
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Speed Map for Autonomous Rovers over Rough Terrain

Permalink
https://escholarship.org/uc/item/3wp1t9jq

Author
Loh, Jonathan Edau

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wp1t9jq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

Speed Map for Autonomous Rovers over Rough Terrain

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Jonathan Loh

September 2012

The Thesis of Jonathan Loh
is approved:

————————————————–
Professor Gabriel Elkaim, Chair

————————————————–
Professor Dejan Milutinović

————————————————–
Professor Renwick Curry

————————————————–
Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Jonathan Edau Loh

2012

Table of Contents

List of Figures vi

List of Tables viii

Abstract ix

Dedication x

Acknowledgments xi

1 Introduction 1

1.1 Problem Statement and Motivation 1

1.2 Purpose of this Thesis . 3

1.3 Thesis Outline . 4

2 Related Work 6

2.1 Traversability/Roughness . 6

2.2 Speed Control . 7

3 Background 10

3.1 KRex System . 10

3.1.1 Grid Map . 12

3.2 Terrain Roughness . 13

4 Speed Map 15

4.1 Terrain Model Representation . 15

iii

TABLE OF CONTENTS

4.2 Roughness Calculation . 18

4.2.1 Surface Normals (N) . 18

4.2.1.1 Cell Size . 19

4.2.1.2 Window Size . 20

4.2.2 Adjustments within Cell . 20

4.2.2.1 Residual . 20

4.2.2.2 Coverage . 22

4.2.2.3 Slope (φ,θ) . 24

4.2.3 Adjustments between Cells 26

4.2.3.1 Projected Height (µ) 26

4.2.4 Total Smoothness Cost . 29

4.2.4.1 Smoothness Scaling 31

4.2.5 Final Roughness Cost . 32

4.3 Speed Recommendation . 32

5 Simulations 35

5.1 Rover Specific Parameters . 35

5.1.1 Roll and Pitch Threshold . 35

5.1.2 Obstacle Height . 39

5.2 Algorithm Specific Parameters . 43

5.2.1 Window Sizes . 43

5.2.2 Alpha Weight . 44

6 Experimental Results 46

6.1 Algorithm . 47

6.2 Speed Map Method Results . 48

6.2.1 Dot Product Normal Results 48

6.2.2 Obstacle Height Results . 49

6.2.3 Roll/Pitch Threshold Results 50

6.2.4 Window Size . 50

6.2.5 Alpha Weights . 52

iv

TABLE OF CONTENTS

6.3 DEM vs. LiDAR . 54

6.4 Method Comparison . 58

7 Discussion 61

7.1 Conclusion . 61

7.2 Future Work . 62

Appendix A Equations 65

Appendix B Simulation Results 66

Appendix C Matlab Code 68

C.1 occupancy grid.m . 68

C.2 calc roughness.m . 71

C.3 add point.m . 74

C.4 getResidual.m . 76

Appendix D Source Code 77

D.1 RoughnessMap.h . 77

D.2 RoughnessMapCell.h . 81

References 83

v

List of Figures

3.1 KRex . 11

3.2 Navigation sensor mast, installed on Centaur2 and KRex 12

3.3 Occupancy map of road, where red dots are considered obstacles [27] 13

4.1 Grid Map showing Tile Size, Cell Size, and Window Sizes where Win-

dow=1 is in green and includes the Center Cell; Window=2 is in

orange and includes Window=1 and Center Cell 16

4.2 Residual of a bump . 21

4.3 Residual Cost Function . 22

4.4 Comparing (a) good spread v.s. (b) bad spread 23

4.5 Slope Smoothness Cost Function with varying η’s 25

4.6 Step terrain (a) without slope and (b) with slope 26

4.7 Terrain Sloped . 27

4.8 Projected Height . 28

4.9 Height Smoothness Cost Function 29

4.10 Smoothness Scaling: Linear vs Parabolic 32

5.1 Ramp input with slope = tan(60◦) = 1.7321 in a 2m× 2m area . . . 36

5.2 Ramp roughness (left) and speed (right) results at 20◦, 40◦, and 60◦ 37

5.3 Ramp Results . 38

5.4 30cm step input with step at 1m in a 2m× 2m area 39

5.5 Step roughness (left) and speed (right) results at 5cm, 20cm, and 1m 41

5.6 Step Results . 42

vi

LIST OF FIGURES

6.1 Marscape - uneven terrain patch in red, showing dot product technique 48

6.2 Marscape - two large rocks 0.4572m tall, showing step terrain 49

6.3 Marscape - crater, showing continuous sloped terrain 50

6.4 JSC rockyard terrain . 51

6.5 Window size comparison using JSC rockyard. Boxed region shows

roughness/speed increase(decrease) as window size increases(decreases) 51

6.6 Roughness α comparisons with JSC rock-yard data set 53

6.7 Marscape DEM 10cm resolution . 54

6.8 Marscape DEM produced roughness and speed map 56

6.9 Marscape Overhead . 57

6.10 Method Comparison PTA vs Speed Map vs Slope using JSC Rockyard

(left column) and Crater (right column) data set 59

vii

List of Tables

5.1 Speed map conditions used for ramp input simulations 36

5.2 Ramp simulation results using various slopes 38

5.3 Speed map conditions used for step input simulations 40

5.4 Step simulation results using Window=1 and Alpha=1 42

5.5 Speed map conditions for step input simulations with varying window

size . 43

5.6 Step simulation results using various window sizes 43

5.7 Speed map conditions for step input simulations with varying alpha 45

5.8 Step simulation results using various alpha values 45

6.1 Corresponding Window Size with Surface Area, using cell size = 0.3 52

6.2 Speed map conditions used for DEM and LiDAR 55

6.3 Category of Terrain Features . 55

6.4 Speed map conditions for method comparison 58

B.1 Step simulation results with various window sizes and alpha values . 66

B.2 Ramp simulation results . 67

viii

Abstract

Speed Map for Autonomous Rovers over Rough Terrain

by

Jonathan Loh

All past NASA planetary rovers have only been able to traverse celestial surfaces

at a maximum speed of 0.05 − 0.09m/s (0.11 − 0.20mph). There is motivation to

operate rovers more autonomously and to increase their speeds upwards to 3m/s on

flat hard ground, which is considered fast for planetary rovers. In this thesis, a novel

roughness metric is used to create a speed map and provide planetary rovers with

information about the terrain. The provided information is intrinsic to the terrain

regarding its roughness and speed allowing the rover to safely travel over smooth

and rough terrain. The results of this method will benefit path planning algorithms

and control operators in improving mission efficiency.

ix

To my family:

Mom, Dad, Bettina, Chris, Theresa, Tiffany, and baby Lau

I love you.

x

Acknowledgments

I would like to thank Professor Gabriel Elkaim for his continual support and ad-

vice, this thesis would not be possible without it. I appreciate his vast knowledge

and skills in all things is, and how quickly he is able to see multiple solutions to a

problem. Special thanks to my faculty reading committee: Gabriel Elkaim, Renwick

Curry, and Dejan Milutinović. Thank you for your countless hours of proofing and

editing this thesis. ASL, thank you for keeping things light and always enjoyable

during our Wednesday meetings.

I would like to thank Liam Pedersen and Terry Fong for giving me the opportunity

to contribute to the research done at IRG, and to the folks at IRG– thanks for the

technical support, the company, and keeping me entertained in the Pirate Lab (Oleg,

Zak, Yoon, Taemin, Ara, Lorenzo).

Thank you family for supporting me always. To my best friend, solid rock, and

partner whose love and encouragement makes me be a better person. Theresa, you

are the reason I strive for excellence.

xi

Chapter 1

Introduction

1.1 Problem Statement and Motivation

Since the beginning of time, we humans have always been curious of our surroundings–

always exploring the “new” frontier. We traveled by foot to find hunting grounds,

rode on camel backs to discover ancient civilizations, sailed the oceans to find new

lands, traveled by wagons through Western North America, submerged underwater

to the depths of the ocean floor, and used rockets to explore outer space. The com-

mon theme in all of this, is the act of moving to discover our surroundings. We

need to transport ourselves, either physically or remotely, in order to familiarize and

understand what is around us.

The majority of Earth exploration can be done with our own two feet. However,

exploring space and other planets can not be done so easily. Exploring these areas

are mainly done remotely with satellites, landers, and rovers. Between 1957 and

1975, the former Soviet Union and the United States competed with each other for

supremacy in space exploration by trying to be the first in all things space related.

The United States won this race by being the first and only nation to send man to

the moon on Apollo 11 in July 1969. In November 1970, the Soviet Union success-

fully landed Lunokhod 1, a remote controlled vehicle, to became the first to send

and successfully land a rover on a celestial body. In July 1971, the United States

1

CHAPTER 1. INTRODUCTION

followed behind with a manned Lunar Roving Vehicle (LRV), a four-wheeled rover

capable of holding two astronauts. The LRV was driven by an astronaut and was

primarily used to extend the range of their activities on the moon [11]. The United

States’ accomplishments with lunar human exploration are great, however the risk of

human life was always present. Launching astronauts to exo-planets and returning

them back to Earth requires more resources than sending unmanned rovers one way

to exo-planets. Exploring distant planets further increases the risk of human life,

and therefore the need for rovers to explore is the safer approach.

Unmanned rovers have been used by the Soviet Union’s Luna program to explore

the Moon by moving across the surface, but was ineffective compared to the LRV

of the Apollo program. The need for unmanned rovers became more apparent when

deciding to explore Mars because there is no vessel capable of sending a flight crew

to Mars and returning them safely to Earth. There have been 9 successful rover

landings in all: 5 lunar (Lunokhod 1(’69) & 2(’73), LRV 1-2(’71) & 3(’72)) and 4

Martian (Mars Pathfinder Sojourner(’96), MER Spirit & Opportunity (’03), MSL

Curiosity(’12)).

Over the past 40 years, all exo-planetary rovers have been tele-operated: a human

controller commanding the rover to “drive forward 20 turns” or to “drive to this lo-

cation.” Since the Mars Pathfinder (1996), all exo-planetary rovers have some level of

autonomy implemented in the form of hazard avoidance systems to navigate through

unknown terrain [1]. In January 2004, the Mars Exploration Rover Spirit was the

first exo-planetary rover to achieve autonomous driving and path planning to tar-

get destinations between 40-50m away[2, 17]. Within the past decade, research in

autonomous navigation and path planning has focused on rover traversability over

rough terrain [3, 4, 13, 14, 16, 18, 23, 24, 25, 26, 29, 30].

The study of rover speeds over rough terrain is important because the faster the rover

can travel over terrain, the larger the area that can be discovered within a specified

2

1.2. PURPOSE OF THIS THESIS

time. This results in mission efficiency and more scientific information to study. All

past NASA exo-planetary rovers have operated autonomously at a maximum speed

of 0.05 − 0.09m/s (0.11 − 0.20mph) [20, 21]. This speed is considered slow and is

mainly due to communications lag through long distances in space. The communica-

tions lag slows down operations and requires the operator to drive the rover slowly.

For this reason, there is a research push to operate rovers with greater autonomy

and to increase their speeds to 3m/s on flat hard ground. This is considered fast

for exo-planetary rovers because it is more than 30 times faster than previous rovers.

The fastest research rover, the NASA Ames Research Center (ARC) K10 platform

for technology development, has a top speed of ∼ 0.9m/s on flat hard ground [5].

There is a constant strive to increase its top speed and to know in advance a safe

speed to travel over rough terrain without crashing, damaging on-board electron-

ics, and minimizing vibration effects on sensors. Two such systems used to aid in

this research advancement are the NASA Ames Research Center’s (ARC) KRex

and the NASA Johnson Space Center’s (JSC) Centaur2. Both of these rovers are

Human Robotic Systems (HRS) that aid human exploration in reconnaissance of

exo-planetary terrain.

1.2 Purpose of this Thesis

In autonomous mobile robotics, traversing through unknown terrain has generally

been approached using an obstacle detection algorithm [28], wheel contact forces

[15], and roughness cost functions [4, 6]. The purpose of this thesis is to present a

novel method that creates a speed map and provides planetary rovers with local and

global information about the terrain. The information will allow the rover to safely

travel over both smooth and rough terrain. In addition, this information enables

a new way to path plan; it not only provides hazard detection and terrain rough-

ness, two elements important to path planning, but also allowable speed over terrain.

The algorithm for the speed map models the terrain with incoming sensor data

3

CHAPTER 1. INTRODUCTION

and use this information to calculate surface roughnesses. The surface roughness

provides a recommended speed limit for the terrain with the goal to drive slowly

over rough terrain (i.e.: rocks, ditches, peaks) and faster over relatively flat terrain.

This speed map provides better path planning information and will also aid the

control operator by illuminating areas of hazards while in tele-operation mode.

1.3 Thesis Outline

Speed Map for Autonomous Rovers Over Rough Terrain has seven chapters and four

appendices. Chapter 1 introduces the background and motivation for this work.

Chapter 2 provides information on related work to traversability/roughness and

speed control. Much of the work done with traversability/roughness has been cen-

tered around obstacle/hazard detection. With regards to speed control, this is a new

area of research where reactive speed controller, fuzzy logic, and supervised/non-

supervised machine learning have been used.

Chapter 3 describes the experimental setup (KRex rover) and the system in place for

sensing and creating the speed map. It also covers grid maps and terrain roughness,

fundamental concepts that are built upon in this thesis.

Chapter 4 details the speed map algorithm and is broken into three main sections.

The first describes a way to efficiently model terrain from sensor data while using

few resources and operating in real-time. The second explains the algorithm to de-

fine roughness. And lastly, the third section presents the recommended speed.

Chapter 5 and Chapter 6 show simulation and experimental results of the speed

map method respectively. The algorithm was first coded in Matlab and tested using

synthetic terrain. Afterwards, the Matlab code was ported to C and implemented

inside the rover navigation software (rovernav) where it was tested using real sensor

data from various field test sites.

4

1.3. THESIS OUTLINE

Chapter 7 concludes the thesis by summarizing the results and contributions of this

work, and further discusses potential future work as well as ways to continue this

research.

Appendix A contains equations, Appendix B contains simulation results in table

form, Appendix C contains code used for simulation and experimental results, and

Appendix D contains the source code.

5

Chapter 2

Related Work

Research defining terrain roughness is a rich and well established area [3, 6, 10, 12,

13, 15, 19, 24, 28]. However, research in relating speed and roughness of terrain (with

the assumption of no a priori maps and using only range scan sensor data) has been

a fairly new field within autonomous mobile robots. The majority of this research

has been influenced by the Mars rovers and the 2004/2005 DARPA Grand Challenge

(DGC) [1, 4, 8, 18, 25, 26, 27, 29, 30]– autonomously controlled automobiles tasked

with traversing hundreds of miles of desert terrain. In this chapter we will review

related research within traversability and speed predictions.

2.1 Traversability/Roughness

Previous planetary rovers such as the Mars Exploration Rovers (MER) and the

Mars Science Laboratory (MSL), have used cameras and stereo vision to detect ob-

stacles/hazards and categorize terrain as traversable or not traversable [10, 19]. The

subject rover, KRex, is a LiDAR based rover that uses Probabilistic Terrain Analysis

(PTA), which is a fast and lightweight obstacle detection algorithm developed by

Thrun et al. [28]. PTA is very useful for detecting obstacles to avoid. However, it is

a binary detection algorithm and therefore can only be associated with two speeds:

0 and max velocity. Coupling this algorithm with the speed map could greatly im-

prove rover speeds and mission efficiency, and add granularity to the path planning

algorithm.

6

2.2. SPEED CONTROL

Hoffman and Krotkov [12] measured terrain roughness from prior elevation maps

and made the assumption to measure roughness along specific directions of surfaces.

They calculated surface roughness using variance of height, variance of slope, and

structural similarity factor after filtering data through a Blackman window [12].

