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WORKLOAD REDUCTION OF A GENERALIZED
BROWNIAN NETWORK

BY J. M. HARRISON AND R. J. WILLIAMS1

Stanford University and University of California, San Diego

We consider a dynamic control problem associated with a generalized
Brownian network, the objective being to minimize expected discounted cost
over an infinite planning horizon. In this Brownian control problem (BCP),
both the system manager’s control and the associated cumulative cost process
may be locally of unbounded variation. Due to this aspect of the cost process,
both the precise statement of the problem and its analysis involve delicate
technical issues. We show that the BCP is equivalent, in a certain sense, to a
reduced Brownian control problem (RBCP) of lower dimension. The RBCP
is a singular stochastic control problem, in which both the controls and the
cumulative cost process are locally of bounded variation.

1. Introduction. The object of study in this paper is a stochastic system
model that was described in Section 2 of [11] and there called a “generalized
Brownian network.” In this paper we formulate a control problem for that model
and prove that it is equivalent to a simpler control problem of lower dimension.

In a prior work, Harrison and Van Mieghem [13] provided a similar develop-
ment for a class of Brownian networks described in [9] and [8]. The Brownian
network model considered here differs from that considered in [13] in two signifi-
cant respects.

First, here the state space is a suitable compact convex subset of a Euclidean
space (e.g., a bounded convex polyhedron), whereas it is the positive orthant of
such a space in [13]. Our restriction to a bounded state space will be discussed
further below.

Second, in this paper the process representing the cumulative cost of control
need not be locally of bounded variation, whereas in [13] it is assumed to
be a nondecreasing process. The utility of this more general cost structure
was explained and illustrated in [11]. Readers will see that this generalized
cost structure leads to substantial new difficulties, not just minor technical
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complications. Furthermore, our formulation differs in certain technical respects
from that in [13], and those differences enable a more satisfactory mathematical
development. In particular, the “weak formulation” of admissible controls that
we employ in this paper is designed for ease of use by researchers who develop
heavy traffic limit theorems to justify Brownian network approximations. Also,
by making separate statements about a reduced Brownian network and a reduced
Brownian control problem, we provide a clearer and more complete picture than
in [13]. Finally, relative to the treatment in [13], here the algebraic manipulations
are more extensive and have a geometric flavor, and we correct an error in [13]
related to continuous selections (see Appendix A.3 below).

The restriction to a bounded state space is essential in our context, as noted
in Section 9 of [11]. If an unbounded state space were allowed, then additional
care would be needed to ensure a meaningful formulation, the potential problem
being that the cumulative cost of control might be unbounded below over a finite
time interval. The associated issues have not been explored to date. By restricting
attention to bounded state spaces, we rule out heavy traffic limits of “open”
queueing networks in which storage buffers have unlimited capacity. However,
our model can be used to approximate an open queueing network with large finite
buffers, and such a formulation is arguably more realistic in many application
contexts.

Generalized Brownian networks arise as diffusion approximations for conven-
tional stochastic processing networks in various application contexts. That moti-
vation for the model class has been developed earlier in [11] and [10], so it need
not be repeated here. Similarly, readers may consult [13] for a detailed account
of earlier work on the reduction of Brownian networks, or to be more precise,
reduction of their associated control problems, to “equivalent workload formula-
tions” of lower dimension. This kind of model reduction is important for purposes
of both structural insight and reduced computational complexity. Much of what is
said in [13] applies equally well to the larger model class considered here, and the
examples offered in that paper illustrate well the character and value of workload
reductions. Here we simply proceed with the generalized mathematical develop-
ment, noting new effects as they arise.

The paper is organized as follows. Section 2 lays out the definition of a
generalized Brownian network, which differs slightly from the model formulation
proposed in [11] in that a “weak formulation” is used here. In Section 3 an
associated Brownian control problem is formulated. The cost functional used here
is expected discounted cost over an infinite planning horizon. Some care is required
in justifying the use of this cost functional, because it is not a priori clear that
a limit of the finite horizon discounted cost exists as the time horizon recedes
to infinity. However, the technical Lemma 3.2, proved in Appendix A.2, shows
that the cost functional is well defined with values in (−∞,∞]. In Section 4
some algebraic manipulations are performed as a precursor to our definitions of
a reduced Brownian network and reduced Brownian control problem. Section 5
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establishes the equivalence, in a certain sense, of the generalized Brownian
network and a reduced Brownian network of lower dimension. We complete
our mathematical development in Section 6 by showing that the Brownian
control problem formulated in Section 3 for the generalized Brownian network
is equivalent to a simpler control problem, called the reduced Brownian control
problem (or equivalent workload formulation), that is formulated in the context
of our reduced Brownian network. For this reduction, we assume the existence
of a continuous selection of an optimal solution for a minimization problem. In
Appendix A.3 we review some related results from convex analysis and describe
some sufficient conditions for the existence of such a continuous selection.
Section 7 discusses an example that involves new phenomena.

1.1. Notation and terminology. For a positive integer k, R
k will denote

k-dimensional Euclidean space. When k = 1, we shall suppress the superscript.
For convenience, we define R

0 to be the real number zero. The Borel σ -algebra
on this space consists of the empty set and the space R

0. These conventions
concerning R

0 will be used in treating the degenerate case of a zero-dimensional
workload process. The nonnegative real numbers will be denoted by R+. For
x ∈ R, x+ = max(x,0) and x− = max(−x,0). All vectors will be assumed to be
column vectors unless indicated otherwise. The transpose of a vector or matrix will
be denoted by a superscript “ ′.” The dot product between two vectors x, y ∈ R

k

will be denoted by x′y. The Euclidean norm of a vector x ∈ R
k will be denoted

by ‖x‖. For two sets A and B in R
k , and t > 0, we let A + B = {x + y :x ∈ A,

y ∈ B} and tA = {tx :x ∈ A}. We define the infimum of an empty set of real
numbers to be ∞.

For a nonnegative integer k, given a probability space (�,F ,P ),
a k-dimensional (stochastic) process defined on this space is a collection X =
{X(t) : t ∈ R+} of measurable functions X(t) :� → R

k , where � has the
σ -algebra F and R

k has the Borel σ -algebra. All finite-dimensional processes
appearing in this paper are assumed to have sample paths that are r.c.l.l. (right con-
tinuous with finite left limits). If X and Y are two k-dimensional processes defined
on a probability space (�,F ,P ), then we say that they are indistinguishable if

P
(
X(t) = Y(t) for all t ≥ 0

) = 1.

A filtered probability space is a quadruple (�,F , {Ft },P ) where (�,F ,P ) is a
probability space and {Ft } is a filtration, that is, a family of sub-σ -algebras of the
σ -algebra F indexed by t ∈ R+ and satisfying Fs ⊂ Ft whenever 0 ≤ s < t < ∞.
A k-dimensional process X = {X(t) : t ∈ R+} defined on such a filtered probability
space is said to be adapted if for each t ≥ 0 the function X(t) :� → R

k is
measurable when � has the σ -algebra Ft and R

k has its Borel σ -algebra.
For a positive integer k, given a filtered probability space (�,F , {Ft },P ),

a vector γ ∈ R
k , a k × k symmetric, strictly positive definite matrix � and a point

x ∈ R
k , an {Ft }-Brownian motion with statistics (γ,�) and starting point x, is a
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k-dimensional adapted process defined on (�,F , {Ft },P ) such that the following
hold under P :

(a) X is a k-dimensional Brownian motion with continuous sample paths that
satisfies X(0) = x P -a.s.,

(b) {Xi(t) − γit,Ft , t ≥ 0} is a martingale for i = 1, . . . , k, and
(c) {(Xi(t) − γit)(Xj (t) − γj t) − �ij t,Ft , t ≥ 0} is a martingale for i, j =

1, . . . , k.

In this definition, the filtration {Ft } may be larger than the one generated
by X; however, for each t ≥ 0, under P , the σ -algebra Ft is independent of the
increments of X from t onward. The latter follows from the martingale properties
of X. The parameter γ is called the drift of the Brownian motion X and � is
called the covariance matrix of X. We adopt the convention that a 0-dimensional
Brownian motion [with statistics (0,0) and starting point 0 = R

0], defined on a
filtered probability space, is simply a 0-dimensional process defined on that space.

2. Generalized Brownian network. In the following, we shall simply use
the term “Brownian network,” rather than the fuller term “generalized Brownian
network.” The data for a Brownian network consist of:

(a) positive integers m,n,p, which specify the dimensions of the state space,
the control space and the control constraint space, respectively,

(b) a vector zo ∈ R
m, a vector θ ∈ R

m and a symmetric, strictly positive definite
m × m matrix �, which specify the starting point, drift vector and nondegenerate
covariance matrix, respectively, for an m-dimensional Brownian motion,

(c) an m×n matrix R and a p×n matrix K , which specify the effect of controls
on the state of the system and constraints on the controls, respectively, and

(d) a compact, convex set Z ⊂ R
m that has a nonempty interior, which specifies

the state space.

Fix (m,n,p, zo, θ,�,R,K,Z) satisfying (a)–(d) above. We now define the
notion of an admissible control for the Brownian network with this data. This
definition is formulated in a weak sense, similar to that used for controlled
stochastic differential equations, see [14]. Before consulting the definition, the
reader is advised to review the conventions adopted in Section 1.1 concerning
path regularity of stochastic processes, filtered probability spaces and associated
Brownian motions. All of the processes mentioned in the following definition are
assumed to be defined on the same filtered probability space (�,F , {Ft },P ).

DEFINITION 2.1 (Admissible control for the Brownian network). An ad-
missible control for the Brownian network is an n-dimensional adapted process
Y = {Y (t), t ≥ 0} defined on some filtered probability space (�,F , {Ft },P )

which supports an m-dimensional adapted process Z and an m-dimensional
{Ft }-Brownian motion X, with statistics (θ,�) and starting point zo, such that
the following two properties hold P -a.s.:



BROWNIAN NETWORK REDUCTION 2259

(i) Z(t) = X(t) + RY(t) ∈ Z for all t ≥ 0,
(ii) U ≡ {KY(t), t ≥ 0} is nondecreasing and U(0) ≥ 0.

We call Z the state process, (Z,U) the extended state process and X the Brownian
motion, for the Brownian network under the control Y .

REMARK 2.1. The definition of an admissible control given above is slightly
different from that used in [11]. The formulation used here is a “weak formulation”
in the sense that the filtered probability space and the Brownian motion are not
specified in advance; rather, only the statistical properties of the Brownian motion
are specified. On the other hand, in [11] the Brownian motion and the filtered
probability space are given and an admissible control must be an adapted process
defined on the given space. The slightly more general weak formulation adopted
here is likely to be particularly useful when a pair (Y,X) satisfying the conditions
of Definition 2.1 is obtained as a weak limit from a controlled stochastic processing
network.

Given a continuous function h :Z → R and a vector v ∈ R
n, we associate a

cumulative cost process ξ with any admissible control Y for the Brownian network
that has state process Z. We let ξ be an r.c.l.l. process such that almost surely

ξ(t) =
∫ t

0
h(Z(s)) ds + v′Y(t), t ≥ 0.(1)

The exceptional P -null set on which the above may not hold is necessitated by the
fact that (i) of Definition 2.1 might only hold almost surely and so h(Z) is only well
defined almost surely. However, the fact that ξ is only uniquely determined up to a
P -null set will be of no consequence since our ultimate cost functional will involve
an expectation under P which does not discriminate between indistinguishable
processes.

