUN Y.

We define a string s to be a concatenation of the symbols from 2, and we use [s] to denote

the random variable represented by s. We denote an empty string by & with value [&] = 0.

Remark 3.3.4. Tt is important to distinguish a string s from its value [s]. For example,

“G,," and “G WG,(ff,) S, are different strings, but they represent the same random variable
by (2.6.6).

We shall call the following symbols the maximally expanded symbols:

max = {Guua Gl/,ua G(V) G W

WG (GUN T (GYNY Y, Sy Sy Sy S} - (3.3.22)
A string s is said to be maximally expanded if all of its symbols are in 2,,,. We shall call
G, GW, Sy, Syu the off-diagonal symbols and all the other symbols diagonal. By
and (3.3.1), we have [a,] < @ if a, is off-diagonal (we have S, < ® using (2.6.6)) and

[aq] < 1 if a, is diagonal. We use F, maz(s) and Fog(s) to denote the number of non-

maximally expanded symbols and the number of off-diagonal symbols, respectively, in s.
111



Definition 3.3.5 (String operators). Let a # [ € {u,v}.

(i) We define an operator 1y acting on a string s in the following sense. Find the first
Goa 01 GLins. If Goy is found, replace it with Gg@; if Gt is found, replace it with

(G&@)*l; if neither is found, set 19(s) = s and we say that 1y is trivial for s.

(i) We define an operator 7, acting on a string s in the following sense. Find the first

Goo or Golin's. If Goy is found, replace it with GO‘GB—;‘M; if Gl is found, replace it
with —M; if neither is found, set T(s) = & and we say that 1y is null for s.

Gaa Ggﬁoz GBB

(11i) The operator p replaces each Gup in the string s with GaaG(Boé)Saﬁ.

By Lemma [2.6.3] it is clear that for any string s,

[7o(s)] + [ma(s)] = [s, [p(s)] = [ (3.3.23)

Moreover, a string s is trivial under 75 and null under 7y if and only if s is maximally
expanded. Given a string s, we abbreviate sy := 7y(s) and s; := p(71(s)). For any sequence

w = aas...a, with a; € {0, 1}, we denote
Sw 1= P Ta, oo P2 T 0y P Ta, (),  where p° = 1.

Then by (3.3.23)) we have
Z [[Sw]] = [[S]]7 (3'3'24)

lw|=m

where the summation is over all binary sequences w with length |w| = m.

Lemma 3.3.6. Consider the string s = “GWGZ(,’;?SW”. Let w be any binary sequence with

w| = 4ly and such that s, # . Then either F,p(sw) = 2ly or s, is maximally expanded.
Ji

Proof. Tt suffices to show that any nonempty string s,, with Fog(s,,) < 2y is maximally ex-
panded. By Definition |3.3.5] a nontrivial 7y reduces the number of non-maximally expanded
symbols by 1, and keeps the number of off-diagonal symbols the same; a pr; increases the
number of non-maximally expanded symbols by 2 or 3, and increases the number of off-

diagonal symbols by 2. Hence Fog(s,) < 2lp implies that there are at most (lp — 1) 1’s in w.
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Those pr; operators increase Jy, mq: at most by 3(lp — 1) in total. On the other hand, there
are at least 3lp 0’s in w, which is sufficient to eliminate all the non-maximally expanded
symbols (whose number is at most 3(lp — 1) + 1 = 3ly — 2 in total since Fj,_nqz(s) = 1 for the

initial string). O
Now we choose [y = 1 + 1/w. Then using ® = O(N~/2), we have

Z [[Sw]] : 1(-7:off(sw> = 2l0) < 2410(1)%0 < N—lq)Q.

|w|=4lo

By Lemma [3.3.6 we see that to prove (3.3.15)), it suffices to show that
IE[s.]| < N~'®? (3.3.25)

for any maximally expanded string s,, with |w| = 4ly. Note that the maximally expanded

string s,, thus obtained consists only of the symbols

el

ao?

By (2.6.5), we can replace (G&@ )~! with

(GO = —2— S, (3.3.26)

ax

(GED™", Sas,  with o # B {u,v}.

Note that [Spe — 7,N 1Y, 0:1l;| < @ by (3.3.18). Then we can expand G as

2lo

k
GG = o Y TIE, (Saa —FNTY oiHii) + O (N"'9?). (3.3.27)
k=0 [

We apply the expansions (3.3.26) and (3.3.27]) to the G symbols in s,,, disregard the suf-
ficiently small tails, and denote the resulting polynomial (in terms of the symbols S,g) by

P,. Then P, can be written as a finite sum of maximally expanded strings (or monomials)
consisting of the S,3 symbols. Moreover, the number of such monomials depends only on .

Hence we only need to prove that for any such monomial M,,,

IE[M,]| < N~'®2. (3.3.28)

Let N, (N,) be the number of times that ;. (v) appears as a lower index of the S symbols

in M,. We have N, = N, = 3 for the initial string s = “GWGI(,’;)SW”. From Definition
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3.3.5] it is easy to see that the operators 79,7y and p do not change the parity of N, and
N,.. The expansions (3.3.26) and (3.3.27)) also do not change the parity of N, and N,,. This

leads to the following key observation:

both N,, and N, are odd in M,,. (3.3.29)

3.3.3 A graphical proof

In this subsection, we finish the proof of (3.3.28). Suppose M,, = C(2)(S,.)™ (Su)™ ()™ (Sup)™,

where C(z) denotes a deterministic function of order 1 for all z € D. Then we write

mi m2
(mv) H ()
[M.] Z 1_[ Xiél)uGigl)jS)Xj&l)u Xz‘ff)uGil(f)jé?) Xj£2)y
i(*) j(*)ell a=1 b=1
¥ 0% (3.3.30)

ms3 maq

X0, G o X o, [ [X0,G00 0 X,
H i3 58 J£3>Vd . iy 50
c= =

where we have ignored the coefficients containing o;’s and ¢,’s. To avoid heavy expressions,
we introduce the following graphical notations. We use a connected graph (V, E') to represent
the string M,,, where the vertex set V consists of the indices in and the edge set
E consists of the X and G variables. The indices pu, v are represented by the black vertices
in the graph, while the 7, 7 indices are represented by the white vertices. The X edges are
represented by the zig-zag lines and the G edges are represented by the straight lines. One

can refer to Fig. for an example of such a graph.

O——0CG

@O X

Figure 3.3: The graph representing S,,,,(S,.)*(S.,)?.

We organize the summation in (3.3.30)) in the following way. We first partition the white

vertices into blocks by requiring that any pair of white vertices take the same value if they
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are in the same block, and take different values otherwise. Then we take the summation over
the white blocks which take values in Z,. Finally, we sum over all possible partitions. Note
that the number of different partitions depends only on the total number of S variables in

M,,, which in turn depends only on /.

Fix a partition I' of the white vertices. We denote its blocks by by, ..., by, where k gives
the number of distinct blocks in I'. We denote by n;' (n}) the number of white vertices in b
that are connected to the vertex p (v). Let G(I') be the product of all the G edges in the

graph. Then we have

[M,] ~ ), Z ]ﬁ[Xbm (X)), (3.3.31)
by, =1

where Y* denotes the summation subject to the condition that by, ..., b all take distinct
values. Note that k, b, n}" and n} all depend on I', and we have omitted the I" dependence

for simplicity of notations.

From (3.3.30)), it is easy to observe that the X edges are independent of G(I'). Thus
taking expectation of (3.3.31]) gives that

k
[E[M,]| <C) Z EG )| ] [ IE(X00)" [[E(Xp0)™ |
T bi,...b =1
k
<) 2 IEG(D HIE|XbW|”lIE|XbZV\”lV1(n§‘¢1,nl”7é1). (3.3.32)

' bq,... =1
Note that we must have nf +ny = 2 for 1 <1 < k, because we only consider nonempty
blocks. On the other hand, if all n}' are even, then N, = Zle ny' must be even, which

contradicts (3.3.29). Hence we can find some 1 < [; < k such that ”Z is odd and nfl > 3.

Similarly, we can also find some 1 <l < k such that nj, is odd and nj, > 3. We abbreviate

ny :=n}" A 3 and 1 :=n; A 3. From the above discussions, we see that
1 ~H AV 1 i AL AL 3 3
5Z(nl+nl)>§Z(n,+nl)+§+5 (k—2)+3=k+1. (3.3.33)
=1 1#1,lo

Now using the moment assumption (3.1.12f), we can bound (3.3.32]) by
E[M,]| < C ) Z [EG(I')| N~ Zi= (' +71)/2, (3.3.34)
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Next we deal with |EG(I")|. We consider the following 3 cases separately: (i) there are
at least 2 off-diagonal G-edges in G(I'); (ii) there is only 1 off-diagonal G-edge in G(T'); (iii)
there is no off-diagonal G-edge in G(I').

In case (i), we trivially have |[EG(T')| < ®2. In case (ii), we use the same trick as in

3.3.19)). Let the off-diagonal G-edge be fo ¥) For each diagonal G,g’,iy), we replace it with

(G,(C’,iy) — Tgr) + Hgg = g + O~ (®@). Plugging these expansions into EG(T"), we obtain that

IEG(I)| < ®2+|EG*™| < ®2, where we used (3.3.20) in the second step. Finally, in case (iii),

)

we have [EG(T")| < 1. Moreover, n}' + n} is even for any 1 <1 < k. Take 1 < ly,l5 < k such

14 v M v oy AV oy AU
that nj ,n;, are odd and n; ,ny, > 3. If I; # 5, then we must have ny, +ny =4, ny, +ny, =4,

and hence
1g 1 g
§Z(n;‘Jrnl) = DA ) A=kt 2
=1 I#l1,l2
Otherwise, if [; = I3, then
1 k
i iz v
5;(7” + 1)) = il;:l(nl +n/)+3=k+2.

Now applying the above estimates and (3.3.33)) to (3.3.34), we obtain that

E[M,]| < D2 N i (f 7 /2 NHF=Zim (A +A7)/2
[E[M,]| +
I in Case (1), (2) T in Case (3)

<C(N'®*+ N?) < CN'9%

This concludes the proof of (3.3.28]), and hence finishes the proof of (3.3.15)).

3.4 Proof of Theorem (3.2.1

By Lemma |3.3.2 we can assume that the entries of X are centered without loss of generality.
According to the comments below Theorem (3.2.1)), we only need to prove the bound ({3.2.6]).

By polarization, it suffices to prove that
(v, G(X, 2)v) — (v, IT(2)V)| < ¢* + (Nn) "2 (3.4.1)

for v.e CIt or v € C2. It easy to see that (3.4.1)) follows from the next two lemmas.
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Lemma 3.4.1. Let X be an nx N real random matrix whose entries are independent random

variables satisfying (3.5.4), (3.1.19), and the bounded support condition ([2.4.1) with q < N~¢

for some constant ¢ > 0. If
max |Gan(X, 2) — Hyp(2)] < g+ V(2), (3.4.2)
and
[ (X, 2) = mac(2)] + [ma (X, 2) — mac(2)] < (Nn) ™ (3.4.3)
hold uniformly in z € D, then the following local law also holds uniformly in z € D:

max max |G (X, 2) — Iy (2)] < ¢* + (Nn) V2. (3.4.4)

r=1,2 a,beZ,
Lemma 3.4.2. Suppose the assumptions in Lemma hold. Let ®(z) be a deterministic
function on D satisfying c;(N~Y2 4+ ¢?) < ®(2) < N~ for some constant ¢; > 0. If we have
max |Gap(2) — Iy (2)[> < @, max max |Gep(2) — ap(2)] < P, (3.4.5)
a,be” r=1,2 a,beZ,
uniformly in z € D, then

v, G(X, 2)v) — (v, TI(2)v)] < D(2) (3.4.6)

uniformly in z € D and deterministic unit vectors v.e CH or v e C*2.

Suppose (3.4.2) holds. Then using (2.7.2))-(2.7.5)) and (3.3.1)), it is easy to verify that for
z e D,

max { 2 ‘Gg) i ,Z ‘Gg)

for any a € Z and T < Z with |T| = O(1).

s
17

’ SN ? } < (3.4.7)
I

3.4.1 Proof of Lemma (3.4.1

We only prove
max |G (X, 2) — I;(2)] < ¢ + (Nn) =2, (3.4.8)

1,561
The proof for (3.4.4)) with a,b € Z, is exactly the same. First, we recall the large deviation

lemma—Lemma [2.6.6] If we assume the fourth moment of z; is bounded for all 7 as in

(3.1.12)), then we have a better bound for the LHS of (2.6.17)).
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Lemma 3.4.3. Suppose the assumptions in Lemma hold and x;, 1 <1 < K, satisfy
. Then we have

< (¢ + N7'?) By, (3.4.9)

)Z (i — Elai]?) Bai

Proof. We abbreviate z; := (|x;]* — E|z;]?) Byij/Bq. By Markov’s inequality, it suffices to

prove that for any fixed p € N,

E‘Zzl (@ + N"V2)* (3.4.10)
Note that by the assumption, we have
Ez =0, Elz|" < ¢ *N~2 for fixed n > 2. (3.4.11)

Now we expand the LHS of (3.4.10) as
2
E) Z Zi ’

where we denote y;, 1= z;, for 1 <[l < pand y, := z, for p+1 <[ < 2p. To organize the

Z Eyi, -+ Yigy

Z'1a~~-,7:2p

summation over the indices ¢1,...,%2,, we look at the partitions I' of the set of the labels
{1,...,2p} according to the equivalence relation that k,[ are in the same class if and only
if 7, = ;. We use b, 1 <[ < k, to denote the equivalence classes of I' and n; to denote
the size of b;. Obviously, k, b; and n; all depend on I', but we will omit this dependence in
the following expressions. Moreover, since the random variables are centered, we must have

n; = 2 for all [ to attain a nonzero expectation. Hence we have
E‘ Z zl
i

where >.* denotes the summation subject to the conditions that by, ..., b are all distinct,

Z Z ]Elywll’” - Elys, [, (3.4.12)

I' by,..

n; = 2 for all [, and Zle n; = 2p. Note that under these conditions, we trivially have k < p

Using (13.4.11]), we obtain that

* *

Z E|yub1 ’m . 'E|yﬂbk ‘nk < Z (q2n1—4N—2) o (q2nk—4N—2)
b1,...,bp b1,...,bp
*

_ Z N2k gtk < O Nk gtk
b17'"7

118



Since the number of partitions of {1, ..., 2p} is finite and depends only on p, (3.4.12)) can then
be bounded by

< max N FgP=4* < ¢ + NP,
1<k<p

E‘ Z Zi
where in the last step, ¢*7 and NP can be obtained from the extreme cases k = 0 and k = p,

respectively. This concludes ((3.4.10). O

Now using (2.6.6) and (2.6.16)), we get that for ¢ # j € 7,

|Gij| < Z}/Z#G(U Vil < ¢ maX|G )| + qmax|G ( Z |ng) )
787 B =
1\ 12
< +qlg+ )+ (N_n> < q*+ (Nn) ™7, (3.4.13)

where we used (3.4.2)), (3.3.1) and the bound (3.4.7). For the diagonal estimate, we need to
control the Z variables. Using (2.6.18)) and (3.4.9)), we get that

Zi] = o, ZU#G“ (1Xil? ~ EIX0?) + Y /6.5, X,G0 X,
pv
. 1 LN 1/2
2 —1/2 (@) (4) 12
< (@ + N7?) + qmax| G| + N(;|GW| ) (3.4.14)

< ¢*+ (Np)~ 12,

where we used (3.4.2)), (3.3.1) and (3.4.7) again. Then with (2.6.5)), we get that

1 1
-1 —o;mo. — O'i<m2 — mgc) + Z; —1 —oyma.

=0« (¢ + (N)™?)

where in the second step we used (3.4.14), (3.4.3) and (3.3.1) (with d=q+ V). Together

with (3.4.13]), we conclude (3.4.8)).

3.4.2 Proof of Lemma |3.4.2

We only prove (3.4.6)) for v e CTt. The proof for the case with v € C%2 is exactly the same.
Note that by (3.4.5), we immediately get >, |v;|* (G — II;) < ®. Hence it remains to prove
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that
Z'I_}i’UjGij < ®.

i#]
By Markov’s inequality, it suffices to show that

2p 9
< O (3.4.15)

E‘ 2 ;0G4

i#j

for any fixed p € N. The proof of (3.4.15)) is similar to the ones in [14], Section 5]. The main
difference is that in [14], the matrix entries are assumed to have arbitrarily high moments,
while here we assume that the X entries have finite third moment and support bounded by

q. In particular, for any fixed £ > 3, we have
E|X, " <" *N2 iel, nel. (3.4.16)

(Note that we have a stronger moment assumption in (3.1.12)). However, the finite fourth
moment condition will not be used in the proof below. We only need the weaker bound

(3.4.16).) We will use a graphical tool as in Section .

We first rewrite the product in (3.4.15)) as

% p 2p .
‘Z%Gz‘jvj = 2 [#Gsvi - |1 aGiivie
1#] i #J€l1 k=1 k=p+1
* P 2p
=3 >0 [ oranGraorgovree - || PraoGraorco e,
T by,..by k=1 k=p+1

where I" ranges over all partitions of the set of labels {i1, ..., 49, j1, ..., Jop } With the restriction
that iy, jx cannot be in the same equivalence class for all k, {by, ..., b.} is the set of equivalence
classes for a fixed I', T'(:) is regarded as a mapping from the set of labels to the set of
equivalence classes, and >.* denotes the summation subject to the condition that b, ...,b,
all take distinct values and I'(ix) # I'(jx) for all k. Since the number of such partitions I' is

finite and depends only on p, it suffices to prove that for any fixed T,

* p 2p
E > | ]oreGreorcoreay - ][ ranCGraorgovra) < 9% (3.4.17)
b1yesby k=1 k=p+1

We abbreviate

p 2p
P(by, ..., b) = HGF(ik)F(jk) : H Gr(in)r (i) -
k=1

k=p+1
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For simplicity, we shall omit the overline for complex conjugate in the following proof. In
this way, we can avoid a lot of immaterial notational complexities that do not affect the

proof.

For k = 1,...,r, we denote by deg(by, P) the number of times that b, appears as an index
of the G entries in P, i.e. deg(bg, P) := [I"!(b;)|. We define h := #{1 < k <1 : deg(by, P) =
1}, i.e. h is the number of b;’s that only appear once in the indices of P. Without loss of

generality, we assume these b,’s are by, ..., b,. Then we have the following properties:
> deg(by, P) = 4p, and deg(by,P) =1 fork=1,...,h. (3.4.18)
k=1
Now we claim that
IEP| < N~"29%, (3.4.19)

Note that by [v|2 = 1 and Cauchy-Schwarz inequality, we have Y., |v;| < VM and Y, |v;|* <
1 for k > 2. Then if (3.4.19) holds, we can bound the left hand side of (3.4.17)) by

N—h/Q@QpH (Z |Ubk|deg(bk,P)> < N—h/Q@?p( /M)h < C@Qp.

k=1 \ by

Hence it suffices to prove (3.4.19).
We define the S variables as

for i,j € Z; and L := {by,....,b,}. As in (3.4.13) and (3.4.14), we can verify that |S;; —
oimadi;| < ® for 4,5 € Z; using (3.4.5)), (3.3.1) and Lemmas and Lemma m Then

as in Section [3.3.2] we keep expanding the GG entries in P using the resolvent expansions in
Lemma [2.6.3] until each monomial in the expression either consists of S variables only or has
sufficiently many off-diagonal terms. The following lemma has been proved in [14, Lemma

5.9] and [105, Lemma 5.9].

Lemma 3.4.4. After finitely many expansions, we can write P as

A
P =) caQa+ O (N"20%), (3.4.21)
a=1
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where A € N depends only on p and ¢, (recall that ®(z) < N~ by our assumption), c,’s are
constants of order O(1), and Q. are monomials of S variables only, where the number of S

variables in each Q. depends only on p and ¢i. Moreover, we have that
deg, (bx, Qo) = deg,(by, P), deg,(bx,Qs) = deg, (b, P) mod 2, (3.4.22)

fork =1,...,r and a = 1,..., A, and the number of off-diagonal S wvariables in Q, is at
least 2p. Here deg,(bg, Qo) denotes the number of times that by, appears as an index of the
off-diagonal S wvariables in Q,, and deg,(by, P) := deg(by, P) (which is consistent with the

previous definition since P only contains off-diagonal entries).

Now given the expansion in (3.4.21]), we see that to conclude (3.4.19)), it suffices to show
that for any Q,,

IEQ.| < N~"2a%. (3.4.23)

In the following proof, we fixe one such Q) = ), and write

J J
L
Q= Hsbkjblj - Z HYZ”CJ‘WGE‘J’)’J‘Y’;I’%
j=1

11, v;€Ts j=1

* J

- Z Z 1_[Y;’kjW(W)Gg’é)(uj)w(w)%ljw(”j)

W w1 e j=1
where .J is the number of S-variables in (), W ranges over all partitions of the set of indices
{pay ooy pog, 1y s vg}, {ws, .. wp, b denotes the set of equivalence classes for a particular W,
W (-) is regarded as a symbolic mapping from the set of indices to the set of equivalence
classes, and }.* denotes the summation subject to the condition that wy,...,w,, all take
distinct values. Note that the number of partitions W depends only on J. For a fixed

partition W, we denote
. (L)
L
R(U)l, ooy Wi W) = 1_[ kajW(Mj)GW(uj)W(yj)XbljW(Vj)'
j=1
Then to prove (3.4.23)), it suffices to show that
IER(w, ..., wp; W)| < N™mh2%, (3.4.24)

for any partition W.
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To facilitate the proof, we introduce the graphical notations as in Section [3.3.3] We
use a connected graph (V) F) to represent R, where the vertex set V' consists of black ver-
tices by,...,b, and white vertices wy,...,w,,, and the edge set E consists of (k,a) edges

representing X, ., and («, ) edges representing fo,i)wﬁ. We denote
ko := number of (k,«) edges in R, d, := number of (a, a) edges in R.
Note that to attain a nonzero expectation, we must have
era =0 or e, =2 forall k,a. (3.4.25)
We also define
(0)

ey, := number of (k, «) edges that are from off-diagonal S in Q.

Then we have

Z e, = deg,(bg, Q) (3.4.26)

By (3.4.18]), (3.4.25) and the parity conservation due to (3.4.22), there exist edges
(1, 1), ..., (h, ) such that e, isodd and ey, = 3,1 < k < h. Let H := {(1, 1), ..., (h, )}
be the set of these edges. Denote by F' the set of (k, o) edge such that ex,, > 2 and (k,«) ¢ H.

Denote

= Z Ckas Pka = Lk a)eH, Z hka; fa = Z Lik,er
k=1

forallk=1,...,r and a =1,...,m. By the above deﬁmtlons, we have s, = 2 and ho+ fo > 0

(since the classes w, are nonempty), s, = 2d,, and

Yhia =11 <k<h), Y he=h (3.4.27)

Note that there are § 3, , €ra — 2., do off-diagonal G' edges in R. Hence by (3.4.5) and
(13.4.16)), we have

IER| < ﬁ <q> do H@aekam){bkw |%>

a=1
< ﬁ Sa/2— da< H g 3N 3/2)( H e 2N~ ) _. ﬁRa'
a=1 (k,a)eH (k,)eF a=1

Now we consider the following four cases for R,.
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(i)

(i)

(iii)

d, = 0. In this case we have

Ra<<I>5°‘/2 H N—3/2 H N*l:ésa/Q(N71>ha+faN*ha/2

(k,0)eH (k,o)eF

< q)sa/2Nle7ha/2 < q)zzzl hio /242 5 h i1 6,(6(2/2N*1N*ha/27

where in the third step we used h; + f; > 0, and in the fourth step we used

Sa Zeka Z ot i 61(:027

k=1 k=h+1

>

where we used that eka hio for 1 < k < h (recall that if (k, @) € H, then ey, is odd

and hence at least one of the edges must come from the off-diagonal S).

do # 0, hy =1 and f, = 0. Then there is only one k such that ex, > 0 and s, = €,

is odd. Hence we have s,/2 > d, + 1/2 and we can bound R, as

R, < cb%sg—da(N—l)ha+faN—ha/2 < P2 N1 N—ha/2

= (I)ZZ:l Pra/24+ X5 _pia e,(;g/QN—lN—haﬂ’

where in the last step we used

1—tha+ Z e,m,

k=h+1

since all the summands except one hy, are 0.

do # 0, hy =0 and f, = 1. Then there is only one k such that ey, > 0 and s, = €.

Thus the (o, ) edges are expanded from the diagonal S variables (otherwise o must

connect to at least two different k’s), which implies %sa —d, = %e,(;;). Then we can
bound R, by
Ra < (D%Sa*da (Nfl)haJrfaN ha/2 _ (I)Zk O?/QNlefha/Q
< @22:1 hka/2+ZZ:h+1 622/2N_1N_h04/2
where, as in Case (i), we used ek = hp, for 1 <k < h.
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(iv) dy # 0 and hy + f, = 2. Then using s, > 2d,, ¢ < ®Y? and N=/2 < &, we get that

R, < H @eka/2_3/2N_3/2 H (I)e,m/2—1N—1

(k,O{)EH (k}a)eF
<~ H q)eka/Q—l/QN—l H (I)e;m/QN—l/Q
(k,Ol)EH (k7a)eF

— @(SO&_hot)/zN_(ha""fa)/zN_ha/z < @(Sa_ha)/QN—lN—ha/Q

< kot hka/24Shon g1 efe/2 N1 N —ha/2

where in the last step we used the definitions of s, and hy, €xo = 2hie for 1 < k < h

(since ego = 3 whenever hy, = 1), and hgo = 0 for &k > h + 1.

Combining the above four cases, we obtain that

m
IER| < 1_[ R, < N""N~32a ha g Xa (Shot hra/2+ T _pi1 el /2).

a=1

Recall that )} ho = h. Then to prove (3.4.24)), it remains to show that

2 (Z ha + Z %) > (3.4.28)

« k=h+1

For k = 1,..., h, using (3.4.27) and (3.4.18]) we get that

> bk = 1 = deg(by, P).

a=1

For k = h +1,...,n, using (3.4.26) and (3.4.22) we get that

Z eka - dego(blﬁ Q) = deg(bk7 P)

a=1

With (3.4.18)), we then conclude (3.4.28)), which finishes our proof.
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CHAPTER 4

Local circular law for deformed non-Hermitian random

matrices

4.1 Introduction

Circular law for non-Hermitian random matrices.

The study of the eigenvalue spectral of non-Hermitian random matrices goes back to the
celebrated paper [46] by Ginibre, where he calculated the joint probability density for the
eigenvalues of non-Hermitian random matrix with independent complex Gaussian entries.
The joint density distribution is integrable with an explicit kernel (see [46, [67]), which allowed
him to derive the circular law for the eigenvalues. For the Gaussian random matrix with
real entries, the joint distribution of the eigenvalues is more complicated but still integrable,

which leads to a proof of the circular law as well [16], 27, 43, [89].

For the random matrix with non-Gaussian entries, there is no explicit formula for the
joint distribution of the eigenvalues. However, in many cases the eigenvalue spectrum of the
non-Gaussian random matrices behaves similarly to the Gaussian case as N — oo, known
as the universality phenomena. A key step in this direction is made by Girko in [47], where
he partially proved the circular law for non-Hermitian matrices with independent entries.
The crucial insight of this chapter is the Hermitization technique, which allowed Girko to
translate the convergence of complex empirical measures of a non-Hermitian matrix into the
convergence of logarithmic transforms for a family of Hermitian matrices, or, to be more
precise,

Trlog[(X — 2)"(X — 2)] = log[det((X — 2)"(X — 2))], (4.1.1)
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with X being the non-Hermitian random matrix and z € C. Due to the singularity of the
log function at 0, the small eigenvalues of (X — z)*(X — z) play a special role. The estimate
on the smallest singular value of X — z was not obtained in [47], but the gap was remedied
later in a series of paper. Bai [0, [§] analyzed the ESD of (X — 2)*(X — z) through its
Stieltjes transform and handled the logarithmic singularity by assuming bounded density
and bounded high moments for the entries of X. Lower bounds on the smallest singular
values were given by Rudelson and Vershynin [80, 81], and subsequently by Tao and Vu [91],
Pan and Zhou [74] and G6tze and Tikhomirov [49] under weakened moments and smoothness
assumptions. The final result was presented in [96], where the circular law is proved under
the optimal L? assumption. These papers studied the circular law in the global regime, i.e.
the convergence of ESD on subsets containing n/N eigenvalues for some small constant n > 0.
Later in a series of papers [I8, [19, 111, Bourgade, Yau and Yin proved the local version of
the circular law up to the optimal scale N~'/2*¢ under the assumption that the distributions
of the matrix entries satisfy a uniform sub-exponential decay condition. In [95], the local
universality was proved by Tao and Vu under the assumption of first four moments matching

the moments of a Gaussian random variable.

