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Abstract

Designing user-adaptive search systems necessitates modeling
the user’s knowledge state during information seeking. Gaze
data offers insights into cognitive processes during task-based
reading. Despite its potential, cognitive perspectives have
been insufficiently explored in the representation of the
user’s knowledge state when designing search systems.
We reanalyzed an eye-tracking dataset and constructed
mixed-effects user models to identify which measurements of
gaze activities (i.e., gaze metrics captured by eye trackers)
are reflective of the user. Our study’s findings indicate that
there are statistically significant correlations between gaze
metrics that measure the variability of saccadic eye movement
and search performance. The accuracy of answers has been
significantly influenced by the interaction between the control
of saccade trajectories, measured by the standard deviation of
absolute saccadic directions and the difficulty of the search
task. We discuss the implications of these findings for the
design of search systems adaptable to the user’s state of
knowledge.
Keywords: User modeling; Gaze data; Information seeking;
Question-answering; Saccadic eye movements

Introduction
Eye movements provide a window to the cognitive processes
in decision making in which the accuracy of decision
outcome is moderated by visual and task contexts (e.g.,
König et al., 2016; Shubi & Berzak, 2023; Spering, 2022).
Since it is the human that searches for information, a search
engine is a tool that can either adapt itself to the specific
cognitive processes of the human or require the human to
adapt to the engine. There are specific ways in which
humans acquire information and how they form mental
models and the impact of mental models on explaining search
behavior (e.g., Gwizdka & Dillon, 2020; Thomas, Billerbeck,
Craswell, & White, 2019). The human ability for information
seeking and its specifics has been modeled for a long
time (W.-T. Fu & Gray, 2006; W. T. Fu, 2020). Researchers
have approached cognitive modeling of users by examining
the reasoning processes using eye movements data (Purcell,
Roberts, Handley, & Howarth, 2023), modeling reading
comprehension in information seeking (Shubi & Berzak,
2023) and cognitive processes of adopting expert interaction
techniques (Bailly, Khamassi, & Girard, 2023; Castner,
Frankemolle, Keutel, Huettig, & Kasneci, 2022). Given
that human gaze in reading comprehension is conditioned by
visual and task contexts (Malmaud, Levy, & Berzak, 2020),
it is important to specify which measurements of general

gaze activities based on eye trackers (also known as gaze
metrics) are most promising for predicting search success
in the context of goal-oriented information seeking, such as
task-based reading.

Gaze data has been used to infer user knowledge level
by identifying eye movement patterns (Cole, Gwizdka, Liu,
Belkin, & Zhang, 2013) and to predict user cognitive
abilities (Conati, Lallé, Rahman, & Toker, 2020). Within
this thread of research, search task difficulty has been
identified as one of the key variables affecting user search
behavior (e.g., Kim, 2005; J. Liu, Liu, Cole, Belkin, &
Zhang, 2012). For example, informed by Information
Foraging theory (Pirolli & Card, 1999), research findings
have revealed that user-perceived search task difficulty is
correlated with eye movements in specified areas of interest
(AOI) in search interfaces and search performance (Wittek,
Liu, Darányi, Gedeon, & Lim, 2016; Y.-H. Liu, Thomas,
Gedeon, & Rusnachenko, 2022). Since previous studies
have demonstrated the relevance of gaze metrics toward
visual exploration (making a saccade to a new object)
or exploitation (revisiting an object that was previously
fixated) in information-seeking tasks (e.g., König et al., 2016;
Spering, 2022), it is important to examine the relationships
among search task difficulty, gaze metrics, and search
performance holistically.

To that end, this study aims to answer the overall research
question of how to model users’ state of knowledge through
eye-tracking data when they seek information via search
systems. We formulate the following research questions
based on previous research:

• How do we specify which gaze metrics (i.e., measurements
of gaze activities captured by eye trackers) are reflective of
user knowledge in task-based reading?

• What are the effects of gaze metrics, search task difficulty,
and user self-perceived prior knowledge about search
tasks on search performance in the context of information
seeking?