REMARK 2.2. The process v′Y appearing in the last term in (1) may have
paths that are locally of unbounded variation. Such a complication does not occur
in [13] since there the corresponding term in the cost process is the nondecreasing
process c′U , where c is a nonnegative vector.

We shall make the following assumptions for the remainder of this paper.

ASSUMPTION 2.1.

{Ry :Ky ≥ 0, y ∈ R
n} = R

m.(2)

On comparing (2) with conditions (i) and (ii) of Definition 2.1, one sees that
Assumption 2.1 means the following: the system manager has controls available to
effect an instantaneous displacement in any desired direction at any time, although
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there are state constraints and a possible cost associated with such movement.
Assumption 2.1 is necessary and sufficient for the existence of an admissible
control for the Brownian network. The necessity is proved in Lemma A.2 and
the sufficiency follows from Theorem A.1.

ASSUMPTION 2.2.

{y ∈ R
n :Ky ≥ 0,Ry = 0 and v′y ≤ 0} = {0}.(3)

Assumption 2.2 is used in showing the uniqueness claimed in Lemma 4.4 below
and in proving that the cost functional for our Brownian control problem is well
defined with values in (−∞,∞] and that this functional has a finite lower bound
(cf. Lemmas 3.2, A.3 and Theorem A.1). If the Brownian network data arise from
a stochastic processing network as in [11], then one can show that Assumption 2.2
follows from basic model assumptions (cf. Proposition 1 of [11]). Assumption 2.2
can be described as a no-arbitrage condition.

3. Brownian control problem. In this section we define a discounted optimal
control problem with infinite planning horizon and cumulative cost process ξ for
our Brownian network. Since our cost functional involves an infinite time horizon,
some care is needed in its formulation as it is not a priori clear that a limit of the
finite time horizon discounted cost exists as the time horizon recedes to infinity.
In fact we prove that for any admissible control, almost surely, the limit does
exist in (−∞,∞], with ∞ being a possible value. Furthermore, we show that the
expectation of this limit is well defined with a value in (−∞,∞] (see Lemma 3.2
for the details).

Let α > 0. We interpret α as the interest rate for discounting. Given an
admissible control Y for the Brownian network with extended state process (Z,U)

and Brownian motion X, for each t ≥ 0, the present value of costs incurred over
the time interval [0, t] is

ζ(t) ≡
∫
[0,t]

e−αs dξ(s).(4)

By (1), we have that almost surely for all t ≥ 0,

ζ(t) =
∫ t

0
e−αsh(Z(s)) ds +

∫
[0,t]

e−αs d(v′Y)(s).(5)

Here and henceforth, we adopt the usual convention that the contribution to the
integral in (4) at s = 0 is ξ(0). The first integral in (5) is well defined pathwise
as a Riemann integral since h is continuous and Z has r.c.l.l. paths, so that each
path of h(Z) is bounded with at most countably many discontinuities on [0, t] (cf.
Theorem 7, page 89 of [7]). The second integral in (5) is well defined pathwise
using a Riemann–Stieltjes integral by Lemma A.1. In fact we have the following.
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LEMMA 3.1. For each t ≥ 0,∫
[0,t]

e−αs d(v′Y)(s) ≡ v′Y(0) +
∫
(0,t]

e−αs d(v′Y)(s)(6)

= α

∫ t

0
e−αsv′Y(s) ds + e−αtv′Y(t),(7)

where the integrals on the right-hand side above are well defined as Riemann–
Stieltjes integrals.

PROOF. This follows immediately from the convention about contributions at
time zero to integrals over the closed time interval [0, t], and from Lemma A.1,
after observing that s → e−αs is a continuous function that is locally of bounded
variation and that each path of v′Y is r.c.l.l. �

Almost surely, the first integral in (5) will converge absolutely to a finite limit
as t → ∞, since Z is bounded almost surely and h is continuous. However, we do
not know a priori whether the last integral in (5) will converge to a limit (finite or
infinite) as t → ∞, since we do not have any a priori control on the oscillations of
v′Y(s) as s → ∞. The almost sure existence of a limit for this integral, with values
in (−∞,∞], follows from the next lemma which is proved in Appendix A.2.

LEMMA 3.2. Almost surely, limt→∞ ζ(t) exists in (−∞,∞] and satisfies

lim
t→∞ ζ(t) =

∫ ∞
0

e−αs h(Z(s)) ds +
∫
[0,∞)

e−αs d(v′Y)(s),(8)

where the first integral in (8) converges absolutely and is bounded in absolute
value by the finite constant supz∈Z |h(z)|/α, and the second integral in (8) exists
as an improper integral taking values in (−∞,∞]. In particular, almost surely,∫

[0,∞)
e−αs d(v′Y)(s)

≡ lim
t→∞

∫
[0,t]

e−αs d(v′Y)(s)(9)

= α

∫ ∞
0

e−αsv′Y(s) ds(10)

= α

∫ ∞
0

e−αs(v′Y(s))+ ds − α

∫ ∞
0

e−αs(v′Y(s))− ds.(11)

Almost surely, the first integral in (11) takes values in [0,∞] and the last integral
in (11) has a finite value in [0,∞). This last integral has a finite expectation that
is bounded by a finite constant not depending on Y .
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REMARK 3.1. On comparing (10) with (7), the reader may wonder what
happened to the last term in (7). As shown in the proof of Lemma 3.2 in
Appendix A.2, almost surely one of the following occurs:

(a) limt→∞ e−αtv′Y(t) = 0, or
(b)

∫ ∞
0 e−αsv′Y(s) ds = ∞ and lim inft→∞ e−αtv′Y(t) > −∞.

In either case, the limit as t → ∞ of (7) is equal to the limit as t → ∞ of the first
term there.

Henceforth we shall use ζ(∞) to denote a random variable that is almost
surely equal to limt→∞ ζ(t). (An exceptional null set on which this random
variable does not equal the limit or on which the limit may not exist can be
safely ignored as it will not contribute to the expectation appearing in our final
cost functional. Similarly, in writing equivalent expressions for the expectations
of random variables such as ζ(∞) below, we shall ignore null sets on which
random variables specified as limits or integrals may be undefined.) It follows
from the lemma above that the expectation of ζ(∞) exists as a value in (−∞,∞].
Accordingly, we adopt the following cost for an admissible control Y [with
extended state process (Z,U)] for the Brownian network:

J (Y ) ≡ E[ζ(∞)]
= E

[∫ ∞
0

e−αsh(Z(s)) ds

]
+ E

[∫
[0,∞)

e−αs d(v′Y)(s)

]
.

(12)

Here, by Lemma 3.2, the second last expectation is finite and the last expectation is
either finite or takes the value ∞. Thus, J (Y ) ∈ (−∞,∞]. This leads us to make
the following definition of a Brownian control problem.

DEFINITION 3.1 (Brownian control problem—BCP). Determine the optimal
value

J ∗ = inf
Y

J (Y ),(13)

where the infimum is taken over all admissible controls Y for the Brownian
network. In addition, if the infimum is attained in (13), determine an admissible
control Y ∗ that achieves the infimum in (13). We call such a control an optimal
control for the BCP. On the other hand, if the infimum is not attained in (13), for
each ε > 0, determine an admissible control Y ε whose cost is within distance ε of
the infimum. We call such a control Y ε an ε-optimal control for the BCP.

We show in Theorem A.1 that J ∗ is finite, that is, its value lies in (−∞,∞).
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4. Algebraic manipulations. In this section we perform some manipulations
that will be used in reducing the Brownian network and Brownian control problem
to a network and control problem of lower dimension. Lemmas 4.1 and 4.2 are
analogues of results developed in a somewhat different setting in [13]. Lemmas
4.3 and 4.4 relate to the more general cost structure assumed here and do not have
analogues in [13]. The development given here aims to emphasize the geometry of
the spaces involved, avoiding choices of basis vectors when possible.

Modifying the notation in [13], let

N ≡ {y ∈ R
n :Ky = 0},(14)

R ≡ {Ry :y ∈ N },(15)

where N is mnemonic for null and R is mnemonic for reversible displacements.
Let R⊥ denote the orthogonal complement of R in R

m.

LEMMA 4.1. Let

M = {a ∈ R
m :a′R = b′K for some b ∈ R

p}.
Then R⊥ = M.

PROOF. It suffices to show that R = M⊥, the orthogonal complement of M
in R

m. For this, we note that a ∈ R if and only if
(a

0

)
is in the range of

( R
−K

)
. The

latter occurs if and only if
(a

0

)
is orthogonal to all

(ã
b̃

)
in the orthogonal complement

of the range of
( R
−K

)
in R

m+p . The last property holds if and only if a is in M⊥.
�

REMARK 4.1. In view of the above lemma, henceforth we shall use the
symbols M and R⊥ interchangeably.

We now define some additional sets and matrices. Let N ⊥ denote the orthogonal
complement of N in R

n. Let K denote the range of K in R
p . By restricting its

domain, consider K as a linear mapping from N ⊥ into K . This mapping is one-
to-one and onto and so has an inverse K† :K → N ⊥. Thus, K†Ky = y for all
y ∈ N ⊥ and KK†u = u for all u ∈ K . We can extend the definition of the linear
mapping K† to a linear mapping that maps all of R

p into N ⊥, for example by
defining it to be zero on the orthogonal complement K⊥ of K in R

p . We let
K† : Rp → R

n be such an extension. Similarly, R :N → R is onto and so there is a
linear mapping R† :R → N such that RR†δ = δ for all δ ∈ R. (Note that R† may
only map into N .) We can extend R† to a linear mapping defined on all of R

m into
N ⊂ R

n, for example by defining it to be zero on M = R⊥. This yields a linear
mapping R† : Rm → R

n such that the range of R† is a subset of N and RR†δ = δ

for all δ ∈ R.
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Let d be the dimension of M. If d ≥ 1, let M be the linear mapping from R
m

onto R
d represented by a d × m matrix whose rows are a maximal linearly

independent set of vectors in M. If d = 0, let M be the linear mapping from R
m

onto R
0 (the real number zero). The degenerate case of d = 0 can occur in practice

and in this case many manipulations simplify. For later reference, we let

W = {Mz : z ∈ Z}.(16)

LEMMA 4.2. There is a linear mapping G from R
m into R

d such that

MR = GK.(17)

PROOF. Consider a vector y ∈ R
n. Let ỹ and ŷ denote the orthogonal

projections of y onto N and N ⊥, respectively, so that y = ỹ + ŷ. Then Rỹ ∈
R = M⊥ and so by the definition of M , MRỹ = 0. (Here, if d ≥ 1, 0 denotes the
origin in R

d , and if d equals zero, then 0 denotes the real number zero.) By the
definition of K†, since ŷ ∈ N ⊥, ŷ = K†Kŷ = K†Ky. Thus,

MRy = MRŷ = MRK†Ky.

Since y ∈ R
n was arbitrary, it follows that the result holds with G = MRK†. �

REMARK 4.2. In general, neither M nor G is unique. In particular, these
depend on the choice of a basis for M. A G that is constructed in the manner
indicated in the proof of Lemma 4.2 also depends on the choice of K†. For
Brownian network data arising from a certain class of stochastic processing
network models, a method for reducing the choices for M and G to a finite set was
described in [9]. Following on from this, in [4], two properties of the associated
workload processes were derived. In a subsequent work, we intend to pursue an
extension of the method of [9] and to develop properties of the associated workload
processes for the more general framework of [11].

