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Abstract

Ubiquitin is covalently attached to substrate proteins in the form of a single ubiquitin moiety or 

polyubiquitin chains and has been generally linked to protein degradation, however, distinct types 

of ubiquitin linkages are also used to control other critical cellular processes like cell signaling. 

Over forty mammalian G protein-coupled receptors (GPCRs) have been reported to be 

ubiquitinated, but despite the diverse and rich complexity of GPCR signaling, ubiquitin has been 

largely ascribed to receptor degradation. Indeed, GPCR ubiquitination targets the receptors for 

degradation by lysosome, which is mediated by the ESCRT machinery, and the proteasome. This 

has led to the view that ubiquitin and ESCRTs primarily function as the signal to target GPCRs for 

destruction. Contrary to this conventional view, studies indicate that ubiquitination of certain 

GPCRs and canonical ubiquitin-binding ESCRTs are not required for receptor degradation and 

revealed that diverse and complex pathways exist to regulate endo-lysosomal sorting of GPCRs. In 

other studies, GPCR ubiquitination has been shown to drive signaling and not receptor degradation 

and further revealed novel insight into the mechanisms by which GPCRs trigger the activity of the 

ubiquitination machinery. Here, we discuss the diverse pathways by which ubiquitin controls 

GPCR endo-lysosomal sorting and beyond.
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Ubiquitination of GPCRs and endocytic adaptor proteins facilitates GPCR trafficking to lysosomes 

and. In addition, ubiquitination of GPCRs and GPCR effectors can mediate the activation of 

specific signaling pathways. GPCR ubiquitination is also critical for targeting some GPCRs for 

degradation by proteasomes. This review highlights the multiple pathways by which ubiquitin 

controls GPCR endo-lysosomal sorting and signaling, which expand the function of ubiquitin in 

regulating GPCR biology.
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1 | Introduction

Ubiquitination governs a multitude of cellular process and is one of the most common forms 

of posttranslational protein modifications. Studies predict that all proteins are ubiquitinated 

at least once during their life-times [1,2]. While our knowledge of the role of 

phosphorylation in regulating GPCR biology is extensive, there is a limited understanding of 

the diverse pathways by which ubiquitination controls GPCR function including trafficking, 

subcellular localization, abundance and signaling. GPCRs are the largest family of cell 
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surface receptors expressed in mammals and include over 800 members that control a 

multitude of physiological functions. GPCRs respond to a diverse array of extracellular 

stimuli and signal primarily via heterotrimeric G proteins to elicit cellular responses. Given 

the abundance and pleiotropic functions of GPCRs, it is not surprising that dysregulation of 

GPCR signaling has been implicated in numerous diseases and has made this receptor class 

the largest target for FDA-approved drugs [3].

The first characterized role for ubiquitin as a GPCR endolysosomal sorting signal was 

discovered in the yeast Saccharomyces cerevisiae. The yeast Ste2 pheromone receptor 

requires direct ubiquitination for internalization from the plasma membrane [4,5]. 

Furthermore, discoveries in S. cerevisiae identified the role for ubiquitin in the sorting of 

Ste3 at the limiting membrane of the vacuole [6]. These discoveries paralleled investigations 

into the ubiquitin-dependent vacuolar trafficking of other transmembrane proteins, resulting 

in the discovery and classification of the ESCRT complexes [7–9] as well as the diversity of 

ubiquitin-binding adaptor proteins involved in early and late endocytosis [10–12]. In 

addition, ubiquitin promotes endocytic adaptor scaffolding during the internalization of 

GPCRs [13,14]. These studies demonstrated the critical role of ubiquitin in GPCR 

regulation, and stimulated the study of ubiquitin in the endocytic sorting and lysosomal 

degradation of human GPCRs as discussed below.

Ubiquitination likely offers novel and diverse mechanisms for regulation of GPCR biology. 

Therefore, a thorough understanding of the mechanisms by which key regulators and 

mediators of ubiquitination regulate GPCR signaling and trafficking is needed for defining 

dysregulated mechanisms in disease and identifying new targets for drug development for 

the treatment of human diseases. While ubiquitination of GPCRs has been largely ascribed 

to lysosomal or proteasomal degradation, emerging studies provide new insight into the 

multi-faceted and diverse functions of ubiquitin in regulating GPCR endo-lysosomal sorting 

and signaling. Here, we discuss the various GPCR endo-lysosomal sorting pathways that are 

conveyed through direct and indirect GPCR ubiquitination as well as the role of 

ubiquitination in regulating key endocytic adaptor proteins that facilitate GPCR endo-

lysosomal sorting and new functions of ubiquitin in regulating GPCR biology.

