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Abstract. We introduce a sharpened version of the well-known Lonely Runner Conjecture
of Wills and Cusick. Given a real number x, let ‖x‖ denote the distance from x to the
nearest integer. For each set of positive integer speeds v1, . . . , vn, we define the associated
maximum loneliness to be

ML(v1, . . . , vn) = max
t∈R

min
16i6n

‖tvi‖.

The Lonely Runner Conjecture asserts that ML(v1, . . . , vn) > 1/(n + 1) for all choices
of v1, . . . , vn. We make the stronger conjecture that for each choice of v1, . . . , vn, we have
either ML(v1, . . . , vn) = s/(ns+1) for some s ∈ N or ML(v1, . . . , vn) > 1/n. This view
reflects a surprising underlying rigidity of the Lonely Runner Problem. Our main results
are: confirming our stronger conjecture for n 6 3; and confirming it for n = 4 and n = 6
in the case where one speed is much faster than the rest.
Mathematics Subject Classifications. 11K60 (primary), 11J13, 11J71, 52C07

1. Introduction

1.1. Background

The Lonely Runner Problem has been a popular research topic ever since it was introduced
by Wills [29] and Cusick [15]. Its name comes from the following non-technical formulation.
Suppose n runners start at the same point on a circular track of length 1 and begin to run around
the track at pairwise distinct constant speeds. We deem a runner “lonely” at a certain time if
their distance around the track from every other runner is at least 1/n. The Lonely Runner
Conjecture asserts that regardless of the starting speeds, every runner gets lonely eventually
(perhaps at different times for different runners).

Identify the circular track with R/Z, and consider the frame of reference of a single runner.
From this runner’s perspective, it doesn’t matter in which direction the other runners are going,
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so we may as well take all of their speeds to be positive. Also, Bohman, Holzman, and Kleitman
[6] have shown that it suffices to consider only integer speeds. Given a real number x, let ‖x‖
denote the distance from x to the nearest integer. For a set of positive integer speeds v1, . . . , vn,
we define the associated maximum loneliness to be

ML(v1, . . . , vn) = max
t∈R

min
16i6n

‖tvi‖.

(The maximum exists because min16i6n ‖tvi‖ is a continuous periodic function of t.) Then the
Lonely Runner Conjecture can be expressed succinctly in terms of this quantity.

Conjecture 1.1 (Lonely Runner Conjecture). For any positive integers v1, . . . , vn, we have

ML(v1, . . . , vn) >
1

n+ 1
.

If the Lonely Runner Conjecture is true, then the quantity 1/(n + 1) is the best possible,
for there are known equality cases (also called tight sets of speeds) with ML(v1, . . . , vn) =
1/(n+ 1). One such construction simply sets each vi = i.

The Lonely Runner Conjecture is connected to questions in many fields, such as geomet-
ric view-obstruction (e.g., [7, 15]), Diophantine approximation (e.g., [4, 26, 27, 28]), flows in
matroids (e.g., [5, 25]), and chromatic numbers of distance graphs (e.g., [21, 22, 30]). The
conjecture has received substantial attention in recent decades. The main approach has been to
establish the Lonely Runner Conjecture for small values of n; it is now known to hold for n 6 6
(see [4] for n = 2 and n = 3; [16, 5] for n = 4; [6, 23] for n = 5; [3] for n = 6). Another ap-
pealing avenue of inquiry has been improving the trivial lower boundML(v1, . . . , vn) > 1/(2n);
most recently, Tao [24] showed that 1/(2n) can be replaced with

1

2n
+

c log n

n2 log log n

for some constant c and all sufficiently large n. Other investigations into the Lonely Runner
Problem include: the work of Goddyn and Wong [18] on tight sets of speeds other than the
trivial set 1, . . . , n; a series of papers by Chen [8, 9, 10, 11] about an equivalent formulation in
terms of simultaneous Diophantine approximation; and Chow and Rimanić’s resolution [13] of
an analogous problem for function fields. See [20] for more background.

1.2. A new question

In this paper, we introduce a new way to approach the Lonely Runner Problem. A natural but
(to our knowledge) hitherto unasked question is:

Motivating Question. If v1, . . . , vn satisfy the Lonely Runner Conjecture but do
not form a set of tight speeds, must ML(v1, . . . , vn) be uniformly bounded away
from 1/(n+ 1)?
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We conjecture that, contrary to what one might expect, this question has an affirmative answer.
(Speaking poetically, one might say that lonely runners are always either “barely lonely” or “very
lonely”.) We in fact offer the following more precise statement about an unexpected rigidity of
possible “small” values of ML(v1, . . . , vn).

Conjecture 1.2 (Loneliness Spectrum Conjecture). For any positive integers v1, . . . , vn, we have
either

ML(v1, . . . , vn) =
s

ns+ 1
for some s ∈ N or ML(v1, . . . , vn) >

1

n
.

Note that this conjecture is strictly stronger than the Lonely Runner Conjecture. In this
paper, we will refer to Conjecture 1.1 as the “Lonely Runner Conjecture”, and we will refer to
Conjecture 1.2 as the “(Loneliness) Spectrum Conjecture”. We will often refer to the maximum
loneliness amounts of the form s/(ns + 1) as the discrete part of the (maximum) loneliness
spectrum.

We remark that it is natural to focus on maximum loneliness amounts in the interval
[1/(n+ 1), 1/n) because if the Lonely Runner Conjecture is true, then this interval is precisely
the “new” regime that is made available with the addition of the n-th runner. That is, heuristi-
cally, a set of n speeds must “work together” in some rigid way in order to obtain a maximum
loneliness smaller than 1/n. We mention also that the Spectrum Conjecture provides a satisfy-
ing explanation for the appearance of the quantity 1/(n + 1) in the Lonely Runner Conjecture:
the maximum loneliness 1/(n+ 1) is the last element of a highly-structured discrete spectrum.

1.3. Main results and overview of the paper

This paper is based on the author’s thesis [20]. It has come to our attention that several of the
early results of this paper appear, either explicitly or implicitly, elsewhere in the literature. The
methods of proof are different, however, and we include our (strictly speaking, redundant) proofs
because they demonstrate a new perspective.

In Section 2, we collect some of the basic tools that we will use throughout the paper. In
Section 3, we show that the Spectrum Conjecture is the best possible in the sense that for every
n, the entire discrete part of the loneliness spectrum is attained. In Sections 4 and 5, we prove
the Loneliness Spectrum Conjecture for n = 2 and n = 3, respectively. (The n = 1 case is
trivial.)

Theorem 1.3. For any positive integers v1, v2, we have either

ML(v1, v2) =
s

2s+ 1
for some s ∈ N or ML(v1, v2) =

1

2
.

For any positive integers v1, v2, v3, we have either

ML(v1, v2, v3) =
s

3s+ 1
for some s ∈ N or ML(v1, v2, v3) >

1

3
.