Henceforth we fix a G satisfying the conclusion of Lemma 4.2. However, we
do not require that G is constructed in the same manner as indicated in the proof
of Lemma 4.2. In addition to M and G, we shall also need vectors π and κ

satisfying (18) below. The following lemma guarantees the existence of such
vectors.

LEMMA 4.3. There is an m-dimensional vector π and a p-dimensional
vector κ such that

v′ = π ′R + κ ′K.(18)
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PROOF. Let

π ′ = v′R† and κ ′ = v′(I − R†R)K†.

It suffices to show that for each y ∈ R
n,

π ′Ry + κ ′Ky = v′y.(19)

Fix y ∈ R
n. Let ỹ and ŷ denote the orthogonal projections of y onto N and N ⊥,

respectively, so that y = ỹ + ŷ. By the definition of K†,

K†Ky = K†Kŷ = ŷ,(20)

and so

ỹ = y − ŷ = (I − K†K)y.(21)

Using the definitions of π and κ , together with (20) and (21), we obtain

π ′Ry + κ ′Ky = v′R†Ry + v′(I − R†R)K†Ky

= v′K†Ky + v′R†R(I − K†K)y

= v′ŷ + v′R†Rỹ.

(22)

We claim that

R†Rỹ = ỹ.(23)

Assuming that this holds, the desired result (19) then follows immediately upon
substituting this relation into (22). To see that (23) holds, note that

R(ỹ − R†Rỹ) = Rỹ − RR†(Rỹ) = 0(24)

by the definition of R†, since Rỹ ∈ R. Thus, for y† = ỹ − R†Rỹ we have
Ky† = 0,Ry† = 0. Then, either y† or −y† satisfies the constraints in the left
member of Assumption 2.2 and so y† = 0. Hence, (23) holds. �

Henceforth, we assume that π and κ are fixed vectors satisfying (18). However,
as with the choice of G, we do not require that they are constructed in the same
manner as in the above proof.

LEMMA 4.4. Suppose that x ∈ R
m and u ∈ K such that Mx = Gu. There is

a unique y ∈ R
n such that

u = Ky and x = Ry,(25)

given by y = y∗ where

y∗ = ŷ + ỹ, ŷ = K†u, ỹ = R†(x − Rŷ).(26)

Furthermore,

v′y∗ = π ′x + κ ′u.(27)
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PROOF. Let y∗, ŷ, ỹ be given by (26). By the definition of ŷ and K†, since
u ∈ K , we have ŷ ∈ N ⊥ and Kŷ = KK†u = u. Furthermore, by the definition of
R†, ỹ ∈ N and so Kỹ = 0. It follows that Ky∗ = u. Now,

M(x − Rŷ) = Gu − MRŷ

= Gu − GKŷ

= Gu − Gu

= 0,

where we have used the facts that MR = GK and Kŷ = u. Since the rows of M

span M, it follows that

x − Rŷ ∈ M⊥ = R.(28)

Thus, since RR†δ = δ for all δ ∈ R,

Rỹ = RR†(x − Rŷ) = x − Rŷ,

and so x = Ry∗. Thus, y = y∗ satisfies (25).
To show the uniqueness, suppose that y∗ is given by (26) and y ∈ R

n is such
that (25) holds. Then, K(y − y∗) = 0 and R(y − y∗) = 0. Moreover, either
v′(y − y∗) ≤ 0 or v′(y∗ − y) ≤ 0. Then Assumption 2.2 implies that y − y∗ = 0,
which establishes the uniqueness.

Equation (27) follows by simple algebra, using the fact that y = y∗ satisfies (25)
and that π,κ satisfy (18). �

5. Reduced Brownian network. Given data (m,n,p, zo, θ,�,R,K,Z) for
a Brownian network satisfying the assumptions in Section 2, recall the definitions
of M , G, K and W from Section 4. Furthermore, let

wo = Mzo, ϑ = Mθ, � = M�M ′.(29)

If d ≥ 1, then � is strictly positive definite, since � has this property and
the rows of M are linearly independent. The following defines the notion
of an admissible control for the reduced Brownian network given the data
(d,p,wo,ϑ,�,G,K,W) as described above. It is assumed for this definition
that all of the processes are defined on the same filtered probability space
(�,G, {Gt},Q). For the case d = 0, recall our convention that a 0-dimensional
process (including a Brownian motion) defined on a filtered probability space
(�,G, {Gt},Q) is the process defined on � that takes the real value zero for all
time.

DEFINITION 5.1 (Admissible control for the reduced Brownian network).
An admissible control for the reduced Brownian network is a p-dimensional
adapted process U = {U(t), t ≥ 0} defined on some filtered probability space
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(�,G, {Gt},Q) which supports a d-dimensional adapted process W and a
d-dimensional {Gt }-Brownian motion χ , with statistics (ϑ,�) and starting
point wo, such that the following two properties hold Q-a.s.:

(i) W(t) = χ(t) + GU(t) ∈ W for all t ≥ 0,
(ii) U is nondecreasing, U(0) ≥ 0 and U(t) ∈ K for all t ≥ 0.

We call W the state process with Brownian motion χ for the reduced Brownian
network under the control U .

REMARK 5.1. If d = 0, then (i) above reduces to W(t) = 0 for all t ≥ 0, and
χ(t) = 0 for all t ≥ 0.

In the next two theorems, we describe the relationship between the reduced
Brownian network and the Brownian network.

THEOREM 5.1. Suppose that Y is an admissible control for the Brownian
network with extended state process (Z,U) and Brownian motion X, all defined
on a filtered probability space (�,F , {Ft },P ). Then on this same space, U = KY

is an admissible control for the reduced Brownian network with state process
W = MZ and Brownian motion χ = MX.

PROOF. The proof is straightforward on applying M to Definition 2.1 and
using the definitions of W , K and G. �

The following theorem provides a type of converse to the last theorem. This
result plays an essential role in proving our main result, Theorem 6.1, on the
equivalence of the Brownian control problem to the reduced Brownian control
problem. Recall the definitions of K† and R† from Section 4. In the following,
a product extension of a filtered probability space, (�,G, {Gt},Q), is a filtered
probability space, (�,F , {Ft },P ), such that � = � × �̃, F = G × G̃, Ft =
Gt × G̃t , P = Q × Q̃ for some filtered probability space (�̃, G̃, {G̃t }, Q̃). In this
case, any process V defined on � can be trivially extended to a process defined
on � by setting

V (t)(ω, ω̃) = V (t)(ω) for all t ≥ 0,ω ∈ �, ω̃ ∈ �̃.(30)

Similarly, any process Ṽ defined on �̃ can be trivially extended to a process
defined on �. We implicitly assume that such trivial extensions are made whenever
necessary in the following.

THEOREM 5.2. Let U be an admissible control for the reduced Brownian
network with state process W and Brownian motion χ , all defined on a
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filtered probability space (�,G, {Gt},Q). Suppose that Z is a {Gt }-adapted
m-dimensional process satisfying Q-a.s.,

MZ = W and Z(t) ∈ Z for all t ≥ 0.(31)

Then there is a product extension (�,F , {Ft },P ) of the filtered probability
space (�,G, {Gt},Q) such that on this extended space there is an m-dimensional
{Ft }-Brownian motion X with statistics (θ,�) and starting point zo that satisfies
MX = χ . On any such extension there is an admissible control Y for the Brownian
network that has extended state process (Z,U) and Brownian motion X. Given
Z,U,X, the process Y is uniquely determined (up to indistinguishability) by

Y(t) = Ŷ (t) + Ỹ (t), t ≥ 0,(32)

where

Ŷ (t) = K†U(t),(33)

Ỹ (t) = R†(
Z(t) − X(t) − RŶ (t)

)
,(34)

for each t ≥ 0.

REMARK 5.2. The proof of the above theorem involves constructing a
Brownian motion X from χ by adjoining some additional independent Brownian
motion components. However, as indicated by the theorem, if there is already
an m-dimensional {Gt }-Brownian motion X defined on the original filtered
probability space (�,G, {Gt},Q), with statistics (θ,�) and starting point zo

that satisfies χ = MX, then one may simply use this Brownian motion in
constructing Y .

PROOF OF THEOREM 5.2. First consider the case where 0 < d < m. We
show how to extend the probability space to accommodate a suitable Brownian
motion X. A similar extension is described in Lemma 3.1 of [16]. Let N be
an (m − d) × m matrix whose rows are a linearly independent set of vectors in
M⊥ = R. Then the matrix

(M
N

)
is a bijection on R

m and ϒ = (M
N

)
�

(M
N

)′
is a strictly

positive definite m × m matrix. The d × d submatrix formed by the first d rows
and columns of ϒ is the matrix �. Let � denote the d × (m−d) submatrix formed
by the first d rows and the last m−d columns of ϒ (i.e., M�N ′), and let �̃ denote
the (m − d) × (m − d) submatrix formed by the last (m − d) rows and columns
of ϒ (i.e., N�N ′). Then

ϒ =
(

� �

�′ �̃

)
.(35)

Since the d × d matrix � is real, symmetric and strictly positive definite, there
is an invertible d × d matrix A such that AA′ = � (cf. [6], Theorem 2.17). The
(m− d)× (m− d) matrix �̃ −�′�−1� (the Schur complement of � in ϒ) is also
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a real, symmetric, strictly positive definite matrix (cf. [6], Theorem 2.22), and so
there is an invertible (m − d) × (m − d) matrix Ã such that ÃÃ′ = �̃ − �′�−1�.
Let ϑ̃ = Nθ and w̃o = Nzo.

Let (�̃, G̃, {G̃t }, Q̃) be a filtered probability space, separate from (�,G,

{Gt },Q), on which is defined an (m − d)-dimensional {G̃t }-Brownian motion B̃

with zero drift, identity covariance matrix and starting point that is the origin
in R

m−d . Let � = �× �̃, F = G× G̃, Ft = Gt × G̃t for all t ≥ 0, and P = Q× Q̃.
Extend the process χ defined on (�,G, {Gt},Q) in the trivial way so that it is
defined on (�,F , {Ft },P ). Similarly, extend the process B̃ in the trivial way so
that it is defined on all of (�,F , {Ft },P ). Now, let

χ̃ (t) = �′�−1(
χ(t) − ϑt − wo) + ÃB̃(t) + ϑ̃ t + w̃o.(36)

Then,
(χ
χ̃

)
is an m-dimensional {Ft }-Brownian motion with statistics (

(ϑ
ϑ̃

)
,ϒ) and

starting point
(wo

w̃o

)
. Define

X =
(

M

N

)−1 (
χ

χ̃

)
.

Then it is straightforward to verify that X is an m-dimensional {Ft }-Brownian
motion with statistics (θ,�) and starting point zo that satisfies MX = χ .