Similarly, El-Kabbany and Ramirez-Serrano [6] computed roughness based on terrain

height from a range camera, however they do this with no a priori knowledge of

terrain. The work done by Iagnemma and Dubowsky [15] focused on force analysis

and wheel contact angles based on the type of terrain (i.e.: dry sand, soil, rock) to

maximize wheel thrust and minimize slip. However, this approach results in very

slow vehicle speed and assumes that both terrain and path are known. They defined

terrain roughness (r) at global Cartesian coordinate (x, y) as the square root of the

variance of all elevation points inside the convex hull, defined by the wheel-terrain

contact points of the robot on flat ground. Each of these works looked only at

the height of the local terrain, except for [12], which only gives limited information

about the terrain height and its surroundings instead of the surface. Other work

done within the DGC considered the importance of adapting speed to rough terrain

[4, 25, 26, 27].

2.2 Speed Control

Estimating a safe speed to traverse through unknown and unstructured terrain is

a relatively new area of research. The problem of estimating allowable speed over

rough terrain is innately non-linear and difficult to estimate because rover vibra-

tions are spatially dependent on previously traversed terrain and speed. Also, exo-

planetary terrain is highly unpredictable and traversing over a particular section of

terrain contains an infinite number of possible variations in terrain and paths. Three

different strategies will be presented here: fuzzy logic, reactive control, and machine

learning.

One of the approaches to speed control is to utilize fuzzy logic. Fuzzy logic was

7

CHAPTER 2. RELATED WORK

developed during the 1960’s, and has been used for systems that are complex and

difficult to define exactly. A number of researchers, Howard and Seraji [13], Jin et al.

[16], Seraji [23], have used this approach to control rover navigation and speed. This

approach attempts to resemble human reasoning, where the controller is adjusted

manually until the output speed matches the users preference. This approach is

not adaptable to other rover systems and is impossible to tune for exo-planetary

conditions since the terrain is random and unknown.

Castelnovi et al. use a reactive speed approach with four roughness calculations and

changed the vehicle speed based on a laser line scan of the ground immediately in

front of the vehicle. This approach is able to predict how fast to drive within its

immediate line scan. This approach cannot be used to predict distant terrain speeds

or be used for path planning. Stavens et al. [26], creators of Stanley (winner of the

2005 DGC), used a reactive method to control the speed of an automobile based

on vertical acceleration (shock) of the vehicle. They set an acceleration threshold,

which was determined using machine learning, to prevent damage to the vehicle and

its electronics. This approach requires a training set to categorize rough terrain and

smooth terrain, in which a person defines what is rough and what is not by driving

over the training set. If Stanley were to drive over hazardous/rough terrain that

exceeded the shock threshold, damage to the vehicle and electronics would have en-

sued before it is able to slow down.

Since the 2005 DGC, Stavens and Thrun [25] have updated their reactive speed con-

trol to predict and identify future shocks, which classify regions as rough/not rough

through unsupervised learning. It then used this classifier along with the training set

obtained from the DGC as its inference to trigger decelerations used in prior work.

This method is still based on using a training set to supervise the learning. This

approach will not work for exo-planetary systems because extraterrestrial terrain is

unknown, and the risk of learning through failures would result in a damaged rover

which is impossible to fix when not on Earth.

8

2.2. SPEED CONTROL

Another DGC inspired approach comes from team CalTech’s Alice: elevation to

speed limit conversion. Cremean et al. [4] fused three range scan sensors to create

an elevation map and averaged the terrain height per cell. For each cell, a Gaus-

sian filter is applied to it’s neighboring cells to create a roughness metric. This

roughness metric is then passed through a sigmoid function where the coefficients

are heuristically tuned by comparing sample filter responses to real-life situations.

This approach works well but requires supervised learning, the same problem as

Stanley. It also lacks additional information about each cell and lacks a contiguous

relationship with its neighboring cells.

The works relating to roughness/traversability do not look at the surface of the

terrain and instead focus on relative heights and directional slopes. Both of these

metrics are useful, however they lack a relationship of the surface with the local

surroundings. Additionally, much of the prior work in speed control requires heuristic

tuning to generate information on surface roughness and speed. These methods are

not adaptable to other systems, cannot physically be tuned because exo-planetary

terrain is unknown and difficult to define rough terrain, or cannot risk the chance

of learning through failures that would result in a damaged rover. This leads us

to pursue a new method that will look at the surface and define a roughness that

contiguously relates the surrounding terrain. Because of the contiguous surface

relationship with the local surroundings, we can transform this roughness into a

speed.

9

Chapter 3

Background

Driving after many years of experience becomes an instinctual task; yet it requires

quick reflexes and attention to avoid hazards on the road such as bumps, pot holes,

rocks, road kill, wood planks, furniture, or other cars. Processing our environment

(day/night, weather, winding mountain roads/straight city roads) and surroundings

(road condition, other vehicles/pedestrians) is a simple task for the human brain.

For a robot/computer, however, this task is quite complex.

In order to validate the algorithms for surface roughness and allowable speed– ex-

perimental data is required. As shown in the literature review in Chapter 2, much

of the prior work requires heuristic tuning to generate good information on surface

roughness and speed. Our training data comes from the NASA rover KRex.

3.1 KRex System

The system used for this thesis is NASA Ames Research Center’s KRex rover (pic-

tured in Fig. 3.1). Our algorithms have also been tested on NASA Johnson Space

Center’s Centaur2. KRex is a four-wheel drive all-wheel steering rover with a top

speed of 3[m/s]. It is 148.5ft3 (4.22m3), and has a modular mast with sensors at-

tached (see Fig. 3.2).

When humans drive, determining what speed to drive is intuitive because we have

10

3.1. KREX SYSTEM

Figure 3.1: KRex

years of experience and have learned what rough roads are. However, the number

of car crashes indicates that we are not perfect. Our eyes give us feedback on

both the near fields and far fields and we process this information to determine

the presence of obstacles in our path. The KRex rover uses a Velodyne LiDAR to

detect path conditions and obstacles. It has 32 beams that provide simultaneous

range measurements from -30◦ to +10◦ from horizontal body axis, with a complete

360◦ scan occuring at 10Hz [22]. The Velodyne sensor has a range of 70 meters

and produces 700, 000 points per second. When accumulated, these points form

a 3-D point cloud which is registered to a global grid map using a position and

orientation (pose) estimate. After the point cloud data (PCD) has been updated

with pose, the PCD is considered aligned. These pose updates are based upon

compass, inclinometer, GPS, and Inertial Measurement Unit (IMU) measurements

as well as matching points to their corresponding plane. In this thesis it is assumed

that we already have aligned PCD.

11

CHAPTER 3. BACKGROUND

Figure 3.2: Navigation sensor mast, installed on Centaur2 and KRex

3.1.1 Grid Map

The grid map (similar to an occupancy map) maps the environment as an array of

cells, with cell sizes ranging in size from 5cm to 50cm depending on the application

requirements. For occupancy maps, each cell holds a probability value for likeli-

hood of being occupied. This technique makes no assumptions about the type of

feature that is occupying the cell. Fig. 3.3 is an example of an occupancy map for

obstacles/hazards on a road. The KRex rover currently implements PTA [28] which

is an obstacle detection algorithm that utilizes an occupancy map. For this thesis,

we improve upon the PTA and use a grid to store accumulated statistics for each

cell. Each cell of the grid contains the estimates of surface roughness and speed.

Using grid representation helps discretize the environment uniformly and organize

the sensor data.

12

3.2. TERRAIN ROUGHNESS

Figure 3.3: Occupancy map of road, where red dots are considered obstacles [27]

3.2 Terrain Roughness

Before creating a speed map, we must first define terrain roughness. Roughness can

be defined as differences on a surface relative to its local surroundings (via rotation

or translation). According to Hoffman and Krotkov [12], roughness measurements

must have the following qualities:

(1) Must discriminate between surfaces of different amplitudes, frequencies, and

correlation.

(2) Be an intrinsic property of the surface, invariant to direction of travel

(3) Be a local, not global measure of the surface.

(4) Have intuitive or physical meaning.

Even though this definition was suggested in 1989 [12], most of the later work in

creating roughness calculations failed to meet all of the above criteria. The literature

review on roughness/traversability in Chapter 2, only considered height differences

and slope calculations which lack a contiguous relationship of surfaces within the

local frame.

13

CHAPTER 3. BACKGROUND

Roughness should also include the vehicle’s obstacle height, which is the wheel radius,

to non-dimesionalize and scale the metric to the robot size. For example, the final

roughness threshold for a monster truck with 5 foot wheels will care less about

smaller roughnesses than a 4-door compact sedan with 14in wheels. The next chapter

will describe and show the roughness measurement used for the speed map in this

thesis.

14

Chapter 4

Speed Map

This chapter discusses the development of the speed map in three parts: 1) Terrain

Model Representation, 2) Roughness Calculation, and 3) Speed Recommendation.

4.1 Terrain Model Representation

The first step in creating the speed map is to recast the point cloud data (PCD)

into a form that will best model and represent the terrain. Previous work, as stated

in Ch. 2, used the PCD directly to represent the terrain and compute a roughness

metric. The KRex system uses this terrain model representation for two purposes:

1) creating a global map and 2) calculating a speed map. With over 700,000 points

per second coming from the Velodyne, storing the PCD requires a massive storage

unit with its attendent increase in payload. Since the KRex system is designed for

off-planet missions, payload must be minimized and storage space must be limited.

Therefore, we store the statistics into a matrix (Eq. 4.4) for each cell of a given

terrain– known as a growing set; this integrates seamlessly into the grid map in-

frastructure. Below, in Fig. 4.1, is an example grid map used for the KRex system

where the tile size is the discoverable region around the rover as it traverses through

the environment.

15

CHAPTER 4. SPEED MAP

Figure 4.1: Grid Map showing Tile Size, Cell Size, and Window Sizes where Win-
dow=1 is in green and includes the Center Cell; Window=2 is in orange and includes
Window=1 and Center Cell

The accumulated statistics for each cell are used to compute a least squares fitted

plane, normal vector, and other information in real time as new/updated terrain

data arrives.

First, we begin with the equation of a plane where (x, y, z) are the global Cartesian

coordinates of each point within the PCD:

z = Ax+By + C (4.1)

16

4.1. TERRAIN MODEL REPRESENTATION

Next, minimize the sum of squared errors:

E(A,B,C) =
n∑
i=1

[(Axi +Byi + C)− zi]2 (4.2)

The LS best fit plane is satisfied when the gradient of E(A,B,C) is equal to 0:


0

0

0

 = ∇E = 2
n∑
i=1

[(Axi +Byi + C)− zi]


xi

yi

1

 (4.3)

That can be written in Fx = y form, i.e.:


∑
x2i

∑
xiyi

∑
xi∑

xiyi
∑
y2i

∑
yi∑

xi
∑
yi n


︸ ︷︷ ︸

F


A

B

C


︸ ︷︷ ︸
x

=


∑
xizi∑
yizi∑
zi


︸ ︷︷ ︸

y

(4.4)

The plane parameters are found by taking the inverse of matrix F :

x = F−1y (4.5)

Once the LS best fit plane is determined, the surface normal is easily derived from

the plane equation:

N =
(−A,−B, 1)

||(−A,−B, 1)||
(4.6)

Where ||(−A,−B, 1)|| is the length of the surface normal vector:

||(−A,−B, 1)|| =
√
A2 +B2 + 12 (4.7)

The accumulated statistics method is used, as opposed to Cremean et al.’s approach

of averaging terrain heights [4], because the LS fit plane and surface normal give

additional insight about surface direction, and provide a contiguous relationship

between neighboring cells when computing terrain smoothness (roughness).

17

CHAPTER 4. SPEED MAP

4.2 Roughness Calculation

This section introduces a new metric to define roughness (r) using surface normals

and blending in other known metrics to fine tune and compensate for unusual cases.

Roughness is defined as the compliment of the sum of products of smoothness cost

functions (s(·)): r = 1− (ΣΠs(·))
ψ.

Note: all incremental smoothness cost functions (denoted as s(·)) have a value be-

tween 0 and 1, where 0 equates to rough and 1 equates to smooth. The roughness

value (r) has a value between 0 and 1, where 0 equates to smooth and 1 equates

to rough. Smoothness and roughness are complimentary metrics that can be used

interchangeably to define each other.

4.2.1 Surface Normals (N)

We use CalTech’s Alice framework of a center cell and it’s neighboring cells within

a window size to create a contiguous relationship with the local surrounding. In

the Alice design, the average PCD heights within each cell are used to represent

the terrain and roughness [4]. For our method, fitted planes and surface normals

computed from the PCD are used to represent the terrain and smoothness.

From the surface normals (N), a smoothness scale (sN) is created by taking the dot

products of the unit normals from the center cell and its neighboring cells (Eq. 4.8)

and applying an averaging filter over a given window size, K, where each side of the

window has a length of 2K + 1 cells (see Fig. 4.1).

sN =
∣∣N(x,y) ·N(x+i,y+j)

∣∣ (4.8)

s(x, y) =
1

ncells

K∑
i=−K

K∑
j=−K

(i,j) 6=(0,0)

sN (4.9)

Where ncells = (2K + 1)2 − 1 is the number of cells inside a window size minus

18

4.2. ROUGHNESS CALCULATION

the center cell and (x, y) are Cartesian coordinates of a global grid map. The re-

lationship focused upon is the θ from the dot product, a·b
||a||||b|| = cosθ. This tells

us how much the neighboring cell planes are rotated relative to the center cell. If

the unit normals are parallel (the same), then the dot product is 1 (θ = 0) and the

planes are identical. If the unit normals are perpendicular, then the dot product is

0 (θ = π/2) and the planes are rotated 90 degrees from each other. The range of

the dot products absolute value is between 0 and 1, and is used as the smoothness

cost function, sN , in Eq. 4.8.

Using the dot product of the surface normals as a smoothness metric provides better

intrinsic information about the terrain compared to [4] and [15]. This approach looks

at the surface and calculates surface differences between cells while maintaining a

contiguous relationship within its local window. In [4] and [15], they use cell heights

which have no relationship between each other besides above or below the center

cell. However, this is still important information and will be used to supplement the

surface normal approach.

4.2.1.1 Cell Size

The cell size determines the resolution of the modeled terrain. The smaller the cell

size the higher the resolution and correspondingly, more computations are required

to process all cells within tile frame. If the cell size is too small, then there is

a higher chance of having no PCD within the cell which would result in a high

number of unknown cells. It would also cause PCD to be sparse within each cell,

which would create fitted planes with poor confidence. The software module in

KRex responsible for pose estimation, iterative closest point (ICP), and point to

plane matching requires the cell sizes to have a minimum size of 30cm. Due to the

this system constraint, the speed map will also use a 30cm cell size.

19

CHAPTER 4. SPEED MAP

4.2.1.2 Window Size

The window size determines the region of area that will be used to associate neigh-

boring cells to the center cell through the dot product of surface normals. See Fig. 4.1

for window size reference. The minimal window size is based upon the wheel diam-

eter of the rover (≈ 0.6m). With a cell size of 0.30m, the window size of K = 1

covers a length of 0.9m– which is larger than the wheel size. Theoretically there is no

maximum window size, however the larger the window size the more computations

required and thus the slower the algorithm. A window size of K = 3 covers a length

of 2.1m which encompasses slightly more than the entire rover.

4.2.2 Adjustments within Cell

When fitting a plane to the PCD within a cell, it sometimes contains bumpy terrain

(see Fig. 4.2), and the resulting plane will not capture the terrain shape accurately.

In these cases, the residual is used as a smoothness and confidence factor for the cell.

The spread of the PCD along the surface of the terrain can sometimes look like a line

(see Fig. 4.4) and result in poorly fit planes. The coverage measures the spread of

the PCD and uses it as a confidence factor. The slope cost uses the slope of the plane

and incorporates the rover’s roll and pitch limitations to calculate the traversability

of the cell and uses it as a smoothness factor. This subsection will detail adjustments

using residual, coverage, and slope cost functions for the smoothness metric within

a cell.