In Section 6, we develop machinery for approaching the Spectrum Conjecture in the regime
where one speed is much faster than the rest. We eventually produce an explicit computation
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involving only the tight sets ofn−1 speeds which allows us to decide whether or not the Spectrum
Conjecture holds for n runners in this regime. Then, using this technique and previous results
about tight speed sets for 3 and 5 runners, we establish the Spectrum Conjecture for n = 4 and
n = 6 when one speed is much faster than the others.

Theorem 1.4. Let n = 4 or n = 6. If v1 < · · · < vn are positive integers satisfying vn > 4v4n−1,
then we have either

ML(v1, . . . , vn) =
s

ns+ 1
for some s ∈ N or ML(v1, . . . , vn) >

1

n
.

Along the way, we raise several questions about the set of all possible maximum loneliness
amounts for n runners, and a consequence of this line of inquiry is that the Spectrum Conjecture
for n runners immediately implies the Lonely Runner Conjecture for n−1 runners as well as for
n runners. Finally, in Section 7, we present open questions and promising areas of future inquiry.

Often, the main barrier to proving a long-standing conjecture is that people try to establish
the “wrong” version of the statement. This tendency is especially true of induction-type argu-
ments, where having a stronger induction hypothesis can make a proof easier. We hope that
the Loneliness Spectrum Conjecture may be the “right” way to approach the Lonely Runner
Conjecture.

2. Tools and Preliminary Observations

We begin with a few simple observations that we will use freely later. We always take v1, . . . , vn
to be positive integers, with n > 2.

First, note that without loss of generality we can restrict our attention to the case where the
speeds v1, . . . , vn do not all share a common factor; indeed, if gcd(v1, . . . , vn) = g > 1, then
ML(v1, . . . , vn) = ML(v1/g, . . . , vn/g), where each vi/g is an integer. We also lose nothing by
taking the speeds to be pairwise distinct.

Second, recall that for fixed v1, . . . , vn, we are looking for the real number (time) t that
maximizes the function

f(t) = min
16i6n

‖tvi‖.

Since f(t+1) = f(t), it suffices to consider t in the interval [0, 1). In fact, since f(t) = f(−t),
we could further restrict our attention to [0, 1/2]. Moreover, all local maxima of f should occur
at times where there are two runners of minimum distance to the origin and these runners are
on “different” halves of the circular track, for otherwise we could obtain a larger loneliness by
perturbing the time. We make this observation precise in the following simple proposition, which
also appears in [17, 19, 22]. (See [20] for more details.)

Proposition 2.1. Let v1, . . . , vn be positive integers (n > 2) with gcd(v1, . . . , vn) = 1. Then
every local maximum of the function

f(t) = min
16i6n

‖tvi‖
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occurs at a time of the form
t0 =

m

vi + vj
,

where 1 6 i < j 6 n and m is an integer.

Of course, the global maximum is among these local maxima for t in the interval [0, 1). This
proposition shows that we can determine ML(v1, . . . , vn) by checking only finitely many times,
where this number grows at most cubically with the size of the fastest speed. This observation
is particularly useful for performing computational experiments. Another advantage of this per-
spective is that it gives us a useful way to look at candidate times in “chunks” (according to the
pairs i, j) instead of all at once. This way of thinking often reveals underlying structure that is
otherwise opaque.

Third, we mention the concept of a pre-jump, as used by Bienia, Goddyn, Gvozdjak, Sebő,
and Tarsi [5]. Their insight is essentially that if we know the values of ‖t1vi‖ and ‖t2vi‖, then we
can say something about ‖(t1 + αt2)vi‖, where α is an integer. This is particularly useful when
many of the quantities ‖t2vi‖ are zero. For instance, if the speeds v1, . . . , vr are all divisible by
g and the speeds vr+1, . . . , vn are not, then adding multiples of 1/g to a time moves the runners
with speeds vr+1, . . . , vn while fixing the positions of those with speeds v1, . . . , vr.

3. Achieving the discrete part of the spectrum

We describe a simple explicit construction that achieves the entire discrete part of the spectrum in
the Loneliness Spectrum Conjecture. The motivating idea is that one can obtain small maximum
loneliness values with n runners by starting with a tight speed set for n−1 runners and choosing
the last speed vn so that ‖t0vn‖ = 0 at every “equality time” t0 for the first n − 1 runners. The
following result is proven in a different context in [22]; our proof is simpler and more direct.

Theorem 3.1. For every integer n > 2 and every natural number s, we have

ML(1, 2, . . . , n− 1, ns) =
s

ns+ 1
.

Proof. The s = 1 case follows from the known tight case ML(1, . . . , n) = 1/(n + 1), so we
restrict our attention to s > 2. The proof is a straightforward computation with Proposition 2.1.
We have to check times with denominators between 1 and 2n − 3 and between ns + 1 and
ns+ n− 1. As before, let f(t) denote the loneliness at time t.

• Consider t = m/d, for 1 6 d 6 2n − 3. We know that f(t) 6 1/n because of the
speeds 1, . . . , n − 1. Since f(t) is a nonnegative rational number with denominator at
most 2n − 3, we must have either f(t) = 1/n or f(t) 6 1/(n + 1). We could have
f(t) = 1/n only for t = m/n, but in this case ‖t(ns)‖ = 0 gives f(t) = 0, so we
conclude that f(t) 6 1/(n+ 1).

• Consider t = m/(ns+ j), for 1 6 j 6 n− 1. Recall that f(t) 6 1/n. So the maximum
possible value for f(t) is s/(ns+ j), and in fact this value is achieved for m = s.
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Taking the maximum value of f(t) among these possibilities gives that

ML(1, 2, . . . , n− 1, ns) =
s

ns+ 1
,

as desired.

We remark that this discrete spectrum can be achieved in much the same way by starting
with other known equality cases and adding a new fast runner (see [18, 22]); the case work in
the computation becomes more extensive, and sometimes a few of the values for small s are not
obtained. We return to this idea in Section 6.

4. Two moving runners

The n = 2 case of the Spectrum Conjecture is mentioned in a passing remark of Bienia, Goddyn,
Gvozdjak, Sebő, and Tarsi [5]; for the sake of completeness, we provide a proof in the language
introduced above.

Theorem 4.1. Let v1, v2 be relatively prime positive integers. If v1 and v2 are both odd, then

ML(v1, v2) =
1

2
.

Otherwise,
ML(v1, v2) =

s

2s+ 1
,

where 2s+ 1 = v1 + v2.