Our research findings suggest that there are statistically
significant correlations between gaze metrics of the SD
(standard deviation) of absolute/relative saccadic directions
and search performance measured by the answer correctness
in fact-finding search tasks. Importantly, the search task

2112
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



difficulty and its interactional effect with the SD of absolute
saccadic directions have significantly contributed to the
answer’s correctness.

The major contributions of the study include:

• Identifying the correlations between gaze metrics and
search success in information-seeking tasks that involve
task-based reading;

• Constructing mixed-effects models for the effect of search
task difficulty and gaze metrics on search success in
fact-finding tasks.

Related Work
Adaptive search systems are designed to guide the users
to accomplish search tasks. For instance, research has
explored the adaptive guidance in narrative visualizations
by directing attention to salient components of the narrative
visualizations (Barral, Lallé, & Conati, 2020). Research has
also investigated the use of interaction data as an alternative
to eye-tracking data for predicting cognitive abilities for user
modeling in interactive visualizations (Conati et al., 2020).
These studies show that adaptive guidance can support users
with varying levels of visualization literacy (Barral et al.,
2020), interaction data can predict cognitive abilities more
accurately at the beginning of a task compared to eye-tracking
data (Conati et al., 2020), and user behavior, including eye
gaze and click data, can be used to predict user success
in ontology class mapping tasks (B. Fu & Steichen, 2022).
Further, analysis of gaze data has demonstrated that there
were positive correlations between reading strategies and
search activities. Specifically, hard reading was correlated
with exploratory tasks, whereas skimming was correlated
with fact-finding tasks (Schwerdt, Kotzyba, & Nurnberger,
2021). These findings suggest that adaptive search systems
can be further developed based on the examination of gaze
data in search activities.

Methodologically, machine learning models have been
trained to predict the perceived relevance of paragraphs
based on eye movements (Barz, Bhatti, & Sonntag, 2022).
Research has shown that multimodal classifiers combining
interaction data and eye-tracking data show promising results
for predicting cognitive abilities (Conati et al., 2020), and
gaze data trained by deep-learning classifiers can predict
users’ success in visual search tasks (Spiller et al., 2021).

Using statistical techniques, regression models were
constructed to predict a user’s level of knowledge based on
real-time measurements of eye movement patterns during a
task session (Cole et al., 2013). Interestingly, a unimodal
based on the behavioral signal of left click in LR (Logistic
Regression) performed the best for implicit detection of
document relevance (González-Ibáñez, Esparza-Villamán,
Vargas-Godoy, & Shah, 2019). Importantly, LR has provided
the best results in a few classification experiments (e.g.,
Steichen, Conati, & Carenini, 2014; Raptis et al., 2017;
González-Ibáñez et al., 2019). Advanced statistical

techniques, such as mixed-effects models have been
gradually applied in information retrieval research for the
analysis of gaze behavior (Hofmann, Mitra, Radlinski, &
Shokouhi, 2014), user characteristics (C. Liu et al., 2019)
and search performance (Y.-H. Liu et al., 2023). Therefore,
this study will use mixed-effects models to shed light on
the gaze features that could predict the search success in
question-answering tasks.

In consideration of previous research findings, this study
aims to explore how eye-tracking data can represent users’
knowledge during information seeking by identifying gaze
metrics reflective of user knowledge in task-based reading,
and examining the effects of gaze metrics, search task
difficulty, and users’ self-perceived familiarity with search
tasks on their performance. We hypothesize that search task
difficulty and gaze metrics affect user search performance.

Methods
This study reanalyzed the user interaction data collected
from a controlled user experiment in an academic research
environment (Kotzyba, Gossen, Schwerdt, & Nürnberger,
2017; Schwerdt, Kotzyba, & Nurnberger, 2018; Schwerdt et
al., 2021). A total of 19 subjects participated in the study
(13 male & 6 female) recruited from mailing lists. They
were mostly young professionals (32.4 years old on average,
ranging from 23 to 62, with a median of 28). All participants
have used the Google search engine, and a majority (63%)
indicated that their estimated average search time was about
10 minutes. Overall, most participants were highly educated
PhD students (14) with a high level of information search
experience, which may not be representative of the broader
population.