LET 1F

0.5r

105+

051 1-0.5

n 05 0 05 | 4 05 0 05 i 4 05 0 05 i
Figure 4.1: The eigenvalue distribution of the product T'X of a deterministic N x M matrix
T with a Gaussian random M x N matrix X. The entries of X have zero mean and variance
(N A M)™' and TT* has 0.5(N A M) eigenvalues as 2/17 and 0.5(N A M) eigenvalues as
32/17. (a) N = M = 1000. (b) N = 1000, M = 2000. (¢) N = 1500, M = 750.

In this chapter, we study the ESD of the product of a deterministic N x M matrix T
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with a random M x N matrix X, where we assume N ~ M. In Figure 4.1 we plot the
eigenvalue distribution of 7X when T has two distinct singular values (except the trivial
zero singular values). The goal of this chapter is to prove a local circular law for the ESD
of TX at any point z away from the boundary circle. Following the idea in [I§], the key
ingredients for the proof are (a) the upper bound for the largest singular value of TX — z, (b)
the lower bound for the least singular value of TX — z, and (c) rigidity of the singular values
of TX — z. The upper bound for the largest singular value can be obtained by controlling
the norm of X through a standard large deviation estimate (see e.g. [23] 64, [82]) or by
studying the eigenvalue rigidity of X*X (see e.g. [14] and (4.2.63))). The lower bound for the
least singular value of T X — z will be proved in the Appendix [Bl The bulk of this chapter
is devoted to establishing (c).

Basic ideas

To obtain the rigidity of the singular values of TX — z, we study the ESD of @ := (T'X —
2)*(TX — z) using Stieltjes transform as in [I8]. We normalize X so that its entries have
variance (N A M)~!. Then @ is an N x N Hermitian matrix with eigenvalues being typically
of order 1. We denote its resolvent by R(w) := (Q —w)™!, where w = F + in is a spectral
parameter with positive imaginary part . The key to the proof is again an averaged local
law for R(w) of the form

N7'Tr R(w) ~ me(w), (4.1.2)

where m, is the Stieltjes transform of the asymptotic eigenvalue density. In [18], such a local

law for the resolvent of (X — z)*(X — z) was established to prove the local circular law.

In generalizing the proof in [I§] to our setting, a main difficulty is that the entries of T'X
are not independent. We will again use the self-consistent comparison method as in Section
2.7} For definiteness, we assume N = M for now, and let T' be a square matrix with singular

decomposition T = UDV. For a Gaussian X = X% we have V XGouss{] X Gauss ywhere

X is another Gaussian random matrix. Then for the determinant in (4.1.1]), we have

det(TX 5 — 2)=det(DV XU — 2) £ det(DX T — ). (4.1.3)
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The problem is now reduced to the study of the singular values of DX%ss — = which
has independent entries. Notice that since D is not scalar, the entries of DX are not
identically distributed, which will make our proof much more complicated than the one in
[18].

Now we briefly outline the three steps to establish the averaged local law for @) =
(TX — 2)"(TX — 2): (A) the entrywise local law and averaged local law when T is di-
agonal (Theorem [£.2.22)); (B) the anisotropic local law when T is diagonal (Theorem [1.2.22));
(C) the anisotropic local law and averaged local law when T is a general (rectangular) matrix
(Theorem [4.2.23). In performing Step (A), our proof is basically based on the methods in
[18]. However, our multi-variable self-consistent equations and their solutions are much more
complicated here. Thus a key part of the proof is to establish some basic properties of the
asymptotic eigenvalue density and prove the stability of the self-consistent equations under
small perturbations. These work need some new ideas and analytic techniques (see Ap-
pendix . In performing Step (B), we applied and extended the polynomialization method
developed in [I4], section 5]. Finally, as remarked above, (B) implies the anisotropic local
law and averaged local law for Gaussian X and general T. Based on this fact we perform
Step (C) using a self-consistent comparison argument of [59] as in Section 2.7, With the
averaged local law proved in Step (C), we can obtain a generalized (inhomogeneous) local
circular law for TX. In general, the averaged local law we get is up to the non-optimal scale
n>» (N A M)~"2. As a result, we can only prove the local circular law for 7X up to the
scale (N A M)~Y4*_ One observation is that the non-optimal averaged local law can lead
to the optimal local circular law for TX outside the unit circle (i.e. |z] > 1) (see Section
4.2.3)). To prove the optimal local circular law inside the unit circle (i.e. |z| < 1), we need
the optimal averaged local law up to the scale n » (N A M)~!, which can be obtained under

the extra assumption that the entries of X have vanishing third moments.

129



4.2 Main result

In this section, we state and prove the main result of this chapter. In Section 4.2.1} we first
define the asymptotic eigenvalue density po. of Q@ = (T'X — 2)*(T X — z), and then state the
main theorem—Theorem [4.2.61—of this chapter. Its proof depends crucially on local laws of
the resolvent of @, which are presented in Section [£.2.2] In Section [£.2.3] we prove Theorem
[4.2.6] based on the local laws.

We want to understand the local statistics of the eigenvalues of T'X — zI, where T is a
deterministic N x M matrix, X is a random M x N matrix, z € C and [ is the N x N

identity matrix. We assume M ~ N, i.e.

M 1

T < <7 4.2.1
N ( )

for some small constant 7 > 0. We assume the entries X;, of X are independent (not

necessarily identically distributed) random variables satisfying

1
N AM’

EX,, =0, E|X,;|" = (4.2.2)

forall 1 <i< M, 1 <pu < N. For definiteness, in this chapter we only focus on the case
where all the X entries are real. However, our results and proofs also hold, after minor
changes, in the complex case if we assume in addition EX?H = 0 for X;, € C. We assume

that for all p € N, there is an N-independent constant C), such that
E|[VN A MX,;,|P <C, (4.2.3)

forall 1 <i< M, 1 <p < N. Wedefine X := TT*, and assume the eigenvalues of ¥ satisfy
that

T 2012032 ... 20N\ MST (4.2.4)

and all other eigenvalues are 0. Furthermore, we can normalize T by multiplying a scalar

such that

1
i dYo=1 (4.2.5)

i=1

We summarize our basic assumptions here for future reference.

Assumption 4.2.1. We suppose that (4.2.1), (4.2.9), (4.2.9), (4.2.4) and hold.
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4.2.1 Main theorem

To state the main theorem, we need to define the asymptotic eigenvalue density function for
). We first introduce the self-consistent equations, then the asymptotic eigenvalue density
will be closely related to their solutions. Let

1 NAM
Ps = g Z o, (4.2.6)

i=1

denote the empirical spectral density of ¥. Let n := |supp ps| be the number of distinct

nonzero eigenvalues of ¥, which are denoted as
T8 >8> - >8,>T. (4.2.7)

Let [; be the multiplicity of s;. By (4.2.5)), [; and s; satisfy the normalization conditions

1
NAM

1
N A M -

(2

i=1 =1

For each w € C,, we define the self-consistent equations of (my,ms) as

s

1
S —w(l4my) + , 42.9
mo w( ml) 1+ ma ( )
= iz (1+ sima) + A | (4.2.10)
m; = — iSi | —W Sim e
T N& T 14 my
If we plug (4.2.9) into (4.2.10]), we get the self-consistent equation for m; only:
-1
! il 1+ % oI (4.2.11)
my = — iSi —Ww /N
N i=1 —w(l + m1> + % 1+ ma

The next lemma states that the solution to the functional equation (4.2.11f) in C, is unique
if z is away from the unit circle. It will be proved in Appendix

Lemma 4.2.2. Fiz z € C such that |z| # 1. For w € C,, there ezists at most one analytic
function my..x(w) : C4 — Cy such that holds and wmy. . x(w) € C;. More-
over, mi..x n(w) is the Stieltjes transform of a positive integrable function py. with compact
support in [0,00).

131



We shall abbreviate my.(w) := my. . n(w). We also define ma.(w) := ma. . n(w) by taking
my = m.(w) in . Obviously, ma, is also an analytic function of w. Moreover, for any
w € C, we can verify that ma.(w), wms.(w) € C; by using and that ms., wm,. € C,.
We define two functions on R as

L. .
prac(@) = —limImmype(z +in), zeR. (4.2.12)

It is easy to see that p;o. = 0 and supp(pi2.) < [0,00). Moreover, supp ps. = supp pi. by
(4.2.9). We shall call py. the asymptotic eigenvalue density of Q = (TX — 2)*(TX — z).
Since Im(wmay.) = 0, we have

Es
14+ mq.

Im !—w (14 symae) + ] < —Imw,

and (4.2.10) gives |mi.] < 1/Imw — 0 as Imw — co. Similarly, |mo.| < 1/Imw — 0 as

Imw — c0. Thus mys.(w) is indeed the Stieltjes transform of py o

r—w

My ge(w) = fR Pra) ) (4.2.13)

We now state the basic properties of p;. and py., which can be obtained by studying the
solutions my o.(w) to the self-consistent equations (4.2.9) and (4.2.11]) when w € (0, 00). Here

we extend the definition of m; 9. continuously down to the real axis by setting
mi () = immy oo(z +in), x e R.
UANY

As a convention, for w € C,, we take \/w to be the branch with positive imaginary part.

Denote m := y/w(1 4+ my) and m,.. := y/w(1 + my.). Equation (4.2.11) then becomes
f(v/w,m) =0, (4.2.14)

where

m(m? — |2]%)
Vwm? — (s; + [2]2)m? — yJwl|z]Pm + |z]*

f(Ww,m) = —vw+m + %Z lisi (4.2.15)

The following lemma gives the basic structure of supp p; .. Its proof will be given in Ap-

pendix [AT]
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Lemma 4.2.3. Fiz 7 < ||z = 1] < 77'. The support of p1a. is a union of connected

components:

supp p1.2¢ N (0, +00) = ( U [ear, €2k1]> N (0, 0), (4.2.16)

1<k<L

where L = L(n) € N and Ci771 = €1 > ey > ... > ey = 0 for some constant C; > 0 that
does not depend on 7. If |z]> < 1 — 7, we have eap, = 0; if 1 +7 < |2]2 < 1+ 771, we have
ear, = e(7) for some constant (1) > 0. Moreover, for every e; > 0, there exists a unique
me(e;) such that

Omf(\/ei,me(e;)) = 0. (4.2.17)

We shall call e; the edges of p1 9.. For any w € (0,0) and 1 < i < n, the cubic polynomial
Vum? —(s;+ |z )m?—y/w|z]Pm+|z|* in (4.2.15) has three distinct roots a;(w) > 0, b;(w) > 0
and —c¢;(w) < 0 (see Lemma [A.1.1). Our next assumption on py, and |z| takes the form of

the following regularity conditions. They take the similar form as in Definition [3.1.1]

Definition 4.2.4 (Regularity). Fiz 7 < [|2]? — 1] < 7L

(i) We say that the edge e # 0, k = 1,...,2L, is reqular if

min {|m.(ex) — a;(e)], |me(er) — bi(ex)], |me(ex) + ci(ex)|} = &, (4.2.18)

1<isn

and
|07, f (Vew, me(ex))| = €, (4.2.19)

or some small constant ¢ > 0. In the case |z|> < 1 — 7, we always call es;, = 0 a reqular
Y g

edge.

(i) We say that the bulk components |eag, €ar—1] is reqular if for any fived T > 0 there
exists a constant c(t,7') > 0 such that the density of pi. in [eag + 7', eop—1 — 7'] is bounded

from below by c.

Remark 4.2.5. The regularity conditions in Definition 4.2.4] are stable under perturbations
of |z] and pyx. In particular, fix ps, suppose the regularity conditions are satisfied at z = 2
with 7 < |]20]2 — 1] < 77!, Then for sufficiently small ¢ > 0, the regularity conditions hold

uniformly in z € {z : ||z] — |20|| < ¢}. For a detailed discussion, see Remark [A.3.3]
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In the following, we denote the eigenvalues of TX by p;, 1 < j < N. We are now ready

to state our main theorem, i.e. the generalized local circular law for T'X.

Theorem 4.2.6 (Local circular law for T'X). Suppose Assumption holds, and T <
zo|* — 1] < 771 for any N (29 can depend on N). Suppose ps, (defined in ) and |z

are such that all the edges and bulk components of pi. are regular in the sense of Definition
. We assume in addition that each entry of X has a density bounded by N for some
Cy > 0. Let F be a smooth non-negative function which may depend on N, such that
|Flo < Ch,y | F'|oo < N and F(2) = 0 for |z| = Cy, for some constant C; > 0 independent
of N. Let F,, .(2) = K**F(K%(z2 — z))), where K := N A M. Then TX has (N — K) trivial

zero eigenvalues, and for the other eigenvalues pi;, 1 < j < K, we have
1 & 1 - —1/242a
D o)~ + [ Faoal2)50(2)0A() < K22 AF |, (4.2.20)
j=1
for any a € (0,1/4]. Here
o0
Xp(z) := —f (log ) A, pac(z, z)dx, (4.2.21)

where py. = pac..x s defined in CIf1+7< \20\2 < 1+ 771 or the entries of X have

vanishing third moments,
EX) =0, 1<i<M,1<p<N, (4.2.22)

then we have the improved result

1 & 1 5 4%
iid D Faaly) — - JFZD,a(Z)XD(Z)dA(@ < K" AF) 1, (4.2.23)

j=1
for any a € (0,1/2]. If the entries of X are identically distributed, then the bounded density

condition is not necessary.

Remark 4.2.7. Note that F, ,(2) = K**F(K*(z — 20)) is an approximate delta function ob-
tained from rescaling F' to the size of order K~* around zy. Thus (4.2.20)) gives a generalized
circular law up to scale K ~1/4*¢, while (4.2.23)) gives a generalized circular law up to scale

K~12% The yp in (4.2.21)) gives the distribution of the eigenvalues of 7X. It is rotationally
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symmetric, because pa.(z,z) depends only on |z| (see (4.2.9) and (4.2.10)). If 77* = 1 or

T*T =1 (i.e. all the nontrivial singular values of T" are equal to 1), then yp becomes the
indicator function yp on the unit disk D, and we get the well-known local circular law for
X (see [18] for the T' = I case). For a general T', we do not have much understanding of xp
so far. This will be one of the topics of the future study. Also, we have assumed that z is
strictly away from the unit circle. Our proof may be extended to the |z — 1| = o(1) case if

we have a better understanding of the solutions m ..

Remark 4.2.8. As explained in the Introduction, the basic strategy of this chapter is first
to prove the anisotropic local law for the resolvent of () when X is Gaussian, and then to
get the anisotropic local law for a general X through a comparison with the Gaussian case.
Without , our comparison arguments cannot give the anisotropic local law up to the
optimal scale, so we can only prove the weaker bound . We will try to remove this

assumption in the future.

Remark 4.2.9. If the entries of X are identically distributed, then it was proved in Appendix
that the smallest singular value of TX — z is larger than N~1~¢ with high probability for
any € > 0. Otherwise, we need the extra bounded density condition, which is only used in

Lemma to get a lower bound for the smallest singular value of T X — z.

We conclude this section with two examples verifying the regularity conditions of Defi-
nition [4.2.4]
Ezample 4.2.10 (Bounded number of distinct eigenvalues). We suppose that n is fixed, and
that sq,...,s, and ps({s1}), ..., ps({sn}) all converge as N — co. We suppose that limy e; >
limy ey for all k, and furthermore for all e, we have 02, f(y/ex, mc(ey)) # 0. Then it is easy
to check that all the edges and bulk components are regular in the sense of Definition

for small enough ¢.

Ezample 4.2.11 (Continuous limit). We suppose pyx is supported in some interval [a,b] <
(0,00), and that py converges in distribution to some measure p,, that is absolutely contin-
uous and whose density satisfies 7 < dp,(E)/dE < 77! for E € [a,b]. Then there are only

a small number (which is independent of n) of connected components for supp p;., and all
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the edges and bulk components are regular; see Remark [A.1.6]

4.2.2 Hermitization and local laws
In the following, we use the notation
Y=Y, =TX —zI, (4.2.24)

where [ is the identity matrix. Following Girko’s Hermitization technique [47], the first step
in proving the local circular law is to understand the local statistics of singular values of Y. In
this subsection, we present the main local estimates concerning the resolvents (YY* — w) ™"
and (Y*Y — w)_l. These results will be used later to prove Theorem [4.2.6, First as in

Section [2.4] we shall use a linearization trick for YY* and Y*Y.

Definition 4.2.12 (Index sets). We define the index sets
T,:={1,.,N}, IV :={1,...,M}, Iy:={N +1,..,2N},

and

T:=T,0Z, IV =1V 01,.

We wnll consistently use the latin letters 1,7 € Iy or Z{w, greek letters p,v € Iy, and s,t € L.

We label the indices of the matrices according to
X=Xi,:ieM pel), T=(Ty:iel,jeI).

When M = N, we always identify TM with I,. For i € I, and p € Iy, we introduce the

notations i := i+ N €Iy and ji .= p— N € I;.
Definition 4.2.13 (Groups). For an Z x I matriz A, we define the 2 x 2 matrices Apj as

A= [ A 4
] — - (4.2.25)
A;j Ag;

We shall call Ayj) a diagonal group if i = j, and an off-diagonal group otherwise .
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Definition 4.2.14 (Linearizing block matrix). For w := E +in € C,, we define the T x T

matrix

—wl  wY?Y
Hw)=H(T,X,zw):= , (4.2.26)
w2y*  —wl

where we take the branch of \/w with positive imaginary part. Define the T x T matriz
Gw)=G(T, X, z,w) := H(w)™*, (4.2.27)
as well as the I, x I, and Ty x Iy, matrices
Gr(w) = (YY*—w)", Grw)=Y*Y —w)". (4.2.28)
Throughout the rest of this chapter, we frequently omit the argument w from our notations.

By Schur’s complement formula, it is easy to see that

& (w) G wY2GLY wYGRY* —w T w Y2YGp
w = =
wY*G, wlY*GLY —w T wY2GRY* Gr

(4.2.29)

Therefore a control of G immediately yields a control of the resolvents G, and Gg.

In the following, we only consider the N < M case. The N > M case, as we will see,
will be built easily upon N < M case. We introduce a deterministic matrix II, which is the

asymptotic limit of G.

Definition 4.2.15 (Deterministic limit of G). Suppose N < M and T has a singular de-

composition
T=UDV, D= (D,0), (4.2.30)
where D = diag(dy, ds, ..., dy) is a diagonal matriz. Define mp. to be the 2 x 2 matriz such
that
(W[i]c)il _ —w(1 + |d;[*my.) —wl/?z . (42.31)
—w'/?z —w(1 + my.)

Let Il be the 2N x 2N matriz with (I1g)p; = 7 and all other entries being zero. Define

U 0 Uus 0 —(1 + my)A(X) w2z A(Y)
HEH(E,Z,U]) = 1_Id =
0 U 0 U* w2ZAX) —(1+ me.X)A(X)
(4.2.32)
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where X = TT* and A(X) = [w(1 +ma.X)(1 + mye) — |Z|2]_1 .

Definition 4.2.16 (Averaged variables). Suppose N < M. Define the averaged random

variables
1 - 1 _
mq = N Z (EG)”, mo 1= N Z <ZG)M#7 (4233)
i€y uels
where
_ X0
Y= . (4.2.34)
0 I
Define ) to be the 2 x 2 matrix such that
_ —w(l+ |d;*m —w'/2z
(m) ' = (1 + |d ma) . (4.2.35)
—w'/?z —w(1+ my)

Remark 4.2.17. Note that under the above definition we have

1 1
mo = NTI’GR = NTI‘ GL)

which is the Stieltjes transform of the empirical eigenvalue density of YY* and Y*Y. More-
over, we will see from the proof that m,s. are the almost sure limits of m;9 as N — o
with
_ 1 _
mie =+ 3 (S, mae = >, (Em, (4.2.36)

i€y HeLs
The following two propositions summarize the properties of p; 9. and my 5. that are needed
to understand the main results in this section. They will be proved in Appendix[A] In Fig.[4.2]
we plot pa. for the example from Fig.[4.1] for different values of z.

Proposition 4.2.18 (Basic properties of pya.). The density pi. is compactly supported in

[0,00) and the following properties regarding pi. hold.

(i) The support of pie is UlngL(n)[egk,egk_l] where e; > ey > ... > ey, = 0. If

1+7 <22 <1+ 771, then ear, = € for some constant € > 0; if |2|> < 1 — 7, then ey, = 0.

(ii) Suppose |ear, ear_1] is a regular bulk component. For any 7 > 0, if x € [eq +

Tla €2k—1 — T/]7 then Plc<x> ~ L
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12|=0.75

|z|=1.2

Figure 4.2: The densities pa.(z,z) when |z| = 0.5, 0.75, 1.2, 1.5. Here py = ().5(5\/2/;17 +
0.55, /3777

(i1i) Suppose e; is a nonzero reqular edge. If j is even, then pi.(z) ~ /T —e; as x — ¢€;
from above. Otherwise if 7 is odd, then pi.(v) ~ \/e; —x as x — e; from below.
J J

(ZU) If |Z|2 < ]. - T, then plc((L‘) ~ aj‘_l/2 as T \ eo, = 0

The same results also hold for ps.. In addition, ps. is a probability density.

Proposition 4.2.19. The preceding proposition implies that, uniformly in w in any compact
set of C,
[y e(w)] = O(Jw|™17). (4.2.37)

Moreover, if 1 + 7 < |z[> <1+ 77, then |mys.(w)| ~ 1 for w in any compact set of C; if

2|2 < 1 — 7, then |myac(w)| ~ |w|~Y2 for w in any compact set of C..

We will consistently use the notation E'+in for the spectral parameter w. In this chapter,
we regard the quantities E(w) and n(w) as functions of w and usually omit the argument
w. In the following we would like to define several spectral domains of w that will be used

in the proof.
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Definition 4.2.20 (Spectral domains). Fiz a small constant ¢ > 0 which may depend on T.

The spectral parameter w is always assumed to be in the fundamental domain
D=D((N):={weCy : e < E< (LN my |t <<, (4.2.38)
unless otherwise indicated. Given a reqular edge ey, we define the subdomain
D; =D} (¢(,7,N):={weD((,N): |E—ex <7, E = 0}. (4.2.39)
Corresponding to a reqular bulk component [eay, eax—1], we define the subdomain
D! =DV, 7,N):={weD((,N): Ee€lew +7,em1— 1]} (4.2.40)
For the component outside supp pi1., we define the subdomain
D°=D°(¢, 7', N) := {we D((,N) : dist(E, supp p1c) = 7'} (4.2.41)
We also need the following domain with large n,
D, =D;(()={weC,:0<E<({n=(", (4.2.42)
and the subdomain of D U Dy,
D =D((,N) := {weD(¢,N) :n = N my |71} U DL(Q). (4.2.43)

We call S a reqular domain if it is a reqular D§ domain, a reqular Db domain, a D° domain

or a D domain.

Remark: In the definition of D, we have suppressed the explicit w-dependence. Notice that
when |z|? < 1 — 7, since [mg.| ~ |w|™"2 as w — 0, we allow 1 ~ |w| ~ N7272¢ in D. In the

definition of D¢, the condition E > 0 is only useful for the edge at 0 when |z <1 — 7.

Now we are prepared to state the local laws satisfied by G defined in (4.2.27). Let

Im (mie + mae) 1
U= W(w) = \/ = (m}V; Mae) T (4.2.44)

be the deterministic control parameter.
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Definition 4.2.21 (Local laws). Suppose N < M. Recall G = G(T, X, z,w) defined in
and 11 = TI(X, z,w) defined in . Let S be a regular domain.

(i) We say that the entrywise local law holds with parameters (T, X, z,S) if
G(T, X, z,w) —1I(E, z,w)],, < ¥(w) (4.2.45)

uniformly in w € S and s,t € L.

(ii) We say that the anisotropic local law holds with parameters (T, X, z,S) if
G(T, X, z,w) = II(%, z,w) = O« (V(w)) (4.2.46)

uniformly in w € S (recall Definition (i1)).
(iii) We say that the averaged local law holds with parameters (T, X, z,S) if

1
ima(T, X, z,w) — mae(X, z,w)| < e (4.2.47)
Ui

uniformly in w € S.

The local laws for G with a general T' will be built upon the following result with a

diagonal T

Theorem 4.2.22 (Local laws when 7T is diagonal). Fiz 7 < [|z|° —1] < 77!, Suppose
Assumption holds, N = M, and T = D := diag(dy, ...,dn) is a diagonal matriz. Let S
be a reqular domain. Then the entrywise local law, anisotropic local law and averaged local

law hold with parameters (D, X, z,S).

Now suppose that N < M and T is an N x M matrix such that the eigenvalues of X
satisfy and . Consider the singular decomposition T = UDV, where U is an
N x N unitary matrix, V is an M x M unitary matrix and D = (D, 0) is an N x M matrix
such that D = diag(dy,ds, ...,dy). Then we have

TX —2=UDVIX — z, (4.2.48)
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Vi

Vi
If X = X%wss js Gaussian, then VX &auss 4 X Gaussy * where XGss ig another N x N
Gaussian random matrix. Then by the definition of G in ,

where V) is an N x M matrix and V5 is an (M — N) x M matrix defined through V' =

o [ U O ~ u* 0
G(T, X" z,w) = G(D, X7 2, w) . (4.2.49)

0 U 0o U
Since the anisotropic local law holds for G(D,XG““SS, z,w) by Theorem [4.2.22 we get im-
mediately the anisotropic local law for G(T, X%%* > w). The next theorem states that the

anisotropic local law holds for general T'X provided that the anisotropic local law holds for

TXGauss.

Theorem 4.2.23 (Local law when N < M). Fiz 7 < ||| — 1| < 77'. Suppose Assumption
holds and N < M. Let T = UDV be a singular decomposition of T, where D = (D, 0)
with D = diag(dy,ds,...,dy). Let S be a reqular domain. Then the anisotropic local law
and averaged local law hold with parameters (T, X, z,S N f)) If in addition holds,

then the anisotropic local law and averaged local law hold with parameters (T, X, z,S).

Proof. Using Theorem we can prove Theorem with a self-consistent comparison
method in [59]. Since the proof is almost the same as the one in Section 2.7, we omit the

details and refer the reader to Section 6 of the author’s work [105]. O

Finally we turn to the N > M case. Suppose T'= UDV is a singular decomposition of

T, where U is an N x N unitary matrix, V is an M x M unitary matrix and D = is

0
an N x M matrix such that D = diag(dy,ds,...,dy). Let U = (U, Us), where U; has size

N x M and U, has size N x (N — M). Following Girko’s idea of Hermitization [47], to prove

the local circular law in Theorem when N > M, it suffices to study det(TX — z) (see
(4.2.51)) below), for which we have
DVXU, —z DVXU.
det(TX — 2) = det ' 2 ) = det(VIDTUTXT — 2)(—2)N M.
0 -2z
(4.2.50)
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Comparing with (4.2.48)), we see that this case is reduced to the N < M case. The only
difference is that the extra (—z)" =™ term now corresponds to the N — M zero eigenvalues

of TX. Thus we make the following claim.

Claim 4.2.24. The N < M case of Theorem [{.2.6 implies the N > M case of Theorem
[£.2.9

4.2.3 Proof of the main theorem

We now prove Theorem [£.2.6] By Claim it suffices to assume N < M. Our main tool
will be Theorem [4.2.23] A major part of the proof follows from [I8, Section 5].

The Girko’s Hermitization technique [47] can be reformulated as the following (see e.g.

[50]): for any smooth function g,

¥ 23001 = o [ 2062 Y 1osss - 2)(a; -~ )aa(e)
- o | A s derty (Y2 aatz)
= 4’/TLN f Ag(z) Z log A\;(2)dA(2), (4.2.51)

where 0 < A\; < A\ < ... < Ay are the ordered eigenvalues of Y (2)Y*(z). For g = F,, ,, we

use the new variable £ = N%(z — zg) to write the above equation as

—1+2a

% Z{ Froalpy) = —— J(AF)(@ ; log \j(z)dA(E). (4.2.52)

Define the classical location ~;(z) of the j-th eigenvalue of Y (2)Y™*(z) by

sup, {7 poc(v)dr < &£}, if 1<j<N-1
~i(2) = o v . (4.2.53)
€1, if j =N

In fact, if «; lies in the bulk, then by the positivity of ps. we can simply define v; through

) j
J; poc(z)dr = N
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By Proposition 4.2.18] we have that for any ¢ > 0,

N 75 (2)
Z log v; (2 NJ (log x) pac(z, 2) Z Nf \log’yj —log x| poe(x, 2)dz < N°
j=1 Vi—
(4.2.54)
for large enough N. Suppose we have the bound
Zlog Aj— zlog ;| < N°. (4.2.55)
J J

Plugging (4.2.54) and (4.2.55)) into (4.2.52), we get

D1 Fali) = S [AFNE) [ og e, 21aadA©) + 0N AL,

0

= = [ F©) | (og2)Acpun(a 2)dzdA(©) + O (N1 AR ).
a 0

Thus we obtain (4.2.20)) if we can prove (4.2.55) for b = 1/2, and we obtain (4.2.23)) if we
can prove (4.2.55) for b = 0 when 1+ 7 < |2|°> < 1+ 7! or when the assumption (4.2.22)
holds.

