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ABSTRACT OF THE THESIS

Energy Management in Wireless Healthcare Systems

Using Dynamic Task Assignment

by

Priti Aghera

Master of Science in Computer Science

University of California, San Diego, 2010

Tajana Simunic Rosing, Chair

Wireless healthcare systems are hierarchical and heterogeneous in nature with compo-

nents that have different energy and performance capabilities. Ensuring the optimal

energy consumption across all these components while meeting performance require-

ments is a critical issue. In such systems with processing, sensing, and communication

tasks, allocation of tasks to devices of the system affects the system battery lifetime and

energy consumption.

This thesis presents a number of static and dynamic task assignment strategies

to save energy and extend system lifetime. The problem of optimal task assignment
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with objectives related to minimizing the total energy consumption and maximizing the

system lifetime are formulated using Integer Linear Program (ILP)-based solutions. The

ILP based solutions are able to improve the battery lifetime by up to 1.4 times compared

to performing all of the processing tasks on the backend server.

Given the dynamic nature of wireless systems, three dynamic algorithms are pro-

posed. These algorithms are computationally efficient and are able to adapt to changing

system conditions in real-time unlike ILP based solutions. DynAGreen algorithm is a

graph-based task assignment algorithm with the objective of minimizing total system

energy consumption. DynALife algorithm is a heuristic task assignment strategy that ex-

tends system battery lifetime. DynAGreenLife balances both system energy and system

lifetime in wireless healthcare systems. Our dynamic scheduling techniques are able

to improve system lifetime by up to 88% and on an average 30% in comparison to the

static task assignment given by the ILP in dynamically changing urban conditions that

represent real life scenarios.
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Chapter 1

Introduction

The new generation of wireless mobile systems with seamless integration of

2.5G and 3G cellular systems, wireless LAN, Bluetooth, and Zigbee can provide wide

coverage and an improved capacity to run many different types of wireless applications.

Advances in integrated circuit design and bioengineering have led to the design of low-

cost, miniature, lightweight, physiological sensors that can be seamlessly integrated into

a body area networks for human health monitoring.

Wireless sensor-based healthcare systems are hierarchical and heterogeneous in

nature. They consist of different types of components with various energy capacities,

processing capabilities, and wireless communication capabilities. These components

include multiple sensors, one or more local data aggregators (e.g. cell phones), and

a server. The primary goal of today’s wireless healthcare systems is to continuously

sense various vital signs of a subject and monitor environmental parameters such as

temperature, carbon monoxide (CO), pressure, process these raw signals and send the

information to a backend server for analysis by healthcare professionals in real time

using wireless communication channels. One or more intermediate nodes, called local

aggregators in this work, can receive information from the sensors and then forward

such information to a remote server node.

There is a recent push to provide real time feedback to the users of wireless

1
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Figure 1.1: mDiet: Clinical trial results

healthcare systems with the goal of changing their behaviour. This in tern requires better

CPUs, relatively, power, etc. We assume that a local aggregator has Wide Area Wireless

Access Network (WWAN) connectivity using a 3G/4G wireless protocol to reach the

server providing service continuity with patient mobility.

An example of such a system is the wireless preventive healthcare project run

at UCSD. This project focuses on encouraging study subjects to increase their physical

activity and optimize their energy intake through real time monitoring and feedback to

the study subjects via sensors (e.g. accelerometer, GPS, heart rate) and cell phones.

During a 16 week clinical trial [10], the group using this system lost an average of 4.4

pounds more than the control group as shown in Fig. 1.1. More than 96% of subjects

loved the system over the traditional paper based survey and would recommend it to

others. The study showed that real-time feedback to users is much more successful in

encouraging change in human behaviour.

One of the key challenges encountered during this clinical trials is managing

energy consumption of the mobile devices used in the system due to limited battery

lifetime. The cost of computing locally is lower than wirelessly transmitting data to

a remote node ([9] [22]). Thus, in addition to communicating data to the server, we

can leverage the processing capability of today’s mobile phones and sensors to perform
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some processing of the sensed data locally. Such processing may also be desirable if

connectivity is weak or not available, so that alerts can be provided to the patient wher-

ever they are, and regardless of the nature of the connectivity to the server. As this local

processing consumes battery energy, it leads to a dynamic trade-off in processing and

communications costs in the distributed system. Depending on the available process-

ing capability, the available battery-life and the changing wireless conditions the task

assignment on different nodes in this distributed system should vary.

1.1 Thesis Contribution

Our goal in this work is to develop an energy efficient assignment algorithm that

assigns tasks to the resources with different energy optimizing objectives while meeting

task dependency and communication constraints. We approach this problem of task

assignment in following two ways:

1. Finding an optimal task assignment for any given system utilizing knowledge of

all system parameters. Note that this solution is only optimal for given fixed set

of system parameters.

2. Designing a lightweight and dynamic solution behaving close to an optimal so-

lution but can adapt to changing system characteristics and changing taskset

quickly.

With both the approaches we address following three different system objectives:

1. Minimize system energy: System energy is defined as a total of energy con-

sumed by all mobile components(i.e. sensors and LA) in the system. Minimizing

system energy can result in significantly different battery life of heterogeneous

devices of such a system due to uneven workload distribution. Since a system

lifetime is minimum of battery life of all devices, this objective, while fair across

all nodes, would result in a node with low battery life being depleted of its bat-

tery energy faster and thus very short system lifetime. In a healthcare system
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scenario where longer system lifetime is more important then minimizing over-

all energy of the system, objective# 2 should be used.

2. Maximize system lifetime: System lifetime is defined as the time from the start

of the system until the time first device runs out of energy. Due to heterogeneity

of the system, each device in the system can have very different battery capacity,

thus leading to significantly different task allocation then objective# 1.

3. Balance system energy and system lifetime: This objective finds the middle

ground, thus balancing the trade off between minimizing system energy and

maximizing system lifetime.

To meet the objective of finding energy efficient task assignment, we formu-

late two different ILPs (Integer Linear Programs). ILPGreen, and ILPLife addresses

the objective 1 and 2 respectively. While for a small number of tasks and resources

the problem can be solved in polynomial time, for more complex systems the compu-

tational complexity of the ILP is too high. Additionally, dynamically changing system

characteristics in wireless systems can invalidate the optimality of the statically com-

puted task assignment. To address this, we designed three different dynamic algorithms

which are computationally efficient and based on our simulations produces near opti-

mal solutions. The algorithms DynAGreen, DynALife and DynAGreenLife address our

system objectives 1, 2 and 3 respectively.

We show that in the static case, the optimal assignment of tasks to heterogeneous

nodes in the system significantly affects performance and battery life of the system. In

our experiments, we observed that the ILP solution is able to improve the battery life-

time by up to 1.4 times in comparison to performing all processing tasks on the backend

server. We implement the proposed algorithms using Qualnet [15] discrete event wire-

less simulator. Our dynamic scheduling technique is able to improve system lifetime by

up to 88% and on an average 30% in comparison to the static task assignment given

by the ILP in dynamically changing urban conditions that represent real life scenarios.

DynAGreenLife balances both system lifetime and system energy by extending system
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lifetime close enough to that given by DynALife but saves up to 40% more energy than

DynALife. On the other hand DynAGreenLife extends system lifetime up to 40% more

compared to DynAGreen.

The rest of the thesis is organized as follows. Chapter 2 discusses the prior work

and Chapter 3 provides a formal description of the system model and task assignment

problem. ILP based static optimal techniques for task assignment in wireless healthcare

systems are described in Chapter 4. Chapters 5, 6 and 7 describes our proposed dynamic

task assignment algorithms. Finally we present our results in Chapter 8.



Chapter 2

Related Work

Wireless health care applications can be categorized into i) disease management

ii) assisted living for elderly and iii) preventive medicine. CardioNet [6] is one of the

disease management applications, and it provides 24x7 cardiac monitoring service with

beat-to-beat, real time analysis, automatic arrhythmia detection and wireless ECG trans-

mission. The Mobihealth [3] project in Europe is another other example of disease man-

agement system. Dabiri et.al. presents the Electronic Orthotic Shoesystem as a means of

ulcer prevention for patients suffering from neuropathy in [8]. There are many systems

like Alarm-Net [20], SmartCane [21], I-Living [19], and PAMM [1] to aid the elderly

in their day to day life. Similarly, [19] is an example of a wireless preventive healthcare

system.

Most of such systems today assumes sense-and-forward mode where the data is

gathered and sent to the back end server for processing. As we show later, this sense-

and-forward mode does not leverage the processing capabilities of todays sensors and

mobile phones and can lead to significantly lower system battery. Previous work has

shown (e.g. [9], [22]) that transmitting or receiving a bit wirelessly can be significantly

more expensive than processing the bit locally on the CPU. The processing energy of a

task also depends on the processing power of the resource that task is computed. Thus

the decision of processing locally or transmitting data for remote processing for a task

6
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depends on the processing power and battery of the resource where the task is assigned

and number of bytes to be communicated.

Task assignment and scheduling onto multiple resources are classical problems

in traditional computation and parallel computing [4] [16]. Stone [16] provided a graph-

based partitioning solution to efficiently assign program modules in a two processor dis-

tributed computing system to minimize the total execution time of tasks in the system.

In our research, we assign tasks to different nodes in the system by minimizing system

energy, and balancing the tradeoff between system energy and system lifetime. We uti-

lize graph partitioning in a hierarchical manner to address partitioning between multiple

nodes (server, local aggregator, and sensors) as we will describe later.

There is quite a bit of previous work on energy optimization in wireless sensor

networks using efficient task assignment. Localized task mapping and task schedul-

ing have been considered for homogeneous wireless sensor networks(WSN) [18], [23]

and [17] recently. Static EcoMapS algorithm is proposed for energy constrained ap-

plications in single-hop clustered WSNs with homogeneous nodes, to map and sched-

ule communication and computation simultaneously [18]. Unlike our work, EcoMapS

aims to schedule tasks with the minimum schedule length subject to energy consump-

tion constraints. In the case of sensor failures, a quick recovery algorithm is executed

to generate alternative schedule. This technique cannot be applied to our system as

wireless healthcare systems have heterogeneous resources and each sensor has specific

functionality. Energy-balanced task allocation of real time application onto single-hop

cluster of homogeneous sensor nodes connected with multiple channels is introduced in

[23] . Yu and Prasanna examine the two problems of assignment of jobs to resources

and the determining of the voltage levels in a joint manner. They formulate the prob-

lem as an integer linear program (ILP), and they utilize a 3-phase heuristic to solve

the problem. MTMS algorithm is proposed in [17] for task mapping and scheduling in

multi-hop homogeneous WSNs with real time guarantees. Although task mapping and

scheduling techniques has been applied to wired and wireless sensing networks very

little has been done for heterogeneous and hierarchical wireless sensing systems. A.
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Nahapetian et.al. has presented an overview of different power management techniques

that can be very useful in tackling the power management issues facing wearable med-

ical systems in [12]. The MicroLEAP platform [2] supports per-task real-time energy

profiling to permit adaptive applications that select platform components to best match

dynamically-varying measurement requirements.

Our work focuses on reducing the total energy consumption and maximizing

lifetime of a wireless healthcare system by performing dynamic task assignment and

scheduling. Contrary to most of the prior work in task assignment in WSN, our strategy

is able to work with a heterogeneous set of resources with various performance and

energy characteristics and a number of different types of connectivity. In addition, our

technique can adapt to changing system and workload characteristics at runtime, such

as varying wireless channel conditions, processing load, network load, task arrival rates,

and the available battery capacity of the resources.



Chapter 3

System Architecture and Model

This chapter describes the architecture of a typical wireless healthcare system

in detail. Fig. 3.1 shows the architecture of a typical wireless distributed healthcare

system. The system has three main components: Sensors, Local Aggregator (LA), and

a Backend Server (BE). Sensors form the Body Area Network (BAN). Their function

is to sense and detect specific events (e.g., low blood sugar). Sensors send processed

and/or raw sample data to their respective LA wirelessly. There is one LA per BAN. The

LA aggregates data collected by sensors and may process the data before sending it to a

centralized BE for analysis by health professionalsor LA might send all the data to BE

for analysis. A LA typically contains multiple wireless technologies such as Bluetooth,

Zigbee, WLAN, and WWAN. The BE receives information sent by the LA and stores the

information in a database which can be accessed for further analysis.

Figure 3.1: Wireless healthcare system architecture

Each resource has a CPU, local memory, and one or more communication units.