4.2.2.1 Residual

The residual is the sum of the squares of the errors (or offsets) of the points from

the plane (variance of plane errors). As the measurement is the zi’s, the offset is

in the vertical dimension. This is used to test the quality of the plane fit along the

z-axis (Fig. 4.2).

20

4.2. ROUGHNESS CALCULATION

Figure 4.2: Residual of a bump

The normalized residual for each cell, (x, y), is found using the following equation:

residual =
1

n

n∑
i=1

(zi − (Axi +Byi + C))2 (4.10)

=
1

n
(Szz +A2Sxx +B2Syy + C2

+ 2(A(CSx +BSxy − Sxz)

+B(CSy − Syz)− CSz))

(4.11)

Where n is the number of points and (A,B,C) are the plane coefficients in the

associated cell (x, y) and the xi, yi, and zi’s are the individual points within that

cell. This residual cost will be used as a weighting function in the total smoothness

cost, using a logarithmic scale of the residual:

q =
log10(residual

−1)

2.6021
(4.12)

residualCost =


0 if q ≤ 0

1 if q ≥ 1

q else

(4.13)

Applying a logarithmic scale to the residual condenses the range, which makes con-

21

CHAPTER 4. SPEED MAP

verting it into a cost function manageable. The scaling factor of 1
2.6021 = 1

log10(0.05−2)

is used to put a lower limit on the residual and defines that residuals less than 52cm2

are well fit planes.

Figure 4.3: Residual Cost Function

Poorly fit planes are penalized with lower weights associated with lower speeds, and

well fit planes are rewarded with higher weights associated with higher speeds.

4.2.2.2 Coverage

Coverage is how well the PCD is spread over the grid cell in the X-Y plane (see

Fig. 4.4). Because the laser scan is a line scanner rotating 360 degrees, there is

potential for the PCD to form a singular line across the grid cell. If this were to

occur, the plane fitting would be based upon the singular line and would be a poor

representation due to the lack of coverage.

In order to test the quality of the coverage, or planarity, the covariance method of

principal component analysis (PCA) will be used. The covariance matrix (c3x3) of

22

4.2. ROUGHNESS CALCULATION

(a) Good coverage (b) Bad coverage

Figure 4.4: Comparing (a) good spread v.s. (b) bad spread

each cell at position (x, y) is computed first:

c3x3(x,y) =


cov(x, x) cov(x, y) cov(x, z)

cov(y, x) cov(y, y) cov(y, z)

cov(z, x) cov(z, y) cov(z, z)

 (4.14)

where the cov(x, x) is the var(x), which is the average of squared differences from

the mean (x̄) of each cell (x, y).

cov(x, x) = var(x) =
1

n

n∑
i=1

(xi − x̄)2 =
1

n
Sxx −

(
Sx
n

)2

(4.15)

where n is the number of points in the cell.

The covariance is the correlation between two variables and defines the linear de-

pendence to each other. Next, the eigenvalues are determined via the quadratic

equation from the determinant of the covariance matrix C.

det|C − λI| =0 (4.16)

(C0,0 − λ) ∗ (C1,1 − λ)− (C0,1 ∗ C1,0) =0 (4.17)

λ2 − (C0,0 + C1,1)λ+ C0,0 ∗ C1,1 − C0,1 ∗ C1,0 =0 (4.18)

23

CHAPTER 4. SPEED MAP

Where C is a 2x2 matrix

C(x, y) =

cov(x, x) cov(x, y)

cov(y, x) cov(y, y)

 (4.19)

and the eigenvalues are λ1 and λ2

a =C0,0 + C1,1 (4.20)

b =
√

4 ∗ C0,1 ∗ C1,0 + (C0,0 − C1,1)2 (4.21)

λ1 =(a+ b)/2 (4.22)

λ2 =(a− b)/2 (4.23)

a ≥b ≥ 0 (4.24)

When testing for planarity, if either eigenvalue is less than or equal to ω then the

PCD does not have good coverage of the grid cell. Where (λ(·) ≥ 0) and (0 ≤ ω <

cellSize).

coverage =

 0 if λ1 ≤ ω or λ2 ≤ ω

1 else
(4.25)

Experimentally, ω = 0.0008 gave acceptable results as the coverage threshold, but

we leave it to further research to determine what threshold for ω is considered bad

coverage with respect to cellSize.

4.2.2.3 Slope (φ,θ)

The slope is used to calculate traversability for singular cells. This incorporates the

rover’s roll (φ) and pitch (θ) limitations. The slope cost is independent of the surface

normal cost, which is a purely local cost function (dependent on surrounding). Only

the larger of the two ratios is required (eq. 4.26) since the larger ratio is the limiting

24

4.2. ROUGHNESS CALCULATION

factor for the individual cell.

slope =max

[
|A|
φthrs

,
|B|
θthrs

]
(4.26)

Where A and B are the plane coefficients, and φthrs and θthrs are the vehicle roll

and pitch thresholds. Creating the slope cost function is easily done by taking the

difference of a parabolic function.

sslope =

 0 if slope ≥ 1

1− slopeη else
(4.27)

Figure 4.5: Slope Smoothness Cost Function with varying η’s

Experimentally we determine η = 4 because the shape of the curve extended the

sslope value of 1 and has an equivalent smoothness cost of 0.5 at 50◦. We leave it to

further research to determine the best η to use. In Fig. 4.5, the slope smoothness

cost is shown using varying η values of 2, 3, 4, 5, and 10.

The slope cost function is of the form in Fig. 4.5 because we want the rover to

traverse at maximum speed over sloped terrain as long as the slope is less than the

25

CHAPTER 4. SPEED MAP

thresholds for rover pitch and roll.

4.2.3 Adjustments between Cells

The framework of our method provides a way to relate the local surroundings with

the center cell. Using just the surface normals for the smoothness lacks information

on terrain heights, which are important in detecting obstacles for the rover. The

projected height is used to distinguish step terrain from continuously sloped terrain;

incorporating the rover’s obstacle height allows this metric to determine obstacles.

The following subsection will detail adjustments using projected heights for the

smoothness metric between neighboring cells.

4.2.3.1 Projected Height (µ)

The surface normal metric has difficulty distinguishing a step in the terrain if the

step happened to be perfectly aligned with the grid map as seen in Fig. 4.6a and

Fig. 4.6b.

(a) Terrain Step (b) Terrain Step with Slope

Figure 4.6: Step terrain (a) without slope and (b) with slope

In Fig. 4.6a and 4.6b, the surface normals are identical and therefore the planes are

indistinguishable from each other. Using the mean height of the planes solves this

26

4.2. ROUGHNESS CALCULATION

problem. The mean height µ is calculated as:

µ = Sz/n (4.28)

Where n is the number of points in the cell, and Sz is the summation of all the

heights in the cell. By taking the difference between the center cell average height

(µcenter) and its neighboring cell average height (µnbr), the ∆ height is inversely

proportional to smoothness. As the ∆ height increases, the smoothness decreases.

∆ = |µcenter − µnbr| (4.29)

Using ∆ gives a range of [0 : ∞]. Introducing the rover’s obstacle height, which is

the relative terrain height (δ = 0.3m) the rover cannot drive over, into the equation

will reduce the range to [0 : 1]. The mean height smoothness cost (sµ) is then:

sµ(x, y) = 1−min[
∆

δ
, 1] (4.30)

This mean height smoothness works well with step terrain, however for continuously

sloped terrain this method will contain a rough cost related to the delta height (see

Fig. 4.7). We want to prevent this rough cost since the terrain is smooth.

Figure 4.7: Terrain Sloped

27

CHAPTER 4. SPEED MAP

To handle this characteristic, we extend the mean height cost to use a projected

height of the plane (µproj) (see Fig. 4.8). Since the plane of each cell is centered at

(0,0) and the cell size is known, finding the projected height is done by computing

the height at the middle of the neighboring plane using the center plane equation as

such:

µproj =Acenter(i ∗ cellSize) +Bcenter(j ∗ cellSize) + Ccenter (4.31)

where i and j iterate through the neighboring cells. The neighboring cell height is

found using the neighboring plane equation:

µnbr =Anbr(0) +Bnbr(0) + Cnbr (4.32)

Figure 4.8: Projected Height

The new cost function is then:

∆ =|µproj − µnbr| (4.33)

sµ(x, y) =1−min[
∆

δ
, 1] (4.34)

28

4.2. ROUGHNESS CALCULATION

Figure 4.9: Height Smoothness Cost Function

Using projected height provides continuity between cells and checks if the terrain is

a continuous slope or sloped step.

4.2.4 Total Smoothness Cost

The next step in the smoothness calculation is combining all the smoothness metrics

together. To do this, a confidence factor (β) is introduced into the equation to help

weigh the smoothness value between each cell more heavily for well-fit planes (low

residual), good coverage (non-zero eig), and large cluster of points in cell(large

numPts). Additionally, the center cell has its own confidence factor (γ) that will

weigh the entire smoothness value more heavily for a well fit plane (residualCost),

good coverage, and traversable slope (sslope). This gives us our updated smoothness

29

CHAPTER 4. SPEED MAP

equation scenter(x, y):

scenter(x, y) =
γ(x, y)

β∗(x, y)

K∑
i=−K

K∑
j=−K

(i,j)6=(0,0)

(sN ∗ sµ ∗ sslope ∗ β)(x+ i, y + j) (4.35)

γ(x, y) =residualCost(x, y) ∗ coverage(x, y) ∗ sslope(x, y) (4.36)

β∗(x, y) =
K∑

i=−K

K∑
j=−K

(i,j)6=(0,0)

β(x+ i, y + j) (4.37)

β(x, y) =numPts(x, y) ∗ residualCost(x, y) ∗ coverage(x, y) (4.38)

The computation for the smoothness skips over the center cell in the summation

because the dot product and projected height of the center cell to itself will always

result in a value of 1. This will slightly increase the smoothness value towards 1

especially when the cell is surrounded by perpendicular planes. Eliminating this

calculation also slightly reduces computation at load. To reduce computation time

even further, the smoothness of the center cell (x, y) is computed only if the num-

ber of points within the center cell is greater than 10 and the coverage(x, y) 6= 0,

otherwise a default smoothness of 0 is used.

The inner term, sN ∗sµ ∗sslope, is computed to guarantee any smoothness cost equal

to 0 (sN = 0, sµ = 0, or sslope = 0) will force the entire product to be rough.

Additionally, if γ(x, y) = 0, the whole smoothness term (scenter(x, y)) is considered

rough either due to residualCost(x, y) = 0, coverage(x, y) = 0, or sslope(x, y) = 0.

If residualCost(x, y) = 0 or sslope(x, y) = 0, the terrain is untraversable due to

bumpy terrain or slope exceeding the roll/pitch threshold. If coverage(x, y) = 0,

the terrain is considered untraversable due to a lack of data quality and not actual

terrain roughness. The data quality is included because for uncertain terrain we do

not want the rover to traverse these areas.

Once the smoothness cost is computed for all the cells within the tile frame, the

smoothness is smoothed using the neighboring smoothness’ via the α term which is

30

4.2. ROUGHNESS CALCULATION

bounded from [1
n+1 : 1] where n is the number of neighboring cells used.

s(x, y) =α ∗ scenter(x, y) + (1− α) ∗ snbr(x, y) (4.39)

snbr(x, y) =
1

n

K∑
i=−K

K∑
j=−K

(i,j)6=(0,0)

scenter(x+ i, y + j) (4.40)

At the upper limit of α = 1, the resulting smoothness (s(x, y)) will only contain

the center cell smoothness (scenter). The lower limit is derived by setting the center

term equal to the neighbor term. That is, the lower limit of α is 1
n+1 , which provides

equal weighting among all the (n + 1) cells used within the window size including

the center cell. The maximum number of neighboring cells within the window size

is n = (2K + 1)2 − 1.

4.2.4.1 Smoothness Scaling

It is safe to assume terrain areas with low smoothness (large roughness) are un-

traversable and therefore these regions are penalized without adversely affecting

obstacle representation. To accomplish this, the smoothness s is modified:

s′(x, y) = s(x, y)ψ (4.41)

Where ψ > 1. Raising the power of s greater than 1 maintains the range [0, 1] while

increasingly penalizing terrain regions that are rough (see Fig. 4.10). This concept

is taken from Iagnemma and Dubowsky [15]. Experimentally, we determined ψ = 2,

but leave it for further research to optimize ψ for the mission requirements.

31

CHAPTER 4. SPEED MAP

Figure 4.10: Smoothness Scaling: Linear vs Parabolic

4.2.5 Final Roughness Cost

The final roughness cost (r) is defined as the compliment of smoothness s′, so that

a roughness of 1 means rough, and a roughness of 0 means smooth.

r(x, y) = 1− s′(x, y) (4.42)

4.3 Speed Recommendation

While we have been concentrating on roughness, in the end, allowable speed is what

is important. From our literature review in Ch. 2, much of the prior work requires

heuristic tuning to generate quality information on surface roughness and speed.

These methods are not adaptable to other systems and cannot risk the chance of

learning what rough terrain is through failures.

Estimating allowable speed is a non-linear problem that is spatially dependent on

the history of speed and position as well as the wheel-to-ground interaction [9]. The

KRex rover is built as a rigid body with four wheels and no suspension system (see

32

4.3. SPEED RECOMMENDATION

Fig. 3.1), though the tires act as a passive suspension and can be modeled as a linear

dynamical system (LDS) with a spring and damper. However, this is not done in

our approach because suspension systems are complex and vary from rover to rover;

we want our method to be adaptable to other systems, such as the JSC C2 rover.

Additionally, modeling wheel-to-ground interaction is difficult when multiple wheel

contact points occur with the ground.

We simplify the allowable speed prediction problem by linearizing wheel-to-ground

interaction and suspension system model with the following assumptions. We replace

the wheel-to-ground interaction with the residual cost function and the projected

height (sµ) cost function. Using these two cost functions allows the system to define

“pot holes” and step terrain as rough, where multiple wheel contact points occur.

We also replace the suspension system model with the dot product surface normal

cost function (sN) to detect surface changes that define the smoothness. The sN

function is used in the same way as comparing a vibration threshold to the accel-

eration of the LDS’s step response to capture the roughness. The more the surface

changes within a window size, the more vibrations occur in an LDS; in the same

way the more rotated cell planes are relative to the center cell.

Terrain with the least amount of resistance (roughness) is assigned faster speeds.

We scale the roughness metric defined in the previous section with the maximum

rover velocity vmax(≈ 3.0m/s):

vr = vmax ∗ (1− r(x, y)) = vmax ∗ s′(x, y) (4.43)

The more planes that are similar to the center cell, the closer r(x, y) approaches 0,

and the faster the rover can drive over the terrain. However, the more planes that

are disjoint from the center cell, the closer r(x, y) approaches 1, and the slower the

rover can drive over that terrain. The framework of the smoothness calculation al-

lows the patch of terrain within a window size to have a contiguous relationship with

33

CHAPTER 4. SPEED MAP

the local surrounding. This relationship is important because it allows the surface

to be defined by a smoothness metric that integrates its local surrounding.

The approach to determine an allowable speed for diverse terrain (Eq. 4.43) is con-

venient and over simplified. It uses a naive model in order to make roughness an

intuitive feel for the reader by linearly converting to speed. The idea is: the smoother

the surface, the faster the rover can traverse. Speed over rough terrain is not unique

to this work, however there is a reasonable way to get there. As a first cut, this

linearization is acceptable but can increase in complexity to include vibration in

future work. This method is adaptable, does not require supervised learning, and

does not risk the damage of the rover.

34

Chapter 5

Simulations

This chapter will discuss and show simulation results using synthetically generated

terrain. The simulations will test rover specific parameters and algorithm specific

performance. The utility of simulation data is that it allows for a full end-to-end

test of the algorithm, and call qualitatively anew performance.

