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ABSTRACT OF THE DISSERTATION

Relaxation and Optimization for Automated Learning of Neural Network Architectures

By

Fanghui Xue

Doctor of Philosophy in Mathematics

University of California, Irvine, 2022

Professor Jack Xin, Chair

Differentiable architecture search (DARTS) is an effective method for data-driven neural

network design based on bilevel optimization. Despite its success in many architecture

search tasks, there are still some concerns about the accuracy of the first-order DARTS

and the efficiency of the second-order DARTS. In this article, we formulate a single level

alternative and a relaxed architecture search (RARTS) method that utilizes the whole dataset

in architecture learning via both data and network splitting, without involving mixed second

derivatives of the corresponding loss functions like DARTS. The advantage of RARTS over

DARTS is justified by a convergence theorem and an analytically solvable model. Moreover,

RARTS outperforms DARTS and its variants in accuracy and search efficiency, as shown in

adequate experiments on CIFAR-10 and ImageNet image classification datasets, and public

architecture search benchmark like NATS-Bench.

Since network pruning is closely related to architecture search in the form of width and depth

search, we have also adapted RARTS to width search and summarized it as a general frame-

work. Experiments show that our method beats the previous benchmarks in PreResNet-164

pruning on CIFAR datasets. Additionally, it has been shown by many researchers that

transformers perform as well as convolutional neural networks in many computer vision

tasks. Meanwhile, the large computational costs of its attention module hinder further

ix



studies and applications on edge devices. Some pruning methods have been developed to

construct efficient vision transformers, but most of them have considered image classification

tasks only. Inspired by these results, we extend our method for pruning vision transformer

backbones on more complicated vision tasks like object detection, based on the search of

transformer dimensions. Experiments on CIFAR-100 and COCO datasets show that the

backbones with 20% or 40% dimensions/parameters pruned can have similar or even bet-

ter performance than the unpruned models. Finally, we have also provided the complexity

analysis and comparisons with the previous pruning methods.
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Chapter 1

Introduction

Deep neural networks (DNNs) have been proved to be powerful and efficient in many fields by

a large number of studies. Whereas the early DNNs have only a few layers [33], modern DNN

architectures are getting more and more complicated. They may contain either thousands

of layers, or parallel paths [49, 26], which makes it more difficult to design a network for

specific problems manually. Researchers have then developed a technique called Neural

Architecture Search (NAS) to automate the learning of neural network architectures, and

have achieved state-of-the-art results on multiple tasks [69, 70]. Despite its high accuracy,

searching for the optimal architecture may cost a huge overhead of thousands of GPU hours.

Among the later studies, a Differentiable Architecture Search (DARTS) method has reduced

the search cost greatly, while generating architectures of high performance at the same

time. On the other hand, it has also been pointed out that DARTS may bring about

a few problems like convergence issues and architecture collapse (i.e., generating a trivial

architecture) [11, 24]. In particular, the full version of DARTS requires the computation of

second-order derivatives of the loss function, consuming much more computational resources

than its first-order counterpart. Motivated by the differentiable method and these unsolved

problems, we will propose a first-order alternative which takes much less time to search for
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the architecture.

Another topic which is closely related to architecture search is the pruning of DNNs, e.g.,

pruning the number of channels/filters/layers of convolutional neural networks (CNNs).

Whereas CNNs have been widely used in many computer vision tasks such as image classi-

fication [32, 48, 26], semantic segmentation [8, 54] and object detection [34, 25], their high

computational overheads are still unaffordable on many low-end edge devices. To solve this

problem, researchers have manually constructed some efficient networks [49, 46]. Besides

these manual designs, a number of approaches have also been proposed to generate light

networks by pruning heavy ones [55, 38]. Since the width and the depth (i.e., the number of

channels and layers) of a network can also be viewed as hyperparameters of its architecture

design, network pruning problems are then formulated and solved in the way of architecture

search [50, 18]. We are aware of these developments and would like to apply our first-order

differentiable search method to solve the pruning problems.

Apart from CNNs, we have also witnessed a rapid growth of transformers [53] being used in

many computer vision tasks like classification [20], segmentation [39], and object detection

[7, 68]. Although they can achieve similar or better performance than CNNs, transformers

usually cost more computational resources. So it is natural to imitate the pruning methods

for CNNs to construct efficient transformers [67]. However, most of these pruning methods

consider the image classification tasks only, whereas many transformers serve as the back-

bones for various vision tasks, going beyond the simple classification task. Inspired by the

width search methods we have just mentioned, we would like to formulate the transformer

pruning problem in a way of dimension search, extending it to a different vision task like

object detection.

Here we list some useful notations and functions here, as they are going to be used in multiple

2



chapters. The ℓp norm of a vector w = (w1, ..., wd) ∈ Rd is defined for p ≥ 1:

∥w∥p = (
∑
i

|wi|p)
1
p .

In this article, we can also define the norm for matrix or a tensor in the same way, i.e., taking

1
p
-th power of the sum of the p-th power of all the elements. For the case p = 0, we define:

∥w∥0 =
∑
i

1R×(wi),

where 1 is the indicator function, and R× is the set of non-zero real numbers. In other

words, ℓ0 counts the number of non-zero elements. Usually, we use ∥ · ∥ to denote ∥ · ∥2,

unless pointed out specifically.

When training classification models, we usually compute the loss through the cross-entropy

function [23], which is defined to be:

H(p, q) = −
∑
i

pi log qi, (1.1)

where p = (p1, ..., pC), q = (q1, ..., qC), C is the number of classes, pi and qi represent

the probabilities of the real and predicted labels belonging to the i-th class. Usually the

probability p for the real label is one-hot, i.e., pi = δij if j is the correct class, with δij the

Kronecker delta function. Hence, the cross-entropy function can also be written as:

Ho(p, q) = − log qj, (1.2)

where qj is the probability of the predicted label belonging to the j-th class. Set H(p) =

−
∑

i pi log pi. The Kullback-Leibler divergence [23] (KL divergence) is defined to be:

DKL(p || q) = H(p, q) −H(p) =
∑
i

pi log(pi/qi), (1.3)

3



which is often used to show how the probability distribution p is different from q. For classi-

fication models where the probability of real label p is fixed, minimizing the KL divergence

is equivalent to minimizing the cross-entropy.
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Chapter 2

The Relaxed Architecture Search

Method

In this chapter, we go over a class of relaxation methods for solving complicated optimization

problems via variable splitting. Inspired by the previous works, we propose a relaxed method

for automated learning of neural network architectures. In addition, we demonstrate in detail

its corresponding gradient-based training algorithm and the convergence properties. We also

consider the cases when there are regularization terms on model complexity. Comparisons

of the proposed method with other architecture search methods are made through analytical

examples and discussions.
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2.1 Gradient Methods

2.1.1 Gradient Descent

Consider a differentiable function L(w) and the problem:

min
w

L(w). (2.1)

To learn the minimum, we can use iterative methods like gradient descent (see [23]):

wt+1 = wt − ηt∇L(wt), (2.2)

where wt and ηt are the values of the variable and the learning rate at the t-th iteration.

Suppose now L(w) is the loss function computed on a dataset of M training examples. That

is to say,

L(w) =
1

M

M∑
i=1

Li(w),

where Li(w) is the loss function computed on the i-th example. Gradient descent can be

computationally expensive for large M , since it needs to loop through all the examples in

each iteration. Mini-batch gradient descent (see [23]) can reduce the computational cost by

sampling uniformly each time a mini batch of fixed size m:

Lt(w) =
1

m

m∑
k=1

Lit,k(w). (2.3)
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Here {it,k}mk=1 is the set of indices for the mini batch examples sampled in the t-th iteration.

We update the variables using the following iteration:

wt+1 = wt − ηt∇Lt(w
t), (2.4)

One shall be aware that the expectation of the gradient on the mini-batch loss function is

equal to the gradient of the overall loss function:

E[∇Lt(w)] =
1

m

m∑
k=1

E[∇Lit,k(w)] = ∇L(w). (2.5)

Mini-batch gradient descent (especially when m = 1) is also called stochastic gradient descent

(SGD) in many literature.

2.1.2 Relaxed Splitting Methods

We consider a regularized problem with a penalty function P(w):

min
w

L(w) + λP(w),

where λ is a hyperparameter to control the scale of the penalty. If both L(w) and P(w)

are smooth, we can learn w via gradient descent. However, there are cases where L(w) is

smooth (or smooth almost everywhere) but P(w) is a non-smooth function like ℓ0 norm [40].

Hence, a relaxed problem has been set up via variable spliting (RVSM) [16]:

min
w,u

L(w) + λP(u) +
β

2
∥u− w∥22,

where u has the same shape as w in terms of learnable parameters. Here β is a hyperparam-

eter to control the distant between u and w. The parameters are learned in an alternating
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way:

wt+1 = wt − η∇L(wt) − ηβ(wt − ut)

ut+1 = arg min
u

{λP(u) +
β

2
∥u− wt∥22}.

(2.6)

We note that the first step is simply gradient descent with respect to w. Although the second

step could be more complicated, for P(u) being the ℓ0 or ℓ1 penalty, we have closed-form

solutions [1, 13]:

arg min
u

{λ∥u∥0 +
β

2
∥u− w∥22} = Hλ/β(w)

arg min
u

{λ∥u∥1 +
β

2
∥u− w∥22} = Sλ/β(w),

where Hγ and Sγ are defined componentwise:

Hγ(wi) =


0 if |wi| ≤

√
2γ

wi if |wi| >
√

2γ,

and

Sγ(wi) =


wi + γ if wi ≤ −γ

0 if |wi| < γ

wi − γ if wi ≥ γ.

Besides, there are many other functions eligible for the penalty in the second step of iteration

(2.6), as long as it can be solved in closed-form. This includes an interpolation between ℓ0

and ℓ1 norms [64, 65], and the ℓ1 norm (or weighted sum) on the scales of parameter groups

[63, 59, 15, 4]. We will discuss their applications in the later chapters.
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2.1.3 Gradient-based Architecture Search

Before we introduce the formulation of our relaxed method for architecture search of neural

networks, we would like to briefly review the settings of Differentiable Architecture Search

(DARTS) [37], which serves as a baseline gradient-based architecture search method. Sup-

pose (w, α) is the pair of weight and architecture parameters taken from a model f(X;w, α)

with input data X. We use (w, α) to represent the model, unless pointed out specifically. If

the architecture α is fixed, we learn the weight parameters w of the model by minimizing a

loss function L(w), which is basically what we do when training an ordinary neural network.

DARTS has artfully relaxed the architecture parameters from binary to continuous, and

learn the pair of two parameter groups (w, α) by considering the following bilevel problem

[12]:

min
α

L2(w
∗(α), α),

where w∗(α) = arg min
w

L1(w, α).
(2.7)

Here L1 and L2 are the two loss functions computed on D1 and D2, which are two non-

overlapping half subsets of the dataset D. Since the inner level problem minw L1(w, α) is

hard to be fully solved with limited computational resources, we may approximate it by

gradient descent in each step. DARTS has adopted data splitting because it is believed that

joint training of both α and w via gradient descent on D by minimizing the overall loss

function:

L(w, α) = L1(w, α) + L2(w, α)

can lead to overfitting [37, 24]. Therefore, the pair (w, α) in problem (2.7) is trained approx-

imately in an alternating way:

9



• update weight w by descending along ∇wL1(w, α)

• update architecture parameter α by descending along: ∇α L2(w − ξ∇wL1(w, α), α)

where ξ ≥ 0 determines the complexity of approximation. If ξ = 0, we obtain first-order

DARTS as the second step only involves the first-order derivatives of α. If ξ > 0, we obtain

second-order DARTS as we need to further compute mixed derivatives ∇2
α,wL1(w, α) which

are produced by chain rule. It has been pointed out that second-order DARTS can have

superposition effect [24], which means the approximation of the gradient of α is based on the

approximation of the weight w one step ahead. This is believed to cause gradient errors and

failures in finding optimal architectures. One shall also be aware that the direct computation

of the second-order derivatives could be time-consuming, and hence may tend to use first-

order DARTS. However, first-order DARTS updates the architecture parameters using half

of the data only. We will present some evidences in the later sections to show that this

can result in incorrect limits and worse performance. To overcome this issue, we consider

approximating DARTS by introducing more relaxation and solve the relaxed problem via

first-order gradient descent. Inspired by the data splitting of DARTS and the Relaxed

Variable Splitting Methods in the previous subsection, we propose a Relaxed Architecture

Search method (RARTS) using both data and network splitting.

2.2 Relaxed Architecture Search

2.2.1 The Vanilla Case

We consider the following relaxed Lagrangian without any further constraints:

L(u,w, α) := Lp(u, α) + λLa(w, α) +
1

2
β ∥u− w∥22, (2.8)
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where u and w are two groups of weight parameters for the primary model (u, α) and the

auxiliary model (w, α). u and w have the same shape in terms of weight tensors, but they

can have different initializations. The primary and the auxiliary models share the same

architecture parameters, denoted by α. This splitting technique is called network splitting.

The loss function Lp(u, α) is computed from the model (u, α) fed with a proportion of data

denoted by Dp, while the loss function La(w, α) is computed from the model (w, α) fed with

a proportion of data denoted by Da. Here Dp and Da can simply be two non-overlapping

subsets of the original dataset D, each of them taking half of the samples in D. ∥u − w∥2

is the ℓ2 norm, which penalizes the distance between the two groups of weight parameters.

λ and β are two non-negative hyperparameters which control the scales of the loss function

for the auxiliary model (w, α), and the ℓ2 penalty.

We want to search an architecture α along with the weight parameters u and w, so that

the relaxed Lagrangian L(u,w, α) in equation (2.8) can be small. We develop an alternating

gradient descent algorithm to solve the problem:

min
u,w,α

L(u,w, α). (2.9)

In each iteration, we update the three groups of parameters via gradient descent in the

Gauss-Seidel [22] pattern, i.e., only one group of parameters is updated in each step:

wt+1 = wt − ηtw ∇wL(ut, wt, αt)

ut+1 = ut − ηtu∇uL(ut, wt+1, αt)

αt+1 = αt − ηtα∇αL(ut+1, wt+1, αt),

(2.10)

where (ut, wt, αt) and (ut+1, wt+1, αt+1) stand for the values of the three group of parameters

at iterations t and t + 1. Gradients of L(u,w, α) are computed with respect to w, u and α

11



in each of the three steps, adjusted by the learning rates ηtw, ηtu and ηtα. The three learning

rates are not necessarily identical. Typically, a learning rate schedule is set up so that the

learning rates can be adjusted during the training of the model. We summarize the Relaxed

Architecture Search algorithm for the vanilla case (without regularization) in Algorithm 1.