Given Z,U,X, the process Y defined by (32)–(34) is an {Ft }-adapted
n-dimensional process (with r.c.l.l. paths). Now, P -a.s., (i)–(ii) of Definition 5.1
and (31) hold, and for each t ≥ 0, by Lemma 4.4 with x = Z(t) − X(t), u = U(t),
and noting that

Mx = MZ(t) − MX(t) = MZ(t) − χ(t) = W(t) − χ(t) = GU(t) = Gu,

we have that Y(t) is the unique element of R
n satisfying U(t) = KY(t), Z(t) =

X(t) + RY(t). It is then easy to verify that Y is an admissible control for the
Brownian network, with state process (Z,U) and Brownian motion X.

If d = 0 or d = m, the proof is very similar to that above. In particular, when
d = 0, the linear mapping M and process χ are trivial and so are ignored in
expressions such as

(M
N

)
and

(χ
χ̃

)
. Similarly, when d = m, N and χ̃ are trivial and

are likewise ignored. �

6. Reduced Brownian control problem.

6.1. Equivalent cost structure. The quantity ζ(t), defined in (4), is interpreted
as the discounted cost incurred over the time interval [0, t] under an admissible
control Y for the Brownian network with extended state process (Z,U) and
Brownian motion X. Before defining the reduced Brownian control problem, we
first obtain an equivalent expression for ζ . For this, recall the definitions of π and κ

from Section 4 and define

g(z) = h(z) + απ ′z for z ∈ Z.(37)
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LEMMA 6.1. Given an admissible control Y for the Brownian network with
extended state process (Z,U) and Brownian motion X, we have almost surely for
each t ≥ 0,

v′Y(t) = π ′(Z(t) − X(t)
) + κ ′U(t)(38)

and

ζ(t) =
∫ t

0
e−αsg(Z(s)) ds +

∫
[0,t]

e−αs d(κ ′U)(s)

− α

∫ t

0
e−αsπ ′X(s) ds + e−αtπ ′(Z(t) − X(t)

)
.

(39)

Furthermore, almost surely,

ζ(∞) =
∫ ∞

0
e−αsg(Z(s)) ds +

∫
[0,∞)

e−αs d(κ ′U)(s)

− α

∫ ∞
0

e−αsπ ′X(s) ds,

(40)

where the first integral above is absolutely convergent and its absolute value is
bounded by supz∈Z |g(z)|/α, the second integral exists as an improper integral
taking its value in (−∞,∞] and it has an expectation whose value lies in the
same interval, and the third integral converges absolutely and its absolute value
has finite expectation. Finally,

J (Y ) = E

[∫ ∞
0

e−αsg(Z(s)) ds

]

+ E

[∫
[0,∞)

e−αs d(κ ′U)(s)

]
− I,

(41)

where the first expectation is finite, the second expectation is well defined in
(−∞,∞] and I is the finite value defined by

I = αE

[∫ ∞
0

e−αsπ ′X(s) ds

]
.(42)

Here I is mnemonic for integral.

PROOF OF LEMMA 6.1. Fix an admissible control Y for the Brownian
network. Consider one of the almost sure realizations such that (i)–(ii) of
Definition 2.1 and (5) hold. Fix t ≥ 0. Let x = Z(t)−X(t) and u = U(t). Then by
the properties of Z,U , and since MR = GK , we have

Mx = MRY(t) = GKY(t) = GU(t) = Gu.(43)
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The equality (38) then follows from Lemma 4.4. To prove (39), use (5), Lemma 3.1
and (38) to obtain

ζ(t) =
∫ t

0
e−αsh(Z(s)) ds

+ α

∫ t

0
e−αs(π ′(Z(s) − X(s)

) + κ ′U(s)
)
ds

+ e−αt (π ′(Z(t) − X(t)
) + κ ′U(t)

)
.

(44)

Since Z is r.c.l.l. and g is continuous, each path of g(Z) is r.c.l.l. and bounded
on [0, t]. The set of points where g(Z) is discontinuous in [0, t] is countable and
the first integral in (39) is well defined as a Riemann integral (cf. Theorem 7,
page 89 of [7]). Since X is continuous on [0, t], the last integral in (39) is also well
defined as a Riemann integral. By Lemma A.1, since κ ′U is r.c.l.l. and s → e−αs

is continuous, and of bounded variation on [0, t], the second integral in (39) is well
defined using a Riemann–Stieltjes integral. Indeed, using the integration-by-parts
formula in that lemma, we can rewrite (44) in the form of (39).

In view of Lemma 3.2 and (39), since the last term in (39) tends to zero a.s. as
t → ∞ for the proof that (40) holds almost surely, it suffices to show that almost
surely the integrals on the right-hand side of (40) are well defined in the sense
described immediately after (40). We now verify these properties.

Almost surely, Z takes values in Z, a compact set, and g is continuous, and
then the first integral in (40) converges absolutely and the bound stated in the
lemma is easily obtained. For the last integral in (40), note that since X is a
multidimensional Brownian motion with constant drift and fixed starting point,
there are finite positive constants C1,C2 [depending only on the statistics (θ,�)

and starting point zo of X], such that

E[‖X(s)‖] ≤ C1 + C2s for all s ≥ 0.(45)

Then using Fubini’s theorem we have

E

[∫ ∞
0

e−αs |π ′X(s)|ds

]
≤

∫ ∞
0

e−αs‖π‖(C1 + C2s) ds < ∞.(46)

This simultaneously establishes the facts that almost surely the last integral in (40)
converges absolutely to a finite value and that the expectation of the absolute value
of the integral is finite.

The simplest way to see that almost surely the second integral in (40) exists
as an improper integral taking its value in (−∞,∞], and that its expectation is
well defined with value in the same interval, is to leverage the fact that similar
properties have already been established for the integral∫

[0,∞)
e−αs d(v′Y)(s).(47)
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Indeed, by (38) and integration-by-parts as in Lemma A.1, we have almost surely,
for each t ≥ 0,∫

[0,t]
e−αs d(κ ′U)(s)

=
∫
[0,t]

e−αs d(v′Y)(s) −
∫
[0,t]

e−αs d
(
π ′(Z − X)

)
(s)

=
∫
[0,t]

e−αs d(v′Y)(s) − α

∫ t

0
e−αsπ ′(Z(s) − X(s)

)
ds

− e−αtπ ′(Z(t) − X(t)
)
.

Here, by Lemma 3.2, almost surely, the second last integral above converges as
t → ∞ to the improper integral

∫
[0,∞) e

−αs d(v′Y)(s) which has a well-defined
value in (−∞,∞] and the expectation of this improper integral is well defined
with a value in (−∞,∞]. The last integral above converges almost surely as
t → ∞ to a finite limit and the absolute value of this integral has finite expectation,
since Z is bounded almost surely and X is a Brownian motion with constant drift.
The latter properties can also be used to show that the last term above converges
almost surely to zero as t → ∞. It follows from this that almost surely the second
integral in (40) exists as an improper integral with value in (−∞,∞] and this
integral has a well-defined expectation in (−∞,∞].

The final claim (41) follows from (40) and the definition of J (Y ) as E[ζ(∞)].
The properties of the various expectations follow from those established above.

�

The distribution of X, being that of a Brownian motion with prescribed statis-
tics, is predetermined and hence uncontrollable. Thus, in terms of determining an
optimal control, the last term I [which depends only on the statistics (θ,�) of X

and its starting point zo] in the expression (41) for the cost functional J (Y ) can be
ignored. Indeed, we shall use this as one simplification in formulating the reduced
Brownian control problem.

6.2. Reduced Brownian control problem. Recall the definition of g from (37)
and that W = MZ. We define the effective holding cost function

ǧ(w) = inf{g(z) :Mz = w,z ∈ Z} for all w ∈ W ,(48)

and make the following assumption henceforth.

ASSUMPTION 6.1. The infimum function ǧ :W → R defined by (48) is
continuous and there is a continuous function ψ :W → Z such that for each
w ∈ W , g(ψ(w)) = ǧ(w) and Mψ(w) = w.
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We refer the reader to Appendix A.3 for sufficient conditions that ensure this
assumption holds. In particular, the notion of a strictly quasiconvex function is
defined in Definition A.2. As an example, a strictly convex function defined on
a convex set is strictly quasiconvex. We note that the continuous function g is
strictly quasiconvex (resp. affine) if and only if h is strictly quasiconvex (resp.
affine). Then it follows from Lemma A.5 that sufficient additional conditions under
which Assumption 6.1 holds are that (i) the compact, convex set Z is a convex
polyhedron, and (ii) the continuous function h is strictly quasiconvex or h is affine.

The following lemma ensures that the cost functional that we plan to use for the
reduced Brownian network is well defined with values in (−∞,∞].

LEMMA 6.2. Given an admissible control U for the reduced Brownian
network with state process W and Brownian motion χ , almost surely for each
t ≥ 0,

ζ̌ (t) =
∫ t

0
e−αsǧ(W(s)) ds +

∫
[0,t]

e−αs d(κ ′U)(s)(49)

is well defined, and

lim
t→∞ ζ̌ (t) =

∫ ∞
0

e−αsǧ(W(s)) ds +
∫
[0,∞)

e−αs d(κ ′U)(s)(50)

exists as a value in (−∞,∞], where the first integral above is absolutely
convergent and its absolute value is bounded by supw∈W |ǧ(w)|/α < ∞, and the
second integral exists as an improper integral taking its value in (−∞,∞] and it
has an expectation lying in the same interval.

PROOF. Fix an admissible control U for the reduced Brownian network. Let
W denote the associated state process and let χ denote the associated Brownian
motion. By reasoning similar to that in the proof of Lemma 6.1, almost surely for
each t ≥ 0, ζ̌ (t) is well defined, since the first integral in (49) exists as a Riemann
integral and the second integral is well defined as

κ ′U(0) +
∫
(0,t]

e−αs d(κ ′U)(s),

where the last integral above exists as a Riemann–Stieltjes integral, by Lemma A.1.
Now, almost surely, W takes values in the compact set W and ǧ is continuous,

and so the first integral in (50) converges absolutely and is bounded in absolute
value by supw∈W |ǧ(w)|/α.

For the second integral in (50), since almost surely, W lives in W , we can
define an adapted process Z such that Z = ψ(W) almost surely. Then Z satisfies
the hypotheses of Theorem 5.2, and so one can extend the underlying filtered
probability space to one with a filtration denoted by {Ft } on which there is
defined an m-dimensional {Ft }-Brownian motion X with statistics (θ,�) and



2274 J. M. HARRISON AND R. J. WILLIAMS

starting point zo such that MX = χ (cf. Theorem 5.2), and for any such extension,
Y defined by (32)–(34) is an admissible control for the Brownian network with
extended state process (Z,U). Then, it follows from applying Lemma 6.1 to this Y ,
that almost surely the second integral in (50) is well defined as an improper integral
taking values in (−∞,∞] and that it has an expectation lying in the same interval.

�

Henceforth, we let ζ̌ (∞) denote a random variable that is almost surely equal
to limt→∞ ζ̌ (t). It follows from Lemma 6.2 that the expectation of ζ̌ (∞) exists
as a value in (−∞,∞]. We adopt the following cost for an admissible control U

(with associated state process W ), for the reduced Brownian network:

J̌ (U) ≡ E[ζ̌ (∞)]
= E

[∫ ∞
0

e−αsǧ(W(s)) ds

]
+ E

[∫
[0,∞)

e−αs d(κ ′U)(s)

]
.

(51)

Here, by Lemma 6.2, the second last expectation is finite and the last expectation is
either finite or takes the value ∞. Thus, J̌ (U) ∈ (−∞,∞]. We define the reduced
Brownian control problem as follows (this is sometimes alternatively called the
equivalent workload formulation).

