UCLA

UCLA Electronic Theses and Dissertations

Title
SmartCast - Novel Textile Sensors for Embedded Pressure Sensing of Orthopedic Casts

Permalink
https://escholarship.org/uc/item/3wqg3p08j

Author
Danilovic, Andrew

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3wg3p08j
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

SmartCast - Novel Textile Sensors for Embedded Pressure Sensing of Orthopedic Casts

A thesis submitted in partial satisfaction

of the requirements for the degree Master of Science

in Electrical Engineering

by

Andrew Danilovic

2013

ABSTRACT OF THE THESIS

SmartCast - Novel Textile Sensors for Embedded Pressure Sensing of Orthopedic Casts

Andrew Danilovic

Master of Science in Electrical Engineering
University of California, Los Angeles, 2013

Professor William J. Kaiser, Chair

An orthopedic plaster or fiberglass cast is often applied after a bone fracture to hold the broken
bone in place and allow the fracture to heal and the bone to set. If this cast becomes loose, due to
a reduction in swelling for example, the bone may not heal properly and a misalignment of the
bone may occur. If this problem goes unnoticed, surgery may need to be performed to re-break
and reset the bone. This is particularly a problem with patients who are unable to accurately
express what they are feeling, e.g. children, and who may not be able to identify that their cast is
loose. The SmartCast system has been designed to avoid this complication and to identify early if
a cast is not fitting well. SmartCast consists of a sleeve with novel textile sensors capable of
measuring the pressure the cast is applying to an appendage as well as electronics to sample and
log the sensor data. Several types of textile piezoresistive sensor sleeves have been designed and

tested to determine which type would best be able to measure the cast pressure. A full prototype

il

system, including firmware, sensor sleeve, and printed circuit board, has been designed,
implemented and tested. The SmartCast system will allow doctors and orthopedic professionals
to obtain a better understanding of how well a cast fits over time and to avoid the painful

procedure of resetting a bone.

il

The thesis of Andrew Danilovic is approved.

Majid Sarrafzadeh
Robert Candler

William J. Kaiser, Committee Chair

University of California, Los Angeles

2013

v

I would like to thank Professor William Kaiser for his unfailing positivity and for his dedication
to his students, and Professor Majid Sarrafzadeh and Professor Robert Candler for their help in
reviewing this thesis.

I would also like to thank Henrik Borgstrom, Mahdi Ashktorab, and Bijan Mapar for their help
and support during the course of this project. They provided invaluable guidance and advice
during system development. I would like to thank Minta Manning, Senior Wardrobe Technician
in the UCLA Theatre Department, for sewing and constructing two of the SmartCast prototype
textile sensor matrices. I would like to thank my SmartCast team members, Maryam Shahbazi

and Carson Umsted, for helping to coordinate our work on SmartCast.

Table of Contents

TaADIE Of CONLENLSeeneiiieiteie ettt ettt ettt sb ettt sb et eaeesbeebesatesbe et vi
LSt OF FIGUIES ..ttt ettt ettt et e st e et e e st e e s e e sabeenbeesnseenseesnseenseennnes viii
LSt OF TADIES ...ttt ettt et e st e b e bt e et e e sat e e b e sateebeen X1
Chapter 1 - INtrOAUCTIONccciieiiiie ettt ettt e et e e aee e saaeeetaeeeaaeesnsaeesnsaeesnseeennnes 1
1.1 BACKEIOUNAuiiiiiiieciie ettt et e et s e e tae e e b e e essaeeenssaeensseesnsaeennseens 1
1.2 Objectives and CONtIIDULIONS.c.eeruieeiieriieeiieeieeteeete et see et e seeeesteeeaeebeesereeseeseseenseennns 3
Chapter 2 - System & SenSOr DESIZNcccuvieiiiriiiiiiiieeiieeie ettt ettt saae b eee 4
2.1 Overview of SmartCast Textile Sensors and Sensor MatrixXcceceeveeeeneenieineenieeneenne 4
2.2 Evolution of the SmartCast Sensor NetWorkccoociiiiiiiiiiiiniiiieceeee e 6
2.3 System Software ATChIECTUTEcovcuiiiiiieiiiie et ae e e tae e eraeeeaeee s 9
2.4 Case & FOrm Factor......cccuooiiiiiiiiiiieceet et 13
Chapter 3 - System & Sensor Validation...........cceeiciieiieiiieniienieeiteeie ettt ens 14
3.1 Power Consumption & System Lifetimeccceviieiiiiiiiiiiiiiiieieceeeee e 14
R O o] L 1o\ T] OSSR 20
3.2.1 Experimental PrOCEAUIE..........cccviieiiieiiiieciie ettt eee et 20
32,2 RESUILS ..ttt ettt ettt e b ettt e b e eae 21