Algorithm 1: Relaxed Architecture Search (RARTS)

Input: the number of iterations N , the hyperparameters λ and β, a learning rate

schedule (ηtw, η
t
u, η

t
α), initialization of the weight parameters w0, u0 and the

architecture parameters α0.

Output: α∗, the architecture we want

Split the dataset D into two subsets Dp and Da.

for t = 0, 1, ..., N do

Compute Lp and La on Dp and Da, respectively, and then compute L using

equation (2.8)

Update the parameters via gradient descent:

wt+1 = wt − ηtw ∇wL(ut, wt, αt)

ut+1 = ut − ηtu ∇uL(ut, wt+1, αt)

αt+1 = αt − ηtα∇αL(ut+1, wt+1, αt)

end

2.2.2 Model Complexity and Regularization

Apart from the vanilla case when there are no further constraints to the problem (2.9), we

also consider a problem constrained by model complexity. We introduce a penalty function

P(α) to represent model complexity and consider the following regularized Lagrangian:

L(u,w, α) := Lp(u, α) + λLa(w, α) +
1

2
β ∥u− w∥22 + γ P(α), (2.11)

12



where γ ≥ 0 is a hyperparameter to control the scale of the penalty. One shall be aware

that the penalty function P(α) depends purely on the architecture parameters α. Again,

we use Algorithm 1 to solve the minimization problem (2.9) with few modifications. The

only difference is that the Lagrangian L(u,w, α) for the vanilla case is now replaced by the

regularized Lagrangian (2.11). The penalty function P(α) only impacts the third step of

equation (2.10), since the other two steps do not compute gradients with respect to α. This

is clear if we write out explicitly the gradient of each term in iteration (2.10):

wt+1 = wt − ηtwλ∇w La(w
t, αt) − ηtwβ(wt − ut)

ut+1 = ut − ηtu∇uLp(u
t, αt) − ηtuβ (ut − wt+1)

αt+1 = αt − ηtαλ∇αLa(w
t+1, αt) − ηtα ∇αLp(u

t+1, αt) − ηtαγ∇αP(αt).

(2.12)

Note that the Lagrangian (2.8) is a special case of (2.11) when γ = 0.

2.3 Main Results

We present the convergence results of Algorithm 1 in this section. First, we list some

conditions which help to establish the statement of our convergence theorem.

(i) A differentiable function f(x) defined on Rd satisfies Lipschitz gradient property if there

is a number L so that for x, y ∈ Rd

∥∇f(x) −∇f(y)∥ ≤ L∥x− y∥. (2.13)

(ii) A function f(x) defined on Rd is said to be coercive (see [44]) if

lim
∥x∥→+∞

f(x) = +∞.

13



The following lemma from [41] can help estimate the descending of the loss function in many

gradient descent algorithms. We include its proof for completeness.

Lemma 2.1. Suppose a differentiable function f(x) satisfies Lipschitz gradient property on

Rd. Then we have:

f(x) − f(y) ≤ ⟨∇f(y), x− y⟩ +
L

2
∥x− y∥2. (2.14)

Proof. We set g(t) = f(tx + (1 − t)y). We have

f(x) − f(y) = g(1) − g(0)

=

∫ 1

0

g′(t) dt

=

∫ 1

0

⟨∇f(tx + (1 − t)y), x− y⟩ dt

=

∫ 1

0

⟨∇f(tx + (1 − t)y) −∇f(y), x− y⟩ dt + ⟨∇f(y), x− y⟩

≤
∫ 1

0

∥∇f(tx + (1 − t)y) −∇f(y)∥∥x− y∥dt + ⟨∇f(y), x− y⟩

≤
∫ 1

0

Lt∥x− y∥2dt + ⟨∇f(y), x− y⟩

= ⟨∇f(y), x− y⟩ +
L

2
∥x− y∥2.

We have applied Cauchy-Schwarz inequality and Lipschitz gradient property (2.13) to obtain

the first and second inequalities in the proof.

2.3.1 Convergence and Equilibrium

We introduce the main convergence results of Algorithm 1.

Theorem 2.2. Suppose there is a number L such that the loss functions Lp(u, α) and

La(w, α) satisfy the Lipschitz gradient property (2.13), where the gradients are taken with

14



respect to (u, α) and (w, α). Suppose for the same L, the penalty function P(α) also satisfies

the Lipschitz gradient property (2.13), without loss of generality. If there is a number T such

that for t ≥ T , the learning rates satisfy:

ηty <
1

2

[
β

2
+ L

]−1

:= c1,

ηtw <
1

2

[
β

2
+ λL

]−1

:= c2,

ηtα <
1

2

[
(1 + λ +

γ

2
)L

]−1

:= c3,

(2.15)

and approach nonzero limits at large t, the Lagrangian function L(u,w, α) defined by equa-

tion (2.8) or (2.11) is descending on the iterations of (2.10), i.e., L(ut+1, wt+1, αt+1) ≤

L(ut, wt, αt) for t ≥ T .

Proof. As the Lagrangian in equation (2.8) is a special case of that in equation (2.11), we

only need to prove the theorem for (2.11). Since

L(ut, wt, αt) = Lp(u
t, αt) + λLa(w

t, αt) +
1

2
β ∥ut − wt∥2 + γ P(αt),

together with the inequality from Lemma 2.1, we have

L(ut+1, wt+1, αt+1) − L(ut, wt, αt)

= Lp(u
t+1, αt+1) − Lp(u

t, αt) + λ
(
La(w

t+1, αt+1) − La(w
t, αt)

)
+

1

2
β
(
∥ut+1 − wt+1∥2 − ∥ut − wt∥2

)
+ γ

(
P(αt+1) − P(αt)

)
≤ ⟨∇u,α Lp(u

t, αt), (ut+1 − ut, αt+1 − αt)⟩ +
L

2
∥(ut+1 − ut, αt+1 − αt)∥2

+λ ⟨∇w,α La(w
t, αt), (wt+1 − wt, αt+1 − αt)⟩ +

λL

2
∥(wt+1 − wt, αt+1 − αt)∥2

+ γ ⟨∇αP(αt), αt+1 − αt⟩ +
γL

2
∥αt+1 − αt∥2 +

β

2

(
∥ut+1 − wt+1∥2 − ∥ut − wt∥2

)
.
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Substituting for the (w, u)-gradients from the iterations (2.12), we continue:

L(ut+1, wt+1, αt+1) − L(ut, wt, αt)

≤ −(ηtu)−1 ⟨ut+1 − ut + ηtu β (ut − wt+1), ut+1 − ut⟩

+λ (−ληtw)−1 ⟨wt+1 − wt + ηtw β (wt − ut), wt+1 − wt⟩

+
L

2
∥ut+1 − ut∥2 +

λL

2
∥wt+1 − wt∥2

+
β

2

(
∥ut+1 − wt+1∥2 − ∥ut − wt∥2

)
+

L(1 + λ + γ)

2
∥αt+1 − αt∥2

+⟨∇α Lp(u
t, αt) + λ∇α La(w

t, αt) + γ∇αP(αt), αt+1 − αt)⟩

=
(
− (ηtu)−1 + L/2

)
∥ut+1 − ut∥2 +

(
− (ηtw)−1 + λL/2

)
∥wt+1 − wt∥2

−β
(
⟨ut − wt+1, ut+1 − ut⟩ + ⟨wt − ut, wt+1 − wt⟩

)
+
β

2

(
∥ut+1 − wt+1∥2 − ∥ut − wt∥2

)
+

L(1 + λ + γ)

2
∥αt+1 − αt∥2

+⟨∇α Lp(u
t, αt) + λ∇α La(w

t, αt) + γ∇αP(αt), αt+1 − αt)⟩. (2.16)

We note the following identity

∥ut+1 − wt+1∥2

= ∥ut+1 − wt + wt − wt+1∥2

= ∥ut+1 − wt∥2 + 2⟨ut+1 − wt, wt − wt+1⟩ + ∥wt − wt+1∥2,

where

∥ut+1 − wt∥2

= ∥ − wt + ut − ut + ut+1∥2

= ∥ut − wt∥2 + 2⟨ut − wt, ut+1 − ut⟩ + ∥ut+1 − ut∥2.
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Upon substitution of the above in the right hand side of (2.16), we find that:

L(ut+1, wt+1, αt+1) − L(ut, wt, αt)

≤
(
− (ηtu)−1 + L/2 + β/2

)
∥ut+1 − ut∥2 +

(
− (ηtw)−1 + λL/2 + β/2

)
∥wt+1 − wt∥2

+β⟨wt+1 − wt, ut+1 − ut⟩ + β⟨ut+1 − ut, wt − wt+1⟩ +
L(1 + λ + γ)

2
∥αt+1 − αt∥2

+⟨∇α Lp(u
t, αt) + λ∇α La(w

t, αt) + γ∇αP(αt), αt+1 − αt)⟩.

Note that the β-terms cancel out. Substituting for the α-gradient from the iterations (2.12),

we get:

L(ut+1, wt+1, αt+1) − L(ut, wt, αt)

≤
(
− (ηtu)−1 + L/2 + β/2

)
∥ut+1 − ut∥2 +

(
− (ηtw)−1 + λL/2 + β/2

)
∥wt+1 − wt∥2

+
(
− (ηtα)−1 +

L(1 + λ + γ)

2

)
∥αt+1 − αt∥2

+⟨∇α Lp(u
t, αt) −∇α Lp(u

t+1, αt), αt+1 − αt⟩

+λ ⟨∇α La(w
t, αt) −∇α La(w

t+1, αt), αt+1 − αt⟩. (2.17)

Using the Lipschitz gradient property (2.13), the last two inner product terms of (2.17) are

upper bounded by:

L ∥ut − ut+1∥ ∥αt+1 − αt∥ + Lλ ∥wt − wt+1∥ ∥αt+1 − αt∥

≤ L

2

(
∥ut − ut+1∥2 + ∥αt+1 − αt∥2

)
+

Lλ

2

(
∥wt − wt+1∥2 + ∥αt+1 − αt∥2

)
.

It follows that:

L(ut+1, wt+1, αt+1) − L(ut, wt, αt)
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≤
[
−(ηtu)−1+ L +

β

2

]
∥ut+1 − ut∥2 +

[
−(ηtw)−1+ λL +

β

2

]
∥wt+1 − wt∥2

+
[
−(ηtα)−1+ (1 + λ +

γ

2
)L

]
∥αt+1 − αt∥2. (2.18)

If there is a number T such that (ηtu, η
t
w, η

t
α) satisfies the inequalities (2.15) for t ≥ T ,

L(ut, wt, αt) is descending along the sequence (ut, wt, αt).

The following corollary is an immediate result of Theorem 2.2.

Corollary 2.3. Suppose the conditions in Theorem 2.2 are satisfied. If the Lagrangian L

has a lower bound, L(ut, wt, αt) converges to a number L∗. Additionally, if L is coercive,

the sequence (ut, wt, αt) converges subsequentially to a critical point (ū, w̄, ᾱ) of L(u,w, α)

obeying the equilibrium equations (γ = 0 for the case without regularization):

λ∇wLa(w̄, ᾱ) + β(w̄ − ū) = 0,

∇uLp(ū, ᾱ) + β(ū− w̄) = 0,

λ∇αLa(w̄, ᾱ) + ∇αLp(ū, ᾱ) + γ∇αP(ᾱ) = 0.

(2.19)

Proof. If the sequence L(ut, wt, αt) has a lower bound, it is clear that it is convergent, as we

have proved that L(ut, wt, αt) is descending. For c4 = 1
2

min{c−1
1 , c−1

2 , c−1
3 }, it follows from

(2.18) that:

c4∥(ut+1 − ut, wt+1 − wt, αt+1 − αt)∥2

≤L(ut, wt, αt) − L(ut+1, wt+1, αt+1) → 0, (2.20)

as t → +∞, implying that

lim
t→∞

∥(ut+1 − ut, wt+1 − wt, αt+1 − αt)∥ = 0.

Since L is descending, lower bounded and coercive, ∥(ut, wt, αt)∥ is uniformly bounded in t.
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Then (ut, wt, αt) subsequentially converges to a limit point (ū, w̄, ᾱ). Let (ηtw, η
t
u, η

t
α) tend to

non-zero limit at large t, and take limits on both sides of equations (2.12). We obtain that

(ū, w̄, ᾱ) satisfies the equilibrium system (2.19).

2.3.2 Comparisons with Other Gradient-based Methods

We present a simple analytical example from the DARTS paper [37] to see how first-order

DARTS fails to find the optimum. Setting Lp = L2 and La = L1, we can write down

explicitly the two-step iteration of first-order DARTS:

wt+1 = wt − ηtw∇w La(w
t, αt)

αt+1 = αt − ηtα∇αLp(w
t+1, αt).

(2.21)

Suppose (wt, αt) also converges subsequentially. Then we obtain the following equilibrium

equations by taking the limits of equation (2.21):

∇wLa(w̄, ᾱ) = 0

∇αLp(w̄, ᾱ) = 0.

(2.22)

Besides, we consider another gradient-based architecture search method named Mixed-Level

NAS (MiLeNAS) [24], which includes La(w, α) as a regularization term. The first-order

MiLeNAS updates the pair (w, α) via:

wt+1 = wt − ηtw∇w La(w
t, αt)

αt+1 = αt − ηtα
(
∇αLa(w

t+1, αt) + λ∇αLp(w
t+1, αt)

)
,

(2.23)

where λ is a non-zero hyperparameter to adjust the scale of the regularization term. Its idea

of using both subsets of the dataset to update α is similar to RARTS, but MiLeNAS has

missed the network splitting technique, which is the key of RARTS. Similarly, we derive the
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equilibrium equations for first-order MiLeNAS:

∇wLa(w̄, ᾱ) = 0

∇αLa(w̄, ᾱ) + λ∇αLp(w̄, ᾱ) = 0.

(2.24)

Although the extra regularization term may improve the performance, its equilibria still

suffer from the issue of incorrect limits. The following example compares the equilibria of

these gradient-based methods for concrete objective functions, justifying the use of network

splitting in RARTS.