Proof. If v1 and v2 are both odd, then ‖(1/2)v1‖ = ‖(1/2)v2‖ = 1/2 gives ML(v1, v2) = 1/2,
so we restrict our attention to the case where v1 and v2 are not both odd. In particular, their sum
is odd. By Proposition 2.1, we have to check only times t = m/(v1 + v2), where we know that

‖tv1‖ = ‖tv2‖ =
∥∥∥∥ mv1
v1 + v2

∥∥∥∥ .
Note that this quantity is always at most s/(2s+1), where 2s+1 = v1+ v2. Since v1 and v2 are
relatively prime, we also have that v1 is relatively prime to v1 + v2. So there exists an integer m
such that mv1 ≡ s (mod 2s+ 1), which shows that the loneliness s/(2s+ 1) is attained.

5. Three moving runners

The n = 3 case of the Spectrum Conjecture is much more delicate than the n = 2 case. We
later learned that this result is implied by a more precise a theorem of Chen [10] in the context
of simultaneous Diophantine approximation. Our method of proof, however, is substantially
different from Chen’s and appears fit for generalizations in different directions.

The main idea of our proof is that we use a pre-jump to handle the case where two speeds
share a large common factor, after which we can control the remaining cases more precisely. We
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require the following technical lemma, which says that if we consider all times with denominator
the sum of two fixed speeds, then we should get a loneliness of at least 1/3, up to a rounding
error, unless the third runner always “stays” at 0. We remark that the condition gcd(v1, v2) 6 2
is not necessary in the statement of the lemma; we omit the case gcd(v1, v2) > 2 (which is easily
handled with a pre-jump) simply because we do not need it for the main result of this section.

Lemma 5.1. Let v1, v2, v3 be positive integers with gcd(v1, v2, v3) = 1, and suppose that
gcd(v1, v2) 6 2. Let

r =

⌊
v1 + v2

3

⌋
,

and let L denote the maximum loneliness that is achieved at a time of the form

t =
m

v1 + v2

(m ∈ Z). Then we have the following dichotomy:

• If v3 is a multiple of v1 + v2, then L = 0.

• If v3 is not a multiple of v1 + v2, then L > r/(v1 + v2).

Proof. The first statement is trivial. For second statement, fix v1, v2, v3 with v3 not a multiple of
v1 + v2. We condition on gcd(v1, v2), which must be 1 or 2 by assumption. Recall that at every
t = m/(v1 + v2), we have ‖tv1‖ = ‖tv2‖.

First, suppose gcd(v1, v2) = 1. Then there is an integer u such that uv1 ≡ 1 (mod v1 + v2).
Write m ≡ `u (mod v1 + v2), so that ` ranges over the residues modulo v1 + v2 as m does so,
and consider the times

t =
`u

v1 + v2
.

Then for all r 6 ` 6 v1+ v2− r, we have that ‖tv1‖ (equivalently, ‖tv2‖) is at least r/(v1+ v2).
We now claim that

‖tv3‖ >
r

v1 + v2

for some ` in this range. In other words, some element of

ruv3, (r + 1)uv3, . . . , (v1 + v2 − r)uv3

leaves a residue between r and v1 + v2 − r modulo v1 + v2.
How this comes about depends on the residue of uv3 modulo v1 + v2. We may take this

residue to be between 1 and (v1 + v2)/2 since otherwise we can replace v3 with c(v1 + v2)− v3
for some large integer c that makes this quantity positive. We handle the various possibilities
separately:

• Suppose uv3 ≡ 1 (mod v1 + v2). Then ruv3 ≡ r (mod v1 + v2), as desired.
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• Suppose uv3 ≡ j (mod v1+v2), for some 2 6 j 6 v1+v2−2r+1. The upper bound on j
tells us that if `j < k(v1+v2)+r for some integer k, then (`+1)j 6 (k+1)(v1+v2)−r. In
other words, incrementing ` cannot make `j “skip” over all of the residue classes (strictly)
between r and v1 + v2 − r. So it remains only to show that the `j’s are not all contained
in an interval of the form

k(v1 + v2)− r + 1, . . . , k(v1 + v2) + r − 1

for any integer k. The difference between the largest and smallest elements of this interval
is 2r − 2. At the same time, the lower bound on j gives

(v1 + v2 − r)j − rj > 2(v1 + v2 − 2r) > 2r > 2r − 2,

so the `j’s cannot all be contained in such a short interval. We conclude that some `j
leaves a residue between r and v1 + v2 − r, as desired.

• Suppose uv3 ≡ j (mod v1+v2), for some v1+v2−2r+2 6 j < (v1+v2)/2. Recall that
for r 6 ` 6 v1+ v2− r, we are done if the quantity `j ever leaves a residue between r and
v1 + v2 − r. In particular, this possibility obtains if there is any r 6 ` 6 v1 + v2 − r − 1
such that the residue of `j is between r − j and v1 + v2 − r − j, for then the residue of
(` + 1)j is between r and v1 + v2 − r. So it suffices to show that the residues of `j, for
r 6 ` 6 v1 + v2 − r − 1, cannot be confined to the intervals

I1 = {v1 + v2 − r − j + 1, v1 + v2 − r − j + 2, . . . , r − 1}

and
I2 = {v1 + v2 − r + 1, v1 + v2 − r + 2, . . . , v1 + v2 + r − j − 1}.

Note that the difference between the largest and smallest elements of I1 is

(r − 1)− (v1 + v2 − r − j + 1) <
1

6
(v1 + v2)− 2 < j,

where we used the upper bound on j. Similarly, the difference between the largest and
smallest elements of I2 is

(r − j − 1)− (−r + 1) = 2r − j − 2 < j.

These bounds imply that consecutive residues of `j and (`+1)j cannot both lie in a single
one of these two intervals, so we have to worry about only the possibility in which `j
alternately lies in I1 and I2 as ` grows from r to v1 + v2 − r− 1. If this were the case, we
would have at least ⌊

(v1 + v2 − r − 1)− r
2

⌋
>

1

6
(v1 + v2)− 1

values of ` (increasing in increments of 2) with `j leaving a residue in I1. Note that as `
increases by 2, the residue of `j increases by

h = v1 + v2 − 2j,
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which is nonzero by the condition on j. So the difference between the largest and smallest
of these residues is at least 1

6
(v1+v2)−2, but then it is impossible to fit this entire arithmetic

progression into I1. So we conclude that in fact some `j leaves a residue between r and
v1 + v2 − r, as desired.

• Suppose uv3 ≡ (v1 + v2)/2 (mod v1 + v2). Then either ruv3 or (r + 1)uv3 leaves a
residue of (v1 + v2)/2 modulo v1 + v2, and this is certainly between r and v1 + v2 − r.

This concludes the argument for the gcd(v1, v2) = 1 case.