Matlab is used to generate terrain, test, and verify the algorithms effectiveness/cor-

rectness. The synthetically created terrain include step terrain (Fig. 5.4) and ramp

terrain (Fig. 5.1). No measurement noise was included in the created terrains. These

generated patterns are used to simulate rocks and crater like terrain. The following

sections will discuss the parameters of the algorithm and its result using synthetic

terrain to illustrate the changes.

Note: The roughness metric (r) is in the interval [0, 1], 1 being very rough terrain

and 0 being very smooth terrain.

5.1 Rover Specific Parameters

5.1.1 Roll and Pitch Threshold

The roll (φ) and pitch (θ) thresholds, in the slope cost function, can be changed to

meet rover specifications/limits. However, for simulation and testing purposes a 60◦

35

CHAPTER 5. SIMULATIONS

threshold is used for both roll and pitch. See Fig. 4.5 for cost function graph and

Section 4.2.2.3 for more details on cost function itself. Fig. 5.1 is an example ramp

input used to test the roll/pitch threshold. All ramp inputs cover a 2m× 2m area.

Figure 5.1: Ramp input with slope = tan(60◦) = 1.7321 in a 2m× 2m area

The ramp input simulations uses the following parameters:

Parameter Value

Cell Size 0.3m

Window Size (K) 1

Alpha Weight (α) 1

Obstacle Height (δ) 0.3m

Slope Power (η) 4

Roughness Scale Factor (ψ) 2

Roll/Pitch Threshold (φ/θ) 60◦

Table 5.1: Speed map conditions used for ramp input simulations

Below are three ramp input results that show that roughness and speed follow the

slope cost function. All slopes are traversable at maximum speeds, however as the

slope approaches the roll/pitch threshold, the roughness will increase exponentially

towards 1 as seen in Tbl. 5.2 and Fig. 5.3. The uniform slope for the ramp inputs are

essentially flat terrain rotated about the x-axis or y-axis. To verify the algorithms

correctness for the ramp inputs, the resulting roughnesses and speeds are constant

depending on the slope of the ramp.

36

5.1. ROVER SPECIFIC PARAMETERS

(a) 20 degree Roughness (b) 20 degree Speed

(c) 40 degree Roughness (d) 40 degree Speed

(e) 60 degree Roughness (f) 60 degree Speed

Figure 5.2: Ramp roughness (left) and speed (right) results at 20◦, 40◦, and 60◦

Fig. 5.2 shows 20◦, 40◦, and 60◦ ramp roughness and speed results in the left and right

hand columns respectively. With a 20◦ ramp, the terrain is considered traversable

with 0 roughness and 3m/s speed (see Fig. 5.2a and Fig. 5.2b). As the ramp angle

37

CHAPTER 5. SIMULATIONS

increases to 40◦, the roughness slightly increases to 0.2028 and 2.3916m/s speed

(see Fig. 5.2c and Fig. 5.2d). When the ramp angle reaches or exceeds the roll/pitch

threshold of 60◦, the terrain is considered untraversable with roughness of 1 and 0m/s

speed (see Fig. 5.2e and Fig. 5.2f). All the roughness and speed results in Fig. 5.2

are a constant value and appear as a flat plane. This verifies that the algorithm

does not confuse sloped terrain with stepped terrain, otherwise the roughness values

for 20◦ and 40◦ would be much higher and look more like Fig. 5.5. Running these

simulations verify our algorithm along sloped terrain as evidence by Tbl. 5.2 and

Fig. 5.3, where slope is the tangent function of the angle.

Window Size Alpha Angle Speed Slope
Input (K) (α) (Θ◦) Roughness (m/s) (tan(Θ))

ramp 0 1 1 0 0 3 0
ramp 10 1 1 10 0.0004 2.9988 0.1763
ramp 20 1 1 20 0.0078 2.9766 0.3640
ramp 30 1 1 30 0.0275 2.9175 0.6080
ramp 40 1 1 40 0.2028 2.3916 0.8391
ramp 50 1 1 50 0.6376 1.0872 1.1918
ramp 60 1 1 60 1 0 1.7321
ramp 70 1 1 70 1 0 2.7475

Table 5.2: Ramp simulation results using various slopes

Figure 5.3: Ramp Results

38

5.1. ROVER SPECIFIC PARAMETERS

The roughness results, from Tbl. 5.2, plotted in blue in Fig. 5.3, follow the red dotted

slope cost function line which validates the algorithm for sloped terrain.

5.1.2 Obstacle Height

The vehicle obstacle height threshold (δ), in the projected height cost function (sµ),

can also be changed to meet rover specifications/limits. For simulation and testing

δ = 0.3m is used. See Fig. 4.9 for cost function graph and Section 4.2.3.1 for more

details on cost function.

The generated step terrains are 2m × 2m with the step taking place at 1m in the

x-direction. The step takes place near the middle of the cell, this is considered a

misaligned step. Fig. 5.4 is an example step input used to test the obstacle height

parameter. All step inputs cover a 2m× 2m area.

Figure 5.4: 30cm step input with step at 1m in a 2m× 2m area

The step input simulations uses the following parameters:

39

CHAPTER 5. SIMULATIONS

Parameter Value

Cell Size 0.3m

Window Size (K) 1

Alpha Weight (α) 1

Obstacle Height (δ) 0.3m

Slope Power (η) 4

Roughness Scale Factor (ψ) 2

Roll/Pitch Threshold (φ/θ) 60◦

Table 5.3: Speed map conditions used for step input simulations

In Fig. 5.5 are three step input results that show that roughness and speed follow

the height cost function. The sharp bump in the roughness and speed figures is

where the step is positioned and reflects the roughness and speed of the step. The

roughness of the step will increase while the speed will decrease as the step height

approaches the rover’s obstacle height, δ.

Fig. 5.5 shows 5cm, 20cm, and 1m step roughness and speed results in the left

and right hand columns respectively. With a 5cm step, the terrain is considered

traversable with 0.2404 roughness and 2.2788m/s speed (see Fig. 5.5a and Fig. 5.5b).

As the step size increases to 20cm, the roughness increases to 0.8367 and 0.4899m/s

speed (see Fig. 5.5c and Fig. 5.5d). When the step height reaches or exceeds the

obstacle height of 0.3m, the terrain is considered untraversable with a roughness of

1 and 0m/s speed (see Fig. 5.5e and Fig. 5.5f).

These results verify that the roughness increases as the step size approaches δ. The

cells that are neighboring the step cells (denoted as Left and Right in Tbl. 5.4) are

only slightly affected because, for window size of 1, there are 5 similar neighboring

cells that will outweigh the influence of the remaining 3 cells that are on the step.

However, for larger window sizes these columns (Left, Center,Right) will be affected

more, which will be discussed in a later section. The column marked Center in

Tbl. 5.4, is the roughness measurement of the cell that contains the step.

40

5.1. ROVER SPECIFIC PARAMETERS

(a) 5cm Roughness (b) 5cm Speed

(c) 20cm Roughness (d) 20cm Speed

(e) 1m Roughness (f) 1m Speed

Figure 5.5: Step roughness (left) and speed (right) results at 5cm, 20cm, and 1m

Note: Matlab’s mesh function was used to draw figures to give better perspective of

results than using scatter3. The coloring of the lines may not correspond with cell

area, but the coloring of the vertex corresponds with the roughness and speed of the

cell area.

41

CHAPTER 5. SIMULATIONS

Roughness Speed (m/s)
Input Window Size Alpha Left Center Right Center

step 0.00m 1 1 0 0 0 3
step 0.05m 1 1 0.1008 0.2404 0.0647 2.2788
step 0.10m 1 1 0.2162 0.4778 0.1527 1.5666
step 0.15m 1 1 0.3277 0.6761 0.2482 0.9717
step 0.20m 1 1 0.4195 0.8367 0.3363 0.4899
step 0.25m 1 1 0.4804 0.9443 0.4055 0.1671
step 0.30m 1 1 0.5235 0.9891 0.4663 0.0327
step 1.00m 1 1 0.4004 1 0.4004 0

Table 5.4: Step simulation results using Window=1 and Alpha=1

Figure 5.6: Step Results

Looking at these step input results, the roughness increases and speed decreases

while the step height increases. The trend of the blue step result line in Fig. 5.6,

is somewhat linear as the step height approaches δ. This verifies the height cost

function is working properly when compared to the cost function.

42

5.2. ALGORITHM SPECIFIC PARAMETERS

5.2 Algorithm Specific Parameters

5.2.1 Window Sizes

Window size is the area in which to calculate the center cell roughness. Increasing the

window size allows the algorithm to compute the dot product surface normals with

a larger area of terrain. Refer to Section 4.2.1.2 and Fig. 4.1 for more information.

We varied the window size to test the effects on the roughness calculation. We used

step terrain similar to Fig. 5.4 along with the following parameters:

Parameter Value

Cell Size 0.3m

Alpha Weight (α) 1

Slope Power (η) 4

Roughness Scale Factor (ψ) 2

Obstacle Height (δ) 0.3m

Roll/Pitch Threshold (φ/θ) 60◦

Table 5.5: Speed map conditions for step input simulations with varying window
size

The results of the varied window size are in Tbl. 5.6:

Roughness Speed (m/s)
Input Window Size Alpha Left Center Right Center

step 0.05m 1 1 0.0689 0.2475 0.0441 2.2575
step 0.05m 2 1 0.1078 0.4206 0.1036 1.7382
step 0.05m 3 1 0.1446 0.5554 0.1440 1.3338

step 0.15m 1 1 0.1856 0.7101 0.1389 0.8697
step 0.15m 2 1 0.3023 0.9112 0.3049 0.2664
step 0.15m 3 1 0.4007 0.9528 0.4095 0.1416

step 0.20m 1 1 0.2288 0.8580 0.1807 0.4260
step 0.20m 2 1 0.3861 0.9561 0.3953 0.1317
step 0.20m 3 1 0.5090 0.9766 0.5240 0.0702

step 1.00m 1 1 0.1929 1 0.1929 0
step 1.00m 2 1 0.5037 1 0.5446 0
step 1.00m 3 1 0.6767 1 0.7138 0

Table 5.6: Step simulation results using various window sizes

43

CHAPTER 5. SIMULATIONS

The step results show the roughness values of (Left, Center, and Right) increased as

the window size increased; allowing differing cells to be added into the computation

causing the roughness value to approach one (rough surface). However, just the

opposite would occur if similar cells were added to the computation, causing the

roughness value to approach zero (smooth surface).

The significance of window sizing is to choose how large of an area is needed to

estimate the roughness and speed for the rover. For small window size, the minimum

size is defined by the rover’s wheel diameter since the maximum wheel-terrain contact

points would occur in a wheel diameter length by wheel radius deep hole, covering

half the surface of the wheel. For larger window sizes, it could be defined by the

rover footprint (area beneath the rover) in order to provide roughness and speed

estimates for the entire rover as a rigid body and also for potential hang-up failures,

where the rover body becomes lodged atop an obstacle [15].

5.2.2 Alpha Weight

The alpha term is a weight that fuses neighboring roughness values with the center

roughness value. Decreasing the alpha term will merge the neighboring cells’ center

roughness value into the current centers’ roughness value. If α = 1, then the rough-

ness value for the center cell is only the center cell. Whereas, if α = 0.8, 80% of the

center roughness is used and the remaining 20% comes from the neighboring center

cells within the window size. We varied α to test the effects it had on the rough-

ness calculation. We used step terrain similar to Fig. 5.4 along with the following

parameters:

44

5.2. ALGORITHM SPECIFIC PARAMETERS

Parameter Value

Cell Size 0.3m

Window Size (K) 2

Slope Power (η) 4

Roughness Scale Factor (ψ) 2

Obstacle Height (δ) 0.3m

Roll/Pitch Threshold (φ/θ) 60◦

Table 5.7: Speed map conditions for step input simulations with varying alpha

The results of varying α are in Tbl. 5.8:

Roughness Speed m/s
Input Window Size Alpha Left Center Right Center

step 0.05m 2 1 0.1078 0.4206 0.1036 1.7382
step 0.05m 2 0.8 0.1152 0.3684 0.1115 1.8948
step 0.05m 2 0.5 0.1264 0.2859 0.1232 2.1423

step 0.15m 2 1 0.3023 0.9112 0.3049 0.2664
step 0.15m 2 0.8 0.3215 0.8431 0.3227 0.4707
step 0.15m 2 0.5 0.3497 0.7047 0.3491 0.8859

step 0.20m 2 1 0.3861 0.9561 0.3953 0.1317
step 0.20m 2 0.8 0.4011 0.8998 0.4077 0.3006
step 0.20m 2 0.5 0.4232 0.7723 0.4259 0.6831

step 1m 2 1 0.5037 1 0.5446 0
step 1m 2 0.8 0.5160 0.9818 0.5486 0.0546
step 1m 2 0.5 0.5341 0.8861 0.5545 0.3417

Table 5.8: Step simulation results using various alpha values

In contrast to the roughness calculation effects of changing the window size for the

step inputs, the Center roughness (r(x, y)), in Tbl. 5.8, approaches the neighboring

cells’ roughness as alpha approaches zero. And as alpha approaches one, the cell

roughness (r(x, y)) will only be the center cell roughness value. This is why the

roughness values in Left and Right approach its neighboring cells’ roughness as the

alpha weight approaches zero. The significance of α is to smooth roughness mea-

surements within a window size together.

45

Chapter 6

Experimental Results

The experimental section will show and discuss the results of the speed algorithm

using real sensor data from several field tests. Similar to the simulation section,

various results will be shown for parameter changes such as: window size and alpha

weight. Additionally, this section will compare the speed map method to other ex-

isting methods.

To run the experiments on real data, the Matlab simulation code was ported to C,

then integrated into RoverNav (NASA’s rover navigation software framework which

is currently being used on ARC’s KRex rover and JSC’s C2 rover). The rover was

simulated using Visual Environment for Robotic Virtual Exploration (VERVE), a

visual interface for real-time situational awareness and exploration of new mission

operations. To test and verify the algorithm using real world environments, all ex-

periments used replay data (actual sensor data) from various field test locations:

Johnson Space Center (rockyard, crater), and Ames Marscape.

Note: The color scheme for speed ranges from red (rough/zero speed) to green

(smooth/max speed) for all VERVE results. Matlab results will specify a colorbar

and its associated speed in figures.

46

6.1. ALGORITHM

6.1 Algorithm

Storing the point cloud data and modeling the terrain requires a fast and efficient

technique that can be updated in real-time and use minimal memory. A growing set

least squares approach is used to accomplish this. The algorithm ran in real-time

updating a simple running sum rather than having to store every single PCD. Using

this approach cuts down on storage space, which is a large benefit because it sim-

plifies the rover and does not require the system to worry about optimizing storage

space or data retrieval.

After new point cloud data has been added and updated to the system, the roughness
will then be updated as follows:

Algorithm 1 Update Tile Frame

function Update()
for all cells (x, y) in TileFrame do

CalcRoughness(x,y,false): compute center cell roughness
end for
for all cells (x, y) in TileFrame do

CalcRoughness(x,y,true): gather neighboring cell roughnesses
end for

end function

Algorithm 2 Calculate Roughness

function CalcRoughness(x, y, getNbr)
get corresponding map cell k
for all cells (i, j) in WINDOW do

if getNbr != true then
get corresponding map cell l
accumulate smoothness cost with dot product surface normals, height

cost, and weight factor between k and l : s+ = sN ∗ sµ ∗ weight
else

accumulate neighboring cell smoothness: (x, y).sNbr += (i, j).sCenter
end if

end for
if getNbr != true then

(x, y).sCenter = s/weight
else

(x, y).roughness = 1− (α ∗ (x, y).sCenter + (1− α) ∗ (x, y).sNbr)2

end if
end function

47

CHAPTER 6. EXPERIMENTAL RESULTS

In order to compute the roughness accurately for each update, CalcRoughness runs

twice. The first run is to compute the center roughnesses for all cells within the tile

frame, and the second run is to accumulate neighboring roughnesses. If the first run

is not done before the neighboring roughness accumulation, then the roughness for

each cell will not be accurate or up to date. The running time for this implemented

algorithm is at worst O(2[(2K + 1)2 − 1]N), where N is the number of cells within

a tile and K is the number of cells within a window size.

