
Lawrence Berkeley National Laboratory
LBL Publications

Title

Cr(VI) Effect on Tc-99 Removal from Hanford Low-Activity Waste Simulant by Ferrous 
Hydroxide

Permalink

https://escholarship.org/uc/item/3wn1h59v

Journal

Environmental Science and Technology, 52(20)

ISSN

0013-936X

Authors

Saslow, Sarah A
Um, Wooyong
Pearce, Carolyn I
et al.

Publication Date

2018-10-16

DOI

10.1021/acs.est.8b03314
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wn1h59v
https://escholarship.org/uc/item/3wn1h59v#author
https://escholarship.org
http://www.cdlib.org/


Cr(VI) Effect on Tc-99 Removal from Hanford Low-Activity Waste Simulant by Ferrous 1 

Hydroxide  2 

 3 

Sarah A. Saslow1, Wooyong Um1,*, Carolyn I. Pearce1, Mark E. Bowden2, Mark H. Engelhard2
, 4 

Wayne L. Lukens3, Dong-Sang Kim 1, Michael J. Schweiger 1, and Albert A. Kruger 4 5 

 6 

1Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352, USA 7 

2Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 8 

Richland, WA, 99354, USA 9 

3Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720 USA 10 

4United States Department of Energy, Office of River Protection, P.O. Box 450, Richland, WA 11 

99352, United States 12 

*Corresponding author: Wooyong Um, Pacific Northwest National Laboratory, 902 Battelle 13 

Blvd., PO Box 999, P7-54, Richland, WA 99352, USA. Telephone: (509)-371-7175. Fax: (509)-14 

371-7344. Email address: wooyong.um@pnnl.gov. Now at Pohang University of Science and 15 

Technology (POSTECH); Email address: wooyongum@postech.ac.kr  16 

 17 

Abstract 18 

Here, Cr(VI) effects on Tc-immobilization by Fe(OH)2(s) are investigated while assessing 19 

Fe(OH)2(s) as a potential treatment method for Hanford low-activity waste destined for 20 

vitrification. Batch studies using simulated low-activity waste indicate that Tc(VII) and Cr(VI) 21 

removal is contingent on reduction to Tc(IV) and Cr(III). Furthermore, complete removal of both 22 

Cr and Tc depends on the amount of Fe(OH)2(s) present, where complete Cr and Tc removal 23 

requires more Fe(OH)2(s) (~200 g/L of simulant), than removing Cr alone (~50 g/L of simulant). 24 
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XRD analysis suggests that Fe(OH)2(s) reaction and transformation in the simulant produces 25 

mostly goethite (α-FeOOH), where Fe(OH)2(s) transformation to goethite rather than magnetite 26 

is likely due to the simulant chemistry, which includes high levels of nitrite and other 27 

constituents. Once reduced, a fraction of Cr(III) and Tc(IV) substitute for octahedral Fe(III) 28 

within the goethite crystal lattice as supported by XPS, XANES, and/or EXAFS results. The 29 

remaining Cr(III) forms oxide and/or hydroxide phases, whereas Tc(IV) not fully incorporated 30 

into goethite persists as either adsorbed or partially incorporated Tc(IV)-oxide species. As such, 31 

to fully incorporate Tc(IV) into the goethite crystal structure, additional Fe(OH)2(s) (>200 g/L of 32 

simulant) may be required.  33 

 34 

TOC 35 

  36 



1. Introduction 37 

Technetium-99 (Tc) is a radioactive fission product present at nuclear waste legacy sites that 38 

is problematic due to its long half-life (2.1x105 years), high fission yield (~6%), and 39 

environmental mobility as Tc(VII) species in oxidizing environments.1-3 Unfortunately, nuclear 40 

waste treatment and environmental remediation strategies targeting Tc are hindered by current 41 

high temperature treatment technologies and the presence of co-mingled redox-active 42 

competitors, e.g. Cr(VI). 4-5 For example, at the US Department of Energy Hanford Site 43 

(Washington State, USA) the baseline treatment plan for nuclear waste is vitrification,6-7 which 44 

requires operating temperatures >1000 °C that consequently causes Tc volatilization and low Tc-45 

retention in the glass waste form. One strategy to overcome Tc volatilization is reduction of 46 

Tc(VII) to stable Tc(IV) with concurrent Tc(IV) incorporation into minerals,7-14 although this 47 

treatment method is often complicated by the presence of co-mingled Cr(VI), which was used as 48 

a corrosion inhibitor in Hanford nuclear waste storage tanks.4 Cr(VI) has a more favorable 49 

reduction potential, -0.16 V vs -0.36 V for Tc(VII) at pH 14,15-16 and exists in Hanford nuclear 50 

waste streams at concentrations orders of magnitude greater than Tc.17 As a result, reductants 51 

added to reduce Tc(VII) are consumed by Cr(VI). Thus, there remains a critical need for 52 

treatment technologies that can reduce Tc(VII) in the presence of Cr(VI).  53 

In a preliminary study, ferrous hydroxide solid (Fe(OH)2(s)) was successfully used to reduce 54 

Tc(VII) in the presence of Cr(VI) and incorporate Tc(IV) into magnetite via Fe(OH)2(s) mineral 55 

transformation under oxic conditions.18 This work was performed under the high ionic strength 56 

and pH conditions expected for Hanford low-activity waste (LAW) streams, but used a simple 57 

solution chemistry that only considered Tc(VII) and Cr(VI) in 1 M NaOH. Here, Fe(OH)2(s) is 58 

used to treat Tc in a simulated LAW solution, to assess (i) how complex and realistic waste 59 



streams affect the efficacy of this approach and (ii) provide mechanistic evidence for Cr(VI) 60 

reduction and solid formation and how this impacts the Fe(OH)2(s) treatment mechanism for Tc. 61 