Second, suppose gcd(v1, v2) = 2. Then there is an integer u such that uv1 ≡ 2 (mod v1 +
v2). Note that v3 is odd due to our gcd restrictions. Now, write evenm asm ≡ `u (mod v1+v2),
so that ` ranges over the residues 1, 2, . . . , (v1+ v2)/2 modulo v1+ v2 asm ranges over the even
residues modulo v1 + v2, and consider times t = (`u)/(v1 + v2). Then for all r/2 6 ` 6
(v1 + v2 − r)/2, we have that ‖tv1‖ (equivalently, ‖tv2‖) is at least r/(v1 + v2). We now claim
that either

‖tv3‖ >
r

v1 + v2
or ‖tv3‖ 6

1

2
− r

v1 + v2
for some ` in this range. The second possibility is sufficient to establish the desired result because
at the time t+1/2 (which is still of the formm/(v1+ v2), wherem now might be odd), we have∥∥∥∥(t+ 1

2

)
v1

∥∥∥∥ = ‖tv1‖ ,
∥∥∥∥(t+ 1

2

)
v2

∥∥∥∥ = ‖tv2‖ , and
∥∥∥∥(t+ 1

2

)
v3

∥∥∥∥ =
1

2
− ‖tv3‖ .

(We can think of this manipulation as a pre-jump with the times t and 1/2.) So our claim is that
some element of (r

2

)
uv3,

(r
2
+ 1
)
uv3, . . . ,

(
v1 + v2 − r

2

)
uv3

leaves a residue between r and v1 + v2 − r or between r − (v1 + v2)/2 and (v1 + v2)/2 − r
modulo v1 + v2.

As before, we divide cases according to the residue of uv3, where we can take this residue
to be between 1 and (v1 + v2)/2. Because the arguments are essentially the same as what we
presented above in the gcd(v1, v2) = 1 case, we provide only sketches.

• Suppose uv3 ≡ j (mod v1 + v2), for some 1 6 j 6 v1 + v2 − 2r + 1. The upper bound
on j tells us that incrementing ` cannot make `j “skip” over either of the two forbidden
intervals of residues, so we have to worry about only the cases where the `j’s are either
all contained in

v1 + v2
2

− r + 1,
v1 + v2

2
− r + 2, . . . , r − 1

or all contained in

v1 + v2 − r + 1, v1 + v2 − r + 2, . . . ,
v1 + v2

2
+ r − 1.

But neither of these intervals is long enough to contain the entire arithmetic progression
of `j’s.



10 Noah Kravitz

• Suppose uv3 ≡ j (mod v1 + v2), for some v1 + v2 − 2r + 2 6 j < (v1 + v2)/2. The
argument then goes roughly as in the third bullet above, except that we now have h > 2
since v1 + v2 is even.

• Suppose uv3 ≡ (v1+v2)/2 (mod v1+v2). Then ruv3 leaves a residue of 0 or (v1+v2)/2
modulo v1 + v2, either of which is sufficient.

This concludes the argument for the gcd(v1, v2) = 2 case.

Now, Lemma 5.1 will handle most of the “difficult” sets of speeds in the n = 3 case of the
Spectrum Conjecture.

Theorem 5.2. Let v1, v2, v3 be positive integers with gcd(v1, v2, v3) = 1. Then we have either

ML(v1, v2, v3) =
s

3s+ 1
for some s ∈ N or ML(v1, v2, v3) >

1

3
.

Proof. First of all, suppose some two of the speeds have a common factor of at least 3, say,
gcd(v1, v2) = g > 3. Note that gcd(g, v3) = 1. By Theorem 4.1, there exists a time t such that
both ‖tv1‖ and ‖tv2‖ are at least 1/3. By the Pigeonhole Principle, there is an integer h such
that ∥∥∥∥(t+ h

g

)
v3

∥∥∥∥ >
1

2
− 1

2g
>

1

3
.

We also know that ‖(t+ h/g)v1‖ = ‖tv1‖ and ‖(t+ h/g)v2‖ = ‖tv2‖, so the loneliness at time
t + h/g is at least 1/3. (We are using a pre-jump with the times t and 1/g.) We conclude that
ML(v1, v2, v3) > 1/3. Henceforth, we restrict our attention to the case where no two speeds
have a common factor greater than 2.

Next, suppose no speed is a multiple of 3. Then the loneliness at time t = 1/3 is at least
1/3, and we are done. So we can restrict our attention to the case where exactly one speed is a
multiple of 3.

For each 1 6 i < j 6 3, let

ri,j =

⌊
vi + vj

3

⌋
,

and letLi,j denote the maximum loneliness that is achieved at a time of the form t = m/(vi+vj).
Let k be the remaining element of {1, 2, 3}. Lemma 5.1 provides the following dichotomy for
each pair i, j:

• If vk is a multiple of vi + vj , then Li,j = 0.

• If vk is not a multiple of vi + vj , then Li,j > ri,j/(vi + vj).

Recall that ML(v1, v2, v3) is the maximum of the three values Li,j . If any Li,j > 1/3, then we
are done, so we restrict our attention to the case where this does not occur. In particular, the
second case of the dichotomy collapses to

Li,j =
ri,j

vi + vj
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if vi+ vj is not a multiple of 3, and the second case becomes completely disallowed if vi+ vj is
a multiple of 3.

Suppose the second possibility of the dichotomy obtains for each pair i, j, i.e., each Li,j =
ri,j/(vi + vj), where vi + vj is not a multiple of 3. Thus, the residues of v1, v2, v3 modulo 3 are
either 1, 1, 0 or 2, 2, 0. In the first scenario, write v1 = 3a+ 1, v2 = 3b+ 1, and v3 = 3c, where
a < b. Then we have

L1,2 =
a+ b

3a+ 3b+ 2
, L1,3 =

a+ c

3a+ 3c+ 1
, and L2,3 =

b+ c

3b+ 3c+ 1
.

Direct comparison shows that L2,3 is the largest of these three quantities, so

ML(v1, v2, v3) =
b+ c

3b+ 3c+ 1
,

as desired.
In the second scenario, write v1 = 3a+ 2, v2 = 3b+ 2, and v3 = 3c, where a < b. Then we

have
L1,2 =

a+ b+ 1

3a+ 3b+ 4
, L1,3 =

a+ c

3a+ 3c+ 2
, and L2,3 =

b+ c

3b+ 3c+ 2
.

We are done if L1,2 is the largest of these three quantities. Assume (for contradiction) this does
not occur; since L2,3 > L1,3, we must have L2,3 > L1,2. Direct computation gives the inequality

c > 2a+ b+ 2.

Now, consider the time t = 1/3 − 1/(9c). We compute that the fractional parts of tv1 and tv2
are, respectively,

2

3
− 3a+ 2

9c
and

2

3
− 3b+ 2

9c
,

whence both ‖tv1‖ and ‖tv2‖ are greater than 1/3. Also,

‖tv3‖ = 0 +
3c

9c
=

1

3
.