2 | Direct ubiquitination of GPCRs and endo-lysosomal sorting

One of the most well-studied signals that direct GPCRs through the endo-lysosomal system 

is the covalent attachment of ubiquitin. Ubiquitin, a 76 amino acid protein, is covalently 

attached to substrate proteins by the sequential actions of E1, E2 and E3 ubiquitin ligases, 

where the E3 ligase confers substrate specificity and controls the type and length of specific 

ubiquitin chains. Ubiquitin is removed by ubiquitin-specific proteases (USPs) or 

deubiquitinating enzymes (DUBs). GPCRs can be ubiquitinated both on intracellular loops 

and on the C-terminal tail, and the ubiquitin modification can take the form of multiple 

mono-ubiquitinated lysine residues or as chains of polyubiquitin uniquely configured, a 

natural variation and key feature of protein ubiquitination. GPCR ubiquitination is a 

reversible posttranslational mediated by specific DUBs. Once ubiquitinated and trafficked to 

the early endosome, GPCRs can interact with the Endosomal Sorting Complexes Required 

for Transport (ESCRTs) machinery, which convey ubiquitinated GPCRs into intraluminal 
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vesicles of multivesicular bodies (MVBs). The ESCRT-0, -I and -II complexes contain well-

characterized binding proteins that sequentially directly interact with ubiquitinated cargo 

[15]. Thus, the ubiquitination state of the GPCR generally determines whether or not it is 

committed to a degradation pathway, whereas deubiquitinating enzymes may play a key role 

in maintaining populations of GPCRs within the specific subcellular compartments to 

promote other cellular functions. In contrast, there are also examples of receptors that traffic 

to lysosomes independently of receptor ubiquitination. Endo-lysosomal sorting of GPCRs 

such as the protease-activated receptor-1 (PAR1) and P2Y1 receptor is directed by a short 

peptide tyrosine-based motif (YPX3L) that is bound by the adaptor protein ALIX [16,17]. 

ALIX couples directly to the ESCRT-III complex, allowing these receptors to bypass the 

ubiquitin-binding ESCRTs and sort into intraluminal vesicles of MVBs. GPCR-associated 

sorting protein 1 (GASP-1)-mediated lysosomal sorting of the δ-opioid receptor represents 

another ubiquitin-independent pathway for GPCR degradation [18]. Interestingly, the 

recovery of ubiquitin-independent GPCRs like the δ-opioid receptor from the limiting 

membrane of the late endosome to the plasma membrane has also been observed [19], 

suggesting that these lysosomal pathways are also dynamically regulated. This section will 

discuss the most recent findings regarding the factors that control GPCR sorting at the 

limiting membrane of late endosomes and lysosomal degradation.

Ubiquitin is covalently attached to cytoplasmic lysine residues of target substrates, and the 

ubiquitin signal that directs GPCRs to the lysosome occurs on distinct cytoplasmic regions 

(Figure 1). GPCRs contain three intracellular loops (ICLs) and a carboxyl-terminal tail that 

are exposed to the cytoplasm and are accessible by E3 ubiquitin ligases. Ubiquitination of 

the C-terminal tail is sufficient to mediate lysosomal sorting of the chemokine C-X-C motif 

receptor type 4 (CXCR4) [20], and the κ-opioid receptor [21]. More recently, agonist-

induced ubiquitination of the γ-aminobutyric acid receptor (GABAB) B1 subunit C-terminus 

has been demonstrated in live cells using BRET [22]. In contrast, the V2 vasopressin 

receptor is ubiquitinated primarily in in ICL3 [23]. The prototypical ubiquitin-dependent 

cargo, the β2-adrenergic receptor (β2AR), is specifically ubiquitinated on lysine residues 

within both its ICL3 and C-terminal tail prior to lysosomal degradation [24]. Furthermore, 

ubiquitination of the μ-opioid receptor ICL1 is a rate-limiting step in the packaging of the 

receptor into intraluminal vesicles prior to uptake by MVBs [25]. Ubiquitin can be attached 

as a single ubiquitin moiety or first conjugated onto itself to form chains of polyubiquitin at 

seven lysine residues (K6, K11, K27, K29, K33, K48 and K63) and via direct attachment to 

its N-terminus. The mechanism of GPCR ubiquitination can be assessed using ubiquitin 

mutants that harbor point mutations to individual or multiple lysine residues. GPCRs like the 

Frizzled receptor FZ4R [26], melanocortin receptor MC2R [27] and CXCR4 [20] are 

monoubiquitinated, likely on multiple lysine residues thus giving the appearance of 

polyubiquitination. In contrast, PAR1 [28], κ-opioid receptor [21], and β2-adrenergic 

receptor [29] are modified specifically by K63-linked polyubiquitin. Interestingly, the 

dopamine D4 receptor is modified by ubiquitin on lysine residues via the canonical 

isopeptide bond as well as on serine and threonine residues through an ester linkage, a 

process that regulates proteasomal degradation of the receptor [30]. These studies highlight 

the diversity of receptor ubiquitination sites and the flexibility within the ESCRT complexes 

to mediate receptor lysosomal degradation.
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The timing and dynamics of GPCR ubiquitination are controlled by E3 ubiquitin ligases as 

well as deubiquitinating enzymes or DUBs (Figure 2). Association of GPCRs with DUBs 

has multiple functions, including rescue of ubiquitinated GPCRs from lysosomal 

degradation. This mechanism allows cells under prolonged ligand stimulation to restore 