Hanford’s liquid radioactive/chemical waste, currently stored in tanks but destined for pre-62 

treatment and vitrification, varies from tank to tank due to the different separation processes used 63 

for spent nuclear fuel, resulting in complex mixtures of nitrate, nitrite, phosphate, sulfate, and 64 

organic based solvents.19 As such, the exact LAW composition for treatment is not known, so for 65 

the purpose of this work, an overall average LAW simulant composition is used based on output 66 

from the Hanford Tank Waste Operations Simulator (HTWOS) model.17 To arrive at this average 67 

composition, which includes nitrate, nitrite, sulfate, aluminum, Cr(VI) and other minor 68 

constituents, the HTWOS model tracks tank waste storage, retrieval, and multiple treatment and 69 

immobilization processes over ~20 years of operation.  70 

The treatment approach described here involves reduction of Tc(VII) in the presence of 71 

Cr(VI) and removal of Tc from solution through incorporation into a solid iron oxide/hydroxide 72 

phase. Once reduced and stabilized, Tc is expected to be resistant to release from the iron 73 

oxide/hydroxide product(s), which may stabilize Tc during vitrification and increase Tc loading 74 

into glass. In addition, development and implementation of this approach could improve 75 

environmental remediation efforts that target co-mingled Tc(VII) and Cr(VI) contaminated 76 

areas.21  77 

2. Experimental 78 

Fe(OH)2(s) Synthesis. A detailed synthesis procedure for Fe(OH)2(s) and product 79 

characterization may be found in previously published work.18 Briefly, Fe(OH)2(s) was prepared 80 

and stored inside an anoxic chamber (Coy Laboratories) that was maintained using a gas mix of 81 

N2 (98%) and H2 (2%). Fe(II)Cl2·4H2O (14 g, >95%, Fisher Scientific) was dissolved in N2-82 



purged double deionized water (400 g, DDI, Millipore 18Ω). Dissolved Fe(II) was then 100 

precipitated as Fe(OH)2(s) by adding 8.2 mL of 10 M NaOH (Fisher Scientific) to solution and 101 

mixing by hand. The solid was allowed to react overnight and then separated from the 102 

supernatant using a 0.45 µm Nalgene® filter. The Fe(OH)2(s) was then allowed to dry for 24 103 

hours before it was powdered using a mortar and pestle. 104 

Simulant Preparation. A 5 M Na Hanford LAW simulant with 1080 ppm Cr(VI) was 105 

generated as described previously,17 and spiked with 1-100 ppm Tc(VII), using a 10,000 mg/L 106 

Tc stock solution (NH4TcO4). The starting simulant was characterized using ion chromatography 107 

(IC) and inductively coupled plasma optical emission spectrometry (ICP-OES) (Table 1).  108 

Table 1. 5 M Na Average LAW Simulant Composition 109 

Constituent 
Target 

Concentration 
[mg/L]* 

Measured 
Concentration 

[mg/L] 
Constituent 

Target 
Concentration 

[mg/L]* 

Measured 
Concentration  

[mg/L] 
Al 8280 8500 F- 600 <1000 
Cr 1120 1080 Cl- 1500 <2500 
P 1520 981 NO2

- 26,000 26,800 
K 1280 1300 Br- - <5000 
Na 115,000 110,000 NO3

- 101,000 102,000 
S 2740 2810 SO4

- - 10,100 
Ti - 7.84 PO4

- - <7500 
pH  13.5 Eh (SHE)  26 – 81 mV 

* Target Concentrations from Russell et al, 2013 for 5 M Na Average LAW Simulant;17 target and 
measured concentrations determined using IC and ICP-OES. 
-: Not identified 
(SHE): Standard Hydrogen Electrode corrected 
 110 

Tc(VII) and Cr(VI) Treatment by Fe(OH)2(s). Fe(OH)2(s) (~0.1-1.2 g) was added to LAW 111 

simulant to achieve final Fe(OH)2(s):simulant ratios between 1 and 360 g/L. Fe(OH)2(s) was 112 

removed from the anaerobic chamber immediately before simulant addition, after which 113 

sample(s) reacted for 3 days (± 1 hour) in an oven set to 75 °C with occasional hand mixing. In 114 

some instances, aliquots of Fe(OH)2(s) were added sequentially over the reaction period.18 For 115 

these samples, each aliquot of Fe(OH)2(s) was allowed to react with the simulant for ~24 hours 116 
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before sampling and subsequent Fe(OH)2(s) addition. After 3 days, all samples were allowed to 118 

cool for ≥ 2 hours before the solid product was separated from the supernatant (0.45 µm 119 

Nalgene® filter), rinsed with ~50 mL of DDI, and air-dried for ≥ 24 hours. The supernatant was 120 

analyzed to determine final Cr (ICP-OES) and Tc (ICP-MS) concentrations. The final pH of a 121 

representative set of supernatants was 13.5 ± 0.1 and the Eh (SHE) ranged from 26 to 81 mV 122 

before and after the 3 day reaction period.  123 

X-ray Photoelectron Spectroscopy (XPS). Samples were prepared by dusting carbon tape 124 

with dry sample powder. Tc-free samples were analyzed using a Physical Electronics Quantera 125 

Scanning X-ray Microprobe equipped with a focused monochromatic Al Kα X-ray (1486.7 eV) 126 

source for excitation and a spherical section analyzer. Tc-containing samples were analyzed 127 

using a Kratos Axis DLD spectrometer with a monochromatic Al Kα X-ray source. An 80 W X-128 

ray beam was focused to 100 µm (diameter) and scanned over the sample. High-energy 129 

resolution spectra were collected using a pass-energy of 69.0 eV and 0.125 eV step size. Spectra 130 

were charge-corrected to the main line, carbon 1s peak at 285.0 eV. Data analysis and peak 131 

fitting was performed in CasaXPS (version 2.3.15) (see SI for details).  132 

X-ray Diffraction (XRD). XRD patterns were collected using a Rigaku Miniflex II XRD 133 

unit equipped with a Cu Kα radiation (λ=1.5418 Å, 30-40 kV, 15 mA) source. Samples were 134 

scanned, at minimum, between 3 – 90 degrees 2θ at 0.5 degrees/min using a 0.02 degree step 135 

size. Reitveld quantification refinements were performed for each pattern collected (see SI for 136 

details). 137 

X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine 138 

Structure (EXAFS) Spectroscopy. Tc K-edge (21,044 eV) spectra were collected on beamline 139 