We need the following lemma which is a consequence of Theorem [4.2.23| Recall (4.2.16))
and (4.2.18]), the number L of the connected components is of order 1 and the number of v;’s
in each component [egy, eg,_1] is of order N. We define the classical number of eigenvalues

to the left of e, 1 < k < 2L, as

Ny {N J " pgc(x)}. (4.2.56)

0
Note that NQL = 0, Nl = N and N2k+1 = Ngk, 1< k < L—1.

Lemma 4.2.25 (Singular value rigidity). Fiz a small € > 0.

(i) If the averaged local law holds with parameters (T, X,z D((, N) A D(¢, N)) for arbi-
trarily small ¢, then the following estimates hold. For any ey, > 0 and Ny + NV/2%¢ < j <
N2k71 _ N1/2+€,

)\. A . N N L — -1/3
Monl(fle BN e
Vi N N
In the case |2|* < 1 — 7 with ey, = 0, we have for any NY2+¢ < j < Nyp_y — NV2+e,
Mo — s Noy o — i —-1/3
P =l o (Moot 233 e (4.2.58)
i N
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Moreover, if 1 + 7 < |2|> < 1+ 77, then for any fized 0 < ¢ < eop,

#{j:0< ) <c} <L (4.2.59)

(i) If the averaged local law holds with parameters (T, X, z, D((, N)) for arbitrarily small
(, then the following estimates hold. For any esr > 0 and Nop + N® < 7 < Nop_q — N°,

o ) . o —1/3
=l (min{] NNZ”“, NQ’“;\} J}) N (4.2.60)
Vi

In the case |z|> < 1 — 7 with ear, = 0, we have for any N° < j < Nyr_; — N°¢,

N — Nov i\ 3
1A =il 97‘7” < <—2LN1 9) . (4.2.61)
J

Proof. The proof is similar to the proof of [I8, Lemma 5.1]. See also [I4, Theorem 2.10] or
[33, Theorem 7.6] O

Using (4.2.57) and (4.2.58]), we get that

N — s
Z llog \; — log ;| < Z M<N1/Q.

Nop+ N2+ << Ny 1 —N1/2+2 Nop+ N2+ << Ny 1 —N1/2+2 K

(4.2.62)

By Theorem 2.10 of [14], there exists a constant C' > 0 such that
|X*X| < C with high probability. (4.2.63)

Thus we have

N <Y< (TNX]+12)* <1, 1<j<AN. (4.2.64)

Together with Lemma [4.2.26] concerning the smallest singular value of TX — z, we get

2L
DD g < NV (4.2.65)
k=1 |j—ey|<N1/2+e

Since |log ;| < 1 by Proposition 4.2.18, we conclude

21
Z Z llog \; — log ;| < N/2*e. (4.2.66)

k=1 |j—ey|<N1/2+¢
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Combining and , we get for any ¢ > 0,
Z llog \; — log ;| < NY/2*e (4.2.67)
I<j<N
for large enough N. This implies for b = 1/2. If in addition the assumption (4.2.22))
holds, the averaged local law holds with parameters (T, X, z, D((, N)) for arbitrarily small
¢ by Theorem . Then we can prove for b = 0 using the better bounds
and .
Finally we show that when |z|? > 1+ 7, with the bounds we can still prove the
estimate for b = 0. By the averaged local law and the definition of «; in ,

we have

N N
1 1 1
Z o Z PURE T BN (4.2.68)
SN Hy i
uniformly in N~Y2*¢ < np < N2, Taking integral of (4.2.68) over n from N~Y/2*¢ to N1/2,
we get
< N 1/2+5> - leog (m) <1 (4.2.69)
]:

Then we use 1} and the bound ({ to estimate that
Nj — iN1/2
~ _ N2

| )\ —iN— 1/2+e¢
;1 e (% — N~ 1/2”)
Using v; ~ 1, (4.2.59) and (4.2.72)), we get

)\ —iN— 1/2+4¢ )\ —iN— 1/2+4¢
Zlog (7 — N 1/2+E) Zlog— <1+ Zlog (7 N 1/2+6) Zlog_

j=1 Aj=c Aj=c

N
< D1\ =) N2 < Ne
j=1

Thus we conclude

< N°. (4.2.70)

<1+ Y |\ =) NP < N* (4.2.71)

)\j =>c

Combing (4.2.70) and (4.2.71)), we conclude (4.2.55) for b = 0.

If the entries of X are identically distributed, then instead of Lemma below, we

shall use Theorem in Appendix [B] to get a lower bound for the smallest singular value
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of TX — z. In particular, the bounded density condition for the entries of X is not needed

anymore. This concludes the last statement of Theorem [4.2.6|

Lemma 4.2.26 (Lower bound on the smallest singular value). If N < M and the entries of

X have a density bounded by N for some C3 > 0, then
[log M (2)] < 1 (4.2.72)

holds uniformly for z in any fixed compact set.

Proof. We already have an upper bound for \y; see (4.2.64). Hence to get (4.2.72]), we still

need to prove that

P(M(z)<e ™)< N© (4.2.73)

for any ¢,C > 0. By (4.2.48)), we have that

TX —z=UD(V,X — D7'U'2) = UDY (2).

Hence it suffices to control the smallest singular value of Y (z), call it \(z). Notice the

columns Vi, ..., Yy of Y(z) are independent vectors. From the variational characterization

le(z) = min |D~/(z)u|]2,

lul=1

we can easily get

M(2)V?2 = N2 minN dist (Y/k,span{f/l,l # k’}) — N7Y2 min ‘<1~/k,uk>

1<k< 1<k<N

. (4.2.74)

where u, is the unit normal vector of span{f/},l # k} and hence is independent of Y. By

conditioning on uy, we get immediately that

P(\(2) < N-C0) < ON~Co/24Cat3/2. (4.2.75)

which is a much stronger result than (4.2.73). Here we have used Theorem 1.2 of [84] to
conclude that (Y}, uy) for fixed u, has density bounded by C N3, O

The rest of this chapter is devoted to the proof of Theorem In Section 4.3, we

collect the basic tools that we shall use in the proof. In Section [4.4] we prove the entrywise
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local law and averaged local law in Theorem [4.2.22{ under the assumption that 7" is diagonal.
In Section 4.5 we prove the anisotropic local law in Theorem [4.2.22| using the entrywise local

law proved in Section [4.4]

The Appendix establishes the basic properties of p; o, stated in Lemma and
Proposition [£.2.18 Our proof of the entrywise local depends crucially on some key estimates
about mj o, and the stability of the self-consistent equation (4.2.11]) on regular domains,
which will be proved in Sections and [A.3] Finally, in Appendix [B] we prove a lower tail

estimate for the smallest singular value of T X — z.

4.3 Basic tools

In this preliminary section, we collect various identities and estimates that we shall use
throughout the following. We first state the resolvent identities in current case. They (and
their proof) are very similar to the ones in Lemma and we state them for reader’s

convenience.

Lemma 4.3.1. (Resolvent identities).

(i) ForieZ, and p € Iy, we have

1 - 1
— ) — i)y T = * (1)
o= wow (YGYY™*) ., G~ v (Y aWy) .. (4.3.1)
Fori+# je1y and p # v e Iy, we have
Gij = wGHGY) (YGDY*) . Gy = w6, GY) (Y GW™Y) . (4.3.2)
(i1) Forie€Zy and p € Iy, we have
Giy = GaGlY) (—w"*Yi +w(YGY) ), (4.3.3)
Gi = G GY (—wl/QY;; +w (Y*G(“")Y*)m> . (4.3.4)
(i1i) ForreZ and s,t € I\{r},
. Go Gy 1 1 GsrGrs
G"=a,— t - - : (4.3.5)
GTT GSS Ggg) Gss Ggg) Grr



(iv) All of the above identities hold for GV) instead of G for J < T.

Lemma 4.3.2. (Resolvent identities for Gy;j) groups).

(i) Forie€ Iy, we have

- (]

Gui = Hpa) — Y, Hig Gy Hun (4.3.6)
k1
For i # 5 € I;, we have

(4] (]

Glij) = =Gl ), Hin Gy = — 2, Grig Hien G (4.3.7)
ki k#j
[i] [i7] [i]
= *G[ii]H[ij]G[jj] + G[ii] Z H[ik]G[;jl]H[lj]G[jj]- (4.3.8)
k,l¢{i.5}

(i) For ke Ty andi,j € T;\{k},
= Gpij) — Glan Gy G (4.3.9)

and

1 —1

Gih = (GH]) = Gl GGG (G1) (4.3.10)

(i4i) All of the above identities hold for G} instead of G for J < T.

Proof. These identities can be proved using Schur’s complement formula. O]
Next we introduce the spectral decomposition of G. Let

N
Y = Z \/Tké“kéfj
k=1

be the singular decomposition of Y, where A\; = Xy > ... > Ay = 0 and {&.}1_; and {¢;}_,

are orthonormal bases of C*' and C?2 respectively. Then by (4.2.29)), we have

N * -1/2 *
G (w) = Z 1 3231 w2 NG (4.3.11)
k=1

MW T BYNGE GG

The following lemma corresponds to Lemma [2.7.1] and we leave its proof to the reader.
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Lemma 4.3.3. Fiz 7 > 0. The following estimates hold uniformly for any w € D((, N) u
D.(¢). We have
|Gl < Cn™, 0uG| < Cn~2. (4.3.12)

Let v e CI' and w e C*2, we have the bounds

Im Gyw
Z |qu’2 = Z |Guw’2 = (4313)
1eTs 1eTs N

Im Gy

MGl = NG = 2, (4.3.14)
iEIl iEIl TI

_ 1 Im Gyw
NGl = Y 1Gil? = 0] G + 0 || T, (4.3.15)
i€, ieTh n

G 2 _ G 2 _ —1 G — —1 Im GVV 4 1

DG = DG = [w| ™ Gy + @ |w)| : (4.3.16)
M€I2 MGIQ 77

All of the above estimates remain true for GV) instead of G for J < T.

We have stated some basic properties of p; 2. and m; 9. in Lemma and Proposition
4.2.18, Now we collect more estimates for m; 9. that will be used in the proof. The next
lemma is proved in Appendix [A.2] For w = E + in, we define the distance to the spectral

edge through
k=k(E):= min |E—eg (4.3.17)

1<k<2L,e,>0

Notice in the |z| < 1 case, we do not take into consideration the edge at esy, = 0.

Lemma 4.3.4. Fiz 7 > 0 and suppose T < ||z|*> — 1| < 77!. We denote w = E + in.

Case 1 Fiz 7' > 0. Suppose the bulk component [eay, ea,_1] is reqular in the sense of Definition

4.2.4. Then for we DY(¢, 7', N), we have

’1 + mlc\ ~ Immlc ~ 1, ]m20| ~ Immgc ~ 1. (4318)

Case 2 Fiz 7" > 0. Then for we D°(¢, 7', N), we have

Imml,Qc ~ 1, ’1 + mlc‘ ~ 17 |m2c‘ ~ 1. (4319)
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Case 3 Suppose ey, # 0 is a reqular edge. Then for w e DL(C, 7', N), if 7 > 0 is small enough,
we have

VE+1 if E € supp p12c

Immy g0 ~ c |l ma ~ 1, ma ~ 1. (4.3.20)

n/v/E+n if E¢supppiae

Case 4 Suppose |z|*> < 1 — 1 so that ear, = 0. We take 7/ > 0 to be small enough. Then for

we DSL(C>T/7 N)7 Zf Imw > 7'/, we have
|1 + m10| ~Immy. ~ 1, |m20| ~ Immg. ~ 1; (4.3.21)

if lw] < 277, we have

e = iYL 01, = — Vo), (4.3.22)

Jw

for some constantt > 0, and

Tmmy g ~ |w| V2 (4.3.23)
Case 5 For w e D((), we have
1 1
Imic| ~ Immye ~ =, |mae| ~ Immg. ~ —. (4.3.24)
n n
In Cases 1-4, we have
lw (1 + simae) (1+mae) — |z|2‘ > ¢, (4.3.25)

where ¢ > 0 is some constant that may depend on 7, 7" and (. In Case 5, we have
‘w (1 + Sim2c> (1 + mlc) - ’Z|2| = 7, (4326)

Note that the uniform bounds (4.3.25)) and (4.3.26) guarantee that the matrix entries of
II(w) remain bounded. We have the following Lemma, which will be proved in Appendix

A2
Lemma 4.3.5. In Cases 1-4 of Lemmal{.3.4, we have

Imagell < Clw| ™2, H (W[qc)_lH < Clw|?, (4.3.27)
151



and in Case 5 of Lemma[{.3.4, we have
|l < Cn, H (W[i]c)_lH < Chn. (4.3.28)
For all the cases in Lemma
ImIl,y < Clm(my. + ma.), (4.3.29)

uniformly in w and any deterministic unit vector v e CZ.

The self-consistent equation (4.2.11)) can be written as

T(w,my) =0, (4.3.30)
where
T(w,my) =my + — Zn: 1+m [ (1+34 L+ m >(1+m)—\z!2]_1
s 1] 1 ~ 1 z_w(1+m1)2+|2‘2 1 .
(4.3.31)

The stability of (4.3.30) roughly says that if T (w,m;) is small and mq(w') —my.(w’) is small
for w’' := w + iN", then my(w) — mi.(w) is small. For an arbitrary w € D, we define the

discrete set
L(w) := {w} u{w e D:Rew = Rew,Imw € [Imw, 1] n (N °N)}, (4.3.32)

Thus, if Imw > 1 then L(w) = {w}, and if Imw < 1 then L(w) is a 1-dimensional lattice

with spacing N ' plus the point w. Obviously, we have |L(w)| < N'.

Definition 4.3.6 (Stability). We say that s stable on D if the following holds.
Suppose that N=2|mi.| < §(w) < (log N)7t|my.| for w € D and that § is Lipschitz continuous
with Lipschitz constant < N*. Suppose moreover that for each fived E, the function n
d(FE +1n) is non-increasing for n > 0. Suppose that uy : D — C is the Stieltjes transform of

a positive integrable function. Let w € D and suppose that for all w' € L(w) we have
|1 (w, uq)] < d(w). (4.3.33)

Then

co
ur (w) — ma(w)| < m, (4.3.34)
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for some constant C > 0 independent of w and N.
We say that is stable on Dy, if for 0 < §(w) < (log N)~|my,|, implies

|ur (w) — mae(w)| < C6, (4.3.35)

for some constant C > 0 independent of w and N.

In the following lemma, we establish the stability on each regular domain. The proof is
given in Appendix[A.3} This lemma leaves the case [w|"/2+|2|? = o(1) alone. We will handle

this case in a different way in Section 4.4.5

Lemma 4.3.7. Fiz 7 > 0 and let 7" > 0 be sufficiently small depending on 7. Let 7 <

2|2 = 1] <771,

Case 1 Suppose the bulk component [eay, ear_1] is regular in the sense of Definition|].2.4. Then
4.3.8(}) is stable on DY(C, 7', N) in the sense of Definition .
Case 2 ([4.5.30) is stable on D°(C, 7/, N) in the sense of Definition[{.3.6.

Case 8 Suppose e # 0 is a regular edge in the sense of Definition |4.2.4. Then (4.3.50) is
stable on D§(C, 7, N) in the sense of Definition[4.3.6|

Case 4 Suppose |z|> < 1—7 so that exr, = 0. If [w|Y? + |z|*> = € for some constant € > 0, then

is stable on D§; (¢, 7', N) in the sense of Definition[{.3.6,
Case 5 is stable on Dr(C) in the sense of Definition[{.3.6.

4.4 Entrywise local law when T' is diagonal

In this section we prove the entrywise local law and averaged local law in Theorem |4.2.22
when 7' is diagonal. The proof is similar to the previous proofs of the entrywise local law
in e.g. [14] [15] 18] 59]. We basically follow the idea in [18], and we will provide necessary

details for the parts that are different from the previous proofs.
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Before we start the proof, we make the following remark. In this section we mainly focus
on the domain D. On the domain Dy, the proofs are much simpler and we only describe
them briefly. The parameter z can be either inside or outside of the unit circle. Recall
Lemma and Lemma[£.3.7] the domain D of w can be divided roughly into four regions:
w near a nonzero regular edge, w — 0, w in the bulk, or w outside the spectrum. In this
section we will only consider the case |z|? < 1 — 7 since it covers all four different behaviors
of my9.. Note that in this case |mya.(w)| ~ |w|~Y? for w in any compact set of C, by
Proposition [£.2.19] Also due to the remark above Lemma [4.3.7] in Sections [£.4.TH4.4.4] we
assume |w|2 + |z|? = ¢ for some ¢ > 0. We will handle the |w|"? + |z]|?> = o(1) case in

Section [4.4.5

4.4.1 The self-consistent equations

To begin with, we prove the following weak version of the entrywise local law.

Proposition 4.4.1 (Weak entrywise law). Fiz |2|> < 1 — 7 and a small constant ¢ > 0.
Suppose Assumption holds, N = M and T = D := diag(dy,...,dy). Then for any

reqular domain S < D,

max
1,J€11

/4
1 |w|1/2 1

(W 441

< ( N (4.4.1)

for all w e S such that |w|*? + |z|> = ¢. For w e Dy, we have

(G(w) — H(w))[ij]

max
Z.7.7161-1

(G(w) - H(w))[ij]

—A . 4.4.2
<y (442)

For the purpose of proof, we define the following random control parameters.

Definition 4.4.2 (Control parameters). Suppose N = M and T = D := diag(dy,...,dn).
We define

A = max
For J < I, define the averaged variables ngQ) (mg‘g) by replacing G in (4.2.34) with G/
(GI1) e

(G —10)

, A, = max
1#J€1,

(G =1y,

Ww (4.4.3)

J 1 J J 1
ML:NZM%Q’@%:NZGw (4.4.4)
igJ pgJ
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The averaged error and the random control parameter are defined as

I . c) + 0 1
0 = |m1 — m1c| + |m2 — m20| and \I/,g = \/ m(ml ;an ) * + N_T]’ (445)
respectively.
Remark 4.4.3. By (4.2.4)), we immediately get that
7Im mg‘]) < Im ng) <7 'Im mg‘]), (4.4.6)

and 0 = O(A), since |m; —my.| < 77'A and |my — ma.| < A.

As in ([2.6.22)), we introduce the Z variables:

[ . 1) !
Z[i] = (1 —Eg) (G[n‘]> :

By the identity (4.3.6]), we have

. . —w —w|d;]? mg] —w'/?z
—w'?z —w — wmj
where
Pl — |di? (XGUIX*)  w2d, X, — (DXGUDX) |
Ziy = w i i (4.4.8)

w ' dXx — (X*D*GUX*D*)  ml! — (x*D*GIDX)

We have the following lemma, whose proof is the same as the one for (2.6.14]).
Lemma 4.4.4. For J < 1, the following crude bound on the difference between m, and
mk/! (a =1,2) holds:

ClJ]

‘ma - m([l‘]]‘ < Ny a=1,2, (4.4.9)

where C' = C(7) is a constant depending only on T.

With (4.4.9), we can prove the following estimates on the Z variables.

Lemma 4.4.5. Suppose |z|> < 1— 7. ForieZ;, we have

Im mg]

—1/2 7] 7]
w m Imm
| (Z[i])st| < |w| | \‘/ﬁ + .’/V|1w‘| +\/ an for s #t e {1,2}, (4.4.11)



uniformly in w € D v Dy. In particular, these imply that
Z[i] < ”LU‘\IJQ, (4.4.12)

uniformly in w e D, and

< |w|(Nn)~Y2, (4.4.13)

uniformly in w € Dy,.

Proof. Applying the large deviation Lemma to Zp;) in (4.4.8)), we get that

1/2 1/2 o 1/2
il |2 il |2 i] |2
(sier) +(sieur) | <% (Sier)
H HFV MV

i\ '/ (i
_C Im Gy _C Im ms
N 2 n a Nnp =

m

(Zi)

where in the third step we used the equality (4.3.13). Similarly we can prove the bound
for (Z[Z-])22 using Lemma and (4.3.14). Now we consider (Z[i])m. First, we have
X;; < N7Y2 by (4.2.3). For the other part, we use Lemma [2.6.6/ and (4.3.16) to get that

AN 71/2
. 1 112 )W Im G
(2] = 12 |l - WAy
(DXGIDX) | < (;w Gl ) [2 d;? <|w| o
3 7712 i [7]
my| Ty’ fmy| - [Tmm)
< + <C + : 4.4.14
[N wl * Ny Nl T\ Ty 44.14)
Similarly we can prove the estimate for (Z[Z-])m.
Now we prove (4.4.12)). By the definitions (4.4.5)) and using (4.4.9)), we get that
[4] Im my. + Im m[i]—m)—i—lm(m — Ma.)
Imm2 2c < 2 2 2 2c
[(Z1a) | < lwly| =57, = Il N < Clw|T,.
(4.4.15)

We can estimate (Z[l-])22 and the third term in (4.4.11)) in a similar way. For the Cases 1-4
in Lemma [4.3.4, we have |m| ~ 1 for |w| ~ 1, Immy. ~ |w|™"? ~ |my.| for |w| — 0, and

n < CImmy,.. Thus

c c I c
]|\T]1w|\ < Oy for |w| ~ 1, and 4 ,]|<[71|1U) Ch/ mml < CV¥y for |w| — 0.
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Then for the second term in (4.4.11)), we have that

|m1i| |mlc
< OV,
N S Nn N |w| €

This concludes (4.4.12). Finally, the estimate (4.4.13)) follows directly from (4.4.10)), (4.4.11))
ad (@313, }

Lemma 4.4.6. Suppose |z|> < 1—7. Define the w-dependent event Z(w) := {0 < |w|~"?(log N)~'}.

Then we have that for w e D,

1+ my
—w(1+m1) +| |2
where Y is defined in (4.53.31). For w € Dy, we have

1+my . 1/ . 1
mo = +0 N ), Y(w,my) < N ) 4.4.17
L w(@Am) 2T (n7 (N TE) P (w,ma) <t (Np) ( )

1(Z)ms = 1(2) +0-(Ty) |, 1E)T(w,m) < 1(E)Ty,  (4.4.16)

Proof. First, suppose that w € D. Using (4.4.7)), we get

Gﬁil] = W[E]l + €[, (4.4.18)
where 7;) is defined in (4.2.35)) and
Eli) = w |+ 2
0 my — mk!
By 1) and " we have that ef;) < |w|Vy. Let B; = [] —7T[l] where ;. is defined
n (4.2.31). By (4.3.27) and the definition of =, we have 1(=Z)|B;mp.|| < C(log N)*l. Thus

we have the expansion

(=) = 1E) (mp. + Bi) ™! = 1(E) e (1 — Bimpige + (Bimpige)? + - +) = L(E) (Mpige + €a),

(4.4.19)
where &, can be estimated as 1(Z)||e,| < 1(E)C|w|~/?(log N)~!. This shows that 1(Z)]/mp;| =
1(2)O(|w|~Y2), and so 1(Z) |lepmp | < 1(E)|w|Y*¥y < 1(2) CN~9/2 by the definition of D
in . Again we do the expansion for :

1 0
1(2)Gpg = 1(2) <7T[_i]1 + 5[1-]) =137 <1 + 2 > 1(2) (7 + &)
- (4.4.20)
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where 1(Z) ey < 1(2)Wy. Now the 11 entry of (4.4.20) gives that

—1—m1

1(2)G; = 1(= + 1(Z2) O< (Wy), 4.4.21
B0 =18 e —p  ME) 0= (%) (14.21)
from which we get that
2
1(2)Gy l—w (1 + |di|*m2) + 12 ] = 1(2) [1 + O< (Jw]"*Ty)]. (4.4.22)
1+ my
Here we used that
1(2) | —w (1 + ]dilgmg) + ﬁ = O(]w\m)
14+my ’

which follows from Lemma and the definition of =Z. Summing (4.4.22)) over i, we get

|Z|2m2
1+ mq

]_(E) l—w (mg + mlmg) + ] = 1<E) [1 + O< (|w|1/2\119)] )

which gives

14+my
—w (1 +my)* + |22
Now plugging (4.4.23) into (4.4.21)), multiplying with |d;|*> and summing over i, we obtain
that

1(Z)ms = 1(2) 1(2) O (Wy). (4.4.23)

—1—m1

m 2
w <1 + s’—u;(lj-;—m> (1 + ml) - |Z|

1 n
1(E)m; = 1(2) NZlisi + 0. ()|, (4.4.24)
i=1

where we used (4.3.25) and 1(Z)(1 + m;) = 1(£)O(Jw|~"/?). This concludes the proof.
Similarly, when w € Dy, it is easy to prove using the estimates and

(4.3.12). Note that |mis| = O(n~') by , which implies immediately the bounds

il = O(y™") and | (mga) " |

obtain directly

= O(n). Hence without introducing the event =, we can

Gy = 7 + O< (™ (N) ™). (4.4.25)

The rest of the proof is essentially the same. O]

Notice that applying Lemmal4.3.7|to (4.4.17)), we obtain that |m; o—my o.| < 771 (Nn) Y2,
Plugging it into (4.4.25)), we immediately get (4.4.2)) for w € Dy. This proves the entrywise

law on Dy, since n”' N~Y2 < C¥ by the definition (4.2.44)) and the estimate (4.3.24)).
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4.4.2 The large 7 case

It remains to prove Proposition on domain D. We would like to fix £ and then apply
a continuity argument in 7 by first showing that the rough bound A < |w|="2(log N)~! in
Lemma holds for large 1. To start the argument, we first need to establish the estimates

on GG when n ~ 1. The next lemma is a trivial consequence of .
Lemma 4.4.7. For any w € D and n > c for fized ¢ > 0, we have the bound
max |Gt (w)] < C (4.4.26)
for some C > 0. This estimate also holds if we replace G with GY) for J < T.
Lemma 4.4.8. Fiz ¢ > 0 and |z|> <1 — 7. We have the following estimate

max A (w) < N7Y2, (4.4.27)

weD,n>=c

Proof. By the previous lemma, we have |m£l]2| = O(1). So by LemmaW.4.5, | Zj;| < N~V/2

uniformly in 7 > ¢. Then as in (4.4.18]), we have
~1
Gl = (71'[;]1 + 6[1-]) , (4.4.28)

where 7| = O(1) and [ep] < N~12. Notice since Gp;;) = O(1), we have the estimate

1

-1 -
;= (Gﬁi - Em> = Gug (1 = eGra) = 0<(1).
Then we can expand (4.4.28) to get that
Gy = m + O< (N71?). (4.4.29)

The 11 and 22 entries of (4.4.29) lead to the equations

-1

N 2
2 2 2] ~1/2
_N Ez A [ 1+ |d;|*ms) + T+ + 0 (N1, (4.4.30)
S |Z’2 o 1/2
— (1+my) + — < (N7, 4.4.31
,Z +my) | O (N-12) (4.4.31)
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We claim that Tmm; » > C(log N)~! with high probability for some C' > 0.

Using the spectral decomposition (4.3.11]), we note that for [ > 1,

1 |E — Akl - 1
_ )2 2 =g
N Bl (M —E)?+n In
— Z < — < {Imms.
Y 2 Y 2
n Bl Ve = B N e Qe B

Summing up these two inequalities and optimizing [, we get

l
IRema| < 24 |2 (4.4.32)
n

Assume that Immy < C(log N)~™!, then by (4.4.6) we also have Imm; < Ct7'(log N)~!