Example 2.4. Suppose Lp(w, α) = αw−2α+1 and La(w, α) = w2−2αw+α2. The solution

to the inner level problem of the bilevel problem (2.7) is:

w∗(α) = arg min
w

La(w, α) = α,

since w = α minimizes the quadratic function w2−2αw+α2 given α fixed. After substitution,

we obtain Lp(w
∗(α), α) = α2 − 2α + 1. So the outer level problem becomes:

min
α

{α2 − 2α + 1},

with the global minimizer (w∗, α∗) = (1, 1). However, the equilibrium equations (2.22) of

first-order DARTS indicate:
2w̄ − 2ᾱ = 0

w̄ − 2 = 0,

which gives a spurious equilibrium (w̄, ᾱ) = (2, 2). The equilibrium equations (2.24) of
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first-order MiLeNAS indicate:
2w̄ − 2ᾱ = 0

2ᾱ− 2w̄ + λ(w̄ − 2) = 0,

which gives the same equilibrium (w̄, ᾱ) = (2, 2). In this example, the regularization term

of MiLeNAS does not improve the results, while network splitting of RARTS can.

We note that both loss functions La(w, α) and Lp(u, α) satisfy Lipschitz gradient property,

implying descent of the Lagrangian L(u,w, α) in equation (2.11) by Theorem 2.2, with γ = 0.

Moreover, if λ > 1/2 and β > 1, we claim that the Lagrangian:

L(u,w, α) = αu− 2α + 1 + λ(w2 − 2αw + α2) +
1

2
β(u2 − 2uw + w2)

is coercive. Actually, we only need to consider the quadratic form:

S(u,w, α) = αu + λ(w2 − 2αw + α2) +
1

2
β(u2 − 2uw + w2),

and its corresponding symmetric matrix:

A =


λ + 1

2
β −1

2
β −λ

−1
2
β 1

2
β 1

2

−λ 1
2

λ

 .

Note that A is positive definite and there is an orthogonal matrix Q such that QTPQ = A,

where P is a diagonal matrix of all the eigenvalues of A. Set z = (u,w, α)T . We obtain:

S(z ) = z TAz = (Qz )TPQz ≥ µ∥Qz∥2 = µ∥z∥2,

where µ > 0 is the smallest eigenvalue of A. This means that lim∥z∥→+∞ S(z ) = +∞. So
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L(u,w, α) is coercive. If we further require β > 3/2, L(u,w, α) has a lower bound, since we

have:

L(u,w, α) =

[
αu + λ(w2 − 2αw) + (λ− 1

6
)α2 +

1

2
β(u− w)2

]
+

[
1

6
α2 − 2α + 1

]
.

The first term in the brackets is a positive definite quadratic form, and the second term is

a quadratic function which has a lower bound. So all the conditions of Corollary 2.3 are

satisfied. The equilibrium equations (2.19) of RARTS indicate:


λ(2w̄ − 2ᾱ) + β(w̄ − ū) = 0

ᾱ + β(ū− w̄) = 0

λ(2ᾱ− 2w̄) + (ū− 2) = 0,

which gives a unique solution when 4βλ− β − 2λ ̸= 0:


w̄ = 4βλ−2β

4βλ−β−2λ

ū = 4βλ−2β−4λ
4βλ−β−2λ

ᾱ = 4βλ
4βλ−β−2λ

.

As (w∗, α∗) = (1, 1) is the global minimizer, the error is O( 1
λ

+ 1
β
). We point out that one of

the benefits of RARTS is the introducion of more freedom to adjust the hyperparameters λ

and β via network splitting, so that the approximation can be further improved.

2.3.3 Rate of Convergence

We analyze the rate of convergence for Algorithm 1. Again, we list some definitions (see

[41]) which help to establish the theorem.
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Figure 2.1: Learning trajectories of RARTS approach the global minimal point (1, 1) of the
solvable model at suitable values of λ, β and y0 (λ = 10 in middle/right subplots, β = 10
in left/right subplots, y0 = 0 in left/middle subplots), compared with that of the baseline
(first-order DARTS).

(i) A differentiable function f(x) defined on Rd is called convex if for x, y ∈ Rd

f(x) − f(y) ≤ ⟨∇f(x), x− y⟩. (2.25)

(ii) A differentiable function f(x) defined on Rd is called strongly convex if there is a number

µ > 0 so that for x, y ∈ Rd

⟨∇f(x) −∇f(y), x− y⟩ ≥ µ∥x− y∥2. (2.26)

We have the following lemma from [3]:

Lemma 2.5. Suppose a differentiable function f(x) is strongly convex and f ∗ is the minimum

of f(x). Then we have:

f(x) − f ∗ ≤ 1

2µ
∥∇f(x)∥2. (2.27)

Proof. Set g(t) = f(ty + (1 − t)x). We have

f(y) − f(x) = g(1) − g(0)
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=

∫ 1

0

g′(t) dt

=

∫ 1

0

⟨∇f(ty + (1 − t)x), y − x⟩ dt

=

∫ 1

0

⟨∇f(ty + (1 − t)x) −∇f(x), y − x⟩ dt + ⟨∇f(x), y − x⟩

≥
∫ 1

0

µt∥y − x∥2dt + ⟨∇f(x), y − x⟩

= ⟨∇f(x), y − x⟩ +
µ

2
∥y − x∥2,

where the inequality is deduced from the fact that f is strongly convex. We note that the

quadratic term ⟨∇f(x), y − x⟩ + µ
2
∥y − x∥2 is minimized when ∇f(x) + µ(y − x) = 0, and

the minimum is − 1
2µ
∥∇f(x)∥2. Therefore, f(y) − f(x) ≥ − 1

2µ
∥∇f(x)∥2. Note that this is

true for any y. So f ∗ − f(x) ≥ − 1
2µ
∥∇f(x)∥2.

We have the following results on rate of convergence for Algorithm 1:

Corollary 2.6. Suppose the conditions in Theorem 2.2 and Corollary 2.3 are satisfied. Sup-

pose 0 < η ≤ ηtu, η
t
w, η

t
α ≤ 1

3L
for some η.

(i) If the Lagrangian L(u,w, α) is strongly convex, we have linear convergence:

L(ut+1, wt+1, αt+1) − L∗ ≤ (1 − 1

3
c4η

2µ)(L(ut, wt, αt) − L∗).

(ii) If the Lagrangian L(u,w, α) is convex, and there is a number M such that ∥(ut, wt, αt)−

(ū, w̄, ᾱ)∥ ≤ M , we have sublinear convergence:

L(ut, wt, αt) − L∗ ≤ 6M2

c4η2t
.

Proof. It is clear that L(u,w, α) also satisfies Lipschitz gradient property as all its component

terms have Lipschitz gradients. Suppose the Lipschitz constant is also L > 0, without loss

of generality. From the conclusion of Corollary 2.3, we obtain: L(ū, w̄, ᾱ) = L∗. We derive
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the bound from equation (2.20):

(L(ut+1, wt+1, αt+1) − L∗) − (L(ut, wt, αt) − L∗)

= L(ut+1, wt+1, αt+1) − L(ut, wt, αt)

≤ −c4∥(ut+1 − ut, wt+1 − wt, αt+1 − αt)∥2.

Using iteration (2.10), we have:

∥wt+1 − wt∥2 = (ηtw)2∥∇wL(ut, wt, αt)∥2. (2.28)

Being aware of the inequalities −∥A∥2 + 1
2
∥B∥2 ≤ ∥A + B||2 ≤ 2

(
∥A∥2 + ∥B∥2

)
for A =

∇uL(ut, wt+1, αt) −∇uL(ut, wt, αt) and B = ∇uL(ut, wt, αt), we further have:

∥ut+1 − ut∥2 = (ηtu)2∥∇uL(ut, wt+1, αt)∥2

≥ (ηtu)2(−∥∇uL(ut, wt+1, αt) −∇uL(ut, wt, αt)∥2 +
1

2
∥∇uL(ut, wt, αt)∥2)

≥ (ηtu)2(−L2∥wt+1 − wt∥2 +
1

2
∥∇uL(ut, wt, αt)∥2)

= (ηtu)2
[
−L2(ηtw)2∥∇wL(ut, wt, αt)∥2 +

1

2
∥∇uL(ut, wt, αt)∥2

]
≥ −1

9
(ηtw)2∥∇wL(ut, wt, αt)∥2 +

1

2
(ηtu)2∥∇uL(ut, wt, αt)∥2,

(2.29)
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with the second inequality holds because of Lipschitz gradient property (2.13), and

∥ut+1 − ut∥2 ≤ 2(ηtu)2(∥∇uL(ut, wt+1, αt) −∇uL(ut, wt, αt)∥2 + ∥∇uL(ut, wt, αt)∥2)

≤ 2(ηtu)2(L2∥wt+1 − wt∥2 + ∥∇uL(ut, wt, αt)∥2)

= 2(ηtu)2(L2(ηtw)2∥∇wL(ut, wt, αt)∥2 + ∥∇uL(ut, wt, αt)∥2)

≤ 2

9
(ηtw)2∥∇wL(ut, wt, αt)∥2 + 2(ηtu)2∥∇uL(ut, wt, αt)∥2.

(2.30)

When deriving the above inequalities, we have also used the fact that (ηtu)2L2 ≤ 1
9
. Similarly,

we have:

∥αt+1 − αt∥2 = (ηtα)2∥∇αL(ut+1, wt+1, αt)∥2

≥ (ηtα)2
(
− ∥∇αL(ut+1, wt+1, αt) −∇αL(ut, wt, αt)∥2

+
1

2
∥∇αL(ut, wt, αt)∥2

)
≥ (ηtα)2

[
− L2(∥ut+1 − ut∥2 + ∥wt+1 − wt∥2) +

1

2
∥∇αL(ut, wt, αt)∥2

]
≥ (ηtα)2

[
− 2

9
(ηtw)2L2∥∇wL(ut, wt, αt)∥2 − 2(ηtu)2L2∥∇uL(ut, wt, αt)∥2

− (ηtw)2L2∥∇wL(ut, wt, αt)∥2 +
1

2
∥∇αL(ut, wt, αt)∥2

]
≥ −11

81
(ηtw)2∥∇wL(ut, wt, αt)∥2 − 2

9
(ηtu)2∥∇uL(ut, wt, αt)∥2

+
1

2
(ηtα)2∥∇αL(ut, wt, αt)∥2,

(2.31)

using equation (2.28), inequality (2.30) and the fact that (ηtα)2L2 ≤ 1
9
. Therefore, we have:

(L(ut+1, wt+1, αt+1) − L∗) − (L(ut, wt, αt) − L∗)

≤ −c4
[
(ηtw)2∥∇wL(ut, wt, αt)∥2 − 1

9
(ηtw)2∥∇wL(ut, wt, αt)∥2

+
1

2
(ηtu)2∥∇uL(ut, wt, αt)∥2 − 11

81
(ηtw)2∥∇wL(ut, wt, αt)∥2
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−2

9
(ηtu)2∥∇uL(ut, wt, αt)∥2 +

1

2
∥∇αL(ut, wt, αt)∥2

]
= −c4

[61

81
(ηtw)2∥∇wL(ut, wt, αt)∥2 +

5

18
(ηtu)2∥∇uL(ut, wt, αt)∥2

+
1

2
(ηtα)2∥∇αL(ut, wt, αt)∥2

]
≤ −1

6
c4η

2∥∇u,w,αL(ut, wt, αt)∥2, (2.32)

using equation (2.28), inequalities (2.29) and (2.31) to obtain the first inequality, the fact

that ηtu, η
t
w, η

t
α ≥ η to obtain the second inequalities. With strong convexity and Lemma 2.5,

we have:

(L(ut+1, wt+1, αt+1) − L∗) − (L(ut, wt, αt) − L∗) ≤ −1

3
c4η

2µ(L(ut, wt, αt) − L∗),

which implies:

L(ut+1, wt+1, αt+1) − L∗ ≤ (1 − 1

3
c4η

2µ)(L(ut, wt, αt) − L∗).

If L(ut, wt, αt) is convex, we have:

L(ut, wt, αt) − L∗ ≤ ⟨∇u,w,αL(ut, wt, αt), (ut, wt, αt) − (ū, w̄, ᾱ)⟩

≤ ∥∇u,w,αL(ut, wt, αt)∥∥(ut, wt, αt) − (ū, w̄, ᾱ)∥

≤ M∥∇u,w,αL(ut, wt, αt)∥,

as we have proved that {ut, wt, αt} is bounded uniformly on t. With inequality (2.32), this

implies:

(L(ut+1, wt+1, αt+1) − L∗) − (L(ut, wt, αt) − L∗)

≤ − c4η
2

6M2
(L(ut, wt, αt) − L∗)2. (2.33)
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We set ∆t = L(ut, wt, αt) − L∗, and have:

1

∆t

− 1

∆t+1

=
∆t+1 − ∆t

∆t∆t+1

≤ − c4η
2

6M2

∆2
t

∆t∆t+1

≤ − c4η
2

6M2
,

noting that ∆t is descending. Therefore,

1

∆0

− 1

∆t

=
t−1∑
i=0

(
1

∆i

− 1

∆i+1

)
≤ −c4η

2t

6M2
,

which implies

∆t = L(ut, wt, αt) − L∗ ≤ 6M2

c4η2t
.

Example 2.7. Again, we consider Lp(w, α) = αw− 2α + 1 and La(w, α) = w2 − 2αw + α2.

If λ > 1/2 and β > 3
2
, we claim that the Lagrangian:

L(u,w, α) = αu− 2α + 1 + λ(w2 − 2αw + α2) +
1

2
β(u2 − 2uw + w2)

is strongly convex. This is because the corresponding matrix of the quadratic form is positive

definite, and hence,

⟨∇L(z 1) −∇L(z 2), z 1 − z 2⟩ ≥ 2µ∥z 1 − z 2∥2,

with z i = (ui, wi, αi)
T , where µ > 0 is the smallest eigenvalue. Therefore, the Lagrangian

converges linearly.
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2.3.4 Search via SGD

To reduce the search cost of gradient descent in Algorithm 1, we can also use SGD with few

modifications on iteration (2.12):

wt+1 = wt − ηtwλ
1

m

m∑
k=1

∇w La,it,k(wt, αt) − ηtwβ(wt − ut)

ut+1 = ut − ηtu
1

m

m∑
k=1

∇uLp,it,k(ut, αt) − ηtuβ (ut − wt+1)

αt+1 = αt − ηtαλ
1

m

m∑
k=1

∇αLa,it,k(wt+1, αt)

−ηtα
1

m

m∑
k=1

∇αLp,it,k(ut+1, αt) − ηtαγ∇αP(αt). (2.34)

Algorithm 2 summarizes the procedure for RARTS via SGD:

29



Algorithm 2: Relaxed Architecture Search via SGD

Input: number of epochs N , number of batches B, hyperparameters λ and β, a

learning rate schedule (ηtw, η
t
u, η

t
α), initialization of the weight parameters

w0, u0 and the architecture parameters α0.