11-2 at the Stanford Synchrotron Radiation Laboratory (SSRL) for samples spiked with Tc 140 



concentrations ≥100 mg/L. Cr K-edge (5,989 eV) spectra were collected on SSRL beamlines 11-141 

2 and 4-1. Dead-time correction and data reduction was performed using SixPack.22 Data 142 

analysis was performed using ATHENA/ARTEMIS software.23 Tc XANES spectra were energy 143 

calibrated using a Tc(VII) reference (pertechnetate (TcO4
-) adsorbed on Reillex-HPQ polymer 144 

resin) and fit using a linear combination of Tc(IV) and Tc(VII) standards.14, 24-25 For EXAFS 145 

fitting, a Tc-substituted goethite (α-FeOOH) structure was used in addition to models for 146 

TcO2·2H2O and TcO4
- as necessary. Cr XANES spectra were energy calibrated using a Cr foil 147 

reference and fit using a linear combination of Cr(III) and Cr(VI) standards. Additional sample 148 

preparation and analysis details are provided in the SI. 149 

 150 

3. Results and Discussion 151 

Tc(VII) and Cr(VI) Removal by Fe(OH)2(s). A viable material for removing contaminants 152 

from LAW must stabilize Tc with as little solid as possible to meet glass composition constraints 153 

and avoid costly operational changes. The minimum Fe(OH)2(s) required to remove co-mingled 154 

Tc and Cr from the LAW simulant was determined as a function of Fe(OH)2(s):simulant ratio 155 

(Figure 1). Studies performed without Tc indicate that 50 g of Fe(OH)2(s) per liter of simulant is 156 

required to remove Cr (1080 ppm) from solution. The addition of 1 ppm Tc does not change the 157 

minimum Fe(OH)2(s) required to remove Cr(VI); though to remove >97.6% Tc requires at least 158 

200 g Fe(OH)2(s) per liter of simulant.  159 



 160 

Figure 1. Cr and Tc removal from LAW simulant with 1 ppm Tc (black) and without Tc (red). 161 
Cr(VI) results are indicated by filled or open circles, Tc results by open squares. Error bars 162 
represent the standard deviation of results averaged from two to six replicate samples. Percent 163 
removal assumed to be 100% if below ICP-OES detection limit for Cr (23 µg/L) or ICP-MS 164 
detection limit for Tc (33 ng/L). 165 

To better understand the additional Fe(OH)2(s) requirement needed to remove Tc(VII) from 166 

the LAW simulant, the solution chemistry and redox and transformation processes must be 167 

considered. Similar to the 1 M NaOH system,18 the experimentally determined amount of 168 

Fe(OH)2(s) needed to remove Tc (1 ppm) and Cr (1080 ppm) is ~35x more than the amount 169 

needed to reduce Tc(VII) to Tc(IV), and Cr(VI) to Cr(III), based solely on redox requirements. 170 

This is partially attributed to rapid oxidation of Fe(II) to Fe(III) by air and the additional Fe(II) 171 

needed to form iron oxide/hydroxide phases that incorporate Tc and/or Cr,10, 26-29 but is likely 172 

also the result of the complex chemical environment, e.g., pH and competing contaminants in the 173 

LAW simulant that require excess reductant due to competing chemical processes. For instance, 174 

the Tc and Cr Pourbaix diagrams (see SI) for the simulant solution (Table 1), assuming 200 g of 175 

Fe(OH)2(s) per liter, suggest that both constituents should remain in solution as oxidized TcO4
- 176 



and CrO4
2- given the pH and Eh conditions measured before Fe(OH)2(s) addition and after the 3 177 

day reaction period. The Pourbaix diagrams predict that Fe(II) would preferentially facilitate the 178 

reduction and volatilization of nitrate and nitrite as N2(g), with the remaining Fe(II) precipitating 179 

as the spinel hercynite (Fe(II)Al(III)2O4).30-31 Yet, at a 200 g/L Fe(OH)2(s):simulant ratio, neither 180 

Tc nor Cr are detected in solution at significant concentrations. Additionally, IC measurements 181 

of the remaining solution indicate negligible removal of nitrate and only ~45% removal of 182 

nitrite. Al(III) removal was determined to increase by ~45% with increasing Fe(OH)2(s):simulant 183 

ratio as determined by ICP-OES analysis, but was not completely removed as thermodynamics 184 

would predict in the Pourbaix diagrams. In the absence of in situ Eh measurements during 185 

reaction, these measurements demonstrate that the reduction potential of the simulant solution 186 

was significantly lowered upon addition of Fe(OH)2(s). Furthermore, kinetic processes may 187 

overcome thermodynamics early in the reaction, and as a result of these competing processes Tc 188 

and Cr are removed from solution. 189 

Additional evidence for both a thermodynamically- and kinetically-driven system is that Tc 190 

removal is not contingent on complete Cr(VI) removal from the LAW simulant. Both 191 

contaminants are removed concurrently, despite a more favorable reduction potential for Cr(VI) 192 

versus Tc(VII).32 This behavior is evident in Figure 1 where, between Fe(OH)2(s):simulant ratios 193 

