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Abstract
To this day, a great variety of psychological theories of reason-
ing exist aimed at explaining the underlying cognitive mecha-
nisms. The high number of different theories makes a rigorous
comparison of cognitive theories necessary. The present article
proposes to use Multinomial Processing Trees to compare two
of the most prominent theories of syllogistic reasoning: the
Mental Models Theory and the Probability Heuristics Model.
For this, we reanalyzed data from a meta-analysis on six stud-
ies about syllogistic reasoning. We evaluate both models with
respect to their overall fit to the data by means of G2, AIC,
BIC, and FIA, and on a parametric level. Our comparison in-
dicates that a MMT-variant, though having more parameters, is
slightly better on all criteria except of the BIC. Yet, none of the
two models, realized as MPTs, is clearly superior. We outline
the impact of the different theoretical principles and discuss
implications for modeling syllogistic reasoning.
Keywords: Syllogistic Reasoning; Mental Models Theory;
Probability Heuristics Model; Multinomial Processing Trees

Introduction
Consider the following two abstract statements:

(1) No researchers are gods.
Some gods are great reasoners.
What, if anything, follows?

When people are asked to draw a conclusion about re-
searchers and great reasoners based on these two premises,
some conclude that “some researchers are not great rea-
soners” or that “nothing follows”. Yet, the only logically
valid conclusion would be “Some great reasoners are not re-
searchers”. The two premises each have one of four possible
quantifiers, called moods in their syllogistic combination: All
(abbreviated by A), Some (I), Some...not (O), and None (E).
Four different arrangements of the terms in the premises are
possible. These are called figures and we use the numbering
of the figures as in Bucciarelli and Johnson-Laird (1999):

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

Any syllogism can be described by the respective quanti-
fiers of the first and second premise and its figure. We can
write EI1 to uniquely characterize the syllogism given in (1).
Hence, there are 64 distinct syllogisms.

Since 1908, more than twelve cognitive theories of human
reasoning about syllogisms have been proposed. A meta-
analysis conducted by Khemlani and Johnson-Laird (2012)
compared the predictions of these theories based on three
point estimates for each theory. First, the authors calculated
the proportion of hits, measured using the sum of the propor-
tion of the responses that were predicted by the theory and

were also given within the experiments. Second, they used
the proportion of correct rejections measured using the pro-
portion of non-predicted responses that did not occur empir-
ically. Last, they analyzed the overall proportion of correct
predictions, which combines the hits and correct rejections.
In general, these estimates allow for a comparison of dif-
ferent theories focusing on the responses given in an experi-
ment. However, this approach is lacking rigorous quantitative
criteria to compare the different models beyond participants’
predicted conclusions. The predictive power of the proposed
theories remains unclear. We intend to fill this gap by trans-
forming two of the most prominent theories, the Probability
Heuristics Model (PHM, Chater and Oaksford (1999)) and
the Mental Models Theory (MMT, Johnson-Laird and Steed-
man (1978)) into probabilistic models. The PHM proposes
a set of simple heuristics individuals use to draw a conclu-
sion, whereas the MMT asserts the construction, usage, and
modification of mental models.

Both MMT and PHM assume the existence of latent cog-
nitive processes that occur while solving reasoning problems.
For a fair evaluation and to explicitly encode the assumptions
in the model, we used Multinomial Processing Trees (MPTs).
MPTs are a family of cognitive models for the analysis of cat-
egorical data (Riefer & Batchelder, 1988; Moshagen, 2010).
The usage of MPTs in cognitive science and psychology has
grown in the past two decades (Erdfelder et al., 2009). Most
published models refer to various memory paradigms, such as
recognition, source monitoring, and process dissociation, but
also other fields, for instance reasoning and, recently, implicit
attitude measurement, just to name a few (for an overview
see Erdfelder et al., 2009). In this work, we make use of the
MPTinR package (Singmann & Kellen, 2013) in R. Within this
framework, models are fitted as binary trees, where each node
in the tree represents a cognitive state or process. Therefore,
each branch represents a theoretically motivated, assumed se-
quence of cognitive processes that take place between an in-
put (presented premises) and a response, here possible con-
clusions (Erdfelder et al., 2009). The probability that a latent
stage is reached thus depends on the successful occurrence
of other, associated processes. The rigorous comparison of
the MMT and PHM requires a weighting between the abil-
ity of each model to account for the observed data and to be
generalized to other datasets (its flexibility). In order to find
the model with the best trade-off between goodness of fit and
flexibility, we calculated four measures. The smaller each
of the following measures’ value the better it is. First, the
goodness of fit was measured using the G2 statistic, which
maximizes the likelihood of the frequencies of observations
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given the parameter values. Second, the Akaike Information
Criterion (AIC, Akaike, 1974) and the Bayesian Information
Criterion (BIC, Schwarz et al., 1978) were calculated. Both
information criteria penalize models according to their num-
ber of free parameters and indicate how much information
was lost when a model represented the process that generates
the data. Last, the Fisher Information Approximation (FIA,
Wu, Myung, & Batchelder, 2010) was used to measure the
flexibility of the models. The FIA estimates the amount of in-
formation that an observed frequency carries about a parame-
ter which models the observation. This allows us to compare
models of different sizes. In the following, we briefly outline
the core principles of both theories and their implementation
as MPTs.