GPCR surface expression, or to maintain populations of GPCRs in endosomal compartments 

for continued signaling. Notably, ubiquitin-specific protease-33 (USP33) and USP20 

mediate cellular resensitization under long-term stimulation by direct the deubiquitination of 

β2AR [31] (Figure 2A). Furthermore, deubiquitination by USP8 prevents lysosomal 

degradation of the human Frizzled receptor FZR4, facilitating persistent Wnt signaling [26]. 

In contrast, DUBs can also facilitate the lysosomal sorting of GPCRs through the regulation 

of receptor ubiquitination state at late endosomes. Inhibition of the DUBs AMSH and UBPY 

inhibit the early-to-late endosomal sorting of protease-activated receptor 2 (PAR2) [32]. 

Similarly, the deubiquitinating enzyme USP14 is required for deubiquitination and 

lysosomal sorting of CXCR4 [33] (Figure 2B) and the GABAB(B1) subunit [22]. Here, 

USP14 appears to function as an adaptor protein that facilitates packaging of receptors into 

budding intraluminal vesicles of MVBs. These results demonstrate that the dynamic cycle of 

GPCR ubiquitination, rather than the ubiquitination state of the receptor, is also critical for 

endo-lysosomal receptor trafficking.

Ubiquitin is not the only endo-lysosomal sorting signal, and multiple GPCRs have been 

shown to harbor other sorting sequences that facilitate binding to late endosomal sorting 

adaptors, this is best characterized for PAR1. Although PAR1 is ubiquitinated upon agonist 

stimulation [28,34], receptor ubiquitination is not required for endo-lysosomal sorting. 

Instead, PAR1 sorting from early endosomes to late endosomes requires a YXXφ (where X 

is any amino acid and φ can be any bulky hydrophobic amino acid) within its C-terminal tail 

which is bound by the heterotetrameric adaptor protein complex-3 (AP-3), a clathrin adaptor 

protein complex [35]. Once at the limiting membrane of the late endosome, PAR1 interacts 

with the adaptor protein ALG-2-interacting protein X (ALIX) via a highly conserved 

YPX3L motif localized within ICL2 [16] (Figure 2C). The ICL2 of purinergic receptor P2Y1 

also harbors a conserved YPX3L motif that directs receptor sorted to lysosomes in an ALIX-

dependent manner [17] (Figure 1). ALIX directs receptors into budding intraluminal vesicles 

and couples YPX3L-motif GPCRs to the ESCRT-III complex. Similarly, lysosomal sorting 

of the δ-opioid receptor [36] and the D2 dopamine receptor [37] is mediated by the adaptor 

protein GASP-1, which couples these proteins to the ESCRT-0 complex independent of 

receptor ubiquitin. Recent findings have demonstrated that the δ-opioid receptor can recycle 

from the limiting membrane of the late endosome [19]. Interestingly, ALIX and the TIP47/

Rab9 retrieval complex facilitate sorting of δ-opioid receptor to the trans-golgi network [19], 

where it can be re-sorted to the plasma membrane. These findings demonstrate that ALIX, 

GASP-1 and potentially other late endosomal adaptor proteins can mediate the endo-

lysosomal trafficking, in some cases independent of ubiquitin and certain canonical ESCRT 

components, expanding the diversity of lysosomal sorting mechanisms for GPCRs beyond 

the direct ubiquitination and canonical ESCRTs.
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3 | Indirect ubiquitin-mediated GPCR endo-lysosomal sorting via 

modulation of endocytic adaptor proteins

In addition to direct ubiquitination of GPCRs, targeting of receptors to the endo-lysosomal 

pathway is controlled by ubiquitination of various endocytic adaptor proteins. β-arrestins are 

multi-functional adaptor proteins that directly regulate GPCR uncoupling from 

heterotrimeric G proteins, internalization from the plasma membrane and can facilitate a 

second wave of signaling in various subcellular compartments. β-arrestins are comprised of 

two major N- and C-domains, which consist primarily of β-sheets, an embedded polar core 

and an extended cytoplasmic tail that contains recognition motifs for clathrin and the AP-2 

subunit β-adaptin and is rapidly recruited to agonist-activated GPCRs at the plasma 

membrane. β-arrestins engage activated GPCRs through interaction with a phosphate sensor 

mediated by the polar core and activation sensor conferred most notably by the finger loop 

that is exposed upon interaction with agonist-bound receptor [38,39]. While the precise 

conformation of the finger loop bound to the GPCR is not known, arrestin interacts with a 

highly conserved binding crevice of the GPCR that is similar to the region bound by the Gα 
subunit C-terminus [40]. Similar to GPCRs, posttranslational modifications of β-arrestins 

with ubiquitin is critical for regulating their function in controlling GPCR trafficking.