5-50 g/L, Tc removal begins before Cr removal has reached ~100%. However, between 50-100 194 

g/L, Tc removal plateaus until the Fe(OH)2(s):simulant ratio reaches 200 g/L. This was not seen 195 

in the simplified system and could be attributed to the presence of nitrite, which may compete 196 

more aggressively for reducing electrons without Cr(VI) present.  197 

Finally, based on conclusions derived previously, the removal of Cr(VI) by Fe(OH)2(s) in the 198 

LAW simulant should be contingent on Cr(VI) reduction to Cr(III).18 Using the IC/ICP-MS 199 
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method previously reported30 and detailed in the SI, the speciation of Cr in the final supernatant 201 

was determined using stable mass isotope 52Cr. Duplicate experiments with a 202 

Fe(OH)2(s):simulant ratio of 9.8 g/L, a ratio below the requirement for complete Cr(VI) removal, 203 

removed only 53(6) % of Cr from the LAW simulant with the rest remaining as Cr(VI) in 204 

solution. This alludes to a reduction requirement for Cr(VI) removal that is confirmed via solid 205 

characterization in the following sections. Removal of Tc(VII) from solution is also expected to 206 

occur via reduction to Tc(IV).   207 

Tc and Cr Immobilization in the Solid Phase 208 

Solid Characterization by XRD: Solid phase(s) identification is critical for drawing mechanistic 209 

conclusions from Cr and Tc immobilization. Two Tc-free samples prepared at 50 and 100 g/L 210 

Fe(OH)2:simulant ratios were analyzed by XRD to identify and quantify the minerals formed 211 

(Table 2, XRD patterns in the SI). For both samples, goethite (α-FeOOH) accounts for 77% – 212 

81% of the solid despite doubling the Fe(OH)2(s):simulant ratio. The remaining solid is 213 

comprised of feroxyhyte (δ-FeOOH), 14 – 17%, and trace amounts (1 – 6%) of amorphous 214 

material and/or hematite (Fe2O3). High resolution Fe XPS scans collected from three samples 215 

with Fe(OH)2(s):simulant ratios ranging from 50-200 g/L corroborate these XRD results, where 216 

83-89 atomic % of Fe is present as goethite (Table 2).  217 

Table 2. XRD and High Resolution XPS Analysis of Select Solid Phases 218 
Sample  LAW-50-0Tc-1 LAW-100-0Tc LAW-200-100Tc 
Fe(OH)2(s):Simulant Ratio g/L 50 100 200 
Starting [Tc(VII)] ppm 0 0 100 

XRD Analysis 
Goethite (α-FeOOH) wt% 77 81 - 

a (Å)* 4.602(2) 4.597(3) - 
b (Å)* 9.920(3) 9.913(2) - 
c (Å)* 3.0096(9) 3.0080(9) - 

Crystal Size (nm)** 9.8(1) 10.7(1) - 
Feroxyhyte (δ-FeOOH) wt% 17 14 - 
Hematite (Fe2O3) wt% - 3 - 
Amorphous/Unidentified wt% 6 1 - 



Survey XPS Analysis** 

Cr 2p at %* 1.6(1) 1.1(1) 0.13(1) 
Tc 3d at % - - 0.14(3) 
Fe 2p at % 7.3(4) 8.4(8) 1.7(2) 
C 1s at % 27(4) 19(6) 24(1) 
O 1s at % 64(3) 71(5) 74(1) 

Cr XPS Analysis** 

CrOOH at % 46(1) 38(14) 59(2) 
Cr2O3 at % 28(10) 43(19) 32(4) 
Cr(OH)3 at % 24.7(2) 18(5) 1(2) 
Cr(VI) at % 1.5 1.3(5) 8.3(8) 

Tc XPS Analysis** 

Tc(VII) at % - - 52(1) 
Tc(IV) at % - - 48(1) 

Fe XPS Analysis** 

FeCr2O4 at % 0 0 5.7(2) 
Fe3O4 at % 12(1) 11(2) 11(1) 
FeOOH at % 88(1) 89(2) 83(1) 
(-) No Detected or Analyzed (*) Atomic percent 
Goethite (α-FeOOH)33: a = 4.634 Å, b = 9.945 Å, c = 3.0321 Å 
*Values in parentheses are ±3σ, based on the error associated with the Reitveld refinement. 
** Values in parentheses are ±1σ. For XPS, the standard deviation is determined from of the 
average of two replicate spot analyses collected for each sample. 

  219 

The formation of goethite instead of magnetite,18, 34-35 or hercynite (as predicted by 220 

Pourbaix diagrams presented in the SI), suggests that the solid product is also heavily influenced 221 

by co-mingled constituents. As previously mentioned, an Fe(OH)2(s):simulant ratio of ~200 g/L 222 

removes ~45% ( ~12,200 mg/L) of the simulant nitrite and ~45% of Al(III) (SI Figure S1). As 223 

nitrite reduction continues, the ratio of Fe(III) to Fe(II) increases, as does the OH/Fe ratio, both 224 

of which favor the formation of goethite over magnetite.36 As goethite forms and Tc(VII) is 225 

reduced to Tc(IV), incorporation of Tc(IV) into the goethite structure likely occurs via 226 

substitution for Fe(III) due to their identical, six coordinate crystal radii (0.785 Å).27, 37-38 227 

Substitution of Tc(IV) is not expected to significantly influence the bulk mineral phase 228 

distribution determined by XRD nor change the goethite lattice parameters. Although charge 229 

balance via Fe(II) substitution for Fe(III) may expand the lattice at concentrations higher than 230 

those tested here.10  231 



In contrast, Cr(III) and/or Al(III) substitution into goethite would cause a decrease in 232 

calculated goethite lattice parameters since the crystal radius of six coordinate Cr(III), 0.755 Å, 233 

and Al(III), 0.670 Å, are smaller than Fe(III).33, 38-42 Reitveld analysis of collected XRD patterns 234 

(Table 2Error! Reference source not found.) provides the unit cell parameters a, b, and c for 235 

goethite in the absence of Tc. All parameters decrease relative to unsubstituted goethite with 236 

increasing Fe(OH)2(s):simulant ratio.33 This trend is indicative of increased substitution for 237 