9
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These devices differ in their processing capabilities, battery life, bandwidth, range, and

types of radios. In a typical healthcare system, a patient would carry one LA (usually

a cell phone). BE is a large computer server that contains a large database of all the

information collected representing a computing cloud. Therefore, we assume that per

patient there is only one LA, one BE, and a number of sensors. We also assume that

data follows the path from sensors to LA, and then to BE. Sensors cannot communicate

directly with BE, as they typically do not have the capability of transmitting data over a

wide area network where the BE resides. Sensors in healthcare applications are usually

designed for sensing and processing a specific task. They are not designed to handle

other types of data. Thus, in our system, sensors only communicate with the LA and not

with each other.

3.1 System Model

Tasks of a wireless healthcare application can be modelled as a Directed Acyclic

Graph (DAG)G = (T,E) where node set T represents set of n sensing/processing tasks,

T : i = 1, 2, ..n and C is set of edges that represent communication tasks between nodes,

C : i = 1, 2, ..n. Cij ∈ C represents a precedence relation between tasks Ti, Tj ∈ T

and the data produced by task Ti should be communicated to Tj before Tj can start its

processing. The weights Wij on edge Cij ∈ C represent the amount of data that needs

to be transmitted from task Ti to Tj . Tasks that do not have any predecessors are called

source tasks, and tasks that do not have successors are called sink tasks. Generally for

wireless healthcare systems source tasks are used for sensing and the sink tasks are used

for data logging at the BE. Given a DAG and a set of heterogeneous resources, our

goal is to map the given DAG onto the set of resources R such that i) the total energy

consumption is minimized or ii) the system lifetime is maximized. iii) objective i) and ii)

are balanced. Here system lifetime is defined as the minimum of battery life of all the

mobile components per patient.
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Table 3.1: Variables and Constants
EBr Battery capacity of resource r

PRr Power consumed by the receiver of resource r

PTr Power consumed by the transmitter of resource r

PEr Power consumed in the execution of a task by resource r

tir Execution time of task i on resource r

wij Weight of the edge from task i to task j

bir bir ∈ {0, 1}s.t.bir = 1 iff task i is assigned to resource r

µRr Average datarate of the receiver on resource r

µTr Average datarate of the transmitter on resource r

predij predij ∈ {0, 1}s.t.predij = 1 iff task j is a predecessor of task i

sucij sucij ∈ {0, 1}s.t.sucij = 1 iff task j is a successor of task i

ERir Energy consumed by a resource r to receive input data for task i

=
n∑
j=1

{predij ∗ (1− bjr) ∗ PRr ∗ (wji/µRr)}

ET ir Energy consumed by a resource r to transmit input data for task i

=
n∑
j=1

{sucij ∗ (1− bjr) ∗ PTr ∗ (wij/µTr)}

Er Total energy consumed by a resource r

=
n∑
j=1

{bir(ERir + PEr ∗ tir + ET ir)}

si Start time of task i

τi End time of task i

di Deadline of task i

Tasks of the DAG are further characterize by a set of varaiables and constants

given in Table.3.1. A task i’s execution time is defined by tir and amount of data trans-

mitted to task j is defined by wij . Table.3.1 also defines variables and constants (EBr,

PRr, PTr, PEr, µRr, µTr) to characterize a resource r. These variables together define

communication and computation energy cost of task i on resource r. For example, ERir

defines energy consumed by task i to receive its input data on resource r in terms of

resource r’s receive power PRr, its average receive datarate µRr and time to receive task

i’s input data from its predecessor task j given by (
wji

µRr
). Similarly ET ir defines the
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transmit energy associated with task i on resource r. A task i’s computation energy is

given by PEr ∗ tir. The total energy Er consumed by a resource r, is the sum of compu-

tation energy of all tasks assigned on r, energy to receive input of these assigned tasks

and transmission energy to transmit the output of these tasks to its successor on other

resources.

Fig. 3.2 is an example of a DAG for activity detection application. The system in-

cludes three accelerometers which are worn on hand, waist and leg to determine whether

a person is sitting walking or running. The three sensing tasks act as source tasks.

Activity-Count1-2-3 are the successors of the respective sensing tasks. These process-

ing tasks generate activity count from the accelerometer sensed data. Acc-Correlation

is a processing task that combines the output of its three predecessors and determines

the current activity of the person. Activity-log is a sink task bound to BE to store the

activity log for future analysis by a medical professional, physical activity trainer, etc.

In this task graph ACC1, ACC2 and ACC3 are the source tasks and so they do not have

any predecessor. Activity Count1, Activity Count2 and Activity Count3 are the suc-

cessors of ACC1, ACC2 and ACC3 respectively. Hence,sucACC1,ActivityCount1 = 1,

sucACC2,ActivityCount2 = 1, sucACC3,ActivityCount3 = 1, predActivityCount1,ACC1 = 1,

predActivityCount2,ACC2 = 1 and predActivityCount3,ACC3 = 1. Each of the tasks in a task

graph has start time si, an end time τi and a deadline di associated with it. To maintain

the task precedence, the start time of a successor should be greater than the end time of

its predecessor. Thus, in this task graph sActivityCount1 > tauACC1.

Figure 3.2: Wireless healthcare system architecture
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Each resource of the system has battery capacity (defined as EBr in Table.3.1. If

cellphone has a battery energy of 300 mAmp then EBLA
= 300. The total energy(Er)

consumed by a resource is the sum of energy consumed by the resource in receiving

data from its predecessors (ERir), energy consumed in transmitting data to its successors

(ET ir) and execution time of tasks assigned to it(PEr ∗ tir). Considering the processing

capabilities of the resources for the case of the taskgraph shown in Fig. 3.2, we see that

processing tasks can be done on either of the three tiers but with different performance

costs. For example, if Acc-Count1 is done on the LA or the BE, there is an added energy

cost of communicating 15000 bytes from the BAN to the LA and then from the LA to

the BE, compared to communicating only 120 bytes of processed data if the processing

is done on the sensor itself. The time LA takes to transfer the data(15000 bytes) needed

by the Activity Count1 task on BE depends on the transmitter data rate (µTLA
) and the

amount of data to be transmitted (wACC1,AtivityCount1). This is multiplied by the power

consumed by the transmitter (PTLA
) to obtain the transmitting energy cost of a Activity

Count1. On the other hand, processing on a sensor might be slower than processing on

a BE. It also might consume more battery power compared to transmission of 15000

bytes which depends on power consumed in the execution of Activity Count1 by sensor

(PEsensor). Thus, we need to consider the processing cost and communication cost for

each task on each resource and make task assignment decisions accordingly.



Chapter 4

Optimal Task Assignment

In this chapter, we present a static Integer Linear Program (ILP) based strategy,

which computes the optimal task assignment for a given objective. We formulated ILP

for two main objectives i.e. i) Minimizing total energy consumption of the system ii)

Maximizing system lifetime. These static solutions act as a baseline of comparison for

our dynamics algorithms, and also provide a static allocation for systems with a priori

known characteristics.

4.1 Integer Linear Program

The goal of the first ILP (ILP-Green), shown in Table 4.1, is to compute the most

efficient task allocation that minimizes the total energy consumption of the system. The

format of the task graph is the same as the DAG described in Chapter 3 except that we

add an explicit communication task in between two dependent sensing/processing tasks

to simplify the ILP formulation. Fig. 4.1 shows a sample graph transformation. This

transformation is done to represent communication task as a node. From the graph, we

can determine each tasks predecessors, successors, amount of data needed from previous

tasks, and the amount of data it produces.

14
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Figure 4.1: Task graph transformation for ILP

ILPGreen assigns tasks with the aim to reduce total energy without consider-

ing the battery capacity of the system components and rate of energy consumption.

This might result in more work being assigned to a resource with critically low battery

charge compared to other resources. As a result of this assignment that resource would

discharge earlier than the other system resources and thus resulting into shorter system

lifetime.

As it would be desirable to have the entire system functioning for as long as

possible. We therefore explore a different ILP, called ILPLife that maximizes the system

lifetime using a min-max formulation on the rate of energy drain relative to the available

battery capacity of each node. ILPLife has the same constraints, constants and variables

but computes the optimal assignment with the objective of maximizing system lifetime

as shown in Table 4.1. Our approach to maximize the battery lifetime of the whole sys-

tem is to minimize the maximum energy consumption of all the resources in the system.

We want to balance the energy consumption in all the resources such that each resource

consumes approximately the same percentage of energy. If one resource consumes a

higher percentage of energy than the others, it would deplete its energy source first.

The complete formulation of ILPGreen and ILPLife with goals and constraints

are given in Table 4.1. Among the resources r, resource m denotes the backend server

and resource m-1 denotes the local aggregator. We solve the above ILPs’ for variable

bir, the mapping of tasks t to resources r. Variable Er represents the total energy con-

sumed by a resource after tasks have been assigned to it. For ILPGreen our goal is to

minimize sum of energy consumed by all the resources except BE i.e. sum of all Er.
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Table 4.1: ILP Objective and Constraints

ILPGreen: = min(
m−1∑
r=1

Er) Minimize system energy

ILPLife: = mini{maxr Er,i

Batr
}where, r =

1, 2...m− 1

Maximize system life

(a) ∀i,
m∑
r=1

bi,r = 1
Total Allocation Constraint: Each task
is assigned to one and only one re-
source

(b) Er ≤ BatEr Battery Capacity Constraint

(c) (bjm + bjm−1) = 1 if(bim = 1 ∧
predij = 1)

Resource Allocation Constraint 1: Pre-
decessor tasks of a task mapped to the
backend are mapped to either the back-
end or the local aggregator

(d) (bjm−1) +
m−2∑
k=1

bjk) = 1 if(bim−1 =

1 ∧ predij = 1)

Resource Allocation Constraint 2: Pre-
decessor tasks of a task mapped to the
local aggregator are mapped to either
the local aggregator or a sensor

(e) bjk = 1 where k = 1, 2..m − 2
if(bik = 1 ∧ predij = 1)

Resource Allocation Constraint 3: Pre-
decessor tasks of a task mapped to a
sensor are mapped to the sensor

(f) si ≥ max(0, τj)∀j, where predij = 1 Start Time Constraint: The starting
time for tasks must be greater than
the finishing time of all its predecessor
tasks

(g) τi = si +
m∑
r=1

{bir ∗ (tir +
n∑
j=1

predij ∗

(1− bjr) + sucij ∗ (1− bjr))}

Finishing Time Constraint: The finish-
ing time of a task is the start time plus
the time it takes to receive, execute,
and send the data for the task
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Our goal for ILPLife is to minimize the maximum percentage of energy consumption

among resources r. In Table 4.1 Er/EBr represents the percentage of energy consumed

by a resource r relative to the overall battery charge. All these variables and constants

are explained in Table 3.1 of Chapter 3.

The constraints of the ILP are described in Table 4.1. Constraint (a) guarantees

that tasks are assigned to only one resource. Constraint (b) ensures that a resource would

not be assigned to more tasks than the resource has energy for. Resource allocation con-

straints ensure that predecessor tasks of a task are allocated to neighbouring resources

that are able to communicate with each other. This ensures that a task mapped to the

backend server does not have a direct predecessor that is assigned to a sensor as sensors

are unable to directly transfer data to the backend server. Similarly predecessor of a task

assigned to LA should be assigned to LA or respective sensor.

Constraints (f), (g), and (h) are related to timing and delays. Constraint (f) en-

sures that tasks do not start before their predecessor tasks have finished. Constraint (g)

determines when a task finishes by calculating the time it takes to receive, execute, and

send the data for that task. Deadline constraint ensures that tasks must finish by a given

deadline.

Figure 4.2: Computational overhead of ILP and dynamic algorithms

We used an open source ILP solver called lp-solve[11] to get the optimal task

assignment for each of our tasksets. Fig. 4.2 shows the execution time of lp-solve on

a pentium PC for various tasksets and compares it to runtime of dynamic algorithms
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described in next chapters. As the number of tasks in a taskset increases, execution time

of lp-solve increases exponentially.

In a practical system, we should be able to adapt to the various sources of runtime

variations, such as wireless channel condition changes due to a person moving inside of

a building, changes in task execution time due to more processing required in certain sit-

uation, and addition of some new tasks in a taskset due event based monitoring. Changes

in wireless channel conditions results in changes in communication energy cost while

changes in execution time of the affects computation energy cost. LA is a central com-

ponent in our system and can easily keep track of varying system parameters without

too much communication overhead. Because of this, task assignment algorithm should

be run on LA at a regular interval or when ever the system parameters changes. Com-

putational cost of running ILP based solution on LA becomes prohibitively high (e.g.