Output: α∗, the architecture we want

Split the dataset D into two subsets Dp and Da. The initial time t = 0.

for n = 0, 1, ..., N do

for b = 0, 1, ..., B do

Sample a batch Dp,t from Dp and a batch Da,t from Da of size m uniformly

(or cyclically). Compute Lp,t and La,t on Dp,t and Da,t using equation (2.3)

respectively, and then compute Lt by adding the two loss functions and the

penalty terms in equation (2.11).

Update the parameters via alternating SGD (see the expansion in iteration

(2.34)):

wt+1 = wt − ηtw ∇wLt(u
t, wt, αt)

ut+1 = ut − ηtu ∇uLt(u
t, wt+1, αt)

αt+1 = αt − ηtα ∇αLt(u
t+1, wt+1, αt)

t = t + 1

end

end

We present some convergence results similar to Corollary 2.6. Unlike the gradient descent

case, we need extra conditions on the variance of the gradient [2] in each SGD step.

Corollary 2.8. Suppose the Lagrangian of each sample Li(u,w, α) satisfies the Lipschitz gra-

dient property (2.13) for a constant L > 0 uniformly, and the averaged Lagrangian L(u,w, α)

is strongly convex and has a minimum L∗. Suppose there are M > 0 and C > 0 such that:

E
[
∥∇wLt(u

t, wt, αt)∥2 + ∥∇uLt(u
t, wt+1, αt)∥2 + ∥∇αLt(u

t+1, wt+1, αt)∥2
]
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≤ M + C E
[
∥∇u,w,αL(ut, wt, αt)∥2

]
. (2.35)

If max{ηtu, ηtw, ηtα} ≤ Kη for some K and η ≤ 1
4CLK2 , and 0 < η ≤ ηtu, η

t
w, η

t
α ≤ 1

3L
when t is

large, we have from the iteration in Algorithm 2:

E[L(ut+1, wt+1, αt+1)] − L∗ ≤ (1 − 1

2
µη)

(
E[L(ut, wt, αt)] − L∗) + MLK2η2, (2.36)

and consequently (suppose the bounds on η are always satisfied for t > 0)

E[L(ut, wt, αt)] − L∗ − 2MLK2η

µ
≤ (1 − 1

2
µη)t

(
E[L(u0, w0, α0)] − L∗ − 2MLK2η

µ

)
.

(2.37)

Proof. Since L(ut, wt, αt) satisfies the Lipschitz gradient property, we have:

L(ut+1, wt+1, αt+1) − L(ut, wt, αt)

≤ ⟨∇wL(ut, wt, αt), wt+1 − wt⟩ + ⟨∇uL(ut, wt, αt), ut+1 − ut⟩

+ ⟨∇αL(ut, wt, αt), αt+1 − αt⟩

+
L

2

[
∥wt+1 − wt∥2 + ∥ut+1 − ut∥2 + ∥αt+1 − αt∥2

]
= ⟨∇wL(ut, wt, αt),−ηtw ∇wLt(u

t, wt, αt)⟩ + ⟨∇uL(ut, wt, αt),−ηtu∇uLt(u
t, wt+1, αt)⟩

+ ⟨∇αL(ut, wt, αt),−ηtα∇αLt(u
t+1, wt+1, αt)⟩

+
L

2

[
∥wt+1 − wt∥2 + ∥ut+1 − ut∥2 + ∥αt+1 − αt∥2

]
,

where we have used the three-step iteration of Algorithm 2 to get the first identity. We take

expectations on both sides and use the law of total expectation:

E[L(ut+1, wt+1, αt+1)] − E[L(ut, wt, αt)]
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≤ E[−ηtw∥∇wL(ut, wt, αt)∥2] + E[−ηtu∥∇uL(ut, wt, αt)∥2] + E[−ηtα∥∇αL(ut, wt, αt)∥2]

+E[⟨∇uL(ut, wt, αt),−ηtu
(
∇uLt(u

t, wt+1, αt) −∇uLt(u
t, wt, αt)

)
⟩]

+E[⟨∇αL(ut, wt, αt),−ηtα
(
∇αLt(u

t+1, wt+1, αt) −∇αLt(u
t, wt, αt)

)
⟩]

+
L

2
E
[
∥wt+1 − wt∥2 + ∥ut+1 − ut∥2 + ∥αt+1 − αt∥2

]
.

We note that

E[⟨∇uL(ut, wt, αt),−ηtu
(
∇uLt(u

t, wt+1, αt) −∇uLt(u
t, wt, αt)

)
⟩]

≤ ηtu E
[
∥∇uL(ut, wt, αt)∥ ∥

(
∇uLt(u

t, wt+1, αt) −∇uLt(u
t, wt, αt)

)
∥
]

≤ ηtu
2
E
[
∥∇uL(ut, wt, αt)∥2 + ∥

(
∇uLt(u

t, wt+1, αt) −∇uLt(u
t, wt, αt)

)
∥2
]

≤ ηtu
2
E
[
∥∇uL(ut, wt, αt)∥2

]
+

ηtu
2
L2E

[
∥wt+1 − wt∥2

]
,

and similarly,

E[⟨∇αL(ut, wt, αt),−ηtα
(
∇αLt(u

t+1, wt+1, αt) −∇αLt(u
t, wt, αt)

)
⟩]

≤ ηtα
2
E
[
∥∇αL(ut, wt, αt)∥2

]
+

ηtα
2
L2E

[
∥wt+1 − wt∥2 + ∥ut+1 − ut∥2

]
.

Noting the fact that 0 < η ≤ ηtu, η
t
w, η

t
α ≤ 1

3L
and max{ηtu, ηtw, ηtα} ≤ Kη, we have:

E[L(ut+1, wt+1, αt+1)] − E[L(ut, wt, αt)]

≤ −η

2
E
[
∥∇u,w,αL(ut, wt, αt)∥2

]
+ LE

[
∥wt+1 − wt∥2 + ∥ut+1 − ut∥2 + ∥αt+1 − αt∥2

]
≤ −η

2
E
[
∥∇u,w,αL(ut, wt, αt)∥2

]
+ LK2η2(M + C E

[
∥∇u,w,αL(ut, wt, αt)∥2

]
),
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since inequality (2.35) holds. With strong convexity and η ≤ 1
4CLK2 , this implies:

(
E[L(ut+1, wt+1, αt+1)] − L∗)− (

E[L(ut, wt, αt)] − L∗)
≤ −µ(η − 2CLK2η2)

(
E[L(ut, wt, αt)] − L∗) + MLK2η2

≤ −1

2
µη

(
E[L(ut, wt, αt)] − L∗) + MLK2η2.

Therefore, the bounds (2.36) and (2.37) are proved.

Corollary 2.8 shows that when t is large and η is small, the expected Lagrangian

E [L(ut, wt, αt)] is very close to the minimum L∗. However, a small initial learning rate can

also lead to slow convergence. Previous research work [2] has shown a sublinear convergence

when the learning rate is diminishing.

2.3.5 Regularization Terms

We explore the usage of the regularization term P(α) in Lagrangian (2.11). First, we consider

the softmax function [23], which are widely used to map a real valued vector z ∈ Rd to

a normalized vector in [0, 1]d. For z = (z1, ..., zd), the softmax function σ(z ) is defined

componentwise for i = 1, 2, ..., d:

σ(z )i =
ezi∑d
j=1 e

zj
.

Now we define the regularization function for a trainable vector z to be:

R(z ) = ⟨σ(z ), c⟩, (2.38)
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where c = (c1, c2, ..., cd) is a vector of real numbers. We will discuss in the next chapter

the meaning of c. Here we point out that the architecture consists of several nodes, and

each of them can be represented by a vector z n. Hence the architecture parameter α is the

collection of all these vectors, and the overall regularization term P(α) is the sum of such

R(z n). The following proposition shows that the gradient of P(α) is Lipschitz, and hence

satisfies the condition of Theorem 2.2.

Proposition 2.9. The regularization function P(α) =
∑N

n=1 R(zn) satisfies the Lipschitz

gradient property (2.13).

Proof. We only need to show that R(z n) has Lipschitz continuous gradients. That means,

we only need to show that each component of σ(z ) has Lipschitz continuous gradients (we

have dropped the subscript). This can be implied by the boundness of the second order

derivatives. Actually, we have:

∂k(σ(z )i) =


−σ(z )iσ(z )k, k ̸= i

σ(z )i − σ(z )2i , k = i.

Applying chain rule and the fact that 0 ≤ σ(z )i ≤ 1, we can easily show that all the second

order derivatives are uniformly bounded.
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Chapter 3

Search for Topological Architectures

of CNN Blocks via RARTS

Since we have illustrated the relaxed search algorithm in the previous chapter, we now

present the formulation of the architecture search problem for CNN blocks, which includes

the search spaces, selection criteria, constraints and evaluation. We discuss in detail the

image classification task, the outline of various datasets, and the hyperparameter and device

settings to be used in the experiments. Comparisons are made among various architecture

search methods through experimental results.

3.1 Problem Formulation

3.1.1 Basic Operations

We shall describe the basic operations of a Convolutional Neural Network (CNN) [23].

Convolution. Since CNN is widely used to extract features from images, the input of an
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operation or a layer is usually an image or feature map, which can be represented by a two-

dimensional (2D) tensor X ∈ RH×W . Here H and W are the height and width of the input

feature. The 2D convolution operation can be interpreted as a shifting dot product between

the input feature and the kernel, which can also be represented by a 2D tensor K ∈ Rk×k.

Here k is the kernel size, which is often set to be 3, 5 or 7 in many CNN architectures. A 2D

convolution is defined to be a map f , mapping X ∈ RH×W to a 2D output feature tensor

Y = f(X ) = X ∗K , so that for 1 ≤ h ≤ H and 1 ≤ w ≤ W we have elementwise:

Y h,w =
∑

1≤r,s≤k

X h+r,w+sK r,s. (3.1)

Here we can require appropriate zero padding (so that the dimension of X is expanded) and

the stride to be 1, so that the dimension of the output feature is the same as that of the

input feature, i.e., Y ∈ RH×W .

Suppose we have a batch of images or feature maps with multiple channels, represented by

a 4D tensor X ∈ RN×Cin×H×W . Here N is the batch size and Cin is the number of input

channels, e.g., Cin = 3 for initial input images of three colors. In this case, the kernels can

also be represented by a 4D tensor K ∈ RCout×Cin×k×k, where Cout is the number of output

channels. If we require appropriate zero padding and the stride to be 1, the 2D convolution

f maps X ∈ RN×Cin×H×W to Y = f(X ) ∈ RN×Cout×H×W . The output features Y can be

defined componentwise for 1 ≤ n ≤ N and 1 ≤ j ≤ Cout:

Y nj =

Cin∑
i=1

X ni ∗K ji, (3.2)

for the version without the bias terms. Here Y nj ∈ R1×1×H×W is the feature map of the

n-th batch and the j-th output channel, while X ni ∈ R1×1×H×W and K ji ∈ R1×1×k×k have

similar meanings.

Batch normalization. A convolution is sometimes followed by a batch normalization [30],
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which can normalize the input features by adjusting the mean and variance of a batch.

Suppose X ∈ RN×Cin×H×W stands for the input features, X i ∈ RN×1×H×W is a batch of

feature maps for the i-th channel, and xnihw is an element of X i. It is clear that X i has

NHW such elements. The batch mean µi
B and batch variance (σi

B)2 of the i-th channel are

defined for 1 ≤ i ≤ Cin as follows:

µi
B =

1

NHW

∑
n,h,w

xnihw

(σi
B)2 =

1

NHW

∑
n,h,w

(xnihw − µi
B)2.

The normalized feature maps of the i-th channel X̂
i

are defined elementwise:

x̂nihw =
xnihw − µi

B√
(σi

B)2 + ϵ
,

where ϵ is a constant number. By introducing a pair of learnable parameters γ = (γ1, ..., γCin)

and β = (β1, ..., βCin), the batch normalization operation transforms X ∈ RN×Cin×H×W to

a tensor Y of the same shape, defined elementwise:

ynihw = γi x̂nihw + βi. (3.3)

Batch normalization is believed to be a way to speed up the training and regularize the

model [30], while it has also been pointed out that the loss function can be smoother with

the introduction of batch normalization [47].

ReLU. Activation functions contribute to the nonlinearity of CNNs. Among them, ReLU

(Rectified Linear Unit) [21] is commonly used after a convolution or batch normalization.

For the input features X ∈ RN×Cin×H×W , the output of the ReLU function σ is a tensor
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Y = σ(X ) ∈ RN×Cin×H×W , which can be defined elementwise:

ynihw = max{xnihw, 0}.

We shall note that ReLU does not change the resolution H ×W of the input feature maps,

while batch normalization or convolution with stride 1 and proper padding does not, either.

Pooling. If we want to produce feature maps of different resolutions, we may use convo-

lutions with strides greater than 1, or simply pooling layers [23]. The max pooling maps

each 2 × 2 patch of the input features to the maximum of its 4 elements. In this way, the

resolution of the output features is reduced to H
2
× W

2
. Similarly, one can define average

pooling to be a function mapping a patch to the average of its elements.

Shortcut and identity. The convolution, batch normalization, activation and pooling

operations are often stacked sequentially to build many well-known CNNs [33, 32, 48]. How-

ever, it is believed that these sequential plain architectures might not be easy to train when

they become deeper, and hence a residual architecture called ResNet has been proposed [26].

ResNet has added a few shortcuts to the sequential architecture, and each shortcut is set to

be a skip connection or identity operation (i.e., it maps X to X ). In this way, the output

feature map Y of an operation f plus the shortcut is:

Y = f(X ) + X ,

instead of Y = f(X ) in the plain architectures. Since f(X ) = Y −X , the target f which

we would like to train, is a residual mapping. It has been pointed out that the deeper model

can at least outperform the shallower model since it can degrade to the shallower one if

the residuals are learned to be 0, i.e., the extra layers are identities. The introduction of

shortcuts has greatly enriched the topological architecture of CNNs, extending beyond the

plain ones.
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Depthwise separable convolution. We have reviewed the elementary operations of

CNNs. Now we construct more complicated variants based on these building bricks. A depth-

wise separable convolution splits the convolution operation defined in equation (3.2) into a

depthwise convolution and a pointwise convolution, for the purpose of reducing computational

complexity [29]. Suppose X ∈ RN×Cin×H×W is the input feature map, and stride and padding

are chosen so that the output resolution is the same as the input resolution. The depthwise

convolution only requires Cin kernels, and can be represented by a tensor K d ∈ R1×Cin×k×k.