Fe(III) by Cr(III) and/or Al(III) in goethite as both constituents are removed from the simulant 238 

(Figure 1 and SI Figure S1). 239 

Bulk Solid Phase Cr Speciation Determined by XANES: Three samples were analyzed by 240 

XANES at SSRL to determine the bulk oxidation state and speciation of Cr following reduction 241 

and removal by Fe(OH)2(s) (Figure 2, left panel). As a control, one of the analyzed samples 242 

(LAW-50-0Tc) was prepared without Tc and at the minimum Fe(OH)2(s):simulant ratio needed 243 

to remove Cr(VI) from solution, 50 g/L. The remaining two samples were prepared with 100 244 

ppm Tc(VII) at two different Fe(OH)2(s):simulant ratios: 50 g/L (LAW-50-100Tc) and 200 g/L 245 

(LAW-200-100Tc). Linear combination analysis (LCA) of each sample initially considered six 246 

possible Cr standards: Cr foil, Cr2O3, Cr alum (KCr(SO4)2•12H2O, Cr(III) octahedrally 247 

coordinated by water), Fe2.5Cr0.5O4, FeCr2O4, and K2CrO4 (Figure 2, middle panel). It is 248 

important to note that Cr(III) forms octahedrally coordinated species both in ordered (iron-249 

containing oxides) and disordered environments. According to XRD results (Table 2), Cr would 250 

be incorporated into goethite, not spinel phases such as chromite (FeCr2O4) or Fe2.5Cr0.5O4. 251 

However, without a Cr-substituted goethite standard, Fe2.5Cr0.5O4 and FeCr2O4 standards are 252 

used here to represent the ordered octahedral environment expected for Cr-substituted goethite.43 253 

Furthermore, the disordered octahedral symmetry of Cr(III) in Cr alum44 is assumed to represent 254 



Cr(III) that has formed separate from the iron phase, e.g., Cr(OH)3 or an amorphous phase with a 255 

similar local structure.45 Standards that did not contribute significantly to the LCA fit (value < 256 

2σ) were removed and the data refit using the remaining standards. The final Cr LCA results are 257 

shown in Table 3.  258 

 For all samples, the absence of the prominent Cr(VI) pre-edge feature confirms that Cr is 259 

present as Cr(III) and supports the proposed solution removal mechanism that requires Cr(VI) 260 

reduction to Cr(III). Furthermore, all samples contained Cr alum (35 – 38 %) and Fe2.5Cr0.5O4 261 

(58 – 62 %) as the major phases present regardless of Fe(OH)2:simulant ratio, although for the 262 

two samples with a Fe(OH)2(s):simulant ratio of 50 g/L a small contribution of FeCr2O4 (6 %) 263 

was also determined. Overall, given the low solubility of Cr(III)-containing solids, Cr present in 264 

these samples is less susceptible to re-oxidation and release into the environment and exhibits a 265 

similar removal mechanism despite changes in Fe(II) resources and Tc(VII) presence. 266 



 267 

Figure 2. (Left) Normalized and off-set Cr K edge XANES spectra with corresponding LCA fits 268 
for Fe(OH)2(s):Simulant ratios (A) 200 g/L, 100 ppm Tc(VII), (B) 50 g/L, 100 ppm Tc(VII), and 269 
(C) 50 g/L, no Tc(VII). The LCA fit (red) to the data (black) is the sum of the standard 270 
contributions from FeCr2O4 (dash line), Fe2.5Cr0.5O4 (dot/dash line), and Cr alum (dotted line) 271 
determined in the final fit. (Middle) Cr standards considered during LCA fitting, off-set for 272 
clarity. (Right) Normalized and off-set Tc K-edge XANES spectra (black) for samples A and B 273 
from left panel and the final Tc standards used during LCA fitting. The Tc LCA fit (red dashed 274 
line) is the sum of the standard contributions from TcO4

- (line), TcEDTA (dot/dash), and Tc-275 
incorporated Fe3O4 (dash).   276 

 277 

Table 3. LCA and EXAFS Results from Cr and Tc K Edge XANES and EXAFS Spectra  278 
Sample LAW-50-0Tc LAW-50-100Tc LAW-200-100Tc 
Fe(OH)2(s):Simulant Ratio g/L 50 50 200 
Starting [Tc(VII)] ppm 0 100 100 

Cr XANES LCA Analysis 
Cr Alum (KCr(SO4)2•12H2O) % 35(1) 35(1) 38(4) 

p* <0.001 <0.001 <0.001 
Fe2.5Cr0.5O4 % 58(2) 59(2) 62(4) 

p <0.001 <0.001 <0.001 
FeCr2O4 % 6(1) 6(1) - 

p 0.287 0.304 - 
Tc XANES LCA Analysis 

TcO4
- % - 27.2(2) 9.0(3) 

p - <0.001 <0.001 



Tc(IV) Incorporated Fe3O4 % - 49(1) 63(1) 
p - <0.001 <0.001 

Tc(IV) EDTA % - 26(1) 30(1) 
p - <0.001 <0.001 

Tc EXAFS Analysis 
TcO4

- % - 33(6) 0(0) 
TcO2·2H2O % - 32(8) 67(6) 
Goethite % - 35(3) 33(6) 
Values in parenthesis indicate the standard deviation of the last significant figure. 
(-) No Detected 
(*) Probability that the improvement to the fit by adding the scattering shell is due to random error. A p 
value < 0.05 indicates that the improvement is greater than 2σ of the fit.  
 279 

Cr Speciation of the Solid Surface Determined by XPS: Cr speciation was also analyzed by XPS 280 

for select solid samples. XPS analysis is specific to the top 5 – 10 nm of the sample surface; 281 

however, surface specificity may be limited here due to the small goethite crystal size (~10 nm) 282 

determined by Reitveld refinements (Table 2Error! Reference source not found.). Narrow, 283 

high resolution scans for Cr are shown in Figure S2 for three Cr-containing solid samples with 284 

