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1. Abstract 

Simulated ground motions can advance seismic hazard assessments and structural response analyses, 

particularly for conditions with limited recorded ground motions such as large magnitude earthquakes at short 

source-to-site distances. Rigorous validation of simulated ground motions is required before hazard analysts, 

practicing engineers, or regulatory bodies can be confident in their use. A decade ago, validation exercises 

were mainly limited to comparisons of simulated-to-observed waveforms and median values of spectral 

accelerations for selected earthquakes. The Southern California Earthquake Center (SCEC) Ground Motion 

Simulation Validation (GMSV) group was formed to increase coordination between simulation modelers and 

research engineers with the aim of devising and applying more effective methods for simulation validation.  

In this presentation, we summarize what has been learned in over a decade of GMSV activities. We categorize 

different validation methods according to their approach and the metrics considered. Two general validation 

approaches are to compare validation metrics from simulations to those from historical records or to those 

from semi-empirical models. Validation metrics consist of ground motion characteristics and structural 

responses. We discuss example validation studies that have been impactful in the past decade and suggest 

future research directions. Key lessons learned are that validation is application-specific, our outreach and 

dissemination need improvement, and much validation-related research remains unexplored. 

This presentation is a summary of our recently accepted paper, Rezaeian et al. (In Press), referenced below.  

2. Proposed categorization of GMSV methods 

Table 1 summarizes prior research by connecting validation approaches (columns) to validation metrics (rows). 

Examples of prior studies are provided in each of the cells; we have attempted to capture notable citations for 

diverse application regions but make no claim of capturing all applicable published works. Our intent in 

presenting Table 1 is to organize prior research on simulation validation in a systematic manner. In Rezaeian 

et al. (In Press), we categorize validation metrics into two main groups of ground motion characteristics and 

structural responses. Bradley et al. (2017) also discuss and categorize validation of simulations in a similar 

manner by considering ground motion and structural response characteristics, but with a focus on spatial 

extent (i.e., broad regions to site-specific). Their findings are presented in a matrix form whereby different 

validation metrics (waveforms to structural responses) are judged to be suitable for practice in problems having 

different spatial extents. Alternative categorization of validation metrics that may involve validation applications 

have been suggested in the past but are not considered in this article. 
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Table 1: Categorizing GMSV methods by validation approaches and validation metrics and example 
publications. 

 Validation Approach: Compare to … 

A. Historical Records B. Semi-Empirical Models 
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a) Waveforms Graves and Pitarka (2010) 
Irikura and Miyake (2011) 
 

Rezaeian and Der Kiureghian (2010) 
Yamamoto and Baker (2013) 

b) Response 
Spectral 
Intensity 
Measures 
(IMs) and Peak 
Parameters* 

Dreger et al. (2015) 
Goulet et al. (2015) 
Chen and Baker (2019) 
Lee et al. (2020, 2022) 

Star et al. (2011) 
Seyhan et al. (2013) 
Burks and Baker (2014) 
Dreger et al. (2015) 
Goulet et al. (2015) 
Pitarka et al. (2017, 2020) 
Nweke et al. (2022)  

c) Other 
Intensity 
Measures 
(IMs)** 

Rezaeian et al. (2015) 
Luco et al. (2016) 
Bayless and Abrahamson (2018) 
Wong et al. (2019) 
Song et al. (2021) 

Anderson (2004) 
Smerzini and Villani (2012) 
Paolucci et al. (2015) 
Burks and Baker (2014) 
Luco et al. (2016) 
Afshari and Stewart (2016) 
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d) Idealized 
Structural 
Models 

Bazzurro et al. (2004) 
Iervolino et al. (2010) 
Olsen and Mayhew (2010) 
Galasso et al. (2012) 
Galasso et al. (2013) 
Galasso et al. (2018) 

Tothong and Cornell (2006) 
Burks and Baker (2014) 
 

e) More 
Realistic 
Structural 
Models 

Galasso et al. (2013) 
Zhong (2016) 
Burks et al. (2019) 
Zhong et al. (2020) 
Fayaz et al. (2021) 

Munjy et al. (2022) 
 

*Includes median, dispersion, and correlation of response spectral IMs (e.g., spectral acceleration, 
Sa) and peak parameters (e.g., peak ground acceleration, PGA). 
**Includes IMs other than response spectral and peak parameters. These could be scalar (e.g., 
duration, Fourier amplitude), goodness-of-fit (combination of scalars), or evolutionary (time-varying) 
parameters. 
***Includes engineering demand parameters (EDPs) from structural analyses and decision variables 
(DVs) such as failure probabilities. 
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