Each output feature is only associated with one input feature and one kernel of the corre-

sponding channel. It generates the intermediate feature maps X̂ ∈ RN×Cin×H×W :

X̂
ni

= X ni ∗K i
d,

for 1 ≤ n ≤ N and 1 ≤ i ≤ Cint. Here K i
d ∈ R1×1×k×k is the kernel of the i-th channel.

After that, the pointwise convolution is applied to the intermediate features to generate

output features with Cout channels. The pointwise convolution can be represented by K p ∈

RCout×Cin×1×1, while the output features Y ∈ RN×Cout×H×W can be defined componentwise

by the linear transform:

Y nj =
∑
i

X̂
ni
kji
p .

We note that the computational cost of the convolution of a kernel with shape k × k and a

feature with shape H×W is O(k2HW ). So the regular convolution with Cin input channels

and Cout output channels (3.2) has a parameter number of O(CinCoutk
2) and a computational

cost of O(CinCoutk
2HW ), if we treat the batch size N as a constant (or simply 1). As the

combination of the depthwise convolution and the pointwise convolution, the depthwise

separable convolution has a parameter number of O(Cink
2 + CinCout) and a computational

cost of O(Cink
2HW +CinCoutHW ). It is clear that the depthwise separable convolution can

reduce the complexity to 1/k2 of the regular convolution, if Cout >> k2.
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Dilated convolution. Another commonly used variant of convolution is called the dilated

convolution [62]. While each output pixel is associated with a square of adjacent input

pixels for the regular convolution, there is a jump between the corresponding input pixels

for the dilated convolution, which is defined to be the dilation factor. For an input feature

X ∈ RH×W and a kernel K ∈ Rk×k, the output of the dilated convolution of a dilation

factor d is defined to be Y , where:

Y h,w =
∑

1≤r,s≤k

X h+dr,w+dsK r,s

for 1 ≤ h ≤ H and 1 ≤ w ≤ W with suitable padding. This definition can be extended

to the convolution with multiple input and output channels using equation (3.2). We shall

note that when d = 1, the dilated convolution is the same as the regular convolution. It

has been pointed out that dilated convolution [62] can increase the receptive field, which is

known to be the input patch or pixels that contribute to the value of the output patch or

pixel via convolution [23]. For example, the receptive field of an output pixel generated by

a 3× 3 regular convolution is a 3× 3 input patch, and the receptive field of this 3× 3 patch

is a 5 × 5 patch, given another layer of 3 × 3 regular convolution. For a dilated convolution

with the kernel of the same shape, the receptive field of the 3 × 3 patch is a 7 × 7 patch,

if the dilation factor d = 2. A larger receptive field means that a pixel can be indirectly

connected to more pixels in previous layers. Downsampling methods like pooling or striding

are often adopted to increase the receptive field so that the model can learn more global

features for tasks like image classification. However, downsampling reduces the resolution

of the features, and hence might affect the performance of the model on more complicated

tasks like semantic segmentation, which needs to recover the full-resolution output. Dilated

convolution is believed to be better than these downsampling methods, as it can preserve

the resolution [62].
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3.1.2 Search Spaces

Since shortcuts are introduced, we need to search not only the type of the operations, but

also the edges between the states, i.e., the topology of the neural network. It would be

computationally expensive if one wants to search for specific types of all the operations

and the edges to connect the states. As many successful architectures are built of repeated

modules of a certain type and function [49, 26], a simple search space called the NASNet

search space is composed with the help of cells, i.e., the repeated modules of the same

structure [70]. Architecture search is made easy as there are only two cell structures needed

to be searched for, which are named normal cell and reduction cell. The normal cell can

preserve the resolution of the input features, while the reduction cell decreases the resolution

by a half. To construct a CNN, the cells are stacked in the way that 3N normal cells are

piled consecutively, with two reduction cells inserted after the N -th and the 2N -th normal

cells. The input and output features of cells are called hidden states. The (i + 1)-th cell

has two input hidden states from the (i − 1)-th and the i-th cells, and the output of the

(i + 1)-th cell is the input hidden state of the (i + 2)-th and (i + 3)-th cell. Given all these

global architectures fixed, one needs to search for the local architectures, namely, the type

of operations and the edges between states within the normal and reduction cells.

Suppose there are 4 intermediate states within each cell. Along with two input hidden states

and one output hidden state, we need to search edges between seven states. Although this

search space is much smaller than a global one, it is still computationally expensive to train all

the models selected to convergence in the search process, even if an order of the intermediate

states is predefined [70, 36, 43]. To solve this issue, a supernet structure and a training

technique called weight sharing have been proposed [42, 37]. The supernet is a directed

acyclic graph, containing all the candidate edges, and each of its subgraphs can represent an

architecture. To search for an architecture, we only need to search for a subgraph. Weight

sharing means that we only need to train the supernet once, and each architecture can
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take the weights directly from the trained supernet, as it is a part of the supernet. It has

created more space for many Differentiabl Neural Architecture Search (DNAS) methods like

DARTS [37] and RARTS, as the differentiable architecture parameters have to be learned

on the supernet.

For a cell of DARTS, the four intermediate states are labeled by four numbers 0−3 [37]. The

features or information can only flow from the input states or a state with a smaller label

to a state with a larger label, e.g., the input of the 0-th state is the sum of the two edges

connecting the two input hidden states, while the input of the 2-nd state is the sum of the

four edges connecting the two input hidden states and the 0-th and 1-st states. Therefore,

we have obtained 2 + 3 + 4 + 5 = 14 candidates edges in a cell of the supernet. For each

intermediate state, we need to select two optimal edges, which means we need to select

8 edges out of the 14 candidates to build an architecture from the supernet. Finally, the

output of the cell is a concatenation of the outputs from the four intermediate states, along

the channel dimension. It serves as the input hidden state of the next two cells. Everything

in the concatenation step is fixed.

When selecting the edges, we also need to learn an operation for each edge. The set of

candidate operations is predefined, among which are often identity, zero, max or average

pooling, convolution, depthwise separable or dilated convolution of different kernel sizes and

strides, or their combinations [70, 42, 36, 43, 37]. There are often 7 or 8 candidate operations

in the search space of many DNAS methods [37, 5].

3.1.3 Selection Criteria

Suppose X i ∈ RN×Cin×H×W is the i-th state, Oi,j,k is the k-th candidate operation of the

edge from the i-th state to the j-th state for i < j and 1 ≤ k ≤ K, where K is the number of
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candidate operations. The j-th state is the sum of the outputs from all the previous states:

X j =
∑
i<j

Oi,j(X i), (3.4)

where Oi,j is the optimal operation for edge (i, j), which can be further written as:

Oi,j =
∑
k

ci,j,kOi,j,k. (3.5)

Here ci,j = (ci,j,1, ..., ci,j,K) is the one-hot encoding for the optimal candidate operation Oi,j,l,

i.e., ci,j,k = δkli,j, for δkl the Kronecker delta function.

As reinforcement learning and evolutionary algorithms [70, 42, 43] are believed to be less

efficient [37], DARTS has developed a gradient-based algorithm to learn the architecture,

which has been discussed exhaustively in the previous chapter. To apply gradient de-

scent, the binary structure in equation (3.5), i.e., selecting an operation or not, has to

be transformed to continuous architecture parameters. With the architecture parameter

αααi,j = (αi,j,1, ..., αi,j,K) ∈ RK , a mixed operation along edge (i, j) with input X i is set up via

continuous relaxation of equation (3.5) [37]:

Mi,j =
∑
k

σ(αααi,j)kOi,j,k, (3.6)

where σ is the softmax function we have discussed in Section 2.3.5, which is used to normalize

a real-valued vector to a probability distribution. During training, Mi,j is used to replace

Oi,j to compute X j in equation (3.4). Therefore, α is included in the computation of the

loss function and can be learned by many gradient-based algorithms. Suppose there are 8

candidate operations, i.e. K = 8. Then there are 8 × 14 = 112 architecture parameters in

one cell, which means we need to learn the values of 112 × 2 = 224 architecture parameters

since there are two kinds of cells.
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After training, we need to select the optimal operations. Clearly, the value σ(αααi,j)k can

be interpreted as the probability or the score of the operation Oi,j,k, and thus the optimal

operation for edge (i, j) can be chosen via:

Oi,j = Oi,j,l , l = l(i, j) = arg max
1≤k≤K

σ(αααi,j)k.

In addition to the search of operations, DARTS also searches for the edges by restricting the

number of input edges to be 2 [37]. That is to say, for maximum operation probabilities over

edges {σ(αααi,j)l}i<j, we need to further select two input states i1 and i2 with i1 ̸= i2 such

that σ(αααi1,j)l and σ(αααi2,j)l are the largest and second largest. Finally, the j-th state of the

selected architecture is:

X j =
∑

i=i1,i2

Oi,j(X i).

We should note that it is only a portion of equation (3.4) for the supernet, as only two edges

are selected.

3.1.4 Constraints on Model Efficiency

We sometimes impose constraints of model efficiency on complicated models like Deep Neu-

ral Networks (DNNs), when the computational resources are restricted. These constraints

limit the model size, FLOPS or latency (inference time), and thus the constrained models

are usually smaller but more efficient than the full-size models. There are many manually

designed efficient models [29], while there are also some approaches to learn the efficient

models from the given full-size models. From the view of architecture search, this process

can be formulated as searching for an efficient architecture from the given supernet. To

automate the selection towards an efficient architecture, the constraints are often quantified
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as a function and added to the model loss as a penalty. When minimizing to penalized loss,

the algorithm is likely to converge to a more efficient architecture. That is why one may set

up the regularized Lagrangian (2.11) from the original Lagrangian (2.8).

Since we want to use the RARTS algorithm to minimize the regularized Lagrangian (2.11),

we may want to specify the penalty function P . There are many options, including the ℓ0 or

ℓ1 norm on parameters or groups of parameters [40, 63]. The ℓ0 norm is equal to the number

of parameters, and hence the model size will be reduced if the ℓ0 norm is small. The ℓ1 norm

is able to generate a sparse network, i.e., a large number of parameters or parameters groups

are 0. Moreover, the group sparsity is able to produce light models [59, 15, 4], combined

with a network compression technique called pruning, which we are going to discuss in detail

in the next chapter.

However, these norms act directly on the weight parameters to reduce the model size, and

does not correctly reflect the model latency, which is essential to many real-world applica-

tions. It has been pointed out that two operations can have the same number of parameters

but their latencies differ by 60% [9]. Since we want to search for the architecture of more

efficiency, the latency of its operations should be taken into account, as the real latency of

the architecture can be approximated by the sum of the latencies from all its operations.

While the latency for each operation can be measured via PyTorch/TensorRT, it depends

on what kind of devices we use. Suppose the device is fixed during the search stage, and

LATi,j,k is the latency of the k-th operation on the (i, j)-th edge. Then the latency of the

selected operation on the (i, j)-th edge is:

LATi,j =
∑
k

ci,j,kLATi,j,k,

and analogous to the definition of the mixed operation in equation (3.6), a continuous relax-
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ation has been proposed [9]:

MLATi,j =
∑
k

σ(αααi,j)kLATi,j,k,

and the penalty P(α) is defined to be the sum of all the MLATi,j. This definition is consistent

with our discussions in Section 2.3.5, and we shall be aware that the penalty depends only

on α.

3.2 Experiments

3.2.1 Datasets and Settings

We go over how convolutional layers or cells are used to solve image classification problems.

The task of image classification is to assign each image a label, which is an integer. Suppose

there are C = 10 image classes represented by numbers from 0 to 9, the correct label for the

n-th image is yn, and the predicted label is ŷn. Then yn and ŷn must be integers between 0 and

9. As the output of the cumulative convolutional cells is a feature map X ∈ RN×Cout×H×W ,

further transforms have to be taken. A pooling layer is usually applied to downsample each

feature of size H × W to a single point, and obtain a batch of N vectors: V ∈ RN×Cout .

These vectors are then transformed by a fully connected layer [33], which is a learnable linear

map represented by a matrix T ∈ RCout×C , and the obtain the output U ∈ RN×C via matrix

multiplication: U = VT . After that, a softmax function is applied to each vector of U ,

and obtain a distribution for the predicted labels: D = σ(U ) ∈ RN×C . Here D contains

a batch of N vectors, each has length C and represents the probabilities of the C classes.

During evaluation or inference, the predicted label for the n-th image is ŷn = l, if the l-th

element of Dn is the largest, i.e., l = arg maxk D
n,k. During training, we use the cross-

entropy function defined in by equation (1.2) to compute the loss, e.g., the first term or the
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second term without λ in equation (2.11):

L =
1

N

∑
n

Ho(p
n, qn) =

1

N

∑
n

Ho(p
n,Dn) = − 1

N

∑
n

logDn,yn .

Then the loss is minimized by a gradient-based method like RARTS so that the parameters

could be learned.

We first consider searching for the architecture (the normal and reduction cells) via RARTS

on the CIFAR-10 dataset [31], which is a common dataset for image classification, consisting

of 50,000 images for training and 10,000 images for testing. The images are colored and have

32×32 resolutions, and thus the input tensor of the whole model (without data augmentation)

should belong to RN×3×32×32, where N is the batch size. The 50,000 training images are

allocated to 10 object classes evenly, with 5,000 images in each class. When training the

search stage, the architecture parameters are learned by RARTS and the architecture is

selected according to the criterion we have described in Section 3.1.3, where Dp constains

half of the original training data and Da contains another half as described in the data

splitting section. Subsequently, the selected architecture is trained again from scratch, and

evaluated on CIFAR-10. The criterion for evaluating the architecture is the test accuracy,

i.e., the percentage of test images’ labels which are predicted correctly. The settings of

hyperparameters are similar to that of DARTS [37]. The network to be searched for is

built of 8 cells with 6 normal cells and 2 reduction cells, arranged in the order described in

Section 3.1.2. For the search stage, batch size = 64, initial weight learning rate = 0.025,

momentum = 0.9, weight decay = 0.0003, initial alpha learning rate = 0.0003, alpha weight

decay = 0.001, epochs = 50. For the retraining stage, batch size = 96, learning rate = 0.025,

momentum = 0.9, weight decay = 0.0003, epochs = 600.

