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ABSTRACT OF THE DISSERTATION

Investigation of Excitonic, Electronic and Thermal Properties of Two-Dimensional and
Quasi-One-Dimensional Materials

by

Bishwajit Debnath

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2018

Dr. Roger K. Lake, Chairperson

We explore the excitonic, electronic, phononic and thermal properties of low-dimensional

materials, specifically the two-dimensional and quasi-one-dimensional transition metal chalco-

genides. The possibility of observing Bose-Einstein exciton condensation (BEC) in tran-

sition metal dichalcogenides (TMDs) has been analyzed at three different levels of theory.

We find that, in the strong coupling regime, mean field theory with either an unscreened

or screened interlayer interaction predicts a room-temperature condensate. However, in-

tralayer interactions can essentially renormalize the quasiparticle dispersion, which can be

captured by many-body GW formalism. In the strong coupling regime, the improved BEC

theory predicts that intralayer interactions have a large impact on the condensate order pa-

rameter, as well as on its functional dependencies on effective mass and carrier density. We

also explore the thermal properties of 2D materials, specifically in the misoriented bilayer

graphene (m-BLG) system, using ab initio density functional theory (DFT) and phonon

Boltzmann transport equation (BTE). we find that the lattice thermal conductivity of m-

BLG reduces to almost half of its unrotated counterpart. To explain the phonon dynamics,
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we analyze the phonon dispersions, phonon velocity distributions, occupations, density of

states and heat capacity, both before and after misorientation. Detailed calculation of the

phonon-phonon scattering lifetime reveals that, the increased umklapp scattering in the

acoustic and quasi-acoustic phonon branches is the main reason for the reduced thermal

conductivity in m-BLG system. We also explore the thermal conductivity of quasi-1D

materials, specifically TaSe3 and NbS3, using ab initio DFT and phonon BTE. We find

that both materials exhibit highly anisotropic thermal transport. A thermal conductivity

of 6.3 W/m·K (70.6 W/m·K) is observed for metallic TaSe3 (semiconducting NbS3) along

the chain direction. In-depth study of velocity and lifetime distribution shows that lower

scattering and higher phonon velocity in NbS3 are the reasons behind such higher ther-

mal conductivity. The umklapp scattering process is found to be the dominant phonon

scattering mechanism in this family of low-dimensional materials. We also investigate the

electronic and vibrational properties of different phases of the quasi-1D material NbS3. We

find that the dimerized phase NbS3-IV is a semiconductor, whereas the undimerized phase

NbS3-V is a metal. Similarity between the band dispersions of phase-I and phase-IV arises

from the similarity in their structures, in spite of some stacking and chiral faults. Both

phase-I and phase-IV are dynamically stable, whereas the phonon dispersion in phase-V

exhibits instability along the inter-chain and growth direction, indicating a possible charge

density wave ground state. Finally, we explore the band alignment properties of different

quasi-1D transition metal trichalcogenides (TMTs). From the DFT calculations, we can

identify several TMTs as promising candidates for ohmic contacts and tunnel FET devices.
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Chapter 1

Rationale

1.1 Objectives

Over the last decade, the world has eagerly seen how the discovery of atomically-

thin graphene has revolutionized device engineering, by vigorously adopting the low-

dimensional materials [214, 26, 36, 228, 57, 18, 152]. As worthy companions to graphene,

other 2D materials, e.g. transitional metal dichalcogenides (MoS2, WS2, etc.), have broad-

ened those engineering efforts, and resulted in a plethora of electronic, mechanical, optical

and thermal 2D devices [124, 87, 125, 72, 124, 87, 125, 111, 246, 153, 177, 190, 181]. How-

ever, one of the unexplored directions, where 2D materials can push the knowledge bound-

aries of “cold-atom” physics, is the realization of Bose-Einstein exciton condensate (BEC)

[27, 202, 102, 209, 155, 242, 103, 174]. In BEC, the electron-hole pairs can “condense” into

a single quantum state and exhibit exciting phenomena like gravity-defying superfluidity

and dissipation-less transport [2, 61, 204, 138]. In my research, I will explore the possibility

of using 2D materials to find this “elusive” Bose-Einstein condensate. Furthermore, I will
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also study the criteria and phase map for realizing such condensate in experimental setup.

Another hurdle that the material scientists and device engineers are facing is ex-

cessive heat management, which is a natural byproduct of superior processing power. Two-

dimensional materials like bilayer graphene (BLG), which exhibit very high thermal conduc-

tivity [8, 70], is an excellent candidate for extracting heat from overheated semiconductor

devices [7, 234, 186, 194, 195, 99]. However, during growth and transfer, BLG samples

often show unintentional interlayer twisting, which negatively impacts the heat conduction

[162, 187, 33, 81, 37, 30, 215, 165, 123, 122]. Understanding the microscopic physics of heat

transport, in terms of quantum unit “phonons”, is an essential step towards designing effi-

cient heat-extracting devices based on BLG. To complete this knowledge gap, I will explore

the phonon dynamics and thermal conductivity of twisted bilayer graphene using ab initio

density functional theory and Boltzmann phonon transport theory. I will also explain the

physical mechanism behind such phonon-limited heat transport.

As the research initiatives for 2D materials are reaching saturation, both the in-

dustry and academia are looking for next family of low-dimensional materials. One such

direction is the quasi-1D materials, specifically transition metal trichalcogenides (TMT)

[89, 192, 79, 229, 180, 253]. Due to their inherent low-dimensionality and anisotropic be-

havior [97, 85, 254, 184, 95, 41, 88, 172, 40, 110], the quasi-1D TMT materials can be

very promising in designing heat extracting devices. However, a full investigation of the

thermal stability and thermal conductivity in quasi-1D materials are still missing. Hence,

in my research, I will explore and evaluate the thermal properties of TMT materials, for

both semiconducting and metallic phases, thus filling in the gap of current understanding
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of phonon dynamics in quasi-1D materials.

A second reason behind the popularity of quasi-1D materials is the rich phase

chemistry they can present [180, 219, 231, 104, 185]. Depending on the growth conditions,

they can exhibit numerous phases by allowing small stacking or chiral faults in their unit

cell [90, 25, 253, 15]. Interestingly, these variations in structure can result in quite different

properties of materials, ranging from metallic to semiconductor, from superconductor to

insulator, and from exhibiting an incommensurate charge density wave phase to commen-

surate charge density wave phase [236, 191, 73, 253]. Recently, Several new phases of NbS3

have been reported [15], but the electronic and vibrational properties of these phases are

yet unknown. Some of these phases are very promising in showing charge density waves

(CDW) at high temperatures, making them very good candidate for room-temperature

CDW-based devices [134]. To explore the possibilities of room-temperature CDW in such

chemically-rich material system, I will also theoretically investigate the known-phases of this

quasi-one dimensional NbS3, using ab initio density functional theory. Both the electrical

performance and the phonon dispersion will be studied, to explore the dynamical stability

of the discovered phases, as well as to predict any possible commensurate structures for this

material.

Along with the promise of better thermal response and attractive phase engineer-

ing, transitional metal trichalcogenides can also become ideal candidate for next-generation

electronic contacts [95]. TMT grows in µm-long chains, can sustain high current and is only

several 100 nm thick [170, 59, 105, 75, 171, 135]. They can solve the contact scaling problems

in semiconductor industry by replacing the existing bulky contacts [98, 43, 34, 71]. Since
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the thermal performance of these quasi-1D materials makes them promising for heat extrac-

tion, choosing certain TMT materials with better electrical contact efficiencies and better

heat-sink capabilities, will facilitate dual functionality in future contact design. However,

before such industrial appropriation, a comprehensive theoretical study of their electronic

performance as contact is necessary. To evaluate these issues, I will categorically calcu-

late the electronic dispersions and band alignment properties of different members of TMT

material family. Both metallic and semiconducting polymorphs of quasi-1D materials will

be studied to evaluate the best possible combinations, both for contacts and tunnel FET

devices.

1.2 Organization

The rest of the dissertation is organized as follows. Chapter 2 presents the inves-

tigation of Bose-Einstein condensate in two-dimensional transitional metal dichalcogenides,

using different level of theory. Chapter 3 presents density functional theory calculations

of phonon dispersion and thermal conductivity of misoriented bilayer graphene. Chapter

4 presents the investigation of ab initio thermal conductivity in quasi-1D materials TaSe3

and NbS3. Chapter 5 presents the theoretical calculations of electronic and vibrational

properties of different phases of NbS3. Chapter 6 explores the electronic properties and

band alignment of different quasi-1D materials.
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Chapter 2

Exciton condensate in bilayer

transition metal dichalcogenides:

strong coupling regime

2.1 Introduction

Electron-hole (e-h) bilayer systems, such as the one illustrated in Fig. 2.1 (a),

are good candidates for observing exciton condensation [142]. The presence of an exciton

condensate results in a gapped spectrum for the e-h bilayer system, as illustrated in Fig. 2.1

(b). Although there is evidence of exciton condensation in GaAs double quantum wells

in the quantum Hall regime [27, 202, 102, 209], the zero-field exciton condensate remains

elusive. Recently, focus has returned to engineering a bilayer exciton condensate in the

absence of a magnetic field in two-dimensional crystals, such as graphene [155, 242, 103,
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(a) (b)

TOP GATE

BACK GATE

Figure 2.1: (a) Illustration of two monolayers of transition metal dichalcogenides separated
by a thin film of hexagonal boron nitride (h-BN). The Fermi levels of the top and bottom
monolayers are tuned to induce equal electron and hole carrier densities. (b) The conduction
band of the electron layer and the valence band of the hole layer overlap, and in the presence
of a condensate, a gap (2∆) opens in the dispersion.

174, 2, 61, 204, 138] and transition metal dichalcogenides [63, 224, 226, 138].

Graphene appears to be an attractive candidate for the realization of bilayer exci-

ton condensates due to its perfect particle-hole nesting [155, 242]. Mean field calculations

with the bare Coulomb interaction predict high transition temperatures (∼ 300 K) [155].

However, screening effects in graphene are of the order of the Fermi wavevector (kF ). As a

result, static screening reduces the transition temperatures significantly [103, 74, 61]. The

predicted transition temperatures in the e-h graphene bilayer systems range from 1 mK

– 100 K [155, 242, 141, 103, 143, 137, 156, 61], depending on the level of the theory. A

study which includes dynamical effects on the screened interactions estimates a transition

temperature Tc ∼ 4 K [200]. Another study taking into account the screening resulting

from proximity gates found transition temperatures in the 1 mK–1 K range [61]. Replacing

each monolayer of graphene with a bilayer of graphene has been suggested for increasing

the transition temperature [238].
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The strength of the exciton condensate is proportional to the coupling strength λ,

which is the ratio of the interaction energy to the band energy. This ratio is the fine structure

constant in graphene given by λ = e2/[κ~vF ] ∼ 2.2/κ [155, 140, 200], where κ is the dielectric

constant of the barrier material and vF is the Fermi velocity. Graphene’s fine structure

constant is density independent and typically λ . 1, which is a good approximation for

weak coupling theories. However for parabolic bands, such as those in bilayer graphene

and transition metal dichalcogenides (TMDs), λ is density dependent. In this case, λ h

6gm+/(κkF ), where m+ is the reduced electron-hole mass of the e-h bilayer system, g is the

degeneracy, and kF ∝
√
n2D/g is the Fermi momemtum that depends on electron density

n2D. In bilayer graphene, the low effective mass gives λ = 0.2 ∼ 1.1, so that weak coupling

theories also apply.

TMDs have larger effective masses and typically larger values of λ = 2.2 ∼ 10.4, de-

pending on the carrier density of 1011 ∼ 1012 cm−2. Larger masses result in larger excitonic

binding energies that would appear more suitable for higher exciton gaps and transition

temperatures [63, 29]. Mean field calculations using the unscreened Coulomb interactions

do predict room temperature condensation, and they also predict higher condensation tem-

perature for higher carrier densities (n2D). However, for higher carrier densities, screening

effects should be considered. In graphene bilayers, screening incorporated within a random

phase approximation (RPA) reduces the interlayer coherence [174], as one would expect.

On the other hand, in TMD bilayers with λ > 1, RPA screening has little effect on the

interlayer coherence. However, since TMD bilayers lie in the strong coupling regime, quasi-

particle renormalization influences the order parameter significantly.
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In this work, we formulate an intermediate/strong coupling theory for the TMD

bilayer exciton condensate by incorporating screening effects in the RPA and the quasi-

particle self-energy correction, self-consistently with the exciton gap. The inter-layer and

the intra-layer RPA screened interaction is used to calculate the quasi-particle self-energy,

within the GW approximation. Screening not only affects the interlayer interaction, but it

also affects the intralayer interaction (within the same monolayer). The intra-layer interac-

tion renormalizes the effective mass and the corresponding λ. In this approach, the excitonic

gap is calculated self-consistently as a function of the renormalized λ. The inclusion of the

self-energy renormalization reverses the trends predicted from the unscreened and screened

MF theories. The heavy masses of the TMD materials that increase the order parameter in

the MF theories, decrease the order parameter when the interlayer and intralayer screen-

ing are self-consistently included. High carrier density limits the condensation gap due to

screening, and low carrier density (i.e. strong coupling) reduces the condensation gap due

to mass renormalization.

Typically, beyond mean field, diffusion quantum Monte Carlo (QMC) simulations

are employed to predict the condensate temperature. This approach includes both interlayer

and intralayer screening, as well as vertex corrections [160]. For the graphene bilayer, these

studies suggest that screening effects destroy the superfluidity at high carrier densities,

but it can survive at low carrier density [174]. This indicates that correlations play a

significant role, especially in the strong coupling regime [44]. Our strong coupling approach

is comparable to QMC approach in prediction of the gap behavior of excitonic condensates.

It also provides insight into the different physics that govern the trends. Additionally, since
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Table 2.1: TMD material parameters obtained using density functional theory (HSE-SOC) [220]. mα is
the longitudinal effective mass at the valence band edge (Kv) and the conduction band edge (Kc), in the
units of free electron mass m0. ε is the relative dielectric constant of each monolayer. n2D and kF are the
maximum allowed electron density and Fermi wavevector for one-type of spin determined by the conduction
spin-splitting energy ∆c.

Material
Effective Mass (mα) Band Splitting ε n2D kF

Kv Kc ∆v(meV ) ∆c(meV ) (×1012 cm−2) (nm−1)

MoS2 0.485 0.407 188.6 9.9 3.43 0.4 0.1585

MoSe2 0.503 0.435 254.8 36.9 4.74 1.7 0.3268

MoTe2 0.576 0.501 317.4 43.7 5.76 2.3 0.3801

WS2 0.304 0.331 528.7 12.0 4.13 0.4 0.1585

WSe2 0.303 0.358 606.4 7.80 4.63 0.3 0.1373

the diffusion QMC studies include vertex corrections, which are missing in our approach,

comparison of the two approaches can indicate the optimal approximation to accurately

predict the transition temperatures in exciton condensates.

The remainder of the paper is organized as follows. Section 2.2 describes the

effective model for TMDs used in this paper. Section 2.3 discusses the standard mean

field treatment of the model Hamiltonian for the bilayer TMD system with an unscreened

interaction. In section 2.4, we include RPA screening and a self-energy renormalization in

a GW approximation and compare the predictions of the different levels of theory. Section

2.5 summarizes and concludes.
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Figure 2.2: Spin composition at K and K′ of monolayer MoX2 TMDs [112]. Up- and down-
spin bands are denoted by solid-red and dash-blue lines, respectively. Spin-orbit coupling
causes spin splitting of the conduction band (∆c) and the valence band (∆v).

2.2 Effective model for e-h TMDs bilayers

We consider several TMD electron-hole bilayers separated by an insulating h-BN

spacer layer, as illustrated in Fig 2.1 (a). Separation of the electron and hole layers by a

barrier reduces the overlap of their respective wavefunctions which reduces the interlayer

tunneling and recombination [63]. The Fermi level lies in the conduction band of the top

monolayer and in the valence band of the bottom monolayer.

The two layers of the bilayer system can consist of the same TMDs (homo-bilayer)

or different TMDs (hetero-bilayer). To achieve high critical temperatures for exciton con-

densation particle-hole nesting is beneficial, (i.e., |me| = |mh|). The electron and hole

masses in TMDs are similar but not equal, therefore, we consider different homo- and

hetero-layer TMD combinations.

Table 2.1 shows the spin-resolved band parameters, the effective masses and max-

imum 2D carrier density for several monolayer TMDs. Our calculations of the electronic

structure of the monolayer TMDs are based on spin-resolved density functional theory as

implemented in the Vienna Ab-initio Simulation Package (VASP) [115, 114]. We use the
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hybrid functional of Heyd-Scuseria-Ernzerhof (HSE) [83] where the fraction of screened

Fock exchange α was set to 0.25 which results in band gaps for the monolayers of each ma-

terial that are in agreement with the experimentally reported band gaps of each material

[245, 51, 244]. A 400 eV energy cut-off was used, and spin-orbit interaction was included

self-consistently in all calculations. Calculations were done using a Γ centered (12 × 12 ×

1) Monkhorst-Pack k-point grid. Each of the monolayer unit cells were constructed using

20 Å of vacuum to achieve negligible interaction between the periodically repeating sur-

faces. The conduction and valence band effective masses at Kv and Kc are calculated for

each material by fitting the dispersion around the extrema of each valley to a fourth order

polynomial and then calculating 1/m∗ = 1
~2d

2E/dk2 [220]. From the effective masses in

Table 2.1, we identify several TMD bilayer combinations with partial electron-hole nesting

(i.e., |me| ∼ |mh| ). All of the n-type layers are chosen from the MoX2 materials with spin

splitting illustrated in Fig. 2.2 [248, 112]. The spin splitting of the conduction band ∆c

sets the maximum Fermi level for each calculation. Within this limit, each band of each

K-valley is spin polarized.