From (4.4.32)), we get |msy| < C(log N)~'/2. Together with the estimate m; = O(1), we get

2
‘—w (14+my) + % < C with high probability. (4.4.33)
On the other hand
I (1+m) + I (4.4.34)
m|—w m — | < —Imw = —n, 4.
! 1 + |di|2m2 "

where we used Im[|z]?/(1 + |d;|*m3)] < 0 and

Im(wm,) = Im iiu-mg (¢)|2<—1+ A > >0
1) — N i k /\k_w = U.

k=1

With (4.4.33) and (4.4.34)), we get from (4.4.31)) that Immy > ¢ with high probability for
some ¢ > 0. This contradicts Im my < C(log N)~!. Thus we must have Im my > C(log N)™*

with high probability, which also implies Imm; > C(log N)~! by ( -

Now we can proceed as in the proof of Lemma and get that

1+m1 —1/2 1/2
my = + O~ (N7V2) | T(w,my) < NY2. 4.4.35
R (1+mp)? + |22 < ) ( 2 ( )

We omit the details. Applying Lemma [4.3.7] to (4.4.35), we conclude |m; o — my o] < N7/

uniformly in n > ¢. By (4.4.29), we get |(G — )| < N~Y2 uniformly in 1 > ¢ and i € Z;.
Finally using (4.3.8), Lemma and Lemma [2.6.6, we can prove the off-diagonal estimate;

see (4.4.48)) below. O
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4.4.3 Weak entrywise local law

In this subsection, we finish the proof of Proposition on domain D. We shall fix the
real part E of w = E + in and decrease the imaginary part 1. Recall that Lemma is
based on the condition 6 < |w|~*%(log N)~!. So far this is established only for large 7 in
. We want to show that this condition also holds for small 1 by using a continuity

argument.

It is convenient to introduce the random function

NTmw"\ '
v(w) = max 0(w’)|w'|1/2( mw) ,

w’eL(w) |’LU’|1/2

where L(w) is defined in (4.3.32). Fix a regular domain S, ¢ < (/4 and a large constant
D > 0. Our goal is to prove that with high probability there is a gap in the range of v, i.e.

P (v(w) < N%,v(w) > N¥/*) < N~P+2 (4.4.36)

for all w e S and large enough N > N (e, D).

Suppose v(w) < N°¢, then it is easy to verify that
O(w') < Cluw'[7*(log N) ™! (4.4.37)

for all w' € L(w). Hence {v(w) < N¢} < Z(w’) for all w’ € S n L(w). Then by (4.4.16)), for
all w' € S nL(w), there exists an Ny = Ny(e, D) such that

N B D
P | v(w) < N5, T(w') w72\ Nimar | < , (4.4.38)
for all N > Ny. Taking the union bound we get

NImw’
P | v(w) < N°, max T(w) % > N°| < N~ P*0, (4.4.39)

weL(w) w!| /

Now consider the event
_ . NIm w’ .

== {'U(w) <N ,wygg();)’r(w’) W <N } : (4.4.40)
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1/2

We have 1(Z))Y(w') < d (w') for all w’ € L(w) with ¢ (w') := le,vw %w,
Lemma [4.3.7} If k « 1 (recall (4.3.17))), then |w| ~ 1 and we have

1 1/4
1(51)|m1(w/> - mlC(w,)| < C\/m < CN€/2 <NIII1 w,)

We now apply

for all w' € L(w); if k = ¢ > 0 for some constant ¢ > 0, then

|w'[1/2 \ NIm w’

Ne¢ |w/|1/2 1/2
LEDIm (W) — miew')| < Co(w') < C

for all w' € L(w). Combining these two cases we get

1/4
- N2 [ jw'|
L(E1)|my(w') — my(w')| < C]w’|1/2 (Nlm - (4.4.41)

for all w' € L(w). By (4.4.16), we have

N€/2 |w/|1/2 /4
- / / - / / =
L(Z1)[ma(w’) — mac(w')| < 1(Z1)[ma(w') — mye(w')] + 1(E1) ¥y < |w’\1/2 NIm w’ 7

for all w' € S nL(w). Together with (4.4.41)), this shows that there exists an N; = Ni(e, D)
such that

< N¢ 0 1/2
w'eL(w) |w’|71/2 ’wgg()fu) (w)w]

for N = max{Ny, N1}. Adding (4.4.39) and ([£.4.42)), we get

1/4
NI !
P U(w) < N°, max e(w/)|w,|1/2< mw) > N3e/4 < N—D+11

w’'eL(w) ’w/‘l/Q

Taking the union bound over L(w) we get (4.4.36) for all N > max{Ny, N}.

Now we conclude the proof of Proposition m 4.4.1| by combining (4.4.36)) with the large n
estimate . We choose a lattice A = S such that |A| < N?° and for any w € S there

is a w’ € A with |w — w| < N7%. Taking the union bound we get
P(Jwe A:v(w) e (N¥/4 N°]) < N~PHL (4.4.43)
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Since v has Lipshcitz constant bounded by, say, N°, then we have
P (JweS:v(w) e (2N*/* N°/2]) < N~PHL (4.4.44)
Combining with , we see that there exists No = Ny(e, D) such that for all N > Ny,
P(VweS:v(w) < 2N3€/4) >1— 2N P

Since ¢ and D are arbitrary, the above inequality shows that v(w) < 1 uniformly in w € S,

or

1 (fw]2\Y
. 4.4.4
f(w) < e ( N7 (4.4.45)

In particular this shows that for all w € S, the event = holds with high-probability.

Now using ) and m we get

1 ’w‘l/z /4
HG[n’] — 7T[i]cH < HG[u’] — H + H?T — H < Uy +0< w172 ( N ) . (4.4.46)

To conclude Proposition [£.4.T} it remains to prove the estimate for the off-diagonal Gy
groups. Using (4.4.9)), it is not hard to get that

/4
1 |w|1/2 1

«— 4.4.47

]2 ( Vi (4.4.47)

(|w’71/2> and H (G[J]
O (Jw|"?) with high probability. Let i # j € I;, using (4.3.8) and the above diagonal

[J]
HG[ii] — Tie

for any |J| < | with [ € N fixed. Thus we have HGE]A

estimates, we get that

/4
|w[® | 1 w1/
|G| < [ ==+ w|™ | Y. Hin Gl Hi << () o (4448)
k,l¢{i,5}

where we used Lemma [4.3.3 and Lemma [2.6.6] to obtain that

i _ il y -
Zkl¢{2]} sz]X* Zkl¢{u}XikGElj le

wl ™| 2 His Gl Hu Gl [}
Zkl¢{z]} X* Zklez{u}X*le Xij

kl¢{i,j}

< ‘1/9.

(4.4.49)

Its proof is very similar to the proof of Lemma |4.4.5 so we omit the details.
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4.4.4 Strong enterywise local law

In this section, we finish the proof of the (strong) entrywise local law and averaged local law
in Theorem on domain D and under the condition |w|"/? + |2|? = ¢. In Lemma [4.4.6]
we have proved an error estimate of the self-consistent equations of m; 5 linearly in Wy. The
core part of the proof is to improve this estimate to quadratic in V4. For the sequence of

random variables Z};, we define the averaged quantities

1< 1S,
2] =« > Tz, (4 = NZ |dil "1 Zp -
i=1 i=1
The following Lemma gives an improvement of Lemma

Lemma 4.4.9. Fiz |2|> <1—7. Then forwe D,

"= i_::;lz PYRE +O< (Jw]?93 + [[Z]] + [K2))) , (4.4.50)
and
Y (w,ma) < [w]?05 + [[Z]] + [<Z))]. (4.4.51)
For we Dy,
14+m .
M 4 m) + |22 + O (Nn) ™ + [[Z]] + IK2)1) . (4.4.52)
and

T(w,mi) < (Np)~' +[[Z]] + [K2)]. (4.4.53)

Proof. The proof is almost the same as the one for Lemma [£.4.6] we only lay out the dif-
ference. We first consider the case w € D. By Proposition [£.4.1] the event = holds with

high probability. Hence without loss of generality, we may assume = holds throughout the
following proof. Using (4.3.9)), we get

=53

keZy 0 1

dp|2 0 |2 0 G[u]+1 2 d|2 0

N b a0 R KSR K
#i

(4.4.54)
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By Proposition [4.4.1} (4.3.27) and (4.4.48]), we have

HG[M]G@%GW

< w2,

By Lemma m, it is easy to verify that |Gp/N| < Clw["?¥Z. Plugging it into (4.4.54),
we get

‘m% - mLz‘ < |w| V22 (4.4.55)
By (4.4.12) and (4.4.55|), the error ¢, in (4.4.20) is
ep = O<(Jw["2W3) — 7 Zympa [1 + O<(Jw|Y?Wg) | = O<(Jw]"2¥3) — 7 Zji 7y -

Then following the arguments in Lemma [4.4.6] we can prove the desired result. For w e Dy,

the proof is similar by using (4.4.2)). O

In the following lemma, we shall give stronger bounds on [Z] and (Z) by keeping track

of the cancellation effects due to the average over the index .

Lemma 4.4.10. (Fluctuation averaging) Fiz |z|*> < 1 — 7. Suppose ® and @, are positive,
N-dependent deterministic functions satisfying N™/? < ® &, < N~¢ for some constant

c > 0. Suppose moreover that A < |w|~Y2® and A, < |w|~2®,. Then for w e D,
I[Z]] + K2Z)] <[] ™12 @2, (4.4.56)

Proof. Our proof of (4.4.56) is an extension of [14, Lemma 4.9], [18, Lemma 7.3] and [33
Theorem 4.7]. Here we only prove the bound for |[[Z]|. The proof for [(Z)| is exactly the
same. For ¢ € Z;, we define P; := E; and Q; := 1 — F;. Recall that Z;) = Q;G|,;. Hence we

need to prove
| N
- NZ 1 (QGh) ma < w2 @2,

for w € D. For J < Z, we define W[[i]] by replacing m; in (4.2.35) with mEJZ] defined in

4.4.4). Asin (4.4.55)), we can prove that |m£i’]2 — mya| < |w|? ®2, which further gives that

ST i - il i i _
(2] = < 27t (QiGh) wlil+0< (jul ™2 @2) = Z Qi (eflciial]) +0< (jul ™2 @2).
i=1 i=1
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Thus if we abbreviate B; := |w|"/2Q; <7T[[HG[;1] W%ﬁ), it suffices to prove that B := N~ 3. B; <
2. We will estimate B by bounding the p-th moment of its norm by ®% for p = 2n € 2N, i.e.
E|B|? < ®*. The lemma then follows from the Markov’s inequality. Using |KK*| = | K|?,
we have that
TW(BB)" > |BB|" = |B|*".
Thus it suffices to prove that
ETr(BB*)P? < &%, for p = 2n. (4.4.57)

This estimate can be proved with the same method as in [33, Appendix B], with the only
complication being that ;) is random and depends on 4. In principle, this can be handle
by using and to put any indices j, k, ... € Z; (that we wish to include) into
the superscripts of 7p;). This leads to a minor modification of the proof in [33, Appendix B].

Here we describe the basic ideas of the proof, without writing down all the details.

The proof is based on a decomposition of the space of random variables using P, and
Qs. It is evident that P, and (), are projections, P, + (), = 1 and all of these projections
commute with each other. For a set J < Z, we denote Py := [[,; Ps and Q; := [],.; @s.
Let p = 2n and introduce the shorthand notation Jg’ks := By, for odd s < p and Bks = B},

for even s < p. Then we get

ETr(BB*)"? = — ) ETrl |Bks -— > ETrl [ <|p| (Pe, + Q) Bk5>
k1 kay..kp kl k2,.ookip s=1 \r=1
(4.4.58)

Introducing the notations k = (ky, ko, ..., k) and {k} = {k1, ko, ..., k,}, we can write

1 )
ETe(BBY? = — %, 3, ETrH <PI§QISBkS>. (4.4.59)
k I,..Ipc{k} s=1

Following the arguments in [33, Appendix BJ, one can see that to conclude (4.4.57) it suffices
to prove that for k € I,
|Q1 By < @1 (4.4.60)

As in [33, Appendix B], it is not hard to prove that for k € I,

QG < @, and ol R fonu G| < okt inz2 e
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Now we extend the proof to obtain the estimate (4.4.60)). For the case |I| =1 (i.e. I = {k}),

|Bell = [w]2|xfd Zum i | < [l 2] Zgg | < @0,

where we used | Zp|| < |w]'/?®,, which can be proved with the same arguments as in Lemma
4.4.50 For the case |I| = 2, WLOG, we may assume k =1 and [ = {1,...,t} witht > 2. It

is enough to prove that
|2 HQt QuQumllGr! H <@, (4.4.62)

We take t = 3 as an example to describe the ideas for the proof of (4.4.62). Using (4.3.9)),

we get
mly] = ali) + w2l Ayl |2l x P Agrl ) + ervory o, (4.4.63)
where 5&11] and 5%] are the upper left and lower right entries of
[1] F] 1o
1] . 1/2 1 2
el 1= w2 [ L Z Gh ( ) cly | < @2,
k¢{1 2}

Aj 5 are deterministic matrices with operator norm O(1), and [error; o] < |w|~Y/2®%. Then

we get

[12]

1/2 1/2 12] ~—1
/ [11] L |w] / 8 7r1 A27r 0] G[11]7T[1]

(1] ~—1 [1] [12] =1 -

+ lel/QW[[i]Q]Gﬁ]é%]W[hQ Aﬂ[ﬁ + |WI1/27T[1]]G[11]5%1712 Aoy + O~ (|w|™7@3). (4.4.64)

We first handle the W[[i]Q]G[H] { ]] term. By (4.4.61)), we have

Qi Gyl = ofi! (Qaih ) ! < ol ™2

For the remaining term, we first expand W[[i]ﬂ = W[[i]%] + O (Jw|~"2®2) and use (4.4.61) to

get

Qs Gty = 7l (QsQaGiyly ) 7Y + O (wf ™28 < ul 203,

Then we deal with the second terms in (4.4.64)). We first expand &?H% = e% + O (9?), where

[13]
[

G 1
Nty > Gha(Ghsl) ol
k¢{123}

(3]

eh = |w| /2
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Using the similar arguments as above, we get

Qs |w|1/2€11” Al” G[111]7TH] |U’|1/2€117T A17T (Qs ) 23] O (Jw| 202

< Jw| 2L,

Thus we have

Q203 |w|1/2511 A17T G[_ﬁ]ﬂﬁf] < |w| Y23,

Obviously this kind of estimate works for the rest of the terms in (4.4.64)). This proves

(4.4.62)) when t = 3.

We can continue in this manner for a general ¢. At the [-th step, we expand the leading
order terms using and , and after applying @Q; ... Q3@ on them, the number
of &, factors increases by one at each step by . Trough induction we can prove
. In fact the expansions can be performed in a systematic way using the method
in [33, Appendix B], and we leave the details to the reader. Also we remark that similar
techniques are used in the proof of anisotropic local law in Section 1.5, and we choose to

present the details there (in fact the proof here is much easier than the one in Section

1), 0

Now we finish the proof of the entrywise local law and averaged local law on the domain

D. By Proposition [4.4.1] we can take

_ _ 1/4
P, = |w|1/2\/1m(m10+m20)+|w| VRN <|w|1/2) ,

Nn Nn
in Lemma [4.4.10, with A, < ¥y < |w|2®, and A < Uy +0 < |w|"Y2®. Then (4.4.51)) gives

lw[Y2Im(mye + mae) + [w|V4(Nn)~/4

T <
(U), ml) NT]
Using the stability Lemma [.3.7, we get
| | < lw[Y2Im(my. + ma.) . |w| V3 ) 1 . || /8 12 lw|1/? 1/2+1/8
my — Mmie e w |
o NGRS (N)PB = Ny T (N N

Here if \/k + 1 = (log N)~!, we use
1/2
[w[*Im(my, + ma.) _ Clog N - 1

Nnye+1 = Ny Nn’
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if /k+ 1 < (logN)™!, we have Im(my. + ma.) = O(y/k + 1), which also gives that

[w [ Im(my, + ma,) - 1

Nny/eE+1 Nn’

We then use (4.4.50) to get that

1/2] VA ( Np)—1/4 1/2\ V/2+1/8
lw[V2Im(mye + mae) + [w]|*(Nn) < |w| V2 <&) . (4.4.65)

0 < |mq—my| +

Nn Nn
Repeating the previous steps with the new estimate (4.4.65|), we get the bound
1/2\ Skt 1/2841/2142
9 < |w]_1/2 |w] /
N7

after [ iterations. This implies the averaged local law 6 < (Nn)~! since [ can be arbitrarily

large. Finally as in (4.4.46) and (4.4.48)), we have for ¢ # j € 7y,

Im(my. + ma.) 1

|G = mpaell + [Grnl < o +6 < \/ Ny TN

This concludes the proof of the entrywise local law and averaged local law on domain D

when |w|Y2 + [2]? > c.

When w € Dy, we have proved the entrywise law (see the remark after (4.4.25)). Also
we can prove a similar estimate as in Lemma [4.4.10] which implies

1+ my
—w (1 +my)* + |22
The averaged local law then follows from Lemma [4.3.7. We leave the details to the reader.

+ O (Np)™Y), Y(w,my) < (Nn)~". (4.4.66)

Mo =

4.4.5 The small |z| and |w| case

In the previous proof, we did not include the case where |w|"? + |z|> < ¢ for some sufficiently
small constant € > 0. The only reason is that Lemma does not apply in this case. We

deal with this problem in this subsection.

The main idea of this subsection is to use a different set of self-consistent equations,
which has the desired stability when |w| and |z| are small. Multiplying with |d;|?
and summing over i, we get

—1—-m
1+ s;ms) (14 my) — |2
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Recall that ¥ := DD* = D*D. We introduce a new matrix

Hw) —w¥ ! w'?(X — D712) (4.4.68)
w) = : 4.
w'?(X — D712)* —wl

and define G := H~'. By Schur’s complement formula, the upper left block of G is
G =[(X - D' 2)(X - Do) —wn™] ",
and the lower right block is

Gr=[(X =D 2)*S(X = D'2) —w] ™" = [(DX — 2)"(DX — 2) —w] ™' = G

Now we write m; » in another way as

1 * * -1 1 ~
my = = Tr [D*(YY* —w)™ D] = ~ G, (4.4.69)
1.~ 1 .
my = 5 TrGr= ST [(X = D7) S(X — D'2) —w] ™
1 . . a1 -
= ST [(X = D)X =D —w] T = o (2 1GL) . (4.4.70)

We apply the arguments in the proof of Lemma m to H, and obtain that

B B B P T
Can = 12571 + O<(Jw|Wy), (4.4.71)
—wrTzay —W — wWmy

-1 - mq
|di| =2 + ma) (1 + my) — [2[?|d;| 2

1(2)Gy = 1(B) [w( + O<(\D9)] .

Plugging this into (4.4.70)), we get

1 - lz —1—m1
1E)my = 1(3) | =Y =
(E)ma ( )[N;Siw(si_l+m2)(1+m1)—|z|28;1

+ O<(\P9)] . (4.4.72)
We take the equations in (4.4.67]) and (4.4.72)) as our new self-consistent equations, namely,

1(Z) fi(m1,ms) = 1(E) O<(¥y), 1(E)fa(my,ms) = 1(Z) O<(¥y), (4.4.73)
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where

1 14+ my
) =+ LS s, ’ 4.4.74
fi(mi,mo) 1 Z w (14 s;mg) (1 +my) — ’Z|2 ( )
I +my
| _ LA ) 4.4.75
fa(ma, ma) :=my Z w(l + sima)(1 4+ my) — [2[? ( |

According to the following lemma, this system of self-consistent equations are stable when

lw| and |z|? are small enough .

Lemma 4.4.11. Suppose that N~|w|™"? < §(w) < (log N)~!w|™"2 for w e D. Suppose

ur e : D — C are Stieltjes transforms of positive integrable functions such that

max {| fi(u1, uz)(w)], [ f2(ur, uz) (w)} < 6(w).

1/2

Then there exists an € > 0 such that if lw|'* + |z]* < &, we have

[uy (w) — mae(w)| + |ug(w) — mae(w)| < C0, (4.4.76)
for some constant C' > 0 independent of w, z and N.

Proof. The proof depends on the estimate of the Jacobian at (mi., ms.). By (4.3.22]) and
(A.1.35)), we have

it + O(Jw|'? + |2]?) ity ? + O(jw|"2 + |2]?)
Mic = \/@ , Mae = \/@ 5

where to = (N7137" 1;/s;)~'. Then we can calculate that

of 0 L+ 0(12[%) to + O(jw]? + |2
dot 1f1 Oafi — det (1) o (Jue] 121 =2+ O(|w|Y? + |2).

O1fa Oafs raemis O(|z]?) 24+ O(lw]*? + |2]?)

We can conclude the stability by expanding fi 2(uy, u2) around (my., mso.) and using a fixed

point argument as in the proof of Lemma in Section [A.3] O

With this stability lemma, we can repeat all the arguments in the previous subsections

to conclude the entrywise local law and averaged local law when |w|"? + |z|? < e.
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4.5 Anisotropic local law when 7' is diagonal

In this section we prove the anisotropic local law in Theorem 4.2.22| when T is diagonal. The
basic idea of the proof follows from [I4] section 5], and the core part of our proof is a novel
way to perform the combinatorics. By the Definition [4.2.21] (ii) and Definition (i), it

suffices to prove the following proposition for generalized entries of G.

Proposition 4.5.1. Fix |z\2 < 1 — 7 and suppose that the assumptions of Theorem

hold. Then for any reqular domain S < D,
K, (G(w) = T(w)) v)[ < ¥ (4.5.1)
uniformly in w € S and any deterministic unit vectors u,v e CZ.

It is equivalent to prove that

Z upy) (G[iﬂ - H[z’j]) vy <V, = y U] = . (4.5.2)

ijey uj vj

By the entrywise local law,

Duty Gy = M) vpan| < |Gy = g | | [ona] + 2wy Grsern| < ¥ + | D, ufy Grav
i,J i i#j i#]
Thus to show , it suffices to prove
Zu’[‘;]G[ij]v[j] < . (4.5.3)
i#]

Note that with the entrywise local law, one can only get that

Mt Grop| < Tlulyvli < N,

i#]

using |[u; < NY?|ul, and |v||; < NY2|v|,. In particular, this estimate of the ¢! norm is

sharp when u, v are delocalized, i.e. their entries have size of order N—1/2.

The estimate (4.5.3) follows from the Markov’s inequality if we can prove the following

lemma.
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Lemma 4.5.2. Suppose the assumptions in Proposition[{.5.1 hold. For any p € 2N, we have

p

E 2 uF@]G[U]U[J] < P,

i#]

The proof of Lemma is based on the polynomialization method developed in [14]
Section 5], which is also used in Section and Section . But our proof here is much
more complicated than the ones before. For simplicity, we only consider the case with w € D
and |z|*> <1 — 7 in this section. If we Dy or 1+ 7 < [z <1+ 771, the proof is almost the

same.

4.5.1 Rescaling and partition of indices
For our purpose, it is convenient to define the rescaled matrix
RY) .= w'2GW), (4.5.4)
for any J < Z with |J| < [ for some fixed [. Consequently we define the control parameter ®
@ = |w|"?W. (4.5.5)
By the entrywise law, for w € D,
RY) = 0.(1), (R@)_l —0-(1), RY) = 0_(®) for i # j, (4.5.6)

under the above scaling. Now to prove Lemma [4.5.2] it is equivalent to prove

P
E Z UE]RW]UU] < QP (457)
i#]
We expand the product in (4.5.7)) as
p p/2 P
YuiRawn| = ) | ubgRiaavug - [ v Rooavua-
i#j in i€l k=1 k=p/2+1

Formally, we regard {i1, ..., %, j1, ..., jp} as the set of 2p (index) variables that take values in

Z,. Let B, be the collection of all partitions of {iy, ..., %, j1, ..., jp} such that i, j; are not
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in the same block for all £k = 1,...,p. For I' € B,, let n(I") be the number of its blocks and

define a set of Z;-valued variables as
L(T) := {by, ..., by }- (4.5.8)
Now it is convenient to regard I' as a symbol-to-symbol function,

T = {1,y ooy ipy j1seoes jo} — L(D), (4.5.9)

such that each I'"! (b) is a block of the partition. Then we can rewrite the sum as

* p/2

p p
=37 > T e Breoraorreor: [ e BreorGoricGor
k=1

eBy,  bely, k=p/2+1
I=1,....,n(T")

> uf Ry
i#£]

(4.5.10)
where >1* denotes the summation subject to the condition that the values of by, ...b, are

ordered as by < by < ... < b,. We pick one term from the above summation and denote

p/2

p
AT) =] TufrgonBraoroorren - |1 e Breoraormao: (4.5.11)
k=1 k=p/2+1

For any by, € L, we can also define a corresponding Z,-valued variable by, in the obvious

way, and we denote

[L]:= {b1,....,bn, b1, ..., b} (4.5.12)

For notational convenience, we will also use letters i, 7, k, [ to denote the symbols in L.

4.5.2 String and string operators

During the proof we will frequently use the following resolvent identities for rescaled matrix

R. They follow immediately from Lemma [4.3.2]

Lemma 4.5.3 (Resolvent identities for Rp;; groups). For k ¢ J and i,j € Z,\J u {k}, we

have
U _ plikl | pll (pl] ) Rl
RE) = REY + R (BRL) R, (4.5.13)
D\ (R ! DN ! ol (] N\ Bl ([ plak
(RE3) = (RE) —(m63) R (Rhh) G (6) (4.5.14)
J\ ! _ J _ TN [ Ji] 7o [
(R{u%> =w 1/2H[[u]] w ' Z H[[zl]] R%ll’]]H[[l’z]] (4515)

LUgJu{s}
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Furthermore, for i # j and L defined in , we have

RN = RIS g RN with S = —w™ 2 Hpg +w™ Y Hygg Riy) Hyyjp. (4.5.16)

[47]
k,l¢L

In this section, we expand the R variables in A(T") using the identities in Lemma [4.5.3|
During the expansion, we need to distinguish carefully between an algebraic expression and

its value as a random variable. Our notations below are extensions of the ones defined in

Section [3.3.2

Definition 4.5.4 (Strings). Let 2 be an alphabet containing all symbols that may appear
during the expansion, such as R%@'Jj]]’ (R%)l, Sl uE‘Z and vy for J < L(I'). We define
a string s to be a formal expression consisting of the symbols from A, and denote by [s] the
random variable represented by it. Let M be the collection of all possible strings. We denote

an empty string by .

Given a string s, after an expansion of R’s in it, we will get a different string s’. However,

they represent the same random variable [s] = [s']. During the proof, we will identify more
elements of 2 (see the symbols in (4.5.32)).

To perform the expansions in a systematical way, we define the following operators acting
—1
on strings. We call the symbols R{i‘?], (jo]]) to be maximally expanded if J u {7, j} = L

We call a string s to be maximally expanded if all the R symbols in s is maximally expanded.

Definition 4.5.5 (String operators) (i) Define an operator 7'0 for Qe M, in the following

—1
sense. Find the first R in Q such that k ¢ J U {1 j}, or the first ( % %) such that

k¢ Ju{i. If Ré 18 found replace it with R : ( i) 1s found, replace it with
(R[‘{k]>_l; if neither is found, 7 )(Q) Q and we say that Ték) 15 trivial for €).
(ii) Define an operator 7'1 for Qe M, in the following sense. Find the first R J in €
such that k ¢ J v {i,j}, or the first ( { D B such that k ¢ T u {i}. If R[Z.j] is found, replace
-1

—1
it with R[ik] (Rﬂo R[kj] sif (R[;]i> is found, replace it with



if neither is found, Tl(k)<Q) = & and we say that Tl(k) is null for Q.

(iii) Define an operator p for Q0 € M, in the following sense. Find each mazimally
expanded off-diagonal R%é}{ij}] i Q and replace it with R%i]\{ij}]S[ij]jo\]{j}]. If nothing s

found, p(2) = Q.
According to Lemma [4.5.3] for any Q € 9t we have

(72 + ) @] = 11, ] = 121 (4:5.17)

Definition 4.5.6. Define the function Fyme : I — N (where the subscript “d-mazx” stands

for “distance to being mazximally expanded”) through
Fimar (R ) = 1L\ (T 0 31
where * could be 1 or —1, and

fd—maz(Q) = Z -Fd—max(R)'

R wvariables in €

Define another function Fog: I — N with F,u(2) being the number of off-diagonal symbols
wn €.

By off-diagonal symbols, we mean the terms of the form Ay with s ¢ {t,t} or Ap;) with

1# 7, e.g. RE.]],]] and Sp;;) with ¢ # j. Later we will define other types of off-diagonal symbols

(see (4.5.32))). Note that a R symbol is maximally expanded if and only if Fyq pmax(R) = 0
and a string € is maximally expanded if and only if Fyqpnax(©2) = 0. The next two lemmas

are almost trivial by Definition [£.5.5
Lemma 4.5.7. Fiz ke L. ]fTék)(Q) =Q and Tl(k)(Q) =,
Fimar (D)) = Fimaal @), Famar (7)) =0 (4.5.18)
otherwise,
Fimas (Tg%)) = FimaelQ) =1, Fimae (Tf“(sz)) < Fimal(Q) +4n(D).  (4.5.19)

For p, we have

Famaz (P(Q)) = Fama() + a, (4.5.20)

where a s the number of maximally expanded off-diagonal R’s in €.
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Lemma 4.5.8. Fixz k€ L. For any 2 € 9, we have

For (R)) = Fupl@), Fogr(p(92)) = Fup(2), (45.21)

and

Forl@) +1< Fop (AP(Q) < Fop() +2 if 77 # @ (4.5.22)

4.5.3 Expansion of the strings

For simplicity of notations, throughout the rest of this section we omit the complex con-
jugates on the right hand side of (if we keep the complex conjugates, the proof is
the same but with slightly heavier notations). Suppose the right hand side of is
represented by a string 4. Given a binary word w = ajas...a,, with a; € {0,1}, we define
the operation

(Qa)w = prom) - prP2) pri) Q) (4.5.23)

where by4r 1= b, (recall (4.5.8))) for any 1 <r < n and ¢ € N. So a binary word w uniquely
determines an operator composition. By (4.5.17)), [(Qa)wo] + [(2a)w1] = [(2a)w] and so

we get
>, [(Qa)w] = [Qa]
[w|=m

for any m > 1, where |w| denotes the length of w.