Ubiquitination of β-arrestin was shown to occur in response to β2AR stimulation and is 

mediated by the E3 ligase mouse double minute-2 (MDM2), and important for stabilizing 

the β-arrestin/β2AR complex (Figure 2A). The increased stability of the β-arrestin/β2AR 

interaction facilitates β2AR internalization by increasing interaction with components of the 

endocytic machinery [41,42]. Ubiquitination of β-arrestins has also been implicated in 

facilitating GPCR-induced mitogen-activated protein kinase (MAPK) signaling [41]. While 

MDM2 is important for stabilizing β2-arrestin/β2AR interaction and requires β-arrestin-2 

for ubiquitination, MDM2 is selective in mediating β-arrestin ubiquitination and does not 

ubiquitinate β2AR. However, β-arrestin-2 is required for NEDD4–1 recruitment and 

ubiquitination of activated β2AR in response to stimulation by its full agonist isoproterenol, 

which is critical for β2AR endo-lysosomal sorting [43,44] (Figure 2A). Deubiquitination of 

β-arrestins is also regulated by agonist-activation of the β2AR and other GPCRs and is 

mediated by USP20 and USP33 and is important for β-arrestin-β2AR complex disassembly, 

lysosomal sorting and signaling [31,42] (Figure 2A). USP33 also mediates V2 vasopressin 

receptor-induced β-arrestin deubiquitination, endocytic trafficking and signaling using a 

similar process [42]. These studies indicate that ubiquitination of β-arrestins influences may 

aspects of GPCR function including endo-lysosomal sorting by enhancing E3 ligase 

recruitment and subsequent ubiquitination of the receptor.

In addition to ubiquitination of β-arrestins, agonist-activation of CXCR4 stimulates 

ubiquitination of ESCRT-0 components, which control CXCR4 endo-lysosomal sorting. In 

this case, the E3 ligase AIP4 (also known as ITCH), mediates ubiquitination of CXCR4 as 

well as the ESCRT-0 components, HRS and STAM, which have opposing functions in 

regulating CXCR4 endo-lysosomal sorting [45,46] (Figure 2B). Ubiquitination of HRS and 

STAM are regulated through a complex interplay mediated by β-arrestin-1 and AIP4 and is 

further controlled by the E3 ligase Deltex, which appears to regulate the activity of AIP4 
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[47,48] (Figure 2B). Besides CXCR4, surprising few other GPCRs have been shown to 

require both direct ubiquitination and components of the canonical ESCRT machinery for 

endo-lysosomal sorting and they include the δ-opioid receptor (DOR) [49] and PAR2 [50], 

but whether these GPCRs modify the ubiquitination status of ESCRT components to 

regulate their fate in the endo-lysosomal sorting pathway is not known.

As discussed above, a subset of GPCRs including PAR1 and P2Y1 are targeted to the endo-

lysosomal sorting pathway independent of ubiquitination. While ubiquitination of these 

GPCRs is dispensable degradation, ubiquitination of the adaptor protein ALIX is important 

for shuttling the receptors through the endo-lysosomal sorting pathway. We found that ALIX 

activity is regulated by ubiquitination induced by agonist-activation of PAR1 [51]. 

Ubiquitination of ALIX is mediated by the E3 ligase WWP2 and results in ALIX 

dimerization and enhanced activity at sorting PAR1 to MVBs/lysosomes [51]. Importantly, 

the α-arrestin domain-containing protein-3 (ARRDC3) is responsible for activated PAR1-

stimulated recruitment of the WWP2 to ALIX and subsequent ubiquitination (Figure 2C). 

We further showed that ARRDC3 is required for agonist-induced PAR1 interaction with 

ALIX and lysosomal degradation [51]. The P2Y1 receptor is also trafficked through a 

ubiquitin-independent and ALIX-dependent endo-lysosomal sorting pathway like PAR1 

[17], suggesting that this pathway is broadly applicable to other GPCRs. Indeed, besides 

PAR1, seven other mammalian GPCRs were found to possess conserved ALIX YPXnL 

binding motifs within their second intracellular loop, including the adrenoreceptor α1B, 

angiotensin receptor AT2, galanin receptor GAL2, histamine receptor H2, neuropeptide FF 

receptor NPFF2, neuropeptide S receptor NPS, and purinergic receptor P2Y1 [16]. 

Moreover, ALIX has also been shown to bind to several other GPCRs that lack YPXnL 

motifs, including the vasopressin V2R and D1-like and D3 dopamine receptors, and regulate 

receptor trafficking [52,53]. These studies indicate that ALIX is likely to interact with 

receptors using divergent types of YPXnL motifs, including directly with ubiquitin. ALIX 

harbors ubiquitin binding sites and has been shown to bind directly with K63-linked 

ubiquitin and may recognize cargo via this mode of interaction [54]. Together, these studies 

illustrate that GPCR signaling can modulate the activity of the endo-lysosomal sorting 

machinery through ubiquitination of critical endocytic adaptor proteins and thereby has the 

capacity to regulate their own endo-lysosomal sorting efficiency.