Participants were instructed to search for online
information by assigned search tasks: two exploratory
and up to twelve consecutive fact-finding tasks (Kotzyba et
al., 2017, p. 90). The distinction between the fact-finding
and exploratory tasks, which has been extensively studied
in the context of information seeking (e.g., Schwerdt et al.,
2021; Cole et al., 2013), was designed to examine the effect
of task contexts on visual search behavior on the accuracy
of decision outcome, i.e., whether participants can fulfill
the requirements of information seeking. Search tasks are
deemed simple when the answer can be obtained directly
from the first search result or snippet on the SERP (search
engine results page) using task-related queries. Conversely, a
task is considered difficult if all snippets from the formulated
queries lack information, requiring users to assess numerous
documents or read a lengthy document to find the answer.

Each participant was allocated up to 40 minutes to perform
both exploratory tasks (20 minutes per task) and, at most,
20 minutes to solve up to twelve factual tasks, using the
Firefox web browser and the familiar Google search engine.
A Latin-squared design was used to counter-balance the
order effects of tasks. The users’ self-perceived prior
knowledge about the exploratory search task (how familiar
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were you with the topic? on a 5-point Likert scale) and
fact-finding task (do you have any prior knowledge about the
topic? yes or no), the answers, and the time spent within
a search task were recorded. Overall, the participants had
comparable knowledge about the assigned search tasks, with
little information about the topics for both fact-finding and
exploratory tasks.

The search interaction data was recorded and eye
movements were captured by the Tobii X2-60 eye tracker,
with a 60Hz data-sampling rate 1. The software Tobii-Studio
(version 3.4.2) was used for data processing and analysis.
The gaze metrics included the broad categories of fixations,
saccades, and pupil sizes, and they were summarized values
within each search session. Absolute and relative saccadic
angles were used to measure a user’s change of visual search
to another area. The absolute saccadic angles are measured
regarding the horizontal axis, and the relative saccadic angles
are measured regarding the last position of the previous
fixation point (See Table 1 for definitions of gaze metrics.)

We focused on the selected gaze metrics as indicators
of cognitive processes in decision-making because previous
studies have demonstrated the relevance of these features
toward visual exploration (making a saccade to a new object)
or exploitation (revisiting an object that was previously
fixated) in information seeking tasks (e.g., König et al., 2016;
Spering, 2022; Wittek et al., 2016). The reanalysis has been
concerned with fact-finding tasks only since it is a typical
task-based reading activity. More detailed descriptions of the
experimental design can be found in (Kotzyba et al., 2017).

Data Analysis
We used a logarithmic cross-ratio analysis (Fleiss, Levin, &
Paik, 2003) technique to determine if there is any significant
relationship between gaze metrics and answer correctness.
This technique was chosen because it is presumably resistant
to sample selection bias. It has been used to analyze the
relationships among individual differences, search behavior,
and gaze behavior (Saracevic, Kantor, Chamis, & Trivison,
1988; Wittek et al., 2016).

Then we constructed mixed-effects models to determine
the effects of search task difficulty, prior knowledge, and gaze
metrics on search performance. Mixed effects distinguish
between fixed effects that are due to experimental conditions
and random effects that are due to individual differences in a
sample. We chose the mixed-effects models because they are
useful for the examination of the random effects of subjects
and search tasks (Baayen, Davidson, & Bates, 2008). Despite
the assigned search task difficulty by design, the search tasks
represented in the study are still a sample of all the possible
tasks.

We primarily used the lme4 package in R statistical
computing software for model fitting (Bates, Mächler, Bolker,
& Walker, 2015). We performed an automatic backward
model selection of fixed and random parts of the model and

1https://go.tobii.com/Tobii-Pro-X2-60-user-manual

the p-values were determined by Satterthwaite’s degrees of
freedom method, using the lmerTest package (Kuznetsova,
Brockhoff, & Christensen, 2017). The pseudo-R-squared
values were determined by the procedure (Nakagawa &
Schielzeth, 2013) and refinements of (Johnson, 2014), using
the jtools package (Long, 2023). In addition to considering
the fixed effects of task difficulty and user perception, the
random effects of search task and user were considered
in our full model construction and data fitting. Model
assessments based on diagnostic checks for non-normality
of residuals and outliers, distribution of random effects, and
heteroscedasticity were conducted.