DEFINITION 6.1 (Reduced Brownian control problem—RBCP). Determine
the optimal value

J̌ ∗ = inf
U

J̌ (U),(52)

where the infimum is taken over all admissible controls U for the reduced
Brownian network. In addition, if the infimum is attained in (52), determine an
admissible control U∗ that achieves the infimum. We call such a control an optimal
control for the RBCP. On the other hand, if the infimum is not attained in (52), for
each ε > 0, determine an admissible control Uε whose cost is within distance ε of
the infimum. We call such a control Uε an ε-optimal control for the RBCP.

REMARK 6.1. In order to derive the RBCP from the BCP, one needs to choose
linear mappings M,G, and vectors π,κ , as in Section 4. Given the data for a BCP,
these then determine the data for a reduced Brownian network (cf. Section 5) and
the cost (51) for the RBCP. The function ǧ is given by the optimization in (48),
where g [given by (37)] depends on the cost function h, the interest rate α and
the vector π , and the feasible region depends on M and the state space Z for the
Brownian network.

In the sense of the following theorem, our Brownian control problem is
equivalent to the reduced Brownian control problem. Here, for ease of terminology,
we shall use the term ε-optimal control with ε = 0 for an optimal control.
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THEOREM 6.1. The optimal value J ∗ of the Brownian control problem (BCP)
and the optimal value J̌ ∗ of the reduced Brownian control problem (RBCP) are
related by

J̌ ∗ = J ∗ + I,(53)

where I is defined by (42) for some m-dimensional Brownian motion X with
statistics (θ,�) and starting point zo. Fix ε ≥ 0. If Y [with extended state process
(Z,U) and Brownian motion X] is an ε-optimal control for the Brownian control
problem, then U = KY (with state process W = MZ and Brownian motion
χ = MX) is an ε-optimal control for the reduced Brownian control problem.
Conversely, if U (with state process W and Brownian motion χ ) is an ε-optimal
control for the reduced Brownian control problem, then after setting Z = ψ(W)

almost surely and enlarging the filtered probability space as in Theorem 5.2 to one
whose filtration is denoted by {Ft } and which accommodates an m-dimensional
{Ft }-Brownian motion X with statistics (θ,�) and starting point zo such that
MX = χ , we have that the process Y defined by (32)–(34) is an ε-optimal control
[with extended state process (Z,U) and Brownian motion X] for the Brownian
control problem.

PROOF. Suppose that Y [with extended state process (Z,U) and Brownian
motion X] is an admissible control for the Brownian network. Set W = MZ

and χ = MX. Then, by Theorem 5.1, U (with state process W and Brownian
motion χ ) is an admissible control for the reduced Brownian network. By the
definition (48) of ǧ, we have that, almost surely,

ǧ(W(t)) ≤ g(Z(t)) for all t ≥ 0,

and so

J̌ ∗ ≤ J̌ (U)

= E

[∫ ∞
0

e−αsǧ(W(s)) ds

]
+ E

[∫
[0,∞)

e−αs d(κ ′U)(s)

]

≤ E

[∫ ∞
0

e−αsg(Z(s)) ds

]
+ E

[∫
[0,∞)

e−αs d(κ ′U)(s)

]

= J (Y ) + I,

(54)

where we have used the definition of J̌ ∗ in the first line, the definition of J̌ (U) in
the second line and (41) in the last line. By taking the infimum over all admissible
controls Y for the Brownian network, we see that

J̌ ∗ ≤ J ∗ + I.(55)

Now, suppose that U (with state process W and Brownian motion χ ) is
an admissible control for the reduced Brownian network. Since, almost surely,
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W lives in W , we can define an adapted process Z such that Z = ψ(W) almost
surely. Then Z satisfies the hypotheses of Theorem 5.2, and so, in the manner
described in Theorem 5.2, one can extend the underlying filtered probability space
to one with a filtration denoted by {Ft } on which there is defined an m-dimensional
{Ft }-Brownian motion X with statistics (θ,�) and starting point zo such that
MX = χ , and for any such extension, Y defined by (32)–(34) is an admissible
control for the Brownian network with extended state process (Z,U). Then by the
definition of ψ , we have almost surely for all t ≥ 0,

g(Z(t)) = g(ψ(W(t))) = ǧ(W(t)),(56)

and so using (41) again we have

J̌ (U) = E

[∫ ∞
0

e−αsǧ(W(s)) ds

]
+ E

[∫
[0,∞)

e−αs d(κ ′U)(s)

]

= E

[∫ ∞
0

e−αsg(Z(s)) ds

]
+ E

[∫
[0,∞)

e−αs d(κ ′U)(s)

]

= J (Y ) + I ≥ J ∗ + I.

(57)

By taking the infimum over all admissible controls U for the reduced Brownian
network, we obtain that

J̌ ∗ ≥ J ∗ + I.(58)

Combining (55) with (58) yields that

J̌ ∗ = J ∗ + I.(59)

Given ε ≥ 0, if Y [with extended state process (Z,U)] is an ε-optimal control
for the BCP, then it follows from (54) and (59) that

J̌ (U) ≤ J (Y ) + I ≤ J ∗ + ε + I = J̌ ∗ + ε,(60)

and hence that U is an ε-optimal control for the RBCP.
Similarly, given ε ≥ 0, if U (with state process W ) is an ε-optimal control for

the RBCP and an admissible control Y for the Brownian control problem is derived
from U as described above, then it follows from (57) and (59) that

J (Y ) = J̌ (U) − I ≤ J̌ ∗ + ε − I = J ∗ + ε,(61)

and so Y is an ε-optimal control for the BCP. �

7. An example. Let us consider the stochastic processing network portrayed
in Figure 1, which was discussed in Sections 3 and 7 of [11]. The following four
paragraphs are excerpted from pages 1126–1127 of [11].

We imagine that units of flow are discrete; those units will be called “jobs”
and processing resources will be called “servers.” Here we have two servers
(represented by the circles in Figure 1) and two job classes that are stored in
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FIG. 1. An example with two servers working in parallel.

separate buffers (represented by the open-ended rectangles in Figure 1) as they
await processing.

For each job class i = 1,2 the average arrival rate λi , expressed in jobs per
hour, is as shown in Figure 1. There are a total of six “processing activities” in
our example, the first four of which are portrayed in Figure 1. (The numbering
of activities is arbitrary.) Each activity j = 1, . . . ,4 consists of a particular
server processing jobs from a particular buffer, the associated average service rate
being µj jobs per hour (see Figure 1). With “activity levels” expressed in server
hours, one may alternatively say that µ1, . . . ,µ4 each represent an average rate of
material flow per unit of activity.

In addition to the processing activities described above, there are two activities
that we use to represent input control capabilities: activities 5 and 6 correspond
to the system manager ejecting jobs from buffers 1 and 2, respectively, which
we assume can be done at any time without penalty. However, such “disposal”
is irreversible, and thus it deprives the system manager of whatever value might
have been derived from processing the jobs ejected.

With regard to system economics, let us suppose that each activity j = 1, . . . ,4
generates value at an average rate of yj hundred dollars per completed job, where
y1 = 1, y2 = 1, y3 = 2 and 0 < y4 < 1

2 . For each of these activities, then, the
average value generated per unit of activity (i.e., per server-hour devoted to the
activity) is vj = yjµj hundred dollars. Assuming that there is neither direct cost
nor direct benefit associated with activities 5 and 6, we then have the value rate
vector

v = (1,1,1, v4,0,0)′ where 0 < v4 < 3/2.(62)
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Using this information and various other model assumptions (including Poisson
arrivals and exponential service time distributions), a generalized Brownian
network was derived in Section 7 of [11] to approximate the system pictured in
Figure 1. The state space dimension of that Brownian network is m = 2 and its
control space dimension is n = 6, while its control constraint space has dimension
p = 5. The matrices R and K appearing in the descriptions of Z and U are

R =
[

1 0 1
2 0 1 0

0 1 0 3 0 1

]
,

K =




1 0 0 1 0 0
0 1 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


 ,

(63)

and the parameters of the underlying (uncontrolled) Brownian motion X are

zo =
[

0
0

]
, θ =

[
0
0

]
, � =

[
2.2 0
0 1.6

]
.(64)

Finally, the state space of the generalized Brownian network derived in [11] is
Z = [0, b] × [0, b], where b > 0 is large, and the holding cost function is

h(z) = a1z
2
1 + a2z

2
2 where a1, a2 > 0.(65)

Given these data and an interest rate α > 0 for discounting, the system
manager’s dynamic control problem is formally approximated by the Brownian
control problem (BCP) set forth at the end of Section 3. It would be wasteful to
repeat all of the reasoning advanced in [11] to support that approximation, but a
few salient points are essential for interpretation of the analysis to follow. First, if
one considers the deterministic fluid analogue of our example, one finds that the
optimal processing strategy uses only activities 1, 2 and 3. (Activity 4, although
it processes class 2 jobs quickly, does not generate enough economic value per
job processed to justify its use.) When stochastic variability is introduced, that
same mix of activities 1, 2 and 3 constitutes the “nominal processing plan,” but
one or both servers may experience occasional idleness due to starvation (i.e.,
lack of work to do) and, in addition, activities 4 through 6 may be used sparingly
to reduce buffer contents when holding costs threaten to become excessive. The
stochastic process Zi in our approximating Brownian network model corresponds
to the contents of buffer i in scaled units (i = 1,2), and the five components
of the nondecreasing process U are interpreted (in scaled units) as follows:
U1 corresponds to cumulative unused capacity for server 1; U2 corresponds to
cumulative unused capacity for server 2; U3 corresponds to cumulative time
devoted to activity 4 by server 1, and U4 and U5 correspond to the cumulative
number of jobs ejected from buffers 1 and 2, respectively.
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The key step in solving the BCP for our example, and the primary focus of
this section, is derivation of a reduced Brownian control problem (RBCP) using
the recipe laid out in Sections 5 and 6. To determine a matrix M that defines the
workload process for our RBCP, we begin with the following observation: a vector
y ∈ R

6 satisfies Ky = 0 if and only if y2 + y3 = 0 and y1 = y4 = y5 = y6 = 0.
Thus the space N of all such y is spanned by the vector y† = (0,1,−1,0,0,0)′,
implying that the space R is spanned by Ry† = (−1

2 ,1)′. Now M = R⊥ by
Lemma 4.1, so M is the one-dimensional subspace of R

2 spanned by the row
vector

M = (2,1).(66)

The space K is all of R
5 since K has full row rank.