4 | Ubiquitin E3 ligases function in direct and indirect regulation of GPCR 

endo-lysosomal sorting

There are three classes of E3 ligases present in mammals including: really interesting new 

gene (RING), homologous to E6-APcarboxy terminus (HECT) and ring between ring 

(RHR). Of the six hundred E3 ligases, the majority are classified as RING E3 ligases, 

whereas the HECT E3 ligases are a considerably smaller class and includes twenty-eight 

members. The NEDD4 (neural precursor cell expressed, developmentally down-regulated-4) 

HECT domain-containing E3 ligases subfamily is comprised of nine members and are best 

known to mediate ubiquitination and endo-lysosomal sorting of GPCRs following ligand 

stimulation [55]. PAR2 is an exception and ubiquitinated by c-Cbl, a RING E3 ligase, in an 

agonist-dependent manner and required for endo-lysosomal sorting [32,56]. In contrast to 
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NEDD4 E3 ligase, the RING E3 ligases have been largely reported to mediate constitutive 

ubiquitination of several GPCRs and appears to regulate a diverse array of trafficking 

processes [55]. Despite the large number of studies describing ligand-induced GPCR 

ubiquitination, our knowledge of the mechanisms by which GPCRs regulate E3 ligase 

activity to facilitate receptor endo-lysosomal sorting is limited. However, new developing 

studies now provide important insight into how GPCRs signaling initiates activation of E3 

ligases to regulate receptor function.

The NEDD4 E3 ligases share a similar domain architecture including an N-terminal C2-

domain, two to four WW domains connected by linker peptides and a catalytic HECT 

domain [57]. The C2 domain binds Ca2+, phospholipids and regulates NEDD4 cellular 

localization, whereas the WW domains mediate substrate recognition via P/LPxY motifs and 

phosphorylated serine/threonine residues. The activity of NEDD4 E3 ligases is regulated 

through release of an auto-inhibited state, which occurs through poorly understood allosteric 

mechanisms mediated by interactions with the C2 and WW domains [58]. Although 

numerous studies have implicated NEDD4 E3 ligase function in controlling GPCR endo-

lysosomal sorting [43,46], it is not known how NEDD4 E3 ligases are released from auto-

inhibition to increase HECT ubiquitin ligase activity following GPCR stimulation.

One mechanism by which NEDD4 E3 ligase catalytic activity is directed towards GPCRs 

occurs through recruitment to the receptor. Several studies have provided insight regarding 

mechanisms of NEDD4 E3 ligase recruitment and indicate that recruitment of NEDD4 E3 

ligases to activated and phosphorylated GPCRs can occur either directly via recognition of 

receptor serine/threonine phosphorylated residues or indirectly via interaction with 

endocytic adaptor proteins [43,59]. This was first illustrated for the β2AR and CXCR4. 

β2AR activation results in phosphorylation and binding of β-arrestins, which are both 

required for agonist-induced β2AR ubiquitination [60]. In this case, the β-arrestin-2 isoform 

functions as the critical adaptor for NEDD4–1 recruitment to activated and phosphorylated 

β2AR [43]. Similarly, agonist-induced ubiquitination of the V2 vasopressin and μ-opioid 

receptor also requires β-arrestins [61]. Like other NEDD4 family members, the WW 

domains of NEDD4–1 mediate interaction with substrate proteins through recognition of 

PPXY motifs. However, PPXY motifs are absent in β-arrestins, indicating that β-arrestin-

mediated recruitment of NEDD4 E3 ligases is mediated via distinct mechanisms. Despite the 

lack of PPXY motifs, β-arrestin-1 interacts with AIP4 via WW domains [47], whereas for 

NEDD4 interaction with β-arrestin-2 occurs via a non-WW domain region [43]. Unlike β-

arrestins, the α-arrestin ARRDC3 contains an extended C-terminal region that harbors 

PPXY motifs that bind to WW domains of several NEDD4 E3 ligases and has been 

implicated in NEDD4–1 recruitment to activated β2AR [44,60]. Intriguingly, however, 

depletion of ARRDC3 by RNAi failed to perturb β2AR ubiquitination and receptor 

trafficking, suggesting that ARRDC3 may function secondarily by controlling β2AR 

endosomal retention [62]. In contrast to β2AR and μ-opioid receptor, the AIP4 is directly 

recruited to activated CXCR4 via WW domain interaction with phosphorylated serine 

residues in the C-tail domain of the receptor and occurs independent of β-arrestins [59]. 