Treating the electron and hole dispersions as parabolic, the model Hamiltonian for

the structure is H = H0 +He−e,

H =
∑
kσα

εαk,σc
†
kσαckσα +

1

2S

∑
qαβ

Vαβ(q)ρα(q)ρβ(−q), (2.1)

where c†k,σ,e (c†k,σ,h) denote the electron (hole) creation operators, σ denotes the spin and

valley quantum numbers for the electron/hole, k = (kx, ky) is the in-plane two-dimensional

momentum with k =
√
k2
x + k2

y, S is the area of the bilayer, α(β) ∈ {e, h} are the elec-

tron/hole layer indices, εα=e
k,σ = ~2(k2 − k2

F )/(2me,σ), εα=h
k,σ = −~2(k2 − k2

F )/(2mh,σ), kF is
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Figure 2.3: (a) The order parameter ∆ as a function of the interaction strength λ =
ge2m+/(πκ~2kF ) for d = 1.0 nm (solid line), and d = 3.0 nm (dashed line) with n2D =
2.3 × 1012 cm−2. The spheres give the order parameter for five possible e/h bilayers: a)
MoTe2/MoS2, b) MoTe2/MoTe2, c) MoTe2/MoSe2, d) MoSe2/WSe2, e) MoSe2/MoSe2.
In calculating ∆ for specific combinations, respective effective masses and the maximum
allowed 2D carrier density of the electron layer are used. The interaction strength λ for the
TMD bilayers lies in the strong coupling regime. (b) Color contour plot of ∆ as a function
of m+ and n2D with d = 1.0 nm. The value in meV of each contour is labeled. The positions
of the 5 bilayers of (a) are shown.

the Fermi momentum, and me(h),σ denotes the spin and valley dependent effective masses

for the electron (hole). Time reversal symmetry dictates that mα,σ = mα,−σ. In Eq.

(2.1), ρα(q) =
∑

kσ c
†
k+qσαckσα is the total electron density for the αth layer, Vee = Vhh =

2πe2/(κq) is the Fourier transform of the intralayer interaction, and Veh = Vhe = −Veee−qd

is the Fourier transform of the interlayer interaction, where κ is barrier dielectric constant, d

is the thickness of the h-BN insulating spacer, and q is the momentum transfer, q = |k− k′|.
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2.3 Mean Field Theory

Mean field decomposition of Eq. (2.1), gives an effective BCS-like Hamiltonian.

The Green’s function for the MF effective Hamiltonian can be expressed as,

Ĝ0 (k, ω) =
(ω − ζk)Î + ξkτ̂3 + ∆kτ̂1

(ω − ζk)2 − E2
k + iη

, (2.2)

where τ̂i is a Pauli matrix representing the layer pseudospin in the indices α and β; ζk =

~2k2/(4m−,σ), m−1
−,σ = (m−1

e,σ −m−1
h,σ), ξk = ~2(k2 − k2

F )/(4m+,σ), m−1
+,σ = (m−1

e,σ + m−1
h,σ),

Ek =
√
ξ2
k + ∆2, and ∆k is the order parameter. When ∆→ 0, the Green function in Eq.

(2.2) reduces to the Green’s function of the normal state. The value of the order parameter

∆ is evaluated self-consistently,

∆k = −1

2

∑
k′

Veh(|k− k′|)∆k′

Ek′
. (2.3)

In general, the order parameter can have a complicated dependence on momen-

tum, but here we assume a translationally invariant order parameter ∆. We evaluate the

normalized order parameter ∆̄ = ∆/εF , as a function of the interaction strength λ and the

interlayer separation d,

1 = λ

π/2∫
−π/2

dφ

2 cosφ∫
0

dq̄
vD(q)√
ξ̄2
k−q + ∆̄2

, (2.4)

where ξ̄k−q = ξk−q/εF , vD(q) = e−kF q̄d, λ = ge2m+/(πκ~2kF ), κ is the dielectric constant

of the h-BN barrier (3.9), g is flavor multiplicity (two-fold for the valley degeneracy), φ is

the angle between k and q, and q̄ = q/kF when kF =
√

4πn2D/g. Note the appearance of

the interaction parameter λ, which captures the strength of the interlayer coherence. Eq.

(2.4) is evaluated self-consistently at k = kF . Henceforth, we restrict our attention to the
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case where the electron and hole densities are identical, ne = nh = n2D. We refer to this

approach as unscreened mean field (MF) and will denote it as MF.

Figure 2.3 (a) shows the dependence of the order parameter ∆ as a function of the

coupling parameter λ at a carrier density of n2D = 2.3× 1012 cm−2. Eq. (2.4) predicts that

room temperature condensation is possible for λ & 0.2. Due to the exponential dependence

of d in Eq. (2.4), decreasing the interlayer separation from 3 nm to 1 nm increases the order

parameter by almost a factor of two.

Figure 2.3 (a) also shows the order parameter ∆ for five possible TMD bilayer

structures (blue/red spheres): a) MoTe2/MoS2, b) MoTe2/MoTe2, c) MoTe2/MoSe2, d)

MoSe2/WSe2, e) MoSe2/MoSe2. The order parameters for these combinations are calculated

using the masses and maximum carrier densities of the n-type layer as listed in Table 2.1.

Due to the higher effective masses and lower carrier densities, the values of λ for these

bilayer combinations are in the strong coupling regime (λ ∼ 2). Figure 2.3 (b) shows the

order parameter ∆ in the phase space of the reduced effective mass (m+) and the electron

density (n2D). The positions of the 5 bilayer systems are also shown. As anticipated, the

unscreened mean field theory indicates that exciton condensation is favorable for higher 2D

carrier densities and larger effective masses.

The unscreened mean field calculations are generally valid for weak coupling regimes

(λ ∼ 0.25). Considering that the TMD hetero-structures fall in the strong coupling regime

(λ ∼ 2), the theory of exciton condensates in TMDs must be enhanced to include screening

and renormalization effects. In the next section, we formulate a strong coupling theory

that includes screening of the Coulomb interaction, as well as the effect of quasiparticle

14



(a)

(b)

Figure 2.4: (a) Screened interaction in the RPA approximation. The Green’s function used
in the polarization bubble depends on the level of theory. (b) Dyson equation for the Green
function in a GW approximation that includes both interlayer and intralayer screening.

renormalization.

2.4 Intermediate/Strong coupling theory

In this section, we first include RPA screening and then self-energy renormalization

in a GW approximation. Results from the different levels of theory are compared.

2.4.1 Screened interlayer and intralayer interaction

Screening is treated in the random phase approximation as illustrated in Fig. 2.4

(a). At this level of theory, the solid lines in the polarization diagram represent the Green

function of Eq. (2.2) which includes the coherence term ∆. ∆ is calculated from Eq. (2.4)

using the screened interaction self-consistently with the polarization functions.

The polarization is a 2× 2 matrix with diagonal terms ΠS corresponding to same-

layer polarization, and off-diagonal terms ΠD corresponding to different-layer polarization.

When the top and bottom layers have the same carrier density, ΠS and ΠD can be decoupled
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into even and odd channels, defined as Π± = ΠS ±ΠD where

Π±(q, ω) = g

∫
d2k

(2π)2

(
Ek+q + Ek
Ek+qEk

×
Ek+qEk ∓∆2 − ξk+qξk
ω2 + iη − (Ek + Ek+q)2

)
. (2.5)

The particle-hole response functions depend on the order parameter ∆ and also through

the gapped spectrum Ek =
√
ξ2
k + ∆2, as seen explicitly in Eq. 2.5. The response function

is evaluated self-consistently with the order parameter. From this point onward, we neglect

dynamical retardation of the screened interaction and set the frequency ω = 0.

The even polarization function Π+ captures the density response to the total charge

density of the gapped spectrum. Since the total response of a gapped system to a uniform

shift in the potential vanishes, Π+(q → 0) = 0. The odd channel polarization function

Π− captures the response to a difference in the charge density of the two layers. In the

q → 0 limit, the odd channel polarization function approaches the density of states, Π−(q →

0, ω = 0) = −N(εF ), independent of the gap ∆.

The intralayer and interlayer density response functions needed for the calculations

are ΠS = (Π+ + Π−)/2 and ΠD = (Π+ −Π−)/2 given by

ΠS(q) = g

∫
d2k

(2π)2

(
1−

ξk+qξk
Ek+qEk

)
× −2Ek

(Ek + Ek+q)2
, (2.6)

ΠD(q) = g

∫
d2k

(2π)2

2∆2

Ek+q (Ek + Ek+q)2
. (2.7)

The response functions are normalized to the 2D density of states as

ΠS(D)(q) = −N(εF )χS(D)(q), (2.8)

where N(εF ) = gm+/(2π~2) is the density of states for the parabolic bands and χS(D)(q)

are the dimensionless polarization functions.
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The interlayer screened interaction V sc
eh (q), within the RPA, can be expressed as

V sc
eh (q) = 2πe2/(κq) · vscD (q̄), where

vscD (q̄) =
q̄
[
vD + λ̃ (v2

S − v2
D)χD

]
1− 2λ̃(vSχS + vDχD) + λ̃2(v2

S − v2
D)(χ2

S − χ2
D)
. (2.9)

Here, we define vS = 1/q̄, vD = e−kF q̄d/q̄ and λ̃ = 2πλ. In the limit of an unscreened

potential, vscD (q̄) reduces to vD(q) = e−kF q̄d of Eq. (2.4).

One can now include self-consistent screening in the calculation of the order pa-

rameter by replacing the bare Coulomb potential vD(q) in Eq. (2.4) with the screened

interlayer interaction vscD (q), and calculate ∆ in Eq. (2.4), ΠS in Eq. (2.6), ΠD in Eq. (2.7),

and vscD (q) in Eq. (2.9) self-consistently. We refer to this approach as mean field with RPA

screening (MF-RPA).

Electron-electron interactions not only result in screening, but they also renor-

malize the quasiparticle dispersion. The self-energy renormalization is affected by both the

interlayer and the intralayer interactions. Similar to the screened interlayer interaction in

Eq. (2.9), the screened intralayer interactions are V sc
ee (q) = V sc

hh(q) = 2πe2/(κq) · vscS (q̄),

where

vscS (q̄) =
q̄
[
vS − λ̃ (v2

S − v2
D)χS

]
1− 2λ̃(vSχS + vDχD) + λ̃2(v2

S − v2
D)(χ2

S − χ2
D)
. (2.10)

This correctly reduces to the monolayer RPA interaction in the limit d→∞.

The order parameter is directly proportional to the interlayer screened potential

vscD . The intralayer interaction vscS enters into the diagonal element of the self-energy which

renormalizes the quasiparticle dispersion (ξk) and the interaction strength λ. To understand

these effects, we determine the self-energy of Fig. 2.4 (b) and use it to calculate the order

parameter self-consistently.

17



2.4.2 Self-energy correction to many-body interaction

The renormalization of both the quasiparticle dispersion and the interlayer inter-

action are included within a GW approximation. The self-energy illustrated in Fig. 2.5 is

calculated self-consistently with the Green’s function. The Green’s functions used in the

polarization diagram include the renormalized order parameter but ignore the mass renor-

malization. Only the real part of the self energy is used in the calculation of the Green’s

function. We refer to this approach as mean field with GW renormalization (MF-GW).

Denoting the 2×2 self-energy matrix as Σ̂c, the full Green function matrix Ĝ(k, ω)

is given by Ĝ−1(k, ω) = Ĝ−1(k, ω) − Σ̂c (k, ω), where Ĝ is the bare Green function in Eq.

(2.2). Hence, the full Green function is

Ĝ−1 =

 ω + iη − [ξk +R(ΣS)] −∆0 −R(ΣD)

−∆0 −R(ΣD) ω + iη + [ξk +R(ΣS)]

 , (2.11)

where ∆0 is the gap function in the absence of the self-energy correction, and R denotes

the real part. It is clear from Eq. (2.11) that the diagonal element ΣS renormalizes the

quasiparticle dispersion as ξk → ξk +R(ΣS), and the off-diagonal element ΣD renormalizes

the gap function as ∆0 → ∆0 +R(ΣD).

We calculate the diagonal self-energy as

ΣS (k, ω − Ω) = i

∫
dΩ

2π

∫
d2q

(2π)2 v
sc
S (q) ĜS(k − q, ω − Ω), (2.12)

where ĜS is the diagonal part of the Green’s function in Eq. (2.11). We take the complex

path integral over Ω in Eq. (2.12) and calculate the normalized diagonal self-energy in the
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Figure 2.5: Real part of the diagonal self-energy ΣS(q) normalized to εF for kFd = 0.

static limit (ω → 0),

R(ΣS(k̄)) = −
(
λ

π

) 2π∫
0

dφ

2∫
0

dq̄ vscS (q̄)Θ(k2
F − |k− q|2)

×
−|ξ̄R

k̄−q̄|√[
ξ̄R
k̄−q̄

]2
+ ∆̄2

, (2.13)

where ξ̄R
k̄−q̄ = k̄2−2q̄k̄ cosφ+ q̄2−1 +R{ΣS(k̄− q̄)} takes into account the renormalization

of the quasiparticle dispersion. Θ is the unit step function, and ΣS = ΣS/εF . Since ΣS(k̄)

in Eq. (2.13) requires the evaluation of ΣS(k̄− q̄), we use analytical continuation properties,

i.e., R(ΣS(k̄)) = R(ΣS(−k̄)). A separate calculation of the off-diagonal self-energy ΣD is

avoided by self-consistently absorbing it in the definition of ∆̄,

1 = λ

π/2∫
−π/2

dφ

2 cosφ∫
0

dq̄
vscD (q̄)√

[ξ̄R1−q̄]
2 + ∆̄2

. (2.14)

The value of ∆ determined from Eq. (2.14) is used self-consistently in determining

19



the polarization functions ΠS and ΠD and thus the screened interactions vscD and vscS . The

dispersion represented by ξk used in the calculation of the polarization functions is the

bare dispersion in the absence of ΣS . Thus, the Green function lines in the polarization

bubble are partially self-consistent in that they include the effect of the self-energy on the

off-diagonal order parameter, but they do not include the effect of mass renormalization.

Eqs. (2.6), (2.7), (2.9), (2.10), (2.13), and (2.14) are the set of self-consistent equations that

are solved to obtain ∆.

To understand the relative contribution of the self-energy correction, we plot the

normalized R (ΣS) in Fig. 2.5 for different values of λ. In the weak coupling regime

(λ < 0.2), the self-energy is only 20% – 60% of the Fermi energy. However, at the onset of

intermediate/strong coupling region (λ ≥ 0.5), the self-energy becomes equal to or larger

than the Fermi energy. This illustrates the importance of the self-energy correction in the

strong coupling regime.

2.4.3 Discussion

In this section, we discuss the MF-GW results and compare them with the MF

and MF-RPA predictions. Theoretically, the most favorable condition of condensation oc-

curs at vanishing interlayer distance, i.e. kFd → 0. Considering this optimum condition,

Fig. 2.6 summarizes the three different levels of theory. For the MF calculation the gap

increases monotonically with interaction strength. In this case, moderate interlayer inter-

action (λ > 0.2) leads to room temperature condensation. The effect of RPA screening

(MF-RPA) on the order parameter depends on the relative strength of λ. In the weak
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Figure 2.6: Normalized order parameter as a function of the effective interaction strength
λ, obtained from MF, MF-RPA, and MF-GW theory for kFd = 0. The inset shows the
region near λ = 0.25

.

coupling regime (λ ≈ 0.25), screening reduces the interlayer coherence. In the intermedi-

ate/strong coupling regime, screening cannot compete with the interlayer interaction and ∆

follows the unscreened gap function. The discontinuity in the MF-RPA curve near λ = 0.25

is similar to the discontinuity observed and discussed by Neilson et al. [160] When both

interlayer and intralayer screening are included as a self-energy correction (MF-GW), the

interlayer coherence is strongly reduced for interaction strengths above 0.25. As λ→ 0, the

MF-GW theory and the MF theory coincide. The reason is apparent from Fig. 2.5, which

shows that self-energy correction remains negligible up to λ ∼ 0.1.

Figure 2.7 is a color contour plot of ∆ as a function of m+ and n2D determined

from the MF-GW theory. The positions of the same bilayer structures from Fig. 2.3 are

shown. A comparison of the m+ − n2D phase diagram in Fig. 2.7 with that of the MF
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result in Fig. 2.3 (b) shows that MF-GW theory predicts trends that are qualitatively

different from the MF theory. For a reduced mass greater than 0.05, the order parameter of

MF theory is nearly independent of the mass and is moderately dependent on the density,

changing by a factor of ∼ 3 as the density increases an order of magnitude from 5 × 1011

cm−2 to 5 × 1012 cm−2. The order parameter of MF-GW theory has the same moderate

dependence on the density, but it is exponentially dependent on the mass. For a density of

2× 1012 cm−2, the order parameter decreases 5 orders of magnitude as the mass increases

from 0.05 to 0.3. Also, the functional dependence of the order parameter on the mass

is qualitatively different. In both theories, the order parameter rapidly increases as m+

increases from zero. In MF theory, the order parameter saturates and remains constant

for m+ & 0.1. In MF-GW theory, the order parameter peaks at m+ ∼ 0.025 and then

exponentially decays as m+ increases. For MF theory, the conditions for maximum ∆ occur

at the upper right corresponding to high density and high mass. For MF-GW theory, the

conditions for maximum ∆ occur at the lower left corresponding to low density and low

mass. The MF-GW theory exponentially reduces the magnitude of the order parameter for

masses corresponding to those of the 2D bilayers. The heavy masses of the 2D materials

which increase the order parameter in MF theory, decrease the order parameter in MF-GW

theory.

As shown in Fig. 2.6, interlayer screening calculated self-consistently in the pres-

ence of a condensate has little effect on the order parameter in the strong coupling limit.

Renormalization due to intralayer screening has a large effect. We conclude that, in the

strong coupling limit, the intralayer interactions determine the overall trends of the order
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parameter.