3.3 Platform Test With MasSes........cecuiriiriiriirieieeieiiteie ettt st 23
3.3.1 Experimental ProCedure...........cooviiiiiiiiiieiieie ettt 23

Vi

3.3 R ESUIES e 24

3.3.3 Sensitivity and ReSOIULIONcociiiiiiiiieiieieeiece e 28

3.4 Online Statistics CalCUlationsccc.eiiiiiiiiiiiee et 32
3.5 FOrces UNAEr @ Castcouuiiiiiiiiiiie ettt ettt ettt st e b e st e e e saeeens 34
Chapter 4 - Sensor NEetWOTK FIXcoiiiiiiiiiciic et ae e et e e snee e 37
4.1 Problem SPeCTICAtIONiitiiiiiieiieiie ettt ettt et ettt esbe e teeeebeesbeesnbeesaesaneens 37
4.2 Comparison t0 LItErAtUIEc.eeiuieriieiieriie ettt ettt ettt ettt e s et eeaeebeesabeeseesnaeens 43
4.3 Solution Implementation and Validationccceeriiiiiienieeiiienie e 49
Chapter 6 - CONCIUSIONviiiiiiiiiiie ettt eee et e st e e st e e etbeeetaeeessaeeessseesnsseessseeessseeenns 53
6.1 CONCIUSION ...ttt ettt et e et e et esae e e s bt e sae e et e esateenbeesabeenbeenaneans 53
0.2 FULUIE WOTK ...ttt st et 54

A PPEIAICES....cevieiieeiieeiie et eite ettt e et e st e et e esteeeabeestteeabe e seeeebeenbeeenbe e saeeabeebeeenbeeseeeabeenneeenseenreas 55
A. SmartCast Circuit SCheMALICc..eeviiiiiiiieriieeee et 56
B. Sample SmartCast SD Card Data FOrmatccccoeeiiiiiiiiiiiiecieeecee e 57
C. System Lifetime Calculation Matlab Code..........cccoeeeiiieiiiiiiiieeeceeeeeeeeee e 59
D. Matlab Code to Calculate Sensor Resolution & Sensitivityccceeevvveerieeeniiesneeesieeeene 63
E. SmartCast SYStem CoOdeeevuiiiiiieiiieiieeie ettt ettt e saeeaee e teesbeessbeeseesnseens 70
RETETEICES ...ttt ettt ettt st b ettt sbeetesatens 120

vii

List of Figures

Figure 1: Basic Textile Pressure Sensor DeSig@ncocueviiriiriiiienieniiiienieeieeiesiceie e 4
Figure 2: Sleeveless 4x4 Sensor Matrix DESIZIuevueerviriirienieiienieeieeienieee st 5
Figure 3: Original SIEeve DESI@N........ccccuiiiiiiiiiiiieiiecieee ettt et 6
Figure 4: First Sensor S1€eve PrototyPeccouveiieiiiiiieieeieeieeteee ettt 7
Figure 5: Grey Nylon TeXtile SEnSOT........cocviiiiriiiiiiiiieeierteeeste et 8
Figure 6: Blue Nylon Textile Sensor Being Worn for Testing..........cccceeevevienenienienenieneenennens 8
Figure 7: 1st Sleeveless Sensor MatriX Prototypecoceeverierieiiiniiiiinieneeecesiceeeese e 8
Figure 8: Software ArChiteCtUIEcccovuiiiiiiiiiiieeeeeee et 9
Figure 9: ATmega328p Program Memory Map!' ..., 11
Figure 10: SmartCast Initial Case Design and PCB Form Factorcc.cccccevveveniiniincniennne. 13
Figure 11: SmartCast Prototype PCBcooiiiiiiieee et 13
Figure 12: SmartCast Voltage Signals captured by NI DAQcccovveiieiiienieniieiieeieeeeeeeeen 14
Figure 13: SmartCast System CUITENTcc.eeiiiiiiiiiieiieiieeceeee et 15
Figure 14: System Lifetime, Zoomed OUL.........c.ccoceiiiiiiiiiiiinieieieceeee e 16
Figure 15: System Lifetime, Zoomed In...........cocooviiiiiiiiiiiiniieeeee e 16
Figure 16: Cyclic Test Experimental Set-Up........ccccovviiriiiiiiiiniiiiiiineeeesceese e 20
Figure 17: Cyclic Mass Test Results for Prototype 1 Sleeve, Approx. 7 days.......ccccceeveeeevennen. 21
Figure 18: Zoomed in View of Figure 17ccccoooiiiiiiiiiiiiieeeeeee e 22
Figure 19: Data from Figure 17 w/ Each Sensor Plotted Independentlyc.ccccevveviirienncne. 22
Figure 20: Mass Test PIatformsc.ooiiiiiiiiiiiniieeee e e 23
Figure 21: Polyester-Carbon, 2 & 3 Layers, Mass Test, Resistancecccccoceevevveeveenienienneene. 24