6.2 Speed Map Method Results

6.2.1 Dot Product Normal Results

Figure 6.1: Marscape - uneven terrain patch in red, showing dot product technique

Note: The color scheme of [red→green]∼[rough→smooth]∼[zero speed→max speed].

The effectiveness of the dot product normal in the speed map method is seen in

Fig. 6.1 of an uneven terrain patch on Marscape, where the bumps are less than

0.1725m high. The red-orange patches in the figure below are defined as rough sur-

faces where low speeds are assigned to these areas for traversal. These patches are

considered rough because the dot product normal (sN) is more prevalent in detect-

48

6.2. SPEED MAP METHOD RESULTS

ing changes in direction of the uneven surfaces than the slopes of the cells (sslope) or

projected heights (sµ). The green colored cells are smooth surfaces and have a high

speed associated with them.

6.2.2 Obstacle Height Results

Figure 6.2: Marscape - two large rocks 0.4572m tall, showing step terrain

Note: The color scheme of [red→green]∼[rough→smooth]∼[zero speed→max speed].

We tested the obstacle height (δ = 0.3m) using two singular large rocks, approxi-

mately 0.4572m tall and 0.60m wide, as seen in Fig. 6.2 by the red colored cells.

All three smoothness cost functions (sN , sµ, sslope) contributed to the roughness of

the rocks because 1) the surface normals between rock cells have a large angle of

rotation, 2) the projected height cost (sµ) within the rocks exceeded δ, and 3) the

rock slopes are greater than the roll/pitch thresholds. The two rocks have been

computed as rough obstacles and have been assigned a 0m/s speed, which is noted

by the red coloring of the rocks.

49

CHAPTER 6. EXPERIMENTAL RESULTS

6.2.3 Roll/Pitch Threshold Results

We tested the slope smoothness (sslope) using the crater like area of Marscape (see

Fig. 6.3). Since craters are naturally continuously sloped, the majority of the terrain

is computed as smooth and assigned high speeds, as evidenced by the green coloring,

because the majority of the surface normals between crater cells have a small angle

of rotation and the sµ within the crater are near 0. Several areas near the apex

of the crater, have been marked rough by the orange-yellow coloring and assigned

lower speeds due to slopes approaching roll/pitch thresholds, and curvature changes

of the terrain that have been marked rough in sN . The consistent speed throughout

the rovers path verifies this type of terrain is not confused with step terrain, like

that in Fig. 6.2.

Figure 6.3: Marscape - crater, showing continuous sloped terrain

Note: The color scheme of [red→green]∼[rough→smooth]∼[zero speed→max speed].

6.2.4 Window Size

The JSC rockyard field site was used to test the effects of window sizes. Below, in

Fig. 6.4, are two photos of the JSC rockyard used as a reference for size and cluster

of rocks. The photos show small rocks scattered on the west end of the rockyard,

and a condensed cluster of large rocks on the east end, near Mt. Kosmo. This is

50

6.2. SPEED MAP METHOD RESULTS

also evidenced in Fig. 6.5, where the boxed region is the same region pictured in

Fig. 6.4b.

(a) West end - Small Rocks (b) East end - Large Rocks

Figure 6.4: JSC rockyard terrain

(a) Alpha = 1, Window = 1 (b) Alpha = 1, Window = 2

(c) Alpha = 1, Window = 3

Figure 6.5: Window size comparison using JSC rockyard. Boxed region shows rough-
ness/speed increase(decrease) as window size increases(decreases)

51

CHAPTER 6. EXPERIMENTAL RESULTS

Note: color scheme of [red→green]∼[rough→smooth]∼[zero speed→max speed].

We varied the window sizes and tested the effects it had on the roughness calculation.

Using VERVE to simulate the experimental data shows the window size effects more

noticeably. The roughnesses in the boxed region of Fig. 6.5a-c, increases in magni-

tude and area as the window size increases. This is a direct effect of including more

differing cells into the roughness computation, and results in roughnesses approach-

ing one. It is also evident in the double summation of Eq. 4.35; as K increases, more

neighboring cells are included in the roughness cost, thereby increasing the affected

area and changes the roughness depending on how different the neighboring cells are

from the center cell. For similarly rough neighboring cells, the center cell roughness

is invariant to K.

Experimentally we chose a window size of K = 2 because the surface area covered is

similar to the dimensions of the KRex rover. See Tbl. 6.1 for corresponding window

sizes with surface areas. Choosing the best window size to use is left for further

research.

Window Size Window Dimension Surface Area
(K) [cell × cell] [m×m]

1 3× 3 0.9× 0.9
2 5× 5 1.5× 1.5
3 7× 7 2.1× 2.1
4 9× 9 2.7× 2.7

Table 6.1: Corresponding Window Size with Surface Area, using cell size = 0.3

6.2.5 Alpha Weights

As mentioned in Section 4.2.4, the roughness calculation is based on a weighted sum

of the center cell and its neighbors. To better relate the neighbors with the center

cell, the neighbors’ center roughness is fused into the equation and weighted with α

(Eq. 4.39)

52

6.2. SPEED MAP METHOD RESULTS

(a) alpha=1.0, linear scale (b) alpha=1.0, parabolic scale

(c) alpha=0.8, linear scale (d) alpha=0.8, parabolic scale

(e) alpha=0.5, linear scale (f) alpha=0.5, parabolic scale

Figure 6.6: Roughness α comparisons with JSC rock-yard data set

Fig. 6.6 shows a comparison of alpha weights and its roughness scale factor between

linear scale and parabolic scale. The clustered large rocks, marked by the black box,

maintain the shape of the rough area while the intensity of the roughness and speed

decreases as alpha approaches 1
n+1 . This is different than the effects the window

size has on the roughness and speed, as mentioned in the previous section 6.2.4.

53

CHAPTER 6. EXPERIMENTAL RESULTS

The effects of changing α stem directly from Eq. 4.39. Since window size does not

change, the affected region is constant throughout and therefore only the roughness

value changes and approaches the neighboring cells’ center roughness (scenter) as α

approaches the lower limit 1
n+1 . For our experiments, α = 0.8 gave excellent results,

however other missions will need to determine the optimal α band for their specific

requirements.

The parabolic scale with ψ = 2 (Eq. 4.41) is used for the roughness scale. This

scaling is computed by raising the power of the total smoothness cost (s(x, y)) with ψ

to increasingly penalize rough terrain. This is seen in Fig. 4.10 and when comparing

the boxed area of Fig. 6.6a to 6.6b, 6.6c to 6.6d, and 6.6e to 6.6f.

6.3 DEM vs. LiDAR

Figure 6.7: Marscape DEM 10cm resolution

In this section we compare the DEM (Digital Eleveation Map) of NASA Ames

Marscape with a 10cm resolution (see Fig. 6.7) to the results from the KRex LiDAR

54

6.3. DEM VS. LIDAR

system, using the same terrain area. This comparison is done in order to verify

the KRex system is detecting surface roughnesses and speeds similar to the DEM

results. The roughness and speed of the DEM and LiDAR both used the following

conditions in Tbl. 6.4:

Parameter Value

Cell Size 0.3m

Window Size (K) 2

Alpha Weight (α) 0.8

Obstacle Height (δ) 0.3m

Slope Power (η) 4

Roughness Scale Factor (ψ) 2

Roll/Pitch Threshold (φ/θ) 60◦

Table 6.2: Speed map conditions used for DEM and LiDAR

The speed map algorithm was applied to the Marscape DEM in Matlab and the re-

sults are shown below in Fig. 6.8. The roughness and speed map both use the same

color gradient– [dark blue→red] for [low speed→ high speed] and [rough→ smooth].

The numbered boxes in Fig. 6.8a and 6.8b, are terrain features that will be used

to verify the KRex LiDAR system results. The terrain features are categorized as

follows:

Feature Description

1 Rough hillside

2 Uneven terrain on on level ground

3 Summit of hill

4 Crater wall

5 2 large rocks standing 0.4572m tall

Table 6.3: Category of Terrain Features

55

CHAPTER 6. EXPERIMENTAL RESULTS

(a) Roughness Map of Marscape DEM

(b) Speed Map of Marscape DEM

Figure 6.8: Marscape DEM produced roughness and speed map

56

6.3. DEM VS. LIDAR

The real-time results of the speed map algorithm using the PCD from the LiDAR

scans were simulated in VERVE, and the results of this are shown below in Fig. 6.9.

The color gradient of the speed map is [red→ green] which is equivalent to [no/low

speed → max/high speed].

Figure 6.9: Marscape Overhead

The results of the DEM and LiDAR scan are nearly identical, which validates the

consistency of the algorithm. Boxes 1-5 in Fig. 6.9 show features detected on the

KRex system match the true data of the DEM in Figs. 6.8a-b. The box 5 features are

not shown well in Fig. 6.9 but is captured in Fig. 6.2. Marscape terrain is permanent

except for the rocks, which are moved around on a regular basis. For this reason

the rock features did not match the position exactly but the roughnesses and speeds

were captured in both the DEM and the KRex LiDAR system.

57

CHAPTER 6. EXPERIMENTAL RESULTS

6.4 Method Comparison

In this section we compare our speed map method with PTA and slope calculation.

PTA uses an obstacle height threshold of δ = 0.3 within its immediate neighbors,

and the slope calculation uses a roll/pitch threshold to determine how traversable

the cell is. The speed map method uses the following conditions:

Parameter Value

Cell Size 0.3m

Window Size (K) 2

Alpha Weight (α) 0.8

Obstacle Height (δ) 0.3m

Slope Power (η) 4

Roughness Scale Factor (ψ) 2

Roll/Pitch Threshold (φ/θ) 60◦

Table 6.4: Speed map conditions for method comparison

We use visual inspection to compare the methods since each method uses their own

metric to define obstacles and roughnesses. The left hand column of Fig. 6.10 uses

JSC’s rockyard test site, and the right hand column uses JSC’s crater test site to

compare methods. The color scheme of PTA is based on the probability the terrain

is an obstacle or not given by red and green– (obstacle and non-obstacle). The speed

map follows the color gradient of [red→ green] which is equivalent to [no/low speed

→ max/high speed]. The coloring of the slope follows [purple→ pink] which is based

on how close the slope is to the roll/pitch threshold– [0 slope → slope threshold]

58

6.4. METHOD COMPARISON

(a) PTA (b) PTA

(c) Speed Map (d) Speed Map

(e) Slope (f) Slope

Figure 6.10: Method Comparison PTA vs Speed Map vs Slope using JSC Rockyard
(left column) and Crater (right column) data set

PTA is a binary obstacle detection algorithm that only detects changes in height as

seen in Fig. 6.10a and Fig. 6.10b. The speed map detects the slightest changes in

surfaces (Fig. 6.10c and 6.10d) and reacts to these changes more quickly. Another

59

CHAPTER 6. EXPERIMENTAL RESULTS

advantage of this algorithm is its resilience to terrain changes over time. The differ-

ences in methods are seen in boxes 1-3 of Fig. 6.10. PTA only detects several large

rocks in box 2 of the JSC rockyard, whereas the speed map detects all the rocks

that are considered obstacles and rough. Within the crater data set, PTA detects

no obstacles while the slope of the crater wall, in box 3, is detected as steep in

Fig. 6.10f. The speed map also detected box 3 as steep; additionally it detected very

small changes on the surface as shown by the scattered yellow blotches in Fig. 6.10d

whereas the slope method cannot detect these small changes since all the slopes are

well below the threshold.

This chapter presented the results of the speed map algorithm using real sensor data

from various field tests. We verified the algorithms repeatability and accuracy of

terrain roughness by comparing true terrain (DEM) results with the KRex LiDAR

system results. Specific terrain formations in Marscape were used to test specific

features in the speed map algorithm such as: the dot product surface normal method,

rover’s obstacle height, and rover’s roll/pitch threshold. Additionally, we compared

the speed map with PTA and slope methods. These results show that the speed map

algorithm adds granularity to roughness and provides better feature detection of the

terrain. This information rich method allows for better obstacle/hazard detection

and better intuition of allowable speed.

60

Chapter 7

Discussion

7.1 Conclusion

The intent of this thesis has been to define a new metric that measures terrain rough-

ness and use that metric to create a speed map for rover navigation. The speed map

provides a boost in current average rover speeds over diverse terrain using a variety

of information known about the surrounding terrain to improve decision making on

how fast to travel. The speed map can also provide a new path optimization; in-

stead of the shortest path from point A to point B, the safest and fastest way can

be computed.

The effectiveness of the speed map method is seen in both the simulation and ex-

perimental results when compared to other methods. The speed map looks at the

terrain surface and is able to quantify roughness through the use of surface normals,

projected plane heights, slopes, residuals, and coverage. This approach is able to de-

tect and provide more information about the terrain than current existing methods,

and allows the speed map to generate a range of recommended speeds over varying

terrain rather than a simple binary speed selection.

The speed map does have its own limitations. It does not take into account the

rover’s suspension system nor does it include the wheel-to-ground interaction model.

61

CHAPTER 7. DISCUSSION

Including them would improve recommended speed predictions using vibration esti-

mates of the rover. However, the speed map replaces both of these with the surface

normal (sN), residualCost, and projected height (sµ) cost functions. This simplifies

the allowable speed problem down to a naive model which linearizes the roughness

to speed transformation.

One of the benefits of using surface normals is the robustness against time dependent

plane height errors induced by inherent pose errors. This method is also adaptable

to any four-wheeled systems, only requiring the system to know the wheel size and

its roll/pitch threshold to adjust obstacle definitions (δ, θ/φ) and window sizing (K).

This method has a running time that takes at worst O(2[(2K + 1)2− 1]N), which is

still in linear time.

In the end, we were able to create a novel method that defines terrain roughness

and creates a speed map for rover navigation. The speed map determines an allow-

able speed over rough terrain that results in increased average rover speeds. The

calculated allowable speeds has not been validated experimentally, and therefore

more work is required to prove that this method does increase average rover speeds.

Overall, the speed map algorithm adds granularity to roughness and provides bet-

ter feature detection of the terrain. This information rich method allows for better

obstacle/hazard detection and better intuition of allowable speed.

7.2 Future Work

There is a great deal of potential in using this research for future work and several

ways to improve this new method. At the time of this writing, rover vibration tests

have not been performed to identify the magnitude and extent of vibration the sys-

tem can withstand without damaging on-board electronics. Having this information

would allow the recommended speed to be validated via a closed loop system– using

the generated speed produced by the map to operate the rover’s velocity controller.

This is just one of many possible directions.

62

7.2. FUTURE WORK

The algorithm can be improved by optimizing the update and roughness calculation

algorithm to make the processing faster for larger window and tile sizes. Currently,

a window size of 2 and tile size of 192 have been used for field testing; no delays

in computation or visual feedback have been included. Optimizing this algorithm

for larger window and tile sizes would allow for larger terrain area to be processed.

This could potentially improve the ability of the rover to predict hazards or dan-

gers sooner, as well as construct paths with greater facility. Additionally, further

research into finding the best values for the parameters in the speed map equations

is required (such as: window size (K), alpha weight (α), slope power (η), roughness

scaling factor (ψ), and coverage threshold (ω)).

The current center/neighbor averaging is limited in its simplicity. A Gaussian filter

for roughness merging is potentially better. This would be used when including

neighboring cells in the dot product phase or the α weight phase of merging cen-

ter roughness and neighbor roughnesses together. This filter would only apply for

window sizes larger than 2. The idea is to weight the closer neighbors more heavily

and incrementally decrease the weight of the neighbor the further away it is from

the center cell. This concept stems from the fact the farther away terrain A is from

terrain B, the less of a relationship the two cells have.