The transition temperature, Tc for the exciton condensate can be calculated from

the well-known result of the BCS theory of superconductivity [9], kBTc ∼ 0.57∆. Using the

largest value of ∆ = 2 µeV from point d in Fig. 2.7 gives a value of Tc = 13 µK. At larger

values of ∆, or equivalently at higher temperatures, the transition will be of the Kosterlitz-

Thouless (KT) type [113]. The KT-transition temperature TKT can be calculated from

the superfluid density, ns(T ) and is given by kBTKT = π~2/(2m)ns. It has been shown in

Ref. [155], that the upper bound of the KT transition for both parabolic and Dirac bands

is kBTKT < 0.1εF , a property of the normal state. Therefore, KT transition will be only

relevant for exciton gaps ∆ ∼ 0.1εF .

We now comment on effects not included in the above calculations, namely dy-

namical retardation effects and vertex corrections. To our knowledge only a handful of

studies have accounted for the dynamical nature of screening. In Ref. [200], the dynami-

cal retardation effects on the screening along with the simultaneous reduction in screening

accompanied by the appearance of inter-layer coherence, have been studied in the weak cou-

pling limit. These effects lead to an increase in the strength of the order parameter ∆, when

compared to static screening partly due to larger phase space. We expect a similar trend

in the strong coupling limit. The effects of the vertex correction on exciton condensates

remains an open theoretical question.
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bilayers from Fig. 2.3 (a) are shown.

2.5 Conclusion

Exciton condensation is analyzed as a function of the coupling strength with a focus

on the strong coupling regime, which is the regime of TMD bilayer electron-hole systems.

Three different levels of theory are considered. Starting from unscreened mean field theory,

RPA screening and self-energy renormalization in a GW approximation are included. A

mean field calculation with an unscreened Coulomb potential predicts a room temperature

exciton condensate. The inclusion of RPA screening in the interlayer interaction reduces the

order parameter in the weak coupling regime, but it has little effect in the strong coupling

regime, and a room temperature condensate is still predicted. The inclusion of the effects

of both the interlayer and intralayer interactions through a self-energy correction to the

quasiparticle dispersion and the order parameter in a GW approximation reverses the trends
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predicted from the MF and MF-RPA theories. The MF-GW theory favors low density and

low mass for maximizing the magnitude of the order parameter. The heavy masses of the

TMD materials that increase the order parameter in MF and MF-RPA theories, reduce the

order parameter in the MF-GW theory. In the strong coupling regime, intralayer screening

has a large impact on the magnitude of the order parameter and its functional dependencies

on effective mass and carrier density.
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Chapter 3

Ab initio thermal conductivity of

misoriented bilayer graphene

3.1 Introduction

Interlayer misorientation in the bilayer graphene (BLG) system has attracted sig-

nificant attention due to its effect on the electronic dispersion [136, 121, 196, 154, 149, 84,

146, 193, 107] including the magic angles that give rise to flat bands and superconductivity

[31, 32], the phonon dispersion [162, 187, 33, 81, 37, 30, 215], and the thermal properties

[165, 123, 122].

Observation of high thermal conductivity of graphene has motivated numerous

experimental and theoretical discoveries over the past decade, and paved the way to engi-

neering new thermal management devices [7, 234], thermal phase change devices [186] and

thermal interface material composites [194, 195, 99]. The room temperature (RT) thermal
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conductivity of single layer graphene (SLG) is approximately 3000–5000 W/m·K [8], while

the room temperature thermal conductivity of few layer graphene (FLG) ranges from 1300

W/m·K to 2800 W/m·K [70]. There are many factors that influence the phonon dispersion,

heat capacity, and thermal conductivity of bilayer graphene, such as vacancies, chirality,

isotope, wrinkles, number of layers, etc. Among them, the effect of interlayer rotation on the

phonon properties and the resulting thermal conductivities in misoriented bilayer graphene

(m-BLG) is least understood, and it is the focus of this work.

Experimentally, several groups have identified distinct Raman signatures, arising

from the m-BLG regions of the grown BLG samples [179, 78, 33, 189, 82, 183]. There

are a number of theoretical investigations to explain the origin and evolution of these peaks

[187, 37, 183, 122]. The theoretical calculations for m-BLGs are based on parametric atomic

interaction models optimized for graphite or graphene crystals. Ab initio phonon dispersion

calculations for misoriented bilayer graphene are absent in the literature, primarily because

of the numerical difficulty associated with the large unit cells required to describe the m-

BLG structures [82].

The effect of misorientation on the in-plane thermal conductivity of m-BLG is

an open theoretical question [165, 123, 122]. Recent optothermal Raman measurements

[123] found that the thermal conductivity of BLG goes down from ∼1892 W/m·K to ∼1422

W/m·K (∼1.3×) at room temperature with a misorientation angle estimated to be ∼ 32◦.

At high temperature, the reduction in thermal conductivity was less pronounced (∼1.1×).

A hypothesis to explain the reduction is that the reduced Brillouin zone of the misoriented

bilayers allows increased phonon-phonon umklapp scattering [123]. This hypothesis is con-
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sistent with the results from nonequilibrium molecular dynamics calculations showing that

the thermal conductivity scales with the commensurate lattice constant rather than the

rotation angle [122]. There have been no DFT level calculations of the phonon modes and

thermal conductivity as a function of interlayer misorientation.

In this work, we use density functional theory (DFT) to calculate the lattice ther-

mal conductivity of misoriented bilayer graphene for rotational angle of 21.78◦. We explicitly

calculate the ab initio phonon dispersion before and after misorientation, as well as calculate

the ab initio phonon scattering lifetime in m-BLG using DFT enabled phonon Boltzmann

transport theory. Sec. 3.2 describes the structure, lattice constants, and unit cells of mis-

oriented bilayer graphene. The details of the DFT and BTE calculations are described in

Sec. 3.3. Sec. 3.4 discusses the results of the thermal conductivity calculations, phonon

dispersion, lifetime, and scattering processes, whereas Sec. 3.5 concludes the findings.

3.2 Misoriented bilayer graphene

We consider the misoriented bilayer graphene system as shown in Fig. 3.1, where

the bottom layer is rotated with respect to the top layer by an angle θ. The relative

twisting between monolayers breaks the symmetry of the Bernal stacked AB-BLG and

generates a superlattice structure, exhibiting a moiré pattern [30]. These rotations create a

θ-dependent q-wavevector for phonon modes. Formation of a superlattice also changes the

phonon dispersion by zone-folding, and hence modifies the kinematics of phonon-phonon

scattering [19]. As a result, interlayer misorientation can significantly affect the thermal

properties in a m-BLG system [37].
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Figure 3.1: Atomic configuration of (a) 4-atom AB bilayer graphene, (b) 28-atom 21.78◦

unrotated BLG (u-BLG), (c) 28-atom 21.78◦ misoriented BLG (m-BLG). The blue (gray)
atom are from the top (bottom) layer of the BLG.

To ensure the periodicity of the atomic configurations in the presence of mis-

orientation, only certain commensurate rotational angles (θ) are allowed, as given by the

following expression [122]

cos θ =
n2 + 4nm+m2

2(n2 + nm+m2)
, (3.1)

where the m and n are the non-negative integers (m ≤ n). The commensurate lattice

vectors are c1 = na1 + ma2 and c2 = −ma1 + (m + n)a2, where a1 and a2 are the unit

cell vectors of AB-BLG.

Using the vectors c1 and c2, we create a supercell of AB-BLG for the commensu-

rate angle θ = 21.78◦, and denote them as u-BLG (unrotated BLG), as shown in Fig. 3.1

(b). Subsequently, the bottom monolayer (gray atoms) of u-BLG is rotated with respect to

the top layer (blue atoms) by θ, to obtain the m-BLG structures shown in Fig. 3.1 (c). From

the structural point of view, the u-BLG structure is just a large supercell of AB-BLG. On

the other hand, the m-BLG structure is essentially the same AB-BLG supercell as u-BLG,

but with one monolayer misoriented by θ◦. Hence, both u-BLG and m-BLG structures have

the same lattice constants and same number of atoms (N = 28).

The purpose of creating the u-BLG structure is to allow easy comparison of the
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Table 3.1: DFT calculated atomic and vibrational properties of u-BLG and m-BLG for
the misorientation angle of 21.78◦: interlayer distance (d⊥), and phonon frequencies of
shearing (TA2/LA2), breathing (ZA2), out-of-plane optical (ZO), transverse optical (TO),
longitudinal optical (LO) modes.

d⊥ TA2/LA2 ZA2 ZO TO LO

(Å) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

AB-BLG 3.25 28.55 91.83 866.9, 869.5 1567 1573

u-BLG 3.26 28.38 93.03 866.5, 868.9 1568.1 1572.7

m-BLG 3.36 2.31 87.69 868.3 (2) 1571.8 1572.2

thermal conductivity and phonon dispersion with those from the m-BLG structure. Since

the two structures have the same lattice constants and the same number of atoms, their

phonon dispersions lie within the same irreducible Brillouin zone. A comparison of the

phonon dispersions of these two structures automatically decouples the trivial effects of

zone folding from the effects due to changes in the interlayer interaction arising from mis-

orientation.

3.3 Computational details

The phonon frequency, phonon velocity, and phonon transition probabilities in

an atomic system depend on the accurate calculations of the second-order (harmonic) and

third-order (anharmonic) interatomic force constants (IFCs). To obtain all of the inter-

atomic interactions, we use density functional theory, as implemented in Vienna Ab-initio

Simulation Package (VASP) [115, 114], with projector-augmented-wave (PAW) pseudopo-

tentials [14] and the Perdew-Burke-Ernzerhof formalism [175]. The van der Waals interac-
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tions between the graphene layers are included by considering the semi-empirical correction

of Grimme-D2 [77]. To relax the atomic structures, a converged k-point grid of 16×16×2,

10×10×2, and 10×10×2 are used for AB bulk graphite, 21.78◦ unrotated graphite, and

21.78◦ misoriented graphite, respectively. All structures are relaxed until the forces on the

atom is less than 10−5 eV/Å and the energy convergence reaches 10−8 eV. Following the

typical procedure of monolayer simulations in DFT [45], a converged vacuum distance of

16 Å is added to the relaxed bulk graphite structure to form the bilayer geometry. The

additional vacuum is necessary to avoid spurious interaction with the periodic images. The

atomic positions of each bilayer structure are subsequently relaxed, while the convergence of

energy is checked at each simulation step. The in-plane C-C bond length of the u-BLG and

m-BLG structure remain almost same (1.423 Å), whereas the interlayer C-C bond length

(d⊥) changes by ∼0.1 Å, as shown in Table 3.1.

The second-order interatomic force constants are calculated within a real-space

supercell approach by using the Phonopy package [206]. For the phonon dispersion of the

AB-BLG, 21.78◦ u-BLG and 21.78◦ m-BLG, a supercell size of 5×5×2, 3×3×1 and 2×2×1

is used, with a k-grid of 5×5×2, 4×4×1 and 4×4×1, respectively. The phonon density of

states (DOS) and other thermodynamics properties, e.g. heat capacity are calculated using

the 2nd-order IFCs for each structure.

The thermal conductivity tensor is calculated from the Boltzmann phonon trans-

port equation [129, 249],

καβ =
1

KBT 2NV

∑
λ

f0
λ(f0

λ + 1)(~ωλ)2vαλv
β
λτλ, (3.2)

where λ = {λ,q} indicates both the phonon mode λ and the wavevector q, ~ωλ is the
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phonon energy, f0
λ is the equilibrium Boltzmann distribution, vλ is the group velocity, and

τλ is the phonon-phonon scattering lifetime. N is the number of uniformly spaced q points

in the irreducible Brillouin zone. V is the volume of the BLG unit cell having thickness

2h, where h is taken to be the equilibrium van der Waals distance (d⊥) obtained from the

DFT relaxation steps. The scattering lifetime τλ in Eq. (3.2) can be written as [148],

τλ = τ0
λ(vβλ + ∆λ) where τ0

λ is the lifetime obtained under relaxation time approximation

(RTA), and ∆λ is a correction to the RTA value obtained by solving the BTE in an iterative

manner.

The lowest-order anharmonic scattering process that affects thermal conductivity

is three-phonon scattering [19]. Due to the anharmonicity of the interatomic potential,

the three-phonon scattering process is inelastic and provides an intrinsic limitation on the

thermal conductivity. Other, extrinsic scattering mechanisms include scattering from de-

fects, impurities, isotopes, and boundaries. These additional scattering mechanisms also

give rise to mode-dependent scattering lifetime. The total phonon-phonon scattering rate

(1/τλ) results from all of these processes. We neglect isotope scattering, since the anhar-

monic phonon-phonon scattering rate dominates over the isotope scattering rate beyond a

few tens of Kelvin [21]. We also ignore boundary scattering [118], since we are interested

in large samples in which the thermal conductivity is dominated by transport through the

bulk rather than the edges. The higher-order scattering processes, e.g. the four-phonon

scattering [16], are much more complex and difficult to numerically model at a DFT level

of theory with the large supercells under consideration, and therefore are beyond the scope

of this work.
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The three-phonon scattering process, where one phonon decomposes into two

phonons and vice versa, must satisfy both energy conservation, ωλ±ωλ′ = ωλ′′ , and quasi-

momentum conservation, q±q′ = q′′+G, where G is the reciprocal lattice vector. The plus

(minus) sign indicates the phonon absorption (emission). G is zero for normal scattering (N

process), and non-zero for umklapp scattering (U process) [21]. The U process tries to relax

the phonon distribution fλ to an equilibrium distribution f0
λ (resistive process), whereas

the N-process shifts the distribution to a displaced distribution f∗λ. [148]

To obtain the three-phonon scattering and ab initio thermal conductivity, we cal-

culate the third-order interatomic force constants for AB-BLG, 21.78◦ u-BLG and 21.78◦

m-BLG. Supercell structures of 4×4×1, 2×2×1, and 2×2×1 size are used to calculate the

anharmonic IFCs, which generates 220, 240 and 564 atomic configurations for AB-BLG,

u-BLG and m-BLG structures, respectively. The total phonon scattering rate is obtained

from the anharmonic transition rate Γ±λλ′λ′′ as [50], 1/τλ = 1
N

∑
λ′λ′′ [Γ

+
λλ′λ′′ + 1

2Γ−λλ′λ′′ ]. Γ

depends on the scattering matrix element V ±λλ′λ′′ , which is calculated from the third-order

IFCs [218]. Atomic interactions up to 5th-nearest neighbor are considered. The phonon

BTE is solved using both the relaxation time approximation (RTA) and the full iterative

approach, as implemented in the ShengBTE package [126, 130]. The convergence of κ for a

certain Nq×Nq×1 integration grid is tested with a precision of 10−5 difference between the

iterative steps. Moreover, the convergence with respect to different Nq×Nq×1 mesh-grid

is also checked. Note that, a preliminary lifetime calculation of m-BLG has been reported

by us earlier for 15×15×1 q-grid [122]. However, in this work, our analysis is based on

27×27×1 q-grid calculation and with better numerical criteria, which gives a converged
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Figure 3.2: Convergence of thermal conductivity calculation for different K-point grid at T
= 300 K.

thermal conductivity, for both u-BLG and m-BLG structures (see Fig. 3.2). The effect of

the Born effective charge is ignored, since the non-analytical corrections to the phonons are

negligible in the BLG system.

3.4 Results and Discussions

3.4.1 Thermal conductivity of m-BLG system

Figure 3.3 shows the ab initio thermal conductivity (κ) of AB-BLG, 21.78◦ u-BLG

and 21.78◦ m-BLG. The calculated κ for u-BLG (1839.3 W/m·K at RT) is very close to κ

of AB-BLG (1871.3 W/m·K at RT), which is expected given that the 21.78◦ u-BLG is just

a commensurate supercell of AB-BLG unit-cell. This also agrees well with prior theoretical

calculations of κ for AB-BLG (1880 W/m·K at RT) [109]. As evident from Fig. 3.3,

interlayer misorientation reduces the room-temperature thermal conductivity by a factor of
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Figure 3.3: Lattice thermal conductivity of AB-BLG, 21.78◦ u-BLG, and 21.78◦ m-BLG,
calculated from DFT and phonon BTE. The circle symbols are experimental thermal con-
ductivity from the optothermal Raman experiment [123], and the cross symbols are from
NEMD simulations [122].

2.2. Moreover, thermal conductivity exhibits Eucken’s law of T−1 dependence [55] at high

temperature, for both u-BLG and m-BLG cases, indicating that the umklapp scattering is

the dominating process at elevated temperature. The calculated thermal conductivities are

numerically well-converged with respect to the integration grid (Fig. 3.2). Prior NEMD

simulations [122] (cross symbols in Fig. 3.3) also exhibit 1.3∼1.4 times reduction in κ with

rotation at all temperatures, although the NEMD thermal conductivity of AB-BLG is very

low (1045 W/m·K at RT), compared to the DFT values (1871.3 W/m·K) and experimental

reports (1892 W/m·K) [123].

We also compare the ab initio calculation with experimental reports of κ for the

twisted and suspended BLG samples [123]. As seen in Fig. 3.3, the experimental κ matches

well with the DFT calculated BLG and u-BLG cases, except at high temperature limit. On
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the other hand, the experimental κ of m-BLG is almost similar in range when compared

to that of u-BLG, contrary to the DFT prediction. The mismatch between the experiment

and simulation might come from the large systematic error arising from the finite spectral

resolution in optothermal Raman technique, as well as the uncertainty in identifying the

accurate temperature of the sample [123] (error-bar in Fig. 3.3). At high temperature limit,

the experiments show that the thermal conductivity of m-BLG is very close to that of u-BLG

(within 13%). DFT calculation also suggests that the relative difference between u-BLG

and m-BLG will be less pronounced at high temperatures, although not as insignificant as

seen in experiment.

To explain why the thermal conductivity goes down with misorientation, we need

to calculate the phonon energy dynamics and phonon scattering distribution in the twisted

bilayer graphene system. Thermal conductivity is an integrated function of the phonon dis-

persion (ωλ), phonon velocity (vλ) and phonon-phonon scattering lifetime (τλ). Typically,

the energy and velocity modification of the low-energy acoustic and quasi-acoustic phonon

modes have crucial implications on the thermal properties of materials [100]. On top of

that, the phonon-phonon scattering is another important factor limiting the intrinsic ther-

mal conductivity, even at moderate temperature. To our knowledge, no ab initio studies

of phonon energetics and scattering dynamics, comparing solely the effect of misorienta-

tion, have been reported. In the next sections, using density functional theory and phonon

BTE formalism, we will explore each of these contributing factors. We will also explain the

underlying nature of thermal conduction in m-BLG system.
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3.4.2 Phonon dispersion of m-BLG

We first consider the effect of misorientation on the phonon dispersion. Figure

3.4 (a) shows the phonon dispersion of u-BLG (solid line) and m-BLG (dash line) for

θ = 21.78◦, focusing on the low-frequency region up to 500 cm−1, which is the primary

energy-scale responsible for thermal conduction (see Fig. 3.6 for the full-range dispersion).