These studies clearly indicate that different GPCRs use distinct direct and indirect 

mechanisms to recruit NEDD4 E3 ligases, making it difficult to predict how the catalytic 

activity of NEDD4 E3 ligases is specifically targeted towards certain GPCRs. However, to 
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our knowledge virtually no studies have examined whether recruitment of NEDD4 E3 

ligases to GPCRs modulates the catalytic activity of the enzymes or addressed how GPCRs 

“turn-on” E3 ligase activity, which is exquisitely regulated.

In addition to β2AR and CXCR4, PAR1 ubiquitination and function are well characterized. 

However, in contrast to these classic GPCRs, ubiquitination of PAR1 mediates p38 MAPK 

inflammatory signaling and not endo-lysosomal sorting. We previously showed that 

phosphorylation of PAR1 is required for agonist-stimulated ubiquitination [34]. In recent 

work, we further demonstrated that NEDD4–2 E3 ligase is rapidly recruited to and 

ubiquitinates PAR1 following ligand stimulation [28,63] (Figure 2C). However, it is not 

known if phosphorylation of PAR1 mediates recruitment of “active” NEDD4–2 to the 

receptor or enables PAR1 internalization and localization to endocytic vesicles containing 

“active” NEDD4–2 to facilitate substrate-enzyme interaction and ubiquitination.

It is also possible that GPCR signaling triggers NEDD4–2 catalytic activity and was recently 

examined for PAR1 and the P2Y1 receptor. Unexpectedly, we discovered that PAR1 

stimulates c-Src-mediated tyrosine phosphorylation and activation of NEDD4–2, which 

promotes p38 inflammatory signaling [63] (Figure 2C). Intriguingly, c-Src is activated by 

PAR1 through a Gq and G12/13-dependent pathway. In this study, we also identified a unique 

phosphorylated tyrosine (Y)-485 residue located within the 2,3-linker peptide between WW 

domain 2 and 3 of NEDD4–2 in PAR1 agonist stimulated cells using mass spectrometry. 

Moreover, NEDD4–2 wildtype displayed a robust increase in catalytic activity following 

PAR1 stimulation, however, the NEDD4–2 Y-485 mutant exhibited impaired activity. In 

siRNA-mediated knockdown-rescue studies, expression of NEDD4–2 wildtype restored 

activated PAR1-induced p38 signaling, whereas the NEDD4–2 Y-485 mutant did not. The 

P2Y1 receptor also required c-Src and NEDD4–2 tyrosine phosphorylation for p38 MAPK 

signaling. These studies reveal a new mechanism by which signaling by GPCRs trigger 

NEDD4–2 catalytic activity to promote a second wave of signaling important for induction 

of inflammatory responses. Whether other GPCRs use a similar mechanism to activate 

NEDD4 E3 ligases to facilitate endo-lysosomal sorting or other functions is not known.

5 | Alternative destinations for GPCRs – Autophagy, Exosome Packaging 

and the Proteasome

Recent discoveries have demonstrated that GPCRs can be trafficked to unexpected 

destinations, highlighting novel functions for GPCRs in regulating cellular homeostasis. The 

proteasome has emerged as a critical regulator of GPCR expression, and multiple findings 

have supported specific mechanisms for targeting the removal of GPCRs from endo-

membranes prior to proteasomal degradation in the cytoplasm. Similarly, the relationship 

between GPCRs and autophagosomes has become an important research topic, as GPCRs 

are trafficked to autophagosomes in response to cell stress, while autophagosomes can also 

play an important role in regulating the recycling of some receptors. In addition, GPCR 

signaling can directly regulate autophagosome biogenesis, enhancing chemotaxis and 

inhibiting apoptosis. Finally, GPCRs have been discovered as critical cargoes shed from 

cells in exosomes and microparticles. These extracellular vesicles carry GPCRs and their 
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signaling effectors to new destinations, initiating morphological changes in target cells. 

These findings highlight the diversity of GPCR regulation within the cell and highlight novel 

discoveries in GPCR trafficking and signaling.

Studies that have described the role of the proteasome in GPCR regulation have led to the 

discovery of novel functions for GPCRs in regulating neuronal development, hypertension 

and neuronal signaling. The proteasome is the critical final destination in the clearance of 

misfolded transmembrane proteins from the endoplasmic reticulum in a process known as 

ER-associated Degradation (ERAD) (Figure 3). Following de-novo synthesis, GPCRs like 

the δ-opioid receptor have been shown to be sorted directly from ER populations to the 

proteasome for degradation [64]. The E3 ligase parkin mediates ERAD of the orphan GPCR 