As noted in Section 4, one can take G to be any matrix satisfying MR = GK ,
and π and κ to be any pair of vectors satisfying π ′R + κ ′K = v′. In our current
example, given M , the choice

G = (2,1,−1,−2,−1)(67)

is unique, and the system of linear equations (18) that determines the seven-
dimensional row vector (π ′, κ ′) has rank 6; arbitrarily setting π1 = 1 gives

π ′ = (
1, 1

2

)
and κ ′ = (

0, 1
2 , 3

2 − v4,1, 1
2

)
.(68)

Substituting (66) in (16), we identify the state space of our reduced Brownian
network as W = [0,3b], where b > 0 is large. Also, according to (29) and (64),
the one-dimensional Brownian motion χ that appears in the reduced Brownian
network (see Section 5) has initial state wo = 0, drift parameter ϑ = 0 and variance
parameter � = M�M ′ = 10.4. In the reduced Brownian network we have a one-
dimensional workload process W that almost surely satisfies the main system
equation

W(t) = χ(t) + GU(t) ∈ [0,3b] for all t ≥ 0,(69)

where the five-dimensional control vector U has nonnegative and nondecreasing
components. In our reduced Brownian control problem (see Section 6), the
objective is to choose a control U so as to minimize

J̌ (U) = E

[∫ ∞
0

e−αsǧ(W(s)) ds

]
+ E

[∫
[0,∞)

e−αs d(κ ′U)(s)

]
,(70)

where ǧ is defined in terms of the holding cost function h, the interest rate α and
the vector π , via (37) and (48). Recall from (37) that g(z) = h(z) + απ ′z. For our
example, one finds that π ′ = 1

2M , implying that

π ′z = 1
2w for all z ∈ R

2 such that Mz = w.(71)

Thus the vector z = ψ(w) that achieves the infimum in (48) is the same z that
minimizes h(z) = a1z

2
1 + a2z

2
2 subject to the constraints Mz = w and z ∈ Z.
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Since Z = [0, b] × [0, b] is a convex, compact polyhedron, and the contin-
uous function g is strictly convex (hence strictly quasiconvex), it follows from
Lemma A.5 that ǧ is continuous and ψ :W → Z is continuous. It is straightfor-
ward to also verify that ǧ is convex using the convexity of Z and g. In fact, one
can explicitly solve the optimization problem (48) for ǧ and ψ . The specification
of ψ(w) breaks into three cases depending on whether 0 ≤ w ≤ b, b < w ≤ 2b or
2b < w ≤ 3b. For example, when 0 ≤ w ≤ b,

ψ1(w) =
(

2a2

4a2 + a1

)
w and ψ2(w) =

(
a1

4a2 + a1

)
w(72)

and

ǧ(w) = g(ψ(w)) = a1a2

4a2 + a1
w2 + α

2
w.(73)

For b < w ≤ 2b, to ensure that ψ2(w) = w − 2ψ1(w) ≤ b, ψ1(w) is the maximum
of the value specified in (72) and w−b

2 . Finally, for 2b < w ≤ 3b, to ensure
in addition that ψ1(w) ≤ b, one takes ψ1(w) to be the minimum of b and the
value given by the formula for ψ1(w) used in the case b < w ≤ 2b. In all cases,
ψ2(w) = w − 2ψ1(w).

The RBCP described immediately above is a one-dimensional “singular”
control problem, and after one additional simplification the analysis of Harrison
and Taksar [12] can be invoked for its solution. Using the notation of this paper,
the problem solved in [12] is the following. A controller continuously monitors
the evolution of a Brownian motion χ that has arbitrary mean and strictly positive
variance and initial state in a given finite interval W . The controller chooses
two nondecreasing, nonnegative processes L1 and L2, each nonanticipating with
respect to χ , and the “state of the system” W is defined via

W(t) = χ(t) + L1(t) − L2(t) for t ≥ 0.(74)

The controller is obliged to keep W within the given interval W and the objective
to be minimized is

E

[∫ ∞
0

e−αsǧ(W(s)) ds

]

+ �1E

[∫
[0,∞)

e−αs dL1(s)

]
+ �2E

[∫
[0,∞)

e−αs dL2(s)

]
,

(75)

where ǧ is convex and �1 and �2 are constants satisfying �1 +�2 > 0. Although the
problem specified in [12] requires all controls to be nonanticipating, the analysis
performed there (which relies on Itô’s formula) is still valid if one only requires
that the controls L1 and L2 are adapted to a filtration with respect to which
the Brownian motion χ minus its drift process is a martingale. This observation
enables us to apply the results of [12] to our setting where a “weak” formulation
is used for admissible controls. The paper [12] also assumes that the last two
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expectations in (75) are finite for admissible controls L1,L2. In fact, it is sufficient
for the analysis of [12] that the last two terms in (75) are finite. In particular, if
�i = 0, then this condition for the term involving �i is automatically satisfied. In
our RBCP example, it will turn out that �1 = 0, �2 > 0. Thus, for good controls
having finite cost, the term in (75) involving �2 > 0 will be finite.

To see how our reduced Brownian control problem can be further reduced to the
one described in the previous paragraph, it remains to show how the five modes
of singular control (nondecreasing processes U1, . . . ,U5) in our RBCP can be
reduced to two modes of singular control (nondecreasing processes L1 and L2). It
turns out that three of the five modes of control in the RBCP can be eliminated as
follows.

From (67) and (69) we see that the system manager has available two means
of increasing the workload level W , namely, by increasing either U1 or U2, and
those control actions have associated direct costs per unit of control of κ1 = 0 and
κ2 = 1

2 , respectively. In other words, for the same increase in workload level, there
is no direct cost for using U1, whereas there is a positive direct cost associated
with using U2. Thus, in choosing an optimal control, one will only ever use U1
to increase the workload and one will never use U2. Consequently, in translating
our RBCP to the form (74)–(75), we can define the singular control L1 = 2U1 and
associate with L1 the cost rate �1 = 0.

On the other hand, we see from (67) and (69) that the system manager can
instantaneously decrease the workload W by increasing the control Uk for any
k = 3,4,5. For a given decrease in workload level, the preferred means of
achieving this is to use the control k ∈ {3,4,5} for which κk/|Gk| is minimal.
That is, one chooses the control mode having least direct cost per unit of workload
reduction. Recall from (62) that 0 < v4 < 3/2 by assumption. If 1 < v4 < 3/2, then
we see from (67) and (68) that increasing U3 is the preferred means of effecting
downward displacement of workload, the associated cost per unit of displacement
being κ3/|G3| = 3/2 − v4 < 1/2. In that case one can set U4 = U5 = 0 in the
RBCP, define L2 = U3, and associate with L2 the cost rate �2 = 3/2 − v4, thereby
reducing the RBCP to the form (74)–(75). The interpretation is as follows: when
the workload W gets high enough to motivate a costly downward displacement
(see below), the system manager will insert the fast but not very lucrative activity 4,
meaning that server 1 devotes some of its time to processing class 2 jobs while
server 2 readjusts the mix of its activities correspondingly to effect the desired
workload reduction.

Alternatively, if 0 < v4 < 1, then increasing U4 or increasing U5 is the preferred
means of effecting a downward displacement, so one can set U3 = 0 in the RBCP
and define L2 = 2U4 + U5, the associated cost per unit of displacement being
�2 = κ4/|G4| = κ5/|G5| = 1/2. This is interpreted to mean that, as a means of
reducing workload, the system manager is indifferent between rejecting class 1
arrivals and rejecting class 2 arrivals. If v4 = 1, then all three means of reducing
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workload are equally attractive: we define L2 = U3 + 2U4 + U5 and �2 = 1/2 in
that case.

When the results of [12] are applied to our example, one has the following: there
exists an optimal policy that imposes a lower reflecting barrier at W = 0, where L1
increases, and an upper reflecting barrier at W = b∗ > 0, where L2 increases. (Of
course, the optimal barrier height b∗ depends on the drift and variance parameters
for the uncontrolled Brownian motion χ , on the reduced holding cost function ǧ,
on the costs of effecting upward and downward displacements of W and on the
interest rate α. It can be shown that b∗ ↓ 0 as v4 ↑ 3

2 .) The workload level at
any time t ≥ 0 is by definition W(t) = MZ(t) = 2Z1(t) + Z2(t). Translating the
optimal solution of the RBCP into an optimal solution for the BCP involves setting
Z(t) = ψ(W(t)) at each time t ≥ 0.

In terms of desired behavior for the original stochastic processing network, one
intuitively interprets the above solution to mean that the system manager should
strive to use only activities 1, 2 and 3 when the workload is strictly greater than
zero and less than b∗, to incur idleness only at server 1 (because U2 = 0) and then
only when the workload is near zero, and to effect rapid downward displacement
of the workload (by whatever means is preferred, as discussed above) whenever
the workload is at or above the level b∗. Furthermore, the system manager needs
to switch the attention of server 2 between buffer 1 and buffer 2 (see Figure 1) so
as to keep |Z(t)−ψ(W(t))| small. To achieve these aims (at least approximately),
it is likely that various dynamic priorities and thresholds could be employed.
The formulation and investigation of asymptotic optimality of such policies is a
significant separate undertaking that is not pursued here.

APPENDIX

A.1. Real analysis lemma. The following real analysis lemma will be used
several times in manipulating costs.

LEMMA A.1. Let f : R+ → R be a continuous function that is locally of
bounded variation and let g : R+ → R be a right continuous function on R+ that
has finite left limits on (0,∞). Then for each t ≥ 0,∫

(0,t]
g(s) df (s) and

∫
(0,t]

f (s) dg(s)(76)

are well defined as Riemann–Stieltjes integrals and they are related by the
following integration-by-parts formula:∫

(0,t]
f (s) dg(s) +

∫
(0,t]

g(s) df (s) = f (t)g(t) − f (0)g(0).(77)

PROOF. See Theorem 18, page 278 and Theorem 8, page 265 of [7]. �
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A.2. Behavior of the cost process over the infinite time horizon. Through-
out this section, the data (m,n,p, zo, θ,�,R,K,Z) for a Brownian network is
fixed and satisfies (a)–(d) of Section 2. We first prove that Assumption 2.1 is nec-
essary for the existence of an admissible control for the Brownian network.

LEMMA A.2. Suppose that there is an admissible control Y , with Brownian
motion X, for the Brownian network (cf. Definition 2.1). Then Assumption 2.1
must hold.

PROOF. For a proof by contradiction, suppose that Assumption 2.1 does not
hold. Let

V = {Ry :Ky ≥ 0, y ∈ R
n}

and x ∈ R
m\V . Since V is closed, there is δ > 0 such that the distance from x to

V is greater than 2δ. For each ε > 0, let

B(x, ε) = {z ∈ R
m : |x − z| < ε}.(78)

Then,

B(x,2δ) ∩ V = ∅.(79)

Since X is a Brownian motion with nondegenerate covariance matrix, for each
t > 0,

P
(−X(t) ∈ B(tx, tδ)

)
> 0.(80)

Since Y satisfies (i)–(ii) of Definition 2.1 P -a.s., it follows from (80) that for each
t > 0,

P
(
RY(t) ∈ Z + B(tx, tδ),KY(t) ≥ 0

)
> 0,(81)

and hence

P
(
RY(t)t−1 ∈ t−1Z + B(x, δ),KY(t)t−1 ≥ 0

)
> 0.(82)

Since Z is compact, t−1Z will be in B(0, δ) for all t sufficiently large and for
such t ,

t−1Z + B(x, δ) ⊂ B(x,2δ),

and so

P
(
RY(t)t−1 ∈ B(x,2δ),KY(t)t−1 ≥ 0

)
> 0.

It follows, on setting y = Y(t)t−1 for a suitable realization, that there is y ∈ R
n

such that

Ry ∈ B(x,2δ), Ky ≥ 0.
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Then Ry ∈ B(x,2δ) ∩ V , which contradicts (79). �

For the remainder of this section, we assume that Assumptions 2.1 and 2.2 hold.
Below we prove Lemma 3.2 and we show that the optimal value J ∗ of the cost for
the Brownian control problem is finite. First we establish some useful preliminary
lemmas.