Some future work can also be done in applying machine learning to heuristically

convert the roughness metric to rover speed more intelligently, similar to Stanley

[25] or Alice [4]. Both autonomous cars used supervised or unsupervised learning

from a training set to establish a base speed map.

The major area this work contributes to is path planning. Combining this work

with path planning algorithms provides a new way of determining shorter, faster,

and safer routes through terrain, which would improve overall efficiency. This com-

bination would allow rovers to be more autonomous because the speed map provides

63

CHAPTER 7. DISCUSSION

detailed information needed to traverse through unknown terrain in real-time.

The speed map is a robust and adaptable real-time method that can be applied

outside of planetary rovers. Some applicable uses for the speed map could include:

farming, military, transportation, recreational, and exploration. The speed map

used in a military setting can be a valuable asset for their ground vehicles and

associated personnel. It would aid drivers to detect obstacles/hazards in an unknown

or dynamically changing terrain. In a transportation setting, the speed map would

provide the automobile drivers situational awareness and safety. The speed map

can detect, in real-time, obstacles/hazards on the road such as: road kill, furniture,

pot holes, rocks, unseen speed bumps, large debris, and other automobiles. In a

recreational setting, the speed map would provide off-roading vehicles a map of the

area and assist in navigating extreme terrain. In all these applications, the speed

map provides increased safety, efficiency, and situational awareness.

64

Appendix A

Equations

Statistics stored in matrix form: ∑x2i
∑
xiyi

∑
xi∑

xiyi
∑
y2i

∑
yi∑

xi
∑
yi n


︸ ︷︷ ︸

F

AB
C


︸ ︷︷ ︸
x

=

∑xizi∑
yizi∑
zi


︸ ︷︷ ︸

y

(A.1)

F and y simplified as:

F =

Sxx Sxy Sx
Sxy Syy Sy
Sx Sy n

 (A.2)

y =

SxzSyz
Sz

 (A.3)

Determinant of 3×3 matrix F :

detF = Sxx(nSyy − SySy)− Sxy(nSxy − SxSy) + Sx(SxySy − SyySx) (A.4)

Parameters as a result of matrix inverse x = F−1y:

A = (Sxz(nSyy − SySy) + Syz(SxSy − nSxy) + Sz(SySxy − SxSyy))/detF
(A.5)

B = (Sxz(SxSy − nSxy) + Syz(nSxx − SxSx) + Sz(SxSxy − SySxx))/detF
(A.6)

C = (Sxz(SxySy − SxSyy) + Syz(SxSxy − SySxx) + Sz(SxxSyy − SxySxy))/detF
(A.7)

65

Appendix B

Simulation Results

Window Size Alpha Roughness Speed (m/s)
Input (K) (α) Left Center Right Center

step 0.00m 1 1 0 0 0 3
step 0.05m 1 1 0.1008 0.2404 0.0647 2.2788
step 0.10m 1 1 0.2162 0.4778 0.1527 1.5666
step 0.15m 1 1 0.3277 0.6761 0.2482 0.9717
step 0.20m 1 1 0.4195 0.8367 0.3363 0.4899
step 0.25m 1 1 0.4804 0.9443 0.4055 0.1671
step 0.30m 1 1 0.5235 0.9891 0.4663 0.0327

step 1m 1 1 0.4004 1 0.4004 0
step 0.05m 2 1 0.122 0.4079 0.1116 1.7763
step 0.15m 2 1 0.3634 0.8852 0.3474 0.3444
step 0.20m 2 1 0.4652 0.9398 0.4544 0.1806

step 1m 2 1 0.5744 1 0.6175 0
step 0.05m 2 0.8 0.1272 0.3575 0.1183 1.9275
step 0.15m 2 0.8 0.3735 0.818 0.3594 0.546
step 0.20m 2 0.8 0.4702 0.8842 0.4604 0.3474

step 1m 2 0.8 0.5807 0.9844 0.6154 0.0468
step 0.05m 2 0.5 0.1349 0.278 0.1281 2.166
step 0.15m 2 0.5 0.3883 0.6881 0.3774 0.9357
step 0.20m 2 0.5 0.4776 0.7671 0.4693 0.6987

step 1m 2 0.5 0.59 0.9022 0.6122 0.2934
step 0.05m 3 1 0.1536 0.5405 0.1476 1.3785
step 0.15m 3 1 0.4386 0.9337 0.4315 0.1989
step 0.20m 3 1 0.5564 0.9647 0.5545 0.1059

step 1m 3 1 0.7161 1 0.7525 0

Table B.1: Step simulation results with various window sizes and alpha values

66

Window Size Alpha Angle Speed Slope
Input (K) (α) (Θ◦) Roughness (m/s) (tan(Θ))

ramp 0 1 1 0 0 3 0
ramp 10 1 1 10 0.0004 2.9988 0.1763
ramp 20 1 1 20 0.0078 2.9766 0.3640
ramp 30 1 1 30 0.0275 2.9175 0.6080
ramp 40 1 1 40 0.2028 2.3916 0.8391
ramp 50 1 1 50 0.6376 1.0872 1.1918
ramp 60 1 1 60 1 0 1.7321
ramp 70 1 1 70 1 0 2.7475

Table B.2: Ramp simulation results

67

Appendix C

Matlab Code

C.1 occupancy grid.m

1 %function ocgrid = occupancy grid()
2 clear all;
3

4 save occ = true;
5 fpat = 'rover data';
6 folder = 'basalt'; %folder for data saving
7 dataname = 'all terrain';
8 ext = '.txt';
9 data = load([fpat filesep folder filesep dataname ext]);

10

11 disp(['Load ' dataname ' Complete']);
12

13 [r data,c data] = size(data);
14 cm = 30;
15 cell dim = cm/100; %20cm
16

17 [cmin i] = min(data);
18 [cmax i] = max(data);
19

20 %% Initialization
21 global occ grid cell size window gfilter max vel vel table alpha
22

23 max vel = 3; %m/s
24 %window size for roughness calc 2*window + 1 = side
25 window = 1; %window = 2 => 1 meter x 1 meter frame
26 %gaussian filter();
27 alpha = 1.0;
28

29 cell size = ceil((cmax−cmin)/cell dim); %calc grid size (xaxis, ...
yaxis, zaxis)

30

31 %occ grid = cell(cell size(1),cell size(2));
32 cell grid = struct('first',1,'x',0,'y',0,'z',0,...
33 'xx',0,'yy',0,'zz',0,'xy',0,'xz',0,'yz',0,'count',0,...
34 'coeffs',zeros(3,1),'normal',zeros(3,1),...
35 'roughnessCenter',0,'roughness',0,'vel',0);
36

37 %initializing occ grid to default values
38 for i = 1:cell size(1)

68

C.1. OCCUPANCY GRID.M

39 for j = 1:cell size(2)
40 occ grid{i,j} = cell grid;
41 end
42 end
43

44 %positively align coordinates
45 adjs = [0 0 0];
46 if cmin(1) < 0 %x axis
47 adjs(1) = abs(cmin(1));
48 end
49

50 if cmin(2) < 0 %x axis
51 adjs(2) = abs(cmin(2));
52 end
53

54 count points = 0;
55

56 %initialize vel table
57 vel table = ones(cell size(1),cell size(2))*NaN;
58

59 disp('Initialization Complete');
60

61 %% Calculating Speed Map
62 %ct = 0;
63 % aviobj = avifile('basalthills sample all.avi','compression','None');
64

65 for i=1:r data
66 data adjs = adjs + data(i,:);
67 index = ceil(data adjs/cell dim);
68

69 row = index(1); col = index(2);
70 if row == 0
71 row = 1;
72 end
73 if col == 0
74 col = 1;
75 end
76

77 add point(row,col,data adjs);
78 count points = count points + 1;
79

80 % if mod(i,500)== 0 | | i==r data
81 % %ct = ct + 1;
82 % h1 = figure(1); clf(1);
83 % scatter(x(:),y(:),2,vel table(:));
84 % title('Speed Map');
85 % colorbar
86 %
87 % F = getframe(h1);
88 % aviobj = addframe(aviobj,F);
89 % end
90 %pause;
91 end
92 disp('PCA Done');
93 r = cell size(1); %# rows = length of y axis
94 c = cell size(2); %# cols = length of x axis
95 for i=1:r
96 for j=1:c
97 if occ grid{i,j}.first == 0
98 occ grid{i,j}.roughnessCenter = calc roughness(i,j,0);

69

APPENDIX C. MATLAB CODE

99 end
100 end
101 end
102 for i=1:r
103 for j=1:c
104 if occ grid{i,j}.first == 0
105 occ grid{i,j}.roughness = calc roughness(i,j,1);
106 occ grid{i,j}.vel = occ grid{i,j}.roughness*max vel;
107 vel table(i,j) = occ grid{i,j}.vel;
108 end
109 end
110 end
111 disp('Roughness Calc Done');
112

113 if save occ == true
114 occname = sprintf('occ grid %s %0.2dcm.mat',dataname,cm);
115 save([fpat filesep folder filesep occname],'occ grid');
116 disp('Save Complete');
117 end
118

119 disp('Speed Map Complete');
120 %return;
121 % aviobj = close(aviobj);
122

123 minV = (min(vel table))/max vel
124 maxV = (max(vel table))/max vel
125

126 %% Speed Map Results
127 h1 = figure(1); clf(1);
128 %scatter3(x(:),y(:),vel table(:),3,vel table(:))
129

130 r = cell size(2); %# rows = length of y axis
131 c = cell size(1); %# cols = length of x axis
132 [x y] = meshgrid(1:r,1:c);
133

134 % scatter(x(:),y(:),1,vel table(:),'.');
135 % mesh(1:r,1:c,vel table); %use for small data sets
136 scatter(x(:),y(:),3,vel table(:),'filled');
137 %scatter3(x(:),y(:),1−(vel table(:)/3),7,vel table(:));
138 t = sprintf('Speed Map [cell:%0.2dcm, win:%d]',cm,window);
139 title(t);
140 contourcmap([0:0.03:3],'jet');
141 colorbar
142 % axis([140 350 125 310]); %for marscape only
143 view(0,90); %for small data sets
144 xlabel('x−axis');
145 ylabel('y−axis');
146 ylabel(colorbar,'Velocity [m/s]')
147

148 h2 = figure(2); clf(2);
149 %scatter3(x(:),y(:),1−(vel table(:)/3),7,vel table(:));
150 % mesh(1:r,1:c,1−(vel table/3));
151 scatter(x(:),y(:),3,1−(vel table(:)/3),'filled'); %use this for ...

larger data sets
152 t = sprintf('Roughness Map [cell:%0.2dcm, win:%d]',cm,window);
153 title(t);
154 contourcmap([0:0.01:1],'jet');
155 colorbar
156 % axis([140 350 125 310]); %for marscape only
157 view(0,90);

70

C.2. CALC ROUGHNESS.M

158 xlabel('x−axis');
159 ylabel('y−axis');
160 ylabel(colorbar,'Roughness')
161

162 fpat = 'results';
163 filename = ...

sprintf('%s speed map cell %0.2dcm win %d',dataname,cm,window);
164 print(h1,'−depsc2', [fpat filesep folder,filesep,filename]);
165

166 filename = ...
sprintf('%s roughness map cell %0.2dcm win %d',dataname,cm,window);

167 print(h2,'−depsc2', [fpat filesep folder,filesep,filename]);
168

169 return;
170

171 %% Elevation Map
172 ele map = ones(cell size(1),cell size(2))*NaN;
173 for i = 1:cell size(1)
174 for j = 1:cell size(2)
175 if occ grid{i,j}.first == 0
176 xN = (i)*cellSize−cellSize/2;
177 yN = (j)*cellSize−cellSize/2;
178 mA = occ grid{i,j}.coeffs(1);
179 mB = occ grid{i,j}.coeffs(2);
180 mC = occ grid{i,j}.coeffs(3);
181 mHeight = mA*xN + mB*yN + mC;
182 % mHeight = occ grid{i,j}.z/occ grid{i,j}.count;
183 ele map(i,j) = mHeight;
184 end
185 end
186 end
187

188 h3 = figure(3); clf(3);
189 scatter(x(:),y(:),3,ele map(:),'filled');
190 % view(90,270);
191 title('Elevation Map');
192 % contourcmap([−4:0.1:2],'jet');
193 colorbar
194 ylabel(colorbar,'Elevation[meters]');
195 xlabel('Longitude[meters]');
196 ylabel('Latitude[meters]');
197

198 filename = sprintf('%s elevation map',dataname);
199 print(h3,'−depsc2', [fpat filesep folder,filesep,filename]);

C.2 calc roughness.m

1 %% calc roughness(row,col)
2 function roughness = calc roughness(row,col,getNbr)
3

4 global occ grid cell size window alpha gfilter
5 % c−1 c c+1
6 % |−−−|−−−|−−−|
7 % r−1 | | | |
8 % |−−−|−−−|−−−|
9 % r | | * | |

71

APPENDIX C. MATLAB CODE

10 % |−−−|−−−|−−−|
11 % r+1 | | | |
12 % |−−−|−−−|−−−|
13 % boundary cond: 1−> max
14 %if row−1 < 1 %no neighbor below boundary
15 cellSize = 0.3;
16

17 center = occ grid{row,col}.normal;
18 center mean = occ grid{row,col}.z/occ grid{row,col}.count;
19 p = occ grid{row,col}.coeffs; %plane equation
20 mA = p(1);
21 mB = p(2);
22 %mC = −mA*((row−1)*cellSize) − mB*((col−1)*cellSize) − p(3) + ...

center mean;
23 mC = p(3); %center mean;%mA*((row−1)*cellSize) + ...

mB*((col−1)*cellSize) + center mean;
24

25 roughness slope = 0; roughness DPNV = 0; ...
roughness MeanHeightCost = 0; roughness Nbr = 0;

26 ResidualCost = 0; CovHeightCost = 0;
27

28 obstacle = 0.3;
29

30 count = 0;
31 weight = 0;
32 dot prod = zeros(2*window+1);
33

34 roughness slope = getSlope(row,col);
35

36 centerResidualCost = ...
log10(1/abs(getResidual(row,col)))/log10(1/(0.05ˆ2));

37 if centerResidualCost > 1
38 centerResidualCost = 1;
39 elseif centerResidualCost < 0
40 centerResidualCost = 0;
41 end
42 % centerResidualCost = 1;
43

44 for i=−window:1:window %row
45 for j=−window:1:window %column
46 if (row+i ≥ 1 && row+i ≤ cell size(1) &&...
47 col+j ≥ 1 && col+j ≤ cell size(2) &&...
48 ¬(i==0 && j==0))
49 if occ grid{row+i,col+j}.first == 0
50 residual = abs(getResidual(row+i,col+j));
51 if residual==0
52 %disp('Residual is 0');
53 ResidualCost = ...