100+ seconds on a pentium PC for taskset with more than 20 tasks). Because of this ILP

based solution are not practical and cannot be deployed on LA to handle dynamically

changing system parameters. To address this challenge, we have designed three fast

task assignment algorithms. These algorithms have very low computational overhead

compared to ILP (see Fig.4.2) and hence can be run frequently to find energy efficient

task assigning in changing environment. Following chapters describes these algorithms

in detail.



Chapter 5

DynAGreen Algorithm

We have designed three fast and energy-efficient task assignment algorithms

called DynAGreen (Dynamic task Assignment for Greener solution) for minimizing to-

tal energy consumption, DynALife to maximize system lifetime and DynAGreenLife to

balance system energy and lifetime. These dynamic algorithms are run periodically on

LA and utilize current energy costs of all tasks to find energy-efficient task assignment.

The algorithms monitor communication costs of all the nodes and their remaining bat-

tery charge. Based on these parameters they compute the best task assignment to meet

the given objective.

Energy minimization algorithm, DynAGreen, is described in this chapter fol-

lowed by DynALife algorithm for system lifetime maximization in Chapter 6. DynA-

GreenLife algorithm which balances both the objectives is described in Chapter 7.

5.1 DynAGreen Algorithm

DynAGreen algorithm addresses previously defined system objective of mini-

mizing system energy. For this algorithm we have adopted Stones method to find an as-

signment of tasks to wireless health system components that minimizes the total energy

consumption of the distributed wireless system [16]. We use flow graph partitioning

19
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Figure 5.1: DynAGreen Algorithm

technique to partition tasks between different components (server, LA, sensors) in a hi-

erarchical fashion. The hierarchical partitioning is applied in two steps. In the first step,

a flow graph constructed from given task graph is partitioned between an infinite energy

BE, and a super-node referred as BAN that comprises the LA and the sensors. Weights

on the edges in the flow graph represent communication and computation energy costs

of performing a task on BAN or BE and partitioning is done using a maxflow/mincut al-

gorithm. The minimum weight cutset represents the energy cost if tasks are partitioned

by the cutset and this provides partitioning of tasks to minimize energy between the

server and the BAN. Subsequently, in a second step, we partition the tasks within the

BAN between the LA and the sensors to minimize the utilization of energy within the

BAN. Following are the details of each step in the algorithm.

1. Computation energy cost parameters (ECPUa, ECPUi) and communication en-

ergy cost parameters (Etx, Eidle, Erx) for all resources are initialized/updated.

Here ECPUa(r) and ECPUi(r) represent energy consumed by a CPU in active

and idle states respectively and Etx, Eidle, and Erx represent energy consumed

by radio in transmit, receive and idle state respectively. In the first run of the
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algorithm they are initialized with default values and in subsequent runs they are

updated based on the radio interface monitoring.

2. Tasks are partitioned between BAN and BE such that total of computation en-

ergy cost of performing tasks in BAN partition and communication energy cost

of sending output of those tasks to BE is minimum. To achieve this objective we

transform given task graph into a flow graph with communication and computa-

tion energy cost as flow values, BAN as a source node and BE as sink node such

that minimum weight cutset represents the total of computation and communi-

cation energy cost for the partition. Formal description of this transformation is

explained in Section 5.1.2.

3. We find the minimum weight cutset to partition the constructed flow graph into

BAN and BE partition. In [16] Harold Stone proves that such a minimum weight

cutset provides optimal task assignment for a two processor system. Therefore,

we obtain BAN-BE task partition that results in minimum energy cost. The par-

titioning process is described in detail in Section 5.1.1.

4. Since we found the minimum energy cost partition between BAN and BE, tasks

in BE partition are assigned to BE while tasks in BAN partition need to be as-

signed on Sensors and LA in subsequent steps of the algorithm. Define TBAN ⊆

T as a set of tasks in BAN partition and EBAN ⊆ E as a set of edges among

tasks in TBAN .

5. All the sensors are collectively represented by a single source node,Sensors. LA

is represented by a single sink node LA in Sensors-LA flow graph. As per our

system model, all tasks are traced back to one or more sensing tasks by follow-

ing their predecessor chain. These sensing tasks are pre-assigned to sensors or

LA. A processing task that receives its input from more then one sensors can not

be assigned to a sensor since as per our system model sensors can not commu-

nicate with each other directly. Such a task has to be assigned on LA or BE. By
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assigning appropriate weights on the edges in flow graph, we ensure that such

tasks cannot be in Sensors partition. This also implies that if a task is in Sen-

sors partition, it should receive its input from only one sensor and we can find

that sensor by tracking the task’s predecessors. Similar to BAN-BE partitioning,

we partition tasks between Sensors and LA such that total of computation and

communication energy cost of the system is minimum. To achieve this objective

we create Sensors-LA flow graph from remaining tasks with communication and

computation energy cost as flow values such that minimum weight cutset repre-

sents the total of computation and communication energy cost for the partition.

Section 5.1.2 formal description of this transformation

6. We find the minimum weight cutset to partition the constructed flow graph into

Sensors and LA partition. This Sensors-LA task partition results in a task as-

signment that has minimum energy cost. Sensor-LA partitioning is explained in

detail in Section 5.1.2.

7. Tasks in Sensor partition are assigned to respective sensors and tasks in LA par-

tition are assigned to LA. Even though Sensors node in flow graph represents

multiple sensors, after finding mincut, we can assign tasks in Sensors partition

to appropriate sensor.

8. To detect the changes in system characteristics, communication cost parameters

such as transmit power and time spent in various states (receive, transmit, idle,

sleep) by the radio on each resource are measured and updated. This measure-

ment is done over LCM (Least Common Multiple) of the period of all tasks in

the taskgraph. Go back to step 1 when ever significant change(30%) in commu-

nication cost parameters is detected.

We used implementation of mincut/maxflow algorithm proposed in [5]. Authors

have shown that their algorithm beats all existing polynomial time mincut algorithms.

In Fig. 4.2, we compare the execution time of ILP-Green and DynAGreen when run
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Table 5.1: Weights of edges in BAN-BE partition
Edge Value Condition

w(BAN, t)
0 if task t is not bound to sensor or LA

∞ if task t is bound to sensor or LA

w(t, BE)

ECPU(t, LA) if task t is not bound

0 if task t is bound to sensor or LA

∞ if task t is bound to BE

wwan(tp, ts) Eradio(tp, LA) where radio = LA’s WAN radio

on a PC. The computational time of ILP-Green is significantly higher (seconds) than

DynAGreens execution time (milliseconds). ILP-Green execution time increases expo-

nentially with a number of tasks in the task graph as indicated by Fig. 4.2 . Because of

this low computational overhead compared to ILP-Green, our approach enables frequent

execution to address dynamically changing system parameters.

5.1.1 BAN-BE partition

In this section the BAN-BE partitioning of the DynAGreen algorithm is explained

in detail with an example. Following steps explains the partition process.

• A flow graph G′ = (T ′, E ′), is created from given task graph G = (T,E) by

adding BAN and LA nodes to T and adding EBAN and EBE edge sets to E.

Formally T ′ = T ∪ {BAN,BE} and E ′ = E ∪ EBAN ∪ EBE . BAN node

collectively represents sensors and LA. EBAN and EBE are added to represent

computation energy cost of the tasks on BE and BAN respectively while edges

in E represent communication energy cost.

• EBAN is a set of edges from BAN to the each node t in T. Weight of edge

(BAN, t) is equal to computational cost of task t on BE and it is defined by

w(BAN, t) in Table. 5.1. The rationale behind this weight assignment is that

if a mincut includes edge (BAN, t) then it means that t is in BE partition and
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computation cost of performing this task on BE is added to weight of the cutset.

We consider BE to have unlimited energy and hence computation energy cost of

performing a task on BE is set to 0 in Table. 5.1. If a task t is bound to sensor or

LA node, we need to ensure that a minimum weight cutset does not include edge

(BAN, t). We achieve that objective by setting the weight of the edge (BAN, t)

to∞ as per Table. 5.1.

• EBE is a set of edges from each node t in T to BE with weight of edge (t, BE)

equal to computational cost of task t on LA as defined by w(t, BE) in Table. 5.1,

where ECPU(t, LA) is the computation energy cost of running task t on LA.

This weight assignment has similar rationale to (BAN, t) weight assignment.

If a mincut includes edge (t, BE) then it means that t is in BAN partition and

computation cost of performing this task on BAN is added to weight of the cutset.

Note that in Table. 5.1 we use LA’s parameters to calculate computation energy

cost as BAN is represented by LA during this stage of the algorithm. We enforce

this edge to be part of minimum weight cutset by setting its weight to 0 as per

Table. 5.1 if the task is bound to a sensor or LA. Similarly we enforce that this

edge is not part of minimum weight cutset by setting its weight to∞ if the task

is bound to BE.

• Edge (tp, ts) in E represent the inter-task communication link between predeces-

sor task tp and its successor task ts. Weight of edge (tp, ts) is equal to communi-

cation cost of sending tps output from LA to BE and is defined by wwan(tp, ts) in

Table. 5.1, where Eradio(tp, LA) is communication energy consumed by task tp

on resource LA. Note that we use LA’s system parameters to compute communi-

cation energy cost of BAN.

• We find the minimum weight cutset to partition the constructed flow graph into

BAN and BE partition. Once we find the minimum energy cost partition between

BAN and BE, tasks in BE partition are assigned to BE.
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Figure 5.2: Example Taskset

Example: We use the taskset shown in Fig. 5.2 to provide an intuitive explanation of

this part of the algorithm. Fig. 5.3 shows flowgraph G′ for BAN-BE task partitioning

constructed from graph G Fig. 5.2. Notice that we added two new nodes BAN and BE

to the original graph. All the edges from BAN to tasks have computation cost of running

tasks on BE as their weights and that cost is defined in Table. 5.1. We set computational

cost of running a task on BE to 0 since it does not affect battery lifetime of sensor or

LA. Hence as per the Table. 5.1 if given task is not bound to sensor or LA, we set the

weight to 0. For example edges from BAN to tasks 3, 4, 5, 6 and 7 have weight of 0 in

Fig. 5.3. In case if a task is bound to specific sensor or LA, we want to make sure that

edge between BAN and task doesnt become part of minimum cutset. This is ensured by

assigning weight of∞ to such an edge. Since in our example tasks 0, 1, and 2 are bound

to their respective sensors, weights of edges from BAN to tasks 0, 1, and 2 are set to∞.

All the edges from tasks to BE have computation costs of running them on LA

and their weights and are set as per Table. 5.1. For example, edge from task 3 to BE

has energy cost of ECPU(3, LA). For tasks that are bound to either sensors or LA, we

want to ensure that edge from that task to BE is part of minimum cutset and hence we

set it 0 in Table. 5.1. If a task is bound to BE we want to ensure that an edge from given

task to BE is not part of minimum cutset and hence we set the weight to∞ as in case of

Activity Log task in this example.
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Figure 5.3: BAN-BE partition

Weights of edges between the tasks represent communication cost. For example

weight of the edge between task 0 and task 3 represent amount of energy required to

send output of task 0 from LA to BE. We use Table. 5.1 for this. Note that we use

LAs wide area network radio energy parameters for this cost calculations since we are

trying to find trade off between computing a given task on BAN and then sending its

output to BE or sending the input of given task from LA to BE. In our specific example

communication cost of sending input of task 3 to BE (3.145) is quite high compared to

summation of communication cost of sending its output to BE (1.51) and computation

cost of doing task on LA(0.231). Fig. 5.3 shows minimum weight cut set for the example

task set and this provides energy cost optimal assignment for BAN-BE partition as per

[16]. As a result of this, task 7 is assigned to BE.

5.1.2 Sensor-LA partition

Partitioning of tasks between sensors and LA is explained below:

• We create a new flow graphG′′ for Sensors-LA partitioning using all tasks in BAN

partition and then adding Sensors, LA and a set of proxy tasks. For all the tasks

in TBAN whose successors are assigned on BE, we create new task nodes which

are bound to LA and act as transmission tasks to BE and are represented by set



27

Table 5.2: Weights of edges in Sensor-LA partition
Edge Value Condition

w(Sensors, t)

ECPU(t, LA) if task t is not bound

0 if task t is bound to LA

∞ if task t is bound to a sensor

w(t, LA)

ECPU(t, Sensor) if task t is not bound

0 if task t is bound to a sensor

∞ if task t is bound to LA

wban(tp, ts) Eradio(tp, Sensor) where radio = source sensor’s radio

Tproxy. These proxy tasks are added to represent the communication energy cost

of forwarding output of a predecessor task from a Sensor to LA so that LA can

forward it further to BE. Edges of this new graph consist of following edge sets:

EBAN representing communication energy cost, ESensors representing computa-

tion cost of LA, ELA representing computation energy cost of sensors and Eproxy

to enforce proxy task assignment on LA. So formally this new flow graph is de-

fined as G′′ = (T ′′, E ′′), where T ′′ = (TBAN ∪ Tproxy ∪ {Sensors, LA}) and

E ′′ = (EBAN ∪ ESensors ∪ ELA ∪ Eproxy).