Fe(OH)2(s):simulant ratios of 50, 100, and 200 g/L, where the 200 g/L sample was prepared with 285 

100 ppm of Tc(VII).  Peak fitting was performed only for the Cr 2p3/2 peak. A single fitting 286 

peak was used to account for surface Cr(VI), with three species considered for Cr(III): Cr2O3, 287 

CrOOH, and Cr(OH)3. Chromite, FeCr2O4, was initially considered, but did not significantly 288 

contribute to any of the sample fits as expected based on XRD and XANES results. CrOOH 289 

accounts for Cr(III) oxyhydroxides and/or partial incorporation into goethite. A summary of the 290 

Cr-phase distribution is provided in Table 2.  291 

From XPS survey scans it is apparent that Cr only accounts for 0.13-1.6 atomic % of the 292 

analyzed area, with Cr increasing with decreasing Fe(OH)2(s):simulant ratio. A minor amount of 293 

Cr(VI), presumably loosely adsorbed to the sample, was detected in all samples (1.3 – 8.3 atomic 294 

%). Cr(OH)3 was the least abundant Cr(III) species detected, decreasing from 24.7(2) atomic % 295 

to 1(2) atomic % with increasing Fe(OH)2(s):simulant ratio. However, distribution between the 296 



two most abundant Cr(III) species, CrOOH and Cr2O3, did not indicate preferential formation of 297 

one species over the other as a function of Fe(OH)2(s):simulant ratio. Although, within error, 298 

CrOOH arguably dominates, accounting for ≤59 atomic % of surface Cr (LAW-200-100Tc). 299 

This corroborates conclusions derived from XANES analysis and suggests that Cr substitution 300 

into goethite is the favored mechanism for immobilization.  301 

Tc Speciation Determined by XANES and XPS: The oxidation state of Tc immobilized in the 302 

solid was determined by LCA of collected Tc K-edge XANES spectra. The Tc K-edge spectra 303 

for LAW-200-100Tc and LAW-50-100Tc (Fe(OH)2(s):simulant ratios 200 g/L and 50 g/L, 304 

respectively, each with 100 ppm of Tc(VII)) and the standards used for LCA are provided in 305 

Figure 2 (right panel). Initially, LCA considered five Tc standards: TcO4
-, TcEDTA,24 306 

TcO2·xH2O,24 Tc-incorporated Fe3O4 (magnetite),12 and Tc(V)POM.46 Standards determined not 307 

to contribute significantly to the fit (value < 2σ) were removed, such that the only standards 308 

included in the final LCA fits were Tc(VII)O4
-, Tc(IV)-incorporated magnetite, which represents 309 

Tc(IV) in an ordered iron oxide octahedral environment (as in goethite), and Tc(IV)EDTA, 310 

which represents Tc(IV) in a disordered octahedral environment, e.g., surface sorbed, even 311 

though EDTA is not present in the sample.  312 

With an increase in Fe(OH)2(s), the amount of Tc(IV) incorporated into iron oxide 313 

increases from 49(1)% (LAW-50-100Tc) to 63(1)% (LAW-200-100Tc). The remaining Tc(IV), 314 

modeled as Tc(IV)EDTA, is presumably sorbed or loosely incorporated at the surface of the 315 

solid where a disordered octahedral environment would be expected. Tc(IV) EDTA contributions 316 

also remain relatively consistent between samples, 26(1)-30(1)%. Any remaining Tc is present as 317 

Tc(VII)O4
- and decreases from 27.2(2)% to 9.0(3)% with increasing Fe(OH)2(s):simulant ratio. 318 

The presence of Tc(VII) in LAW-200-100Tc is unsurprising considering a 200 g/L 319 



Fe(OH)2(s):simulant ratio is the requirement to remove 1 ppm of Tc(VII) from the simulant 320 

(Figure 1), not 100 ppm of Tc(VII) as present in this sample.  321 

When Tc speciation was analyzed for LAW-200-100Tc by XPS, the results were 322 

significantly different from the bulk, with an almost equal distribution of Tc(VII) and Tc(IV) 323 

(Table 2). This difference is likely due to facile reoxidation of surface adsorbed Tc(IV) relative 324 

to Tc(IV) incorporated into the mineral. Such sensitivity to reoxidation is one difference between 325 

Tc and Cr behavior in this system, since reduction of Cr(VI) produces stable, insoluble phases 326 

including Cr(OH)3 and Cr2O3 that do not require Cr incorporation into iron oxide/hydroxide 327 

phases. Additionally, these results suggest that some surface specificity is provided by XPS, 328 

despite the small goethite crystal size, or that goethite crystallites have agglomerated into larger 329 

particles. It is important to note that Tc comprises only 0.14(3) atomic % of the LAW-200-100Tc 330 

surface and was calculated while only considering Tc, Cr, Fe, O, and Cr constituents; therefore, 331 

this contribution may be in fact lower. 332 

Local Coordination Environment of Tc in the Solid: To evaluate how Tc(IV) is immobilized in 333 

the solid, the local coordination environment of Tc in samples LAW-50-100Tc and LAW-200-334 

100Tc was determined using EXAFS. Goethite39, 47 and magnetite25 models, modified to account 335 

for Tc substitution for Fe(III), were initially used to fit the EXAFS spectra. Difficulties 336 

distinguishing between iron oxide/hydroxide environments is not uncommon, especially when 337 

Tc(IV) is divided among several species.6, 27, 48-49 In addition, the local environment of Fe(III) in 338 

goethite is similar to that of the octahedral site of magnetite. In goethite, there are 4 Fe neighbors 339 

at 3.1 Å and an additional 4 Fe neighbors at 3.6 A while in magnetite, there are 6 Fe neighbors at 340 