In addition, we also evaluate the architecture on the ImageNet-1000 dataset [14, 45], which

contains 1,281,167 training images and 50,000 validation images, divided into 1,000 object
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classes. These images are also colored but vary in resolutions. The input images are usually

resized to a resolution of 224 × 224, so that the input tensor belongs to RN×3×224×224. The

larger resolution and number of image classes may require a more complicated model to

learn the features. Along with the large volume of the dataset, it has made the direct

architecture search on ImageNet-1000 computationally expensive. We follow the trick of

transfer learning [70, 37], namely searching for a proxy architecture on a smaller dataset like

CIFAR and then transferring to ImageNet-1000 for retraining and evalution. To be specific,

the cells learned on CIFAR-10 are stacked to get a network consisting of 14 cells, with 12

normal ones and 2 reduction ones, to be retrained on ImageNet-1000. For this retraining

stage, batch size = 128, learning rate = 0.1, momentum = 0.9, weight decay = 0.00003,

epochs = 250. As transfer learning is developed for the purpose of reducing computations,

it is not always necessary. There are many other differentiable methods which can search for

the architecture on ImageNet-1000 directly. ProxylessNAS [5] has proposed keeping only one

operation of each edge active during training so that the memory is occupied by a compact

model only, instead of the supernet of all the candidate operations. It has further enlarged

the diversity of the learned architecture as there is no more need to stack cells of the same

structures for retraining on ImageNet.

We also consider searching the architecture from NATS-Bench [17], which is a benchmark

of search space other than that of DARTS, for comparing different NAS methods. The

benefit of using such a benchmark is that all the candidate architectures in its search space

have already been evaluated under the same settings, and there is no need to optimize the

hyperparameters. This consistent setting has made the comparisons between different NAS

methods fairer, whereas previous NAS methods are often evaluated in different search spaces,

with different training tricks, so that it is hard to know whether the improvement comes from

the new method or the training tricks. Although the distribution of the normal and reduction

cells is the same as that of DARTS, NATS-Bench has 4 nodes in each cell and 5 candidate

operations for each edge, which are less than those of DARTS. Overall, NATS-Bench has
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provided and evaluated 15,625 candidate architectures. We apply RARTS to search the

architectures from this search space, on multiple datasets like CIFAR-10 and CIFAR-100

[31]. CIFAR-100 has the same volume and resolution of images as those of CIFAR-10, while

its images are divided evenly into 100 object classes, which means each class only contains

500 images for training and 100 images for testing. The hyperparameters for NATS-Bench

are similar to those of DARTS, except for a weight decay of 0.0005, and a learning rate

decaying from 0.1 to 0 during the retraining stage [17].

3.2.2 Results

We search the architecture on CIFAR-10 with RARTS, following the search space settings,

selection criterion and the latency constraint discussed in the previous section. The latency

regularization term is scaled by a hyperparameter γ as shown in equation (2.11) so that it

is balanced with other loss terms. Typically, if we increase the latency scale, the model we

find will be smaller in size. For the current search, γ is set to be 0.002 so that the model size

can be comparable to those in prior works. The discovered architecture is then evaluated on

CIFAR-10, with the experimental results shown in Table 3.1. The model of 3.2M parameters

with 2.65% error on the test data is more accurate than the 3.3M model of 3.00% error found

by first-order DARTS and the 3.3M model of 2.76% error found by second-order DARTS.

Apart from the higher accuracy, the model found by RARTS is more stable in that it has low

variance in the average accuracy of 5 runs. Moreover, RARTS has achieved better search

efficiency than the second-order DARTS and has reduced the search time by around 60%.

Finally, we point out that the performance of the model found by RARTS is comparable to

all the other differentiable methods listed in the table. One may note that ProxylessNAS has

obtained the highest accuracy, but we have mentioned that it has adopted a larger search

space and its resulting model of 5.7M is also larger.
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Figure 3.1: The architecture of the normal (top) and reduction (bottom) cells found by
RARTS. This architecture contains only one skip connection. The last four edges are simply
concatenated together to construct the next cell. So there is no search along these edges,
following the convention of DARTS [37].

This discovered architecture is then transferred to and evaluated on ImageNet-1000, as shown

in Table 3.2. The model found by RARTS of 4.7M parameters with 25.9% validation error

is better than the one found by DARTS of 4.7M parameters with 26.7& error, and is also

comparable to other differentiable methods. We may notice that ProxylessNAS, FairDARTS

and PC-DARTS search the architecture directly on ImageNet-1000, instead of transferring

the architecture learned on CIFAR-100. This can lead to higher accuracy, but may cost more

computational resources. Many methods have evaluated the models via Tesla V100 GPUs,

which have larger memory than the GTX 1080 Ti GPU used by DARTS and RARTS. For

ImageNet-1000, the models are usually trained better by a GPU of larger memory as a larger

batch size can be allowed. This can also partly explain the high accuracy of some methods

on ImageNet, but a relatively low accuracy on CIFAR-100.

Finally, Table 3.3 shows the results of RARTS searching on NATS-Bench, which include the

accuracy on the test data of CIFAR-10 and CIFAR-100, and the ratio of skip-connections

in the discovered architectures. RARTS has surpassed both first-order DARTS and second-
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Table 3.1: Comparison of DARTS, RARTS and other methods on CIFAR-10 based architec-
ture search. DARTS-1/2 stands for DARTS 1st/2nd order, SNAS-Mi/Mo stands for SNAS
plus mild/moderate constraints. Note that faster search times also depend on speed and
memory capacity of local machines used. The V100 column indicates whether the model
is trained on high-end Tesla V100 GPUs or not. The architecture discovered by RARTS is
retrained and evaluated using a single GTX 1080 Ti GPU in our experiments. The numbers
in the parentheses indicate the search GPU days of DARTS on our machine. Average of 5
runs. ⋄ These runs are conducted on our machine.

Method Test Error (%) Para. (M) V100
Search

GPU Days

Random Baseline [37] 3.29 ± 0.15 3.2 ✗ 4

AmoebaNet-B [43] 2.55 ± 0.05 2.8 ✗ 3150
SNAS-Mi [56] 2.98 2.9 ✗ 1.5
SNAS-Mo [56] 2.85 ± 0.02 2.8 ✗ 1.5
DARTS-1 [37] 3.00 ± 0.14 3.3 ✗ 1.5 (0.7)
DARTS-2 [37] 2.76 ± 0.09 3.3 ✗ 4 (3.1)

GDAS [19] 2.82 2.5 ✓ 0.2
ProxylessNAS [5] 2.08 5.7 ✓ 4.0
FairDARTS [11] 2.54 ± 0.05 3.3 ✓ 0.4
FairDARTS [11] 2.94 ± 0.05 ⋄ 3.2 ✗ 0.3
P-DARTS [10] 2.50 3.4 ✓ 0.3
PC-DARTS [57] 2.57 ± 0.07 3.6 ✓ 0.1
PC-DARTS [57] 2.71 ⋄ 2.9 ✗ 0.1
MiLeNAS [24] 2.80 ± 0.04 2.9 ✓ 0.3
MiLeNAS [24] 2.51 ± 0.11 3.9 ✓ 0.3

RARTS 2.65 ± 0.07 3.2 ✗ 1.1

order DARTS in accuracy by more than 20% on CIFAR-10 and 6% on CIFAR-100. In

addition to its success in accuracy, RARTS has also completely avoided the architecture

collapse problem, as the architecture found by RARTS contains no skip-connections. On the

contrary, both architectures found by first-order DARTS and second-order DARTS contain

100% and 38.9% skip-connections on CIFAR-10 and CIFAR-100, respectively. This has

also explained why the DARTS architectures are much worse in accuracy, and justified the

advantage of RARTS from the architecture collapse viewpoint.
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Table 3.2: Transfer to ImageNet: validation error comparison of DARTS, RARTS and other
methods on local machines resp. The V100 column indicates whether the model is trained
on high-end Tesla V100 GPUs or not. The larger GPU memory can support larger batch
size, which leads to better accuracy and training efficiency on ImageNet. The Direct column
indicates if the model is searched directly on ImageNet without transfer-learning. The direct
search tends to be more accurate but costs more computational resources.

Method Top-1 (%) Top-5 (%) Parameters (M) V100 Direct

SNAS [56] 27.3 9.2 4.3 ✗ ✗

DARTS [37] 26.7 8.7 4.7 ✗ ✗

GDAS [19] 26.0 8.5 5.3 ✓ ✗

ProxylessNAS [5] 24.9 7.5 7.1 ✓ ✓

FairDARTS [11] 24.9 7.5 4.8 ✓ ✗

FairDARTS [11] 24.4 7.4 4.3 ✓ ✓

P-DARTS [10] 24.4 7.4 4.9 ✓ ✗

PC-DARTS [57] 25.1 7.8 5.3 ✓ ✗

PC-DARTS [57] 24.2 7.3 5.3 ✓ ✓

MiLeNAS [24] 25.4 7.9 4.9 ✓ ✗

RARTS 25.9 8.3 4.7 ✗ ✗

Table 3.3: Test errors of DARTS vs. RARTS on NATS-Bench search space. The results of
DARTS on NATS-Bench are from [17]. Ratio = the number of skip-connections over the
number of total operations in the discovered architecture.

Dataset Method Error (%) Ratio (%)

DARTS-1 40.16 100
CIFAR-10 DARTS-2 34.62 100

RARTS 11.48 0

DARTS-1 38.74 38.9
CIFAR-100 DARTS-2 39.51 38.9

RARTS 32.37 0
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Chapter 4

Compression of Neural Networks via

Width Search

In this section, we consider the topic of network compression, its relation with width search

and the application of the Relaxed Architecture Search method (RARTS) to network com-

pression. First, we briefly go over the channel pruning methods for CNN layers, and for-

mulate it in the way of width search by introducing the channel scoring parameters. Next,

we propose a channel pruning and width search algorithm based on RARTS. In addition to

the compression of the traditional CNN’s, we also set up a framework for the compression

of recent vision transformers from the viewpoint of architecture search. Finally, experiments

are carried out on the common datasets for image classification and object detection.
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4.1 Problem Formulation

4.1.1 Sparsification and Channel Pruning

Sparsification can help to construct efficient neural networks by removing redundant param-

eters from the over-parameterized networks, as the sparse networks we obtain occupy less

memory and require fewer computational resources. It is common to add the ℓ1 penalty [51]

of all the model parameters to the loss and learn a sparse model during training. Different

from the parameter shrinkage caused by ℓ1, a regularization method based on ℓ0 penalty

has been proposed [40], resulting in a sparse network with reduced number of parameters

and computations, less inference time and overfitting mitigated. Whereas their method has

utilized stochastic binary gates and the hard-sigmoid to deal with the nonsmoothness of

ℓ0, the RVSM we have mentioned in equation (2.6) can solve the ℓ0 regularized problem

via an alternating gradient descent and closed-form update, generating sparse networks for

classification tasks on CIFAR-10 [16] and medical images [58].

Compared with a sparse network of randomly distributed parameters of zero values, it is

easier to realize the hardware efficiency by considering group sparsity, i.e., setting structured

groups of weight parameters to be zero. A group sparsity method [55] has been developed by

adding the group Lasso regularization [63], that is ℓ1 norm on the ℓ2 norm of each parameter

group, to the loss function during training. The parameter group can be a channel in

a convolutional layer, or the whole layer if the depth of the neural network needs to be

reduced. The channel sparsity can immediately lead to channel pruning, which is a common

method for generating efficient neural network through removing unimportant channels from

a redundant network, where a channel is unimportant if its group ℓ1 norm is small at the

end of training. The loss function regularized by group ℓ1 norm can be also optimized

approximately using the group RVSM, which has been proved to be effective on multiple

image classification tasks [59, 15, 4]. We shall be aware that when pruning the number
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of channels by group sparsity, the regularization function can be written as P(w), which

depends only on the weight parameters in the convolutional kernels.

4.1.2 Channel Pruning as Architecture Search

In addition to the conventional methods adding group sparsity to the convolutional weights,

the channel pruning problem can be also formulated as a neural architecture search problem.

A method called Network Slimming (NetSlim) has been proposed based on learning the

channel scaling factors [38], which is able to reduce the model complexity and computational

cost, and preserve the accuracy at the same time. These channel scaling factors are simply

defined to be the learnable scale parameters γ of the batch normalization layer found in

equation (3.3), and the channels corresponding to low scales are pruned. To learn sparse

scales, the ℓ1 regularization of these scale parameters is added to the loss during training.

After being trained with ℓ1 sparsity and the channels with low scales pruned, the model is

further fine-tuned to achieve better performance. We shall be aware that the regularization

term is not added to the convolutional weights, but directly to the scale parameters, which

play a similar role as the architecture parameters in the differentiable neural architecture

search context. This procedure of training a supernet, selecting a subnet, and training

the selected subnet again is the same as that of DNAS. It is searching for the width indeed,

whereas the DNAS methods mentioned in the previous section are searching for the topology.

What makes NetSlim different from DNAS is its training algorithm, as it trains the scale

parameters jointly with the convolutional weights without any splitting or alternating. As

we have mentioned in the previous section, this may lead to overfitting.

Apart from NetSlim, there are many other channel pruning formulations and searching algo-

rithms based on DNAS. TAS can search for both the width and depth of a network through

sampling a few candidate feature maps with different number of channels [18]. These fea-
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ture maps are aggregated by channel wise interpolation, and each of them is assigned a

probability, parameterized by an architecture parameter which is learnable by DNAS. With

constraints on FLOPS, a loss function is set up and optimized along with the probabilities via

gradient descent. The structures with the highest probabilities are retained and the others

are pruned. Following the steps of searching and pruning like the other methods, TAS has

further used knowledge distillation [28] in the fine-tuning stage to improve the performance of

the pruned network, which we will discuss in the next subsection. Despite the high accuracy

of the model pruned by TAS on many classification tasks compared to other methods, it still

remains unknown if the improvement of the accuracy comes from the proposed search algo-

rithm or the fine-tuning stage with knowledge distillation. Moreover, the possible numbers

of the channels can be searched are predefined, i.e., there are only 8 possible pruning ratios

for each channel, ranging from 0%, 10% to 70%. Another search method called FasterSeg

[9] is proposed for semantic segmentation tasks. Taking multi-resolution architectures into

consideration, it can search for the width as well as operations and global topology like paths

or the downsampling nodes for different resolutions. Similarly, it has also utilized knowledge

distillation after the search stage and constrained the efficiency by a latency penalty. It

has also applied DARTS for searching, and limited the pruning ratios to a predefined set of

numbers like TAS.