• ESensors is a set of edges from Sensors node to the each node t in TBAN ∪ Tproxy
with its weight equals to computational cost of running task t on LA and it is

defined by w(Sensors, t) in Table 5.2. The rationale behind this weight as-

signment is if a mincut includes edge (Sensors, t) then it means that t is in LA

partition and computation cost of performing this task on LA is added to weight

of the cutset. If a task t is bound to a sensor, we need to ensure that a minimum

weight cutset does not include edge (Sensors, t). We achieve that objective by

setting the weight of the edge (Sensors, t) to∞ as per Table 5.2. Similarly if

a task t is bound to LA, we guarantee inclusion of this edge in minimum weight

cutset by setting w(Sensors, t) to 0.

• ELA is a set of edges from each node t in TBAN ∪ Tproxy to LA with its weight
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equals to computational cost of running task t on Sensors and is defined by

w(t, LA) in Table 5.2, where ECPU(t, Sensor) is the computation energy cost

of running task t on a sensor. As noted earlier, if a task receives its input from

multiple sensors, it can only be assigned on LA and hence is considered bounded

on LA. Any task t bounded to LA has w(t, LA) set to∞ to ensure that this edge

does not become part of minimum weight cutset. If a task t is bound to sensor,

we set the w(t, LA) to 0 and that ensures edge (t, LA) to be part of minimum

weight cutset. For a task t that is not bound to a sensor or LA, we find the sen-

sor generating its input (by traversing through task’s predecessor change finding

root task and its associated sensor) and we use that sensor’s CPU parameters for

setting computation energy cost of the edge.

• Eproxy is a set of edges (tp, ts) where tp ∈ TBAN and ts ∈ Tproxy and EBAN is

a set of edges (tp, ts) where tp, ts ∈ TBAN . Weight for edge (tp, ts) ∈ EBAN ∪

Eproxy is the communication cost of transmitting tps output from its source Sen-

sors to LA and is given by wban(tp, ts) in Table 5.2 where Eradio(tp, Sensor) is

communication energy consumed by task tp on resource Sensor.

• We find the minimum weight cutset to partition the constructed flow graph into

Sensors and LA partition. This obtained Sensors-LA task partition results in

minimum energy cost .

• Tasks in Sensor partition are assigned to respective sensors and tasks in LA par-

tition are assigned on LA.

Example: To explain this partitioning procedure better we use the same example used in

5.1.1. Fig. 5.4 shows flowgraph G′′ for Sensors-LA task partitioning constructed from

graph G′ i.e. Fig. 5.3 as per above mentioned steps. Sensor and LA nodes are added

to tasks of BAN partition. Sensor and LA nodes are added to tasks of BAN partition.

In our example graph, we add ACC Correlation Proxy task 6 because its successor is

assigned on BE. The idea behind adding this task is to factor in costs to transmitting
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Figure 5.4: Sensor-LA partition

task 6’s output to LA in case task 6 gets assigned to a sensor. We bind all the proxy

tasks to LA since they are a place holder with no computation cost. Since in our system

model we do not assume inter-sensor communication link, we cannot assign a task to a

sensor if the task receives its input from multiple sensors sources and hence we bind it

to LA. In our example, ACC Correlation is such a task and hence gets bound to LA. We

set the weights as per Table 5.2. Fig.5.4 shows minimum weight cut set for Sensor-LA

partition. All tasks on in LA partitions are assigned to LA. Note that if a task and tasks

proxy both are in LA partition, we ignore the proxy task since it is only required if its

corresponding task is not assigned on LA. For Sensors partition, we find a sensor node

for a task by traversing it predecessor task chain until we find the source sensing task.

We assign the given task to same sensor node as its source sensing task. For example,

for task 3, task 0 is its source sensing task and hence task 3 will be assigned to a sensor

to which task 0 is bound to if task 3 would have been in sensor partition.



Chapter 6

DynALife Algorithm

This chapter provides an overview of the dynamic task assignment algorithm

DynALife designed to maximize system lifetime. DynALife is a fast and energy-efficient

heuristic task assignment algorithm. System lifetime is defined as the time from the start

of the system toll the time first battery operated device dies. DynALife was introduced

by the thesis author and other co-authors as the algorithm DynAHeal in [13]. However,

for clarity of presentation, we shall refer to DynAHeal as DynALife in the rest of this

paper. Cellphones and sensors can have different battery charge capacity and different

rate of energy consumption. For example, cellphones typically have larger batteries then

small sensors and they consume much more energy compared to sensors due to LCD,

speaker, and other peripherals. To maximize the system lifetime, we need to assign

tasks such that node with least battery charge gets least amount of work. DynAGreen

algorithm does not consider remaining battery charge of a device while assigning tasks

and hence minimizing energy consumption using DynAGreen algorithm does not always

maximize system lifetime. For example, lets say at the time of assignment shown in

Fig. 5.4 computed by DynAGreen, LA has only 10% battery charge remaining while an

all sensors have 80% of their battery charge remaining. In this scenario we can reduce

the workload on LA by assigning Activity Count tasks on sensors instead of LA and

this way increase the system lifetime by increasing LA’s battery lifetime. DynALife
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algorithm addresses such a scenario.

Fig. 6.1 outlines the heuristic algorithm. We assign the tasks one at a time start-

ing from source tasks. For each assignment we select a task assignment such that it

maximizes the system battery lifetime compared to all other task assignments possible

at a given stage and it also meets task deadline. We perform this operation iteratively

until all tasks are assigned. After the initial assignment we iterate over the assignments

and re-examine each tasks assignment to see if an alternative assignment can improve

system lifetime. We end the algorithm when further iteration does not improve system

battery lifetime. We next provide a detailed description of DynALife algorithm. Follow-

ing are definitions of set variables used by the algorithm.

• T : set of n tasks in the system

• P ⊆ T : set of pre-allocated tasks

• A ⊆ T : set of already assigned tasks

• R ⊆ T : set of unassigned tasks

• E ⊆ R : set of eligible tasks. All remaining tasks whose predecessors have

already been assigned

Algorithm steps:

1. Assign the tasks of set P to specified nodes of the system. P is used to put

user-defined constraints on task assignment and typically contains sensing tasks

bound to specific sensors and data logging tasks bound to the BE.

2. Update the sets A, E and R as per their definition.

3. Compute Battery Life Estimation table for all tasks in E. See example of such

a table in Table 6.1. We estimate a sensors battery lifetime and the LAs battery

lifetime for each possible assignment of task (on sensor, LA or BE). We then



32

Figure 6.1: DynALife Algorithm

compute the system battery lifetime as minimum of sensor’s battery lifetime

and LA’s battery lifetime for each possible assignment. The maximum of these

three system lifetime values is the maximum system battery lifetime that we can

achieve for the given task. We store the node ID of the best task assignment as

best assignment node ID. We also compute deadline slack for each possible task

assignment. If a particular task assignment does not meet the deadline this value

will be negative so we do not consider that assignment possibility.

4. Sort the Battery Life Estimation table based on maximum system battery life-

time and select the task with the longest system battery lifetime for assignment.

This results in the maximum system lifetime achievable at this stage. After this

assignment, we go to step 2 and the process is repeated until all the tasks are

assigned.

5. Iterate over each task assignment to find a better solution by reexamining as-

signment of an individual task starting from the source. While considering an
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Table 6.1: Battery life estimation table

Task
ID

Sensor
lifetime
if on
(sensor,
LA, BE)
sec

LA life-
time if on
(sensor,
LA, BE)
sec

System
lifetime
if on
(sensor,
LA, BE)
sec

Deadline
slack if on
(Sensor,
LA, BE)
msec

Max
system
lifetime

Best as-
signment
node ID

1 (600,
1200,
1020)

(800,
1500,
1500)

(600,
1200,
1020)

(500, 350,
200)

(1200) LA

assignment for a task during initial assignment, we do not know where its suc-

cessor tasks will be assigned. This might result in missing a better assignment

choice which can be found in this step. We deassign the task being reexamined

and compute the Battery life estimation table for it. We use the best assignment

node ID as the new assignment for the task. We continue reexamining all the

task assignments until we reach the sink tasks. If the new assignment is better

than the previous assignment, then we keep that and repeat step 5; otherwise

we terminate the algorithm. We bound the number of iterations to n to limit

execution time.

We compute Table 6.1 each time before we assign a task. For a taskset con-

sisting of n tasks, the table computation is performed n times. Number of rows in the

table could be n in worst case scenario. Each row of the table is computed in constant

time. Computed table is sorted resulting in overall time complexity of O(n3log(n)) for

algorithm loop before step 5. For step 5, the worst case time complexity of repetitions

is O(n2). In practice we have not observed more then 2-3 repetitions of step 5. Hence

complexity of the entire DynALife algorithm is O(n3log(n)). With this low overhead of

the algorithm compared to the ILPLife (which is NP-hard), the DynALife algorithm can

be run dynamically to address dynamically changing system parameters.

DynALife targets the objective specified by ILPLife to extend the system lifetime

in the system to be as long as possible, while executing the required tasks in the system.
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However, an algorithm such as DynALife that focuses purely on system lifetime has a

drawback. It targets the most critical energy resource node (either the LA or one of

the sensors) in a system with N nodes, and ensures that this critical node is assigned

the least amount of tasks in the system so that its lifetime is elongated as much as

possible using the min-max formulation. In this process it completely ignores how

energy is distributed between the remaining (N-1) nodes, and it can inefficiently assign

tasks to these remaining (N-1) nodes resulting in a faster depletion of energy in this

nodes. Since all nodes are energy constrained, it is necessary to minimize the energy

utilization in these remaining (N-1) nodes while extending the system lifetime as much

as possible. Thus, we need a dynamic task assignment algorithm that would maximize

system lifetime while consuming less energy. To address this challenge we designed a

third algorithm, which we call DynAGreenLife, that balances both system lifetime and

system energy.



Chapter 7

DynAGreenLife Algorithm

In this chapter we describe DynAGreenLife that jointly optimizes for both system

energy and system life. DynAGreenLife is a variation of DynAGreen algorithm and

mainly differs in Sensors-LA partition. In BAN-BE partition, we always prioritize BAN

and hence differential battery charges of sensors and LA do not make any difference.

For Sensors-LA partitioning, DynAGreenLife takes into account the remaining battery

charges of sensors and LA in addition to computational and communication energies

to determine weights of the flow graph. If a sensor’s battery charge is relatively low

compared to LA, we increase the weight of edges from that sensors to various related

tasks compared to edges from those tasks to LA. This increases the chances of sensor to

task edges being part of minimum weight cutset and hence assigning more work to LA

because of it has more battery charge even though assigning given task to sensor would

result in optimal system energy. In this manner, during partitioning, the criticality of

a resource that has lower energy compared to sensors or LA is highlighted by a higher

weight on related edges in flow graph. By increasing the weight based on the relative

lower energy availability of a resource, the likelihood of task assignment to the resource

is reduced and trade of between system energy and system lifetime is achieved. This

change in the algorithm results in a balance between system energy and system lifetime

optimization.
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DynAGreenLife has the same steps of DynAGreen (shown in Chapter 5) except

step 5. In first step we initialize or update the energy cost parameters. In second and

third step, we create BAN-BE flowgraph and find the mincut. In forth step, we assign

the tasks in BE partition to BE. In step 5, which differs from DynAGreen, we create

Sensor-LA flow graph with different edge weights compared to DynAGreen. We obtain

weight of an edge by multiplying its DynAGreen weight with a factor which depends on

the relative battery charge of the sensor in question and LA. Equations (7.1-7.3) define

weights of edges in flow graph utilizing definitions given in Table. 5.2 of Chapter.5.

Ebat(r) is the remaining battery charge of resource r.