The Theories

Mental Models Theory According to the MMT, syllogis-
tic reasoning involves the construction of iconical represen-
tations of situations, for instance, sets of people that be-
long to different subgroups (e.g., Bucciarelli & Johnson-
Laird, 1999; Johnson-Laird, 1975; Johnson-Laird & Steed-
man, 1978). These representations embody mental models
of the world, from which conclusions can be inferred. The
MMT postulates that first, humans build an initial model of
the two premises. Then, a preliminary conclusion is drawn
from this initial model. Next, using specific operations (see
Figure 1), individuals are assumed to seek for counterexam-
ples to this conclusion analogous to an attempt to falsify it
(Johnson-Laird & Steedman, 1978). If no conflicting mod-
els are constructed, the conclusion based on the initial model
is maintained, otherwise it is refuted and another conclusion
is sought (see Johnson-Laird & Steedman, 1978). The more
models that are necessary to draw a conclusion, the harder
the inference becomes (Johnson-Laird & Khemlani, 2013):
Syllogisms with just one valid model are called One Model
Problems (OMP) and are considered to be easier than Multi
Model Problems (MMP) and No Valid Conclusion Problems
(NVCP) (Johnson-Laird & Steedman, 1978). While the ear-
lier stages involve heuristics, the testing step makes the whole
process logically valid, if executed correctly. Thus, the MMT
can account for differences between logically trained and un-
trained individuals.

Probability Heuristics Model The PHM as proposed by
Chater and Oaksford (1999) is inspired by a Bayesian ap-
proach and builds on the idea that naive logical reasoners
employ heuristics that often yield probabilistically valid (“p-
valid”) rather than logically rigorous conclusions. The appli-
cation of these heuristics has two prerequisites: First, a total
order of informativeness of quantifiers, which is obtained by
complementing the existential presupposition (assuming that
“All A are (not) B” implies “Some A are (not) B”, i.e. that
universal claims are not made on empty sets) with a rarity
assumption (attributes in descriptions using natural language
rarely overlap, so E-statements are usually true and therefore
less informative than I-statements), yielding: A > I > E > O.

[A]
[A]

[B] C
[B]

[A]
[A]

[B] C
[B]

C

[A] C
[A]

[B] C
[B]

[A] C
[A] C

[B] C
[B]

Figure 1: Four illustrative mental models for “No A are B.
Some B are C.” Each row represents the properties of an indi-
vidual. The square brackets signify that the set of As and Bs
are represented exhaustively. When the left model is the ini-
tial model, the second model can be created by adding an in-
dividual entailing only property C. The third and fourth model
can be built by merging the first and the fifth entity, respec-
tively. The four models enable the read-off of different con-
clusion (e.g., for the third model “Some A are C”, which is
refuted by model one and two). Only “Some C are not A” is
a valid conclusion. Note that it is also assumed that reasoners
are able to construct fully explicit mental models (Khemlani
& Johnson-Laird, 2012) representing what is false in addition
to what is true. This is done by using mental footnotes, often
symbolized with the token “¬B” for negation, that prohibit
the existence of co-occurrences with other entities.

Second, quantified assertions can entail others (so called p-
entailments), either due to the already mentioned existential
presupposition, or due to Gricean Implications (Grice, 1975):
the usage of a particular (I, O) instead of universal (A, E) state-
ment is taken to imply that the universal statement is wrong.
Hence, I and O p-entail each other.