From the comparative dispersions, it is clear that misorientation significantly affects the

quasi-acoustic mode LA2/TA2. At Γ point of the BZ, the frequency of the LA2/TA2 mode

of u-BLG is around 28 cm−1 (see Table 3.1). However, after rotation, the frequency of this

mode reduces to ∼2 cm−1.

The doubly-degenerate LA2/TA2 phonon mode is characterized by an in-plane

sliding motion, where the top and bottom layers slide out-of-phase with respect to each

other. As seen in Fig. 3.4 (b), in both u-BLG and m-BLG cases, the displacement is

an optical shear mode in which the two layers slide in opposite directions. However, the

energy cost associated with such sliding motion reduces significantly in m-BLG. The reason

is apparent from the presence of the moiré pattern in m-BLG system. In u-BLG, half of C

atoms (7 out of 14) in the top layer are directly on top of another C atom of the bottom

layer. On the contrary, in m-BLG, only one atom on the top layer is directly on top of

another C atom from bottom layer. Hence, for the sliding motion in m-BLG, only one C-C

interlayer bond has to be displaced. Moreover, the sliding motion in m-BLG moves half

of the C atoms closer to one another, while shifts the other half away from one another.

The compensating nature of such sliding motion is the reason behind one-order reduction of

LA2/TA2 phonon frequency in m-BLG. The slight increase in the interlayer distance with
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Figure 3.4: Phonon dispersion of unrotated bilayer graphene (solid line) and misoriented
bilayer graphene (dash line) of θ = 21.78◦, in the low frequency region; (b) atomic vibrations
of quasi-acoustic phonon modes (TA2/LA2), before and after rotation.

misorientation (see DFT values in Table 3.1) is also consistent with the softening of this

shearing mode.

The quasi-acoustic modes TA2/LA2 in u-BLG are not captured in non-equilibrium

molecular dynamic (NEMD) simulations [183, 122]. An empirical model, with a Born-von

Karman potential for the in-plane C-C interaction and either a spherical potential (BVK-

Sph) [165] or a Lennard-Jones potential (BVK-LJ) [37] for the interlayer interaction, does

capture the TA2/LA2 mode [37]. However, the ability of the empirical model to predict the
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mode frequency as a function of rotation angle is uncertain, since the force constants are

parameterized for the unrotated crystal structure. Unlike DFT, the empirical force-constant

model finds that the quasi-acoustic frequencies are little affected by the misorientation. For

AB-BLG, the model-predicted shearing mode frequency is 13.4 cm−1, whereas for m-BLG,

the frequency rather increases to 14.7 cm−1 [37]. An earlier study [94] using an empirical

force constant model found the LA2/TA2 frequency of AB-BLG to be 30.2 cm−1, which is

closer to the values from our DFT calculations (Table 3.1). Symmetry analysis shows that

the LA2/TA2 mode of AB-BLG will be Raman active [94]. Raman signature of such shearing

mode in AB-BLG has also been reported around 31 cm−1 in recent experiments [205], which

is also consistent with our DFT predicted values. However, accurate Raman experiment

identifying the shearing mode in m-BLG system is not available yet [145, 82, 183].

Going beyond the acoustic and quasi-acoustic phonon branches, many of the op-

tical phonon branches show slight shift with rotation. One such mode is the breathing

mode (ZA2), which is characterized by the out-of-phase rigid motion of the top and bot-

tom graphene layers. Since the interlayer vdW distance increases with misorientation, ZA2

frequency goes down by ∼ 6 cm−1 with rotation (Table 3.1), which can be used as a sig-

nature of twisting present in the system. The empirical models also predicts similar red

shift of ZA2 mode [37]. As seen in Fig. 3.4 (a), some of the other optical modes above

ZA2 also exhibit frequency change or breaking of degeneracy. This can be attributed to

the modified interlayer interaction between the phonon branches of the top and bottom

monolayer, as they rotate with respect to one another. The atomic vibrations show that

these phonon modes are actually hybrid ZA2 mode, characterized by their in-phase and
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Figure 3.5: Phonon density of states of u-BLG and m-BLG for 21.78◦ rotations, when
normalized by the atom number in the unit-cell. Calculated phonon DOS is little affected
by rotation, except the high-energy region beyond 1200 cm−1.

out-of-phase ripple-like motion of monolayer surface. The higher optical modes after 500

cm−1 shows very little effect of misorientation, expect the modes around 1300∼1600 cm−1

(see Fig. 3.6 a, b). However, these high-energy optical modes are irrelevant from the point

of thermal excitation and heat conduction.

From the phonon dispersion calculations, it is clear that, except the modification

of quasi-acoustic modes (TA2/LA2) around Γ and the slight shift of certain low-energy

modes, the phonon dispersions remain almost invariant to misorientation, specifically when

considered over the whole BZ. To see how these changes can affect the phonon dynamics,

when integrated over the whole BZ, we have calculated the phonon density of states. We find

that the integrated phonon density of states do not change much with misorientation (see

Fig. 3.5 a), which agrees with prior empirical models [37]. Since the thermal conductivity
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is also an integrated quantity of the BZ, we can conclude that the changes in phonon modes

are not significant enough to affect the thermal conductivity. However, to explore how

these modification can affect the velocity of the heat-carrying channels inside the BZ, we

will calculate the phonon velocity distribution in the next section.

3.4.3 Phonon velocity distribution in m-BLG

One of the important parameters that determines thermal conductivity is the

phonon group velocity vxλ. As evident from Eq. (3.2), thermal conductivity (κ) is directly

related to (vxλ)2 when the thermal gradient is along the x direction. Figure 3.6 (a)-(b) show

the x-component of the phonon group velocity as a color-map over the dispersion lines.

The LA mode has almost two-times higher velocity than that of TA mode, making it the

dominant conduction channel, whereas the group velocities for out-of-plane ZA mode is

almost one order lower than LA mode velocity. The velocities of the zone-folded hybrid

modes below 600 cm−1 are also in the same order as the TA mode, signifying that their

contribution to κ is as important as TA mode. Note that, around 300 cm−1, interlayer

rotation decreases the velocity of some optical modes, specifically along Γ−M and Γ−K

direction.

To understand the overall effect of the phonon velocity changes, specifically on the

heat carrying channels distributed in the irreducible Brillouin zone, we have calculated the

absolute phonon velocity (|v|) for each q point in the BZ, as shown in Fig. 3.7 (c). We

find that there are mainly three velocity channels: high-velocity of LA-like modes (|v| =

16 ∼ 21 km/s), medium-velocity of TA-like modes (|v| = 8 ∼ 14 km/s), and low-velocity
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Figure 3.6: Phonon group velocity along the C1 direction, color-coded over the dispersion
as indicated by the sidebars: (a) 21.78◦ u-BLG, (b) 21.78◦ m-BLG.

quasi-acoustic and hybrid optical modes (|v| = 0 ∼ 8 km/s). Around 30 ∼ 100 cm−1,

several modes near LA-like and TA-like modes have 1.1 ∼ 1.3 times lower velocity than the

corresponding modes in m-BLG, where these modes in u-BLG arise from LA2/TA2 branches.

Although this may seem that the m-BLG will have higher thermal conductivity, the number

of such heat channels is very small. Significant velocity redistribution happens in m-BLG

around low-velocity region between 250 ∼ 450 cm−1, arising from the zone-folded modes.

Reduction of velocity suggests m-BLGs will have lower thermal conductivity. Although

the velocity of these modes can show almost one-order reduction, their overall effect is

insignificant, considering that the velocity is already much low, even before misorientation.

The velocity distribution suggests that there is an opposite but compensating effects between

the high-velocity and low-velocity heat channels, indicating that the change in phonon

velocity might not be the reason behind reduction of κ.

To rule out the combined effect of phonon frequency and phonon occupation
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Figure 3.7: Distribution of the absolute velocity |v| of the phonons in the irreducible BZ,
focusing only the low-energy modes.

(Boltzmann distribution) f0
λ, we have also calculated the heat capacity, Cv = (∂E/∂T )v,

where the harmonic phonon energy is given by, E =
∑

λ ~ωλ[1
2 + 1/(e~ωλ/KBT − 1)]. Since

thermal conduction depends directly on the heat capacity as, κ = 1
NV

∑
λCvv

α
λv

β
λτλ, it is

imperative to see how the heat capacity behaves with misorientation. We find that the

heat capacity is almost invariant to misorientation (see Fig. 3.8). Existing empirical model

[123] also agrees well with DFT calculated heat capacity. Therefore, one can expect that

the changes of phonon modes and phonon activation, caused by misorientation, will not

affect the overall thermal conduction. Phonon-phonon scattering (τλ) remains to be the

only factor that can explain the reduction of κ in m-BLG system. In the next section, we

will explore the three-phonon scattering mechanism to understand the nature of thermal

transport in m-BLG system.
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Figure 3.8: Heat capacity of AB-BLG, u-BLG and m-BLG, normalized by the number
of atoms in the unit cell (N). The heat capacity remains almost same in the BLG system,
irrespective of interlayer rotation. The symbols indicate the heat capacity reported by
empirical model [37]. The inset shows the log-scale behavior up to T = 1000 K. Beyond T
= 100 K, heat capacities of u-BLG and m-BLG do not show any difference.

3.4.4 Phonon-phonon scattering in m-BLG

The lowering of QA phonon branches and changes in low-energy optical phonon

modes can introduce significant phonon scattering among the heat-carrying channels in

m-BLG. To study the effect of phonon scattering on κ, it is necessary to calculate the

scattering lifetime explicitly, both before and after misorientation. Figure 3.9 shows the

calculated scattering lifetime for 21.78◦ u-BLG and 21.78◦ m-BLG. As evident from the

scattering distribution, the m-BLG has ∼2 times lower lifetime (hence ∼2 times higher

phonon scattering), when compared to u-BLG, specifically in the low-frequency range (<

600 cm−1). The higher scattering in acoustic and quasi-acoustic phonon branches can

explain the two-times reduction of thermal conductivity seen in Fig. 3.2.

Note that, we have compared scattering lifetime between u-BLG and m-BLG cases,
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both having same BZ size. Therefore, the BZ reduction and reorientation are certainly not

the reasons behind such increased phonon scattering rate in m-BLG. One speculation is

that the change in the phonon dispersion may introduce new phonon scattering channels

and hence negatively affect the κ. Another explanation could be the increase in the phase

space of existing phonon channels, allowing more scattering. With the explicit solution

of phonon BTE at hand, we can evaluate and quantify these claims more effectively. For

the misoriented BLG, either or both can be the underlying reason. Figure 3.9 shows that,

although the extinction of flat LA2/TA2 modes in m-BLG increases the phonon scattering

around ∼ 28 cm−1, the overall numbers of such channels are insignificant. On the contrary,

almost all the existing acoustic phonon and ZA2 phonon modes up to 100 cm−1 almost

uniformly exhibit 2 ∼ 2.5 times higher scattering in m-BLG system.

The scattering mechanism that limits the heat conduction is the three-phonon

normal and umklapp scattering. One of the unresolved questions for κ in m-BLG is to

explain the contribution of the underlying normal and umklapp processes. To answer that,

we calculate the ratio of κ of the RTA solution to κ of the iterative phonon BTE solution,

γ = κRTA/κIterative, as seen in Fig. 3.9 (b). RTA approach of solving BTE neglects the

momentum-conserving N-process and underestimates κ. Hence, γ can work as an effective

parameter indicating the strength of normal scattering processes compared to the umklapp

scattering processes. Moreover, at low temperatures (less than Debye temperature), the

resistive umklapp processes freeze out, while normal process dominates [19]. Hence, the

response of γ with temperature, as shown in Fig. 3.9 (b), can shed light on the underlying

nature of these processes in the presence of misorientation.
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Figure 3.9: (a) Three-phonon scattering lifetime of unrotated BLG (u-BLG) and misori-
ented BLG (m-BLG) for θ = 21.78◦. (b) The ratio of thermal conductivities obtained from
RTA approximation and full iterative approach, for all the u-BLG and m-BLG structures.
At low temperature end, the normal (N-) process dominates, while at high temperature
limit, the umklapp scattering becomes significant. (c) Cumulative thermal conductivity for
21.78◦ u-BLG and m-BLG, normalized to respective maximum values of κ, as a function of
cut-off mean free path λ. The critical mean free path is a strong function of temperature.
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At low temperature limit and for 21.78◦ u-BLG case, κRTA is 10 times lower than

κIterative (γ ∼ 0.1), indicating that RTA fails to account for the dominating N-process in

this range. However, in case of misorientation, γ increases by almost three times, which

indicates that some of the N-processes get suppressed due to twisting and hence RTA results

are improved. On the other hand, at high temperature limit, umklapp scattering starts to

dominate over N-process and as a result, the RTA prediction again improves. Note that,

for both u-BLG and m-BLG, κRTA is still almost half of κIterative, indicating that N-process

is very much comparable to U-process. Similar dynamics between N- and U-process has

been observed in penta-graphene [212] and other Carbon allotropes [218, 132]. Note that,

at this high temperature range, the effect of misorientation is quite suppressed. This may

be one of the reasons why the experiments shows similar thermal conductivity for u-BLG

and m-BLG at the high temperature limit, as seen in Fig. 3.3.

Interestingly, between these two temperature extremes, misorientation plays a sig-

nificant role. At room temperature, γ is ∼ 0.25 in u-BLG, which is similar to the graphene

system (∼ 0.2) [16, 119]. However, in the presence of misorientation, γ increases to ∼ 0.5.

This signifies that although umklapp scattering is less dominant compared to N-process

in u-BLG, after misorientation, umklapp scattering increases, making U-process equally

dominant as N-process in m-BLG. Therefore, we conclude that the increase in umklapp

scattering over the normal scattering is the reason behind the reduction of phonon lifetime

in Fig. 3.9 (a), which in turns reduces the thermal conductivity in m-BLG.

The calculation of Grüneisen parameter (γG) also supports the conclusion. Grüneisen

parameter is a measure of phonon-phonon scattering intensity and indicates the strength
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Figure 3.10: mode-decomposed Grüneisen parameter γG, calculated within the irreducible
BZ. In presence of misorientation, the acoustic phonon modes shows larger negative γG,
indicating high anharmonicity in m-BLG.

of anharmonicity present. As seen in Table 3.2, m-BLGs have almost two-times larger

values of γG and hence larger anharmonic contribution to scattering. Furthermore, mode-

decomposed Grüneisen parameter calculation (see Fig. 3.10) suggests that the phonon

modes in the range of 0 ∼ 200 cm−1 mostly encounter significant anharmonicity, which is

consistent with the higher scattering distribution in Fig. 3.9 (a).

Finally, we discuss the length-dependence of the thermal conductivity, with re-

spect to the misorientation. In macroscopic samples, the heat conductivity is described by

the Fourier’s law, which can be translated to the microscopic thermal picture of phonon-

phonon scattering, only when the experimental sample size (L) exceeds certain critical mean

free length [212]. In Fig. 3.9 (c), we plot the cumulative contribution of mean free path

(MFP) length to the normalized thermal conductivity, for 21.78◦ u-BLG and 21.78◦ m-BLG

structure, at different temperatures. At RT and in case of u-BLG, phonon branches having

MFP shorter than 550 nm contribute to 50% of κ, whereas modes with MFP exceeding
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Table 3.2: Mode-averaged Grüneisen parameter (γG) and representative mean free path
(λR) of heat carrying phonons in 21.78◦ u-BLG and 21.78◦ m-BLG, at T = 300 K.

γG λR (nm)

21.78◦ u-BLG -1.3 513.35

21.78◦ m-BLG -1.89 232.44

1.6 µm contribute only about 10%. In case of m-BLGs, only phonons with MFP less than

200 nm can contribute to 50% of κ, while longer MFP modes as 1.6 µm still contributes

∼10%. This indicates that the thermal conduction in m-BLG systems is more resilient to

nanostructuring than corresponding u-BLGs. If the grown BLG sample size is around 550

nm, u-BLG will show ∼50% of κ (∼889.3 W/m·K), whereas m-BLG will show ∼84% of

κ (∼708.2 W/m·K), effectively masking out any effect of misorientation. Similar behavior

is observed in case of other misorientation angles. Hence, the experimental sample size is

an important factor when comparing with macroscopic κ, since longer MFP phonons may

not be activated to carry heat due to small length scale of the samples. Given that, the

acoustic phonons have larger MFP than the optical ones, it also signifies the importance of

acoustic branches on determining κ. The significance of acoustic and quasi-acoustic modes

is also apparent from the mode-accumulated κ calculation, where the phonon modes up to

600 cm−1 carries almost 90% of total κ at RT (see Fig. 3.11).

To obtain a representative mean free path (λR) of heat carrying phonons, the

cumulative kappa with respect to maximum MFP allowed (λmax) can be fitted to a single

parametric function, [126]

κ (λ < λmax) =
κ0

1 + λR/λmax
, (3.3)
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Figure 3.11: Cumulative thermal conductivity κ as a function of phonon frequency, when
normalized to respective maximum. 90% of the thermal conduction is contributed by the
phonon modes up to ∼600 cm−1.

where, κ0 is the maximum thermal conductivity. As tabulated in Table II, MFP λR for

21.78◦ is very close to the AB-BLG value (499.51 nm). It is clear that the representative

MFP λR gets reduced by almost half in m-BLGs.

Changing temperature broadens the mean free path range from 5 nm to 100 µm.