3.0 Å and 6 at 3.5 Å. EXAFS analysis can determine distances more precisely (0.02 Å error) 341 

than coordination numbers (20% error). For each sample, the R-factor determined using the 342 



magnetite model was comparable if not better than the R-factor determined using the goethite 343 

model. Furthermore, F-test results for evaluating the probability that an included scattering shell 344 

contributes significantly to the EXAFS fit (SI Table S5) also favored the magnetite model. 345 

However, given the increase in Tc-Fe bond lengths determined during fitting, which more 346 

closely match the Fe-Fe bond lengths in goethite rather than magnetite, and the results from 347 

XRD and XPS analyses, it is unlikely that magnetite is present in the solid phase. Therefore, Tc-348 

substituted goethite is assumed to be the most representative model and accounts for 30(8)% and 349 

33(6)% of Tc in samples LAW-50-100Tc and LAW-200-100Tc, respectively (Table 3). This 350 

distribution is lower than the range determined by XANES LCA, 49-63%, where a Tc-351 

incorporated magnetite standard is used to account for the ordered structural environment of the 352 

iron (oxy)hydroxide phase rather than a goethite standard or model as used in the EXAFS 353 

interpretation. 354 

In addition to goethite, including TcO2·2H2O into the sample fits was required to account 355 

for the portion of Tc(IV) sorbed or partially incorporated at the goethite surface. Tc(IV) sorbed 356 

as TcO2·2H2O requires incorporation of a Tc–Tc neighbor (bond length ~2.57 Å) and a long Tc–357 

O bond (~2.47 Å) that accounts for the hydrated oxygen.24 Although, in instances where Tc may 358 

be partially incorporated into goethite, accounting for the long Tc – O bond often does not 359 

significantly contribute to the EXAFS fit.18 With this modification to the EXAFS fit, 67(6) % of 360 

Tc was found to be present as sorbed or partially incorporated Tc(IV) in LAW-200-100Tc with 361 

the hydrated Tc-O scatter pathway contributing significantly to the fit as indicated by a p value 362 

(0.019) less than 0.05. For LAW-50-100Tc, including the long Tc–O bond did not significantly 363 

contribute to the fit, thus suggesting partial incorporation of Tc(IV) into the solid phase of up to 364 

42(7) %. This expansion to the sample EXAFS models aligns with interpretation of the XANES 365 



spectra, which indicated that ≥26% of Tc(IV) is not completely incorporated into the iron 366 

oxide/hydroxide solid. 367 

Finally, for LAW-50-100Tc, where the Fe(OH)2(s):simulant ratio is too low to reduce 368 

and immobilize all of the Tc present in solution, TcO4
- was also included in the EXAFS fit and 369 

accounted for 28(3)% of bulk Tc in the solid. TcO4
- may persist as a dissolved species in 370 

moisture retained by the sample between packaging and analysis or, if dried, as a pertechnetate 371 

salt, e.g. NaTcO4. Despite XANES indication LAW-200-100Tc contains 9% Tc(VII), 372 

incorporating Tc(VII) into the EXAFS fit did not significantly improve the fit. The collected 373 

EXAFS spectra, their Fourier transforms, and final fits are shown in Figure 3. 374 

 375 

Figure 3. EXAFS spectra (left) and their Fourier transforms (right) for Tc-containing samples 376 
LAW-200-100Tc (200 g/L Fe(OH)2(s):simulant ratio, 100 ppm Tc(VII)) and LAW-50-100Tc 377 
(50 g/L Fe(OH)2(s):simulant ratio, 100 ppm Tc(VII). EXAFS fits (red) are based on a 378 
combination of Tc-incorporated goethite, TcO2·2H2O, and TcO4

- (LAW-50-100Tc only) models. 379 

4. Environmental Implications 380 



One implication asserted after the first demonstration of Tc reduction and removal in the 381 

presence of Cr by Fe(OH)2(s), was that Fe(OH)2(s) could be introduced into Hanford LAW to 382 

form Tc-incorporated magnetite, which would stabilize Tc, decrease its volatility during 383 

vitrification, and increase Tc loading in glass waste forms.18 However, laboratory simulations of 384 

Fe(OH)2(s) addition to LAW indicate that the amount of Fe(OH)2(s) required to remove Tc and 385 

Cr is approximately one order of magnitude larger than the control system. Such a large increase 386 

in Fe(OH)2(s) required to address Cr and Tc in LAW may adversely affect the final glass waste 387 

form. Furthermore, under vitrification temperatures the stability of Tc is more favorable when 388 

incorporated into the iron (oxy)hydroxide phase compared to TcO2·2H2O.6 As such, this system 389 

would benefit from near complete incorporation of Tc into the goethite phase, which may require 390 

additional Fe(OH)2(s) (>200 g/L). To this end Fe(OH)2(s) may be more appropriately used as a 391 

localized remediation strategy for environmental contamination or for treating the less redox-392 

sensitive melter off-gas and secondary waste streams where the concentrations of Cr(VI), NO2
-, 393 

and other anions do not overwhelm the concentration of Tc(VII) by orders of magnitude.  394 

5. Supporting Information 395 

Additional analysis procedures and results for IC/ICP-MS, XPS, and EXAFS are provided in the 396 

supporting information via the Internet at http://pubs.acs.org. 397 
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Tables. 556 

Table 1. 5 M Na Average LAW Simulant Composition 557 

Constituent 
Target 

Concentration 
[mg/L]* 

Concentration 
[mg/L] Constituent 

Target 
Concentration 

[mg/L]* 

Concentration  
[mg/L] 