The proposed heuristics comprise three for generating con-
clusions and two for testing them:
• Min: The preferred conclusion quantifier is that of the less

informative premise (min-premise).

• Entailment: The second preferred conclusion quantifier is
that of the min-premise’s p-entailment.

• Attachment: The end term in the min-premise retains its
position as either subject or predicate in the conclusion.

• Max: Confidence in the generated conclusion is pro-
portional to the informativeness of the more informative
premise (max-premise).

• O: Avoid drawing O-conclusions.

The PHM assumes these heuristics to be a rather complete de-
scription of the underlying processes in syllogistic reasoning.
Additionally, it does not make a statement on preference for
the remaining two quantifiers once neither the min- nor the
entailment-heuristic were accepted. Note that in the classical
version of the PHM, the answer NVC is not predicted. We
return to this later as it needs to be included in the MPT.

Construction of the MPTs
Mental Models Theory
We implemented the MMT as an MPT based on the following
stages proposed by the MMT: First, we modeled individual
reasoning parameters estimating the probability with which a
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dlMMP
R \
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(a) MMT Tree
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1− rEI1 ÛD

rEI1

1− sfb

1− lMMP NVC

lMMP Oca

sfb

1− cEI1E

dlMMP NVC

1− dlMMP Oac

cEI1E

dlMMP NVC

1− dlMMP Eac

(b) MMT Subtree R\{Eca}

EI1

maxI NVC

1−maxI

min

att Eac

1− att Eca

1−min

ent

nO NVC

1− nO

att Oac

1− att Oca

1− ent

AoI

att Aac

1− att Aca

1−AoI

att Iac

1− att Ica

(c) PHM Tree

Figure 2: The MMT and PHM trees for “No A are B. Some B are C.”(EI1). Capital letters refer to the quantifiers (A = All,
I = Some, O = Some...not, E = None). Manifest, observable variables are drawn as squares (on the left: the premises, the
number indicates the figure; on the right: responses as conclusions, ac indicates A-C and ca C-A conclusions e.g., Eac = “None
of the A is C”; NVC=“no valid conclusion”). In between, the assumed latent states (not observable) are printed borderless.
The MMT tree begins with the reasoning parameter ri (i = Syllogism), followed by the Figural Bias parameter for applicable
syllogisms (e.g., for IE1 the Strong Figural Bias sfb), and (if necessary) the decision between the predicted quantifier (e.g.,
CEI1E). Finally, the preliminary conclusion is confirmed with l j if correct, with 1−dl j otherwise, or rejected with the respective
converse probability (here: j = MMP). After rejecting, a new conclusion is sought (see Figure 2b, subtree: R \ {c}, with c
being the discarded conclusion). UD indicates the uniform distribution over all nine conclusions, ÛD over the remaining eight.
The PHM tree begins with the max-heuristic in the case of max-premise being I (maxI), selects quantifier E from min-heuristic
(min), or quantifier O from entailment-heuristic (ent), or either of the remaing two (AoI). In the case of O, the O-heuristic is
applied (nO). Finally, the order of end terms is set using or refusing the attachment-heuristic (att).

response would be produced by a general reasoning or guess-
ing process (Ragni, Singmann, & Steinlein, 2014). The prob-
abilities of the reasoning branch were unrestricted, since we
assumed differences in reasoning for each syllogism based on
difficulty and content effects. The first stage can be referred
to as the “reasoning” stage. For the guessing parameters we
assumed a uniform distribution over all possible conclusions.
In sum, for the implementation of the MPT we had to make a
number of assumptions: A subject will (i) not build more than
one revised model (to limit the depth of the MPT model),
(ii) will neither conclude nor guess an already refuted con-
clusion, (iii) only answer NVC through refuting two distinct
conclusions or guessing, and (iv) possibly return to guessing
after discarding one conclusion. Normally, the “reasoning”-
subtree should begin with representing the construction of
an initial model on the basis of heuristics (Johnson-Laird &
Steedman, 1978). However, this process is thought to take

place rapidly and intuitively (e.g., Johnson-Laird & Steed-
man, 1978; Khemlani & Johnson-Laird, 2016) and failing
to create a model forces a subject to guess. We therefore
subsume this stage in the “reasoning”-parameter, which is
already dependent on the type of syllogism. It is assumed
that building one initial model from both premises is subject
to a heuristic bias towards linking up end items by way of
middle items (Johnson-Laird & Bara, 1984), causing an ef-
fect known as the figural bias. The inspection of this initial
model, and thereby the drawing of a preliminary conclusion,
is influenced by this bias. We include this effect by letting
the figural bias model the direction of reading off. Depending
on their figure, syllogisms are divided into three types based
on their affinity towards figural bias: strong, weak and no
figural bias. If the conclusion matches this bias, the respec-
tive parameter is appended to the path, otherwise its converse
probability. Sometimes, multiple conclusions with the same
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figure are predicted. Subsequently, another stage with free
variables specific to each syllogism determines which quan-
tifier is concluded.