1;%log10(1/1e−6);%10000;%1000000000;
54 %max residual of 1e−6 is having a max ...

error of 1mm
55 else
56 % ResidualCost = log10(1/residual);
57 ResidualCost = ...

log10(1/(residual))/log10(1/(0.05ˆ2));
58 % ResidualCost = 1/residual;
59 if ResidualCost > 1
60 ResidualCost = 1;
61 elseif ResidualCost < 0
62 ResidualCost = 0;

72

C.2. CALC ROUGHNESS.M

63 end
64

65 end
66 % ResidualCost = 1;
67 % ResidualCost = ResidualCost*6;
68 cov = computeCov(row+i,col+j);
69

70 count = count + 1; %count how many used
71 nb = occ grid{row+i,col+j}.normal;
72

73 roughness DPNV = abs(dot(nb,center));
74

75 xN = (row+i)*cellSize−cellSize/2;
76 yN = (col+j)*cellSize−cellSize/2;
77

78 % xN = (i)*cellSize+cellSize/2; %testing
79 % yN = (j)*cellSize+cellSize/2; %testing
80

81 mA n = occ grid{row+i,col+j}.coeffs(1);
82 mB n = occ grid{row+i,col+j}.coeffs(2);
83 mC n = occ grid{row+i,col+j}.coeffs(3);
84 nHeight = mA n*xN + mB n*yN + mC n;
85 % nHeight = mA n*0.15 + mB n*0.15 + mC n; %testing
86

87 % roughness MeanHeightCost = ...
exp(abs(center mean−mean z)/−obstacle);

88 %proj height = mA*((i*cellSize)) + ...
mB*((j*cellSize)) + mC;% + center mean;

89

90 proj height = mA*xN + mB*yN + mC;
91

92 % mean z = ...
occ grid{row+i,col+j}.z/occ grid{row+i,col+j}.count; %testing

93 % r N = abs(mean z−center mean)/obstacle; %testing
94

95 r N = abs(proj height−nHeight)/obstacle;
96 if r N > 1
97 r N = 1;
98 end
99 roughness MeanHeightCost = 1−r N;

100

101 r slope = getSlope(row+i,col+j);
102

103 dot prod(i+window+1,j+window+1) = ...
roughness DPNV*roughness MeanHeightCost*r slope...

104 *occ grid{row+i,col+j}.count*ResidualCost;
105 % *occ grid{row+i,col+j}.count;
106

107 weight = weight + ...
occ grid{row+i,col+j}.count*ResidualCost;

108 % weight = weight + occ grid{row+i,col+j}.count;
109

110 if getNbr == 1
111 roughness Nbr = roughness Nbr + ...

occ grid{row+i,col+j}.roughnessCenter;
112 end
113 end
114 end %boundary checker
115 end %j
116 end %i

73

APPENDIX C. MATLAB CODE

117 %dot prod
118 %roughness: 0 = very rough; 1 = same plane
119 %roughness = sum(sum(dot prod.*gfilter))
120 if count == 0
121 roughness = count;
122 else
123 roughness = ...

(sum(sum(dot prod))/weight)*roughness slope*centerResidualCost;
124 if getNbr == 1
125 roughness = ...

power(alpha*occ grid{row,col}.roughnessCenter + ...
(1−alpha)*roughness Nbr/count,2);

126 end
127 end
128

129 function s = getSlope(row,col)
130 global occ grid;
131

132 slopeThresh = tan(60*pi/180);
133 slopex = abs(occ grid{row,col}.coeffs(1))/slopeThresh;
134 slopey = abs(occ grid{row,col}.coeffs(2))/slopeThresh;
135 if slopex > slopey
136 slope = slopex;
137 else
138 slope = slopey;
139 end
140

141 if slope<1
142 s=1−(slopeˆ4);
143 else
144 s=0;
145 end
146

147 function cov = computeCov(row,col)
148 global occ grid
149 cov(1,1) = occ grid{row,col}.xx/occ grid{row,col}.count − ...

(occ grid{row,col}.x/occ grid{row,col}.count)ˆ2;
150 cov(1,2) = occ grid{row,col}.xy/occ grid{row,col}.count − ...

(occ grid{row,col}.x*occ grid{row,col}.y)/(occ grid{row,col}.countˆ2);
151 cov(1,3) = occ grid{row,col}.xz/occ grid{row,col}.count − ...

(occ grid{row,col}.x*occ grid{row,col}.z)/(occ grid{row,col}.countˆ2);
152 cov(2,1) = cov(1,2);
153 cov(2,2) = occ grid{row,col}.yy/occ grid{row,col}.count − ...

(occ grid{row,col}.y/occ grid{row,col}.count)ˆ2;
154 cov(2,3) = occ grid{row,col}.yz/occ grid{row,col}.count − ...

(occ grid{row,col}.y*occ grid{row,col}.z)/(occ grid{row,col}.countˆ2);
155 cov(3,1) = cov(1,3);
156 cov(3,2) = cov(2,3);
157 cov(3,3) = occ grid{row,col}.zz/occ grid{row,col}.count − ...

(occ grid{row,col}.z/occ grid{row,col}.count)ˆ2;

C.3 add point.m

1 %% add point(row,col,point)
2 function add point(row,col,point)
3 global occ grid max vel vel table window cell size

74

C.3. ADD POINT.M

4 x = point(1); y = point(2); z = point(3);
5

6 occ grid{row,col}.first = 0;
7

8 %LSQ fit plane
9 %f(x,y,z) = a*x + b*y + c*z + d = 0

10 %rewritten: z = Mx+Ny+b
11 %J(M,N,b) = SUM [(Mx+Ny+b) − z]ˆ2
12 %gradient(J) = 2*SUM [(Mx+Ny+b) − z][x,y,1]
13 occ grid{row,col}.x = occ grid{row,col}.x + x;
14 occ grid{row,col}.y = occ grid{row,col}.y + y;
15 occ grid{row,col}.z = occ grid{row,col}.z + z;
16 occ grid{row,col}.xx = occ grid{row,col}.xx + xˆ2;
17 occ grid{row,col}.yy = occ grid{row,col}.yy + yˆ2;
18 occ grid{row,col}.zz = occ grid{row,col}.zz + zˆ2;
19 occ grid{row,col}.xy = occ grid{row,col}.xy + x*y;
20 occ grid{row,col}.xz = occ grid{row,col}.xz + x*z;
21 occ grid{row,col}.yz = occ grid{row,col}.yz + y*z;
22 occ grid{row,col}.count = occ grid{row,col}.count + 1;
23

24 % Sx = occ grid{row,col}.x;
25 % Sy = occ grid{row,col}.y;
26 % Sz = occ grid{row,col}.z;
27 % Sxx = occ grid{row,col}.xx;
28 % Syy = occ grid{row,col}.yy;
29 % Szz = occ grid{row,col}.zz;
30 % Sxy = occ grid{row,col}.xy;
31 % Sxz = occ grid{row,col}.xz;
32 % Syz = occ grid{row,col}.yz;
33 % count = occ grid{row,col}.count;
34

35 A = [occ grid{row,col}.xx occ grid{row,col}.xy occ grid{row,col}.x;
36 occ grid{row,col}.xy occ grid{row,col}.yy occ grid{row,col}.y;
37 occ grid{row,col}.x occ grid{row,col}.y occ grid{row,col}.count];
38

39 Y = [occ grid{row,col}.xz occ grid{row,col}.yz occ grid{row,col}.z]';
40

41 occ grid{row,col}.coeffs = pinv(A) * Y;
42 % d = ...

occ grid{row,col}.x*(−(occ grid{row,col}.yy*occ grid{row,col}.x) ...
+ occ grid{row,col}.xy * occ grid{row,col}.y) +...

43 % occ grid{row,col}.xy*(...
(occ grid{row,col}.y*occ grid{row,col}.x) − ...
occ grid{row,col}.xy*occ grid{row,col}.count) +...

44 % ...
occ grid{row,col}.xx*(−(occ grid{row,col}.y*occ grid{row,col}.y) ...
+ occ grid{row,col}.yy*occ grid{row,col}.count);

45 %
46 % A = (Sz * (−(Sx*Syy) + Sxy*Sy) +...
47 % Syz * ((Sx*Sy) − Sxy*count) +...
48 % Sxz * (−(Sy*Sy) + Syy*count))/d;
49 %
50 % B = (Sz * ((Sx*Sxy) − Sxx*Sy) +...
51 % Syz * (−(Sx*Sx) + Sxx*count) +...
52 % Sxz * ((Sy*Sx) − Sxy*count))/d;
53 %
54 % C = (Sz * (−(Sxy*Sxy) + Sxx*Syy) +...
55 % Syz * ((Sxy*Sx) − Sxx*Sy) +...
56 % Sxz * (−(Syy*Sx) + Sxy*Sy))/d;
57 %

75

APPENDIX C. MATLAB CODE

58 % occ grid{row,col}.coeffs = [A B C]';
59

60 %Normal = gradient(f) = [a b c]';
61 occ grid{row,col}.normal = [−occ grid{row,col}.coeffs(1) ...

−occ grid{row,col}.coeffs(2) 1]'; %[−M −N 1]
62 occ grid{row,col}.normal = ...

occ grid{row,col}.normal/norm(occ grid{row,col}.normal);

C.4 getResidual.m

1 function r = getResidual(row,col)
2 global occ grid
3 %1/n sum((z−height(x,y))ˆ2)
4 coeffs = occ grid{row,col}.coeffs;
5 A = coeffs(1); B = coeffs(2); C = coeffs(3);
6 r = occ grid{row,col}.zz + ...

[occ grid{row,col}.xx,occ grid{row,col}.yy,occ grid{row,col}.count] ...

* occ grid{row,col}.coeffs.ˆ2 + ...
7 2*(A*(C*occ grid{row,col}.x + B*occ grid{row,col}.xy − ...

occ grid{row,col}.xz) + ...
8 B*(C*occ grid{row,col}.y − occ grid{row,col}.yz) − ...
9 C*occ grid{row,col}.z);

10 r = r/occ grid{row,col}.count;

76

Appendix D

Source Code

D.1 RoughnessMap.h

1 #ifndef ROVERNAV SPEEDMAP H
2 #define ROVERNAV SPEEDMAP H
3

4 #include "RoughnessMapCell.h"
5 #include "rovernav/mapping/roughness/RoughnessMapParameters.h"
6

7 #include "rovernav/core/MapView.h"
8 #include "rovernav/core/Matrix.h"
9 #include "rovernav/math/LinearAlgebra.h"

10

11 #include "rovernav/travmap/TravMap.h"
12 #include "rovernav/travmap/TerrainMapAccumulator.h"
13

14 namespace rovernav {
15 template <class Indexer = StandardMapIndexer >
16 class RoughnessMap : public MapView<RoughnessMapCell, Indexer> { ...

//inheritance of MapView class
17 public:
18 typedef RoughnessMapCell pixel type;
19 typedef RoughnessMapParameters Parameters;
20

21 RoughnessMap(const MapReference& mapRef,
22 const Parameters& params = Parameters()) : ...

//constructor
23 MapView<RoughnessMapCell, Indexer>(mapRef),
24 m params(params),
25 m cellSize(mapRef.cellLength().x()),
26 m winLen(2*m params.winSize+1),
27 m certAlpha(−m winLen),
28 m maxCells((m winLen*m winLen)−1),
29 m terrainMapAccumulator(mapRef) {
30 }
31

32 Parameters const& parameters() const { return m params; }
33

34 /* importTerrainMap
35 * imports TerrainMapAccumulator from MapMaker for reference ...

to Normals and other needed data.
36 */

77

APPENDIX D. SOURCE CODE

37 void importTerrainMap(TerrainMapAccumulator<Indexer>& map) {
38 m terrainMapAccumulator = map;
39 }
40

41 /* caclRoughness(x,y)
42 * Calculates the roughness map using a specified window size ...

and linearly associates speed with roughness to creates ...
speed limit.

43 * − Implicitly updates speedMap
44 */
45 void calcRoughness(int x, int y, bool getNeighbors) {
46 int count = 0, max x = this−>sizeX(), max y = this−>sizeY();
47 typename TerrainMapAccumulator<Indexer>::pixel type *tmCell ...

= &(m terrainMapAccumulator(x,y)); //TerrainMap center ...
cell

48 typename TerrainMapAccumulator<Indexer>::pixel type* nCell; ...
//TerrainMap neighbor cell

49 typename RoughnessMap<Indexer>::pixel type *cCell = ...
&(*this)(x,y); //Speed map center cell

50 typename RoughnessMap<Indexer>::pixel type *nSMCell; //Speed ...
map neighbor cell

51

52 double r tot = 0, weight = 0, residual = 0;
53 double ResidualCost = 0;
54 unsigned PlanarityCost = 0, cPlanarity = 0;
55 double roughness DPNV = 0, roughness MeanHeightCost = 0, ...

roughness Neighbors = 0;
56 double proj height = 0, nbr height = 0;
57

58 Matrix3x3 cov;
59 Matrix2 cov2; //covariance 2x2 matrix for eigenvalue computation
60 Vector2 d; //eigenvalues
61

62 //Get center cell's covariance matrix
63 tmCell−>planeFitMoments().computeCovariance(cov);
64 cov2(0,0) = cov(0,0);
65 cov2(0,1) = cov(0,1);
66 cov2(1,0) = cov(1,0);
67 cov2(1,1) = cov(1,1);
68

69 d = eigenval2(cov2); //eigenvalue calculation
70 (d(0)==0 | | d(1)==0) ? PlanarityCost = 0 : PlanarityCost = ...

1; //Any zero eigenvalue fails planarity
71 cPlanarity = PlanarityCost;
72

73 if(tmCell−>numPoints() ≥ m params.minCellPts && ...
cPlanarity!=0) { //check if sufficient numPts and pass ...
planarity test

74 for(int i = −m params.winSize; i≤ (int)m params.winSize; ...
i++) {

75 for(int j=−m params.winSize; j≤ (int)m params.winSize; ...
j++) {

76 if(x+i ≥ 0 && x+i ≤ max x &&
77 y+j ≥ 0 && y+j ≤ max y &&
78 !(i==0 && j ==0)) {
79

80 nCell = &(m terrainMapAccumulator)(x+i,y+j);
81

82 //Cost function for confidence: planarity test
83 nCell−>planeFitMoments().computeCovariance(cov);

78

D.1. ROUGHNESSMAP.H

84 if(cov(0,0) ≤ 0 | | cov(1,1) ≤ 0) {
85 std::cout << "******************Cov(2,2) == ...

0***************\n";
86 }
87 //PlanarityCost = (cov(0,0)+cov(1,1))/2; //cost ...

factor range [0:infiniti]
88 cov2(0,0) = cov(0,0);
89 cov2(0,1) = cov(0,1);
90 cov2(1,0) = cov(1,0);
91 cov2(1,1) = cov(1,1);
92

93 d = eigenval2(cov2); //eigenvalue calculation
94 (d(0)==0 | | d(1)==0) ? PlanarityCost = 0 : ...

PlanarityCost = 1;
95

96 if(nCell−>numPoints() ≥ m params.minCellPts && ...
PlanarityCost!=0) { //checks if there is ...
sufficient # points in cell

97

98 if(!getNeighbors) {
99 //Cost function for confidence: covariance of Z ...

error, plane fit in Z direction
100 residual = ...

nCell−>planeFitMoments().getResidual(nCell−>getPlane());
101

102 if(residual == 0) {
103 std::cout << "******************Resdiual == ...

0****************\n";
104 }
105 //ResidualCost = 1/residual; //cost factor range ...

[0:infiniti]
106 ResidualCost = log10(1/residual)/6; //cost ...

factor range [0:1] best=1e−6 (1mm); worst=1 (1m)
107 (ResidualCost > 1 ? ResidualCost = 1 : ...

(ResidualCost < 0 ? ResidualCost = 0 : 1));
108

109 //Cost function for roughness: dot product ...
normal vectors

110 roughness DPNV = ...
fabs(dot prod(tmCell−>terrainMapCell.normal, ...
nCell−>terrainMapCell.normal)); //cost ...
factor range [0:1]

111

112 //Cost function for roughness: ∆ proj mean height
113 proj height = ...

tmCell−>getPlane().height(i*m cellSize,j*m cellSize);
114 nbr height = nCell−>getPlane().height(0,0);
115

116 roughness MeanHeightCost = fabs(proj height − ...
nbr height)/m params.∆; //∆ from roughnessParams

117 (roughness MeanHeightCost > 1) ? ...
roughness MeanHeightCost = 0 : ...
roughness MeanHeightCost = ...
1−roughness MeanHeightCost; //cost factor ...
range [0:1]

118

119 //sum of products
120 r tot += ...