As evident from Fig. 3.9 (c), the effect of misorientation on length scale is less pronounced

at high temperature, but amplified at low temperature. With twisting, the representing

MFP at 1000 K for 21.78◦ structure reduces from 64.14 nm to 34.39 nm, whereas MFP at

100 K goes down from 8.32 µm to 2.78 µm with misorientation. The length scale of the

samples used for κ measurement [123] can also be one of the reasons why the experimental

κ for twisted BLG is in the same order as the untwisted one. A large size of the sample (50

∼ 100 µm) will ensure that the heat transport by phonons are in diffusive range and hence

eliminate the unwanted effect of reduced MFP length [212].
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3.5 Conclusion

We have calculated the phonon dispersion and thermal conductivity of twisted

bilayer graphene, for commensurate rotational angles of 21.78◦. Instead of relying on the

parametric approximation of interatomic force constant, we calculate the second-order har-

monic and third-order anharmonic force constant using ab initio density functional theory,

and use them to self-consistently solve the linearized phonon Boltzmann transport equa-

tion, within three-phonon scattering framework. We find that misorientation reduces the

intrinsic thermal conductivity of m-BLG to almost half when compared to that of AB-

BLG. By calculating the phonon dispersion, group velocity, density of states and heat

capacity, we conclude that the modification in phonon frequency, velocity distribution and

phonon occupation has insignificant effect on thermal conduction. On the other hand, ex-

plicit calculation of phonon-phonon scattering reveals that, the reduction in three-phonon

scattering lifetime is the reason behind the reduced thermal conductivity in misoriented

bilayer graphene system. We also identify that, in misoriented bilayer graphene, umklapp

scattering becomes more dominant compared to the normal process, due to the increased

anhamonicity introduced by the moiré patterns in such twisted system.
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Chapter 4

Ab initio thermal conductivity of

quasi-1D materials:

TaSe3 and NbS3

4.1 Introduction

Low dimensional materials, specifically the graphene and 2D transition metal

dichalcogenides (TMDs), have emerged as promising candidates for better electronic, opto-

electronic and thermoelectric devices, due to their diverse electron and phonon functionali-

ties inherent in the atomically-thin dimensions [214, 26, 36, 228, 57, 18, 152]. Going beyond

two-dimensions, transition metal trichalcogenide (TMTs) present themselves as even more

attractive choice in this direction. TMTs have lower in-plane structural symmetry, which

can give rise to pseudo one-dimensional behavior [89], exhibiting some attractive capabili-
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ties, e.g. superconductivity [192, 79, 229], CDW formation [180, 253], and high breakdown

current [135]. Besides, due to the possibility of reduced backscattering from hot electron

[23, 3], the anisotropy inherent in TMTs can provide additional benefit for next generation

electronics, contacts, polarizers and photo-detectors [243, 235].

The lattice structure of TMTs consists of a metal (M) atom, contained at the

center of the trigonal prism made by chalcogen (X) atoms. Such MX3 prisms create long

infinite chains arranged side-by-side, which effectively makes it a two-dimensional layer of

one-dimensional chains [52], giving them the apt name of quasi-1D materials. Although the

metal-metal distance along the chain is comparable to the inter-metallic distance in pure

metal, the interchain distance is comparatively larger, giving rise to directional anisotropy

in electrical and optical properties [184, 95, 41, 88, 172, 40, 110]. Electronic properties

of some quasi-1D materials, specifically the resistivity, superconductivity, photo-electron

spectroscopy, CDW transition, and band properties have been studied for quite a time

[52, 89]. However, the accurate phonon properties of quasi-1D materials have remained little

explored [221]. Moreover, to date, there is a lack of investigations of thermal conduction in

TMT materials, both from experiment and theoretical perspective.

Another motivation to explore the low-dimensional materials is due to their po-

tential of exhibiting higher thermoelectric efficiency, i.e. higher figure of merit, ZT =

S2σT/(κe +κ). Here, S is the Seebeck coefficient, σ is the electrical conductivity. κe and κ

are the electrical and lattice contribution to the thermal conductivity. The electrical part of

thermal conductivity can be calculated from the Wiedemann-Franz law, κe = LσT , where

L is the Lorentz number. However, to evaluate ZT, accurate phonon-limited intrinsic ther-
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mal conductivity κ is necessary. As theoretically suggested [49], low-dimensional systems

could have dramatically larger ZT values than the corresponding bulk materials because of

decreased thermal conductivity caused by phonon boundary scattering and improved power

factors on account of quantum confinement. Hence, understanding the phonon scattering

mechanism in quasi-1D materials is not only interesting from the fundamental physics point

of view, but also interesting from the engineering perspective of designing thermoelectric

devices. To be a good thermoelectric system, the material has to be a bad conductor for

phonon but a good conductor for electron. Quasi-1D metals like TaSe3 seems to be a

promising candidate that meets this contradictory criteria. To evaluate the thermal perfor-

mance of TaSe3, we calculate the phonon properties and phonon-limited heat conductivity

in this materials. Along with that, we also explore the thermal conduction of another mem-

ber of quasi-1D material family, semiconducting NbS3, to present a comparative analysis

of phonon transport behavior in such low electron-conducting system. Their comparative

analysis will allow us to understand the nature of thermal transport in both electron-rich

and electron-deficient quasi-1D materials.

Note that, many quasi-1D materials show charge density wave (CDW) transition.

However, both TaSe3 and NbS3, although expected to show CDW, do not exhibit any CDW

transition [62, 199, 53]. This makes them good example for studying thermal properties,

since the conduction behavior will not get affected by any unexpected CDW instability. In

this paper, we will use ab initio density function theory and phonon Boltzmann transport

equation, to explore the lattice thermal conductivity of TaSe3 and NbS3, and study the

nature of phonon interaction in these two representative quasi-1D materials.
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Figure 4.1: Crystal structure of (a) TaSe3 and (b) NbS3. The wires grow along the b
direction.

TaSe3 has monoclinic crystal structure with space group P21/m, having [11] a =

10.411 Å, b = 3.494 Å, c = 9.836 Å, and β = 106.36◦. The atomic configuration is

shown in Fig. 4.1 (a). The nanowires are grown along the y direction, whereas along the

slanted z-direction, they are inter-connected by the van der waals force. Although similar

prismatic structure NbSe3 shows CDW phase, no CDW phase is observed in TaSe3, because

of comparatively much stronger dispersion along x-z plane [24]. However, superconductivity

has been observed in this material below Tc = 2.1 K [192, 79, 229, 158, 157], with a negative

pressure coefficient of Tc [232]. The electrical resistivity of TaSe3 at room temperature is

reported to be ∼6 × 10−6 Ω·m [79] and it remains metallic up to the helium temperature

[192, 79]. A T 2-dependence of resistivity has been observed, which has been attributed

to arise from the dominant electron-electron umklapp scattering (U) process [79]. A high-

pressure phase of TaSe3 has also been reported, although electronic properties remain same

as the conventional TaSe3 phase [106].

On the other hand, NbS3 is a semiconductor, having a triclinic structure of P1̄
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symmetry [96, 188, 147]. Although several other phases of NbS3 have been reported, NbS3

phase-I is the most well documented phase (we will denote it as NbS3 for simplicity). NbS3

remains semiconducting over a wide range of temperature from 4.2 K to 650 K [53]. Figure

4.1 (b) shows the atomic configuration of this phase. Weak van der Waals interactions exist

between the S atoms between the neighboring chains. The Nb atoms are displaced by 0.16

Å from the mirror plane, causing a linear peierls distortion [188]. Nb-Nb pairing through

d1 − d1 bond is the reason for NbS3 being a semiconductor [120], which is also supported

by the density of states calculation [25] and X-ray photoelectron spectroscopic (XPS) [53].

4.2 Methodology

We perform the structural optimization of TaSe3 and NbS3, within the framework

of density function theory using projector-augmented-wave (PAW) pseudopotentials [14] and

Perdew-Burke-Ernzerhof (PBE) exchange correlation functionals [175], as implemented in

VASP [115, 114]. The van der Waals interactions are included by semi-empirical correction

of Grimme-D2 [77]. For structural relaxation of TaSe3 (NbS3), a converged k-point grid of

9×9×3 (8×8×4), respectively. All structures are relaxed until the forces on the atom is less

than 10−5 eV/Å and the energy convergence reaches 10−8 eV. The relaxed lattice constants

of TaSe3 and NbS3 are within 1% of the experimentally reported values.

To obtain the phonon frequency dispersion and other thermodynamics properties,

the second-order (harmonic) interatomic force constants (IFCs) is required. The second-

order IFCs are calculated within supercell approach using the Phonopy package [206]. For

the phonon dispersion of TaSe3 (NbS3), a supercell size of 2×2×2 (2×2×2), has been used,
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with a K-point grid of 2×6×2 (9×9×3), respectively.

The thermal conductivity along certain direction α, can be calculated using the

Boltzmann phonon transport equation, within the three-phonon scattering framework [129]

καβ =
1

KBT 2NV

∑
λ

f0
λ(f0

λ + 1)(~ωλ)2vαλv
β
λτλ. (4.1)

Here, ωλ is the phonon energy of each phonon mode λ, f0
λ is the equilibrium Boltzmann

distribution of that mode, vλ is the group velocity, ∇T the temperature gradient along

the direction β and τλ is the phonon-phonon scattering lifetime. λ represents both phonon

branch index p and wave vector q. V is the volume and N is the number of uniformly

doped q points in the irreducible Brillouin zone. The scattering lifetime τλ in Eq. (4.1) is

given by [148], τλ = τ0
λ(vβλ + ∆λ), where, τλ is the lifetime obtained under relaxation time

approximation (RTA), and ∆λ is a correction to RTA, providing an iterative solution to

BTE.

To calculate the three-phonon scattering matrix and subsequently the thermal

conductivity, we have calculated the third-order (anharmonic) IFCs for TaSe3 and NbS3. A

2×2×1 supercell have been used to calculate the anharmonic IFCs, which generates 3472 and

1344 configurations for TaSe3 and NbS3, respectively. Both relaxation time approximation

(RTA) and full iterative approach, are used to solve the phonon BTE, as implemented in the

ShengBTE package [126, 130]. The convergence of κ for a certain Nq×Nq×Nq integration

grid is tested with a precision of 10−5 difference between the iterative steps. The atomic

interaction up to 5th-nearest neighbor is considered. Moreover, the convergence with respect

to different Nq×Nq×Nq mesh-grid is also checked (see Fig. 4.2). We use converged Nq-grid

of 14×14×6 for both TaSe3 and NbS3. The effect of born effective charge is included in the
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Figure 4.2: Convergence of κ with respect to Nq×Nq×4 (Nq×Nq×6) for NbS3 (TaSe3).

phonon calculation, although the non-analytical corrections to the phonons are found to be

negligible in both cases.

4.3 Results and discussions

4.3.1 Phonon dispersion

We show the phonon dispersion of TaSe3 in Fig. 4.3 (a). The color scheme indicates

the absolute group velocity at each phonon q-vector and phonon branch. The large number

of atoms in the unit cell creates complex Raman spectra with closely spaced lines. The

vibrational modes in TaSe3 in given by [221],

ΓTaSe3 = 8Au + 8Bg + 16Bu + 16Ag. (4.2)
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The Ag modes have vibrations limited to the x-z plane, whereas the Bg modes are polarized

along y axis. The experimental peaks, as indicated by the symbols in Fig. 4.3 (a), match well

with the DFT calculated phonon dispersion. From the mode eigenvalues, we can identify the

shearing vibration of the chains (Bg) at 74.68 cm−1, where each adjacent chains slides out-

of-phase with respect to one another. The calculated frequency is also close to the shearing

frequency in ZrSe3 (77 cm−1) [221]. Besides, we can identify the rotation/liberation mode

at 51.74 cm−1 and 70.18 cm−1, which is close to the observed Raman peak for this mode (52

cm−1 and 60 cm−1). The DFT predicted peaks are more consistent with experiment, when

compared to prior bond-theory model [221]. The highest frequency (268.5∼269.4 cm−1)

modes arise from the Se-Se motion from the two out of four MX3 units, specifically from

the ones with shortest Se-Se bonds.

Figure 4.3: Phonon dispersion of (a) bulk TaSe3, (b) bulk NbS3. The color indicates the
absolute group velocity at each q and phonon modes. The symbols indicate the experimental
Raman peaks at 300 K, for TaSe3 [221] and NbS3 [201].

We have also calculated the phonon dispersion of NbS3, as shown in Fig. 4.3 (b).
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NbS3 belongs to the P1 (C1
i ) space group, also having 48 normal modes [251],

Γ = 24Ag + 24Au. (4.3)

Only 24 even-parity modes show Raman activity, whereas 21 odd-parity modes are infrared

active. The symbols in Fig. 4.3 (b) indicate the prior Raman data from the literature [251,

201]. Unlike other chalcogenides, NbS3 phonon modes cannot be classified by the vibration

along the chain and perpendicular to chain directions, due to the symmetry breaking of

the screw axis [251]. The high frequency bands beyond 500 cm−1 is characterized by the

stretching motion of (S2)2− pairs inside the prismatic chains. The top two modes of NbS3-I

(554.27 cm−1 and 552.69 cm−1), the (S2)2− bonds of top and bottom chains vibrate in

phase. On the other hand, for the next two phonon branches (537.36 cm−1 and 538.29

cm−1), the top (S2)2− bond stretches, while the bottom one shrinks. The high frequency

of these modes are an indirect indicator that the (S2)2− bonding in NbS3 is stronger than

other transition metal trichalcogenides like ZrSe3, HfS3 [201].

It is evident from the color-coded normalized velocity plot in Fig. 4.3, the acoustic

phonon and low-energy phonon branches are the significant phonon modes to thermal con-

duction, due to their higher velocity. Moreover, the directional dependence of the phonon

velocity seen in Fig. 4.3 is a clear indicator of the anisotropy inherent in these quasi-1D ma-

terials. In TaSe3, the maximum velocity along growth direction (Γ-Y) is ∼5 km/s, whereas

the inter-chain and vdW direction, it is around 4 km/s. On the other hand, in case of

NbS3, the maximum velocities (LA mode) along growth, inter-chain and vdW direction are

∼7 km/s, ∼5 km/s and ∼3 km/s, respectively. It seems NbS3 shows higher anisotropic

behavior, compared to TaSe3, although we cannot be certain without explicit calculation of
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κ, since thermal conductivity is not merely a function of velocity. Comparing between the

materials themselves, we can see NbS3 velocities are 40% higher along the growth direction

than that of TaSe3, indicating that NbS3 possibly would be a better phonon conductor than

TaSe3.

Another feature of the phonon dispersion of these quasi-1D materials are the pres-

ence of several flat bands, as we have discussed earlier. From the velocity point of view,

these flat optical modes cannot contribute much to the thermal conduction. However, they

can introduce additional physics in heat transport by allowing significant phonon-phonon

scattering. The flat bands can work as phonon scattering centers and hence reduce the

mobility of heat-carrying phonons. To find out the final thermal conductivity, by simul-

taneously considering the competing effects of velocity and scattering, we will use the ab

initio DFT calculation coupled with phonon BTE equation in the next section.

4.3.2 Thermal conductivity

In Fig. 4.4, we calculate the thermal conductivity for TaSe3 and NbS3, by solving

the BTE using full iterative approach. We find that, the thermal conductivity of TaSe3

along the growth direction is low (6.33 W/m·K at 300 K), but similar to other metallic

TMD materials [46]. Along the interchain and interlayer direction, κ is almost same (0.37

and 0.57 W/m·K, respectively). The reason for such similar κ in those directions is the

byproduct of the way the lattice vectors are defined in TaSe3 unit cell. Unlike NbS3, TaSe3

has a corrugated atomic surface. As seen in Fig. 4.1 (a), x direction is not true inter-chain

direction, rather it also contains a vdW gap due to its slanted nature. Similarly, z is not

purely perpendicular to the true interchain direction. Due to the vdW gap present in both
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Figure 4.4: (a) Lattice thermal conductivity of bulk TaSe3 and NbS3. (b) The normalized
κ as a cumulative function of phonon frequency, (c) The normalized κ as a cumulative
function of mean free path.

case, we see a reduced but similar κ in both orientations. However, this does not limit

us in estimating a relative strength of anisotropy between growth direction and in-plane

direction. The anisotropy ratio of the κ along the chain to the κ along the vdW gap is at

least one-order higher (17 ∼ 18) in TaSe3.

On the other hand, calculated κ in semiconducting NbS3 is already one-order

higher (67 W/m·K at 300 K) along the growth direction, when compared to TaSe3 case.

Along the interchain and interlayer direction, κ is 29.7 W/m·K and 6.3 W/m·K, exhibiting

an anisotropy factor of 2.25 and 10.63, respectively. Note that, anisotropy along the vdW

direction is one-order lower, similar to TaSe3 case. However, from the higher anisotropy

strength along the vdW direction, we can say TaSe3 is more two-dimensional in nature than

NbS3.

The experimental reports of thermal conductivity of quasi-1D materials are very

rare, due to the difficulty in measuring the thermal conduction in such ribbon-like geometries

[240]. To our knowledge, only one study of thermal conductivity measurement of TaSe3 has
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Table 4.1: Representative mean free path (λR) of heat carrying phonons in TaSe3 and NbS3,
at T = 300 K.

λR (nm)

inter-chain growth inter-layer

TaSe3 7.34 10.58 8.5

NbS3 53.41 242.33 937.03

been reported using parallel thermal conductance (PTC) technique [239]. As shown in Fig.

4.4 (a), we have compared the measured κ with the calculated values. There is almost one-

order difference between the theory and experiment at low-temperature end. The mismatch

becomes smaller around T = 200 K (experiment: 6.62 W/m·K, theory: 9.11 W/m·K), when

the phonon-phonon scattering mechanism starts to dominate at high temperature range.

From the experimental side, the accuracy of PTC technique to handle chain-structures like

TaSe3 is still under question [240]. From the modeling side, the experimental samples may

contain impurities and phonon boundaries, which are not included in the simulation. The

impurity scattering and boundary scattering will certainly reduce the thermal conductivity

in TaSe3. In case of NbS3, no thermal measurement of κ is available to date, to compare

with the DFT calculation.