Lemma 4.5.9. Given any w such that |w| = (n? +1)(p + 6ly) and (Qa)w # &, then either
Fop((Qa)w) = 1o := (8/C + 2) p, or (Qa)w is mazimally expanded.

Proof. We use mg to denote the number of 0’s in w, and m; to denote the number of

1’s.  Furthermore, we use m(()o) to denote the number of 0’s corresponding to the trivial

)

To's, and m(()1 to denote the number of 0’s corresponding to the non-trivial 74’s. Assume

Foit((Qa)w) < lp and (Qa)w is not maximally expanded. By (4.5.21]) and (4.5.22)), we have
my < lp —p <ly. By (4.5.18))-(4.5.20]), we have

Famax((2a)w) < Famax(Qa) + lo + 4nmy — mél).
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Then with Fymax(Q2a) = np, we get a rough bound mél) +my < n(p + 6ly). By pigeonhole
principle, there are at least n 0’s in a row in w that correspond to trivial 7y’s. This indicates

that (©a)w is maximally expanded, which gives a contradiction. O

Lemma 4.5.10. There exists constants Cp,,, Cp ¢ > 0 such that

*
S OS EY [Oanhd <Gt o s
T'eB, bieZy, |W|:(n2+1)(p+6l0),

I=1,...,n(T) Fog((Qa))w)=lo

Proof. The first bound is due to the fact that each summand is of the order O (®%) and

there are at most N2 of them. For the second bound, we used ® < CN~¢/2, O

This lemma shows that all the strings with sufficiently many off-diagonal symbols con-

tribute at most ®. It remains to handle the maximally expanded strings. Define a diagonal

symbol as
O le,ﬁ _ L
S == | -, +w™ Y Hyg Ry Hu. (4.5.25)
Xz 0 kgL
such that
. —1 —w1/2 —Z
(R[?\“”) _ — Sy (4.5.26)
Li7] 5 1/2
-z  —w

Notice all the R symbols in a maximally expanded string are diagonal. We taylor expand

R&]\{i}] as

R[%]\{i}] = [’LU_l/z?T[_-l + (S[z‘i] — Bz)]

[i% ilc

lg—l
g > Fie [(Spg — Bi) o]+ 02 (B°),  (4.5.27)
k=0

w'/2|d;|*mae 0
where 7). 1= wmﬂ[i]w B; = ) , and for the error term,
0 wl?my,
2 [L]
St — B, = w—l/QZ[L\{i}] . w1/2 ‘dz‘ (mQC — My ) 0 - &
e g (]
0 Mie — My

by (4.4.12)) and the averaged local law. Now for all maximally expanded (Qa)w with |w| =

(n? 4+ 1)(p + 6ly), denote by o [(Qa)w] the expression after plugging in (4.5.26|) and (4.5.27)
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without the tail terms. Similar to Lemma [4.5.10, we have

Z i = Z ([(Qam)w] — o [(Qam)w])| < Cpc®”.

I'eB, bieZy, |W|:(7‘L2+1)(p+6[0),
I=1,...n(I) (Q2a)w maximally expanded

From the above bound and Lemmas [4.5.954.5.10, we see that to prove (4.5.7)), it suffices to

show

Z Z E Z o [[(QA(F))W]] < Cp PP, (4.5.28)

reB, bel, |w|=(n2+1)(p+6lo),
I=1,...,n(T") (QA)w maximally expanded

We write o [(Q2a)w] as a sum of monomials in terms of Sp;;):

o [(Q)w] = ZM<W, A(D), 1), (4.5.29)

where 7 is an index to label these monomials. Note that after plugging (4.5.29)) into (4.5.28]),

the number of summands M (w,A(T'),4) inside the expectation depends only on p and (.
Thus to show (4.5.28]), it suffices to prove the following lemma.

Lemma 4.5.11. Fiz any T € B, and binary word w with |w| = (n* + 1)(p + 6ly). Suppose
(Qa)w is mazimally expanded. Let M(w, A(T)) be a monomial in o [(Qa))w]. Then we

have
*

> IEM (w, A(T))| < C, P (4.5.30)

bieZy,l=1,..., n(F)

or some constant C, ¢ that only depends on p and C.
p,¢

For the rest of this section, we fix a I' € B, and a maximally expanded (Qar))w with
lw| = (n? + 1)(p + 6ly). Then we fix a monomial M(w, A(T)) in o [(Qa@))w]. Let Qu be
the string form of M (w, A(I")) in terms of Sp;;. It is not hard to see that

Foff (QM) = foff ((QA)W) . (4531)
Now we decompose S|;;) as

_oX X R R R R
Slij) = S5 + 55 + 55 + S5 + 555 + 55,

(4.5.32)
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where we define the following symbols in 2:

01 - 0 0
S = d;X;; . S = diX] , (4.5.33)
0 0 10
0 R _ R 9
Sii= ) didi XXy ML she= ) ddixg x| : (4.5.34)
k,l¢L 0 0 kIEL 0 0
- 0 O - 0 O
R ._ , oy - R . _ , Tyt
S5 = Z d;dy X5, X5 w | S5 = Z didy X5, X7, [Q] . (4.5.35)
klg L 0 Ry klgL R 0

We expand the Sp;)’s in M(w, A(')) using (4.5.32), and write M(w,A(I')) as a sum of

monomials in terms of SZ and S%:
M(w,A(T)) = > Q(w, A(T), i), (4.5.36)
where 7 is an index to label these monomials. Again it is not hard to see that
Fort (20) = Forr (1) = Forr ((2a)w) - (4.5.37)

Since the number of summands in (4.5.36) is independent of N, to prove (4.5.30)) it suffices

to show
*

> IEQ(w, A())| < C, ®” (4.5.38)

bieTy,i=1,...,n(T)
for any monomial Q(w,A(I')) in (4.5.36). Throughout the following, we fix a Q(w, A(I"))

with nonzero expectation, and denote by g the string form of Q(w,A(T')) in terms of
SX and SE. Notice the R variables in S% are maximally expanded. As a result, the S
variables are independent of S variables in Q(w, A(T')). Therefore we make the following

observation: if S% appears as a symbol in Qg, then Qg contains at least two of them.

Definition 4.5.12. Recall I' defined in . Let h be the number of blocks of I' whose

size 15 1, 1.e.
n(I')
hi= > 1(07' (b)) =1). (4.5.39)
=1

Forl=1,...,n, define

L= |{in, i) TN B)|, = |G- dpd A TTHDY)
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Lemma 4.5.13. Suppose for any by, ..., b, taking distinct values in Iy,

[EQ(w, A(D)| < CN"20% [T |upsy| " Jvpe|” (4.5.40)

=1

holds for some constant C independent of N. Then the estimate holds.
Proof. By Cauchy-Schwarz inequality,

N NY2 ifa+b=1
Z |upg | \U[k]\b < :
k=1 1 ifa+b=2

Then using h = >, 1 ([, + J; = 1), we get
=1

*

> EQw, AM) < COPNTETT Y. fupy|” Jv|” < C@”.

blell,lzl ..... n(F) =1 bl€Z1

]

Hence it suffices to prove (4.5.40). The key is to extract the N2 factor from E Q(w, A(T)).

For this purpose, we need to keep track of the indices in L during the expansion.

Definition 4.5.14. Define a function F;, : L x M — N with Fi,(1,2) giving the number of

times | or | appears as an index of an off-diagonal R or S symbol in €.

The following lemma follows immediately from Definition [4.5.5| and the expansions we

have done to obtain Qg from (Qa)w-
Lemma 4.5.15. (1) For any string Q, if TO(k) is not trivial for Q, then
Fin (z, n&’”(@)) — Full,Q),  Fin (z, ﬁ’%@)) = Foll,Q) +a, ac{0,2).  (4.5.41)

(2) For any string §2,
Fin (1, p(Q2)) = Fin(l, ). (4.5.42)

(3) For any mazimally expanded (A )w,

Fin(l,Qq) = Finll, (Qa)w)- (4.5.43)
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Let ) be the substring of Q¢ containing only S* symbols, and Qf be the substring of

Qg containing only S* symbols. Define

V= {leL| Fin(l,Qn) = 1}, (4.5.44)

and
Vo = {l € L| Fin(l,Q) = 1 and Fiu(1,Q3) = 0}, (4.5.45)
Vi = {l e L| Fin(l,Qa) = 1 and Fiu(1,Q3) > 2}. (4.5.46)

Recall the observation above Definition 4.5.12 we have V = V, u V; and
h=[V|=[Vo| + Wil.

Let nx be the number of off-diagonal S* symbols in Q)Q( and ng be the number of off-diagonal

ST symbols in Qg. Note that n, := nx + ng is the total number of off-diagonal symbols in

Q0.

4.5.4 A graphical proof

We introduce graphs to conclude the proof of . We use a connected graph to represent
the string g, call it by &go. The indices in [L] are represented by black nodes in .
The SZ or S symbols in Qg are represented by edges connecting the nodes s and ¢. We
also define colors for the nodes and edges, where the color set for nodes is {black, white} and
the color set for edges is {SX, ST X, R}. In Bgy, all the nodes are black, all S* edges are
assigned S color and all S¥ edges are assigned S color. We show a possible graph in Fig.
[4.3] In this subsection, we identify an index with its node representation, and a symbol with

its edge representation.

Definition 4.5.16. Define function deg on the nodes set [L] such that deg(l) gives the

number of ST edges connecting to the node .

By Lemma [4.5.15] we see that for any [ € V,

Fin(l,Qq) = deg(l) + deg(l) =1 (mod 2). (4.5.47)
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Hence

Vol = Z [Fin (1,20) mod 2] < Z [(deg(l) mod 2) + (deg(l) mod 2)]. (4.5.48)
1eVo Vo

Now we expand the ST edges. Take the Sg. edge as an example (recall (4.5.34))). We
replace the ng edge with an R-group, defined as following. We add two white colored nodes

to represent the summation indices k, 1 ¢ [L], two X-colored edges to represent X;; and X ijs

_ 0 R
and an R-colored edge connecting k and [ to represent M 1. We call the subgraph
0 0

consisting of the three new edges and their nodes an R-group. If i = j, we call it a diagonal
R-group; otherwise, call it an off-diagonal R-group. We expand all the S% edges in &g
into R-groups and call the resulting graph &¢;. For example, after expanding the S® edges
in Fig., we get the graph in Fig.. In the graph B¢y, the R edges, X edges and S¥
edges are mutually independent, since the R symbols are maximally expanded, and the white

nodes are different from the black nodes.

ol
w

o —— 0O S~

@@ S5X

by by bs

Figure 4.3: An example of the graph &y.

Notice that each white node represents a summation index. As we have done for the
black nodes, we first partition the white nodes into blocks and then assign values to the
blocks when doing the summation. Let W be the set of all white nodes in &, and let W
be the collection of all partitions of W. Fix a partition v € VW and denote its blocks by
Wi, ..., Wiy). If two white nodes of some off-diagonal R-group happen to lie in the same
block, then we merge the two nodes into one diamond white node (Fig.. All the other
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O—OR
@O X

@@ G§X

Figure 4.4: The resulting graph G, after expanding each S% in Fig. into R-groups.

white nodes are called normal (Fig.. Let ngg) be the number of diamond nodes (which is
< the number of diagonal R-edges in ;). Then we trivially have (recall Definition 4.5.16)

# of white nodes = —nR Z deg (by) + deg(by)] - (4.5.49)

Figure 4.5: Diamond white node.

Figure 4.6: Normal white nodes.

By (4.5.48), there are at least |Vy| black nodes with odd deg in [Vy] (where [V] is defined

in the obvious way). WLOG, we may assume these nodes are by, ..., bjy,|. To have nonzero
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expectation, each white block must contain at least two white nodes. Therefore for each
k =1,...,|V|, there exists a block connecting to by which contains at least 3 white nodes.
Call such a block W (b), and denote by A(by) the set of the adjacent white nodes to by
in W (bg). Be careful that the W (bg)’s or A(bg)’s are not necessarily distinct. WLOG, let
Wi, ..., Wy be the distinct blocks among all W (by)’s. Define

Voo := {bx| A(bx) has no normal white nodes, 1 < k < [V},

and

Vo1 := {bx| A(bx) has at least one normal white node, 1 < k < [Vy|}.

The following lemma gives the key estimates we need.

Lemma 4.5.17. For any partition v € W,

_ Vool = [Voul/2 — i + 355, [des (bi) + deg(br) |
~ 2 Y

m(7) (4.5.50)

and

Ny +Nr = p+ |V1| + |V00|, nx = |V1|, ng) = |V()0|. (4551)
Proof. The second inequality of (4.5.51]) can be proved easily through
V1| < [{k € LI Fn(k, Q) = 2}| < nx.

Notice for by € Vy, A(bg) contains at least three diamond white nodes, while each of the

white node is shared by another b;. Thus we trivially have |Vy| < ng%d).

Now we prove (4.5.50). A diamond white node is connected to two black nodes and a
normal white node is connected to one black node. Hence a diamond white node belongs to
two sets A(by, ), A(by,), and a normal white node belongs to exactly one set A(by). Therefore

for each i = 1, ..., d, if W; contains exactly one A(by), then

1V00 (bk)

Wil 23> 2+ 1y, () + 22

Otherwise if WW; contains more than one A(by), then
Wil > 2Ly, () + 5
2

bk:A(bk)QWi

-1voo(bk)> >2+ > <1V01(bk) - L’T(b’“))

bk:A(bk)QWi
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Here the first inequality can be understood as following. For each black node by, with A(b) <
W;, we count the number of white nodes in A(by) and add them together. During the
counting, we assign weight-1 to a normal white node and weight-1/2 to a diamond white
node (since it is shared by two different black nodes). If by € Vyo, there are at least three
diamond white nodes in A(by) with total weight > 3/2; if by € Vy;, there are at least
one normal white node and two other white nodes in A(b) with total weight > 2. Thus
Doneeayews (27 Tvgy (bk) +3/2 - 1y (by)) is smaller than the number of white nodes in W;.
Then summing |W;| over i, we get

d
DW= 2d + Vo | +

=1

Vool
5

For the other m — d blocks, each of them contains at least two white nodes. Therefore

|V00’

d n
2m + Vo | + Z Wi| + 2(m — d) 2 deg (bg) +deg(bk)]

where we used (4.5.49) in the last step. This proves (4.5.50)).

For by, € Voo, A(by) contains at least three white nodes from off-diagonal R-groups,
Voo S{bk € L| Fin(b,Qa) = 1 and Fiu (b, Q5) = 3} =: Vs

Recall Lemma |4.5.15| only Tl(k) can increase F;,. Thus w contains 7'1 ) for each b, € ViUV,
(recall the definition of V; in (4.5.46))). Therefore by (4.5.22)), (4.5.37)) and the fact that Vo

and V) are disjoint, we have
nx +nNrp = foﬁ((QA)w) ZFOH(QA) + |V1 ) V2| =Zp+ ’V1| + |V00|.

This proves the first inequality of (4.5.51]). m

Now we prove (4.5.40). By (4.2.3) and (4.5.6), a diagonal R edge contributes 1, an

1/2

off-diagonal R edge contributes ®, and an SX or X edge contributes N~%2. Denote

= H }u[bz] "
=1
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Then using Lemma [2.4.2] we get

% n ~
EQ(w, A(T)| < CUNT™ T ST granid T (v12) e s)
YEW y(W1),e.;y (Wi )EL\L k=1
Z] deg(bk)+deg(5k) .
< OL[N—”X/Q 2 Nm_k:lfq)n}{—ng{)
yEW
_ “Mor-Vool2=nf) @)
< CUN—x/? Z N 2 PRE
yeW
< CUNM? Z N—(x—a)/2 - = ool) 2 na—nSy
yeW
< CUNM? Z orxrrr=Vil=Vool < Cp NH2gP,
yeWw

where in the third step we used (4.5.50)), in the fourth step h = [V| = |[Vi| + [Voo| + | Vo1, in
the fifth step N~%2 < ® and (4.5.51)), and in the last step (4.5.51)). Thus we have proved

(4.5.40)), which concludes the proof of Proposition m
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APPENDIX A

Stability of self-consistent equations

A.1 Proof of Lemma |4.2.3| and Proposition [4.2.18

We now prove Lemma m First is a technical lemma for f defined in (4.2.15)).

Lemma A.1.1. For w > 0 and |z| > 0, f can be written as

1 & A; B; C;
_ —12 L LN i i i A1
f(vw,m) Vw +m 4w +N;zsz(m—ai+m—bi+m+ci)’ ( )
where we have the following estimates for the poles and the coefficients,
. 2 |22
max (|z|,s ;1’174 ) <a; < i \/I%Z‘ + 2], an < ap-1 <...<a, (A.1.2)
2
0<b <by<...<b, <min (|Z|"\/Z_E>’ (A.1.3)
—(si + |2°) + /(i + |2]?)? + dw]z|?
(5 +12) + /(51 + o) wlz] < <|zl, aa<c<...<cy, (A.1.4)
23 /w
and
. 2 i 2 ‘ 2
0 < A, <251+ || +\/mzj’ 0<B, <252+ || —I—\/E\z|’ 0<C < si + |2 +\/@|z\‘
w w w

(A.1.5)
Proof. The proof is based on basic algebraic arguments. Let
pi = Nm® = (s; + [22)m? = vl + 2]
It is easy to verify that

A =18(s; + |2])w]z]® + 4(s; + [2)?]2]* + (i + [2]2)?w|2|* + 4w?|2]° — 2Tw|z[* > 0.
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Thus p; has three distinct real roots. By the form of p;, we see that there are two positive
roots and one negative root, call them a; > b; > 0 > —¢;. Now we perform the partial
fraction expansion for the rational functions in (4.2.15)):

m? — |z|? _ A N B, ]
Vumd = (s; + [2)2)m2 — ywlzPm + |z]* m—a; m—b, m+¢’

where

Al = a?—|z|2 r_ sz_|Z|2 ’r _sz_’_|z|2

T Vw(a; —b)(a; +¢) T Vw(by — a;)(bs + c)’ Ci= Vw(e; + a;)(c + b;)

We take s; = 0 in p; and call the resulting polynomial as

. (ALT)

= Vo = [z = yalsPn |2 = v (m— L) - o)

which has roots m = +|z], |z|*/y/w. By (4.2.7), we have p; < py < ... < p, < po for all

m # 0. Comparing the graphs of p;’s (as cubic functions of m) for 0 < i < n, we get that

a |||Z|2 <a, < <...< 0<b <by<...<b, <mi ]||Z|2
max | |z], —= ap < Apq1 < ... <aq, oo <b, <min | |z]|,—= ],
T 1 1 1< 02 o
(A.1.8)
and
O<a<ec<...<c, <]z (A.1.9)

Thus we get (A.1.3). By these bounds, we see that a? — [2> > 0, b? — |2/ < 0 and
—c? + |z|? > 0, which, by , give that A, > 0, B/ > 0 and C! > 0. Plugging
into f, we get immediately with A; = Ala;, B; = Blb; and C; = Clc;. The w™'/?
term can be obtained by comparing the coefficients of the m? terms in and using

the normalization condition (4.2.8§]).

Now we compare p; with pl := yJwm? — (s; + |2|*)m?* — y/w|z|*m, which has roots

(si + |2*) £ /(s + [2[*) + dw]2]?

~0
e 2w

Since p, < p; for all m, we get

(si +)2%) + \/(8Z + 2122 + dwlz|? s + |2
a; < <
23 /w Vw
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and

—(si 1 [2?) + /(50 + [2[1)? + dw]2?
C; > .

23 /w
Combining (A.1.9) and m we get (A.1.4] - Then we compare p; with p/ := /wm?® —
(s; + |z|*)m?, which has roots w = 0, (s; + |2|*)/y/w. Note that p! > p; for m > |z|>/y/w,
which gives a; > (s; + |2]?)/+/w since a; > |2|?/y/w. Combining this bound with (A.1.8)) and

(A.1.10)), we get (A.1.2)).

Finally we estimate the coefficients A;, B; and C;. Using (A.1.7) and (A.1.2)-(A.1.4)), we

first can estimate that

(A.1.11)

v D@t ) atld 2
\/@(CZZ‘ *bi)(ai +Ci) = \/E((IZ +Ci) = \/E7

g el +0)(2 =b) o +bs <28z+\2|2+\ﬁ|2\

oVw(a; —b)(bi+ ) Vwbi+e) w|z]

(zl-e)etls) _ Jd-e st b4yl

Vw(e; +a;)(ei +b)  Jw(e +b;) w|z|

with which we can get that

c; =

A= Alay < 2 (Pt 2] ) = 25T |2 + vwle] (A.1.12)

’ T Vw Vw w ’ o

) 2 ) 2
B; = Bib; < P + |2 |+’ vl |z| = 9% nald s \/@M, (A.1.13)
w|z w

O = (e < ST 122 + Vw|z| 2| = si + |2]? + yw|z| (A1.14)

‘ e w|z| w ’ o
This completes the proof. O

In (A.1.1)), it is sometimes convenient to reorder the terms and rename the constants to

write f as
1 2n n
2 4 : A.1.15
flm) = —vw +m +w” NZ p—— NZeryl ( )
where all the constants C}f and C; are positive and chosen such that
O<z1 <2< ...<Zoy, 0<y1 <o <...<Yn. (A.1.16)

Clearly, f is smooth on the 3n + 1 open intervals of R defined by

[—n = (_OO>_yn)> I—k = (_yk‘-i-la _yk‘) (k = 17- <= 1)a ]O = (_ylaxl)a
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I, = (l’k,l‘k+1> (k = 17 . '72n - 1)7 Iy, = (IQ”’ +OO>

Next, we introduce the multiset C of critical points of f (as a function of m), using the
conventions that a nondegenerate critical point is counted once and a degenerated critical

point twice. First we will prove the following elementary lemma about the structure of C

(see Fig.[A.1 and Fig.[A.2).

Lemma A.1.2. (Critical points) We have |C nI1_,| = |C n Is,| =1 and |C n Ii| € {0,2} for
k=-n+1,...2n—1.

Proof. We omit the dependence of f on w for now. By (A.1.15) we have

1 2n 1 n _
Fm)y=1- ~ g
(m) ]szl(?n—az:k2 NZ; m—i—yl

and

<o
NZ NZ

— xk m + yl

We see that f” is decreasing on all the intervals I, for k = —m + 1,...,2n — 1. Thus there
is at most one point m € I such that f”(m) = 0. We conclude that f has at most two
critical points on I. By the boundary conditions of f* on 0y, we get |C n I| € {0,2} for
k=-n+1,...,2n — 1. For m < —y,, we have f”(m) < 0, while for m > x,,, we have
f"(m) > 0. By the boundary conditions of f’ on dI_, and 0l,,, we see that f’ decreases
from 1 to —oo when m increases from —oo to —v,, while f’ increases from —oo to 1 when

m increases from xo, to +00. Hence we conclude that each of the intervals (—oo, —y,,) and

(29n, +00) contains a unique critical point in it, i.e. |C N 1_,| = |C N I5,] = 1. O

From this lemma, we deduce that |[C| = 2p is even. We denote by zy, the critical point
in I_,, z the critical point in Iy,, and 23 > ... = 2z, the 2p — 2 critical points in
I 10 ..Ul 4. For k=1,...,2p, we define the critical values hy := f(z;). The next

lemma is crucial in establishing the basic properties of p;. (see e.g. Fig.|A.1)).

Lemma A.1.3. (Orderings of the critical values) The critical values are ordered as hy =

hy = ... = hg,. Furthermore, there is an absolute constant Cy > 0 independent of T such

that hy € [—Co(T7 w| 7Y% + |2|) — Vw, Co(77Hw|™V2 + |2]) — Vw] for k=1,...,2p.
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Proof. Notice for the equation , if we multiply both sides with the product of all
denominators in f, we get a polynomial equation P, (m) = 0 with P, being a polynomial
of degree 3n + 1. An immediate consequence is that for any fixed w > 0 and E € R,
f(y/w,m) = E can have at most 3n + 1 roots in m. This fact will be useful in the proof of
this lemma and Lemma [4.2.3]

For i = —n,...,2n, define the subset J;(w) := {m € I, : 0,,f(y/w,m) > 0}. From
Lemma [A.1.2] we deduce that if i = —n + 1,...,2n — 1, then J; # ¢ if and only if I;
contains two distinct critical points of f, in which case J; is an interval. Moreover, we have
J_n = (=0, 2z9,) and Jy, = (21,400). Next, we observe that for any —n < i < j < 2n,
we have f(J;) n f(J;) = . Otherwise if there were E € f(J;) n f(J;), we would have
{z : f(x) = E}| > 3n + 1. We hence conclude that the sets f(.J;), —n < i < 2n can be

strictly ordered. The claim hy = hy > ... = hg, is now reformulated as

f(J;) < f(J;) whenever i < j and J;, J; # &. (A.1.17)

To prove (A.1.17), we use a continuity argument. Let ¢ € (0, 1] and introduce

t 2n n
12 |
( ) = —Vw et m o+ w NZ m — Ty N2m+yl
It is easy to check ({A.1.17) holds for small enough ¢t > 0. We claim that
Ji # = J # & forall t e (0,1]. (A.1.18)

This is trivial for i = —n, 2n. Recall that for —n+1 <i < 2n—1, J! # & is equivalent to I;
containing two distinct critical points. Moreover, ¢;0,, f'(m) <0in I_, 1 U. ..U I3, 1, from

which we deduce that the number of distinct critical points in each I;, 1 = —n+1,...,2n—1,

does not decreases as t decreases. This proves ((A.1.18]).

Next, suppose that there exist ¢ < j such that J;,J; # & and f(J;) > f(J;). From
(A.1.18), we deduce that Jf, Ji # & for all t € (0,1]. By a simple continuity argument, we
get that f'(Jf) > f*(J}) for all t € (0,1]. However, this is impossible for small enough ¢ as

explained before ((A.1.18)). This concludes the proof of (A.1.17)).
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To prove the second statement of Lemma [A.1.3] we only need to show that h; <
Co(77Hw|™Y2 + |2|) — y/w and hg, = —Co(77 w|™2 + |2|) — y/w for some absolute constant

Co. We only give the proof for hy; the proof for hg, is similar. At z;, we have

1 & Cf 1 O
2) V0 < (214y) |1+ = Y —E— 4 =Y —L w2 = 2(z 4y, ) w
feo s ) |1+ 5 ) =Gt g (21+4n)

where we used

0=f'(n _1——2 o] Ni . (A.1.19)

(21 — @) 21+Z/z

Now we would like to estimate z; + y,,. Again using (A.1.19)), we have that

Then by (A.1.5) we get

13, L T4 |22 + Vwlz]
21— Ton < NZC’“ +NZCl <\/5 " .
k=1 =1
Using the above estimates and (A.1.2))-(A.1.4), we obtain that

—1+ 2+ + 2
flz1) <2 (\/ST 2 + vl + 2 12 + 2\2]) +w V- w

w A w
< Co(t7Hw| ™2 + |2]) — Vaw.

for some constant Cjy > 0 that does not depend on 7. O

Proof of Lemma[[.2.3 Let J(w) := (J7"_ Ji(w). Given w > 0 such that 0 € f(J(w)), then
the set {m € R: f(y/w,m) = 0} has 3n + 1 points. Since f(1/w, m) = 0 has at most 3n + 1
solutions in m, we deduce that m.(w) is real and hence m1.(w) is also real. Since m. is the
Stieltjes transform of p;., we conclude that w ¢ supp pi.. On the other hand, suppose w > 0
and 0 ¢ f(J(w)). Then the set of preimages {m € R : f(y/w,m) =0} = {meR: P,(m) =
0} has 3n — 1 points. Since P,(m) is a degree 3n + 1 polynomial with real coefficients, we

conclude that P, has a unique root with positive imaginary part. By the uniqueness of the

solution of P, ;, in C; (Lemma [4.2.2)) and the continuity of the roots of P, in 1, we
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f(wllz m)
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m

Figure A.1: The graphs of f(y/w,m) for the example from Figure ie. py = 0.55\/2/7 +
0.554\/2/?. We take |z| = 1.5, and w = 10 and 0.01 in the upper and lower graphs, respec-

tively. In the lower graph, we only plot the five branches near m = 0. The remaining two

branches are far away.

conclude that Imm.(w) > 0 and hence Imm;.(w) > 0 by taking n \, 0, i.e. w € supp pie.