For example, concerning search task difficulty as fixed
effects, the selected model was represented as

TimeSpentSec ∼ TaskDi f f iculty+(1 | Task)+(1 |User)

where random intercepts for task and user are specified
with (1 | Task) and (1 |User) respectively.

Results
The overall results suggest that search task difficulty
dominates answer correctness, whereas prior knowledge does
not have significant effects.

Effect of search task difficulty on search
performance
The descriptive analysis revealed that there was a statistically
significant difference in the answer correctness across
questions (one-way ANOVA, F(11, 151) = 2.47, p = 0.007,
p < .01). However, there was no statistically significant
difference in the answer correctness among the participants
(one-way ANOVA, F(18, 144) = 1.22, p = 0.25, p > .05).
Participants responded to 8.8 factual questions on average
(min = 4, max = 12, SD = 2.6), and they exhibited a higher
error rate when answering difficult questions (28.6% errors)
compared to easy ones (10% errors).

Participants spent about one minute (57.54 secs)
on average for each assigned search task of factual
question-answering (M = 57.54,SD = 36.39) and 79.6%
of all questions were answered correctly. Easy and hard
search tasks were answered correctly at 88.7% and 70.7%
respectively. Easy tasks of #5 and #6 were all answered
correctly and the rest had correct answer rates above 80.0%.
Hard tasks of #7, #10, and #11 were particularly challenging
for participants, with an answer correctness rate below
65%, but tasks #8, #9, and #12 were answered correctly
above 80.0% (See Kotzyba et al. (2017, p. 90) for task
descriptions).

The overall results reveal that search task difficulty has a
large effect on search performance, measured by time spent
(See Figure 1). There was a very significant difference in the
time spent in search task difficulty in easy versus hard tasks
(one-way ANOVA, F(1, 169) = 89.09, p < .001). The mean
difference in the time spent between easy and difficult tasks
was 35.5 and 78.0 secs respectively. Our final model for the
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Table 1: Summary of the relationship between gaze metrics and answer correctness (n gaze metrics = 162, n answer correctness
= 162; statistical significance at 95%).

Definitions CutPoint(Mean) Odds Log Stand. t-Stat
Ratio Odds Error Value

Gaze Metrics
FixNumb Number of fixations 338.99 0.46 -0.77 0.39 -1.96
FixDurSum Sum fixation duration 71376.21 0.60 -0.51 0.39 -1.30
FixDurMean Mean of fixation durations 213.12 1.64 0.50 0.39 1.28
FixDurSD SD of fixation durations 166.56 1.99 0.69 0.40 1.70
SacNumb Number of saccades 553.57 0.54 -0.62 0.39 -1.57
SacDurSum Sum of saccades durations 32181.70 0.51 -0.68 0.40 -1.71
SacDurMean Mean of saccades durations 56.29 0.57 -0.56 0.40 -1.40
SacDurSD SD of fixation durations 48.06 0.64 -0.45 0.40 -1.12
SaccadicAmplitudeMean Mean distance between previous & current fixation location 4.23 1.20 0.18 0.40 0.46
SaccadicAmplitudeSD SD of saccadic amplitude 5.18 1.20 0.19 0.39 0.48
AbsoluteSaccadicDirectionMean Mean offset in degrees from previous to current fixation 183.71 1.01 0.01 0.39 0.03
AbsoluteSaccadicDirectionSD SD of absolute saccadic directions 118.87 0.38 -0.97 0.40 -2.39
RelativeSaccadicDirectionMean Mean of relative saccadic directions 181.17 1.37 0.31 0.39 0.80
RelativeSaccadicDirectionSD SD of relative saccadic directions 106.26 0.31 -1.18 0.42 -2.80
PupilSizeMean Mean of the sizes of pupil left and pupil right 2.89 1.32 0.28 0.39 0.72
PupilSizeSD SD of pupil sizes 0.15 0.77 -0.26 0.39 -0.65

Figure 1: Boxplot of search task difficulty and time spent by
search question.

effect of search task difficulty on time spent is a mixed-effects
model that includes random intercepts for both the search
task and the user. In contrast, our final model for answer
correctness is a mixed-effects model that only includes search
task difficulty as fixed effects.