(roughness DPNV*roughness MeanHeightCost) * ...
(nCell−>numPoints()*ResidualCost);

79

APPENDIX D. SOURCE CODE

121 weight += nCell−>numPoints()*ResidualCost;
122 count++;
123 }
124 else {
125 nSMCell = &(*this)(x+i,y+j); //Speed map center cell
126 roughness Neighbors += nSMCell−>roughnessCenter; ...

//Accumlate neighbors center roughnesses
127 }// end getNeighbors check
128 }// end numPoints cell check
129

130 }// end range check
131 }// end j
132 }// end i
133 }// end numPoints check for center cell
134

135 if(!getNeighbors) {
136 cCell−>numCells = count; //# cells used to calculate roughness
137

138 if(count==0) {
139 cCell−>roughnessCenter = cCell−>roughness = count;
140 }
141 else {
142 cCell−>roughnessCenter = (r tot/weight);
143 }
144 }
145 else {
146 if(cCell−>numCells!=0){
147 roughness Neighbors /= cCell−>numCells; //average of ...

neighbor roughness: Should filter with Gaussian ...
distribution?

148 }
149 cCell−>roughness = ...

1−pow(m params.rAlpha*cCell−>roughnessCenter + ...
(1−m params.rAlpha)*roughness Neighbors,2); ...
//non−linear transformation

150 cCell−>speed = cCell−>roughness*m params.maxVel;
151 }
152 }// calcRoughness
153

154 void update() {
155 //Calculate center cell roughness
156 for(int i=0;i<(int)(this−>sizeX());i++) {
157 for(int j=0;j<(int)(this−>sizeY());j++) {
158 calcRoughness(i,j,false);
159 }
160 }
161 //Get neighbor roughness
162 for(int i=0;i<(int)(this−>sizeX());i++) {
163 for(int j=0;j<(int)(this−>sizeY());j++) {
164 calcRoughness(i,j,true);
165 }
166 }
167 }//update
168

169 void exportRoughnessMap(TravMap<StandardMapIndexer>& map) const{
170 map.setMapReference(this−>mapRef());
171 Vector2i pixel;
172

173 for(pixel.x() = 0; pixel.x() < map.size().x(); pixel.x()++) {

80

D.2. ROUGHNESSMAPCELL.H

174 for(pixel.y() = 0; pixel.y() < map.size().y(); ...
pixel.y()++) {

175

176 typename TravMap<StandardMapIndexer>::pixel type *to = ...
&map(pixel);

177 const typename RoughnessMap<Indexer>::pixel type *fromSM ...
= &(*this)(pixel);

178 const typename ...
TerrainMapAccumulator<Indexer>::pixel type *fromTM = ...
&(m terrainMapAccumulator(pixel)); //reference to ...
TerrainMap

179

180 to−>traversability = 1−fromSM−>roughness;
181 //to−>certainty = 1 − ...

exp(m certAlpha*(float)(fromSM−>numCells)/m maxCells); ...
//could be similar to morphin: 1−exp(alpha*numPtsInCell)

182 to−>certainty = (float)(fromSM−>numCells)/m maxCells;
183 to−>height = fromTM−>getPlane().height(0,0);
184 to−>time = fromTM−>time();
185

186 } // for x
187 } // for y
188 } // export(TravMap<StandardMapIndexer>
189

190 protected:
191 Parameters m params;
192 float m cellSize;
193 unsigned m winLen;
194 int m certAlpha;
195 unsigned m maxCells;
196

197 TerrainMapAccumulator<Indexer> m terrainMapAccumulator;
198 }; // class RoughnessMap
199 } // namespace rovernav
200 #endif // ROVERNAV SPEEDMAP H

D.2 RoughnessMapCell.h

1 #ifndef rnRoughnessMapCell h
2 #define rnRoughnessMapCell h
3

4 namespace rovernav
5 {
6 // Structure for Speed Maps
7 struct RoughnessMapCell
8 {
9 double roughness; // Adjusted Roughness

10 double roughnessCenter; // Roughness based around center
11 double speed;
12 unsigned numCells; // Number of cells used in roughness ...

calculation for certainty
13

14 RoughnessMapCell() :
15 roughness(0),
16 roughnessCenter(0),
17 speed(0),

81

APPENDIX D. SOURCE CODE

18 numCells(0)
19 {}
20

21 void clear()
22 {
23 roughness = 0.;
24 roughnessCenter = 0;
25 speed = 0.;
26 numCells = 0;
27 }
28 }; // RoughnessMapCell
29 } // namespace rovernav
30 #endif // rnRoughnessMapCell h

82

References

[1] Max Bajracharya, Mark W. Maimone, and Daniel Helmick. Autonomy for mars
rovers: Past, present, and future. Computer, 41:44–50, 2008. ISSN 0018-9162.
doi: http://doi.ieeecomputersociety.org/10.1109/MC.2008.515.

[2] Joseph Carsten, Arturo Rankin, David Ferguson, and Anthony (Tony) Stentz.
Global path planning on-board the mars exploration rovers. In IEEE Aerospace
Conference, 2007.

[3] Mattia Castelnovi, Ronald Arkin, and Thomas R. Collins. Reactive speed con-
trol system based on terrain roughness detection. International Conference on
Robotics and Automation, 2005.

[4] Lars B. Cremean, Tully Foote, Jeremy H. Gillula, George H. Hines, Dmitriy
Kogan, Kristopher L. Kriechbaum, Jeffrey C. Lamb, Jeremy Leibs, Laura
Lindzey, Christopher E. Rasmussen, Alexander D. Stewart, Joel W. Burdick,
and Richard M. Murray. Alice: An information-rich autonomous vehicle for
high-speed desert navigation: Field reports. J. Robot. Syst., 23(9), June 2006.

[5] Matthew C. Deans, Terrence Fong, Mark Allan, Xavier Bouyssounouse, Maria
Bualat, Lorenzo Flueckiger, Linda Kobayashi, Susan Lee, David Lees, Eric
Park, Estrellina Pacis, Liam Pedersen, Debbie Schreckenghost, Trey Smith,
Vinh To, and Hans Utz. Robotic scouting for human exploration. In Proc.
AIAA Space, 2009.

[6] A.S. El-Kabbany and A. Ramirez-Serrano. Terrain roughness assessment for
human assisted ugv navigation within heterogeneous terrains. International
Conference of Robotics and Biomimetics, 2009.

[7] Terrence Fong, Mark Allan, Xavier Bouyssounouse, Maria G. Bualat,
Matthew C. Deans, Laurence Edwards, Lorenzo Flckiger, Leslie Keely, Susan Y.
Lee, David Lees, Vinh To, and Hans Utz. Robotic site survey at haughton crater.
iSAIRAS, 2008.

[8] Donald B. Gennery. Traversability analysis and path planning for a planetary
rover. Auton. Robots, 6(2):131–146, April 1999. ISSN 0929-5593. doi: 10.1023/
A:1008831426966. URL http://dx.doi.org/10.1023/A:1008831426966.

[9] Thomas D. Gillespie. Fundamentals of Vehicle Dynamics. 1992.

[10] Steven Goldberg, Mark Maimone, and Larry Mattheis. Stereo vision and rover
navigation software for planetary exploration. IEEE Aerospace Conference Pro-
ceedings, March 2002.

83

http://dx.doi.org/10.1023/A:1008831426966

REFERENCES

[11] Grant H. Heiken, David T. Vaniman, and Bevan M. French. Lunar Sourcebook -
A User’s Guide to the Moon. Cambridge University Press, Cambridge, England,
1991.

[12] Regis Hoffman and Eric Krotkov. Terrain roughness measurement from eleva-
tion maps, 1989.

[13] A. Howard and H Seraji. Vision-based terrain characterization and traversabil-
ity assessment. J. Robotic Syst., 18(10):577–587, 2001.

[14] Karl Iagnemma. Mobile robot rough-terrain control (rtc) for planetary explo-
ration. In Proceedings of the 26th ASME Biennial Mechanisms and Robotics
Conference, DETC, pages 10–13, 2000.

[15] Karl Iagnemma and Steven Dubowsky. Mobile Robots in Rough Terrain. 2004.

[16] Gang-Gyoo Jin, Yun-Hyung Lee, Hyun-Sik Lee, and Myung-Ok So. Traversabil-
ity analysis for navigation of unmanned robots. SICE Annual Conference, 2008.

[17] C. Leger, A. Trebi-Ollennu, J. Wright, S. Maxwell, R. Bonitz, J. Biesiadecki,
F. Hartman, B. Cooper, E. Baumgartner, and M. Maimone. Mars exploration
rover surface operations: Driving spirit at gusev crater. In In Proceedings of
the 2005 IEEE Conference on Systems, Man, and Cybernetics, October 2005.

[18] John Leonard, Jonathan How, Seth Teller, Mitch Berger, Stefan Campbell,
Gaston Fiore, Luke Fletcher, Emilio Frazzoli, Albert Huang, Sertac Kara-
man, Olivier Koch, Yoshiaki Kuwata, David Moore, Edwin Olson, Steve Pe-
ters, Justin Teo, Robert Truax, Matthew Walter, David Barrett, Alexander
Epstein, Keoni Maheloni, Katy Moyer, Troy Jones, Ryan Buckley, Matthew
Antone, Robert Galejs, Siddhartha Krishnamurthy, and Jonathan Williams.
A perception-driven autonomous urban vehicle. J. Field Robot., 25(10):727–
774, October 2008. ISSN 1556-4959. doi: 10.1002/rob.v25:10. URL http:

//dx.doi.org/10.1002/rob.v25:10.

[19] Mark Maimone, Yang Cheng, and Larry Matthies. Two years of visual odometry
on the mars exploration rovers: Field reports. J. Field Robot., 24(3):169–186,
March 2007. ISSN 1556-4959. doi: 10.1002/rob.v24:3. URL http://dx.doi.

org/10.1002/rob.v24:3.

[20] NASA. Mars exploration rover landings, January 2004. URL http://

marsrovers.jpl.nasa.gov/newsroom/merlandings.pdf.

[21] NASA. Mars science laboratory landing, July 2012. URL http://mars.jpl.

nasa.gov/msl/news/pdfs/MSLLanding.pdf.

[22] Liam Pedersen, Mark Allan, Hans Utz, Matthew Deans, Xavier Bouys-
sounouse, Yoonhyuk Choi, Lorenzo Flückiger, Susan Y. Lee, Vinh To, Jonathan
Loh, William Bluethmann, Robert R. Burridge, Jodi Graf, and Kimberly
Hambüchen. Tele-operated lunar rover navigation using lidar. 2012.

[23] Homayoun Seraji. Traversability index: A new concept for planetary rovers.
International Conference on Robotics and Automation, 1999.

84

http://dx.doi.org/10.1002/rob.v25:10
http://dx.doi.org/10.1002/rob.v25:10
http://dx.doi.org/10.1002/rob.v24:3
http://dx.doi.org/10.1002/rob.v24:3
http://marsrovers.jpl.nasa.gov/newsroom/merlandings.pdf
http://marsrovers.jpl.nasa.gov/newsroom/merlandings.pdf
http://mars.jpl.nasa.gov/msl/news/pdfs/MSLLanding.pdf
http://mars.jpl.nasa.gov/msl/news/pdfs/MSLLanding.pdf

REFERENCES

[24] Matthew Spenko, Yoji Kuroda, Steven Dubowsky, and Karl Iagnemma. Hazard
avoidance for high-speed mobile robots in rough terrain. J. Field Robotics, 23
(5):311–331, 2006.

[25] David Stavens and Sebastian Thrun. A self-supervised terrain roughness es-
timator for off-road autonomous driving. Conference on Uncertainty in AI,
2006.

[26] David Stavens, Gabriel Hoffmann, and Sebastian Thrun. Online speed adap-
tation using supervised learning for high-speed, off-road autonomous driving.
International Joint Conference on Artificial Intelligence, 2007.

[27] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci,
V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen,
C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski,
B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney. Winning the
darpa grand challenge. Journal of Field Robotics, 2006.

[28] Sebastian Thrun, Mike Montemerlo, and Andrei Aron. Probabilistic terrain
analysis for high speed. Robotics Science and Systems II, August 2006.

[29] Christopher Urmson, Joshua Anhalt, Daniel Bartz, Michael Clark, Tugrul
Galatali, Alexander Gutierrez, Sam Harbaugh, Joshua Johnston, Hiroki Kato,
Phillip L Koon, William Messner, Nick Miller, Aaron Mosher, Kevin Peterson,
Charlie Ragusa, David Ray, Bryon K Smith, Jarrod M Snider, Spencer Spiker,
Joshua C Struble, Jason Ziglar, and William (Red) L. Whittaker. A robust
approach to high-speed navigation for unrehearsed desert terrain. Journal of
Field Robotics, 23(8):467–508, August 2006.

[30] Christopher Urmson, Joshua Anhalt, Hong Bae, J. Andrew (Drew) Bagnell,
Christopher R. Baker , Robert E Bittner, Thomas Brown, M. N. Clark, Michael
Darms, Daniel Demitrish, John M Dolan, David Duggins, David Ferguson, Tu-
grul Galatali, Christopher M Geyer, Michele Gittleman, Sam Harbaugh, Martial
Hebert, Thomas Howard, Sascha Kolski, Maxim Likhachev, Bakhtiar Litkouhi,
Alonzo Kelly, Matthew McNaughton, Nick Miller, Jim Nickolaou, Kevin Pe-
terson, Brian Pilnick, Ragunathan Rajkumar, Paul Rybski, Varsha Sadekar,
Bryan Salesky, Young-Woo Seo, Sanjiv Singh, Jarrod M Snider, Joshua C Stru-
ble, Anthony (Tony) Stentz, Michael Taylor , William (Red) L. Whittaker, Ziv
Wolkowicki, Wende Zhang, and Jason Ziglar. Autonomous driving in urban
environments: Boss and the urban challenge. Journal of Field Robotics Special
Issue on the 2007 DARPA Urban Challenge, Part I, 25(8):425–466, June 2008.

[31] Velodyne. Velodyne lidar hdl-32e data sheet. URL http://velodynelidar.

com/lidar/hdldownloads/97-0038c%20HDL-32E%20datasheet_APR2012.

pdf.

85

http://velodynelidar.com/lidar/hdldownloads/97-0038c%20HDL-32E%20datasheet_APR2012.pdf
http://velodynelidar.com/lidar/hdldownloads/97-0038c%20HDL-32E%20datasheet_APR2012.pdf
http://velodynelidar.com/lidar/hdldownloads/97-0038c%20HDL-32E%20datasheet_APR2012.pdf

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Problem Statement and Motivation
	Purpose of this Thesis
	Thesis Outline

	Related Work
	Traversability/Roughness
	Speed Control

	Background
	KRex System
	Grid Map

	Terrain Roughness

	Speed Map
	Terrain Model Representation
	Roughness Calculation
	Surface Normals (N)
	Cell Size
	Window Size

	Adjustments within Cell
	Residual
	Coverage
	Slope (,)

	Adjustments between Cells
	Projected Height ()

	Total Smoothness Cost
	Smoothness Scaling

	Final Roughness Cost

	Speed Recommendation

	Simulations
	Rover Specific Parameters
	Roll and Pitch Threshold
	Obstacle Height

	Algorithm Specific Parameters
	Window Sizes
	Alpha Weight

	Experimental Results
	Algorithm
	Speed Map Method Results
	Dot Product Normal Results
	Obstacle Height Results
	Roll/Pitch Threshold Results
	Window Size
	Alpha Weights

	DEM vs. LiDAR
	Method Comparison

	Discussion
	Conclusion
	Future Work

	Appendix Equations
	Appendix Simulation Results
	Appendix Matlab Code
	occupancy_grid.m
	calc_roughness.m
	add_point.m
	getResidual.m

	Appendix Source Code
	RoughnessMap.h
	RoughnessMapCell.h

	References