LEMMA A.3. Let D be a nonempty compact set in R
m. The following set is

either empty or it is a nonempty compact set:

{y ∈ R
n :Ky ≥ 0,Ry ∈ D, v′y ≤ 0}.(83)

In either case,

inf{v′y :Ky ≥ 0,Ry ∈ D, y ∈ R
n} > −∞.(84)

PROOF. Fix a nonempty compact set D in R
m. It suffices to prove the first

statement in the lemma, for if the set in (83) is empty, then the infimum in (84) lies
in [0,∞]; on the other hand, if the set in (83) is nonempty and compact, then the
infimum in (84) is the same as the infimum of the continuous function y → v′y
over this compact set, which is finite.

To prove that the set in (83) is either empty or a nonempty compact set, we give
a proof by contradiction. For this, suppose that the set in (83) is nonempty and
unbounded. Since D is a nonempty compact set, we can find a nonempty, bounded,
convex polyhedron P that contains D . Since the set in (83) is unbounded, the
following set which contains it must also be unbounded:

{y ∈ R
n :Ky ≥ 0,Ry ∈ P , v′y ≤ 0}.(85)

The set above is an unbounded convex polyhedron and so it must contain a ray,
that is, it contains a set of the form {a + λb :λ ≥ 0} where a, b ∈ R

n and b �= 0
(cf. [2], Proposition 3.2.2). Then Rb = 0 since P is bounded and λRb ∈ P − Ra

for all λ ≥ 0. Also, Kb ≥ −Ka/λ for all λ > 0. By letting λ → ∞, we see
that Kb ≥ 0. Similarly, v′b ≤ −v′a/λ for all λ > 0 and on letting λ → ∞ we
obtain v′b ≤ 0. Thus, b �= 0 satisfies Rb = 0,Kb ≥ 0 and v′b ≤ 0. This contradicts
Assumption 2.2 and so the desired result follows. �

COROLLARY A.1. Let

γ = − inf{v′y :Ky ≥ 0,‖Ry‖ ≤ 1, y ∈ R
n},(86)

η = sup{‖y‖ :Ky ≥ 0,‖Ry‖ ≤ 1, v′y ≤ 0, y ∈ R
n}.(87)

Then γ and η are finite nonnegative constants and for each λ > 0,

inf{v′y :Ky ≥ 0,‖Ry‖ ≤ λ,y ∈ R
n} = −λγ,(88)

sup{‖y‖ :Ky ≥ 0,‖Ry‖ ≤ λ, v′y ≤ 0, y ∈ R
n} = λη.(89)
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PROOF. The set {y ∈ R
n :Ky ≥ 0,‖Ry‖ ≤ 1, v′y ≤ 0} is nonempty, because it

contains y = 0. Then by Lemma A.3, with D = {x ∈ R
m :‖x‖ ≤ 1}, this nonempty

set is compact. It follows that γ and η are nonnegative and finite. For λ > 0, on
setting ỹ = y/λ, we obtain

inf{v′y :Ky ≥ 0, ‖Ry‖ ≤ λ, y ∈ R
n}

= λ inf{v′ỹ :Kỹ ≥ 0,‖Rỹ‖ ≤ 1, ỹ ∈ R
n} = −λγ

and

sup{‖y‖ :Ky ≥ 0, ‖Ry‖ ≤ λ, v′y ≤ 0, y ∈ R
n}

= λ sup{‖ỹ‖ :Kỹ ≥ 0,‖Rỹ‖ ≤ 1, v′ỹ ≤ 0, ỹ ∈ R
n} = λη,

as desired. �

The following lemma is key to the proof of Lemma 3.2 which is given further
below.

LEMMA A.4. Let Y be an admissible control for the Brownian network with
extended state process (Z,U) and Brownian motion X. Almost surely, either:

(i) limt→∞ e−αt (v′Y(t))+ = 0, or
(ii)

∫ ∞
0 e−αs(v′Y(s))+ ds = ∞.

PROOF. Let �0 be an F -measurable set of probability 1 such that on �0,
properties (i)–(ii) of Definition 2.1 hold and limt→∞ e−αt‖X(t)‖ = 0. In the
following we assume that a fixed realization ω from �0 has been chosen. To
simplify the notation, we suppress explicit mention of ω. We consider two cases:
either the limit in the left member of (i) does not exist in [0,∞] [Case (a)] or it
does exist [Case (b)].

CASE (a). Suppose that

lim sup
t→∞

e−αt (v′Y(t))+ �= lim inf
t→∞ e−αt (v′Y(t))+.(90)

Then there are constants 0 < a < b < ∞ such that

lim inf
t→∞ e−αt (v′Y(t))+ < a < b < lim sup

t→∞
e−αt (v′Y(t))+.(91)

Let τ0 = 0 and inductively define for each integer n ≥ 0,

τ2n+1 = inf{t ≥ τ2n : e−αt (v′Y(t))+ ≥ b},(92)

τ2n+2 = inf{t ≥ τ2n+1 : e−αt (v′Y(t))+ ≤ a}.(93)
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Then by (91), τn < ∞ for all n, and τn → ∞ as n → ∞, since the paths of Y are
r.c.l.l. For each n ≥ 0, let

�nY = Y(τ2n+2) − Y(τ2n+1),

�nX = X(τ2n+2) − X(τ2n+1),

�nZ = Z(τ2n+2) − Z(τ2n+1).

Then, from (92)–(93), and the choice of a realization in �0, we have

v′�nY = v′Y(τ2n+2) − v′Y(τ2n+1)

≤ eατ2n+2a − beατ2n+1,(94)

K(�nY ) = U(τ2n+2) − U(τ2n+1) ≥ 0,(95)

R(�nY ) = �nZ − �nX.(96)

Let ε > 0 such that b
(1+ε)a

> 1 and let

δ = 1

α
log

(
b

(1 + ε)a

)
.(97)

If

τ2n+2 − τ2n+1 ≥ δ for infinitely many n,(98)

then ∫ ∞
0

e−αs(v′Y(s))+ ds ≥ ∑
n

∫ τ2n+2

τ2n+1

a ds ≥ δ · a · ∞ = ∞.(99)

Conversely, if

τ2n+2 − τ2n+1 < δ for all but finitely many n,(100)

then, by (94) and (97), we have for all n sufficiently large,

v′�nY ≤ eατ2n+1
(
aeα(τ2n+2−τ2n+1) − b

)
< eατ2n+1

(
b

1 + ε
− b

)

= − εb

1 + ε
eατ2n+1 .

(101)

When (101) holds, by (95)–(96), we have

�nY ∈ {y ∈ R
n :Ky ≥ 0,‖Ry‖ ≤ ‖�nZ‖ + ‖�nX‖, v′y ≤ 0}.

and then by Corollary A.1,

‖�nY‖ ≤ η(‖�nZ‖ + ‖�nX‖).
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Thus, when (100) holds we have that for all n sufficiently large [since both sides
of (101) are negative],

εb

1 + ε
≤ |v′�nY |e−ατ2n+1

≤ η‖v‖(‖�nZ‖ + ‖�nX‖)e−ατ2n+1

≤ η‖v‖
(‖�nZ‖

eατ2n+1
+ ‖X(τ2n+2)‖eαδ

eατ2n+2
+ ‖X(τ2n+1)‖

eατ2n+1

)
.

Using the compactness of Z, the fact that τn → ∞ as n → ∞, and the asymptotic
behavior of the Brownian motion X on �0, we see that the last expression above
tends to zero as n → ∞. However, this implies that

εb

1 + ε
≤ 0,

which is a contradiction since ε > 0 and b > 0. It follows that only (98) can hold
and then (99) holds and (ii) follows.

CASE (b). Suppose that (90) does not hold, that is,

lim sup
t→∞

e−αt (v′Y(t))+ = lim inf
t→∞ e−αt (v′Y(t))+ = �,

for some � ∈ [0,∞].
If � ∈ (0,∞], then there are �′ ∈ (0, �) and τ ∈ [0,∞) such that

e−αt (v′Y(t))+ ≥ �′ for all t ≥ τ,

and then for all t ≥ τ , ∫ t

0
e−αs(v′Y(s))+ ds ≥ (t − τ)�′,

where the last expression tends to ∞ as t → ∞, which implies that (ii) holds.
If � = 0, then

lim
t→∞ e−αt (v′Y(t))+ = 0,

and (i) holds.

Since either Case (a) or Case (b) must hold, this completes the proof. �

PROOF OF LEMMA 3.2. Using the fact that almost surely, for all s ≥ 0,
Z(s) ∈ Z, a compact set, and the fact that h is continuous, we see that almost
surely the integral ∫ ∞

0
e−αsh(Z(s)) ds
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converges absolutely and is bounded by supz∈Z |h(z)|/α. So it suffices to focus on
the behavior as t → ∞ of∫

[0,t]
e−αs d(v′Y)(s)

= α

∫ t

0
e−αsv′Y(s) ds + e−αtv′Y(t)

= α

∫ t

0
e−αs(v′Y(s))+ ds + e−αt (v′Y(t))+

− α

∫ t

0
e−αs(v′Y(s))− ds − e−αt (v′Y(t))−.

(102)

Now, almost surely, Z(s) ∈ Z, RY(s) = Z(s) − X(s) and KY(s) ≥ 0 for each
s ≥ 0, and then by Corollary A.1 we have∫ ∞

0
e−αs(v′Y(s))− ds

≤ γ

∫ ∞
0

e−αs(‖Z(s)‖ + ‖X(s)‖)
ds,

(103)

where the integral is finite almost surely since Z is a compact set and X is a
multidimensional Brownian motion with constant drift starting from zo. Indeed,
there are finite positive constants C1,C2 (depending only on the statistics of X, its
starting point zo and Z) such that

E[‖Z(s)‖ + ‖X(s)‖] ≤ C1 + C2s for all s ≥ 0.(104)

Hence,

E

[∫ ∞
0

e−αs(v′Y(s))− ds

]

≤ γE

[∫ ∞
0

e−αs(‖Z(s)‖ + ‖X(s)‖)
ds

]

= γ

∫ ∞
0

e−αsE[‖Z(s)‖ + ‖X(s)‖]ds

≤ γ

∫ ∞
0

e−αs(C1 + C2s) ds < ∞.

(105)

Similarly, almost surely,

e−αt (v′Y(t))− ≤ γ e−αt (‖Z(t)‖ + ||X(t)‖) → 0 as t → ∞.(106)

Thus, almost surely, the last line in (102) converges as t → ∞ to

−α

∫ ∞
0

e−αs(v′Y(s))− ds
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where the last integral has a finite expectation that is bounded by the constant in
the last line of (105), which does not depend on Y . The remaining part of (102) to
consider is

α

∫ t

0
e−αs(v′Y(s))+ ds + e−αt (v′Y(t))+.(107)

For this, we observe from Lemma A.4 that almost surely, either:

(a) limt→∞ e−αt (v′Y(t))+ = 0 and then as t → ∞, (107) tends to

α

∫ ∞
0

e−αs(v′Y(s))+ ds ∈ [0,∞],
or

(b) ∫ ∞
0

e−αs(v′Y(s))+ ds = ∞
and then as t → ∞, (107) tends to ∞, regardless of the behavior of the nonnegative
quantity e−αt (v′Y(t))+.