To understand which phonon modes contribute most to the thermal conductivity,

we look in to the normalized κ as a cumulative function of phonon frequency in Fig. 4.4

(b). In case of TaSe3, 50% of κ along the chain is contributed by the modes below 80 cm−1,

whereas the phonons up to 160 cm−1 carry 90% of the heat. On the other hand, in NbS3,

phonons up to 100 cm−1 carry 50% of heat along the chain, while the modes up to 230

cm−1 are responsible for 90% of conduction. For both cases, the optical phonons beyond
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Figure 4.5: (a) Absolute velocity of phonon modes q in the irreducible BZ of TaSe3 and
NbS3. (b) Scattering lifetime for phonon-phonon scattering process in TaSe3 and NbS3.

roughly 200 cm−1 has limited contribution to thermal conductivity.

Another important direction for modulating the thermal performance of quasi-1D

materials is to know how the conductivity will get affected when the chains are scaled down

in certain direction. To explore the effect of nanostructuring, we calculate the normalized

κ at RT as a cumulative function of cut-off mean free path, as shown in 4.4 (c). The

mean free path of phonons responsible for carrying 90% of heat is around 100 nm in TaSe3,

while the corresponding mean free path in NbS3 is ∼2 µm, two-order longer. Typically

the acoustic phonons carry the longer phonon MFP. Moreover, the range of the spectrum

of phonon mean free path is much broader in NbS3 than TaSe3. In TaSe3, phonon MFP

between 10 ∼ 100 nm is mostly responsible for determining κ, while in NbS3, wide range of

phonons having MFP between 100 nm to 10 µm can effectively contribute towards thermal

conduction.

To obtain a representative mean free path (λR) of heat-carrying phonons in these
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quasi-1D materials, the cumulative κ with respect to maximum MFP (λmax) in Fig. 4.4

(c), is fitted to a single parametric function, [126]

κ (λ < λmax) =
κ0

1 + λR/λmax
, (4.4)

where, κ0 is the maximum thermal conductivity. As tabulated in Table 4.1, MFP λR along

the growth direction is one-order larger in NbS3, whereas along the inter-layer direction, it

is two-order higher.

To explain why there is a significant difference between the conduction in TaSe3

and NbS3, we look in to the phonon velocity as well as phonon scattering of the thermal

modes, in both materials. Figure 4.5 (a) shows the absolute velocity distribution of the

heat-carrying phonons, for each phonon modes q inside the irreducible Brillouin zone (BZ).

From the distribution, it is clear that most of the phonon channels in TaSe3 have five to

ten times lower velocity than that of NbS3. Between 20 ∼ 80 cm−1, some of the phonon

modes of TaSe3 have slightly higher velocity, but still lower than NbS3. However, to explore

how these high-velocity modes will get compensated by unwanted phonon scattering, we

also look in to the scattering rate of these channels. As seen in Fig. 4.5 (b), the scattering

lifetime in TaSe3 are distributed around 10 ∼ 20 ps in the low-energy range (20 ∼ 80 cm−1).

Beyond 100 cm−1, the lifetime improves in TaSe3 (scattering reduces) by almost 5 ∼ 10

times, but unfortunately the velocity of these modes starts to become low at that point. It

is clear that the higher-velocity phonons undergoes higher scattering in TaSe3, resulting in

poor thermal conduction. On the contrary, in NbS3, the low-energy modes up to 100 cm−1

exhibit higher velocity as well as lower phonon scattering. Beyond 100 cm−1, the scattering

rate becomes similar to TaSe3 case, but the velocity still remains one-order higher. Hence,
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both higher velocity and larger lifetime in NbS3 are the reason behind the one-order higher

κ observed in Fig. 4.4 (a).

We also discuss the normal and umklapp three-phonon scattering mechanism in

TaSe3 and NbS3, to get an insight on the competition between these two phonon scattering

processes in quasi-1D materials. Figure 4.6 shows the κ ratio of the RTA solution and

iterative solution of phonon BTE, as γ = κRTA/κIterative. RTA approach of solving BTE

neglects the momentum-conserving N-process and underestimates κ. Hence, γ is an effective

parameter that can indicate the strength of normal scattering processes compared to the

umklapp scattering processes. As we see in Fig. 4.6, the RTA calculation in NbS3 matches

well with the iterative solution (γ ∼ 1), indicating that normal process is insignificant

in NbS3; rather, even at low temperature limit, the umklapp process is the dominating

scattering mechanism in this quasi-1D materials. This is in stark contrast with the phonon

scattering process in two-dimensional materials like graphene, where both umklapp and

normal process contribute almost equally to conduction (γ ∼ 0.3). Similarly, in TaSe3,

value of γ along the growth direction is almost 0.7, even at temperature as low as 100 K.

This indicates that although normal process plays a role in thermal conduction, umklapp

process still remains to be a dominant scattering mechanism in metallic TaSe3. In general,

the umklapp scattering mechanism seems to be the ultimate determining factor for phonon-

limited κ in quasi-1D materials.
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Figure 4.6: Ratio of κ of RTA solution by iterative solution.

4.4 Conclusion

We have calculated the phonon dispersion and lattice thermal conductivity of

TaSe3 and NbS3, using density functional theory and phonon BTE. The phonon dispersion

of both quasi-1D materials exhibit several flat bands, while the low-energy modes contribute

most due to their higher velocity. A comparison of experimental Raman peaks with the

phonon dispersion show good match with the theory. The thermal conductivity of bulk

TaSe3 system is found to be one-order lower than that of bulk NbS3. Both systems show

one-order higher anisotropy along the chain growth direction, compared to the van der

Waals direction. TaSe3 shows lower phonon velocity and higher scattering rate at the low-

energy limit, while NbS3 exhibit opposite behavior. The maximum limit of mean free path

of phonons responsible for heat conduction is found to be one-order higher along the growth

67



direction in NbS3. Finally, we find that umklapp scattering is the dominant phonon-phonon

scattering mechanism in these quasi-1D material system.
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Chapter 5

Electronic and vibrational

properties of different polymorphs

of quasi-one dimensional transition

metal trichalcogenides NbS3

5.1 Introduction

Layered materials have attracted much attention since the seminal discovery of

graphene in 2004 [166]. Although high mobility of graphene makes it a promising channel

material for future electronics, the absence of band gap severely limits its application for

field effect devices [69, 161, 68]. As a solution to graphene’s limitations, the transition metal

dichalcogenides (MX2), another class of layered materials, have been widely explored for
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potential electronic, optical and spintronic applications [214, 26, 36, 228, 57, 18, 152]. In the

ongoing effort for finding efficient layered materials, transition metal trichalcogenides (MX3)

have emerged as superior alternatives, due to their quasi-one-dimensional structures and

highly anisotropic behavior [97, 85, 254]. Trichalcogenides are known since the 70’s for their

characteristic low-dimensional properties, e.g. intercalation [231, 225], CDW fluctuations,

non-linear effects [73] and superconductivity [91]. Moreover, due to their chain-like growth

formation, a single exfoliated chain of MX3 can work as an ideal channel material [56],

which can facilitate the current technological push towards miniaturization of nanoscale field

effect transistor (FET) [4, 134]. The high current-carrying capacity and high break-down

voltage of these chains have already been demonstrated for certain members of this family

[135]. Along with mechanical exfoliation, the electronic properties can also be engineered

by nanostructuring [95, 89]. Recently, several new phases of the quasi-1D trichalcogenide

NbS3 have been reported [15]. However, the basic electronic and vibrational properties of

NbS3, as well as their scaling effect, still remain poorly understood [15].

NbS3 is a layered transition metal trichalcogenide with chain-like formation, which

allows mechanical cleavage and is a potential material for hosting charge density waves

(CDW) [180]. Niobium-Sulfur system has been studied since the 70’s for its rich chem-

istry, stoichiometry, and numerous phases [96], e.g. NbS3, 2s-NbS2, 3s-NbS2, 2s-Nb1+xS2,

3s-Nb1+xS2, Nb3S4, Nb1−xS, Nb21S8, as well as ring-like structures e.g. NbS3 Möbius strip

[54]. Similar to other trichalcogenides, NbS3 is a fibrous crystal, characterized by linear

chain of metal atoms (Nb) along the fiber axes, surrounded by bicapped trigonal prismatic

coordination of chalcogens (S). The stronger Nb-Nb bond along the chain or column di-
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rection results in a highly anisotropic one-dimensional behavior in NbS3 [17]. The chains

themselves are interconnected together as a bundle by Nb-S inter-chain bonds. Each of

these chain bundles are separated from each other by weak van der Waals force.

Historically, NbX3 has been used as high energy density cathode material for

rechargeable battery cells due to its intercalation reaction properties [219, 231, 104, 185,

236, 191] and as an efficient catalyst [42] that can cleave C-N and C-C bonds. In recent

times, NbS3 has attracted renewed attention with the discovery of two new phases [15]. To

date, six different phases of NbS3 has been confirmed: NbS3-I, NbS3-II, NbS3-III, NbS3-HP,

NbS3-IV and NbS3-V. However, the correlation between the atomic structure of different

phases and the corresponding electronic properties have not been well established.

The electronic properties of 1D materials are very different from 3D materials.

The 3D metals can be described by Fermi-liquid theory, whereas the 1D metals are well

described by Luttinger liquid theory, given that the Fermi liquid picture in purely 1D system

becomes inadequate due to interlayer correlations [47]. Electrically, MX3 materials can be

a 1D insulator or a 1D conductors, or both [73]. NbS3, due to its rich chemistry, exhibits

several metallic and semiconducting phases. There are subtle differences between the Nb-

Nb and S-S bond length of different phases, giving rise to various physical properties. The

size of the unit cell depends on the number of prismatic MX6 columns and their stacking

arrangement, which typically ranges from just two columns (as in ZrSe3) to 24 columns (as

in orthorhombic TaS3) [180].

Structurally, NbS3 exhibits four different types of chain configurations. In one

chain configuration, only one type of S-S bond exists, e.g. as in ZrSe3; NbS3-V belongs
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to this category. NbS3-I also belongs to this category, but shows a 2b superstructure [73];

NbS3-IV, being a superstructure of phase-I itself, also belong to this category. On the other

hand, NbS3-HP belongs to another type of chain configuration which contains three different

prismatic chains in the unit cell, having three different S-S bond length [73]. Finally, NbS3-II

has four different types of chains [250], out of total eight chains in the unit cell. Presence of

different numbers and different types of prismatic chains is one of the reasons for observing

such phase variation in NbS3. The S-S bond-length is an important factor in determining

the electron density available to Nb chains [73]. The chains with longer S-S bond indicate

electron transfer from Nb atom to S atom, indicating possible insulating behavior in those

chains. On the other hand, chains with shorter S-S bond are more prone to exhibiting

metallic behavior and CDW properties.

The transport properties of the quasi-1D material also varies widely depending on

the number of the prismatic chain in the unit cell. On top of that, small differences in the

arrangement and stacking between the chains can lead to significantly distinct properties

[25]. Hence, it is interesting to know how does the electronic properties evolve from one

phase to the next. Moreover, the dynamical stability and phonon studies for most of the

NbS3 phases are still absent in literature.

NbS3-I is the most well known phase of NbS3, having a triclinic structure of P1̄

symmetry [96, 188]. At room temperature, NbS3 is described as a Peierls semiconductor

[147]. Figure 5.1 (a) shows the atomic configuration of this phase, whereas the lattice

parameters are listed in Table 5.1. Due to the metal-metal bond along the chain, the Nb

atoms are displaced by 0.16 Å from the mirror plane, causing a linear peierls distortion,
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Figure 5.1: Atomic configurations (top view) of different phases of NbS3: (a) phase-I,
(b) phase-IV, (c) phase-V. The structural element common to all phases is the prismatic
columns of NbS6 trigonal prisms, where these columns or chains grow out of the page of
the paper (b direction). The number and stacking of trigonal MX6 blocks vary from phase
to phase.

which in turns reduces the symmetry from monoclinic to triclinic [188]. This commensurate

CDW distortion reduces the space group from P21/m to P1̄ [180]. Nb-Nb pairing through

d1 − d1 bond is the reason for NbS3-I being a semiconductor [120], as corroborated by

calculated density of states [25] and X-ray photoelectron spectroscopic (XPS) [53].

NbS3-I remains semiconducting over a wide range of temperature from 4.2 K to

650 K [53]. Although alternating Nb-Nb bond implies possible CDW formation, no CDW-

normal transition has been observed in temperature-dependent conductance measurement

[53]. Weak van der Waals interactions exist between the chalcogen (X) atoms of neighboring

chains. Within the chain, one of the X-X bond in the MX6 triangular prism is quite short

(2.05 Å ) [73], indicating the formation of disulfide anion [X–X]2−, which makes the formal

charges on the atoms are M4+(X2)2−X2−. This is consistent with the non-metallic behavior

of NbS3-I phase [73]. However, under pressure, an insulator to metal transition has been

reported [47].

NbS3-II is a incommensurately modulated superstructure of phase-I, where the

periodicity is suggested to be 3b along the chain direction [39, 241]. Electron diffraction

study also suggests that NbS3-II is a monoclinic phase with trimerization [254], having same

73



P21/m symmetry [180]. Nb-Nb pairing along the b direction is absent in this phase [216].

The structure has not been fully determined yet, but possible atomic configuration has been

proposed. The proposed unit cell [180, 216] of NbS3-II contains 8 trigonal prisms, of which

two are equilateral and six are isosceles. Very recently, a basic and a CDW modulated

structure of NbS3-II have been reported [250].

Although the overall behavior remains semiconducting, the resistivity of phase-

II is three-order of magnitude lower (8×102 ω cm) than that of phase-I (∼80×102 ω cm).

Unlike phase-I, temperature-dependent resistivity study shows three Peierls transitions, one

at 150 K [252], one around 340–355 K [216], and one at high-temperature range 620–650

K [253]. Out of 8 chains, at most 2 chains contribute to the CDW transport at each CDW

state [252]. NbS3-II phase can retain its CDW transport properties down to nanometer

scale. The room-temperature CDW transition in this phase has been reported to exhibit

promising transport velocity as well as sliding coherence [253]. Room temperature sliding

CDW properties makes this phase very prospective for realizing CDW-based nano-oscillator

that can operate at room temperature [134].

Like phase-II, NbS3-III is also a superstructure of phase-I, but the monoclinic

angle is slightly larger than that of phase-I (98−99) [241]. From 100 K to 150 K, this phase

follows semiconducting behavior, whereas after TMI = 155 K, it undergoes a insulator-

to-metal phase transition. The experimental findings of large microwave conductivity and

dielectric constant in this phase have been attributed to weakly pinned charge density wave

[241]. Moreover, temperature-dependence gating response of phase-III shows that below

TMI, there is non-linear conduction beyond a threshold voltage VTh. Similar to sliding
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Table 5.1: Lattice parameters of NbS3 phases: b, a and c axes are parallel to the chain,
inter-chain, and interlayer directions, respectively. The values in parentheses are converged
lattice parameters obtained from DFT calculations.

a (Å) b (Å) c (Å) β (◦)

NbS3-I [96, 188] 4.96 6.73 9.14 97.17

(DFT) (4.98) (6.78) (9.25) (97.16)

NbS3-II [180] 9.90 3.40 18.30 97.00

NbS3-II [250] 9.65 3.35 19.86 110.71

NbS3-III [241] – – – 98∼99

NbS3-HP [106] 9.68 3.37 14.83 109.9

NbS3-IV [15] 4.97 6.75 18.13 90.12

(DFT) (4.98) (6.78) (18.29) (90.11)

NbS3-V [15] 4.95 3.36 9.08 97.35

(DFT) (4.98) (3.36) (9.17) (97.06)

CDW phenomenon observed in NbSe3 and TaS3, the sharp threshold required for the onset

of non-linear conduction has been explained as the driving mechanism which can initiate

CDW sliding. However, there is still much uncertainty about whether phase-III and phase-

II are essentially the same phase of NbS3, or at least sub-phase of one another [254]. A

high-pressure monoclinic phase of NbS3 (NbS3-HP) has also been reported [106]. Similar to

Phase-I, this phase is a semiconductor having resistivity of 102 Ω·cm at room temperature

and does not exhibit any charge density wave transition.

Recently, two new phases of NbS3 have been reported [15]: phase-IV and phase-

V. Phase-IV has twice as many chains as phase-I with a doubled c-axis, as seen in Fig.

5.1. Phase-V has same structure as phase-I, but the unit cell is halved along the b axis

and no distortion of Nb atom has been observed. It is quite possible that phase-IV and
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phase-V are not a new discovery. Structures similar to phase-IV has been grown earlier

having same lattice parameters as phase-IV, and speculated to have monoclinic unit cell

[92, 96]. Similarly, a metallic phase similar to phase-V has been reported earlier, exhibiting

the superconducting properties around 2 K [91]. However, the structural information and

atomic coordinates of NbS3-IV and NbS3-V unit-cells have been reported only recently [15].

This paper focuses on the atomic structure of three phases of NbS3, as shown in

Fig. 5.1, which has well established atomic structural information in the literature, namely,

NbS3-I, NbS3-IV, and NbS3-V. To discuss their conductivity and transport properties, we

study the electronic band dispersion and density of states of NbS3, using ab initio density

functional theory. Moreover, we look into the dynamical instability of each phases by

calculating the phonon dispersion and phonon density of states. We also compare the

Γ-centered phonon branches with the existing experimental measurement to identify the

observed Ramam peaks, as well as to predict any possible CDW ground state.

5.2 Methodology

We perform the structural optimization of all phases of NbS3, within the frame-

work of density function theory using Perdew-Burke-Ernzerhof (PBE) exchange correlation

functionals [175], as implemented in VASP [116, 117]. The plane-wave energy cutoff is

chosen as 400 eV. The atomic positions are optimized through the minimization of energy

using Hellman-Feynman forces acting on atoms with the Broyden-Flecher-Goldfarb-Shanno

(BFGS) scheme. To include van der Waals interaction between the chains, we have applied

the semiempirical DFT-D2 Grimme’s method [77, 22]. The structure is relaxed until the
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forces were less than 10−4 eV/Å. A plane wave basis set with kinetic energy cutoff of 400

meV is used to expand the electronic wave functions. A converged Monkhorst Pack k-point

mesh of 9×9×3, 8×8×2 and 8×8×4 is adopted for the integration over the first Brillouin

zone, for phase-I, phase-IV and phase-V respectively. The optimized lattice constant is

within 1% of the experimental lattice constant, as shown in Table 5.1. the high-symmetry

points are: X (0.5, 0, 0), Γ (0, 0, 0) Z (0, 0, 0.5), Y (0, 0.5, 0), B (0, 0.5, 0.5), C (0.5, 0.5,

0).