This alltogether implies that ML(v1, v2, v3) > 1/3, contrary to our assumption. So L1,2 must be
the largest, as desired. This exhausts the cases in which the second possibility of the dichotomy
obtains for each pair i, j.

It remains to treat the case in which the first possibility of the dichotomy obtains for some
pair, say, i = 1, j = 2. Then we have

L1,2 = 0, L1,3 =
r1,3

v1 + v3
, and L2,3 =

r2,3
v2 + v3

.

If both v1+v3 and v2+v3 are equivalent to 1modulo 3, then we are done. Similarly, if v1+v3 ≡ 1
(mod 3) and v2 + v3 ≡ 2 (mod 3), then L1,3 > L2,3 by direct computation, and we are also
done.

So it remains only to treat the case where both v1+v3 and v2+v3 are equivalent to 2 modulo
3. In particular, v1 and v2 leave the same residue modulo 3, so this residue is not 0. This in turn
implies that v3 is a multiple of 3 (since exactly one of the speeds is a multiple of 3). Then v1 and
v2 leave a remainder of 2 modulo 3. At the time t = 1/3 − 1/(3v3), we obtain a loneliness of
1/3 (as above), which contradicts our earlier assumption. This completes the proof.
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A close inspection of the previous two proofs reveals that a maximum loneliness of 1/4 is
obtained only for the speeds 1, 2, 3.

Corollary 5.3. The only tight set of speeds for n = 3 (up to scaling) is 1, 2, 3.

Proof (sketch). If the largestLi,j isL1,3 = 1/4, then we must have v1+v3 = 4, which implies that
(without loss of generality) v1 = 1 and v3 = 3. Direct computation shows that ML(1, v2, 3) >
1/4 whenever v2 > 4: consider times 5/12 < t < 7/12, where both ‖t‖ and ‖3t‖ are greater
than 1/4; if in this interval the v2 runner traverses a distance greater than 1/2, then we find a
time with loneliness larger than 1/4.

In principle, one could reproduce the program of this section for 4 or more moving runners:
if many of the speeds share a large common factor, then the induction hypothesis together with
a pre-jump gives the desired result; otherwise, there are only finitely many cases to consider
in establishing an analog of Lemma 5.1, after which ad hoc arguments could take care of the
remaining sporadic cases. Given the difficulty and length of the proof for n = 3, however, this
program is probably infeasible for n > 4, as least for a non-computer-assisted proof.

6. One very fast runner

6.1. An asymptotic version of the Spectrum Conjecture

It is natural to try to use induction for the Lonely Runner Problem. One appealing strategy is
the following: given speeds v1, . . . , vn, use an induction hypothesis to obtain a lower bound
for ML(v1, . . . , vn−1), with this loneliness achieved at some time t0, then modify t0 in order to
obtain a time t1 where every ‖t1vi‖ (now for 1 6 i 6 n) remains large. The following innocuous
proposition demonstrates how this approach could play out if one runner is much faster than the
rest.

Proposition 6.1. Let v1 < · · · < vn−1 be positive integers (n > 2) with ML(v1, . . . , vn−1) > L,
and fix some 0 < ε < L. Then we have that

ML(v1, . . . , vn) > L− ε

whenever
vn >

(
L− ε
ε

)
vn−1.

Proof. Choose a time t0 such that ‖t0vi‖ > L for all 1 6 i 6 n − 1. We know that in a time
interval of length ε/vn−1, each such runner traverses a distance of at most ε. Let

I =

[
t0 −

ε

vn−1
, t0 +

ε

vn−1

]
be the closed interval of all times at most ε/vn−1 away from t0. Consequently, for every t ∈ I ,
we have ‖tvi‖ > L− ε for 1 6 i 6 n− 1. In any interval of length (2ε)/vn−1, the runner with
speed vn traverses a distance of

2vnε

vn−1
> 2(L− ε),
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which in particular implies that there is some t ∈ I with ‖tvn‖ > L− ε.

This observation motivates giving special attention to the case where one speed is signif-
icantly larger than the rest. More precisely, we examine the following weak (“asymptotic”)
version of the Loneliness Spectrum Conjecture.

Conjecture 6.2. For every integer n > 4, there exists a function fn : N → N such that the
following holds: for any positive integers v1 < · · · < vn with vn > fn(vn−1), we have either

ML(v1, . . . , vn) = s/(ns+ 1) for some s ∈ N or ML(v1, . . . , vn) > 1/n.

(Note that we do not require the speeds to lack a common factor.) In this section and the next
two sections, we develop an explicit way to determine whether or not this conjecture holds for
n runners based on the tight speed sets for n− 1 runners.

The conjecture immediately splits into two cases, depending on whether or not
ML(v1, . . . , vn−1) is strictly larger than 1/n. For the case ML(v1, . . . , vn−1) > 1/n, we quickly
obtain an affirmative answer to Conjecture 6.2 with fn(v) quadratic in v (and independent of n).
A statement of a similar flavor appears in [2].

Lemma 6.3. Let v1 < · · · < vn−1 be positive integers (n > 3) with

ML(v1, . . . , vn−1) = L >
1

n
.

Then we have
ML(v1, . . . , vn) >

1

n
whenever

vn > vn−1(2vn−1 − 1).

Proof. By Proposition 2.1, we know that

L =
m

vi + vj

for some integer m and some 1 6 i < j 6 n− 1. In particular, the inequality

nm > vi + vj

in the integers implies that
nm > vi + vj + 1.

We then compute

L >
vi + vj + 1

n(vi + vj)
=

1

n
+

1

n(vi + vj)
>

1

n
+

1

n(2vn−1 − 1)
.

Applying Proposition 6.1 with ε = 1
n(2vn−1−1) and L′ = 1/n+ ε shows that

ML(v1, . . . , vn) >
1

n
,

as desired.
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We remark that if we assume that the Spectrum Conjecture holds for n− 1 runners, then we
can take fn(v) to be linear in v rather than quadratic in v (at the cost of a dependence on n). This
improvement comes from the assumption that non-tight sets of n − 1 speeds have maximum
loneliness uniformly bounded away from 1/n.

6.2. Accumulation points

We temporarily take a step back and consider the big picture. For each positive integer n, define
the set

S(n) = {ML(v1, . . . , vn) : v1, . . . , vn positive integers}

to consist of all maximum loneliness amounts achieved by sets of n runners. It is immediate
that S(n) ⊂ S(n + 1) and that S(n) ⊂ (0, 1/2]. The Lonely Runner Conjecture asserts that
S(n) ⊂ [1/(n+ 1), 1/2]; the Loneliness Spectrum Conjecture, its refinement, asserts that S(n)
is the union of {s/(ns+ 1) : s ∈ N} and a subset of [1/n, 1/2].