GPR37, regulating ER stress in Parkinson’s Disease [65]. GPR37 functions as an ER 

chaperone for the Wnt co-receptor LRP6 in neuronal progenitor cells [66], underscoring the 

importance of regulating GPR37 at the ER. In addition, a growing body of evidence suggests 

that GPCRs expressed on the cell surface can be directed to the proteasome in response to 

cellular signaling. The regulation of blood pressure in response to blood sodium levels 

involves the counter-regulatory dopamine and angiotensin II hormone signaling in smooth 

muscle cells. Once activated, the D5 dopamine receptor initiates the ubiquitination and 

proteasomal sorting of AT1 angiotensin receptors at the plasma membrane [67]. Dopamine 

signaling also modulates neuronal signaling, and the concentration of D4R dopamine 

receptors at the plasma membrane is tightly regulated by ubiquitination and proteasomal 

degradation [30]. In addition to ubiquitination on lysine residues, D4R is ubiquitinated on 

serines and threonines through an atypical ester bond linkage [30], a process critical for 

proteasomal targeting of D4R. These results open the possibility that other GPCRs may be 

regulated by both lysine isopeptide ubiquitination as well as ubiquitination of serine and 

threonine residues. These studies have added a new dimension to the mechanisms cells use 

ubiquitin to regulate GPCR signaling.

Autophagosomes are highly regulated membrane-bound organelles that degrade cellular 

components in response to cellular stress. One aspect of cellular response to stress is 

redistribution of specific GPCRs to autophagosomes (Figure 3). For example, the β2AR is 

sorted to autophagosomes under physiologically stressful conditions or persistent β2AR 

signaling [68]. This process requires the protein kinase A-dependent phosphorylation and 

deactivation of the deubiquitinating enzyme USP20, allowing for the ubiquitination of β2AR 

to persist and act as a sorting signal to autophagosomes [68]. In addition, autophagosome-

specific adaptor proteins like Beclin 2 are involved in GPCR degradation. Beclin-2 interacts 

with the adaptor protein GASP-1, mediating the degradation of δ-opioid receptor [69]. 

Furthermore, host cell Beclin-2 regulates the lysosomal sorting and downregulation of 

constitutively active viral GPCRs found in Kaposi’s sarcoma-associated herpesvirus [70], 

protecting infected cells from pro-oncogenic signaling. Autophagosome-related adaptor 

proteins like ATG-5 have also been shown to regulate GPCR endo-lysosomal trafficking. 

PAR1 is constitutively internalized and recycled [71], and the recycling of PAR1 is mediated 

by the small GTPase Rab11B [72]. Interestingly, ATG-5 mediates the rapid degradation of 

PAR1 in the absence of Rab11B-dependent recycling [72], suggesting that the 

autophagosome or its machinery can function to regulate sorting of PAR1 under cellular 

stress conditions. Finally, GPCRs like the adenosine A2 receptor [73] regulate 
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autophagosome biogenesis in order to inhibit neutrophil apoptosis. Similarly, the urotensin 

receptor UTS2R and CXCR4 [74] suppress the biogenesis of autophagosomes, a process 

critical for cell migration. These studies highlight the importance of autophagosomes in the 

regulation of GPCRs, and the connections between GPCR signaling and the control of 

autophagosome formation.

Extracellular vesicles (ECVs) have emerged as important biomarkers for disease and 

signaling factors that transport cargo such as microRNAs and proteins between cells. There 

are two subpopulations of ECVs that are defined by their mechanism of biogenesis: 

microparticles are shed by budding from the plasma membrane whereas exosomes are 

derived from the intraluminal vesicles of multivesicular bodies that have fused with the 

plasma membrane instead of lysosomes [75]. Once released, ECVs can fuse or be 

internalized by other cells, allowing for direct transfer of proteins and microRNAs that can 

alter the morphology of the target cell. Of particular interest are ECVs released from cancer 

cells, and their ability to transform cells near the tumor microenvironment. For example, the 

release of CXCR4 and its ligand SDF-1α (also known as CXCL12) in exosomes from 

highly metastatic hepatocarcinomas enhances the migration and invasion of non-metastatic 

hepatocarcinoma cells [76] (Figure 3). In addition, highly metastatic breast cancer cells 

release the GPCR S1P2 in exosomes that can initiate proliferation in nearby fibroblasts [77]. 

The S1P2 receptor isolated from MDA-MB-231 breast cancer ECVs is constitutively active 

due to cleavage of its N-terminus, and can signal to the ERK1/2 MAPK signaling pathway 

once transferred to fibroblasts [77] (Figure 3). Research into the exosomal sorting of the 

related S1P1 receptor has revealed a mechanism for how GPCRs are sorted away from 

degradative MVBs and into MVBs that contain exosomes. Continuous stimulation of the 

S1P1 receptor following internalization activates Rac1 and Cdc42 on MVBs [78], a process 

that requires the Gβγ subunits of the heterotrimeric Gi protein. Inhibition of Rho GTPase 

activity or the inhibition of Gβγ prevents the release of S1P1 in exosomes [78], suggesting 

that actin polymerization and GPCR signaling near the limiting membrane of MVBs is 

critical for exosome release. These findings have highlighted the importance of GPCRs in 

exosomal signaling, and provide critical mechanistic insight into how GPCRs are sorted into 

exosomes.