The phonon dispersion along the BZ path is calculated using a finite displacement

scheme implemented in Phonopy [207]. For phase-I, phase-IV and phase-V, the supercell

size (k-grid size) is 2×2×2 (10×10×4), 2×2×2 (4×4×2), and 3×3×3 (16×16×2), respec-

tively. The asymptotic long-range dipole-dipole interaction is included as a correction to the

interatomic force constants, by calculating the Born effective charge and dielectric tensor.

5.3 Results and discussions

5.3.1 Electronic band structure

In order to understand the CDW transition and anomalous transport properties

of different phases of NbS3, it is necessary to calculate the accurate band structure, as

well as to figure out the nature of the bands around the Fermi level. NbS3 belongs to

group-V chalcogenides. The electronic nature of group-V trichalcogenides, i.e., whether it

can be metal, semiconductor or insulator, can be qualitatively understood by the nature

of S-S bond [25, 198]. If the S-S bond of the MX3 prismatic chain has stronger covalent

p-p bonding (chain type-A), the anti-bonding orbital σ∗A will be higher than the bonding
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orbital σA. This will ensure semiconducting bands with gap near the Fermi level. On the

other hand, when the S-S bond in the chain (type-B) is weaker (longer bond length), The

bonding orbital is closer to the anti-bonding orbital, revealing more semimetallic or metallic

nature of bands. Depending on the number of electron and the chain type A and B, the

electrical properties of quasi-1D materials vary. In case of NbS3 phase-I and phase-IV, the

S-S bond length is 2.014 Å (type-A). On the other hand, in NbS3–V, S-S bond length is

2.14 Å (type-B). Hence, we expect NbS3-I and NbS3-IV to be semiconducting, whereas

NbS3-V to be metallic or semimetallic. However, depending on the inter-chain interaction,

the relative position of anti-bonding band σ∗A will ultimately determine the actual electrical

properties. To resolve the issue, we calculate the complete band structure using ab initio

density functional theory.

Figure 5.2 show the electronics band structure for phase I, IV and V, at the PBE

level of theory. The color profile indicates the % contribution from Nb atom at each band

and each k-point of the irreducible Brillouin zone. The Brillouin zone path is shown in

supplementary Fig. S1. Due to the dimerization of Nb-Nb bonds, both NbS3-I and NbS3-

IV are semiconductor, having PBE band gap of 0.30 and 0.22 eV, respectively.
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Figure 5.2: Electronic band structure and density of states of NbS3: (a)-(b) Phase-I, (c)-(d)
Phase-IV, (e)-(f) Phase-V. The red (blue) color indicates the % contribution of Nb (S) atom
at each band. The bands below the Fermi level are dominated by the Nb atom, where the
band above the Fermi level is equally controlled by Nb and S atom. The corresponding
density of states shows the orbital composition over a wide range of band energy. The
relative position of the eg orbital (red curve), specifically dz2-orbital, determines the metallic
or semiconducting nature of the NbS3 phases. Besides, the similarity between the DOS of
NbS3-I and NbS3-IV suggests that these phases are electrically almost identical.
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As evident from the band dispersions in Fig. 5.2 (a) and (c), there are certain

similarities between the energy bands of phase-I and phase-IV. From the atomic structures

in Fig. 5.1 (a)-(b), it is apparent that in case of NbS3-IV, one additional layer of MX6

trigonal prisms is stacked along the van der Waals (vdW) gap direction (c direction). Since

NbS3 chains are weakly coupled across the vdW gap, phase-IV has almost similar band

dispersion as phase-I. However, due to the inter-chain interaction, each phase-IV band in

Fig. 5.2 (c) splits into two more bands. The band-splitting is more dominant for the Nb-

controlled (red colored) valance bands, whereas the S-controlled bands (blue colored) have

very little splitting. This splitting is also the reason for the slightly lower band gap in

phase-IV, compared to phase-I.

To understand the degree of anisotropy and nature of one-dimensionality between

the phases, we look into the nature of the dispersion along different directions. Both NbS3-I

and NbS3-IV valance bands are more dispersive along the chain (Γ-Y direction), whereas

bands are less dispersive along the inter-chain direction (Γ-X) and even flatter along the

vdW gap direction between the chain bundles (Γ-Z). This explains the anisotropic nature

of these semiconducting phases. However, the dispersive nature of the bands along both

Γ-Y and Γ-X direction makes these phases more similar to other 2D layered materials,

hence NbS3 is more aptly known as quasi-1D material. Moreover, Fig. 5.2 (a) and (c)

show that phase-IV valance bands are less dispersive compared to phase-I, specifically for

the valance bands near the EF . Since there are more flat Fermi surfaces in NbS3-IV, we

can expect possible nesting vectors, allowing CDW states formation in phase-IV. It should

be mentioned that phase-I bands are also relatively flat, but no CDW transition has been
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observed yet. However, from the Fermi-surface nesting point of view, phase-IV seems to

have higher possibility of exhibiting CDW transition.

Figure 5.2 (b) and (d) show the orbital-decomposed density of states over a wide

range of band energy. We can identify four regions in electronic bands having different

orbital contributions. Below -10 eV, the orbital composition is dominated by the 3s orbital

from S atoms. The lowest (around -17 eV) and highest (-14 eV ∼ -11 eV) peak regions

correspond to the 3s bonding and anti-bonding orbitals, and the splitting between them

reflects the separation between the two S atoms. Between -1 eV and -7 eV, we can see an

admixture of S 3p and Nb 4d-t2g (dxy, dyz, dxz) states, making the Nb-S bond to be ionic

in nature, that comes from the weak inter-chain interaction. Above that region and just

below the Fermi level, the valance bands are completely dominated by the Nb 4d-eg orbitals

(dz2 , dx2−y2), and has a mixture of S 3p, making the Nb-S atomic to have covalent bonding

within the same chain. Hence, the bonding bands below the Fermi level is an admixture of

both ionic and covalent character. Above the Fermi level, mostly Nb d-orbital dominates,

although near the edge of the conduction bands, S p-orbital also contributes equally. All

the three phases show these four regions and their relative position changes from phase to

phase.

The mixing of dx2−y2 and dxy orbitals with the dz2-orbital influences the shapes

of the Fermi surfaces and CDW characteristics [198]. The pairing of the Nb atoms along

the metal chain splits the half-filled dz2-orbital into a filled and empty zone with an energy

gap of 0.3 eV [104]. Interestingly, all these orbital-decomposed regions in Fig. 5.2 (b)

and (d) look almost same for NbS3-I and NbS3-IV, except the obvious doubling of bands
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due to doubled prismatic units in the phase-IV unit cell. Similar to the band structure,

this is again an indication that NbS3-IV is very similar to NbS3-I, when considered from

the electrical and transport point of view. Our calculated density of states of NbS3-I is

consistent with the measured X-ray photoelectron spectra (XPS) [104], which reveals that

metal 4d levels contribute to the valance band zones, where the chalcogen 3p fills the deeper

part of the valance band. No XPS studies of NbS3-IV has been reported in literature yet.

The similarity between the band structures of phase-I and phase-IV can be ex-

plained by taking a closer look at their atomic configurations. As evident from Fig. 5.3,

phase-IV not only has two times more trigonal prismatic chains along the c direction,

but also hosts several stacking faults. Comparing the unit cell of phase-I (solid blue box)

with the unit cell of phase-IV (black dot box), we find that the top layer of phase-IV is

shifted by almost a/2 along a direction, hence the need for a larger unit cell to capture this

translational shear in NbS3-IV . This kind of stacking fault is very easy to occur in such

weakly-connected chain systems, and reported in other quasi-1D materials like ZrSe3 [90].

Figure 5.3: Structural differences of NbS3-IV and NbS3-I. The unit cell of NbS3-I is shown
in blue, whereas the unit cell of NbS3-IV is shown in black. NbS3-IV can be generated
by shifting the top layer of NbS3-I unit-cell by ∼ a/2 along the a direction, as well as
introducing some chiral faults along the b direction.
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Moreover, there is a second stacking difference between NbS3-I and NbS3-IV, along

the growth (b) direction. In one of the chain-pairs along b, the chirality of the in-plane

S-Nb-S bonds switches from being left-handed to right-handed, while unaffecting the other

chain-pair in unit cell (marked by red circles). Hence, NbS3-IV structure is not just a

superstructure of NbS3-I. Given that the layers along c direction are loosely connected by

the van der Waals interaction, we can expect the sliding and chirality effect will not be

that significant along Γ − Z direction. Indeed we see that Γ − Z bands in phase-IV are

merely the zone-folded bands of phase-I. On the contrary, the chirality effect will certainly

affect the dispersion along Γ−Y (growth) direction, as well as along the Γ−X (inter-chain)

direction. This is reflected in the dispersions of Fig. 5.2 (a) and (c), where bands along those

direction exhibit significant splitting. Note that the valance band along growth direction

undergoes major restructuring due to this chirality difference, and creates a Mexican hat

type dispersion at Y .

Finally, we look into the third phase of NbS3, phase-V, in Fig. 5.2 (e)-(f). Contrary

to prior two phases, NbS3-V is a metal. This is expected given that there is no dimerization

or Peierls transition in this phase. Moreover, the bands along the chain direction (Γ-Y)

and inter-chain direction (Γ-Z) are more dispersive than the vdW direction. It seems, the

electrical bands of NbS3-V are more like quasi-2D in nature than its semiconducting coun-

terpart. The density of states, shown in Fig. 5.2 (f), also have some distinguished features.

The deep s-orbitals and p-orbitals arising from S atoms are almost similar to prior phases.

However, Note that, the separation between the 3s bonding and anti-bonding orbitals is

smaller than phase-I and phase-IV. This is expected since the S-S bond are relatively weaker
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(type-B) in this phase. Moreover, the eg orbital no longer have the sharp characteristics,

rather it shows a broad spread across the Fermi level, resulting in metallic behavior. In

this case, the dz2-orbital undergoes an incomplete splitting, causing the valance band and

conduction band to overlap with each other. Similar to intercalated NbSe3 material [104],

intercalation of this phase with Lithium may increase the splitting between the filled and

free band zones and exhibit a metal-to-semiconductor transition.

We have also explored the dimensionality effect of phase-I and phase-V (for phase-

IV, see chapter 6). In the monolayer limit, only the valance band undergoes some changes,

although the overall nature of respective semiconductor or metallic behavior does not change

(see Fig. 5.4).

Figure 5.4: Electronic band structure of NbS3 monolayers. The red (blue) color indicates
the % contribution of Nb (S) atom at each band.

5.3.2 Phonon dispersion

To study the dynamical stability of the phases, we have calculated the phonon

dispersion of NbS3-I, NbS3-IV and NbS3-V. NbS3-I belongs to the P1 (C1
i ) non-symmorphic

space group, and the irreducible representation of this point group symmetry gives 48 normal

modes [251], Γ = 24Ag + 24Au. Only 24 even-parity modes show Raman activity, whereas
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21 odd-parity modes are infrared active. Prior works on phase-I have tried to explain the

Raman signatures of NbS3, by comparing the zone-folded phonon dispersion of ZrS3 [251].

Although ZrS3 have similar structure as NbS3, the dimerization of NbS3 along the b axis

is absent in ZrS3, which introduces uncertainty in translating the results. In this paper, we

avoid that by directly calculating the phonon modes using first principle calculation.

Figure 5.5 (a) and (c) show the calculated phonon dispersion along the high sym-

metry points, for phase-I and phase-IV, respectively. The symbols indicate the prior Raman

data in the literature [251, 201, 15]. Unlike other chalcogenides, the NbS3-I and NbS3-IV

phonon modes cannot be classified by the vibration along the chain and perpendicular to

chain directions, due to the symmetry breaking of the screw axis [251]. The high frequency

bands beyond 500 cm−1 is characterized by the stretching motion of (S2)2− pairs inside the

prismatic chains. As evident in Fig. 5.6, for the top two modes of NbS3-I (554.27 cm−1 and

552.69 cm−1), the (S2)2− bonds of top and bottom chains vibrate in phase. For the next two

phonon branches (537.36 cm−1 and 538.29 cm−1), the top (S2)2− bond stretches, while the

bottom one shrinks. The frequency and behavior of these modes are similar for NbS3-IV.

The high frequency of these modes are an indirect indicator that the (S2)2− bonding in

NbS3-I and NbS3-IV are stronger than other transition metal trichalcogenides like ZrSe3,

HfS3 [201].

Figure 5.5 (a) and (c) also compares the phonon dispersion with experimental

Raman spectra. It is clear that the phonon frequencies at Γ can explain the Raman peaks

of NbS3-I, specifically the highest optical modes around 550 cm−1, as well as the second set

of flat bands around 380 cm−1 at 70 K. However, the Raman data from Ref. [201] shows one
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additional peak in the energy gap region of 400 ∼ 500 cm−1, which might arise due to the

overtone of lower phonon branches. In case of phase-IV, the reported Raman peaks show

even better agreement with calculated phonon modes. We also look in to the contribution

of the atom species on the phonon spectra, by calculating the phonon density of states.

As evident from Fig. 5.5 (b) and (d), most of the optical branches in NbS3 phases are

controlled by the motion of light Sulfur atoms. However, there is one difference of NbS3-IV

bands around 380 cm−1, where the nature of bands changes from being controlled by S

atoms to Nb atoms.
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Figure 5.5: Phonon dispersion and phonon density of states of NbS3: (a)-(b) Phase-I, (c)-
(d) Phase-IV, (e)-(f) Phase-V. The symbols ◦ and . (symbol /) in (a) are the observed
Raman peaks from Ref. [251] (Ref. [201]). The symbols in (c) and (e) are from Ref. [15].
The corresponding phonon density of states shows the contribution of the atomic motion
from certain type of atom.
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Figure 5.5 (e) shows the phonon dispersion of phase-V. NbS3-V belongs to the

P21/m symmetry group, which has twofold screw symmetry axis parallel to b-axis, an

inversion center and a mirror plane. Similar to ZrSe3, the expected 24 normal phonon

modes from NbS3-V can be decomposed in to the following irreducible representation at

Γ point: Γ = 8Ag + 4Bg + 4Au + 8Bu. Among them, the optical modes 8Ag and 4Bg are

Raman-active even-parity modes, whereas the rest 2Au and 7Bu are infrared-active odd-

parity modes. However, when we calculate the full phonon dispersion using the reported

atomic structure of NbS3-V [15], several negative phonon branches appear in the dispersion.

This negative modes are an indicator of possible instability present in this phase, making it

a promising candidate for hosting CDW. As seen in Fig. 5.5 (e), two phonon modes become

unstable (negative) after 3/5 ∼ 4/5 of the Brillouin zone along Γ − Y (growth) direction

(specifically after 73.8% and 58.6% of BZ length for the two modes), Similarly, one mode

along Γ−X (inter-chain) direction becomes negative up to almost 1/3 (22.4%) of the BZ.
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Figure 5.6: Six highest phonon modes of NbS3-I.

The instability in the phonon dispersion reveals two important things. First, the

reported structure is not a CDW commensurate ground state, rather a high-temperature

incommensurate phase of NbS3-V. Second, the possible CDW ground state, which will

suppress these instabilities, will be a supercell structure of NbS3-V, where the supercell

will be 3 times longer along inter-chain (a) direction and 5 times longer along growth (b)

direction. The elongation of the original phase-V supercell will ensure that the Nb atoms in

those direction can dimerize and subsequently lower the energy of the NbS3-V CDW ground

state. This is also in agreement with prior literature, where such large supercell structures

have been speculated to be the case for some others phases of NbS3. This insight can guide

the experimental efforts to resolve the CDW commensurate structure of phase-V, by X-ray
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diffraction and detailed TEM studies.

We have also compared the Raman peaks with the phonon dispersion of phase-V

in Fig. 5.5 (e). The high-energy peaks around 550 cm−1 do not match with any phonon

branches nearby. Such high frequency modes generally arise from the deformation of S-S

bonds, as we have seen in semiconducing phases. In phase-V, we can estimate the tenta-

tive position of these modes arising from S-S stretching bonds, using Steudel’s empirical

relationship based on bond length dS−S [203],

dS−S (Å) = 2.57− 9.47× 10−4 νS−S (cm−1). (5.1)

For phase-I and phase-IV, Eq. (5.1) suggests that the S-S stretching mode will be around 584

cm−1, whereas the DFT calculated modes are around 554 cm−1. On the contrary, in phase-

V, the stretching modes from Eq. (5.1) should be around 452 cm−1, corresponding to the

DFT calculated modes around 400 cm−1. This further indicates that the observed Raman

peaks around 550 cm−1 (inside black circle) can not arise from reported atomic configuration

of phase-V. Rather, it is possible that there is some low-temperature commensurate phases

already present in the NbS3-V samples having stronger S-S bonds, and giving rise to those

high-energy peaks.