We define a real numberA to be an accumulation point for n runners if the set S(n) contains
elements that are arbitrarily close to A. On a more fine-grained view, we define A to be a lower
accumulation point for n runners if S(n) contains a sequence of elements approaching A from
below; we defineA to be an upper accumulation point for n runners if S(n) contains a sequence
of elements approaching A from above. For instance, Theorem 3.1 shows that 1/n is a lower
accumulation point for n runners.

In this section, we make progress towards determining the lower and upper accumulation
points for n runners. As a starting point, the classification in Theorem 4.1 immediately an-
swers both questions for n = 2: the set of lower accumulation points for 2 runners is precisely
S(1) = {1/2}, and there are no upper accumulation points for 2 runners.

We now establish a refinement of Proposition 6.1 in the case where we have additional in-
formation about the factors of vn.

Lemma 6.4. Let v1 < · · · < vn−1 be positive integers (n > 2) with

ML(v1, . . . , vn−1) = L.

Let t1, . . . , tr be the times in the interval [0, 1) at which ‖tvi‖ > L for all 1 6 i 6 n − 1. For
each tj , let ρj be the largest index such that tjvρj has remainder L modulo 1, and let λj be the
largest index such that tjvλj has remainder 1− L modulo 1. Finally, define

µ = min
16j6r

{ρj, λj},

where the minimum runs over all values of j. Then

ML(v1, . . . , vn) =
vnL

vn + vµ

whenever vn is a sufficiently large integer multiple of the lcm of the denominators of the tj’s.
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Let us state a “physical” interpretation of what is expressed above in symbols: at each equal-
ity time tj , we identify the fastest runner whose position in R/Z is L and the fastest runner
whose position is 1 − L, then we let vµ be the slowest of these runners, across all the tj’s. We
also remark that carefully carrying all of the bounds through the proof shows that vn > 4v3n−1v1
is sufficiently large; we make no attempts to optimize this quantity.

Proof. The divisibility condition on vn ensures that at every “equality time” tj , we have
‖tjvn‖ = 0, whence we conclude that

ML(v1, . . . , vn) < L

strictly. We now record a few properties of the real function

e(t) = min
16i6n−1

‖tvi‖ .

Note that e(t) is continuous and piecewise linear and the slope of each linear segment has ab-
solute value between v1 and vn−1. Moreover, e(t) has a local minimum at t0 if and only if
e(t0) = 0.

Fix some sufficiently small ε > 0 (say, ε 6 1/(4v3n−1)). The above observations tell us that
if e(t) > L − ε, then t is a distance at most ε/v1 from some t′ with e(t′) = L. In particular, if
we want to identify all possible times t (modulo 1) with e(t) > L−ε, then it suffices to examine
the closed ε/v1-neighborhoods of the tj’s. Moreover, since ε is sufficiently small, we have

e(t) =
∥∥tvρj∥∥ for all tj −

ε

v1
6 t 6 tj

and
e(t) =

∥∥tvλj∥∥ for all tj 6 t 6 tj +
ε

v1
.

This characterization allows us to compute the maximum loneliness explicitly when we include
the runner with speed vn.

Fix some tj , and recall that ‖tjvn‖ = 0. Write t = tj + δ. As δ is increased from 0, the
quantity ‖tvn‖ increases from 0 at a rate of vn and the quantity

∥∥tvλj∥∥ decreases from L at a rate
of vλj . We obtain equality ‖tvn‖ =

∥∥tvλj∥∥ when δ = δ0 = L/(vn + vλj), at which point

‖tvn‖ =
∥∥tvλj∥∥ =

Lvn
vn + vλj

.

By choosing vn sufficiently large (say, vn > (Lv1)/ε), we guarantee that δ0 6 ε/v1. Moreover,
since the quantity

∥∥tvλj∥∥ is monotonically decreasing as δ increases, we conclude that

Lvn
vn + vλj

is the largest loneliness amount achieved for the speeds v1, . . . , vn for times tj 6 t 6 tj + ε/v1.
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The same reasoning shows that the largest loneliness amount achieved for the speeds
v1, . . . , vn for times tj − ε/v1 6 t 6 tj is

Lvn
vn + vρj

.

Taking the maximum of all such quantities over j gives that

ML(v1, . . . , vn) =
vnL

vn + vµ
,

as desired.

This lemma allows us to deduce that every element of S(n−1) is a lower accumulation point
for n runners.

Theorem 6.5. For every n > 2, the set of lower accumulation points for n runners contains
S(n− 1).

Proof. Fix some L ∈ S(n − 1). Then there exist positive integers v1, . . . , vn−1 such that
ML(v1, . . . , vn−1) = L. By Lemma 6.4, there is an increasing sequence of values for vn such
that the quantity ML(v1, . . . , vn) approaches L from below.

In the absence of any straightforward constructions for upper accumulation points or other
lower accumulation points, it is natural to suspect that all accumulation points for n runners arise
through the “mechanism” of Theorem 6.5, and we present the following pair of questions.

Question 6.6. For n > 2, is the set of lower accumulation points for n runners always precisely
S(n− 1)?

Question 6.7. For n > 2, are there any upper accumulation points for n runners, or are all
accumulation points only lower accumulation points?

.
An immediate corollary to Theorem 6.5 is that Loneliness Spectrum Conjecture (as well as its

weakened version, Conjecture 6.2) for n runners implies the Lonely Runner Conjecture for n−1
runners. We contrast this implication with the situation for the Lonely Runner Conjecture alone,
where (to our knowledge), the statement for n runners does not directly imply the statement for
n− 1 runners. We record this observation in the following corollary.

Corollary 6.8. Fix some. n > 2. The Loneliness Spectrum Conjecture for n runners implies
Conjecture 6.2 for n runners, which in turn implies the Lonely Runner Conjecture for n − 1
runners.
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6.3. Towards Conjecture 6.2

We now present a generalization of Lemma 6.4 to the scenario in which vn has a fixed residue
with respect to certain moduli; the idea is substantively the same as the idea of Lemma 6.4, but
the result is messier to state, so we introduce notation and an informal description before giving
the precise statement and proof sketch.

As in Lemma 6.4, we fix positive integers v1, . . . , vn−1 with

ML(v1, . . . , vn−1) = L,

and we let t1, . . . , tr be the “equality times” in [0, 1), i.e., the times for which ‖tvi‖ > L for
all 1 6 i 6 n − 1. Let D be the least common multiple of the denominators appearing in the
reduced-fraction representations of the tj’s. Fix some integer

−D
2
< Q 6

D

2

such that ‖tjQ‖ < L for all 1 6 j 6 r. (Call such a value of Q admissible. We will look at
values of vn that are equivalent to Q modulo D. Lemma 6.4 is the special case Q = 0.) For
each j, let uj denote the real number in (−1/2, 1/2] that is equivalent to tjQ modulo 1. As in
Lemma 6.4, for each tj we let ρj be the largest index such that tjvρj has remainder L modulo 1,
and we let λj be the largest index such that tjvλj has remainder 1 − L modulo 1. Now, instead
of taking a minimum over the ρj’s and λj’s, we take the following “weighted minimum”: let µ
be the ρj or λj that minimizes the quantity

vρj(L− uj) or vλj(L+ uj),

respectively. We break ties between ρj’s in favor of larger uj (and arbitrarily beyond that point),
and we break ties between λj’s in favor of smaller uj (and arbitrarily beyond that point). We
break ties between ρj′ and λj′′ in favor of larger uj (and arbitrarily beyond that point). So,
keeping track of which j our µ “came from” and whether it came from a ρ or from a λ, we write
either µ = ρk or µ = λk. We can finally state the lemma.