Finally, a falsification attempt is made. Because this stage
is considered to be easier for OMPs than for MMPs or
NVCPs, this parameter is dependent on this classification of
the syllogisms. A valid conclusion could be given either by
successful testing or not testing at all. In contrast, the refuta-
tion of an invalid conclusion definitely requires some logical
assessment of the validity of putative conclusions, i.e., test-
ing. Therefore, we use distinct variables here. Valid conclu-
sions are refuted and invalid ones confirmed with the respec-
tive converse probability. Confirming a conclusion will make
a subject answer respectively, while refuting one is likely to
initiate the search for an alternative conclusion. If the par-
ticipant again fails to find a valid conclusion, the response is
assumed to be that there is no valid conclusion (NVC). Note
that, although it is reasonable to assume that the participant
may give up after two unsuccessful attempts, concluding that
there is NVC, there is no empirical evidence for this assump-
tion as of yet. Moreover, this constrain was chosen for mod-
eling reasons and simplicity. See Figure 2a and 2b for an
example of a tree constructed as detailed above.

Probability Heuristics Model
To construct an MPT representing the PHM, we first need to
look at the dependencies of the heuristics. For a given syllo-
gism, the PHM identifies the quantifier of the max-premise,
the quantifier of the min-premise, the p-entailment of the lat-
ter, and the end-term ordering suggested by the attachment-
heuristic following the principles outlined above. In the fol-
lowing, parameter names are given in parentheses: Since the
confidence in the preliminary conclusion according to the
max-heuristic depends only on the premises and not on the
actual choice of quantifier or ordering, we decided to prepend
the decision whether or not to discard the preliminary conclu-
sion and answer with NVC instead. Hence, this uses one of
four parameters corresponding to each max-quantifier (maxA,
maxI, maxE, maxO) that is applicable to the given syllogism.
If the choice to give a supposedly valid conclusion is made,
quantifier selection for the conclusion is initialized by first
trying the min-heuristic (min). If it is refused, its respective
p-entailment is considered (ent). If this is refused as well, a
binary decision between the remaining two quantifiers yields
a final quantifier choice (AoI, EoO, AoE). If the quantifier
selected for the conclusion is O, the O-heuristic is applied
through another trial whose failure leads again to NVC (nO).
If it passed or the quantifier is different, the tree ends with
a binary choice for the order of the end terms in the conclu-
sion either in accordance or contradictory to the attachment
heuristic (att). Figure 2c shows the thereby constructed tree
for the same example syllogism as before, EE1.

Method
We used the data from the meta-analysis on syllogistic rea-
soning provided by Khemlani and Johnson-Laird (2012) in

order to fit the models created for both the MMT and PHM.
The data set consists of six empirical studies (Johnson-Laird
& Steedman, 1978; Johnson-Laird & Bara, 1984; Bara,
Bucciarelli, & Johnson-Laird, 1995; Roberts, Newstead, &
Griggs, 2001) with a total sample size of n= 156 and we used
the aggregated results (see Table 6 in Khemlani & Johnson-
Laird, 2012). In all experiments participants were presented
with two premises and instructed to draw their own conclu-
sions to all 64 syllogisms (i. e., participants were, for instance,
asked what followed necessarily from the premises).

MPT Analysis for Model Comparison
A model selection analysis was used to evaluate the two dis-
cussed cognitive theories. Each of the proposed models was
fitted to the aggregated data via Maximum Likelihood Esti-
mation using MPTinR (Singmann & Kellen, 2013). The pack-
age also makes use of the four introduced measures (G2, AIC,
BIC, and FIA). The following approach was taken to system-
atically evaluate the theoretical assumptions of each theory.