5.4 Conclusion

In this paper, we have explored the electronic and vibrational properties of different

phases of NbS3, using ab initio density functional theory. The electronic band dispersion

reveals that, like phase-I, phase-IV is semiconductor with band gap of 0.22 eV at the

PBE level of theory. From the nature of the dispersion, it seems phase-IV has higher
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probability of exhibiting CDW transitions than phase-I. Although phase-IV has several

stacking and chiral faults, the similarity of the structures between phase-IV and phase-I

results in similar electronic behavior. On the contrary, phase-V is a metal, with weaker S-S

bonds compared to other phases. The density of states, when decomposed to individual

orbital contributions, can explain the relative transition from semiconducting to metallic

transition between phases. Moreover, we have calculated the phonon dispersion and density

of states of these phases. We find that the dimerized phases, namely NbS3-I and NbS3-IV,

are dynamically stable. However, several unstable modes are observed in NbS3-V, indicating

that there is a probable CDW ground state remained to be discovered for this phase.
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Chapter 6

Electronic properties and band

alignment of quasi-1D materials

6.1 Introduction

Two-dimensional layered materials, where the layers are separated by weak van der

Waals force, provides a great opportunity to substantially eliminate the interface dangling

bonds [60]. Among them, the semiconducting 2D materials is promising for designing

efficient tunneling devices through a “broken-gap” band alignment [72], resulting in a wide

variety of tunnel transistors [124, 87, 125], sensors [111, 246, 153] and field effect transistors

[177, 190, 181]. On the other hand, the metallic 2D materials are very promising as efficient

contacts in its scaled form [98, 43, 34, 71]. Moving forward with the dimensional scaling,

the quasi-1D materials seem to be more interesting in terms of contact engineering [95].

The quasi-1D materials, specifically transition metal trichalcogenides (TMTs) grow in a
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chain-like formations. Many TMTs retain their properties, even up to single layer, making

the devices less susceptible to growth thickness. The electronic and optical properties of

some of the TMTs have been studied [170, 59, 105, 75, 171]. However, the prior theoretical

efforts were mostly limited to the band calculation of semiconducting TMTs, e.g. ZrX3 and

HfX3 [95]. The band alignment of most of the quasi-1D materials, specifically the metallic

ones, are still absent in literature.

In this work, we calculate the electronic band dispersion and band alignment of

several transition metal trichalcogenides, with the purpose to find suitable metallic quasi-1D

materials with better contact characteristics. The metallic TMTs can pave the way towards

ultimate scaling of the contacts, as well as can revolutionize the integration of 1D materials

with existing 2D and bulk electronics.

Figure 6.1: Atomic configurations of quasi-1D materials.
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6.2 Methodology

We perform the structural optimization of MX3, within the framework of den-

sity function theory using Perdew-Burke-Ernzerhof (PBE) exchange correlation functionals

[175], as implemented in VASP [115, 114]. The structures we consider here are shown in Fig.

6.1. The plane-wave energy cutoff is chosen as 400 eV. The atomic positions are optimized

through the minimization of energy using Hellman-Feynman forces acting on atoms with the

Broyden-Flecher-Goldfarb-Shanno (BFGS) scheme. To include van der Waals interaction

between the chains, we have applied the semiempirical DFT-D2 Grimme’s method [77, 22].

The structure is relaxed until the forces were less than 10−4 eV/Å. A plane wave basis set

with kinetic energy cutoff of 400 meV is used to expand the electronic wave functions. A

converged Monkhorst Pack k-point mesh of 9×9×3 is adopted for the integration over the

first Brillouin zone. The DFT calculated lattice constants are shown in Table 6.1, which

are close to the experimental lattice constants. For the hybrid functional correction, we

use Heyd-Scuseria-Ernzerhof (HSE) calculation [83], where the fraction of screened Fock

exchange α was set to 0.25. The high-symmetric points in the Brillouin zone, for TaSe3 and

NbX3 dispersions, are denoted as: X (0.5, 0, 0), Γ (0, 0, 0) Z (0, 0, 0.5), Y (0, 0.5, 0), B (0,

0.5, 0.5), C (0.5, 0.5, 0). For NbSe3, TiX3, ZrX3 and HfX3 dispersions, the high-symmetric

points are: Γ (0, 0, 0), Y (0, 0.5, 0), C (0, 0.5, 0.5), Z (0, 0, 0.5), D (0.5, 0, 0.5), E (0.5,

-0.5, 0.5), A (0.5, -0.5, 0), B (0.5, 0, 0).

To calculate the band alignment, we first obtain a monolayer slab by incorporating

sufficient vacuum level of 20 Å. The work function is subsequently calculated by taking the

electrostatic energy difference between the vacuum level and the Fermi level.
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Table 6.1: Lattice parameters of MX3 phases. The metallic phases are shown in bold faces.
b, a and c axes are parallel to the chain, inter-chain, and interlayer directions, respectively.
The values in parentheses are converged lattice parameters obtained from DFT calculations.

a (Å) b (Å) c (Å) β (◦)

TaSe3 [11] 10.411 3.494 9.836 106.36

(DFT) (10.412) (3.514) (9.744) (106.36)

NbS3-I [96, 188] 4.96 6.73 9.14 97.17

(DFT) (4.98) (6.78) (9.25) (97.16)

NbS3-IV [15] 4.97 6.75 18.13 90.12

(DFT) (4.98) (6.78) (18.29) (90.11)

NbS3-V [15] 4.95 3.36 9.08 97.35

(DFT) (4.98) (3.36) (9.17) (97.06)

NbSe3 [222] 10.009 3.480 15.629 109.47

(DFT) (10.465) (3.422) (15.42) (108.65)

TiS3 [66] 4.958 3.401 8.778 97.32

(DFT) (4.992) (3.401) (8.906) (97.26)

HfS3 [66] 5.092 3.595 8.967 97.38

(DFT) (5.027) (3.604) (8.826) (97.44)

HfSe3 [66] 5.388 3.722 9.428 97.38

(DFT) (5.391) (3.710) (10.092) (96.18)

ZrS3 [66] 5.124 3.624 8.98 97.28

(DFT) (5.168) (3.634) (9.687) (96.73)

ZrSe33 [66] 5.411 3.749 9.44 97.48

(DFT) (5.445) (3.761) (10.08) (97.30)

ZrTe3 [66] 5.894 3.926 10.10 97.82

(DFT) (5.915) (3.881) (10.154) (97.93)
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6.3 Results and discussions

6.3.1 TaSe3

Monoclinic TaSe3 has four prismatic chains in the bulk unit cell, as shown in Fig.

6.1. There is only a single phase of TaSe3 reported, which exhibits metallic conduction (∼6

× 10−6 Ω·m) [11, 10, 79] and temperature-dependent diamagnetism [230]. No CDW phase

is observed in TaSe3, because of comparatively much stronger dispersion along x-z plane

[24]. TaSe3 remains metallic up to the helium temperature [192, 79]. Superconducting

properties has been also observed below 2.1 K [192, 79, 229, 158, 157].

As evident from the lattice vectors, the in-plane vectors a and c are not along

the interchain or vdW direction. Due to the slanted nature of the coordinates, it is harder

to create monolayer for theoretical calculations. Moreover, along the vdW gap, TaSe3 do

not have a planar interface, rather shows a corrugated surface. To overcome this issue, we

use a coordinate transformation to align the axes along the interchain and interlayer vdW

direction. Subsequently, by adding vacuum layer to the modified structure, we can simulate

the corresponding monolayer structure.

Figure 6.2 shows the band structure TaSe3 for bulk and monolayer. Evidently,

TaSe3 is a metal even up to monolayer limit. This indicates that as a candidate for contact,

TaSe3 can remain consistently a metal, irrespective of the lateral dimensions of the chains.

Around the Fermi level, several pockets of flat bands are observed, arising from overlapping

of Se-controlled valance bands and Ta-controlled conduction bands. The overlapping is

reduced in case of monolayer. Further cleavage of TaSe3 along the interchain direction

may remove the overlapping, but that would create unwanted dangling bonds. The orbital-
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decomposed band plot suggests that mainly the metal dx2−y2 and chalcogen py,z control

the metallic behavior in bulk. However, in monolayer, it is the Ta-dz2 orbital that actively

determines the electrical nature in this material.

6.3.2 NbX3

NbS3-I is a semiconductor with triclinic structure of P1̄ symmetry [96, 188, 147].

The Nb atoms are displaced by 0.16 Å from the mirror plane, causing a linear peierls

distortion [188]. NbS3 remains semiconducting over a wide range of temperature from 4.2

K to 650 K [53]. Apart from the well-known NbS3-I, two new phases of NbS3 have been

reported recently [15]. Phase-IV has twice as many chains as phase-I, having a doubled

c-axis, as seen in Fig. 6.1. Phase-V has same structure as phase-I, but the unit cell is

halved along the b axis. Unlike the other two phases, no dimerization of Nb atom has been

observed in NbS3-V.

Figure 6.3, 6.4 and 6.5 shows the band structure NbS3-I, NbS3-IV and NbS3-V,

respectively, for both bulk and monolayer. NbS3-I and NbS3-IV are semiconductor, whereas

NbS3-V is a metal. In both bulk and monolayer NbS3-I, the CBM is controlled by the Nb-

dxz, whereas the VBM is controlled by the localized Nb-dz2 orbital. Almost similar electrical

behavior is observed in case of NbS3-IV. This is expected given that NbS3-I and NbS3-IV

have almost similar structure, except exhibiting some stacking faults across the vdW gaps.

Contrary to phase-I and phase-IV, phase-V is metallic up to monolayer, where the

bands near the Fermi level is controlled by the Nb-dz2 , dx2−y2 , as well as the S-px. In the
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monolayer limit, the overlapping between the orbitals increases more.

NbSe3 is a well-known metallic quasi-1D materials that can also exhibit charge

density waves [222]. The calculated band structure, as shown in Fig. 6.6, shows that NbSe3

remains metallic when scaled down to monolayer. Mainly the Nb-dx2−y2 orbital and S-py

orbital determines the metallic behavior in NbSe3.

6.3.3 TiS3

The prior electrical and transport measurements of bulk TiS3 show that, at room

temperature, the bulk TiS3 is an n-type semiconductor with carrier mobility of 30 cm2/Vs

[41]. Optical absorption measurements has also been reported for bulk TiS3, exhibiting an

optical gap about 1 eV [58]. We look in to the band dispersion of TiS3 at the PBE level of

theory, and find ∼0.2 eV band gap. This is consistent with previous theoretical calculations

[41]. The element-decomposed and mode-decomposed band plots show that the conduction

band minimum (CBM) is controlled by Ti-dz2 , whereas the valance band maximum (VBM)

is dominated by the S-px.

6.3.4 ZrX3

The electronic [95] and Raman properties [169] of ZrTe3 has been studied by several

groups. Here, we look in to their electronic properties to evaluate the band alignment with

respect to other members of quasi-1D family. ZrS3 and ZrSe3 are both semiconductor. As

seen in Fig. 6.8 and Fig. 6.9, the VBM in both cases remain almost similar, and is dominated

by the chalcogen-py orbital. However, on the CBM, localized dz2 orbital dominates in ZrS3,
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while px orbital contributes most in ZrSe3. On the other hand, ZrTe3 is a metal, as evident

in Fig. 6.10, with p orbitals mostly controlling the bands near the Fermi energy. Going

from bulk to monolayer, there is also a significant increase in electronic density of states,

as evident by the emergence of several flat bands at EF .

6.3.5 HfX3

Finally, we calculate the band structure of Hf-based TMTs. Some electronic and

phononic properties of HfX3 has already been reported [1]. We look in to their electrical

properties going from bulk to monolayer, to extract the band alignment information. As

seen in Fig. 6.11, HfS3 is a strong semiconductor, even at the PBE level of theory. On the

other hand, HfSe3 is almost semimetallic, as seen in Fig. 6.12. Going from S to Se, the px

orbital in the conduction band comes down, whereas the py orbital goes up. The effect is

less pronounced in monolayer HfSe3.

6.3.6 Band alignment

We compare the relative band alignment of all the aforementioned quasi-1D ma-

terials. All the band energy levels in Fig. 6.2 - 6.12 are calibrated with respect to the same

vacuum energy level. We can see that several of the materials create broken band alignment,

e.g. (NbS3, TiS3) and (NbS3, HfS3), which is promising for tunneling FET. However, with

higher-order correction (HSE), this broken gap can turn into a Type-II band alignment.

We can also see that the Fermi level of metallic TMTs remains relatively constant (around
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-5 eV), at the PBE level of theory. Mixing with the semiconductor TMTs, limited combi-

nations are possible where ohmic contacts can be fabricated, e.g. TaSe3 and TiS3, NbSe3

and TiS3, NbSe3 and HfSe3. However, most of the other combinations will create schottky

barrier during the contact.

6.4 Conclusion

We have calculated the band structure, atomic contribution and orbital contri-

bution for different quasi-1D TMT materials, for both bulk and monolayer. Using the

monolayer geometry, the band alignment of the TMTs are calculated with respect to the

absolute vacuum level. Several material combinations are promising for TMT-based tunnel

FETs. On the other hand, depending on the material combinations, several metallic TMTs

can provide efficient ohmic contacts to electronic devices.
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Figure 6.2: Band diagram of (a) bulk TaSe3, and (b) monolayer TaSe3. The color indicates
the maximum contribution of either metal or chalcogen atom at each k-point. Band dia-
gram of (c) bulk TaSe3, and (d) monolayer TaSe3, where the color indicates the maximum
contribution of atomic orbitals at each k-point.
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Figure 6.3: Band diagram of (a) bulk NbS3-I, and (b) monolayer NbS3-I. The color indicates
the maximum contribution of either metal or chalcogen atom at each k-point. Band diagram
of (c) bulk NbS3-I, and (d) monolayer NbS3-I, where the color indicates the maximum
contribution of atomic orbitals at each k-point.
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Figure 6.4: Band diagram of (a) bulk NbS3-IV, and (b) monolayer NbS3-IV. The color
indicates the maximum contribution of either metal or chalcogen atom at each k-point.
Band diagram of (c) bulk NbS3-IV, and (d) monolayer NbS3-IV, where the color indicates
the maximum contribution of atomic orbitals at each k-point.
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Figure 6.5: Band diagram of (a) bulk NbS3-V, and (b) monolayer NbS3-V. The color
indicates the maximum contribution of either metal or chalcogen atom at each k-point.
Band diagram of (c) bulk NbS3-V, and (d) monolayer NbS3-V, where the color indicates
the maximum contribution of atomic orbitals at each k-point.
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Figure 6.6: Band diagram of (a) bulk NbSe3, and (b) monolayer NbSe3. The color indicates
the maximum contribution of either metal or chalcogen atom at each k-point. Band diagram
of (c) bulk NbSe3, and (d) monolayer NbSe3, where the color indicates the maximum
contribution of atomic orbitals at each k-point.
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Figure 6.7: Band diagram of (a) bulk TiS3, and (b) monolayer TiS3. The color indicates the
maximum contribution of either metal or chalcogen atom at each k-point. Band diagram of
(c) bulk TiS3, and (d) monolayer TiS3, where the color indicates the maximum contribution
of atomic orbitals at each k-point.
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Figure 6.8: Band diagram of (a) bulk ZrS3, and (b) monolayer ZrS3. The color indicates the
maximum contribution of either metal or chalcogen atom at each k-point. Band diagram of
(c) bulk ZrS3, and (d) monolayer ZrS3, where the color indicates the maximum contribution
of atomic orbitals at each k-point.
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Figure 6.9: Band diagram of (a) bulk ZrSe3, and (b) monolayer ZrSe3. The color indicates
the maximum contribution of either metal or chalcogen atom at each k-point. Band dia-
gram of (c) bulk ZrSe3, and (d) monolayer ZrSe3, where the color indicates the maximum
contribution of atomic orbitals at each k-point.
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Figure 6.10: Band diagram of (a) bulk ZrTe3, and (b) monolayer ZrTe3. The color indicates
the maximum contribution of either metal or chalcogen atom at each k-point. Band dia-
gram of (c) bulk ZrTe3, and (d) monolayer ZrTe3, where the color indicates the maximum
contribution of atomic orbitals at each k-point.
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Figure 6.11: Band diagram of (a) bulk HfS3, and (b) monolayer HfS3. The color indicates the
maximum contribution of either metal or chalcogen atom at each k-point. Band diagram of
(c) bulk HfS3, and (d) monolayer HfS3, where the color indicates the maximum contribution
of atomic orbitals at each k-point.
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Figure 6.12: Band diagram of (a) bulk HfSe3, and (b) monolayer HfSe3. The color indicates
the maximum contribution of either metal or chalcogen atom at each k-point. Band dia-
gram of (c) bulk HfSe3, and (d) monolayer HfSe3, where the color indicates the maximum
contribution of atomic orbitals at each k-point.
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Figure 6.13: Band alignment of monolayer MX3. CBM and VBM with respect to the
vacuum level (Ev = 0 eV ) are calculated using the density functional theory. The top
(bottom) bar indicates the CBM (VBM). In case of the metallic TMTs, only the Fermi
level is indicated by the bottom bar.
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[126] Wu Li, Jesús Carrete, Nebil A. Katcho, and Natalio Mingo. Shengbte: A solver of
the boltzmann transport equation for phonons. Computer Physics Communications,
185(6):1747 – 1758, 2014.

[127] Wu Li, L. Lindsay, D. A. Broido, Derek A. Stewart, and Natalio Mingo. Thermal
conductivity of bulk and nanowire mg2sixsn1−x alloys from first principles. Phys. Rev.
B, 86:174307, Nov 2012.

[128] Wu Li and Natalio Mingo. Lattice dynamics and thermal conductivity of skutterudites
cosb3 and irsb3 from first principles: Why irsb3 is a better thermal conductor than
cosb3. Phys. Rev. B, 90:094302, Sep 2014.

[129] Wu Li and Natalio Mingo. Ultralow lattice thermal conductivity of the fully filled
skutterudite ybfe 4 sb 12 due to the flat avoided-crossing filler modes. Physical Review
B, 91(14):144304, 2015.

[130] Wu Li, Natalio Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A. Katcho.
Thermal conductivity of diamond nanowires from first principles. Phys. Rev. B,
85:195436, May 2012.

[131] Tej B Limbu, Konstanze R Hahn, Frank Mendoza, Satyaprakash Sahoo, Joshua James
Razink, Ram S Katiyar, Brad R Weiner, and Gerardo Morell. Grain size-dependent
thermal conductivity of polycrystalline twisted bilayer graphene. Carbon, 117:367–
375, 2017.

[132] L. Lindsay, D. A. Broido, and Natalio Mingo. Diameter dependence of carbon nan-
otube thermal conductivity and extension to the graphene limit. Phys. Rev. B,
82:161402, Oct 2010.
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