Lemma 6.9. Let v1, . . . , vn−1 be positive integers (n > 2) with

ML(v1, . . . , vn−1) = L.

Define t1, . . . , tr and D as above, and fix some admissible integer

−D
2
< Q 6

D

2
.

Now define the uj’s, ρj’s, and λj’s as above, along with the resulting µ = ρk or µ = λk. Then

ML(v1, . . . , vn) =

L−
vρk

vρk+vn
(L− uk), if µ = ρk

L− vλk
vλk+vn

(L+ uk), if µ = λk

whenever vn is a sufficiently large integer that is equivalent to Q modulo D.
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Proof (sketch). The choice of Q guarantees that ‖tjvn‖ = ‖tjQ‖ < L for every tj , which in
turn implies that

ML(v1, . . . , vn) < L.

Moreover, note that at the time tj , the runner with speed vn is at the position uj (which lies strictly
between −L and L). The argument from the proof of Lemma 6.4 shows that if ‖tvi‖ > L − ε
for all 1 6 i 6 n − 1, then t is within ε/v1 of some tj , so we restrict our attention to these
neighborhoods. For times slightly larger than tj , the greatest loneliness achieved by speeds
v1, . . . , vn is precisely

L−
vλj

vλj + vn
(L+ uj),

and for times slightly smaller than tj , the greatest loneliness achieved is

L−
vρj

vρj + vn
(L− uj).

Taking a minimum over all such expressions (for sufficiently large n) gives the desired result.
(In other words, there is one expression that “wins out” for all sufficiently large n.)

We can now give a necessary and sufficient condition to determine whether or not Conjec-
ture 6.2 holds for speeds v1, . . . , vn, where we fix v1, . . . , vn−1.

Theorem 6.10. Let v1 < · · · < vn−1 be positive integers (n > 2) with ML(v1, . . . , vn−1) = L.
Then the following are equivalent:

(I) For every sufficiently large integer vn, we have either

ML(v1, . . . , vn) =
s

ns+ 1
for some s ∈ N or ML(v1, . . . , vn) >

1

n
.

(II) One of the following holds:

(a) L > 1/n.

(b) L = 1/n; and (in the notation of Lemma 6.9) for each admissible residueQ we have,
when µ = ρk (respectively, µ = λk), both the equality

Q = −nvρkuk (respectively, Q = nvλkuk)

and the property that

D

nvρk(1− nuk)
(respectively,

D

nvλk(1 + nuk)
)

is an integer.



combinatorial theory 1 (2021), #17 19

Proof. It is clear from Lemma 6.9 that if L > 1/n, then ML(v1, . . . , vn) > 1/n for all suffi-
ciently large vn; the reverse implication follows from Lemma 6.4. It is also clear from Lemma 6.4
that if L < 1/n, then (I) does not hold. So it remains to consider the case where L = 1/n. For
each integer −D/2 < Q 6 D/2, we consider sufficiently large values of n with (fixed) residue
Q modulo D. If there is any tj with ‖tjQ‖ > 1/n, then the speeds v1, . . . , vn achieve a loneli-
ness of 1/n at that time, whence we conclude that ML(v1, . . . , vn) = 1/n. So, as in Lemma 6.9
we restrict our attention to admissible values of Q.

Fix some such Q, and write vn = mD + Q. Suppose that in Lemma 6.9, we have µ = ρk.
Then for sufficiently large m (i.e., sufficiently large vn), we have

ML(v1, . . . , vn) =
1

n
− vρk
vρk + vn

(
1

n
− uk

)
.

Suppose this quantity equals s/(ns+ 1) for some s ∈ N, i.e.,

vρk
vρk + vn

(
1

n
− uk

)
=

1

n(ns+ 1)
.

Substituting for vn and rearranging gives

mD +Q+ vρk
vρk(1− nuk)

= ns+ 1.

Each (sufficiently large) m can have a corresponding s only if incrementing m increments the
left-hand side by an integer multiple of n, i.e.,

D

nvρk(1− nuk)

is an integer. Moreover, we then see that we also require

Q+ vρk
vρk(1− nuk)

= 1,

or, equivalently,
Q = −nvρkuk.

These are precisely the two conditions of (II.b). The same argument for µ = λk gives the
analogous pair of conditions in the statement of the lemma. Since these steps are reversible, we
see that (II.b) also implies (I). Finally, to achieve a uniform bound (over choices of Q) on how
large vn must be, we simply take the maximum of the bounds obtained for the various Q’s.

This theorem reduces Conjecture 6.2 for n runners to an explicit computation once we know
all of the tight speed sets for n− 1 runners; moreover, this computation is finite if there are only
finitely many tight sets of speeds (up to scaling). Recall from Corollary 6.8 that if the Lonely
Runner Conjecture does not hold for n − 1 runners, then Conjecture 6.2 does not hold for n
runners.
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Theorem 6.11. Fix some n > 4. Suppose the Lonely Runner Conjecture holds for n − 1 run-
ners and we know all of the (finitely many) tight speed sets for n − 1 runners. Then Conjec-
ture 6.2 holds for n runners if and only if every such tight set of speeds v1 < · · · < vn−1 with
gcd(v1, . . . , vn−1) = 1 satisfies the conditions in (II.b) of Theorem 6.10 (each of which can be
checked with an explicit finite computation).

Proof. First, recall that Conjecture 6.2 asks for a function fn : N→ N such that the set of speeds
ML(v1, . . . , vn) has certain properties whenever vn > fn(vn−1); this is uniform bound on vn in
terms of vn−1. Since there are only finitely many sets of positive speeds v1 < · · · < vn−1 for
each value of vn−1, however, it suffices to consider “sufficiently large” vn for each set v1, . . . , vn−1
separately and then take fn(vn−1) to be the maximum of the bounds obtained.

Suppose we have verified the conditions in (II.b) of Theorem 6.10 for every tight set of speeds
v1 < · · · < vn−1 with gcd(v1, . . . , vn−1) = 1. Then we claim that (I) is also satisfied for every set
of tight speeds. Indeed, let v′1 < · · · < v′n−1 be positive integers with ML(v′1, . . . , v

′
n−1) = 1/n.