Equation 7.1 defines weight of edge from Sensor node s to a task node t. Here

s is the sensor node which runs the source sensor task for task t. Equation 7.2 defines

weight of edge from a task t to LA in flow graph. To understand the effect of battery

charge based multiplying factors, consider a scenario in which sensors battery is low

compared to LA’s battery. In this case, w(Sensors, t) shown in Table. 5.2 of Chapter

5, is multiplied with a lower multiplying factor compared to w(t, LA), resulting in rel-

atively lower weight to edge from Sensors to task t. Similarly wban(tp, ts) is multiplied

by a higher multiplying factor increasing its weight. This results in increasing chances

of task t being part of LA partition. Equation 7.3 defines weight of edge (tp, ts) from

a predecessor task tp to successor task ts. Note that since we increase weight of com-

municating edges as well it will only favour assignment of a task to LA if the cost of

sending tasks input from sensor to LA does not result into higher sensor energy drain.

w
′
(Sensors, t) = w(Sensors, t) ∗ Ebat(s) + Ebat(LA)

Ebat(LA)
(7.1)

w
′
(t, LA) = w(t, LA) ∗ Ebat(s) + Ebat(LA)

Ebat(s)
(7.2)

w
′

ban(tp, ts) = wban(tp, ts) ∗
Ebat(s) + Ebat(LA)

Ebat(LA)
(7.3)
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Figure 7.1: Sensor-LA partition

Example:

We use the same example of taskset shown in Fig. 5.2 as we did in DynAGreen al-

gorithm. The algorithm first performs BAN-BE partitioning and then Sensors-LA par-

titioning. The BAN-BE partition is same as DynAGreen and shown in Fig. 5.3. The

difference between DynAGreenLife and DynAGreen algorithm is in Sensors-LA parti-

tion because DynAGreenLife considers current battery energy of the resources unlike

DynAGreen. DynAGreenLife computes the weights as shown in equations 7.1, 7.2 and

7.3. In our example LA has critical battery and it multiplies a factor Ebat(s)+Ebat(LA)
Ebat(LA)

to

weights of edges from Sensors to task nodes and edges between the tasks. While the

weights from tasks to LA is multiplied by Ebat(s)+Ebat(LA)
Ebat(s)

. As LA has critical battery
Ebat(s)+Ebat(LA)

Ebat(LA)
> Ebat(s)+Ebat(LA)

Ebat(s)
. Thus, weights among the edges and edges from Sen-

sors node to tasks would be higher such that a mincut does not pass through these edges

and more tasks are assigned on sensors. In Fig. 7.1 the weights of edges from task 0 to

task 3, task 1 to task 4 and task 2 to task 5 is higher than weight on edges from tasks

3,4,5 to LA node. This additional factor helps to assign less work on the critical resource

LA by avoiding a cut on edges from task 0 to task 3, task 1 to task 4 and task 2 to task 5

unlike Sensors-LA partition in DynAGreen.

Similar to DynAGreen, we compare execution time of DynAGreenLife with our
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static ILP based solutions in Fig. 4.2. DynAGreenLife is computationally efficient and

hence is more suitable for dynamic assignment/reassignment of tasks. In the next chap-

ter we demonstrate the ability of our algorithms to adapt at runtime to changing system

characteristics.



Chapter 8

Results

In this section, we evaluate our dynamic task assignment techniques in terms

of its effect on both the system battery lifetime and energy consumption. We demon-

strate results for three different wireless health care system task sets and analyze the

performance of our dynamic algorithms. We compare DynAGreen, DynALife and Dy-

nAGreenLife algorithm with static solution given by ILPGreen and ILPLife and All-On-

BE strategy under static conditions. We also demonstrate the ability of our algorithms

to adapt at runtime to changing system conditions. Later we show how DynAGreen-

Life algorithm balances both system lifetime and system energy by comparing it with

DynAGreen and DynALife algorithms.

8.1 Experimental Setup

We used three main task graphs for our experiments which are described in Ta-

ble. 8.1. Tasks in Table. 8.1 represent applications used in preventive healthcare systems

such as PALMS [7]. Each task has an arrival rate, number of instructions to be executed

and number of output bytes. All the details for each task graph are given in Tables. 8.2,

8.3 and 8.4. Input column specifies how many bytes are consumed by a task on each

occurrence. Output column specifies the number of bytes produced by the task. Number

39



40

of instructions are estimated based on the amount of processing required for each sam-

ple. For example, ECG task produces 500 bytes each second and if 60 instructions are

required to produce 1 byte, total number of instruction for each occurrence of ECG task

is 30000. Outputs of the sensing tasks were determined by the commercially available

sensor’s output.

Table 8.1: Experimental Workload

Taskgraph # of sensors # of tasks Application
HR + Activity 2 6 ECG sensor detects heart rate per

minute. While accelerometer keeps
track of activity

Activity Detect 3 8 Detects a persons activity using
three accelerometers.

All-Vital 5 20 Log all vital signs like heart rate,
blood pressure, activity in addition
to location

HR+Activity task graph shown in Fig.8.1 keeps track of hear rate and activity

of the user during the day. This task graph has the ECG and Accelerometer sensors

as two sources. The hear rate and activity data is finally combined by ActivityHR Log

task and stored on backend device every minute. Activity Detect task graph uses three

accelerometers as shown in Fig.8.2 to predict the activity of the person wearing them.

These accelerometers are worn on arm, waist and thigh to determine whether the person

is steady, walking or running. Such task graphs are mainly used in preventive healthcare

and weight management applications. Activity Count1,2,3 filters and processes data

from individual source accelerometers while Activity Correlation combines the output

of each Activity Count task and runs some algorithms to determine the posture of the

user. Task graph All-Vital senses, processes and logs two important vital signs of a

patient i.e. hear rate and blood pressure along with current GPS location and activity.

All these values are logged into a remote server for healthcare professionals to study

later.



41

Figure 8.1: Task graph: HR + Activity

Table 8.2: Taskgraph: HR+Activity

Task input (bytes) output (bytes) # of instructions arrival rate

ECG 0 500 30000 1 sec

ACC1 0 600 15000 1 sec

QRS detection 1500 600 3750000 3 sec

Activity Detection 1800 36 55000 3 sec

HR calculation 600 50 12000000 3 sec

ActivityHR log 1720 0 3000 1 min

Figure 8.2: Task graph: Activity Detect

We use Qualnet [15] a state of the art discrete event wireless network simula-

tor. Qualnet provides accurate wireless channel models, a variety of wireless protocols

along with their energy, battery and mobility models. We added a simple model for

computational energy consumption and used CPU current loads provided in MicaZ and

Intel XScale processor specifications into Qualnet. We modeled sensors nodes as Mi-

caZ nodes with Zigbee(802.15.4) radio in Qualnet. The local aggregator is modeled as a
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Table 8.3: Taskgraph: Activity Detect

Task input (bytes) output (bytes) # of instructions arrival rate

ACC1 0 300 20000 500 msec

ACC2 0 300 20000 500 msec

ACC3 0 300 20000 500 msec

Activity count1 600 60 500000 1 sec

Activity count2 600 60 500000 1 sec

Activity count3 600 60 500000 1 sec

ACC correlation 180 80 80000 1 sec

Activity log 80 0 0 1 sec

Figure 8.3: Task graph: All-Vital

UMTS-UE (User Equipment i.e. Handset) with an additional Zigbee radio interface and

CPU speed of 400MHz. Table 8.5 provides key parameters configured in Qualnet. We

use an energy model for MicaZ node provided by Qualnet and specify a constant trans-

mit power of 3dBm. For UMTS, we configured a generic energy model and specified

-10dBm as the minimum transmit power and 30dBm as the maximum transmit power.

UMTS protocol uses dynamic power control algorithm and sets the radio transmit power

depending on channel condition. We used 2.4GHz carrier frequency for UMTS and

905MHz carrier frequency for Zigbee. Other parameters for the simulator are given in
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Table.8.5 .

The handset is connected to the Backend Server via the UMTS network and with

sensors via Zigbee radio. Tasks assigned to a resource send data to the next resource over

UDP if any of its successor tasks is not assigned on the same resource. We implemented

logic for periodic task execution, data transmissions, radio link parameter measurement

and reporting, task assignment control messaging and execution of the dynamic algo-

rithms at the application layer. We created an ILP for each task graph and used an open

source ILP solver called lp-solve[11] to get the optimal task assignments.

Table 8.4: Taskgraph: All Vital

Task input (bytes) output (bytes) # of instructions arrival rate

GPS 0 60 24000 1 sec

ECG 0 150 22500 500 msec

ACC1 0 300 20000 500 msec

ACC2 0 300 20000 500 msec

ACC3 0 300 20000 500 msec

BP 0 250 18000 1 sec

GPS process 3600 108 100000 1 sec

ECG filter 300 225 700000 1 sec

Activity count1 15000 300 150000 1 min

Activity count2 15000 300 150000 1 min

Activity count3 15000 300 150000 1 min

BP calc 30000 36 40000 2 min

QRS detection 225 40 400000 1 sec

ACC correlation 900 40 300000 1 min

HR calc 2400 36 12000000 1 min

Activity detection 40 36 1500000 1 min

GPS log 108 0 0 1 min

HR log 36 0 0 1 min

Activity log 36 0 0 1 min

BP log 36 0 0 2 min
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Table 8.5: Simulator parameters

Components Characteristic Value

Zigbee
radio

Propagation Channel Frequency 905 MHz

Propagation Pathloss Model Two-Ray

PHY 802.15.4-TX Power 3.0dBm

UMTS
radio

Propagation Channel Frequency 2.4 GHz

Propagation Pathloss Model Two-Ray

PHY UMTS MAX TX Power 30.0 dBm

PHY UMTS MIN TX Power -10.0 dBm

Power Amplifier Inefficiency Factor 6.5

Transmit Power Consumption 100.0 mwatt

Receive Power Consumption 130.0 mwatt

Idle Power Consumption 120.0 mwatt

Sleep Power Consumption 0.0 mwatt

Supply Voltage 3.0 V

Sensor
CPU

Active Current 50 mAmp

Frequency 8 MHz

Voltage 3.0 V

LA
CPU

Active Current 308.33 mAmp

Frequency 400 MHz

Voltage 3.0 V

In all our experiments we measure and compare system lifetime and total energy

consumption. System lifetime is defined as the time from the start of the system until the

time first device runs out of energy. Total energy consumed by all the battery operated

devices of the system till the system dies is termed as total energy consumption.

8.2 Static Conditions

In the initial set of experiments we assume that static system parameters such

as the arrival rate of tasks, computational complexity, and wireless channel conditions
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remain constant. In the first set of experiments we set the initial battery charge for

each sensor of 100 mAh and 300 mAh for the cellphone. We measure system lifetime

achieved by task assignment given by the ILPs and three dynamic algorithms and com-

pare it against state of the art strategy which streams all the data to BE for processing

(All-On-BE). In static conditions both ILPs come up with the same task assignments for

our taskgraphs. In Fig 8.4 we show percentage improvement in system battery lifetime

based on the task assignments as determined by the ILPs’ with respect to All-On-BE.

For the All-Vital task graph that has a higher number of processing tasks, ILPs perform

60% better than All-On-BE. On average, the ILP improves the system battery lifetime

by 37%. These results shows that task assignment can significantly impact the system

lifetime. We also run dynamic algorithms under same conditions and observe that the

proposed dynamic algorithms perform within 0.001% of the ILP and thus perform very

close to the optimal solution.

Figure 8.4: Percentage improvement in system battery lifetime achieved in static condi-

tions compared to processing all data on BE(All-On-BE

We measured the average energy consumed by each of the task assignments in

the above set of experiments. Fig 8.5 displays the percentage energy savings achieved

by both ILPs and all three dynamic algorithms compared to the All-On-BE strategy. All

dynamic algorithms gained up to 42% energy savings which is similar to that obtained

by the optimal assignment given by ILPGreen and ILPLife.
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Figure 8.5: Percentage reduction in energy consumption achieved in static conditions

compared to processing all data on BE(All-On-BE)

The ILPs and DynAGreen, DynALife and DynAGreenLife algorithms perform

the same both lifetime wise and energy consumption wise. One key reason for this is

that we assume fully charged sensors and cellphone at the start of the experiment. In

general, this is not always true as sensors and cellphones have different battery con-

sumption rates. A cellphone battery is consumed rapidly as it performs other tasks in

addition to health monitoring tasks unlike sensors which often have a single function.

Also cellphones are charged more often as compared to sensors.