Al 8280 8500 F- 600 <1000 
Cr 1120 1080 Cl- 1500 <2500 
P 1520 981 NO2

- 26,000 26,800 
K 1280 1300 Br- - <5000 
Na 115,000 110,000 NO3

- 101,000 102,000 
S 2740 2810 SO4

- - 10,100 
Ti - 7.84 PO4

- - <7500 
pH  13.5    

* Target Concentrations from Russell et al, 2013.17 
-: Not identified 
 558 

Table 2. XRD and High Resolution XPS Analysis of Select Solid Phases 559 
Sample  LAW-50-0Tc-1 LAW-100-0Tc LAW-200-100Tc 
Fe(OH)2(s):Simulant Ratio g/L 50 100 200 
Starting [Tc(VII)] ppm 0 0 100 

XRD Analysis 
Goethite (α-FeOOH) wt% 77 81 - 

a (Å)* 4.602(2) 4.597(3) - 
b (Å)* 9.920(3) 9.913(2) - 
c (Å)* 3.0096(9) 3.0080(9) - 

Crystal Size (nm)** 9.8(1) 10.7(1) - 
Feroxyhyte (δ-FeOOH) wt% 17 14 - 
Hematite (Fe2O3) wt% - 3 - 
Amorphous/Unidentified wt% 6 1 - 

Survey XPS Analysis** 

Cr 2p at %* 1.6(1) 1.1(1) 0.13(1) 
Tc 3d at % - - 0.14(3) 
Fe 2p at % 7.3(4) 8.4(8) 1.7(2) 
C 1s at % 27(4) 19(6) 24(1) 
O 1s at % 64(3) 71(5) 74(1) 

Cr XPS Analysis** 

CrOOH at % 46(1) 38(14) 59(2) 
Cr2O3 at % 28(10) 43(19) 32(4) 
Cr(OH)3 at % 24.7(2) 18(5) 1(2) 
Cr(VI) at % 1.5 1.3(5) 8.3(8) 

Tc XPS Analysis** 

Tc(VII) at % - - 52(1) 
Tc(IV) at % - - 48(1) 

Fe XPS Analysis** 

FeCr2O4 at % 0 0 5.7(2) 
Fe3O4 at % 12(1) 11(2) 11(1) 
FeOOH at % 88(1) 89(2) 83(1) 



(-) No Detected or Analyzed (*) Atomic percent 
Goethite (α-FeOOH)33: a = 4.634 Å, b = 9.945 Å, c = 3.0321 Å 
*Values in parentheses are ±3σ, based on the error associated with the Reitveld refinement. 
** Values in parentheses are ±1σ. For XPS, the standard deviation is determined from of the 
average of two replicate spot analyses collected for each sample. 

 560 

Table 3. LCA and EXAFS Results from Cr and Tc K Edge XANES and EXAFS Spectra  561 
Sample LAW-50-0Tc LAW-50-100Tc LAW-200-100Tc 
Fe(OH)2(s):Simulant Ratio g/L 50 50 200 
Starting [Tc(VII)] ppm 0 100 100 

Cr XANES LCA Analysis 
Cr Alum (KCr(SO4)2•12H2O) % 35(1) 35(1) 38(4) 

p* <0.001 <0.001 <0.001 
Fe2.5Cr0.5O4 % 58(2) 59(2) 62(4) 

p <0.001 <0.001 <0.001 
FeCr2O4 % 6(1) 6(1) - 

p 0.287 0.304 - 
Tc XANES LCA Analysis 

TcO4
- % - 27.2(2) 9.0(3) 

p - <0.001 <0.001 
Tc(IV) Incorporated Fe3O4 % - 49(1) 63(1) 

p - <0.001 <0.001 
Tc(IV) EDTA % - 26(1) 30(1) 

p - <0.001 <0.001 
Tc EXAFS Analysis 

TcO4
- % - 33(6) 0(0) 

TcO2·2H2O % - 32(8) 67(6) 
Goethite % - 35(3) 33(6) 
Values in parenthesis indicate the standard deviation of the last significant figure. 
(-) No Detected 
(*) Probability that the improvement to the fit by adding the scattering shell is due to random error. A p 
value < 0.05 indicates that the improvement is greater than 2σ of the fit.  
 562 

  563 



Figures. 564 

 565 

 566 

Figure 1. Cr and Tc removal from LAW simulant with 1 ppm Tc (black) and without Tc (red). 567 
Cr(VI) results are indicated by filled circles, Tc results by open squares. Error bars represent the 568 
standard deviation of results averaged from two to six replicate samples. Percent removal 569 
assumed to be 100% if below ICP-OES detection limit for Cr (23 µg/L) or ICP-MS detection 570 
limit for Tc (33 ng/L). 571 

 572 

 573 



 574 

Figure 2. (Left) Normalized and off-set Cr K edge XANES spectra with corresponding LCA fits 575 
for Fe(OH)2(s):Simulant ratios (A) 200 g/L, 100 ppm Tc(VII), (B) 50 g/L, 100 ppm Tc(VII), and 576 
(C) 50 g/L, no Tc(VII). The LCA fit (red) to the data (black) is the sum of the standard 577 
contributions from FeCr2O4 (dash line), Fe2.5Cr0.5O4 (dot/dash line), and Cr alum (dotted line) 578 
determined in the final fit. (Middle) Cr standards considered during LCA fitting, off-set for 579 
clarity. (Right) Normalized and off-set Tc K-edge XANES spectra (black) for samples A and B 580 
from left panel and the final Tc standards used during LCA fitting. The Tc LCA fit (red dashed 581 
line) is the sum of the standard contributions from TcO4

- (line), TcEDTA (dot/dash), and Tc-582 
incorporated Fe3O4 (dash).   583 
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 592 

Figure 3. EXAFS spectra (left) and their Fourier transforms (right) for Tc-containing samples 593 
LAW-200-100Tc and LAW-50-100Tc. EXAFS fits (red) are based on a combination of Tc-594 
incorporated goethite, TcO2·2H2O, and TcO4

- (LAW-50-100Tc only) models. 595 
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