In sum, we get

supp pre = {w>0:0¢ f(J(w))}. (A.1.20)

From Lemma we see that there exists an absolute constant C7 > 0 such that if
w = C1771, then hy(w) < Co(77Hw| Y% + |z]) — vw < 0. Hence fix w > Cy77!, we have
0 € f(Jan(w)) and w ¢ supp p1. (see the upper graphs in Fig.[A.T] and Fig.[A.2). This shows

that py. is compactly supported in [0, C;77!]. Now we decrease w so that w < sy + |z|* + 1.

194



£ v, m)
(=]

Fo'm)

m

Figure A.2: The graphs of f(y/w,m) for the example from Figure ie. py = 0.55\/2/7 +
0.554\/2/?. We take |z| = 0.5, and w = 6 and 0.01 in the upper and lower graphs, respectively.

In the lower graph, we only plot the five branches near m = 0. The remaining two branches

are far away.

Then using (A.1.2)), we have

+ 2P +1-
hy(w) > 2z + w2 — Vw > st 2] d

Vw
By continuity, there must be some 0 < w < C7~!such that 0 ¢ f (J(w)). Thus supp pi. # .
By (A.1.20)), it is not hard to see that supp py. is a disjoint union of (countably many) closed

> 0.

intervals,

supp pre = | Jlear, ear1], (A.1.21)
k

where C1771 > e; = ey > ---. Furthermore, for ¢; to be a boundary point, we must have

that 0 is a critical value of f(y/e;,m), i.e. there is a unique critical point m = m(e;) such
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that
f(Wei,me(e;) =0, Onf(yei, me(e;)) = 0. (A.1.22)

Notice the two equations in (A.1.22) are equivalent to two polynomial equations in (y/w,m)
with order 3n + 1 and 6n, respectively. By Bézout’s theorem, there are at most finitely
many solutions to the equations . Hence there are finitely many e;’s, call them
€1 = ... = egr, where L = L(n) € N. The statement about ey, follows from Lemma
below. This concludes Lemma [£.2.3 n

Lemma A.1.4. If 1 +7 < |z]> < 1+ 771, there is a constant £(1) > 0 so that ey, > (7).
If |22 <1 =17, eap = 0 and pro(x) ~ 272 when z \, 0.

By this lemma, the behavior of the leftmost edge ey, changes essentially when z crosses
the unit circle. From the following proof, we will see that the singularity happens at |z|? =

N1 Z?:l [;s;. Thus the fact that the singular circle has radius 1 is due to our normalization

[{E23) for T.

Proof of Lemma[A.1.4. We first study the equation (4.2.14)) when w N\ 0 in the case 1 +7 <

2|2 <1+ 771, We calculate the derivative of f as

1< m? — |z|?
am, 9 =1 AT lz i
fwm) =1+ 5 Z S Jwm? — (5, + [2])m?2 — vwlzlPm + |21

. Zl VI (2 = [2)” + 25i|2m
P Tmt = (s + ) = ole i+ |

(A.1.23)

Recall the definition of J; in the proof of Lemma [A.1.3] It is easy to see that Jy # & for
all w > 0, since 0y, f(v/w,0) = 1 — 2|72 > 0 (see the lower graph in Fig.[A.1). Call the end
points of Jy as zx(w) > 0 and zp41(w) < 0. By the definition of Iy, we have z, < by < |z]|.
Suppose z; = o(]z|) as w — 0, then gives that 0 = 1 — |2|72 + o(1), which gives a
contradiction. Thus z, ~ |z| as w — 0. Now using 0,, f(1/w, zx) = 0, we can estimate that
Vw (7~ |21%)° + 2sil=z

[vwsg — (s + [2P)f — Violea + [T

F(Vaw, z) = Z
anzz 1252’2‘ % ¢ —w (A.1.24)
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for some constant ¢ > 0 independent of w, where in the second step we used that

Vst — (si + [22)22 = V=2, + |21 > 0, and vz — (si + |2[2)22 — V|22 < 0

which come from the fact that 0 < z; < b; < |2| for all 1 < ¢ < n. By (A.1.24), we
can find £ small enough such that f(y/w,z;) > 0 for all 0 < w < e. In this case, 0 €
f(Jo(w)) and hence w ¢ supp pi.. In fact, it is not hard to see that there is a solution
mo = vw|z|?/(|z]? = 1) + o(y/w) € Iy such that f(y/w,my) = 0 and 0,, f(y/w, mg) > 0. This
proves the first statement of Lemma [A.T.4]

Now we study equation when |2|> < 1 — 7 and w — 0. For later purpose, we
allow w to be complex and prove a more general result than what we need for this lemma.

Let w = 0 in the equation (4.2.14)), we get m = 0 or

0=1+ Zn]z m? - Jof (A.1.25)
= -— iSi . .
N & —(si + [2[)m? + [2[*
We define
x —|z|? RS — + |2]* = s
: lisi— _ L A1.26
9(x NZ (si +|2]2)x + |2|* N Z (si+ [2|2)z + |2|* ( )

It is easy to see that g is smooth and decreasing on the intervals defined through

|2/ |2/
K, =-0 ——— K, = ———
1 ( ) s+ ’Z|2 ) n+1 s, + |Z|2’ 9

2* 2* :
K; = =2,...,n.
’ <s,-_1 + 2|27 s 4+ |22 ) TS n

By the boundary values of g on these intervals, we see that g(x) has exactly one zero on

and

intervals K; for i« = 1,...,n, and has no zero on K, ;. Since g(z) = 0 is equivalent to
a polynomial equation of order n, it has at most n solutions. We conclude that all of its
solutions are real. Obviously, the zeros on the intervals K; are positive for ¢ = 2,...,n. Now
we study the zero on Kj. Observe that g(0) = 1—|z|72 < 0 (as |z|*> < 1 —7), hence the zero
on K is negative, call it —t. Moreover, it is easy to verify that g(—7~') > 0 using (A.1.26)),
sot <771 If |z]2 = 7/2, then by the concavity of g on the K, we get

401 1,12 4
P I ¢ el T B (A.1.27)

~g(0) ~ 51 4
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In the case |z|? < 7/2, we have |2]* — s, < —7/2 and g(|z|> — s,,) < 0 by (A.1.26). Hence we
have

—t< 2> =5, < —7/2. (A.1.28)

Combining (A.1.27) and (A.1.28)), we get that c7* <t < 77! for some constant ¢ > 0.

Now we return to the self-consistent equation (4.2.14]). The previous discussion shows
that
f(0,int) =0, with t > er?

It is easy to see that there exist constants c;, 7" > 0 such that
|—(s: + [2))m® + |2|* + Vo (m® — |2]*m)| = ¢1 for [m —ivt] < 7', (A.1.29)

First we consider the case |z| > ¢ > 0. Expanding f(y/w,m) around (0,iv/t) and using

, we get
0 = 0yaf(0,iVE)Vw + 0 f(0,iVE)(m — ivt) + o(v/w) + o(m — iVt). (A.1.30)

By (A.1.23]), the partial derivative

0 uf (Vw,m) = —1 — —Zl S (m” — |2P) S, (A131)

(si + [z[2)m? + [2[* + v/w (m® — [2[*m)]

and (A.1.29)), we obtain that |é’ﬁf(0,1\/f)} < C and

25| 2|2
Omf(0,iVt) = l;s l > c A.1.32
f g Z P T (A.132)

for some constant ¢y > 0. Using (A.1.32)), we get from ((A.1.30) that

m — iVt = O(vw), if |z| > e. (A.1.33)
Then assume that |2|?> < e for sufficiently small . From g(—t) = 0 and m we get
that
1 < t+ 2% — s
— > =0. A.1.34
N ; (si + [zt + |2]* ( )
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From the leading order term, we get t~! = 5 + O(|2?), where t, := (N"'311;/s:) "
Expanding (A.1.34)) up to the first order of |z|?, we get

to Li 2 4
t=1to+ (sz? - 2) 2|2 + O(]z]%). (A.1.35)

Now we write equation (4.2.14)) as
F(yw,m) = 0, (A.1.36)
where F(y/w,m) := f(y/w,m)/m. Expanding F around (0,iv/t) and using (A.1.29)), we get

0 =0z F(0,iVt)v/w + 8, F (0, iVE) (m — inE) + 3m0mF (0, i) (m — ivt)v/w
+ %a@ap(o, iow + %aan(o, VB (m — VB2 + o(w, |m — Vi, [m — iVE ).
(A.1.37)

We can calculate that (the partial derivatives of F' can be obtained using (A.1.23) and
(A.1.31))

Flvw,ivi) — —%'ZP;/SM T of|2[2, v/w), (A.1.38)
0
0 mF (Vw,ivt) = (ilz|* + 2vwty) \% i % o(|z%, vw). (A.1.39)
j=1 ]
From and (A.1.39), we get that
o E(0,iv1) = —2;2'2 o(|2P), 0ymF(0, i) = i|2|;% Y i—g T o|2P2),
0 j=1°3

2 2ty <
OO F(0,iNt) = ——+0(2P), 2P (0,ivE) = =23 L+ O(|2?),
0 J
2 F(0,iVt) = O(|z).
Plugging the above results into (A.1.37)), we get that

o= | LB 51 o |>]f+[ YO0 o) | (m - i

2 3/2
j=1 S] tO

+ o(w, |m — ivVt]*, |m — ivVt|vw). (A.1.40)
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Observing that |i|z|*v/tg + v/wio| ~ |2]> + /|w], we get

m — iVt = Z—g O(jw|"? + |2]*) | Vw, if |2] <e. (A.1.41)
j=1 J

Combing (A.1.33) and (A.1.41), we get that if |2]*> < 1 — 7, m = iyt + O(y/w) when

w — 0. In particular, this shows that |m| ~ Imm ~ 1 when w — 0. Finally, we conclude

the proof of Lemma by using that mi.(w) = m.(w)w= 2 — 1. O

To prove Proposition [4.2.18] we need the following lemma, which is a consequence of the
edge regularity conditions (4.2.18)) and (4.2.19)).

1/2

Lemma A.1.5. Suppose ey # 0 is a reqular edge. Then |my.(w) —mic(eg)| ~ |w — ex|"? as

w — e and miny le; — ex| = 0 for some constant 6 > 0.

Proof. Denote my, := m.(ex) and let w — ex. Note that by Lemma and Lemma [A.1.4]
if e, # 0, we have

£ <e <O, (A.1.42)
for some constant ¢ > 0. Then we expand f around (y/ey, my) to get that

0 =0ywf (Verme) (Vv — y/er) + 5 52 F(Vew mi) (me(w) — my)*
+ O [[vw = exl* + [me(w) — mk\?’ + [Vw = yerllme(w) —mal] (A.1.43)

where by (A.1.31]),

2
(mj; — [2*)

N A.1.44
aﬁf(\/aa mk Z i Z mk — Q; ) (mk — b2)2(mk + Ci)Q’ ( )
and by (A.L1),
B; Cj
9 z v v . Al4
o2 f(\ex, my) Zl S; [ (e — @i )? + (my, — by)3 + (s + Ci>3] ( 5)

Applying (A.1.2))-(A.1.5), (A.1.42)) and the conditions (4.2.18])-(4.2.19)) to (A.1.44) and (A.1.45)),

we get that

1< {8\/@]‘(\/@, mk)’ <(Cq, e< |(7,2nf(\/a, mk)‘ < Oy <A146)
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for some C1,Cy > 0. Similarly, if |w — ex| < 7" and |m.(w) — mg| < 7’ for some sufficiently

small 7/, using the condition (4.2.18)) we can get that

max{‘@if(\/@, me(w))|,

2l (Ww, mc(w)))Jam@ﬁf(\/@,mc(w))\} <Oy (A147)

Plugging them into equation (A.1.43), for |w — ex| < 7" and |m.(w) — my| < 7/, we get

(me(w) —mg| ~ |v/w — @]1/2 and
— Oy f (Vew, mi)(Vw—/er) +O(lvw—y/er?) = %afnf(\/&, mie) (me(w) —my)?. (A.1.48)

By (A.1.42)), we immediately get that [\/w — \/ex| ~ |w — ex| and [mc(w) —my| ~ [myc(w) —
mic(ex)|, which proves the first part of the lemma. By (A.1.48]), if w is real and |w—eg| < 7/

we have that

_28\/5]%\/6? mk) n
O f (\/€x, k)

Thus in a sufficiently small interval U = [ey — J, e, + 0], m.(w) has positive imaginary part

1/2
) = me = | ol - val|  (vi-va)'. (L

for w on one side of ey, while m.(w) is real for w on the other side. Hence U does not contain

another edge. This shows that min;. |e; — ex| = 4. O

Proof of Proposition[{.2.18. The properties of p;. have been proved in Lemmas [£.2.3]
and [A.T.5] and included in Definition [£.2.4] Since supp pa. = supp pi. by the discussion after
Lemma . we immediately get property (i) for pa.. The conclusion ps. being a probability
measure is due to the definition of my in (4.2.33)) and the fact that my,. is the almost sure
limit of ms.

The properties (ii) and (iv) for ps. can be easily obtained by plugging m. into (4.2.9).
To prove the property (iii) for ps., we need to know the behavior of Im mo.(w) when w — e

along the real line. By -, it suffices to prove that if |x —e;| < 7’ for some small enough

7' >0, then
|—w(l + mye)? + |2 = [m2 = |2 =
for some constant ¢ > 0. Suppose that |m2(w) —|z|*| = o(1). Then plugging m,. into
Omf(y/w,m.) in (A.1.23), and using condition (4.2.18) and Lemma [A.1.5] we get that
Omf(Vw, me(w)) = =1 + O(|m? — |2?|). (A.1.50)
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Again using condition (4.2.18) and Lemma [A.1.5 we can bound 0, /0 f(v/w, m.(w)) and
02, f(y/w, m(w)) for w near e;. Thus we shall have that

0= Onf(y/ej,me(e;)) = Omf (Vw,me(w)) + O(jw—e;'?) = =1+ O(jm2 — 2| + |w —¢;|?).
(A.1.51)

This gives a contradiction. Thus we must have a lower bound for |m? — |z[?|. O

Remark A.1.6. Here we add a small remark on Example 4.2.11} Given the assumptions in
Example 4.2.11] it is easy to see that f can only take critical values on intervals I_,, Iy,
I, and Iy, since max{|a; — a;_1]|, |b; — bi—1],|c; — ¢i_1|} — 0 in this case. Thus the number
of connected components of supp pi. is independent of n, and all the edges and the bulk

components are regular as in Example

A.2 Proof of Lemmas 4.3.4 and 4.3.5

We first prove Lemma [£.3.4] We consider the five cases separately.

Case 1: For w = E + in € DY(¢, 7/, N), we have
p1e(7) f pre(x, 2)n
mi(w) = | ————————dzr, Immq.(w) = | ———=—"——=dx. A21
1) Lx—(EHn) ) r (z = E)* + 1 (8.29)
By the regularity condition of Definition (ii), we get immediately Imm;. ~ 1. Since
Imms. < |1 4+ my.] < C by Proposition 4.2.19] we get |1 + ms.| ~ 1. Notice wm;, can be
expressed as
wmy(w) = J wdaz = —J pie(x, 2)dx +J Mdm.
R I—w R R I—w
By the same argument as above and using the fact that x > 7’ for © € [eqr + 7/, €261 — 7],

we get
zpie(z, 2)
R r —w

Im(wmy.) = Im dr ~ 1.

Since the imaginary parts of —w and |z|?/(1 + my.) are both negative, we get

|2
1+ mie
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Im l—w(l +mie) + ] < —Im(wmy.). (A.2.2)



Using the bounds for m;. and Im m;,. proved above, it is easy to see that
ElS
1+ mie

‘—w(l + mlc) +

— 0(1). (A.2.3)

Equations (A.2.2) and (A.2.3) together give that Immsy. ~ 1 and |ma.| ~ 1 by (4.2.9).

Similarly, we can also prove that

-1
2|2

.= -0 J) QR ad I C

wmy [(+m1)+w(1 ) eC,

and Im(wmg.) ~ 1. Then (4.3.25) follows from the bound
21
14+ my.

Im (w + sjwma. — ) > s;Im(wmy,).

Case 2: For w = E +in € D°((,7',N), using (A.2.1) and dist(E,supp pi2.) = 7', we

immediately get Im m; 2. ~ 7. Now we prove the other estimates.

We first prove (4.3.25)). If n ~ 1, the proof is the same as in Case 1. Hence we assume

n <, where ¢ = d(7,7') > 0 is sufficiently small. Recall the definitions of D and D in

(4.2.38) and (4.2.41)), we always have £ ~ 1 in this case.

We shall prove that
min{m. (1) — a(w)]. me(w) — by(w)] [me(w) + ex(w)]} > < (A.2.4)

for some constant ¢’. This leads immediately to (4.3.25) since

_ ‘\/E(mc —a;)(me — b;)(me + ¢) '

—m2 + |z|?

‘ ( 1 + M.
wll+s; 5
—w(1 +my.)? + |2]

) 0 ) - o

(A.2.5)
For p; = VEmM?® — (s; +|2|)m? — v E|2|*m +|z|*, it is not hard to prove that the roots a;(E),

b;(E) and —¢;(E) decrease as FE increase. Since E ¢ supp pi., we have my.(F) € R and

dml—c(E) :J pie(, Z)d

> 0.
dE (- EB2"

So m1.(E) (and hence m.(F)) increases as E increases. Suppose e;, is the smallest edge that

is bigger than FE, then for a;(F) bigger than m.(E), we have that

a;(E) —me(E) = a;(ex) — me(ex) + (') = €'(7), (A.2.6)
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by using |E — ex| = 7' (see (4.2.41))). On the other hand, If e;_; is the largest edge value
that is smaller than E| then for a;(E) smaller than m.(E), we have that

me(E) — a;(E) = me(ex_1) — a;(ex—1) + ' (7') = (7). (A.2.7)
Applying the same arguments to b;(F) and —¢;(F), we get
min{|me(E) — a;(E)], [me(E) = bi(E)|, [me(E) + c:(E)|} = ¢ (A.2.8)

for E € (eggt1, eax) for some k. Now we are only left with the case F < esr, the rightmost
edge, when |z]? > 1 + 7. In this case, we have seen that 0 < m.(E) < b;(E) for all i in the
proof of Lemma [A.1.4 Thus we can use to get lower bounds for |m.(E) — a;(E)|
and |m.(E) — b;(E)|. Since ¢;(E) ~ 1 in this case (by and using E,|z| ~ 1),
Ime(E) + ¢;(E)| > ¢ is trivial. Again we get the estimate (A.2.8)).

Then we consider w = F + in with n < ¢/. First, it is easy to check that a;(F + in),

b;(E +1in) and ¢;(E + in) are continuous in 1. On the other hand for m.(E + in), we have

|Owmic(w)] =

J de‘ <C (A.2.9)
R

(z —w)?

by the condition dist(E,supp p1.) = 7. Thus we immediately get |m.(E + in) — m.(E)| =
O(n). Hence as long as ¢ is small enough, still holds true, which further gives
[E325).

Now we show that |1 + mq.| ~ 1 for w e D° and n < ¢. In fact, if |m.| can be arbitrarily

small, then by (4.3.25) we get that
f(WVw,m.) = —v/w + O(m,) # 0,

which gives a contradiction. Finally we have |[mq.| ~ 1 for w € D? and n < ¢’ by Proposition

4.2, 191

Case 3: For a regular edge e, # 0, we always have e, > ¢ for some £ > 0 by Lemma [A.T.4]
Thus we always have |w| ~ 1 for w = E +in e D$((, 7', N) as long as 7’ is sufficiently small.

If n ~ 1, then \/k + 1 ~ n/y/k +1n ~ 1 and the proof is the same as in Case 1. Now we pick

204



7/ small and consider the case n < 7/. By the regularity assumption (4.2.18) and Lemma
IA.1.5, we have

min {|me(w) — ai(w)], |me(w) = bi(w)], [me(w) + c;(w)[} = &/2 (A.2.10)

1<i<n
uniformly in w € {w € D§(¢, 7, N) : k(w)+n(w) < 27}, provided 7’ is sufficiently small. The
above bound implies . If m.(w) — 0, then using we get from f(y/w,m.) =0
that —y/w+O(m,) = 0, which gives a contradiction. Thus we must have |1+m | ~ |m.| ~ 1.
To show |mgy.| ~ 1, we can use Proposition |4.2.19|

We still need to prove the estimates for Imm; 5. when n < 7.

(A.1.48) around e; and equation (A.1.49), where both @ s f(\/ex, mi) and 2 f(y/ex, my,)

are real (as e, and my are real). Suppose k is odd, then Imm.(E) = 0 for E \ e; (i.e.

E ¢ suppp.) and Imm.(F) > 0 for E /" ¢, (i.e. E € suppp.). Thus (A.1.49)) gives

Recall the expansion

me(w) —my = Cy(w)(w — ep)? + Dy(w),

with Cy > 0, Cy ~ 1, |Dg| = O(Jw — €¢]) and Im Dy, = O(n). Then for E > e, we have

n
Ne=)

Imm.(E + in) ~ Im(x + in)"% + O(n) ~

and for E < e, we have
Imm.(E +in) ~ Im(—x +in)"2 + O(n) ~ v/k + 1.
If k is even, the proof is the same except that in this case, we have
me(w) — my, = Cr(w)(ex — w)Y? + Di(w).

For my.(w) and ma.(w), we get the conclusion by noticing w ~ e; and

Me
Vw(=m? +[2]?)
where we used that |m? — |z|?| ~ 1 as observed in the proof of Proposition [4.2.18in Section
AT

Imm;. = Im (w‘l/ch) ~ Imm.(w), Imms, =Im [ ] ~ Imm,(w),

Case 4: Again if n ~ 1, the proof is the same as in Case 1. If |w| < 27’ for small enough 7/,

in the proof of Lemma [A.1.4] we have seen that m, = i\/t + O(y/w), which gives the first
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equation in (4.3.22)). Plugging it into (4.2.9), we get the second equation in (4.3.22)). Taking
the imaginary part, we obtain (4.3.23)). Finally using (4.3.22)), we can verify (4.3.25)) easily.

Case 5: For w = E +in € Dy (¢, N), the bounds for m; 5 and Imm; 5 in (4.3.24) follows
from (A.2.1)) directly.

Now we have finished the proof of Lemma by combining the above five cases. Next
we prove Lemma [£.3.5]

Proof of Lemma[{.3.5. The estimates (4.3.27)) and (4.3.28)) follow immediately from (4.2.31]),
(4.3.25) and (4.3.26]). For (4.3.29)), we can write

0 U 0 U* i=1

U o0 U* 0 Y
Iy = <V7 Hd V> = (Hd)uu = Z <U[l],7T[Z]CU[Z]>,

where
0o U* . u;
To control Im Iy, it is enough to bound <u[i], W[i]cu[i]> for each 1.

We first consider Cases 1-4 of Lemma m By the definition of 7). in (4.2.31)), we get

Iy, = Im | —w(l + |di]*ma.) + I I w(l + |d;Pmae) — 21
11,C 7 c 1+m1c X |U}| ) c 1+mlc
C

= Tl [(1 + |d;*PRe ma. ) Im w + |d;]*(Re w)Im my, +

where in the second step we used (4.3.25) and |1 4+ my| ~ |w|~"2. In the first three
cases of Lemma 4.3.4] we have |w| ~ 1 and Imw = O(Imm;.), which give that Im ;. <
CTIm(my. + ma.). In case 4 of Lemma [4.3.4 we use |Imw| + [Rew| + |1 + m.|72 = O(|w|)

|2[*

|1 + m10|2

Im mlc] ;

and Immy o, ~ |w|~Y2 to get that Im ;. < CIm(my. + my.). Similarly, we can get the
bound Im 7 . < CIm(my. 4+ mo.). Finally we can estimate the following term using similar

methods,

Im (Gu;m . + Giuimy,.) = 2Re (G;u2) Im {w_1/2 [w(l + |di[*mac) (1 + my.) — |z|2]_1}
< CRe (@32) Im(mae + ma.) < C (Jug]? + |wg]?) Im(ma, + moe).
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Combining the above estimates we get Im <u[¢],7r[l-]cu[i]> < Clugg[*Im(my. + mo.), which

implies (4.3.29). For the Case 5 of Lemma we use (4.3.24) and (4.3.28)) to get

Im Cuggy, meup ) < lup P [mpel < ClupPIm(mae + mae).

This completes the proof. O

A.3 Proof of Lemma 4.3.7l and Lemma [4.2.2

We first prove Lemma[£.3.7 During the proof, we also use the following equivalent definition
of the stability expressed in terms of m = y/w(l + my), u = yJw(l + uy) and f(y/w, m).
Suppose the assumptions in Definition holds. Let w € D and suppose that for all
w' € L(w) we have | f(y/w,u)| < |w]26(w). Then

1/2
u(w) — mo(w)] < —L 20

N
Case 1: We take over the notations in Definition and abbreviate R := f(y/w,u), so
that |R| < |w|*25. Then we write the equation f(y/w,u) — f(y/w,m.) = R as

(A.3.1)

alu—me)? + Bu—m.) = R, (A.3.2)

where using (A.1.1)), @ and [ can be expressed as

=

1 & A, B, ¢
N ; lisi l(u —a;)(me — a;)? + (u — b)) (m, — b;)? + (wt e (ma ci)2] ,  (A.3.3)

and

@::1-%%%[ A B G }:amf@/a,m,;). (A.3.4)
=1

(me —a;)?  (me— ;)2 (Mme + ¢)?
We shall prove that
laf + [dua| < C, B8] ~ 1, (A.3.5)

~1/3

for w € DY and u satisfying |u — m.| < (log N)~Y3. If |u — m,| < (log N)~*3, we also have

Imu ~ 1. By (4.3.25)), we have

min{|m. — a;|, |m. — b;|, |m. + ¢;|} = ¢ (A.3.6)
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for some ¢ > 0. Replacing the m, in (4.3.25)) with u, we also get that
min{|u — a;|, |u — b, |u + ¢;|} = € (A.3.7)

for some ¢’ > 0. Using and (A.3.7), we get immediately that |o| + |dua| + B8] < C
What remains is the proof of the lower bound || = ¢. If Imw > ¢ for some constant € > 0,
the lower bound follows from Lemma [A.3.T below. If Imw < ¢ for a sufficiently small £ > 0,
the lower bound follows from Lemmam A.3.2| below. Now given the estimate , it is easy
to prove with a fixed point argument. This proves the stability of .

Lemma A.3.1. Suppose that Imw ~ 1 and |m.| ~ Imm, ~ 1. Then |0y f(v/w, m.)| = ¢ for

some constant ¢ > 0.

Proof. Using (4.2.13)), m. = v/w(1 + my.) and the conditions Imw ~ 1, Imm, ~ 1, we can
get that

‘@/@f(\/@, me)| ‘ om.
Onf(Vw,me) | |dy/w

for some constant C' > 0. Now we assume that |0, f(y/w, m.)| can be arbitrarily small.

Then |0 s f(v/w,me)| can also be arbitrarily small. Denote a := 0,,f(y/w,m.) and b :=

0w f(v/w,me). Using (A.1.23)) and (A.1.31), we get that

2 2)2 2
_ %s.
B ch:lZ Z Vw (m? —|z|?)" + 2si|z*m, : (A3.9)
—(si + [2P)m2 + [2[* + vw (mf = [2[*mc)]

< C = |0 mf(WVw,m)| < C|onf(vw,m)l, (A.3.8)

and ,
m2 & 2 1.2
b=—1- "N s, (m, — |2) . (A.3.10)
No= [ (s + [2P)m2 + [2|* + Vw (md — [2]*m)]

Using (A.3.9) and (A.3.10]), we can get that
L 14]2)] 42 1 2 _ 2 2
(\/Emc |Z’ )|Z| bh— _(mz o |z\2)(mca _ \/ﬁb) — (|Z| \/Emc)(mc + |Z| ) <A311)

Me 2 me ’

where we used the equation f(y/w,m.) = 0 in the derivation. By our assumption, the
left-hand side of ({A.3.11) can be arbitrarily small. For the right-hand side of (|A.3.11)), we
have |m.| ~ 1 and |\/wm,. — |2]?| ~ 1 (since Im (ywm,.) = Im (w + wmy.) ~ 1). Then if

Im. — i]z|| = ¢ for some constant ¢ > 0, we have |m? + |z|?| ~ 1, and hence

(Vwm, — |z]? )|Z|2b_1(m |2]?) (mea — /wb)| ~

me 2
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which gives a contradiction. Thus we must have a lower bound |0, f (v/w, m.)| = ¢ if |m —
ilz|| = .