First, we fitted a model that only consists of the guess-
ing subtree, modeling a uniform distribution over all possible
conclusions, as a standalone model. This Guessing-Model,
having no reasoning path for any conclusion, served as a
baseline to evaluate the MPT implementations of the MMT
and PHM. If the reasoning subtrees of the theories contribute
in explaining the data considerably, the information criteria
should be better (lower) than those for the Guessing-Model.
Second, we fitted an unrestricted model for each theory, that
does not include any restrictions with the exception of the
guessing parameters. This model served as a reference model
for the following models, that included restrictions proposed
by the theoretical framework. If the assumptions raised in the
theory hold true, the fit of the restricted models should not be
considerably worse than for this unrestricted model. Third,
for the MMT, restrictions were added using a hierarchical,
stepwise approach. Last, the full models were fitted using all
restrictions. In summary, the discussed theoretical assump-
tions of the MMT can be represented by the following param-
eter restrictions in the MPT: One Model Problems should be
easier to solve correctly than both Multiple Model and NVC
Problems, since no alternative models are needed to verify a
conclusion. Thus: lnvcp < lomp, lmmp < lomp. These constraints
are included in the full models and the “Number MM” model.
For syllogisms that are subject to the strong figural bias (sfb)
or the weak figural bias (wfb) the corresponding branching
should be taken with a probability higher than 0.5. Also we
should observe that wfb < sfb. For all other syllogisms no fig-
ural bias (nfb) is expected, thus nfb = 0.5. These constraints
are included in the full models and the “Figural Bias” model.
The suitability of the different parameter restrictions can be
compared by evaluating the relative performance of the mod-
els instantiating them.

For the PHM, we implemented three different sets of pos-
sible restrictions: first, no restrictions, second, restricted or-
der of the four max-parameters, and, third, restricted choice
between quantifiers, after min and entailment have failed, to
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Table 1: Results of MPT fits to the aggregated data set of Khemlani and Johnson-Laird (2012).

Model k G2 AIC BIC FIA CFIA
Guessing Baseline 1 17581.69 17583.69 17590.84 8795.645 4.80
MMT Unrestricted 96 4224.94 4416.94 5103.32 2323.32 210.85

Figural Bias 95 4323.87 4513.87 5193.11 2367.02 205.09
Number MM 96 4224.94 4416.94 5103.32 2319.20 206.73
Full Model 95 4323.87 4513.87 5193.11 2364.56 202.62
Unrestricted, Global r 33 4820.98 4886.98 5122.92 2494.74 84.26
Full Model, Global r 32 4934.86 4998.86 5227.66 2546.24 78.80

PHM O, none 11 4844.29 4866.29 4944.94 2463.13 40.99
O, max 11 4844.75 4866.75 4945.40 2461.08 38.70
O, uniguess Q 8 5183.02 5199.02 5256.22 2619.88 28.38
not O, none 10 5052.8 5072.80 5144.29 2565.48 39.08
not O, max 10 5044.17 5064.17 5135.67 2558.68 36.59
not O, uniguess Q 7 5393.04 5407.04 5457.09 2722.67 26.15

Note. The resulting model parameters. k indicates the number of parameters. The total number of degrees of freedom is
df = 512− k, all p < .001. The smallest value per column is printed in bold. CFIA: penalty term for FIA.

be uniform. Additionally, we implemented two variants of
the model: the one described above, and - after initial results
hinted at some conflict between the max- and O-heuristic -
one where the O-heuristic was omitted.

All models were fitted using 10 optimization runs. FIA was
estimated using 200.000 Markov Chain Monte Carlo sam-
ples. The full dataset had 2×4×64 = 512 available degrees
of freedom.

Results
First, we evaluated the MMT and PHM respective to their
predictive power. Table 1 shows the results of the hierarchi-
cal, stepwise fitting approach for both the MMT and PHM as
well as the pure Guessing-Model. As expected, the Guessing-
Model has the worst fit. Therefore, the reasoning subtrees for
both models add a substantial amount of predictive power.
Considering all information criteria, the MMT fits the data
best. This is not too surprising given that it predicts a larger
set of conclusions for any syllogism than the PHM and also
has the largest number of parameters.