Consider a situation where the cell phone has critically low battery while the sen-

sors are almost fully charged. Algorithm such as ILPGreen or DynAGreen does not take

into consideration the actual energy level of these components as it purely optimizes for

minimizing energy consumption of the overall system. If we use these algorithms, it will

merely focus on ensuring that the distribution of tasks among the various components

(sensors, cellphone, back-end) is such that the total energy is minimized regardless of

the remaining battery lifetime of the different devices. On the other hand, ILPLife or

DynALife optimize for system lifetime by considering the actual battery levels of the de-

vices, and try to minimize the load on the components that have very low battery level.

However, such an algorithm can choose to allocate tasks in a manner that depletes en-

ergy faster in the overall system. ILPLife with its min-max formulation, focusses on the



47

least critical resource in the system by allocating minimum tasks on the critical resource.

Such an algorithm will tend to neglect the impact of task assignment to other nodes while

trying to reduce the load on the most critical resource. Effectively, more energy is likely

to be wasted if the task assignment focuses purely on increasing system-lifetime and in

increasing the life-time of a most critical resource. A more balanced algorithm, such as

DynAGreenLife, is likely to address both the criticality of the resources, and the overall

energy consumed to perform the desired tasks.

We demonstrate the ability of our dynamic algorithms to adapt to different bat-

tery charge and battery consumption rates in the next set of experiments. We assume

that the battery level is at 300 mAmp for each sensor and that the cellphone battery level

is at 100 mAmp. Fig. 8.6 shows the battery lifetime improvement as obtained by the

ILPs and the DynA family of algorithms compared to a typical All-On-BE strategy. It

is evident from these experiments that task assignment techniques make a huge differ-

ence up to 140% longer battery lifetime compared to performing all processing on BE

as shown in Fig. 8.6. The results also show that ILPLife, DynALife, and DynAGreenLife

achieve higher system lifetime than ILPGreen and DynAGreen. This is because the task

partitioning in ILPGreen and DynAGreen is purely focused on a green partitioning of

the tasks without taking any consideration of the available battery charge of the system

devices. It can also be observed that ILPLife has a lower system lifetime compared to

DynALife and DynAGreenLife. This is due to the fact that DynALife and DynAGreenLife

periodically perform task repartitioning to better optimize for system-lifetime.

Although the goal is to attempt a graceful reduction in energy proportionately

across devices to increase system lifetime, task allocation to devices is discrete in na-

ture with tasks of different integer values resulting in allocation and hence an energy

reduction that is not exactly proportional across devices relative to their battery levels.

Depending on the tasks assigned, some nodes may deplete their energy more than de-

sired. Hence a periodic repartioning is necessary. However, due to the cost of executing

an ILP, only a static initial allocation based on the ILP is utilized. Thus the DynA al-

gorithms have a better chance at producing a longer system lifetime, due to their lower
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cost of execution and periodic task repartitioning.

Figure 8.6: Percentage improvement in system battery lifetime achieved compared to

processing all data on BE(All-On-BE

Fig. 8.7 and Fig. 8.8 show that DynAGreen is not able to extend the battery life-

time of the system as much as DynALife as it does not take into consideration the battery

levels of the mobile devices. Both DynAGreenLife and DynALife take into consideration

the remaining battery charge and thus the rate of energy consumption in addition to com-

putation and communication cost. DynAGreenLife has up to 43% longer battery lifetime

than DynAGreen. DynAGreenLife has slightly better system lifetime than DynALife for

All Vital taskset. This is due to the fact that both algorithms attempt inexact solutions to

the problem. DynAGreen uses a heuristic approach, assigning one task at a time instead

of considering all the tasks or a chain of tasks for assignment. On the other hand, Dy-

nAGreenLife is a graph based solution that uses mincut/maxflow algorithm to partition

tasks. Interestingly enough, although DynAGreenLife attempts to simultaneously satisfy

objectives associated with minimizing system energy and maximizing system lifetime,

it does as well or better with regard to maximizing system lifetime compared to DynAL-

ife. On the other hand as DynAGreen is a greener solution targeting minimizing energy

consumption; it has up to 150% more energy savings compared to DynALife and DynA-

GreenLife. When we compare DynAGreenLife and DynALife, both have similar system

lifetime but DynAGreenLife consumes up to 40% less energy compared to DynALife

algorithm.
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Figure 8.7: Comparison of system battery lifetime achieved by dynamic algorithms

Figure 8.8: % Comparison of system lifetime achieved by dynamic algorithms

We show different task assignments given by ILPs and dynamic algorithms for

Activity Detect taskset in Fig. 8.9 and 8.10. For this taskset ILPGreen and DynAGreen

give same task assignment as shown in Fig. 8.9. Note that in this taskset we have 3 ac-

celerometer sensing tasks which are pre-allocated to sensors and a logging task which is

pre-allocated to BE. Both algorithms assign all the processing to LA as this assignment

minimizes system energy. On the other hand, ILPLife and DynALife assign all three

Activity Count tasks on their respective sensors as shown in Fig. 8.10. In our scenario

LA has critically low battery level of 100mAh vs 300mAh of sensors. To extend the

system lifetime, assignment shown in Fig. 8.10 reduces processing load on LA while

increasing the load on Sensors even though assigning tasks on sensors results in higher

overall system energy consumption. This achieves the objective of increasing system
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Figure 8.9: Task Assignment given by ILPGreen and DynAGreen algorithm

Figure 8.10: Task Assignment given by ILPLife and DynALife algorithm

lifetime at the cost of increased system energy. For this specific scenario, ILPLife and

DynALife improve the system lifetime by 44% while consuming 148% more system

energy compared to ILPGreen and DynAGreen. DynAGreenLife balances both system

energy consumption and system lifetime.

8.3 Dynamic Adaptability

In the following set of experiments we simulate changes at runtime characteris-

tics to demonstrate the capability of our dynamic algorithm to adapt. In this section we

assume that the battery level is at 300 mAmp for each sensor and that the cellphone has

a critically low battery level of 100 mAmp. To detect the changes in system characteris-
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tics, we measure each resource’s radio link parameters such as transmit power and time

spent in various states (receive, transmit, idle, sleep). These measurements are done

over a period in which tasks execution is repeated. This period is the Lowest Common

Multiple (LCM) of the period of all tasks. This window gives us a reproducible work-

load on each resource so we put a fair comparison of the various costs over different

windows of time. For the HR + Activity and Activity Detect tasksets this window period

is 1 minute and for All Vital taskset this window period is 2 minutes. We also use Infinite

Impulse Response (IIR) filtering to smooth out measurements. This avoids the negative

effect of any outlier to task assignment. We run our dynamic algorithms to recompute

task assignment only if the change in system parameters is more than 30% compared

to the last run of algorithm. This threshold can be changed for different system im-

plementation. Such a threshold helps reduce the frequency of algorithm execution and

also avoids oscillations in assignment. We selected this threshold empirically for our

simulation environment and envision that designer of a particular system can set this

parameters based on observed task assignment oscillations.

To demonstrate dynamic adaptability of our algorithm, we put together two sets

of experimental scenarios: 1) Illustrative scenarios with defined mobility, defined work-

load changes, only one base station and a smaller terrain area. These scenarios illustrate

the effect of individual parameters such as radio link changes on system lifetime and

system energy. 2) Urban scenarios with random mobility, multiple base station and

larger terrain area to represent a more realistic situation. In all these scenarios, we show

that our dynamic algorithms adapt to changing system parameters quickly and result

in better performance compared to statically computed optimal solution obtained using

ILPs.

8.3.1 Illustrative Scenarios

We have two main sources of changes in system parameters: 1) wireless channel

condition changes which affect the communication energy parameters such as transmit
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and receive power. 2) workload changes which affect the computation energy parame-

ters. In this section, we show affect of these two sources of change on system lifetime

and system energy.

Figure 8.11: Experiment setup for illustrative scenarios

To estimate changes in link conditions we simulated a typical day of the user

shown in Fig. 8.11. For this, we assume that the users home is away from the base station

and thus wireless link conditions are relatively poor with lower effective data rates when

the user is at home. The initial assignment is computed with the link conditions observed

at home. We assume that the user is at home at the start of the experiment and reaches

very close to the base station after three hours. The user stays near the base station for 4

hours and comes back home in similar fashion. Since we maintain various link-related

parameters for each mobile resource in the system, the LA detects these changes on the

fly and updates the task assignments. The cost of UMTS transmission could increase by

a factor of 10 depending on users distance from the base station.

Wireless Channel Condition Changes

Wireless channel conditions change over a period of time due to factors such

as the mobility of the person using the system, weather conditions, and extra traffic on

the system. When a user moves, wireless link conditions dynamically change. When

a user is closer to a base-station, a higher-order modulation and coding scheme can be

used with more bits/symbol transmitted and/or a higher code rate (less error correc-

tion) being utilized. This results in a more energy efficient wireless transmission for the
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Table 8.6: Wireless channel condition changes:Experimental setup
Simulation time % Execution time of tasks Node position

0-30 Min Initial Near home

30 min-3 Hr Initial Moving towards base station

3-7 Hr Initial Near the base station

7-10 Hr Initial Moving towards home

Table 8.7: Improvement in system lifetime in case of change in wireless channel condi-

tions
Algorithm % Improvement

in system life-
time relative to

HR + Activity Activity Detection All Vital

DynAGreen
ILPGreen 18.45 10.68 17.22

ILPLife 18.45 -17.16 17.22

DynALife
ILPGreen 22.48 50 18.26

ILPLife 22.48 12.27 18.26

DynAGreenLife
ILPGreen 23.79 24.88 22.18

ILPLife 23.79 -6.53 22.14

same amount of information bits that need to be transmitted. Based on the higher en-

ergy efficiency and lower communication costs associated with WWAN transmissions,

a dynamic task assignment may be chosen that could prefer communication over com-

putation. Alternatively, as link conditions get worse when the user moves toward the

edge of the cell, a lower order modulation and coding scheme may be used, resulting

in a less energy efficient communication, which can lead to a dynamic task assignment

that prefers computation over communication.

In Table. 8.7 we compare our three dynamic algorithms with static assignments

given by ILPGreen and ILPLife. When user moves closer to the base station, our dy-

namic algorithms detect the reduced communication cost for LA to BE transmission

and moves the processing tasks from LA to BE if that results in lower system energy

or higher system lifetime. DynAGreen improves system lifetime for all tasksets com-
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pared to ILPGreen by 14% on an average. It even improves system lifetime compared

to ILPLife taking advantage of new lower communication cost. Similarly DynALife

improve system lifetime up to 50% compared to ILPGreen and ILPLife. Notice that Dy-

nAGreenLife has similar improvement as DynALife except for the case of Activity De-

tection taskset. In that scenario it improves the system lifetime compared to ILPGreen

by 25% while reduces system lifetime compared to ILPLife. Reduction in system life-

time is compensated by reduced consumption of system energy as shown in Fig. 8.13.

DynAGreenLife strikes a balance between in system energy and system lifetime as per

the objective. ILPGreen and ILPLife generate‘ similar assignments for HR+Activity and

All Vital tasksets given the same initial conditions.

Figure 8.12: Change in wireless channel conditions: System lifetime comparison be-

tween dynamic algorithms
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Figure 8.13: Change in wireless channel conditions: System energy consumption com-

parison

Fig. 8.12 and Fig. 8.13 show the effectiveness of DynAGreenLife in balancing

increased system lifetime and reduced system energy. DynAGreenLife obtains up to

13% better system lifetime compare to DynAGreen and up to 78% better system energy

savings compared to DynALife. For Activity Detect taskset, DynAGreen assigns all pro-

cessing tasks on LA when user is away from base station and it assigns all processing

tasks on BE when user is closer to base station as shown in Fig. 8.14 . These assignments

result in the lowest system energy. DynALife considers the very low battery charge of LA

compared to sensors and assigns all single source processing tasks to respective sensors

to reduce energy consumption on LA. DynALife keeps multi-source processing tasks on

LA when LA is away from the base station and moves them to BE when LA gets closer

to the base station as shown in Fig. 8.15. DynALife continously tries to reduce load

on LA to extend its battery lifetime. DynAGreenLife strikes a balance between the two

objectives. It generates the same assignment as DynALife when user is away from base

station and it generates the same assignment as DynAGreen when user is closer to base

station resulting in a better balance of system lifetime and system energy.
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Figure 8.14: Assignment change given by DynAGreen when person is mobile and closer

to the base station

Figure 8.15: Assignment change given by DynALife when person is mobile and closer

to the base station

Workload Changes

Dynamic load balancing is required in the system as the processing complexity

of a task may change depending on amount and type of data, or due to increased load

on a resource in the system such as the LA. When a patient is sedentary, the nature of

the sensed information may be such that only coarse-grain processing of the informa-

tion is sufficient. For example, if the sensed information is static or pseudo-static, the

complexity of the tasks can be low based on prior processed information. Instead, if

the sensed information varies significantly because of a change in the patients health

conditions, or due to mobility, then the task complexity may increase. If a cell-phone is

used as the LA, it may have additional processing to perform during the day for the user,

in addition to supporting the health-care tasks. Thus, there can be an increased load

due to increasing task complexity or due to other unrelated processing, which results in
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Table 8.8: Improvement in system lifetime with dynamic load changes
Algorithm % Improvement

in system life-
time relative to

HR + Activity Activity Detection All Vital

DynAGreen
ILPGreen 9.19 0 0

ILPLife 9.19 -18.60 0

DynALife
ILPGreen 12.99 41.01 10

ILPLife 12.99 14.78 10

DynAGreenLife
ILPGreen 20.50 40.86 8.74

ILPLife 20.50 14.66 8.74

additional energy utilization on the nodes. As a result of this varying load, a current task

assignment may no longer be energy efficient from the overall system perspective, and

dynamic load balancing is needed.