Based on these previous works, we can summarize a general framework for searching the

width of operations:

• Specify the architecture parameters for representing the width of the operations

• Set up a loss function which involves the architecture parameters and the other learn-

able parameters, with efficiency constraints on the architecture parameters

• Optimize the loss via gradient descent or DNAS and prune the network based on the

values of the architecture parameters
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• Fine-tune the pruned network, possibly with knowledge distillation

This guideline can be adjusted accordingly for different networks and tasks. We will see in

the next sections how we complete each step and find the desired width with the assistance

of RARTS.

4.2 Search for the Width of CNNs

4.2.1 Method

First, we need to determine a way to specify the architecture parameters. From the discussion

in the above section, NetSlim seems to be more flexible since each convolutional layer can

preserve any number of channels after pruning, whereas the other methods can retain only

a few different pruning ratios. However, NetSlim sets the channel scoring parameters to be

the scales of the batch normalization layers, which are not reliable when the batch size is

too small. A network without any batch normalization layers is common when the task is

complicated and the GPU memory is limited [20, 39]. Hence, we adopt the following simple

but universal method to determine the architecture parameters α by assigning them directly

to the feature maps through pointwise multiplication:

X̃
i

= αiX i, (4.1)

where X i ∈ RN×1×H×W and αi ∈ R are the output feature of the i-th convolutional channel

and its corresponding architecture parameter, X̃
i

is the input feature of the i-th channel

for the next layer. Although equation (4.1) does not contain any convolution operations

explicitly, one shall be aware that multiplying the i-th output feature map by αi is equivalent

to multiplying the i-th convolutional filter which produces this output feature map by the
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same αi. Therefore, we can prune the convolutional channels whose output features have

small values of α.

Next, we need to set up a loss function including both the weight parameters and the

architecture parameters. Since we will apply RARTS to optimize the loss, we can directly use

the Lagrangian as defined in equation (2.11) with a penalty on the architecture parameters

like that the ℓ1 in NetSlim. We obtain the search, pruning and fine-tuning algorithm:

Algorithm 3: Search for the width via RARTS

Input: the number of iterations N , the hyperparameters λ, β and γ, a learning rate

schedule (ηtw, η
t
u, η

t
α), a pruning ratio m, initialization of the weight

parameters w0, u0 and the architecture parameters α0.

Output: a pruned model with the fine-tuned weight parameters w

The search stage: Split the dataset D into two subsets Dp and Da.

for t = 0, 1, ..., N do

Compute Lp and La on Dp and Da, respectively, and then compute L using

equation (2.11)

Update the parameters via gradient descent:

wt+1 = wt − ηtw ∇wL(ut, wt, αt)

ut+1 = ut − ηtu ∇uL(ut, wt+1, αt)

αt+1 = αt − ηtα∇αL(ut+1, wt+1, αt)

end

The pruning stage: Sort the α and prune the corresponding channels according to

the ratio m.

The fine-tuning stage: Fine-tune the pruned model with a warm start or

knowledge distillation if a pretrained full-size model is given. We use the regular

gradient descent or SGD only to learn the weight parameters w in this stage.

For the knowledge distillation part, we add an extra loss LKD to the overall loss for fine-
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tuning the model, following that in TAS [18]:

LKD =
1

N

∑
n

∑
i

σi(Û
n
/T ) log

(
σi((Û

n
/T )/σi((U

n/T )
)
,

where Û
n

and U n are the output logits of the unpruned and pruned networks in the n-th

batch, σi is the i-th softmax function, and T is a hyperparameter. We shall note that the loss

is equal to the KL divergence (equation (1.3)) of the pruned model’s predicted probability

distribution from the unpruned model’s probability distribution. In other words, this extra

loss helps the pruned model to learn the soft labels of the unpruned model.

4.2.2 Experiments

We search for the width of PreResNet-164 [27] on CIFAR-10 and CIFAR-100. PreResNet is

slightly different from the original ResNet [26] in that it has regarded the batch normalization

layer and the ReLU function as the pre-activation, i.e., the activation before the convolu-

tional layer. The pre-activation structure is claimed to have regularization effects, make

the optimization easier, and performs better than the original ResNet on CIFAR datasets.

Each residual block of PreResNet-164 contains three sequential modules, with each of the

module contains a batch normalization, a ReLU, and a convolutional layer sequentially. It

also follows the bottleneck design of the original ResNet to reduce the computational costs.

That is to say, the first and the last convolutions have 1 × 1 kernels for reducing and ex-

panding the number of channels, whereas the intermediate convolutions have 3 × 3 kernels

for learning the features. Suppose the width reduction ratio is 1/4, we have an input feature

map X ∈ R1×4C×H×W of batch size one, and the three convolutions can be represented by

K 1 ∈ RC×4C×1×1, K 2 ∈ RC×C×k×k, and K 3 ∈ R4C×C×1×1. Then this bottleneck resid-

ual block has a parameter number of O(C2k2 + 8C2), and a computational complexity of

O(C2k2HW + 8C2HW ). Suppose the remaining ratio of the channels is a constant ρ for the
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three convolutions. Then the pruned convolutions are K ′
1 ∈ RC×4ρC×1×1, K ′

2 ∈ RρC×ρC×k×k,

and K ′
3 ∈ R4C×ρC×1×1. The resulting number of parameter is O(C2ρ2k2 + 8ρC2), and the

computational complexity is O(C2ρ2k2HW + 8ρC2HW ).

When using RARTS to search for width, we follow the hyperparameters and settings of

NetSlim as well. That is, learning rate = 0.1, weight decay = 0.0001, epochs = 160, and

the sparsity scale γ = 0.0001 [38]. The same settings also apply when fine-tuning the

pruned model, except for the distillation parameter T = 4, following that of TAS [18]. We

present the results of the pruned model without and with distillation. In Table 4.1, RARTS

without distillation outperforms NetSlim (NS) and TAS [18] by around 10% error reduction

on CIFAR-10. While TAS does not offer an option to specify the pruning ratio of channels

(PRC), the pruning ratio of FLOPs is around 30% for NS (40% PRC), RARTS (40% PRC)

and TAS. So the comparison is fair. On CIFAR-100, RARTS still leads NetSlim at the same

PRC. The gap is smaller as the baseline network is less redundant. Our experimental results

reveal that the accuracy of TAS with knowledge distillation is lower than (on CIFAR-10) or

similar to (on CIFAR-100) that of RARTS, while TAS without distillation is 2% worse [18].

Actually, the column with distillation (KD) shows that the performance of RARTS pruning

can be further improved, especially on a more complicated dataset like CIFAR-100. These

comparisons support the fact that RARTS works better as a differentiable method for width

search, without regard to any other training tricks.

Apart from the comparisons with the above methods, we also consider a pruning task for

comparing DARTS and RARTS, which can be viewed as an ablation study of RARTS on

the width search task. For this task, we prune MobileNetV2 [46] on a randomly sampled 20-

class subset of ImageNet-1000, with ℓ1 regularization but unfixed pruning ratio. This subset

(which is denoted by ImageNet-20) contains 26,000 images for training and 1,000 images

for validation, which is much fewer than ImageNet-1000. The pruning ratio can be learned

automatically by the strong regularization term, as many of the architecture parameters are
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Table 4.1: Application of RARTS to PreResNet-164 (baseline, 1.7 M parameters) channel
pruning on CIFAR-10 and CIFAR-100, in comparison with the baseline, TAS and NetSlim.
The numbers in the parentheses indicate the pruning ratio of channels (PRC). For NetSlim
and RARTS, PRC is fixed at 40% or 60%. KD means the test error (%) with the use of
knowledge distilled from the unpruned model. NS = NetSlim.

Data Method Test Error (%) KD FLOPS

CIFAR-10

Baseline [38] 4.22 - 2.48 × 108

TAS [18] - 6.00 1.78 × 108

NS (40% PRC) [38] 5.08 - 1.90 × 108

RARTS (40% PRC) 4.58 4.58 1.90 × 108

NS (60% PRC) [38] 5.27 - 1.38 × 108

RARTS (60% PRC) 4.90 5.01 1.33 × 108

CIFAR-100

Baseline [38] 21.83 - 2.48 × 108

TAS [18] - 22.24 1.71 × 108

NS (40% PRC) [38] 22.87 - 1.67 × 108

RARTS (40% PRC) 22.64 21.63 1.78 × 108

NS (60% PRC) [38] 23.91 - 1.24 × 108

RARTS (60% PRC) 23.26 22.38 1.23 × 108

simply zero. Table 4.2 shows that RARTS also beats both random pruning and DARTS in

accuracy. Even though the 2nd DARTS obtains a higher sparsity, it sacrifices the accuracy.

4.3 Search for the Dimensions of Transformers

4.3.1 Background

Unlike the convolutional or recurrent neural networks (CNN or RNN) [23], transformers are

the models based completely or partially on the attention mechanisms. They are originally

proposed to learn global dependency for sequence transduction tasks [53], , and have obtained

better performance and training efficiency. The general architecture of the transformer for

sequence modeling is composed of an encoder module and a subsequent decoder module. The

encoder module is a stack of a few sequential encoder blocks, with each of them containing
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Table 4.2: Application of RARTS to MobileNetV2 pruning on the ImageNet-20 dataset (a
randomly sampled subset of ImageNet-1000, with 20 object classes), compared with the
baseline, random pruning, 1st and 2nd order DARTS. Here random pruning means that we
zero out channels randomly in accordance with the pruning ratio of RARTS. Average of 5
runs. PRC = the average pruning ratio of channels over the pruned layers. We note that
the PRC can be high because the dataset is much smaller.

Method Test Error. (%) PRC (%)

Baseline 12.3 ± 1.4 -
Random Pruning 12.0 ± 1.1 71.2 ± 1.9
DARTS-1 10.1 ± 2.0 69.0 ± 0.9
DARTS-2 9.8 ± 1.7 72.6 ± 2.0
RARTS 8.2 ± 1.9 71.2 ± 1.9

a self-attention (SA) layer and a fully connected feed-forward network. The encoder block

has also adopted the residual structure [26], with a layernorm applied after the summation

of the shortcut and the residual.

While the feed-forward network consists simply of two fully connected layers, the self-

attention layer is computed through a multi-head attention (MSA) mechanism, which is

more complicated and usually requires more computational resources than the convolution

operations used in CNNs. Specifically, the input features are first embedded to a triple of

queries, keys and values, and then distributed to a few heads. For each head, the attention

map is computed via the scaled dot-product of the queries and the keys, and then assigned to

the values. After that, the updated values from each head are concatenated and projected to

construct the output features. This mechanism is claimed to perform better than the single-

head attention as different heads are believed to learn different representation subspaces

[53]. The decoder module is also a stack of a few sequential decoder blocks. However, each

decoder block further contains a multi-head attention layer, in addition to the multi-head

self-attention and the feed-forward network of the encoder. This extra multi-head attention

is computed with the keys and values from the encoder module and the queries from the

decoder.
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Besides its success in language models, transformers have also been widely studied in com-

puter vision tasks. One of the directions is to replace the CNN backbones by transformers.

In other words, transformers are used to extract features from images, and the features are

processed by various heads to solve various tasks after that. Vision Transformer (ViT) [20] is

among the vision models whose backbones are purely transformers. ViT has partitioned the

input image into small patches to mimic the tokens in the language transformers. Instead

of pixels, these patches are embedded into features of certain dimensions, serving as the

input of the attention module. Since its job is to learn representations, ViT has included

the encoder module only, i.e., a stack of multi-head self-attentions. In spite of ViT’s high

accuracy on image classification, there are some concerns about its quadratic computational

complexity on the number of queries n. That means the complexity is also quadratic on the

input resolution H ×W , whereas the convolution operation has linear complexity. ViT has

also been restricted to classification, since pixel-level tasks like segmentation typically need

to deal with high resolution features.

A window-based transformer called Swin Transformer [39] has then been proposed for these

more complicated vision tasks. Similar to ViT, Swin has also provided a series of backbones

which are based purely on transformers, especially the transformer encoders. The first

advantage of Swin is that it can generate hierarchical features so that they can be used

to solve semantic segmentation and object detection tasks with suitable heads. To obtain

features of different resolutions, Swin has merged 2 × 2 = 4 image patches into 1 patch at

the end of each architecture stage. Since the size of patches is fixed, the image height and

the width are both reduced by a half after merging. The overall transformer architecture is

divided into one initial stage without merging and three intermediate stages with merging,

and hence it can produce features of four resolution levels. Another advantage comes from

the window-based multi-head self-attention (W-MSA) with shifting. Compared with the

quadratic complexity of MSA, W-MSA has achieved a linear complexity from computing

the attentions locally, within a small window of patches. Global information across different
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windows is then exchanged via shifting the window partitions.

Similar to the channel pruning in CNNs, there are also some studies for vision transformer

pruning. Inspired by NetSlim, VTP [67] has assigned scoring parameters to the features

before the linear embedding or projection layers and pruned the dimensions of these features

which are corresponding to low scores. Since the dimensions of the linear layers depend on

the dimensions of the input features, the parameters of these layers are also reduced. Another

pruning method has been proposed in NViT [60], which is based on the scores of grouped

structural parameters. The scores are different from those of VTP as they are computed

directly from the weight parameters. NViT has taken pruning the number of heads and the

latency on hardware into account. Moreover, it has been pointed out that having the same

dimensions across all layers in the conventional transformer design might not be optimal

[60], which encourages the studies of automated transformer architecture design.

These pruning methods have obtained high pruning ratio with a very small accuracy loss

for vision transformers like DeiT [52], on the image classification tasks. It would be natural

to consider pruning Swin or other light transformer backbones for multiple computer vision

tasks. WDPruning [61] is a direct pruning method for Swin on ImageNet classification,

without the fine-tuning stage. It has also provided an option for depth pruning, and an

automated learned pruning ratio based on learnable thresholds of saliency scores. However,

experimental results has shown worse accuracy of the pruned models, as it has not been fine-

tuned. Therefore, we propose in this section a pruning method for transformer backbone

which is valid on both image classification and object detection tasks. Since our method aims

to search for the intrinsic dimensions (i.e., the possible lowest dimensions to maintain network

performance) of transformers, we name it SiDT in the rest of this section. Although SiDT

is inspired by previous pruning methods like Network Slimming [38] and Vision Transformer

Pruning (VTP) [67], it has its own merits:

64



• SiDT can prune transformers for not only classification tasks, but also other vision

tasks like object detection.