In the next step of the analysis we looked at the reasoning-
parameters of the MMT models. Assuming that most of the
participants reason instead of randomly guessing when giving
a syllogistic task, the reasoning parameters should be larger
than 0.5 if the MPT makes reasonable predictions. For all
models of the MMT, the mean probability for a reasoning-
based response was 90% (M = 0.90 over all ri, SD = 0.08).
The high probability of reasoning processes postulated by the
theory indicates an overall satisfying model fit. Furthermore,
the low standard deviation indicates only minor differences
in ri. Hence, participants’ probability to reason does not dif-
fer greatly for individual syllogisms. Based on this finding,
we constructed another set of MPTs identical to the presented
MPT with the exception that this time, we assumed a global
reasoning parameter r, equal for all of the 64 syllogisms, re-

sulting in a more parsimonious tree (number of parameters
k = 32 for the global r-model compared to k = 95 for MPTs
that assume individual ri). Although this approach reduced
the amount of parameters dramatically resulting in a lower
FIA penalty estimate, the FIA estimate as well as the other
information criteria increased (see Table 1).

Likewise, inspecting the parameter fits for the PHM trees
without restrictions, we find that the predicted probabilities
to choose in accordance with the min- (76%), entailment-
(70%) and attachment- (68%) heuristics all constitute sig-
nificant preferences in line with the theory. The order pre-
dicted by the max-heuristic is generally matched well by the
fit results, as evident from both the resulting values and the
improved FIA of the restricted over the unrestricted model.
The only exception to this is the order between max-premise
being E and it being O, where in the unrestricted case with
O-heuristic, we find the order barely swapped (46% for E and
44% for O), though this corresponds to only a few syllogisms.
In the case where the O-heuristic is omitted from the model,
the expected order is restored (55% for O and 53% for E).
All in all, this suggests that the theory is well reflected in the
given MPT implementation on the given data set.

General discussion
Multinomial Processing Trees (MPTs) provide a powerful
mathematical framework to model cognitive theories of rea-
soning and to quantify the impact of cognitive processes. We
have developed MPTs for two prominent theories of syllo-
gistic reasoning making implicit processes explicit: One that
assumes the use of mental models (MMT) and one that uses
a heuristics model inspired by a probabilistic, Bayesian ap-
proach (PHM). Our findings are in line with previous results
(e.g., Khemlani & Johnson-Laird, 2012; Ragni et al., 2014)
regarding the ability to explain a sufficient amount of em-
pirical data. In addition to G2, our implementation of the
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MMT outperforms PHM in respect to AIC and FIA despite
its higher number of parameters, whereas the PHM scores
better in the BIC. An analysis of the contribution of differ-
ent processes (figures or heuristics) demonstrates that some
formalizations are better than others. This aspect of MPTs,
allowing for a systematic evaluation of the contribution of
processes is more important than an overall comparison, as
it helps to identify the contribution of specific processes. In
order to support the processes, the MPTs can inspire a se-
quence of experimental studies to systematically manipulate
these cognitive states, so that the manipulation should then,
in turn, also be reflected in the parameters of the MPTs. By
doing so, the various model extensions or modifications pro-
posed in this work could be further supported. In a next step,
the MPT framework allows to analyze combinations of theo-
ries, e.g. joint MPTs replacing the guessing part of the MMT-
MPT with the PHM-MPT. As a result, we may be able to
infer what individual components may lead a person to ei-
ther use an heuristic or a mental model approach when rea-
soning. Furthermore, future research could focus on existing
computational frameworks for the modeling of reasoning pro-
cesses. For instance, a well-developed framework is available
in form of the computational implementation of the MMT,
called mReasoner (Khemlani & Johnson-Laird, 2016). The
implementation also depends on the construction and manip-
ulation of mental models operating stochastically based on
four separate parameters (Khemlani & Johnson-Laird, 2016):
the size of a mental model, the model’s contents, a counterex-
ample search mechanism, and a nested parameter describ-
ing what happens when a counterexample is found. Simi-
lar to the proposed MPT, mReasoner has found to provide
a close match to aggregated data from syllogistic reasoning
studies (Khemlani & Johnson-Laird, 2016). Yet, the param-
eters of importance differ from the parameters of our MPT.
A closer examination and comparison of these differences on
a parameter-level is a next step. The great variety of cogni-
tive theories that coexist bear the issue of lacking research on
comparing and evaluating these theories in a unified frame-
work. To solve this issue, we took a MPT modeling approach,
which incorporates some promising features to compare these
theories both in terms of their overall predictive power as well
as their assumed cognitive states. As our work showed, this
methodology is an excellent approach to disentangle latent
processes.
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