So the results show that search task difficulty has a
dominating effect on the correctness of answers, which
confirms the validity of the instruments in the experiment
(Table 2). Nonetheless, there are still individual differences
in search performance by participants and specific tasks.

Relationship between gaze metrics and answer
correctness
Table 1 reveals that the gaze metrics of
AbsoluteSaccadicDirectionSD (the SD of absolute saccadic
direction) and RelativeSaccadicDirectionSD (the SD of
relative saccadic direction) are correlated with answer

Table 2: Effect of task difficulty on search performance by
time spent and answer correctness.

Time Spent Answer Correctness

TaskDifficulty 42.34∗∗∗ −0.18∗∗

(7.78) (0.08)
Constant 37.05∗∗∗ 0.89∗∗∗

(5.84) (0.06)
N 162 162
Log Likelihood −765.68 −81.58
AIC (Akaike Information Criterion) 1541.40 173.15
ICC (IntraClass Correlation) 1556.80 188.59
R

2
(fixed) 0.34 0.05

R
2

(total) 0.49 0.13
∗∗∗p < .01; ∗∗p < .05; ∗p < .1

correctness. Specifically, search sessions with a higher mean
of AbsoluteSaccadicDirectionSD are more likely to have
lower answer correctness by a factor of 0.38 (or 62%). Search
sessions with a higher mean of RelativeSaccadicDirectionSD
are more likely to have lower answer correctness by a factor
of 0.31 (or 69%). Overall, the results reveal a significant
relationship between the saccade trajectories and the answer
correctness.

Other gaze metrics are not significantly correlated with the
answer correctness, and the gaze metric of FixNumb (total
number of fixations within a search session) is marginally
significant. Given the role of prior knowledge in the control
of saccade trajectories (Walker, McSorley, & Haggard, 2006),
our further analysis has focused on the three metrics and their
interactions with search task difficulty and the user’s prior
knowledge about the search tasks.
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Effect of gaze metrics and search task difficulty on
answer correctness
As shown in Table 3, we specify mixed-effects models of
gaze metrics (i.e., FixNumb, AbsoluteSaccadicDirectionSD,
and RelativeSaccadicDirectionSD) and search task difficulty
(as well as their interactional effects) as fixed effects and
random intercepts for task and user. The results show
that search task difficulty has a statistically significant
effect on the answer correctness in where random
intercepts for task and user are specified with (1 |
Task) and (1 | User) respectively: Model 1: FixNumb ∗
TaskDi f f iculty + (1 | Task) + (1 | User) and Model
2: AbsoluteSaccadicDirectionSD ∗ TaskDi f f iculty + (1 |
Task)+(1 |User). Since the AIC value of Model 2 is among
the lowest of all the three models (AIC = 179.03), Model 2
is considered the best model. In Model 2, the interactional
effect of AbsoluteSaccadicDirectionSD and TaskDifficulty
is also statistically significant (p < .05). Since the fixed
effect sizes of the Model 1 and Model 2 are 0.06 and 0.14
respectively, we can infer that the interactional effect of
AbsoluteSaccadicDirectionSD and TaskDifficulty plays an
important role in the explanatory power of Model 2. Overall,
the results suggest the importance of the interactional effect
of AbsoluteSaccadicDirectionSD and search task difficulty
for predicting the answer correctness.

Table 3: Effect of gaze metrics and search task difficulty on
answer correctness.

CorrectAnswer
Model 1 Model 2 Model 3

FixNumb −0.0005
(0.0003)

AbsoluteSaccadicDirectionSD −0.004
(0.01)

RelativeSaccadicDirectionSD −0.005
(0.004)

TaskDifficulty −0.24∗∗ 2.40∗∗ 0.42
(0.11) (1.10) (0.66)

FixNumb:TaskDifficulty 0.0004
(0.0003)

AbsoluteSaccadicDirectionSD:TaskDifficulty −0.02∗∗

(0.01)
RelativeSaccadicDirectionSD:TaskDifficulty −0.01

(0.01)
Constant 0.97∗∗∗ 1.33 1.36∗∗∗

(0.08) (0.81) (0.45)
N 162 162 162
Log Likelihood −95.75 −82.51 −87.94
AIC (Akaike Information Criterion) 205.49 179.03 189.89
ICC (IntraClass Correlation) 0.08 0.05
R