In our experiments we increased the execution time of processing tasks by a

factor of 2 after 6 hours and set it to normal for next 6 hours to simulate two levels of

processing load. We assume the same setup as the previous experiment except for the

fact that LA is not mobile. Dynamic algorithms detect this variation in load and quickly

recompute the new task assignment in response. Each tasks monitor their execution

time and send a message to LA if they notice a significant change in their execution time.

Also LA monitors its own CPU utilization and notifies dynamic algorithm if a significant

change in utilization is detected. In our implementation we notify the algorithm on LA

for any such small change but in practice a system designer can set a threshold for such

notification.

In Table 8.8 we compare the percentage improvement in system lifetime ob-

tained by all three dynamic algorithms relative to static assignments given by ILPGreen

and ILPLife. In our scenario, when workload changes, our dynamic algorithms detect

the increased computation cost and move the processing tasks from LA to BE if compu-

tation cost is higher than communication cost. DynAGreen improves system lifetime for

HR+Activity taskset compared to ILPGreen by 10%. But the system lifetime improve-
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ment of DynAGreen over ILPGreen in Activity Detection and All Vital is null as they both

give the same task assignment in these task graphs. Similarly DynALife improve sys-

tem lifetime up to 51% compared to ILPGreen and ILPLife. Notice that DynAGreenLife

has a similar improvement to DynALife. ILPGreen and ILPLife provide the same task

assignment for HR+Activity and All Vital and hence improvements over ILPGreen and

ILPLife for both the taskset are same. For Activity Detection task graph ILP solutions

provide different task assignments, so dynamic algorithms provide different relative per-

formance. Notice that all dynamic algorithms gains compared to ILPGreen are higher

and gains compared to ILPLife are relatively lower. This is due to the fact that ILPLife

is optimizing for system lifetime.

8.3.2 Urban Scenarios

Figure 8.16: Simulation terrain
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In this section, we show that our dynamic algorithms can handle real-life urban

situation better then the ILP solutions. Near the edge of the cell handoffs may occur

from one base-station to another. The link conditions at the edge are typically unfavor-

able regardless of the base-station that the device may be communicating with. After

a handoff, if the user is closer to the center of a new base-station, then different task

assignment may be chosen depending on the communication costs and the associated

energy efficiency. To study the impact of such varying link conditions we have per-

formed experiments with random mobility and multiple serving base-stations. For our

experimental study, we created a 4900 meter x 4900 meter terrain with four base sta-

tions (Node B) connected to a UMTS-UE (LA) via a UMTS cellular network in Qualnet

simulator as shown in Fig. 8.16. A UMTS network consist of three interacting do-

mains; Core Network (CN), UMTS Terrestrial Radio Access Network (UTRAN) and

User Equipment (UE). The main function of the core network is to provide switching,

routing and transit for user traffic. Core network also contains the databases and net-

work management functions. Base Station is referred as Node-B and control equipment

for Node-B’s is called Radio Network Controller (RNC) as shown in Fig. 8.16. Packet

switched elements are Serving GPRS Support Node (SGSN) and Gateway GPRS Sup-

port Node (GGSN). During the simulations the user moves randomly in this terrain in

any direction with one of three speed ranges to simulate the user moving in car, bike

and walking. The experiment continues until one of the system components depletes its

battery reserves. During the experiment the user pauses for a predefined duration (15

min or 45 min). This durations is chosen to simulate real time stops at park, grocery

stores, pharmacy, etc.

We compare the system lifetime given by our DynAGreenLife algorithm to ILP

Life-Far, ILPLife-Near and All-On-BE in Table 8.9. ILPLife-Far is the assignment ob-

tained by ILPLife assuming the user is away from the base station and ILPLife-Near is

the assignment computed by ILPLife by assuming the user is closer to the base station.

Improvements due to the dynamic adaptability of our algorithms depend on how differ-

ent the system parameters are from the initial condition used by the ILP solution. These
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Table 8.9: Improvement in system lifetime in case of random mobility

Taskgraph: HR + Activity

Speed
Pause
duration

% Improvement in system lifetime of DynAGreenLife relative to

ILPLife-Far ILPLife-Near All-On-BE

Car 15 min 24.17 3.15 47.19

Car 45 min 5.90 3.39 18.68

Bike 15 min 15.87 6.17 26.84

Bike 45 min 8.36 8.36 18.70

Walk 15 min 9.58 3.62 19.67

Walk 45 min 23.42 5.78 47.46

Taskgraph: Activity Detection

Speed
Pause
duration

% Improvement in system lifetime of DynAGreenLife relative to

ILPLife-Far ILPLife-Near All-On-BE

Car 15 min 67.81 17.23 67.81

Car 45 min 47.88 6.84 47.88

Bike 15 min 34.53 9.71 34.53

Bike 45 min 87.98 5.7 87.98

Walk 15 min 43.15 6.12 43.15

Walk 45 min 32.51 12.09 32.51

Taskgraph: All Vital

Speed
Pause
duration

% Improvement in system lifetime of DynAGreenLife relative to

ILPLife-Far ILPLife-Near All-On-BE

Car 15 min 21.36 2.3 70.07

Car 45 min 12.06 3.9 42.34

Bike 15 min 22.44 2.45 45.93

Bike 45 min 8.64 3.48 42.8

Walk 15 min 14.18 8.28 46.73

Walk 45 min 34.88 7.36 56.59
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two variations are used to cover ILP solution with best and worst communication cost

between cell-phone and base station.

We monitor link conditions every 1 minute (which is LCM of all task periods)

and run DynAGreenLife when the change in communication cost is 30% more than the

last run of the algorithm. Table 8.9 shows that while a person is moving in car we

can obtain up to 68% improvement system lifetime and 25% on an average compared to

ILPLife-Far and up to 18% improvement compared to ILPLife-Near. In case of a person

on a bike or walking, we observe even higher improvements compared to ILPLife-Far.

User location trace for these experiments indicates that the user remains closer to the

base station most of the time and hence improvements over ILPLife-Near is not as sig-

nificant as the improvement of ILPLife-Far.

8.3.3 Utilizing Multiple ILP Solutions

Results in Table 8.9, suggest that a simple heuristic technique in which we switch

between task assignments provided by ILPLife-Near and ILPLife-Far depending on

user’s proximity to a base station may achieve good results at lower online cost. This

technique is referred as ILP-Flipflop. Such a solution would not handle other changes

in the system such as changes in workload, addition of new tasks in taskset and vary-

ing channel conditions. To demonstrate this, we ran experiment with the same random

mobility described in the previous section but also with changes in execution time of

processing tasks every hour. Change in execution time represent a practical scenario in

which a processing task might be asked to produce better quality result.

Fig. 8.17 shows results of such experiments for all three tasksets. We observe

that in this scenario our DynAGreenLife algorithm is up to 30% and on an average 21%

better than ILP-Flipflop technique described above. ILP-Flipflop is a binary solution and

does not address intermediate channel conditions as well as workload changes. While

the user is walking the improvement is higher for HR+Activity and All Vital. The reason

for this behaviour is that the communication cost is in intermediate state (i.e. between
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Figure 8.17: Percentage improvement in system lifetime achieved by DynAGreenLife

relative to ILP-FlipFlop switching

best and worst conditions) for longer time as user is moving at a slower speed. For these

two tasksets DynAGreenLife’s solution results in higher gains.



Chapter 9

Conclusion

Task assignment in a health care system consisting of heterogeneous resources

could significantly impact the life and total energy consumption of the system. This

thesis presents a number of static and dynamic task assignment strategies to save energy

and extend system lifetime. Integer Linear Program(ILP) are formulated to generate

a design time optimal task assignment to be used as a baseline for comparison. Given

the dynamically changing nature of wireless systems and computationally expensive na-

ture of ILPs, a heuristic algorithm(DynALife) and two dynamic graph-based partitioning

algorithms(DynAGreen and DynAGreenLife) are proposed in this thesis. These three al-

gorithms are computationally efficient and are able to adapt in real-time to changing

system conditions. All these algorithms are implemented in the Qualnet discrete event

wireless simulation environment to simulate various real time healthcare system scenar-

ios. Task assignment generated by our dynamic algorithms performs similar to optimal

task assignment of ILP for given static conditions. In the situation where cellphone has

critically low battery and sensors are fully charged, our algorithms gives 1.4 times longer

system lifetime compared to processing all data on backend server. DynAGreenLife has

up to 43% longer battery life compared to DynAGreen algorithm and consumes up to

40% less energy than DynALife algorithm. Thus, DynAGreenLife algorithm balances

both system lifetime and energy.

63
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In other experimental results, which are based on real-life examples of wireless

healthcare networks, dynamic algorithms outperforms the ILP-based solution by up to

50% due to variation in channel conditions and by up to 41% due to variation in load.

DynAGreenLife algorithm has on an average 21% longer system life than ILP-flipflop

technique. Thus, all this experiments show that our proposed dynamic algorithms per-

forms similar to optimal solution given by ILP in static conditions and significantly

outperforms the ILP based solution in dynamically changing conditions by changing

the task assignments at runtime.



Appendices

Node placement files

This section gives the details of the node placement of the taskgraph as used in

the code. The format used my Qualnet for .nodes file is:

(Node#) (time) (x,y,z) (azimuth) (elevation)

In all the files below, Node 1 corresponds to Local Aggregator Node 2 corresponds to

Node B(base station) Node 3 corresponds to RNC Node 4 corresponds to SGSN Node

5 corresponds to GGSN Node 6 corresponds to HLR Node 7 corresponds to Backend

server Node 8 corresponds to ECG sensor Node 9 corresponds to ACC1 sensor Node 10

corresponds to ACC2 sensor Node 11 corresponds to ACC3 sensor Node 12 corresponds

to BP sensor

Static Conditions

Node placement file for HR + Activity:

1 0 (150.0, 950.0, 0.0) 0 0

2 0 (1000.08, 900.42, 0.0) 0 0

3 0 (1119.35, 984.96, 0.0) 0 0

4 0 (1331.72, 967.78, 0.0) 0 0

5 0 (1200.65, 760.01, 0.0) 0 0

6 0 (1455.78, 736.62, 0.0) 0 0

7 0 (1244.84, 553.2, 0.0) 0 0

65
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8 0 (149, 950, 0.0) 0 0

9 0 (150.0, 951.0, 0.0) 0 0

Node placement file for Activity Detect:

1 0 (150.0, 950.0, 0.0) 0 0

2 0 (1000.08, 900.42, 0.0) 0 0

3 0 (1119.35, 984.96, 0.0) 0 0

4 0 (1331.72, 967.78, 0.0) 0 0

5 0 (1200.65, 760.01, 0.0) 0 0

6 0 (1455.78, 736.62, 0.0) 0 0

7 0 (1244.84, 553.2, 0.0) 0 0

9 0 (150.0, 951.0, 0.0) 0 0

10 0 (151.0, 950.0, 0.0) 0 0

11 0 (149.0, 950.0, 0.0) 0 0

Node placement file for All-Vital:

1 0 (150.00, 950.00, 0.0) 0 0

2 0 (1000.08, 950.00, 0.0) 0 0

3 0 (1119.35, 984.96, 0.0) 0 0

4 0 (1331.72, 967.78, 0.0) 0 0

5 0 (1200.65, 760.01, 0.0) 0 0

6 0 (1455.78, 736.62, 0.0) 0 0

7 0 (1244.84, 553.2, 0.0) 0 0

8 0 (150.00, 951.00, 0.0) 0 0

9 0 (149.00, 950.00, 0.0) 0 0

10 0 (150.00, 949.00, 0.0) 0 0

11 0 (151.00, 950.00, 0.0) 0 0

12 0 (149.00, 951.00, 0.0) 0 0
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Wireless Channel Condition Changes

Node placement file for HR + Activity :

3 0 (1059.35, 984.96, 0.0) 0 0

4 0 (1331.72, 967.78, 0.0) 0 0

5 0 (1200.65, 760.01, 0.0) 0 0

6 0 (1455.78, 736.62, 0.0) 0 0

7 0 (1244.84, 553.2, 0.0) 0 0

2 0 (1005.08, 950.00, 0.0) 0 0

13 0 (2000, 953,0) 0 0

14 0 (2010, 959,0) 0 0

1 0 (50.00, 950.00, 0.0) 0 0

1 10M (300.00, 950.00, 0.0) 0 0

1 20M (775.00, 950.00, 0.0) 0 0

1 40M (1000.00, 950.00, 0.0) 0 0

1 100M (1000.00, 950.00, 0.0) 0 0

1 120M (1300.00, 950.00, 0.0) 0 0

1 130M (1500.00, 950.00, 0.0) 0 0

1 150M (1750.00, 950.00, 0.0) 0 0

1 160M (2000.00, 950.00, 0.0) 0 0

1 170M (1750.00, 950.00, 0.0) 0 0

1 190M (1500.00, 950.00, 0.0) 0 0

1 200M (1300.00, 950.00, 0.0) 0 0

1 220M (1000.00, 950.00, 0.0) 0 0

1 230M (775.00, 950.00, 0.0) 0 0

1 250M (500.00, 950.00, 0.0) 0 0

1 260M (300.00, 950.00, 0.0) 0 0

1 280M (50.00, 950.00, 0.0) 0 0

8 0 (50.00, 951.00, 0.0) 0 0
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8 10M (300.00, 951.00, 0.0) 0 0

8 20M (775.00, 951.00, 0.0) 0 0

8 40M (1000.00, 951.00, 0.0) 0 0

8 100M (1000.00, 951.00, 0.0) 0 0

8 120M (1300.00, 951.00, 0.0) 0 0

8 130M (1500.00, 951.00, 0.0) 0 0

8 150M (1750.00, 951.00, 0.0) 0 0

8 160M (2000.00, 951.00, 0.0) 0 0

8 170M (1750.00, 951.00, 0.0) 0 0

8 190M (1500.00, 951.00, 0.0) 0 0

8 200M (1300.00, 951.00, 0.0) 0 0

8 220M (1000.00, 951.00, 0.0) 0 0

8 230M (775.00, 951.00, 0.0) 0 0

8 250M (500.00, 951.00, 0.0) 0 0

8 260M (300.00, 951.00, 0.0) 0 0

8 280M (50.00, 951.00, 0.0) 0 0

9 0 (50.00, 950.50, 0.0) 0 0

9 10M (300.00, 950.50, 0.0) 0 0

9 20M (775.00, 950.50, 0.0) 0 0

9 40M (1000.00, 950.50, 0.0) 0 0

9 100M (1000.00, 950.50, 0.0) 0 0

9 120M (1300.00, 950.50, 0.0) 0 0

9 130M (1500.00, 950.50, 0.0) 0 0

9 150M (1750.00, 950.50, 0.0) 0 0

9 160M (2000.00, 950.50, 0.0) 0 0

9 170M (1750.00, 950.50, 0.0) 0 0

9 190M (1500.00, 950.50, 0.0) 0 0

9 200M (1300.00, 950.50, 0.0) 0 0

9 220M (1000.00, 950.50, 0.0) 0 0
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9 230M (775.00, 950.50, 0.0) 0 0

9 250M (500.00, 950.50, 0.0) 0 0

9 260M (300.00, 950.50, 0.0) 0 0

9 280M (50.00, 950.50, 0.0) 0 0

Node placement file for Activity Detection:

3 0 (1119.35, 984.96, 0.0) 0 0

4 0 (1331.72, 967.78, 0.0) 0 0

5 0 (1200.65, 760.01, 0.0) 0 0

6 0 (1455.78, 736.62, 0.0) 0 0

7 0 (1244.84, 553.2, 0.0) 0 0

2 0 (1000.08, 950.00, 0.0) 0 0

1 0 (50.00, 950.00, 0.0) 0 0

1 1H (500.00, 950.00, 0.0) 0 0

1 2H (775.00, 950.00, 0.0) 0 0

1 4H (1000.00, 950.00, 0.0) 0 0

1 8H (1000.00, 950.00, 0.0) 0 0

1 10H (150.00, 950.00, 0.0) 0 0

1 11H (50.00, 950.00, 0.0) 0 0

1 12H (500.00, 950.00, 0.0) 0 0

1 13H (775.00, 950.00, 0.0) 0 0

1 14H (1000.00, 950.00, 0.0) 0 0

1 18H (1000.00, 950.00, 0.0) 0 0

1 20H (150.00, 950.00, 0.0) 0 0

1 21H (50.00, 950.00, 0.0) 0 0

9 0 (49.00, 950.00, 0.0) 0 0

9 1H (499.00, 950.00, 0.0) 0 0

9 2H (774.00, 950.00, 0.0) 0 0
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9 4H (999.00, 950.00, 0.0) 0 0

9 8H (999.00, 950.00, 0.0) 0 0

9 10H (149.00, 950.00, 0.0) 0 0

9 11H (49.00, 950.00, 0.0) 0 0

9 12H (499.00, 950.00, 0.0) 0 0

9 13H (774.00, 950.00, 0.0) 0 0

9 14H (999.00, 950.00, 0.0) 0 0

9 18H (999.00, 950.00, 0.0) 0 0

9 20H (149.00, 950.00, 0.0) 0 0

9 21H (49.00, 950.00, 0.0) 0 0

10 0 (50.00, 951.00, 0.0) 0 0

10 1H (500.00, 951.00, 0.0) 0 0

10 2H (775, 951.00, 0.0) 0 0

10 4H (1000.00, 951.00, 0.0) 0 0

10 8H (1000.00, 951.00, 0.0) 0 0

10 10H (150.00, 951.00, 0.0) 0 0

10 11H (50.00, 951.00, 0.0) 0 0

10 12H (500.00, 951.00, 0.0) 0 0

10 13H (775, 951.00, 0.0) 0 0

10 14H (1000.00, 951.00, 0.0) 0 0

10 18H (1000.00, 951.00, 0.0) 0 0

10 20H (150.00, 951.00, 0.0) 0 0

10 21H (50.00, 951.00, 0.0) 0 0

11 0 (51.00, 950.00, 0.0) 0 0

11 1H (501.00, 950.00, 0.0) 0 0

11 2H (776.00, 950.00, 0.0) 0 0

11 4H (1001.00, 950.00, 0.0) 0 0

11 8H (1001.00, 950.00, 0.0) 0 0
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11 10H (151.00, 950.00, 0.0) 0 0

11 11H (51.00, 950.00, 0.0) 0 0

11 12H (501.00, 950.00, 0.0) 0 0

11 13H (776.00, 950.00, 0.0) 0 0

11 14H (1001.00, 950.00, 0.0) 0 0

11 18H (1001.00, 950.00, 0.0) 0 0

11 20H (151.00, 950.00, 0.0) 0 0

11 21H (51.00, 950.00, 0.0) 0 0

Node placement file for All-Vital:

3 0 (1119.35, 984.96, 0.0) 0 0

4 0 (1331.72, 967.78, 0.0) 0 0

5 0 (1200.65, 760.01, 0.0) 0 0

6 0 (1455.78, 736.62, 0.0) 0 0

7 0 (1244.84, 553.2, 0.0) 0 0

2 0 (1000.08, 950.00, 0.0) 0 0

1 0 (50.00, 950.00, 0.0) 0 0

1 1H (500.00, 950.00, 0.0) 0 0

1 2H (775.00, 950.00, 0.0) 0 0

1 4H (1000.00, 950.00, 0.0) 0 0

1 8H (1000.00, 950.00, 0.0) 0 0

1 10H (150.00, 950.00, 0.0) 0 0

1 11H (50.00, 950.00, 0.0) 0 0

1 12H (500.00, 950.00, 0.0) 0 0

1 13H (775.00, 950.00, 0.0) 0 0

1 15H (1000.00, 950.00, 0.0) 0 0

1 19H (1000.00, 950.00, 0.0) 0 0

1 21H (150.00, 950.00, 0.0) 0 0

1 22H (50.00, 950.00, 0.0) 0 0
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8 0 (49.00, 951.00, 0.0) 0 0

8 1H (499.00, 951.00, 0.0) 0 0

8 2H (774.00, 951.00, 0.0) 0 0

8 4H (999.00, 951.00, 0.0) 0 0

8 8H (999.00, 951.00, 0.0) 0 0

8 10H (149.00, 951.00, 0.0) 0 0

8 11H (49.00, 951.00, 0.0) 0 0

8 12H (499.00, 951.00, 0.0) 0 0

8 13H (774.00, 951.00, 0.0) 0 0

8 15H (999.00, 951.00, 0.0) 0 0

8 19H (999.00, 951.00, 0.0) 0 0

8 21H (149.00, 951.00, 0.0) 0 0

8 22H (49.00, 951.00, 0.0) 0 0

9 0 (49.00, 950.00, 0.0) 0 0

9 1H (449.00, 950.00, 0.0) 0 0

9 2H (774.00, 950.00, 0.0) 0 0

9 4H (999.00, 950.00, 0.0) 0 0

9 8H (999.00, 950.00, 0.0) 0 0

9 10H (149.00, 950.00, 0.0) 0 0

9 11H (49.00, 950.00, 0.0) 0 0

9 12H (499.00, 950.00, 0.0) 0 0

9 13H (774.00, 950.00, 0.0) 0 0

9 15H (999.00, 950.00, 0.0) 0 0

9 19H (999.00, 950.00, 0.0) 0 0

9 21H (149.00, 950.00, 0.0) 0 0

9 22H (49.00, 950.00, 0.0) 0 0

10 0 (50.00, 951.00, 0.0) 0 0
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10 1H (500.00, 951.00, 0.0) 0 0

10 2H (775, 951.00, 0.0) 0 0

10 4H (1000.00, 951.00, 0.0) 0 0

10 8H (1000.00, 951.00, 0.0) 0 0

10 10H (150.00, 951.00, 0.0) 0 0

10 11H (50.00, 951.00, 0.0) 0 0

10 12H (500.00, 951.00, 0.0) 0 0

10 13H (775.00, 951.00, 0.0) 0 0

10 15H (1000.00, 951.00, 0.0) 0 0

10 19H (1000.00, 951.00, 0.0) 0 0

10 21H (150.00, 951.00, 0.0) 0 0

10 22H (50.00, 951.00, 0.0) 0 0

11 0 (51.00, 950.00, 0.0) 0 0

11 1H (501.00, 950.00, 0.0) 0 0

11 2H (776.00, 950.00, 0.0) 0 0

11 4H (1001.00, 950.00, 0.0) 0 0

11 8H (1001.00, 950.00, 0.0) 0 0

11 10H (151.00, 950.00, 0.0) 0 0

11 11H (51.00, 950.00, 0.0) 0 0

11 12H (501.00, 950.00, 0.0) 0 0

11 13H (776.00, 950.00, 0.0) 0 0

11 15H (1001.00, 950.00, 0.0) 0 0

11 19H (1001.00, 950.00, 0.0) 0 0

11 21H (151.00, 950.00, 0.0) 0 0

11 22H (51.00, 950.00, 0.0) 0 0

12 0 (49.00, 949.00, 0.0) 0 0

12 1H (499.00, 949.00, 0.0) 0 0
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12 2H (774.00, 949.00, 0.0) 0 0

12 4H (999.00, 949.00, 0.0) 0 0

12 8H (999.00, 949.00, 0.0) 0 0

12 10H (149.00, 949.00, 0.0) 0 0

12 11H (49.00, 949.00, 0.0) 0 0

12 12H (499.00, 949.00, 0.0) 0 0

12 13H (774.00, 949.00, 0.0) 0 0

12 15H (999.00, 949.00, 0.0) 0 0

12 19H (999.00, 949.00, 0.0) 0 0

12 21H (149.00, 949.00, 0.0) 0 0

12 22H (49.00, 949.00, 0.0) 0 0
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