We still need to deal with the case with |m. — i|z|| < ¢ for some sufficiently small ¢
Notice |z| ~ 1 in this case. It is easy to calculate that

4]z
s+ 222 + 2|t = 2iv/wlz ]

N (A312)

o

Ov/w
Denote Ly := (sp + |2]?)|2]® + |2]* — 2iv/w|z]. Since iy/w = i(z + iy) = ix — y for some
x,y > 0and z,y ~ 1, we have Re Ly, > 0, Im L;, < 0 and |Re Lg|, |Im Lg| ~ 1. In particular,
this gives that ImL? < 0 and |[Im Lf| ~ 1. Thus each fraction 4|z[*/L? in has
positive imaginary part of order 1. Therefore
e o
O\/w Oy/w
Then by (A.3.8)), we get that |0, f(v/w,i|z])| = ¢ for some ¢ > 0. Using ({§.3.25), it is easy

to see that

(Vw,ilz])

> Im

(Va il ~ 1

Omf(Vw,me) = Omf(Vw,il2]) + O(me — ilz]]).

Thus in the case |m. — i|z|| < ¢, we still have |0, f(v/w,m.)| = ¢/2, provided that ¢ is

sufficiently small. m

Lemma A.3.2. Suppose that w € Db and Imw < . Then for sufficiently small € > 0, we

have |0 f(y/w, m.)| ~ 1.

Proof. By (4.3.18) and (4.3.25)), we have 0 ;0 f(w, m:) = O(1) and 02, f(w,m.) = O(1).

Denote w = E + in. Taking the imaginary part of the following equation

1 & A, B C,
— E E — — E E71/2 - LC. ? ? 7
0=f(VE ,m(E)) = —VE+m.+ +N;llsz (mc + + >

— a; mc—bi Mme + C;

(A.3.13)

and noticing that A;, B;, C; and a;, b;, ¢; are all positive real numbers for real F, we get

1 & A, B; C;
— Nl i i i ~ 1. A3.14
N; ’ <|mc—@i|2 " [me — by|? i |mc+c,~|2) ( )
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Using the above equation, we get

omf(VE, mo(E —1——2181[ z. N B; n 01'2]

c— a2 (me—a)?  me—0bi12  (me—0)%  |me+ > (me+¢)?

(A.3.15)
We look at, for example, the term
A; A; A; L
_ — (1 _ G_QZGZ),
Ime —a;> (me—a;)*  |me— aif?
where m, — a; := |m. — a;|e’. Using Imm, ~ 1, it is easy to see that Re(1 — e~2¥%) > ¢ for

some constant ¢ > 0. Applying the same estimates to the B, C terms in (A.3.15)), we get
omf(VE, mC(E))‘ > Re [am F(VE, mC(E))] > ¢ (A.3.16)
for some constant ¢ > 0.

Now for w = E+in with ) < ¢, we can expand 0, f (v/w, m.(w)) around é,, f (V' E, me(E)):

Om f(Vw, me(w)) = O f(E,m(E)) + O(n),

where we used (4.3.25)). Combing with (A.3.16)), we get |0y, f (w, m.(w))| ~ 1 for small enough
E. [l

Case 2: We mimic the argument in the proof of Case 1. We see that it suffices to prove
a|+|d,a] < C and |8] ~ 1 for a, § defined in (A.3.3) and (A.3.4) and |u—m,| < (log N)~"/3.
Using (4.3.25)), it is not hard to prove that |a| + |d,a| + |8] < C. What remains is the proof
of the lower bound |3| > c. For the Imw ~ 1 case, the bound follows from Lemma [A.3.1]
We are left with the case where E = Rew ~ 1 and n = Imw — 0. Using ,
me = y/w(l 4+ my.), |lw| ~ 1 and dist(E, supp p1.) = 7/, we can get that

Oyaf(Vw,me)| ‘ ome

<C

Omf(Vw,me) | |0y/w

for some constant C' > 0. Thus it suffices to prove that |0 s f(v/w, m.)| has a lower bound.
Using (A.1.31)) and noticing that m.(E) € R, we get

n 2 2)2
0 s f(VE,mo(E)) = —1— 2 N, e 12F) 7 <L
vl (VE, me(E) N B o i 4 1 VE (ko]
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Expanding 0 g f (vw, me(w)) around 0, s f(VE, m.(E)), using 1) and |m.(E + in) —
me(E)| ~n, we get for n small

0w f(Vw,m)| =1+ 0(n) =c
This concludes the proof for Case 2.

Case 3: The case Imw > 7’ can be proved with the same method as in the proof of case 1.
Hence we only consider the case |w — eg| < 27" in the following. Note that |w| ~ 1 in this
case. Suppose

lw — ex] <27, |Ju—me| < (log N)~3, (A.3.17)

Then we claim that
o ~ 1, (Bl ~ Ve 41 (A.3.18)

for small enough 7/. Using (A.3.17), (4.3.25)), (4.2.19) and Lemma we can get that

1
o= iafnf(\/a, me(er)) + O(jw — ek\m + (log N)_1/3) ~ 1.

To prove the estimate for 3, we use (4.2.17)), (4.3.25) and Lemma to get that

8= | gt 6 el
(M Oy Omf (W me(w')) p oy dme(w')
- - dw +L 21 (Ve ) T

[0 f (Ver,me(er)) + O(jw — ex['/2) ] dm

(" 0 /wOm f (\/er, me(er)) + O(Jw — ex|V?) fm“(w)
dw' +
en 2w’

= 8fnf(\/?k, my)(me(w) — me(ex)) + O(Jw — exl). (A.3.19)

me(ek)

Thus we conclude for small enough 7’ that

’5’ ~ ]w _ek’1/2 ~AVKE T

With the estimate (A.3.18)), we now proceed as in the proof of [14, Lemma 4.5], by
solving the quadratic equation (A.3.2) for u — m, explicitly. We select the correct solution
by a continuity argument using that (A.3.1)) holds by assumption at z +iN 1% The second

assumption of (A.3.17) is obtained by continuity from the estimate on |u — m.| at the
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neighboring point z +iN 19 We refer to [14, Lemma 4.5] for the full details. This concludes

the proof for Case 3.

Case 4: The case when Imw > 7' can be proved using the same method as in the proof
of Case 1. Now we are left with the case |w| < 27’ for some sufficiently small 7. First we
assume |z| = ¢ > 0 for some small ¢ > 0. Then mimicking the argument in the proof of Case
1, we see that it suffices to prove |a| + [0,a] < C and |B] ~ 1 when |u —m,| < (log N)~1/3.
Using (4.3.25)), it is not hard to prove that |o| + |d,a| + 3| < C. The lower bound |3] = ¢
can be obtained easily from (A.1.32).

Then suppose |22 < ¢, but |w|'? + |2|? = e. According to and using that
|i]2]2 + wto| ~ [w|? + |z|?, we can verify that

B = 0nf (Vw,me(w)) ~ |w]'? + |2 ~ 1.
With , it is easy to check that
Onf(Vw,€) = 0(1), 05 f(Vw,&) = 0(1),

for |¢ — m.| < (log N)~¥3 from which we get that |a| + |0,a] = O(1). With a fixed point
argument, we conclude (A.3.1).

Case 5: Again we following the arguments in the proof of Case 1. However, instead of
f(y/w,m), we shall study Y(w,m;) in directly. We take over the notations in
Definition and abbreviate R := T(w,uy), so that |R| < J. Then we write the equation
T(w,uy) — L(w,my) = R as

a(ur)(ur —ma)® + Blur —ma.) = R, (A.3.20)

where we used the same symbols as in for notational convenience. As in Case I,
we have 5 = 0,,, Y (w, my.), and we can estimate that |a| + |0, < C for w € Dy, and
uy satisfying |u; — mq.| < |my.|. Now to conclude , it suffices to prove |5| ~ 1 for
w € Dy. In fact with , we can obtain that

6=1+O(n_1)~1,

for n = ¢~'. This concludes the proof of Lemma [4.3.7]
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Proof of Lemma[{.2.3. The fact that p;. has compact support follows from Lemma [4.2.3} p.
being integrable follows from Lemma [A.1.4 Note that in proving Lemmas [4.2.3] and [A.1.4]

we do not make use of the regularity assumptions in Definition [£.2.4] It remains to show
that for fixed w € C; and |z| # 1, there exists a unique my.(w) € C, satisfying equation
(4.2.11)). This follows from the proof of Case 1 in this section under the extra condition
n ~ 1. Again, we do not need the regularity assumptions for the proof, because n~! provides

a nice bound for the Stieltjes transforms in the global region with n ~ 1. m

Remark A.3.3. The estimate (4.3.25)) has been used repeatedly during the proof of Lemma
4.3.7. Here we remark that it also gives the stability of the regularity conditions in Definition
under perturbations of |z| and pyx. For example, we define the shifted empirical spectral

density
1 NAM

PR = N 2 Oiits (A.3.21)

=1

and the associated m.(w,t) and function f(y/w, m,t). Given a regular edge ey, we have that

f(\/aamkat = O) = 07 amf(\/aﬂ/nkat = O) = 07
where we denote my := m.(ex). We have the Jacobian

Oyutnd f),

J :=det = aﬁf(\/a7 mk70)672nf(\/a7 mkno)

\/E,m,t)=(\/a,mk,0)

By (A.1.31]), we have |0, f (v/€x, mu, 0)| = 1. Combining with (4.2.19), we get |.J| > €. Using
(4.3.25), we can verify that 0, f(y/ex, mk,0) = O(1) and 0,0, f (\/€x, mx,0) = O(1). Thus if
we regard e and my as functions of ¢, then dymy(t = 0) = O(1) and e (t = 0) = O(1) by

the implicit function theorem. Then it is easy to verify
221 (Verlt) melen 1)) = G2f (ver,melex)) + O(),
me(ex, t) = ailex, t)| = me(er) — ai(ex)| + O(1),

and similar estimates for |m, — b;| and |m. + ¢;|. Thus if Definition (i) holds for some

px, then it holds for all py.; provided that ¢ is small enough.

213



Now given a regular bulk component [eg, ear_1] and E € [eg + 77, €951 — 7']. Differen-

tiating the equation f(vE, m.(E,t),t) =0 in ¢ yields

ﬁtf(\/E, me(F,1),t)
&mf(\/ﬁ, mc(Ea t)? t) ‘

By (4.3.25)), we find that 0, f (v E, m.(E),0) = O(1), while by (A.3.5), [0 f(VE, m.(E),0)| =

p ~ 1. Thus dym.(E,0) = O(1). A simple extension of this argument shows that m.(E,t) =

ath(E,t) = —

m.(E) + O(t) and hence Imm,.(FE,t) is bounded from below by some ¢ = ¢/(7,7’). Thus
we conclude that if Definition [£.2.4] (ii) holds for some py, then it holds for all py, with ¢
in some fixed small interval around zero. Obviously, the above arguments also work for |z|

perturbation.
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APPENDIX B

The smallest singular value

One of the main purposes of this appendix is to prove a lower tail estimate for the smallest
singular value of T X — z, which will be used in the proof of Theorem However, we
shall prove an estimate on the smallest singular value of a more general type of deformed
random matrices (see Theorem , because of the importance of the problem and its
possible applications in many other problems in mathematics and statistics. This appendix

is relatively independent of the other parts of this thesis, and can be read separately.

B.1 Introduction

Smallest singular values of random matrices

Consider an N x n real or complex matrix A. The singular values s;(A) of A are the

eigenvalues of (A*A)'/2? arranged in the non-increasing order:
51(A) = s2(A) = ... = s,(A).

Of particular importance are the largest singular value s;(A), which gives the spectral norm
|All, and the smallest singular value s, (A), which measures the invertibility of A*A in the

N > n case.

A natural random matrix model is given by a rectangular matrix X whose entries are in-
dependent random variables with mean zero, unit variance and certain moment assumptions.
In this appendix, we focus on random variables with arbitrarily high moments (see (B.1.6))),
which include all the subgaussian and subexponential random variables. The asymptotic be-

havior of the extreme singular values of X has been well-studied. Suppose X has dimensions
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N xn. If n/N — Xe (0,1) as N — oo, then the ESD py of N7'X*X converges weakly to
the famous Marchénko-Pastur (MP) law [66]. Moreover, the MP distribution has a density
with positive support on [(1 —+/A)%, (1 + v/A)?], which suggests that asymptotically,

$1(X) > VN +VA) = VN ++/n, and s,(X) > VN1 —+VA) =+/N —/n. (B.1.1)

The almost sure convergence of the largest singular value was proved in [45] for random
matrices whose entries have arbitrarily high moments. The almost sure convergence of the
smallest singular value was proved in [85] for Gaussian random matrices (i.e. the Wishart
matrix). These results were later generalized to random matrices with i.i.d. entries with

finite fourth moment in [112] and [9].

A considerably harder problem is to establish non-asymptotic versions of , which
would hold for any fixed dimensions N and n. Most often needed are upper bounds for the
largest singular value s;(X) and lower bounds for the smallest singular value s,(X). With
a standard e-net argument, it is not hard to prove that | X is at most of the optimal order
V/N for all dimensions, see e.g. [23, 64, 82]. On the other hand, the smallest singular value
is much harder to bound below. There has been much progress in this direction during the

last decade.

Tall matrices. It was proved in [64] that for arbitrary aspect ratios A\ < 1 — ¢/log N

and for random matrices with independent subgaussian entries, one has
P <sn(X) < c,\\/ﬁ) <eN, (B.1.2)

where ¢y, > 0 depends only on A and the maximal subgaussian moment of the entries.

Square matrices. For square random matrices with N = n, a lower bound for the
smallest singular value was first obtained in [80], where it was proved that for subgaussian
random matrix X, sy(X) = eN~%? with high probability. This result was later improved
in [81] to

P (sn(X) <eNV?) < Ce+ eV, (B.1.3)

an essentially optimal estimate for subgaussian matrices. Subsequently, different lower

bounds for sy(X) were proved under weakened moments assumptions [49] [74], O1].
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Almost square matrices. The gap 1 —c¢/log N < A < 1 was filled in [82]. It was shown

that for subgaussian random rectangular matrices,
P <sn(X) <e(WN—vn— 1)) < (Ce)N T g el (B.1.4)

for all fixed dimensions N > n. This bound is essentially optimal for subgaussian matrices

with all aspect ratios. It is easy to see that (B.1.2) and (B.1.3) are the special cases of the
estimate (B.1.4)).

In this appendix, we are interested in the extreme singular values of a multiplicatively
and additively deformed random rectangular matrix. Given an M x n random matrix X
with independent entries, we consider the matrix T X — A, where T and A are N x M and
N x n deterministic matrices, respectively. It is easy to bound above the largest singular
value using |[TX — A| < |T||X| + [|A]l. On the other hand, we expect that if n < N < M
and the singular values of T satisfy ¢ < sy(T) < s1(T) < ¢!, then a similar estimate as in
(B.1.4) would still hold for TX — A. In fact, if M = N and X is subgaussian, one can prove
that the estimate holds for the matrix X — T~!A with a direct generalization of the
method in [82]. Together with s,(TX — A) = sy(T)s,(X — T~'A), this already gives the
desired lower bound for s,(TX — A). In this appendix, we will consider more general case

where N < M and X is not necessarily subgaussian, see Theorem [B.1.1]
Main result
Let &, ..., &, be independent random variables such that for 1 <i < n,
E¢ =0, ElG]P =1, (B.1.5)
and for any p € N, there is an N-independent constant o, such that
El&|P < 0. (B.1.6)

We assume that X is an M x n random matrix, whose rows are independent copies of the
random vector (&1, ...,&,). In this appendix, we consider the deformed random rectangular

matrix T'X — B, where T and B are N x M and N x n deterministic matrices, respectively.
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We assume that

n<N<M<AN, |B|<KyWN (B.1.7)

for some constants Ky, A > 1. Moreover, we assume the eigenvalues of TT™ satisfy that
Ky'<ony<...<0y <0 <K, (B.1.8)

For definiteness, in this appendix we focus on the case with real matrices. However, our
results and proof also hold, after minor changes, in the complex case if we assume in addition

that X;; have independent real and imaginary parts, such that

1
E(RGXZ]) = 0, E(ReXij)2 = 57

and similarly for Im X,;. The main result of this paper is the following theorem.

Theorem B.1.1. Suppose the assumptions (B.1.5), (B.1.6), (B.1.7) and hold. Fix

any constants T > 0 and I' > 0. Then for every ¢ = 0, we have
P <sn(TX —B)<eNT (\/N —Vn— 1)) < (CeV-m+l 4 NT (B.1.9)

for large enough N = Ny, where the constant C' > 0 depends only on o,, A and K, and Ny

depends only on o,, A, I" and 7.

To prove this theorem, we first truncate the entries of X at level N“ for some small
w > 0. Combining condition (B.1.6) with Markov’s inequality, we get that for any (small)
w > 0 and (large) I' > 0, there exists N(w, ') such that

P(l&| > N“/2) < N7

for all N > N(w,T'). Hence with a loss of probability O(N~1), it suffices to control the
smallest singular values of the random matrix 7X — B, where

X :=10X, Q:={|X,;| <N¥2foralll1<i<M,1<j<n}.
By (B.1.6) and integration by parts, we can check that for 1 <i < n,

E (§1geieneyay) = O (NT72) 0 Var (Gl enepzy) = 1+ 0 (N7127) . (B.1.10)
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We define D; to be an n x n diagonal matrix with (D;); = Var (filﬂgiKNw/Q})m.

Let T = UDV be a singular value decomposition of T, where U is an N x N unitary

matrix, V is an M x M unitary matrix and D = (D,0) is an N x M rectangular diagonal
Vi

matrix such that D = diag(dy, ds, . ..,dy) with d? = ;. We denote V = ! , where V}

Va
has size N x M and V5 has size (M — N) x M. Then we have

TX - B=UDV,(X —EX) — (B - TEX)

—UD [Vl (X —EX)D;! - <D‘1U‘1B - le)~(> D;l] Di.

Due to (B.1.8)) and (B.1.10)), we only need to bound s, (V1Y — A), where

Y := (X —EX)D;!, and A:= (D'U'B-V,EX)D;".

Using (B.1.7)), (B.1.8), (B.1.10) and the definition of €2, it is easy to check that A is a

deterministic matrix with
4] < ¢ (1Bl + [EX]) < C (VN + NT1) < OV, (B.1.11)
and Y is a random matrix with independent entries satisfying
E(Y;;) =0, Var(Y;;) =1, [V <N“. (B.1.12)
Recall that a random variable £ is called subgaussian if there exists K > 0 such that
P(|¢] > t) < 2exp(—t*/K?) for all t > 0. (B.1.13)

The infimum of such K is called the subgaussian moment of £ or the ¢y-norm |£[|y,. By
(B.1.12)), it is obvious that Y;; are subgaussian random variables with |Y;;[ly, < N“. More-

over, by Theorem 2.10 of [14], there exists a constant C' > 0 such that
P(|X|<CVN)>1-NT

for large enough N. Then using | X|| < | X, we get that
P(JY|<CVN)=1-N". (B.1.14)

From the above discussion, we see that Theorem follows from the following theorem.
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Theorem B.1.2. Let &y, ..., &, be independent centered random variables with unit variance,
finite fourth moments and subgaussian moments bounded by K for some K = K(N) < N¥.
LetY be an M x n random matriz, whose rows are independent copies of the random vector
(&1,...,&,). Let P be an N x M deterministic matriz with PPT = 1, and let A be an N x n
deterministic matriz. Suppose that |Y| + |A| < C1v/N for some constant Cy > 0. Then for

every 0 < w < wqy and every € = 0, we have
P (sn(PY —A)<e (\/N— n— 1>) < (CKLg)N_"H + e eN/EY (B.1.15)
where the constants wy, c,C, L > 0 depend only on A, C7 and the maximal fourth moment.

Remark B.1.3. Suppose X;; are subgaussian random variables with max; ; |.X;;| < K for

some constant K > 0. Then we have
P(|X]| = tVN) < e "N for t > Cy,

where ¢g, Cy > 0 depend only on K (see [82, Proposition 2.4]). Combining with Theorem

B.1.2| we obtain the optimal estimate for the smallest singular value of TX — B:
i (sn(TX _B)<e (W Y- 1)) < (Ce)N=r+l 4 =N, (B.1.16)

The rest of this appendix is devoted to the proof of Theorem [B.1.2 In the preliminary
Section [B.2], we introduce some notations and tools that will be used in the proof. In Section
[B.3] we first reduce the problem into bounding below |(PY — A)z|, for compressible unit
vectors x € S !, whose [2-norm is concentrated in a small number of coordinates, and for
incompressible unit vectors comprising the rest of the sphere S"~!. Then we prove a lower
bound for compressible unit vectors using a small ball probability result (Lemma and
a standard e-net argument. The incompressible unit vectors are dealt with in Sections
and [B.5] In Section [B.4] we consider the case 1 < n < AN for some constant A € (0,1), i.e.
when PY — A is a tall matrix. The proof can be finished with another small ball probability
result (Lemma and the e-net argument. The almost square case with AN <n < N is
considered in Section[B.5] We first reduce the problem into bounding the distance between a
random vector and a random subspace, and then complete the proof with a random distance

lemma—Lemma whose proof will be given in Section [B.6|
220



B.2 Basic notations and tools

In the proof, the unit sphere centered at the origin in R™ is denoted S™~!. The orthogonal
projection in R™ onto a subspace E is denoted Pg. For a subset of coordinates J < {1,...,n},

we often write P; for Pgs. The unit sphere of E is denoted S(E) := S"! n E.

The following tensorization lemma is Lemma 2.2 of [§]]

Lemma B.2.1 (Tensorization). Let (i, ..., (, be independent non-negative random variables,

and let B,gg = 0.

(1) Assume that for each k,
P(¢x <€) < Be for all € = .

Then
P (Z G < €2n> < (CBe)"  for all e = e,
k=1

where C' is an absolute constant.
(2) Assume that there exist A > 0 and p € (0,1) such that for each k,
P(G < A) < p.

Then there ezists Ay > 0 and py € (0,1) that depend on \ and p only and such that
P <Z (G < )\m) < pf
k=1

Consider a subset Q < R”, and let € > 0. An e-net of Q is a subset N' < € such that for
every x € {2 one has dist(xz, V') < €. The following lemma is proved as Propositions 2.1 and

2.2 in [82].
Lemma B.2.2 (Nets). Fiz any e > 0.

1) There ezists an e-net of S™ ' of cardinality at most
Y

min { (1+2:7)" 20 (1 +257)" 7'}
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(2) Let S be a subset of S"~'. There exists an e-net of S of cardinality at most
min { (1+4=7)" 20 (1 +4¢7)" 7}
Next we define the small ball probability for a random vector.

Definition B.2.3. The Lévy concentration function of a random vector S € R™ is defined
fore >0 as

£(S.2) = sup B(|S — v, < <),

veR™

which measures the small ball probabilities.

With Definition [B.2.3] it is easy to prove the following lemma. It will allow us to select

a nice subset of the coefficients a; when computing the small ball probability.

Lemma B.2.4. Let &, ... &, be independent random variables. For any o < {1,...,n},

any a € R™ and any € = 0, we have

L (Z akfk, 6) < L (Z akfk, E) .
k=1 keo

The following three lemmas give some useful small ball probability bounds. They corre-

spond to [82 Lemma 3.2], [81), Corollary 2.9] and [83], Corollary 2.4] respectively.

Lemma B.2.5. Let £ be a random variable with mean zero, unit variance, and finite fourth
moment. Then for every e € (0,1), there exists a p € (0,1) which depends only on & and on

the fourth moment, and such that

L(e)<p

Lemma B.2.6. Let &,...,&, be independent centered random wvariables with variances at

least 1 and third moments bounded by B. Then for every a € R™ and every € = 0, one has

Zakfk \/7 <|a3)
' HaHz lal2
where C' is an absolute constant.
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Lemma B.2.7. Let A be a fized N x M matriz. Consider a random vector & = (&1, ...,&um)
where & are independent random variables satisfying B = 0, EE2 = 1 and &)y, < K.

Then for every y € RN, we have

1 CHAH%IS
P{AE — < —||A <2 — .
{H §—yl2 2|| ||HS} eXp( e

B.3 Decomposition of the sphere

Now we begin the proof of Theorem We will make use of a partition of the unit sphere

into two sets of compressible and incompressible vectors. They are first defined in [81].

Definition B.3.1. Let §,p € (0,1]. A vector x € R™ is called sparse if |supp(x)| < dn. A
vector x € S™1 is called compressible if x is within Euclidean distance p from the set of all
sparse vectors. A vector x € S"1 is called incompressible if it is not compressible. The sets
of sparse, compressible and incompressible vectors will be denoted by Sparse,(0), Comp, (9, p)

and Incomp, (9, p). We sometimes omit the subindex n when the dimension is clear.

Using the decomposition S"~! = Comp U Incomp, we break the invertibility problem
into two subproblems, for compressible and incompressible vectors:

P@APY—A)<4¢N—v%—D)<P( inf MPY—Amh<d¢N—vﬁ—D>

zeCompn (6,p)

+P<11M(M(PYAM2<dVNanfU). (B.3.1)
xelncompn (0,p

The bound for compressible vectors follows from the following lemma, which is a variant of

Lemma 3.3 from [81].

Lemma B.3.2. Suppose the assumptions in Theorem[B.1.9 hold. Then there exist p, co,c; >
0 that depend only on Cy, and such that for 6 < min{c;N/(nK*log K),1}, we have

P < inf  |[(PY — A)zx|s < cox/ﬁ) < e ON/EY,

zeCompn (6,p)

Proof. We first prove a similar estimate for sparse vectors. For any z € S"!, we define the

random vector ¢ := Yz € RY. It is easy to verify that E¢; = 0, E¢? = 1 and ||¢]y, < CK.
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Then with |P|| =1 and |P|%g = N, we conclude from Lemma [B.2.7] that
1 cN
P{|(PY — A)z|, < 5\@ <2exp—— ). (B.3.2)

Let S; := {x € S" ' : 2, = 0,k > [én]}. By Lemma [B.2.2] there exists an e-net N of S
with |[N| < (5/¢)1°". Then using (B.3.2) and taking the union bound, we get

1 .
P (ég{/ |(PY — A)z|s < éx/N) < 2N/ (51l (B.3.3)

Let V be the event that |(PY — A)y| < +/N/4 for some y € S;. By the assumptions of

Theorem [B.1.2] we have
|PY — A| < |Y|| + ||A < C1V/N.

Assume that V' occurs and choose a point « € A such that |y — 2| < e. Then
1 1
[(PY = A)alz < [(PY = A)yl2 + |PY = Az = yl> < ;VN + CieV/N < SVN,

if we choose € < 1/(4C). Fix one such ¢, using (B.3.3|) we obtain that

1 n
P (insf [(PY = A)z|s < ZW) — P(V) < 2eNK" (57 ) e VIR
TEDT

if we choose ¢; (and hence §) to be sufficiently small. We use this result and take the union

bound over all [én]-element subsets o of {1,...,n}:

P ( inf |(PY — A)zs < }lx/ﬁ)

zeSparse(§)nSn—1

=P (30, lo| =[on]: inf |[(PY —A)zx|s < lx/ﬁ)

zeRT N Sn—1

=~

n N N
< e NI < exp <4e(5 log <E> n- 02_4> < €xp <—62—> ; (B.34)
(on] J K

with an appropriate choice of ¢;.

Now we deduce the estimate for compressible vectors. Let ¢; > 0 and p € (0,1/2) to
be chosen later. We need to control the event W that [|(PY — A)z|2 < e3v/ N for some
vector x € Comp(6, p). Assume W occurs, then every such vector x can be written as a sum

x =y + z with y € Sparse(d) and |z|s < p. Thus |ylls =1 —p > 1/2, and

[(PY = A)ylz < [(PY — A)zls + [(PY = A)[2]2 < esv/N + pCrV/N.
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We choose ¢35 = 1/16 and p = 1/(16C}), so that |[(PY — A)y|s < v/N/8. Since |ylly = 1/2, we
can find a unit vector u = y/||y|» € Sparse(d) such that ||(PX — A)u|, < v/N/4. This shows
that event W implies the event in , so we have P(W) < e~N/@KY) " This concludes
the proof. O

Remark B.3.3. If n < ¢;N/(K*log K), then all the vectors in S"~! are in Comp(4, p) and
Lemma [B.3.2] already concludes the proof of Theorem [B.1.2] Hence throughout the following
sections, it suffices to assume

n=cN/(K*log K). (B.3.5)

It remains to prove the bound for incompressible vectors in ([B.3.1]). Define the aspect
ratio A := n/N. We will divide the proof into two cases: the case where ¢;/(K*log K) <
A < \g for some constant 0 < A\g < 1, and the case where \y < A < 1. We record here an

important property of the incompressible vectors, which is proved in Lemma 3.4 of [81].