2
(fixed) 0.06 0.14 0.08

R
2

(total) 0.14 0.15 0.13
∗∗∗p < .01; ∗∗p < .05; ∗p < .1

Effect of gaze metrics and prior knowledge on
answer correctness
Table 4 reveals that the user’s prior knowledge about the
search task has weak statistically significant effects on the

answer correctness (p < .01). Based on the selected model 2
(AIC = 186.21), we can see that the user’s prior knowledge
about the search task and AbsoluteSaccadicDirectionSD
and their interactional effects all have small effects on the
answer’s correctness and the fixed effect size is 0.10. Overall,
the results suggest that prior knowledge does not have a
statistically significant effect on the answer’s correctness.

Table 4: Effect of gaze metrics and prior knowledge on
answer correctness.

CorrectAnswer
Model 1 Model 2 Model 3

FixNumb 0.01∗

(0.004)
AbsoluteSaccadicDirectionSD −0.20∗

(0.11)
RelativeSaccadicDirectionSD −0.06∗

(0.03)
knownPrior [n] 2.79∗∗ −23.04∗ −5.88

(1.40) (13.59) (3.70)
knownPrior [y] 2.86∗ −24.79∗ −6.43

(1.46) (14.72) (4.33)
FixNumb:knownPrior [n] −0.01∗

(0.004)
FixNumb:knownPrior [y] −0.01

(0.004)
AbsoluteSaccadicDirectionSD:knownPrior [n] 0.19∗

(0.11)
AbsoluteSaccadicDirectionSD:knownPrior [y] 0.20∗

(0.12)
RelativeSaccadicDirectionSD:knownPrior [n] 0.06∗

(0.03)
RelativeSaccadicDirectionSD:knownPrior [y] 0.06

(0.04)
Constant −1.94 25.75∗ 7.44∗∗

(1.40) (13.57) (3.69)
N 162 162 162
Log Likelihood −98.18 −84.10 −89.01
AIC (Akaike Information Criterion) 214.37 186.21 196.03
ICC (IntraClass Correlation) 0.08 0.03 0.08
R

2
(fixed) 0.04 0.10 0.05

R
2

(total) 0.12 0.12 0.13
∗∗∗p < .01; ∗∗p < .05; ∗p < .1

Effect of gaze metrics, prior knowledge and search
task difficulty on answer correctness
Table 5 shows that search task difficulty and its interactional
effects with AbsoluteSaccadicDirectionSD have statistically
significant effects on the answer correctness (p < .05) in the
selected model 2 (AIC = 192.63). The fixed effect size of
the model is 0.16. Overall, the results suggest that search
task difficulty has stronger effects on answer correctness than
prior knowledge about search tasks. And the gaze metric
of AbsoluteSaccadicDirectionSD and its interactional effect
with search task difficulty can predict the answer correctness.

Discussion
Search systems that can predict when a human may require
assistance can increase the rate of successful interactions.
We identified the impact of search task difficulty and the
standard deviation of saccadic eye movement directions as
predictors for search success in question-answering tasks.
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Table 5: Effect of gaze metrics, prior knowledge, and task
difficulty on answer correctness.