6 | Conclusions and Perspectives

Our current understanding of the diverse mechanisms by which ubiquitin regulates GPCR 

function is limited and has been largely attributed to degradation. Of the forty GPCRs 

reported to be ubiquitinated, most functions have been linked to either lysosomal or 

proteasomal degradation. In some cases, endo-lysosomal sorting of ubiquitinated GPCRs is 

mediated by the canonical ubiquitin-binding ESCRT components and strictly requires 

receptor ubiquitination. However, several studies indicate that other GPCRs can enter 

intralumenal vesicles of MVBs/lysosomes independent of ubiquitin and the canonical 

ESCRTs, indicating that diverse and complex pathways exist to target the receptors for 

destruction. Ubiquitination of other key endocytic adaptors has also been shown to facilitate 

endo-lysosomal sorting of GPCRs to bypass the requirement for receptor ubiquitination and 

canonical ESCRTs. These studies indicate that ubiquitin controls GPCR trafficking via 

diverse mechanisms, however, the identification of the machinery that mediates 
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ubiquitination of many of these GPCRs remains unknown. In addition, it is now becoming 

increasing clear that GPCR signaling controls the ubiquitination machinery and thereby can 

modulate ubiquitin-mediated functions like lysosomal sorting. New work on GPCRs and 

ubiquitin has also unveiled novel insight into how ubiquitination of GPCRs drives 

inflammatory signaling. This work also provides the first example of how activation of a 

GPCR “turns-on” an E3 ubiquitin ligase to trigger ubiquitin-driven signaling. Besides 

lysosomes, GPCRs can be targeted to alternative destinations within the cell including 

proteasomes, exosomes and the autophagic pathway, however the mechanisms and role of 

ubiquitin that regulated GPCR sorting to these pathways are even less clear. Given the 

prevalence of ubiquitination, it is likely that all GPCRs are ubiquitinated at least once during 

their life-times, the challenge now is to determine how and why GPCRs modified with 

ubiquitin.
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Synopsis:

Ubiquitination of G protein-coupled receptors (GPCRs) is important for degradation by 

the lysosome and proteasome. While endo-lysosomal sorting of ubiquitinated GPCRs to 

the lysosome occurs via the canonical ESCRTs, not all GPCRs utilize ubiquitin or 

ESCRTs for receptor destruction. Here, we discuss the diverse pathways that exist to sort 

GPCRs to lysosomes independent of ubiquitination and canonical ubiquitin-binding 

ESCRTs. We also discuss ubiquitin-driven GPCR signaling and new mechanisms by 

which GPCR signaling controls the ubiquitination machinery to regulation cellular 

functions.
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Figure 1: 
The location of GPCR endo-lysosomal sorting signals. Sites of ubiquitination required for 

lysosomal degradation sorting have been mapped to intracellular loop (ICL) 1 and 3, as well 

as the C-terminal tail of the GPCRs listed (green). In contrast, YPX3L motifs required for 

lysosomal sorting have been discovered in ICL-2 of the GPCRs listed (orange).
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Figure 2: 
A map of known protein interactions and post-translational modifications involved in the 

regulation of GPCR lysosomal sorting and ubiquitin-dependent signaling. Direct 

ubiquitination is represented by green lines, red lines indicate deubiquitination, blue lines 

indicate direct interaction and orange lines indicate phosphorylation. A) The E3 ubiquitin 

ligase NEDD4.1 is recruited by β-arrestin to directly ubiquitinate β2-AR, MOR and V2R. β-

arrestin is ubiquitinated by MDM2 and deubiquitinated by USP33. USP33 and USP20 

deubiquitinate β2-AR. B) AIP4 directly interacts and ubiquitinates CXCR4, while USP14 

mediates receptor deubiquitination. AIP4 is recruited by β-arrestin to ubiquitinate HRS and 

STAM during CXCR4 lysosomal trafficking. AIP4 is ubiquitinated and regulated by Deltex. 

C). The α-arrestin ARRDC3 recruits the NEDD4-family E3 ligase WWP2 to ubiquitinate 

and activate ALIX during the lysosomal sorting of PAR1 and P2Y1. c-Src phosphorylates 
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and activates NEDD4.2 which ubiquitinates PAR1 and P2Y1, a process required for receptor 

signaling to the MAPK p38.
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Figure 3: 
Alternative trafficking pathways for GPCRs in response to ubiquitination. GPCRs can 

polyubiquitinated by K48-linked chains, targeting them for retrograde sorting to the ER 

prior to ERAD-mediated degradation by the proteasome. GPCRs can be sorted to 

autophagosomes from the limiting membrane of early or late endosomes, leading to rapid 

degradation that requires autophagosome adaptor proteins. Some receptors that are packaged 

into the intraluminal vesicles of multi-vesicular endosomes (MVEs) can be released from the 

cell in exosomes when MVEs fuse with the plasma membrane.
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