Thus, in either case, almost surely, as t → ∞, (107) converges to

α

∫ ∞
0

e−αs(v′Y(s))+ ds ∈ [0,∞].
Combining all of the results above yields the desired result. �

We now obtain lower and upper bounds on the value J ∗ of the Brownian control
problem.

THEOREM A.1. J ∗ ∈ (−∞,∞).

PROOF. For any admissible control Y [with extended state process (Z,U)

and Brownian motion X] for the Brownian network, the second last term in the
expression (12) for the cost J (Y ) is bounded in absolute value by supz∈Z |h(z)|/α,
which does not depend on Y . By Lemma 3.2 and its proof [especially (105)],
there are finite positive constants C1,C2 [depending only on Z, the Brownian
motion statistics (θ,�) and the starting point zo] such that the last term in the
expression (12) satisfies

E

[∫
[0,∞)

e−αs d(v′Y)(s)

]

= αE

[∫ ∞
0

e−αsv′Y(s) ds

]

≥ −αE

[∫ ∞
0

e−αs(v′Y(s))− ds

]

≥ −αγ

∫ ∞
0

e−αs(C1 + C2s) ds.

(108)
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It follows that J (Y ) is bounded below by a fixed finite constant for all admissible
controls Y . Hence, J ∗ > −∞.

To prove that J ∗ < ∞, it suffices to demonstrate that there is an admissible
control Y such that J (Y ) < ∞. Assumption 2.1 ensures the existence of such a
control. One such control can be constructed as follows. Choose a nonempty open
ball B lying in the interior of Z. Let e(1), . . . , e(m) be unit vectors parallel to each
of the positive coordinate axes in R

m. By Assumption 2.1, for each i ∈ {1, . . . ,m},
we can find y(i), y(m+i) ∈ R

n such that

Ry(i) = e(i), Ky(i) ≥ 0,(109)

Ry(m+i) = −e(i), Ky(m+i) ≥ 0.(110)

Let r > 0 denote the radius of B. For each point z on the boundary ∂B of B, the
distance from z to the center of B is r . Given x ∈ R

m with ‖x‖ ≤ r , we have

x =
m∑

i=1

xie
(i) =

m∑
i=1

(x+
i − x−

i )e(i),

where x+
i , x−

i ≤ r for all i. Then, for

y =
m∑

i=1

(
x+
i y(i) + x−

i y(m+i)),(111)

we have Ry = x and Ky ≥ 0, where

‖y‖ ≤ r

2m∑
i=1

∥∥y(i)
∥∥ ≡ C(r).(112)

Given an {Ft }-Brownian motion X, with statistics (θ,�) and starting point zo,
defined on a filtered probability space (�,F , {Ft },P ), we define an admissible
control Y with state process Z and Brownian motion X as follows. This process
Y is a pure jump process. At time zero, define Y(0) to be a fixed vector in R

n

such that KY(0) ≥ 0 and RY(0) = co − zo where co is the center of the ball B
(the existence of such a vector follows from Assumption 2.1). Let Z(0) = co.
From time zero onward, whenever Z is in the interior of B, let Z have the same
increments as X and do not let Y change. Whenever Z approaches the boundary
of B, at the time that it would have reached the boundary, let it jump immediately
to the center co of the ball B, and then continue on from there using the increments
of X. If z is the position on the boundary that Z would have reached, then the
jump in Y that is used to produce the jump to co is given by (111) with x = co − z.
It is straightforward to see that this informal description of the construction of
Y and Z, so that (i)–(ii) of Definition 2.1 hold P -a.s., can be made formal using
a suitable increasing sequence of stopping times. We leave this to the interested
reader. Under any admissible control for the Brownian network, including the one
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just described, the second last expectation in (12) is bounded by supz∈Z |h(z)|/α,
which is finite since Z is bounded and h is continuous. Under the admissible
control just described, using a regeneration argument, it is straightforward to show
that the last expectation in (12) is bounded above by

‖v‖
(
‖Y(0)‖ + C(r)β

1 − β

)
,(113)

where β = E[e−ατ ], τ is the first time that a Brownian motion with statistics (θ,�)

starting from co hits the boundary of B. By the continuity of the paths of X, β < 1
and so the expression in (113) is finite. It follows that J (Y ) for the aforementioned
control is finite and hence this provides a finite upper bound for J ∗. �

A.3. Continuous selection. In this section we develop some results concern-
ing continuity of the optimal value and of an optimizer as functions of certain
constraints in optimization problems. These results provide sufficient conditions
for Assumption 6.1 of Section 6 to be satisfied. Here m,n,p,R,K,Z are fixed
and satisfy the properties specified in (a), (c) and (d) of Section 2. The linear map-
ping M and set W are defined as in Section 4. In particular,

W = {Mz : z ∈ Z}.(114)

Given a continuous function g :Z → R, for each w ∈ W , consider the following
minimization problem:

minimize g(z) subject to Mz = w,z ∈ Z.(115)

By the definition of W , for each w ∈ W , the feasible set of solutions

�(w) ≡ {z ∈ Z :Mz = w}(116)

is nonempty. Since Z is compact and convex, and the mapping defined by M is
continuous and linear, �(w) is compact and convex for each w ∈ W . It follows
from the compactness of �(w) and the continuity of g that for each w ∈ W the
function g achieves its minimum value

ǧ(w) ≡ inf{g(z) : z ∈ �(w)}(117)

on �(w). For each w ∈ W , the set of minimizers

�(w) ≡ {z ∈ �(w) :g(z) = ǧ(w)}(118)

is nonempty; however, the set �(w) may contain more than one point.
For reducing the Brownian control problem, we shall be interested in conditions

under which ǧ is continuous on W and there is a continuous function ψ :W → Z
such that ψ(w) ∈ �(w) for each w ∈ W . Such a continuous function ψ is
called a continuous selection for � . It seems difficult to give necessary and
sufficient conditions for the existence of such a continuous selection. Below we



2292 J. M. HARRISON AND R. J. WILLIAMS

give sufficient conditions for the continuity of ǧ and the existence of a continuous
selection for � . We also show by example that a continuous selection need not
always exist. For this we recall the following definitions and properties from the
theory of quasiconvex functions. For more details, we refer the reader to [1].

DEFINITION A.1. A real-valued function f defined on a convex set C ⊂ R
m

is quasiconvex if its lower-level sets

L(f, a) = {z ∈ C :f (z) ≤ a}(119)

are convex for every a ∈ R.

In fact, a real-valued function f defined on a convex set C ⊂ R
m is quasiconvex

if and only if

f
(
λz(1) + (1 − λ)z(2)) ≤ max

{
f

(
z(1)), f (

z(2))}(120)

for all z(1), z(2) ∈ C and 0 ≤ λ ≤ 1 (cf. [1], Theorem 3.1). This motivates the
following definition.

DEFINITION A.2. A real-valued function f defined on a convex set C ⊂ R
m

is strictly quasiconvex if

f
(
λz(1) + (1 − λ)z(2)) < max

{
f

(
z(1)), f (

z(2))}(121)

for all 0 < λ < 1 and z(1), z(2) ∈ C satisfying z(1) �= z(2).

The following properties are straightforward to verify. First, a strictly convex
function defined on a convex set is strictly quasiconvex there. Second, a strictly
quasiconvex function f on a convex set C attains its infimum over C at no more
than one point in C.

LEMMA A.5. Consider a continuous function g :Z → R. Suppose that:

(i) the compact, convex set Z is a convex polyhedron, and
(ii) g is strictly quasiconvex or g is affine.

Then the infimum function ǧ :W → R defined by (117) is continuous and there is
a continuous function ψ :W → Z such that ψ(w) ∈ �(w) and g(ψ(w)) = ǧ(w)

for each w ∈ W , that is, ψ is a continuous selection for the set-valued function �

defined by (118).

PROOF. Suppose that Z is a convex polyhedron, that is,

Z = {
z ∈ R

m : z′a(i) ≤ b(i) for i = 1, . . . , �
}
,

for some a(i) ∈ R
m, b(i) ∈ R, i = 1, . . . , �, and a positive integer �.
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If there is a continuous selection ψ for � , then since g is also continuous,
ǧ(w) = g(ψ(w)) is a continuous function of w ∈ W . Thus, it suffices to prove the
existence of such a continuous selection ψ .

First, suppose that g is strictly quasiconvex on the convex polyhedron Z. For
each w ∈ W , �(w) contains a single point and

�(w) = {
z ∈ R

m : z′a(i) ≤ b(i) for i = 1, . . . , �;Mz = w
}

is a nonempty, convex polyhedron. It follows from the latter and Corollary II.3.1
of [5] that limk→∞ �(wk) = �(w) for any sequence {wk}∞k=1 in W that converges
to w ∈ W . The desired result then follows from Corollary I.3.4 of [5]. (In that
corollary the star notation implicitly assumes that there is a unique minimizer.)

On the other hand, if g is affine, that is, g(z) = z′a + b for all z ∈ R
m for some

a ∈ R
m and b ∈ R, then the minimization problem (115) is equivalent to a linear

program of the form considered in [3]. In this case, for a given w ∈ W , �(w) need
not be a singleton. However, �(w) is a compact set for each (and hence at least
one) w ∈ W . It then follows from Theorem 2 of [3] that the set-valued mapping �

from W into subsets of R
m is continuous. Also, �(w) is convex for each w ∈ W .

Then, as noted by Bohm [3], it follows by Michael’s selection theorem (cf. [15],
pages 188–190) that one can make a continuous selection ψ from � . �

The following concrete example shows that a continuous selection may fail to
exist if g is quasiconvex but not strictly quasiconvex.

EXAMPLE A.1. We shall describe a continuous quasiconvex function
g : R2 → R+ by describing the level sets of g. For each r ≥ 0, the set on which
g takes the value r is the union of the following four line segments:

{z ∈ R
2 : z2 = r,−r ≤ z1 ≤ r},(122)

{z ∈ R
2 : z1 = −r,−r ≤ z2 ≤ r},(123)

{z ∈ R
2 : z2 = −r,−r ≤ z1 ≤ r2},(124)

{z ∈ R
2 : z = (r2,−r) + t (r − r2,2r),0 ≤ t ≤ 1}.(125)

Some level sets of the function g are drawn in Figure 2 for the values of r =
0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0. One can verify that g is a continuous
quasiconvex function on R

2. However, it is not strictly quasiconvex, since its level
sets contain line segments. Given w ∈ R, consider the following optimization
problem:

minimize g(z) subject to z1 = w, |z1| ≤ 2, |z2| ≤ 2.(126)

We focus on optimizers of this problem when w is near 1. For w = 1, the
set of minimizing solutions is {z ∈ R

2 : z1 = 1,−1 ≤ z2 ≤ 1}. For each value
of w in (0,1) ∪ (1,2], the function g has a unique minimum in the set {z ∈
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FIG. 2. Some level sets of the continuous quasiconvex function g described in Example A.1.

R
2 : z1 = w, |z1| ≤ 2, |z2| ≤ 2}. Moreover, as w approaches 1 from below, this

minimizer approaches the point (1,1), whereas for w approaching 1 from above,
this minimizer approaches the point (1,−1). It follows that there cannot be a
continuous selection of a minimizing solution z as a function of w near w = 1.
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