CorrectAnswer
Model 1 Model 2 Model 3

FixNumb 0.01∗

(0.004)
AbsoluteSaccadicDirectionSD −0.18∗

(0.11)
RelativeSaccadicDirectionSD −0.06∗

(0.03)
knownPrior [n] 2.72∗ −21.81 −5.65

(1.39) (13.32) (3.70)
knownPrior [y] 2.68∗ −22.13 −5.99

(1.45) (14.47) (4.37)
TaskDifficulty −0.23∗∗ 2.31∗∗ 0.34

(0.11) (1.11) (0.67)
FixNumb:knownPrior [n] −0.01∗

(0.004)
FixNumb:knownPrior [y] −0.01

(0.004)
FixNumb:TaskDifficulty 0.0004

(0.0003)
AbsoluteSaccadicDirectionSD:knownPrior [n] 0.18∗

(0.11)
AbsoluteSaccadicDirectionSD:knownPrior [y] 0.18

(0.12)
AbsoluteSaccadicDirectionSD:TaskDifficulty −0.02∗∗

(0.01)
RelativeSaccadicDirectionSD:knownPrior [n] 0.05

(0.03)
RelativeSaccadicDirectionSD:knownPrior [y] 0.06

(0.04)
RelativeSaccadicDirectionSD:TaskDifficulty −0.005

(0.01)
Constant −1.75 23.12∗ 7.01∗

(1.39) (13.35) (3.73)
N 162 162 162
Log Likelihood −104.54 −85.31 −92.66
AIC (Akaike Information Criterion) 231.07 192.63 207.32
ICC (IntraClass Correlation) 0.07 0.04
R

2
(fixed) 0.09 0.16 0.10

R
2

(total) 0.15 0.16 0.14
∗∗∗p < .01; ∗∗p < .05; ∗p < .1

The actual cognitive processes underlying eye movements
are complex if they go beyond a simple search task. As
search tasks are performed, there can be partial reading,
information processing, search for information, and even
unconscious processes that can affect eye movements and
mental workloads (J. Liu & Albright, 2018; Nocera,
Camilli, & Terenzi, 2007). Further, the fixation pattern of
human reading can be modeled by neural network-based
attention with task-specific demands (Hahn & Keller, 2023).
Goal-driven reading, like information-seeking reading (i.e.,
reading to answer questions), has been systematically
different from ordinary reading: readers engage with the
text strategically for optimizing cognitive resources, and eye
movement patterns interact with task performance (Shubi &
Berzak, 2023). Our work provides additional insights into
the correlations between the features of eye movements and
the search performance in answering fact-finding questions in
information seeking.

From the perspective of adaptive search systems
development, our findings can provide implications for

computational research on the use of eye movement
patterns and search interaction data to predict user
characteristics (Cole et al., 2013; Conati et al., 2020; Toker,
Conati, Steichen, & Carenini, 2013). In user interactions
with visualization systems, research has also revealed the
connection between the lower value of the standard deviation
of absolute saccadic angles and search success (B. Fu &
Steichen, 2019). However, many more features of eye
movements have been identified as influential classification
features, contributing to search success, including the
standard deviation of relative saccadic angles and pupil
dilation change. Despite the research findings regarding
the sources of variability in saccadic eye movements in
Neuroscience (van Beers, 2007) and cognitive modeling of
gaze-based selection (Chen, Acharya, Oulasvirta, & Howes,
2021), future research needs to consider the relationships
among the gaze features like the variability in saccadic eye
movements, types of search tasks and specific features of
user interfaces for modeling user visual and search behavior
since they involve cognitive processes in decision making
and task-based reading tasks. Deep learning methods can
also be applied to characterize the reading patterns by
considering the user’s levels of expertise (e.g., Castner et al.,
2022; Spiller et al., 2021).

The generalizability of the results can be enhanced by
increasing the number of participants and search tasks. Since
our analysis has focused on summarized user interaction
data within a search session and measures of user-perceived
search task difficulty were not collected, we were not able
to investigate the changes in the user’s state or level of
knowledge when users were engaging with the search system.
Future research also needs to consider how the adaptive
system can be extended to deal with reasoning based on prior
knowledge (Ragni & Johnson-Laird, 2020), complex search
tasks, and natural language queries.

Conclusion

In this study, we explored the representation of the
user’s knowledge state for the design of adaptive search
systems by re-analyzing a user experiment dataset (n=19).
Mixed-effects user models were constructed to specify which
gaze metrics are reflective of user knowledge in task-based
reading. Research findings suggest that there are statistically
significant correlations between gaze metrics of the SD
(standard deviation) of absolute/relative saccadic directions
and search performance in fact-finding search tasks. The
findings demonstrate the significance of the variability in
saccadic eye movements in information-seeking, such as
task-based reading. Importantly, search task difficulty and
its interactional effect with the standard deviation of absolute
saccadic directions have significantly contributed to the
answer correctness. Nonetheless, the generalizability of the
findings is limited by the small sample size. Implications for
modeling user knowledge in information searching for the
design of adaptive search user interfaces are discussed.
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