Lemma B.3.4 (Incompressible vectors are spread). Let x € Incomp,(d,p). Then there

exists a set 0 = o(x) = {1,...,n} of cardinality |o| = 3p*6n and such that

<

P
— < 7| < or all k € 0. B.3.6
=<l f (B.3.6)

-
3

B.4 Tall matrices

In this section, we deal with the probability in (B.3.1)) when ¢;/(K*log K) < A < Ao for

some constant Ag € (0,1). The value of Ay will be chosen later in Section [B.5| (see (B.5.8))),

and it only depends on A, C; and the maximal fourth moment of the entries of Y. Then it

is equivalent to control the probability

P ( inf  (PY — A)z|s < t\/ﬁ)

zelncompn (8,p)
for any ¢ > 0.

Let = be a vector in Incomp,(,p), where we fix 6 = ¢;N/(nK*log K) and 0 < p <
1/(16Ch) (see Lemma [B.3.2). Take the set o given by Lemma [B.3.4, Note that the entries
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of Ya are of the form (Yz); = >, Yirwx, 1 < i < M, where Yj; are independent centered

random variables with unit variance and bounded fourth moment. Hence we can use Lemma

and Lemma to get that

Llvalt) < @p;b ve (”i:) < (54 5vm) (B41)

for some constant Cy(p) > 0 depending only on p and the maximal fourth moment. Here we

used the bound

1 |P,z|s\* 2
P,xly = =p*V5, < ,
[Foz 2" ve <|!Pax|2 p?0+/n

deduced from Lemma [B.3.4. With (B.4.1) as the input, the next lemma provides a small

ball probability bound for the random vector PY x.

Lemma B.4.1 (Corollary 1.4 of [84]). Consider a random vector X = (&1,...,&n) where &

are real-valued independent random variables. Let t,p = 0 be such that
L&, t)<p foralli=1,..., M.
Let P be an orthogonal projection in RM onto an N-dimensional subspace. Then
c (PX, t\/ﬁ) < (Cp)V,
where C' s an absolute constant.

Applying the above lemma to random vector Yz, we obtain that

P (H(PY — Az, < tx/ﬁ) <r (PYx,tW) < [03 <\/ig + ﬁ)]N (B.4.2)

for some constant ('3 > 0. Now we can take a union bound over all x in an e-net of

Incomp, (9, p) and complete the proof by approximation.

We first assume that ¢ > 1/v/0n. Then the t/+/8 term in (B.4.2) dominates and we obtain
that
P (H(PY — Az, < tx/ﬁ) < (203t/\/5>N .
By Lemma[B.2.2] there exists an e-net N in Incomp, (6, p) of cardinality |N| < 2n(5/e)""L.

Taking the union bound, we get

P (inf |(PY — A)zfp < tVN) < 2n (Q%t)]v (g) " (B.4.3)
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Let V be the event that |(PY — A)y|s < tv/N/2 for some y € Incomp,(d, p). Assume that

V occurs and choose a point x € N such that |z — y|2 < e. Then if € < ¢/(2C}), we have
1
I(PY = A)al < |(PY = A)yl2 + |PY = All| =yl < ;tVN + CreVN < tVN,
where we used that |PY — A| < C1v/N. Fix one such ¢, using (B.4.3) we obtain that

P( inf  |[(PY — A)z|, < t¢N>=PWU

zelncompn (0,p)
2C5t 10C N-n+1
<2 ( : ) ( 1) (C e A ] , (B.4.4)
where in the last step we used n/N < \g. If t < 1/4/6n, we use (B.4.4) to get

P ( inf |(PY — A)x|z < %\/N) < [(045—1/2>1/(1—>\0) (6n) 12

zelncompn (8,p)

N—n+1
—coN/K*
:| g € h /

)

if K < N¥ for some sufficiently small w. Together with (B.4.4) and Lemma |B.3.2] this
concludes the proof of Theorem for the A < g case.

B.5 Almost square matrices

In this section, we deal with the probability in for the Ay < A < 1 case. In particular,
when A — 1, PY — A becomes an almost square matrix and cannot provide a
satisfactory probability bound. For instance, for the square case with N = n, it is easy to see
that the (C6~/2)" term dominates over the ¢ term. To handle this difficulty, we will use the
method in [82], which reduces the problem of bounding ||(PY — A)x||s for x € Incomp, (4, p)

to a random distance problem. We denote N = n — 1 + d for some d > 1. Note that

VN —v/n —1 < d/+/n. Hence to bound (B.3.1), it suffices to bound

P (xdm%n(&p) I(PY — A)z|s < 5\/—ﬁ> , for & = %, p<1/(16C;). (BA5.1)
We denote
m := min {d, BpQ(SnJ } : (B.5.2)
Let Z; := PY1— A4, ..., = PY,, — A,, be the columns of the matrix Z := PY — A. Given
a subset J < {1,...,n} of cardinality m, we define the subspace

Hje := span(Z;)gese < RY. (B.5.3)
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For levels K := py/0/2 and K, := K; ', we define the set of totally spread vectors

K K.
S’ = {y e S" AR : \/—% < yk| < \/—% for all k € J}. (B.5.4)

In the following lemma, we let J be a random subset uniformly chosen over all subsets of
{1,...,n} of cardinality m. We shall write P; for Pgs, the orthogonal projection onto the
subspace R7. We denote the probability and expectation over the random subset J by P;
and E;.

Lemma B.5.1. There exists constant co > 0 depending only on p such that for every x €

Incomp, (0, p), the event

Pjx J p/m vm
=4 B <Py < Y=
E(x) { el e S’ and 5 | Pyz|o on

satisfies P;(E(x)) = (c2d)™.
Proof. Let o < {1,...,n} be the subset from Lemma [B.3.4 Then we have

o[}, [
Py;(Jco)= /
m m

Using Stirling’s approximation, for d < }1,02(571, we have

Bieo= (P > @,
and for d > {p?0n, we have
-1
n m! cmN\™ m
P;(Jco)= >—><—) > (e20)™ .
nm n

m

If J < o, then summing (B.3.6) over k € J, we obtain the required two-sided bound for
|Py|s. This and (B.3.6) yield Pyz/|Pyz|, € S7. Hence £(z) holds. O

Lemma implies the following lemma, whose proof is similar to the one for [82],

Lemma 6.2].
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Lemma B.5.2. Let J denote the m-element subsets of {1,...,n}. Then for every e > 0,

P ( inf |Zx|s < epa /ﬁ> < (c20) " maxP <inf dist(Zx, Hje) < 5> . (B.5.5)
(4:p) 2n J

xelncompn zeS/

It remains to bound P (inf,cgs dist(Zx, Hjc) < €) for any m-element subset J. We shall
need the following lemma to bound below the distance between a random vector in RY and

an independent random subspace of codimension [. It will be proved in Section

Lemma B.5.3 (Distance to a random subspace). Let J be any m-element subset of {1,...,n}
and let Hje be the random subspace of RN defined in . Let X be a random vector
in RM whose coordinates are i.i.d. centered random variables with unit variance and finite
fourth moments, independent of Hje. Assume thatl == m +d—1 < SN. Then for every
e > 0, we have
P <S%>VIP (dist(PX —w,Hye) < s\/ij HJC> > (Ce)' + e_EN) <N, (B.5.6)
ve

where 3,¢,C > 0 depend only on A, C, and the mazimal fourth moment.

It is easy to see that (B.5.6]) implies the weaker result:
sup P (dist(PX o, Hye) < e\/i) < (Ce)! + 2¢7°N. (B.5.7)
veRN

In the following proof, we choose A\ such that

d < BN/2=1<2d<pN. (B.5.8)

Note that for any fixed z € S/, we have Zz = PYx — Az, where Yz is a random vector

satisfying the assumptions for X in Lemma|B.5.3| So (B.5.7)) gives a useful probability bound

for a single x € S7. Then we will try to take a union bound over all z in an e-net of S’ and

obtain a uniform distance bound. This is stated in the following theorem.

Theorem B.5.4 (Uniform distance bound). Let Y be a random matriz satisfying the as-

sumptions in Theorem[B.1.3. Then for every m-element subset J and t > 0,

P ( inf dist (Zz, Hye) < t\/E) < (CtK°log K)* + e, (B.5.9)

zeS7

where C,¢ > 0 depend only on C and ¢.
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By the definition of m in (B.5.2)), we have
(025)—171 < |:<025)_p26/2:|n < €6N/27

with an appropriate choice of p. Then we conclude from Lemma and Theorem
that

d - _
P < inf |Zx||2 < epa/ m_) <(c20) ™(CeK®log K)* + =N/
zelncompn (9,p) 2n

< (CK®(log K)zs)d e N2 (B.5.10)

where we used m < d and ¢ in 1} Changing ¢ to gp_l\/Qd/m in (B.5.10) and using
d/m < CK*log K, we get

IP( inf [(PY — A)zfs < o2

L) < (CKY (log K)7%)" 4 e=eN/2,
xelncompn (8,p) \/ﬁ) ( ( & ) )

which, together with Lemma concludes the proof of Theorem [B.1.2]

Now we begin the proof of Theorem [B.5.4, Without loss of generality, we can assume
that the entries of Y have absolute continuous distributions. In fact we can add to each
entry an independent Gaussian random variable with small variance o, and later let ¢ — 0
(all the estimates below do not depend on o). Under this assumption, we have the following
convenient fact:

dim(Hy) =n—m as. (B.5.11)
Let Py. be the orthogonal projection in RY onto H7., and define
W = PyiPY g, . (B.5.12)
Then for every x € R", we have
dist(PYz — v, Hye) = |[Wz — w|,, where w = Py.v. (B.5.13)

By (B.5.11)), dim(H7.) = N —n + m = [ almost surely. Thus W acts as an operator from
an m-dimensional subspace into an [-dimensional subspace. If we have a proper operator
bound for W, we can run the approximation argument on S’ and prove a uniform distance

bound over all z € S”.
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Proposition B.5.5. Let W be a random matriz as in . Then
P <||W|| > sK\/&l HJC) <e ol for s> O,
where Cy, co > 0 are absolute constants.

Proof. For simplicity of notations, we fix a realization of H ;. and omit the conditioning on
it from the expressions below. Let A" be an (1/2)-net of S" 1 AR’ and M be an (1/2)-net
of 8" ! A H+.. By Lemma [B.2.2| we can choose A and M such that

V| < 5™ M| <5h

It is easy to prove that

(W <4 Sup (W, y)|. (B.5.14)

zeN ,yeM
For every x € N and y e M, (Wax,y) = (PYx,y) = (Yx, PTy) is a random variable with

subgaussian moment bounded by C'K for some absolute constant C' > 0. Hence by ([B.1.13))

we have

1
P <|<Wx,y>| > ZSK\/g) < 2e

Using (B.5.14)) and taking the union bound, we get that for large enough Cj,
P (||W|| > 3K\/&> < 5™ -5 2e7 < om0 for s > (),
where we used that m <[ < 2d. O]

Lemma B.5.6. Let W be a random matriz as in and let w be a random vector as
in . Then for every t = 0, we have

P (iHSfJ Wz —w|s < tVd, |[W| < COK\/E) < K™ HCot)? + 2N/, (B.5.15)
TEe
where Cy depends only on C.

Proof. Fix any z € S7. It is easy to verify that Yz is a random vector that satisfies the

assumptions for X in Lemma |B.5.3] Hence by (B.5.13) and (B.5.7)), we have

P (wa — s < t\/&) <P (dist(PYx . Hye) < t\/l) < (@) +2eN.  (B.5.16)
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Let e = t/(CoK). By Lemma|B.2.2] there exists an e-net N of S7 with |N| < 2m(5C K /)™ L.
Consider the event

&= {;gf/ Wz —w|, < Qtﬂ} .

Taking the union bound, we get that
5CoK

m—1 m—1
> I:(ZC«t)m+d—1 +26—5N:| < Km_l(CQt)d + 4m (5COK> €_EN.

P(&) < 2m (

For t > to := e~N/Ud) /(CLK), we have

Am (50;K)ml < (C(/)K2)p25n/2 EN/A < GEN /2
with an appropriate choice of p. Thus we get
P(&) < K™ Y Cot)? + e N2 for t > t,.
For t < ty, we have
P(&) < P(&,) < K™ 1 (Cyto)? + e N2 < 27N/,

Then applying the standard approximation argument, we can check that the probability in
(B.5.15)) is bounded by P(&;), which concludes the proof. ]

With Proposition and Lemma [B.5.6] we obtain that
P <inf] Wa —wls < t\/g) < Km_l(Czt)d 4+ 9e"N/A 4 pmeoCid.
TES-

Unfortunately, the bound e~%¢3d

is too weak for small d. Following the idea in [82], we refine
the probability bound by decoupling the information about |Wz —w||5 from the information
about ||[W|. The proof of next lemma is essentially the same as the one for Proposition 7.5

of [82]. We omit the details.

Lemma B.5.7 (Decoupling). Let X be an N x m matriz whose columns are independent
random vectors, and let A be an N x N deterministic matriz. Let z € S™ ! be a vector
satisfying |zx| = Ki/v/m for all k € {1,...,m}. Then for every v e RY and every 0 < a < b,

we have

P(|AXz — Avfs < a, |[AX]| > b) <2 sup P (AXy — Auly < @) P (AX| > i) .

yeSm—1 yeRN Kl \/5
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Remark B.5.8. By (B.5.4), all the vectors in S” satisfy the assumption for z in Lemma[B.5.7]
With this decoupling lemma, we can prove the following refinement of Lemma [B.5.6]

Lemma B.5.9. Let W be a random matriz as in and let w be a random vector as
in . For every s = 1 and every t = 0, we have

K™=t (Cyt)?

P <irng W —w|s < tVd and sCoKNd < |[W| < 250&(\/&) < [ o
xTe 1

+ 26—6N/4] 6—6182d
where ¢, is an absolute constant and Cs depends only on C.

Proof. Let ¢ = t/(2sCyK). By Lemma there exists an e-net N of S7 with |N]| <
2m (9sCoK /t)™ " . Consider the event

& = {inf [Wa — w], < 26Vd and |W]| > sCok Vd} .
TE.

Conditioning on H j., we can apply Lemma to get that

SCOK\/g
V2

zeSm—1 yeRN

2
P(&| Hye) < |NJ-2  sup P(\Wx—PHu)b < %‘Qt\/g'HJC>P<W| >
1

HJC)

Taking expectation over H ;. and using Proposition |[B.5.5] we obtain that

K\™' e 2
P(&,) < 4m (9‘9(;0 > e~ 02 [ sup P <HW:U — Py < % : 22&@‘ HJC)]
1

zeS™m—1 peRN

m—1 ~ m+d—1
< 4m (905K> (smfle’cocf%SQd/Q) (2\§Ct> +2e7 N |
1

where in the second step we used the representation in (B.5.13)) and the estimate (B.5.6)).

Since s > 1 and 1 < m < d, we can bound this as

Kmt (Cgt)d 9C K ml _éN
—K{”J“d_l Cim e

a2
e c1sd’

re)<|

where Cy > 0 is an absolute constant. For ¢ > ¢, := e *N/U) K2 /(C5K), we have

m—1
Cym (QCEK) < (CRIRT ) N < N2
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with an appropriate choice of p. Thus we get

K™= 1 (Cyt)?

P(&) < [ Fpea

+ eEN/QI e’clszd, for t > t.

For t < t1, we have

Km—1 (Cgtl)d

m+d—1
Kl

P(gt) < P(gtl) < [ e_EN/zl 6_6182d < 26_6N/4€_0182d.

Suppose there exists y € S” such that
Wy —w|s < tVd and sCoKVd < |[W| < 2sCoKVd.
Then we choose x € N such that |z — y[s < e, and by triangle inequality we obtain that
[Wa —w|s < |[Wy —w|a+ [W]|z =yl < tVd + 2sCoK+de < 2tVd,

i.e. the event & holds. Then the bound for P(&;) concludes the proof. O

Proof of Theorem [B.5.4. Summing the probability bounds in Lemma and Lemma
for s = 2F, k € Z. , we conclude that

: m—1 d e, | KT (Cst)" _EN/4 —c18%d
P inf Wz —w|y < tvVd) < K™ Y(Cot)? + 2e + | ———="— + 2¢ Z e
zes

m+d—1
K =2k keZ,
< (CsKK2)" 4 Cge N/,
Using that K = p/d/2 (see 1) and § = ¢;N/(nK*log K) (see ), we get
P <ian Wz —w|s < t\/g) < (CtK®log K)d 4+ Qe eN/A,
zeS

In view of the representation (B.5.13|), this concludes the proof. O

B.6 Proof of Lemma [B.5.3

We will first prove a general inequality that holds for any fixed subspace H in RY of codi-
mension | = m + d — 1. This probability bound will depend on the arithmetic structure

of H, which can be expressed using the least common denominator (LCD). Following the
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notations in [82], for @« > 0 and v € (0,1), we define the least common denominator of a

vector a € RM as
LCD,,(a) := inf {6 > 0 : dist(fa, Z"") < min(y|bals, )} .

More generally, let a = (ay,. .., ay) be a sequence of vectors a;, € R\, We define the product

of such multi-vector @ and a vector § € R as
0-a:=({0,a1),...,{0,ap)) €R
Then we define, for « > 0 and v € (0, 1),
LCD,,(a) := inf {||0]> : 6 € R, dist(0 - a, Z") < min(y]|0 - als, )} .
Finally, the least common denominator of a subspace £ < RM is defined as

LCD,,(E) := inf{LCDq,(a) : a € S(E)} = inf {|0]> : 6 € E, dist(, Z") < min([6]s, )} .

(B.6.1)
A key to the proof is the next small ball probability theorem.
Theorem B.6.1 (Theorem 3.3 of [82]). Consider a sequence a = (ay,...,apn) of vectors
a € R!, which satisfies
M
Z(x ap)? = |z|2  for every x e RL. (B.6.2)

Let &, ..., & be ii.d. centered random variables, such that L(&, 1) < 1—b for some b > 0.

Consider the random sum S := 224:1 aréy € R Then, for every a > 0 and v € (0,1), and

for
Vi

£ —
LCD, ~(a)

£(s.evi) < (ﬁ;) + Cle e,

Let H be a fixed subspace in RY of codimension [. We denote an orthonormal basis

we have

of Ht by {ny,...,m} < RY, and write X in coordinates as X = (&,...,&y). Then using
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PPT =1, we get

!
Z<X, PTn.n, — Pyiv

r=1

!
Z(PX, NNy — Priv

r=1

dist(PX —v, H) = |Pps(PX —v)|2 =

2 2

1 M
= DX, P, )P n, — PTPyov| = |PpX —wly = | Y] are —w| |
r=1 2 k=1 2
where
E=E(H):=P'H*, a:= Pgep, w:=P'Pyiv,
and where ey, ..., ey denote the canonical basis of RM. Notice that

M
Z<x,ak>2 = |x|3, forany re E.
k=1

Hence we can use Theorem in the space F (identified with R! by a suitable isometry).
For every 0 = (0y,...,0y) € E and every k, we have {0, a;) = {0,ex) = O, so 0 -a = 0,

where the right hand side is considered as a vector in RM. Therefore, we have
LCD,(E) = LCD, ,(a).

By Lemma |B.2.5] £(&,1/2) < 1—b for some b > 0 that depends only on the fourth moment
of &.. Hence we can apply Theorem to S = ZkM:1 ar&, and conclude that for every

e >0,

P <dist(PX — v, H) < ex/i) < L(S,eVl) < (%)l + (%C%—ﬂ(m) + Cle® (B.6.3)

Now it suffices to bound below the least common denominator of the random subspace E.
Heuristically, the randomness should remove any arithmetic structure from the subspace F

and make the LCD exponentially large. The next theorem shows that this is indeed true.

Theorem B.6.2. Suppose &1, ..., n_; are independent centered random variables with unit
variance and uniformly bounded fourth moment. Let Y be an M x (N — 1) random matriz
whose rows are independent copies of the random vector (&1,...,En—1), and A be an N x

(N — 1) deterministic matriz. Suppose that |Y | + | Al < Cov/N for some constant Cy > 0.
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Let H be the random subspace of RN spanned by the column vectors of PY — A, and define
the subspace E = E(H) := PTH* < RM. Then for a = ¢v/N, we have

P <LC’DM(E) < C\/NGCN/Z) <e N,

where ¢ depends only on A, Cy and the maximal fourth moment.

Proof of Lemma[B.5.3, Consider the event € := {LCD, . (E(Hc)) = cv/NeV/'}. The above

theorem shows that P(£) > 1 — e, Conditioning on a realization of Hje in £, we obtain

from (B.6.3)) that

sup P (dist(PX —v,Hye) < exfl’ HJC> <(Ce) +(C)'e N, for Hee&.  (B.6.4)
veRN
Since | < SN, with an appropriate choice of 5 we get

(Cl)l < GC,N/2.

Then the proof is completed by the estimate on the probability of £¢. n

The rest of this section is devoted to proving Theorem [B.6.2} Note that if a € E(H),

then a = PTb for some b e H*. Then with b = Pa, we have that
be H < Y"PTh—A"h =0 < YTa— ATPa = 0.
We denote B := ATP. For every set S in E, we have

inf
zeS

’?Tx - B:}:H > (0 implies S n £ = &. (B.6.5)
2

This helps us to “navigate” the random subspace E away from undesired sets S on the unit

sphere.

As in Definition we can define the compressible and incompressible vectors on

SM=1"which are denoted by Compy, (3, p) and Incompy (8, p), respectively. First, we have

the following result for compressible vectors.

Lemma B.6.3 (Random subspaces are incompressible). There ezist 6, p € (0,1) such that
P(E n Compy (6, p) = &) = 1 — e N, (B.6.6)

where the constants 9, p,co > 0 depend only on A, Cy and the maximal fourth moment.
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Proof. Due to (B.6.5)), it suffices to prove that

zeComppg

P ( inf H <l~/T - B) IL‘H < cO\/N) < e N, (B.6.7)
(0.p) 2

In fact, the proof is similar to the one for Lemma However, instead of Lemma [B.2.7]
we will use the fact that Y7 has independent row vectors Yi, ..., Yy_;. For any z € SM-1,
it is easy to verify that (Y}, z) has variance 1 and uniformly bounded fourth moment. Then

by Lemma [B.2.5] there exists a p € (0, 1) such that for any fixed v = (vy,...,vy—;) € RN,
P (|(Ve,2) — sl <1/2) <,
By Lemma we can find constants 7, v € (0, 1) depending on p only and such that
P{H?Tx s < m/ﬁ} <V (B.6.8)

Recall that [ < SN and M < AN by our assumptions. Then using (B.6.8)) instead of (B.3.2)),
we can complete the proof of (B.6.7)) as in Lemma [B.3.2] O

Fix the constants ¢ and p given by Lemma for the rest of this section. Note that
in contrast to the case in Lemma [B.3.2] ¢ is now an N-independent constant. We will
further decompose Incompy (9, p) into level sets Sp according to the value D of the LCD.
We shall prove a nontrivial lower bound on inf,eg, |(Y” — B)z|, for each level set up to D
of the exponential order. By , this means that F is disjoint from every such level set.
Therefore, E must have exponentially large LCD. First, as a consequences of Lemma [B.3.4]

we have the following lemma, which gives a weak lower bound for the LCD.

Lemma B.6.4 (Lemma 3.6 of [82]). For every ,p € (0,1), there exist c1(0,p) > 0 and
c2(6) > 0 such that the following holds. Let a € Incompy(0,p). Then for every 0 < ¢ <

c1(0, p) and every a > 0, one has
LCD, (a) > c2(0)V M.
Definition B.6.5 (Level sets). Let D > c3(6)vV' M. Define Sp < SM~1 as

Sp = {x € Incompy (8, p) : D < LCD, () < 2D} n (PTRY).
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To obtain a lower bound for | (Y7 — B)z|, on Sp, we use the e-net argument again. We
first need such a bound for a single vector x. The proof of next lemma is very similar to the

one for Lemma 4.6 in [82]. We omit the details.

Lemma B.6.6. Let x € Sp. Then for every t > 0 we have
) ) C A\ N
P <H(YT — B)xl|s < tx/ﬁ) < (Ct + D + Ce ™ ) . (B.6.9)

Now we construct a small e-net of Sp. Our argument here is a little harder than the one
in [82], because the e-net lies in a subspace PTRY < R whose direction is quite arbitrary.

We shall need the following classical result in geometric functional analysis [?].

Lemma B.6.7. If S € RM is a subspace of codimension k, then
S Qul < (V2)F,
where Qyr = [—1/2,1/2]M is the unit cube centered at the origin.

Lemma B.6.8. There exists a (4a/D)-net of Sp of cardinality at most (CD/v/N)N.

Proof. We can assume that 4a/D < 1, otherwise the conclusion is trivial. For z € Sp, we
denote D(x) := LCD,(z). By the definition of Sp, we have D < D(z) < 2D. By the
definition of LCD, there exists p € ZM such that

|D(z)z —pl2 < o (B.6.10)
Therefore,
p a 1
_ <=
T D@ " D@ S 3
Since ||z[2 = 1, it follows that
-] <%
Ipl2l, D

We can chose p such that it is the closest integer point to D(x)x. Since |D(x)z|s < 2D, p
must lie in the “cube covering” F of F := B(0,2D) n PTRY, defined as

F=] <ﬁ[bi —1/2,b; + 1/2]) .

beF \i=1
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On the other hand, by (B.6.10) and using that |D(x)z|2 < 2D and 4a/D < 1, we obtain
Ipll2 < D(z) + a < 3D.
In sum, we get a (2a/D)-net of Sp as:

N = {ﬁ:peZMmB(O,SD)mF}.
DPl2

The cardinality of N can be bounded by the volume of B(0,3D) ~n F. By Fubini’s theorem,

we have

B(0,3D) n F‘ < |B(0,3D) ~ S| -|S$* A Qu|, S:= PTRY.

Then using the volume formula for an N-dimension ball and Lemma [B.6.7, we obtain that
V] < (CD/VN)N.

Finally, we can find a 4a/D-net of the same cardinality, which lies in Sp (see Lemma 5.7 of

[81]). This completes the proof. O

Lemma B.6.9. There exist cs, cy, ju € (0,1) such that the following holds. Let a = pr/N =1
and D < csvV/NesN/t Then

P ( inf
xESD

Proof. To conclude the proof, it is enough to find v > 0 such that the event

ei{int (77 - B) ], < 55}

has probability < e™. Let v > 0 be a small constant to be chosen later. We apply Lemma
with ¢ = v+/N/D. By the assumptions on o and D, the term Ct dominates in the
right hand side of (B.6.9). This gives for arbitrary = € Sp,

P(I67-8)e,=5) < (5)

We take the (4c/D)-net N of Sp given by Lemma [B.6.8, and take the union bound to get

e aorma <) < ()" (55 (B o
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Using the assumption on D, we can choose v small enough such that
p< (M esN ()N < e,
where we used [ < SN in the last step.
Now assume & holds. By the assumption of Theorem [B.6.2] we have
YT = B| < [Y] +|A| < C:V/N.

Fix z € Sp such that |(YT — B)z| < vN/(2D). Then we can find y € N such that

|z — y|| < 4a/D. Then, by the triangle inequality we have

N N - - ~ - N 4 N N
|(77 = B) o] <[(¥7 = B)a| + |77 B] -l — sl < 22 + VN pN _vN
2 2 2D D D

if we choose p < v/(8C}). Thus we get

. vN _
P(€) < P (;gﬁ (YT~ B) x|, < 7) <,

which concludes the proof. O

Proof of Theorem[B.6.3 Consider z € S™~! n E such that
LCD, .(z) < csV NesN/,

Then, by Lemma and Definition [B.6.5] either z is compressible or z € Sp for some
D € D, where
D := {D c VN < D < c3V/Ne®NE D =9F | e N},

where we used that M > N. Therefore, we can decompose the desired probability as follows:

p:=P (LCDM(E) < 03\/N663N/l> < P(E n Compy(6,p) # &) + Z P(En Sp # ).

DeD
The first term can be bounded by e~“¥ by Lemma m The other terms can be bounded

with (B.6.5) and Lemma [B.6.9}
P(E 5o % 2) < B (i (77 - B) ] = 0) <
CCESD 2

Since there are |D| < CN terms in the sum, we conclude that
p < e~ N + ONe ™ < eV,
This concludes the proof. O
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