• We have analyzed the computational complexity of the unpruned and the pruned

models.

• The models with 20% or 40% dimensions pruned perform similarly or even better than

the unpruned model.

• SiDT prunes the dimensions of linear embeddings, different from the feature pruning

of VTP.

4.3.2 Method

Architecture parameters. For the dimension search of transformers, we still follow the

four stages summarized at the end of Section 4.1. Since the searching, pruning and fine-

tuning stages are similar, the key difference is how we set up the architecture parameters.

Whereas we prune convolution operations in CNNs, there are a few types of operations

for different transformers. So we discuss in detail the strategies of setting up architectures

parameters for MSA, W-MSA and multilayer perceptron (MLP) [39]. Suppose again the

batch size is N = 1, X ∈ R1×d×H×W is the input feature map with H and W the resolution

and d the dimension of the feature. Set n = H×W , we obtain the transformed input feature

X ∈ Rn×d.

For SA, X is linearly embedded into the query Q , key K and value V of the same shapes:

Q = XW Q, K = XW K , V = XW V ,

where the embedding matrices W Q,W K ,W V ∈ Rd×d, if the embedding dimensions for the

query, key and value are also equal to d. Then the attention map a is computed via the
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softmax function σ of the scaled product of the query and the key::

a(Q ,K ) = σ(QK T/
√
d) ∈ Rn×n,

and assigned to the value to compute the output of SA:

SA(Q ,K ,V ) = σ(QK T/
√
d)V ∈ Rn×d.

Note that the output of SA has the same shape as the input X . To set up the architecture

parameters, we apply a uniform scoring matrixA for Q , K and V via matrix multiplication:

Q̃ = QA, K̃ = KA, Ṽ = VA,

where A ∈ Rd×d is a diagonal matrix whose diagonal elements are the architecture parame-

ters αi. That is to say, we assign a score αi to the i-th dimension of the d-dimensional query,

and also to the key and value at the same i-th dimension. Then we compute the SA module

based on the scored query, key and value, and obtain SA(Q̃ , K̃ , Ṽ ).

For MSA, we need to compute multiple SA modules and each of them is a head. Let h be

the number of heads. For j = 1, ..., h, we also compute Q j, K j and V j ∈ Rn×d/h through

linear embedding of X via W Q,j, W K,j and W V,j ∈ Rd×d/h like that of SA, and obtain the

heads:

H j = SA(Q j,K j,V j) ∈ Rn×d/h.

With Q , K and V the concatenations of Q j, K j and V j, the output of the MSA module

is computed by concatenating the heads and projecting linearly via W O ∈ Rd×d:

MSA(Q ,K ,V ) = [H 1,H 2, ...,H h]W O ∈ Rn×d.
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We use a stronger scoring matrix A ∈ Rd/h×d/h for MSA, which is not only uniform over the

query, key and value, but also over all the heads:

Q̃ j = Q jA, K̃ j = K jA, Ṽ j = V jA,

for j = 1, 2, ..., h. Then we compute the new MSA module and obtain H̃ j = SA(Q̃ j, K̃ j, Ṽ j)

and:

MSA(Q̃ , K̃ , Ṽ ) = [H̃ 1, H̃ 2, ..., H̃ h]W O.

For W-MSA, the input features X ∈ Rn×d are divided into a few windows of size M ×M ,

and MSA is computed locally within these windows. That is to say, we reshape X to be a

tensor in Rn/M2×M2×d, and obtain Q j, K j and V j ∈ Rn/M2×M2×d/h for j = 1, 2, ..., h after

embedding of multi-head. Here Q j, K j and V j can be viewed as the concatenations of Q j,l,

K j,l and V j,l ∈ RM2×d/h for l = 1, 2, ..., n/M2. For each window, we compute the MSA

module and obtain W ,l = MSA(Q ,l,K ,l,V ,l) ∈ RM2×d. Finally, we rearrange the outputs

of these windows and obtain:

W -MSA(Q ,K ,V ) = [W ,1,W ,2, ...,W ,n/M2 ] ∈ Rn×d.

To set up the architecture parameters for W-MSA, again we use a uniform scoring matrix

A ∈ Rd/h×d/h for the query, key and value, over all the heads and windows:

Q̃ j,l = Q j,lA, K̃ j,l = K j,lA, Ṽ j,l = V j,lA.

Then we have W̃ ,l = MSA(Q̃ ,l, K̃ ,l, Ṽ ,l) and

W -MSA(Q̃ , K̃ , Ṽ ) = [W̃ ,1,W̃ ,2, ...,W̃ ,n/M2 ].
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Figure 4.1: (a) The stages of transformer pruning. (b) Assign the scoring matrix A = diag(α)
to the output dimensions of multi-head queries, keys and values.

The last module to be discussed is MLP [39], which simply contains two linear layers with

activation. Suppose X ∈ Rn×d is the input feature, and dm represents the dimensions of the

hidden state. Suppose further W 1 ∈ Rd×dm and W 2 ∈ Rdm×d are two matrices for linear

embedding, σMLP is the activation. Then we have:

MLP (X ) = σMLP (XW 1)W 2 ∈ Rn×d.

The scoring matrix A is applied immediately after W 1 through matrix multiplication, and

get σMLP (XW 1A)W 2. Here A can be viewed as the scores for the dimensions of the hidden

state.

Pruning. The four-stage pruning procedure is summarized in Section 4.1.2 and also in

Fig. 4.1. During the searching stage, the elements in the scoring matrix A are updated

via gradient descent or DNAS algorithms like RARTS, together with the elements of the
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embedding matrices W . After the completion of searching, we rank the diagonal elements

of the scoring matrix A according to their absolute values. The dimensions of the embedding

matrices are pruned if their corresponding scores are ranked low. Suppose the remaining ratio

of the dimensions after pruning is ρ. Then only ρd dimensions with higher scores are left in

the pruned matrices.

For MSA, we have W Q,j, W K,j and W V,j ∈ Rd×ρd/h after pruning, and hence Q j, K j and

V j ∈ Rn×ρd/h. Since we have not pruned the query or key number n, the attention map still

belongs to Rn×n, and the head H j ∈ Rn×ρd/h. This leads to the projection matrix W O ∈

Rρd×d, and the output of the pruned MSA in Rn×d, with the same shape as the unpruned

model. One can easily see that the original unpruned MSA module has O(4d2) parameters

and a computational complexity of O(4nd2 + 2n2d). For the pruned MSA, the number of

parameters is reduced to O(4ρd2), and the computational complexity is reduced to O(4ρnd2+

2ρn2d). Similarly, the unpruned W-MSA module has O(4d2) parameters and a computational

complexity of O(4nd2 + 2nM2d). For the pruned W-MSA, the number of parameters is

reduced to O(4ρd2), and the computational complexity is reduced to O(4ρnd2 + 2ρnM2d).

Finally, the unpruned MLP has O(2ddm) parameters and a computational complexity of

O(2nddm). For the pruned MLP, the number of parameters is reduced to O(2ρddm), and

the computational complexity is reduced to O(2ρnddm). This is because W 1 ∈ Rd×ρdm

and W 2 ∈ Rρdm×d after pruning. The complexity of operations before and after pruning is

summarized in Table 4.3.

One shall note that our settings of architecture parameters are different from those of VTP

[67]. VTP’s scoring matrix A is applied directly to the input feature X , whereas ours is

applied to Q , K and V . In other words, VTP prunes the features but we prune the linear

embeddings. As we apply the same matrix A to embedding dimensions of multiple heads,

we have only d/h such architecture parameters, making the model easier to train. Moreover,

VTP is applied to DeiT on the classification task only, whereas our method prunes Swin
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Table 4.3: Complexity of different operations before and after pruning. We suppose the
remaining dimension ratio ρ is fixed over all the operations, so that the complexity estimation
is easier.

Operation Pruned Para. Complexity

MSA
✗ O(4d2) O(4nd2 + 2n2d)
✓ O(4ρd2) O(4ρnd2 + 2ρn2d)

W-MSA
✗ O(4d2) O(4nd2 + 2nM2d)
✓ O(4ρd2) O(4ρnd2 + 2ρnM2d)

MLP
✗ O(2ddm) O(2nddm)
✓ O(2ρddm) O(2ρnddm)

Transformer, which serves as a backbone for multiple vision tasks. Finally, we have also

provided the complexity analysis of the unpruned and pruned operations, which is missing

in previous studies.

4.3.3 Experiments

We first conduct SiDT for Swin Transformer on CIFAR-100 image classification. We prune

its tiny version (Swin-T), which has 27.53M parameters and a complexity of 4.49G FLOPS.

The settings of the search stage are similar to those for training the unpruned baseline1,

with batch size = 256, patch size = 4, window size = 7, embedding dimension = 96, initial

learning rate = 0.00025, momentum =0.9, weight decay = 0.05, epochs = 160, and the

sparsity scale γ = 0.0001 for ℓ1 regularization. After searching, we obtain the scores of all

the dimensions and rank them according to their absolute values. Next, the dimensions with

lower scores are pruned, based on a predefined pruning ratio of 20%, 40%, 60% and 80%.

Finally, the pruned model is trained again with a warm start, using the same settings as the

search stage.

1When setting up the architecture parameters, we refer to the code at https://github.com/Cydia2018/
ViT-cifar10-pruning
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Figure 4.2: Ratio of the remaining dimensions over different layers in the networks with 20%
or 40% dimensions pruned.

Table 4.4 shows that the number of parameters and computational costs can be greatly

reduced after pruning, while preserving the accuracy at the same time, compared to the

baseline [66]. The visualization of the remaining dimensions after pruning can be found in

Fig. 4.2. After pruning 80% of the dimensions, the accuracy is only around 2% lower than

the recovered baseline. The model with 20% or 40% dimensions pruned has an accuracy

which is even higher than the baseline model. This can be explained by the relatively

larger size of Swin-T on easier datasets like CIFAR, as over-parameterized models can cause

overfitting. To verify this phenomenon, we have also transferred Swin-T and prune it again

on the ImageNet-20 dataset, which is a 20-class subset of ImageNet-1000, as described in

Section 4.2.2. As shown in Table 4.5, the model with 20% and 40% dimensions pruned still

beat the unpruned baseline in accuracy. For the model with 80% dimensions pruned, the

accuracy drop is less than 1%.

Additionally, we have also pruned the Swin-T backbone for the COCO object detection task
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Table 4.4: Prune Swin-T via SiDT on CIFAR-100 classification task. PR = Pruning Ratio.
Acc = accuracy. Para. = number of parameters. ⋄ The baseline is recovered on our device
of one RTX 3090 GPU.

PR Acc (%) Para. (M) FLOPS (G)

0% (Baseline [66]) 78.07 - -
0% (Baseline ⋄) 81.78 27.60 4.49

20% 82.75 23.28 3.53
40% 82.11 17.89 2.60
60% 80.81 11.92 1.73
80% 79.35 7.17 0.92

Table 4.5: Prune Swin-T via SiDT on ImageNet-20 classification task. PR = Pruning Ratio.

PR Acc (%) Para. (M) FLOPS (G)

0% (Baseline) 91.7 27.53 4.49

20% 92.5 20.34 3.65
40% 91.7 14.61 2.82
60% 91.3 10.06 1.93
80% 90.9 5.93 1.09

[35], following the settings in the Swin paper [39]. That is, batch size = 16, initial learning

rate = 0.0001, weight decay = 0.05, epochs = 36, and all the other settings of the backbone

are the same as the Swin-T for CIFAR classification discussed above. We use Cascade Mask

R-CNN [6] as the detection head, in accordance with that of the Swin-T baseline. Again

we follow the steps in Fig. 4.1, and prune the model with pruning ratios of 20% and 40%.

During the search stage, we also start training with a pretrained Swin-T object detection

model. Table 4.6 indicates that the model with 20% dimensions of the backbone pruned has

a similar performance of box mAP and mask mAP as the unpruned model. Even if 40%

dimensions of the backbone are pruned, the loss in AP is still less than 1.5%. This is a fair

result since the detection task is more complicated than the classification task, and pruning

a detection model can lead to a slightly larger accuracy decline.

72



Table 4.6: Prune Swin-T backbone via SiDT on COCO object detection task. PR = Pruning
Ratio. ⋄ This baseline is recovered on our device.

PR
mAP Para. (M)

Box Mask Total Backbone

0% (Baseline [39]) 50.5 43.7 86 28
0% (Baseline ⋄) 50.6 43.9 86 28

20% 50.4 43.7 80 22
40% 49.2 42.9 74 16
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Chapter 5

Conclusion

We have proposed RARTS, a first order efficient method for searching architectures of neural

networks. The method is based on splitting both the data and the network, and the loss

function with network parameters splitting is optimized via a three-step alternating gradient

descent. We have proved a convergence theorem when the Lipschitz gradient assumption

holds on the loss function. Further result of convergence rate is proved if there is an extra

assumption of convexity on the loss. It has been revealed by an analytical example which sat-

isfies these conditions that RARTS converges better than DARTS, the differentiable method

developed by previous researchers.

We have conducted experiments on searching for the topological architectures of neural

networks. The image classification results on CIFAR-10, ImageNet-1000 and NATS-Bench

demonstrate the better performance of RARTS over DARTS. During the search stage, We

have taken hardware latency into account, in the form of penalized loss. In addition, we have

also applied it to the width search of the convolution operations, and pruned the CNN models

based on the search results. Experiments of pruning PreResNet-164 on CIFAR classification

datasets have supported its superiority over the counterparts as well. The models with 20%
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or more parameters and computations pruned can perform similarly or even better than the

unpruned model.

Finally, we have extended the proposed width search method to searching for the dimensions

of vision transformers on multiple vision tasks. Results of pruning Swin-T on CIFAR-100

classification and COCO object detection tasks are aslo convincing, like those for pruning

CNNs. There are still many topics to be done in the future work. As many algorithms are

raised for topology search, we would like to transfer them to width search, in order to figure

out a unified optimal method. Moreover, there are many manually designed models for other

computer vision tasks like segmentation. We will investigate the applications of our methods

in the automated learning of their architectures.
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