Then let g = gcd(v′1, . . . , v
′
n−1), and write v′i = gvi for 1 6 i 6 n − 1, where we know that

(II.b) is satisfied for the speeds v1, . . . , vn−1. If g = 1, then we are done, so consider g > 2. The
equality times for v′1, . . . , v′n−1 are precisely the times of the form

tj + h

g
,

where tj is an equality time for v1, . . . , vn−1 and h is an integer. Thus, we have D′ = gD,
where D′ (respecticely, D) is the lcm of the equality times in [0, 1) for the speeds v′1, . . . , v′n−1
(respectively, v1, . . . , vn−1). We now consider various admissible residuesQ′ (moduloD′). Each
admissible Q′ must be a multiple of g: otherwise, we could add time increments of 1/g (pre-
jump) to find an equality time t′j for v′1, . . . , v′n−1 at which∥∥t′jQ′∥∥ >

1

2
− 1

2g
>

1

4
>

1

n
.

SoQ′ is a multiple of g, and any v′n that is equivalent toQ′moduloD′ can be written as v′n = gvn.
But then

ML(v′1, . . . , v
′
n) = ML(v1, . . . , vn),

and we know that the quantity on the right-hand side satisfies condition (I) of Theorem 6.10. So
we conclude that it suffices to check tight instances for n − 1 runners where the speeds do not
all share a common factor.

Another point of interest of this theorem is that it provides a potential way to refute the
Spectrum Conjecture.

We now apply Theorem 6.10 to the tight set of speeds 1, . . . , n−1 and then use Theorem 6.11
to resolve Conjecture 6.2 for 4 moving runners. The computation is straightforward, and we
remark that it would be interesting to carry out these computations for the other tight sets of
speeds discussed in Goddyn and Wong [18].

Proposition 6.12. Consider the tight set of speeds v1 = 1, v2 = 2, . . . , vn−1 = n − 1 (n > 4).
This set of speeds satisfies the conditions of (II.b) in Theorem 6.10.
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Proof. The equality times for v1, . . . , vn−1 are precisely the times of the form
m

n
,

where m is relatively prime to n, so D = n. The only admissible value of Q is 0 because
otherwise we would have ‖tQ‖ > 1/n at the equality time t = 1/n. SinceQ = 0, we are in fact
in the setting of Lemma 6.4, so we simply have to find the smallest ρj or λj . We get ρ1 = 1 at
the time t1 = 1/n, and this is the smallest possible. Since Q = 0 implies that u1 = 0, the first
condition of (II.b) is immediately satisfied. For the second condition, it suffices to observe that

D

nvρ1(1− nu1)
=

n

n(1)(1− 0)
= 1

is an integer.

Recall from Corollary 5.3 that the only tight speed set for 3 runners is, up to scaling, 1, 2, 3. It
then follows from the preceding discussion that Conjecture 6.2 holds for n = 4 (and the function
f4 can be taken to be quartic in vn−1 since we stayed in the Lemma 6.4 “special subcase” of
Lemma 6.9).

Corollary 6.13. There exists a function f4 : N → N such that for any positive integers
v1 < v2 < v3 < v4 with v4 > f4(v3), we have either

ML(v1, v2, v3, v4) =
s

4s+ 1
for some s ∈ N or ML(v1, v2, v3, v4) >

1

4
.

We can carry out the same program for n = 6 by making use of Bohman, Holzman, and
Kleitman’s determination [6] of all of the tight sets of speeds for 5 moving runners.

Theorem 6.14 (Bohman, Holzman, and Kleitman [6]). The Lonely Runner Conjecture holds for
n = 5. Moreover, if v1, . . . , v5 are positive integers with gcd(v1, . . . , v5) = 1 and
ML(v1, . . . , v5) = 1/6, then v1, . . . , v5 are (in some order) either 1, 2, 3, 4, 5, or 1, 3, 4, 5, 9.

Corollary 6.15. There exists a function f6 : N → N such that for any positive integers
v1 < · · · < v6 with v6 > f6(v5), we have either

ML(v1, . . . , v6) =
s

6s+ 1
for some s ∈ N or ML(v1, . . . , v6) >

1

6
.

Proof. The set of tight speeds 1, 2, 3, 4, 5 is handled by Proposition 6.12. For 1, 3, 4, 5, 9, the
only equality times in [0, 1) are 1/6 and 5/6. So D = 6, and it is easy to check that only Q = 0
is admissible. As in the proof of Proposition 6.12, we find ourselves in the setting of Lemma 6.4,
where we get the “best possible” value vρ1 = 1 at the time t1 = 1/n, and the conditions of (II.b)
are satisfied in the same way.

It is curious that the literature seems not to contain a characterization of all tight sets of
speeds with 4 moving runners. It is widely known (see, e.g., [18]) that 1, 3, 4, 7 is a tight speed
set in addition to the trivial 1, 2, 3, 4. The reader may easily verify that the conditions of (II.b) are
satisfied for 1, 3, 4, 7. It appears likely that there are no other tight sets of speeds (up to scaling)
(see also [1]), in which case we would also be able to confirm Conjecture 6.2 for n = 5.
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7. Concluding remarks

We gather here a number of questions, problems, and ideas that could be fruitful starting points
for future research on the loneliness spectrum.

• Prove the Spectrum Conjecture for n = 4. Is it feasible to extend the techniques that we
used for the n = 3 case?

• Determine whether or not 1, 2, 3, 4 and 1, 3, 4, 7 are (up to scaling) the only tight speed
sets for 4 runners.

• Determine the set of accumulation points for n runners. Are there any upper accumulation
points?

• In all of our applications of Theorem 6.10, only Q = 0 is admissible. Is this the case for
all tight speed sets?

• Check the conditions in (II.b) of Theorem 6.10 for the families of tight speed sets in God-
dyn and Wong [18].

• To what extent does discrete behavior persist in values of S(n) that are slightly larger than
1/n? (See the preliminary results in [11].)

• Tao [24] has proven the Lonely Runner Conjecture for the case where all of the speeds
are at most 1.2n. It is easy to see that the Lonely Runner Conjecture is equivalent to
the Spectrum Conjecture in the regime where all speeds are at most 1.5n; it would be
desirable to establish the Spectrum Conjecture for positive integer speeds up to βn, for
some β > 1.5.

• There has also been interest in a “shifted” variant of the Lonely Runner Problem in which
one allows the runners to start at different positions on the track. Cslovjecsek, Malikiosis,
Naszódi, and Schymura [14] have recently shown that the analog of the Spectrum Conjec-
ture fails in this new setting, and they have proposed a slightly weaker version (allowing
more discrete values). Many of the questions addressed in the present paper could also be
investigated for the shifted Lonely Runner Problem.
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