viii

Figure 22:
Figure 23:
Figure 24:
Figure 25:

Figure 26:

Sensors in Figure 25

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:

Figure 43:

Polyester-Carbon, 2 & 3 Layers, Mass Test, Conductance.............ccccccvevevrereenreannen. 25
Polyester-Carbon-Nylon, 2 Layers, Mass Test, Resistanceccccccveeeviereenieenen. 26
Polyester-Carbon-Nylon, 2 Layers, Mass Test, Conductanceccccceerueeenvennnee. 26
Velostat, w/ and w/out Nylon, 1, 2, & 3 Layers, Mass Testccccceercverrienrrenneenne. 27
Polynomial Best Fit Curves of Rensor Resistance vs. Applied Force for the Velostat
... 29
Sensitivity vs. Applied Force for the Velostat Sensors in Figure 25 30
Sensor Resolution vs. Applied Force for the Velostat Sensors in Figure 25 31
Zoomed in View of Figure 28ccoooiiiiiiiiiiiieeeeee e 31
Online Statistic Calculation Verificationcoceeeeverienienenieneiieniesceeeeeneene 32
L008e-Fitting Cast TeSt......cccuiiriieiiieiieeiieeie ettt et ettt seaeeneeas 34
Resistance vs. Applied Mass for Interlink Force Sensing Resistor” (FSR®)?! ... 35
The SmartCast 4x4 Resistive Sensor Network Equivalent Circuit.............cccceeueennee. 37
How to Select Sensor RFabriCl6cceiviiiiiiiiiiiiiiiiiceecesee e 38
Additional Paths in Sensor NetWorkccccocveviiiiiiiniiiiiieeeeceeeeee e 38
Equivalent Circuit for a Single Path............coccooiiiiiiiiniie e, 39
Equivalent Circuit for a 2x2 Sensor NetWorkccceeceevieeciieniieiiieieeieeeeeie e 39
All 4 Intended Paths in 2X2 NetWOTKccccocieiiiiiiiiiieiiecieeeee e 40
All Additional Paths in 2X2 NetWOrkccceeriiiiiiiniiiiieieeiecieee e 40
The Equivalent Circuits for 2X2 NetWorkcccceeviiiiiiiiiniieiececeeeeeee e, 40
Matlab Symbolic Toolbox Script (Version 2000b).........ccccueeiieriieciienieeiieieeieenee. 42
SmartSkin Analog Interface!ooiimiimeeoeeeeeeeee e, 43
% Error in SmartSkin Resistance Measurementoceevvereereenenieneenieneeneenne 45

X

Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:

Figure 51:

SmartSkin Analog Interface Current Drawcccceceviiniiiinienieiinienccceeeeen 46
SmartCast Analog Interface w/ Drain ResiStorscocevervierienieiinienenienieneeee, 46
% Error in SmartCast Resistance Measurementcoc.eeeevveevereenieneeneenieseeneene 48
SmartCast Analog Interface Current Drawcccceevieeiiieniiniiienieeiieeece e 48
Functional Diagram of Analog Interface w/ Network FiXcccccooeviniiniinininnnne 49
Resistance Measurements without Network FiX ... 50
Resistance Measurements with Network FiX.......cccoceviininiiniiiininiccee 51
SmartCast SD Card Data FOrmatcoceeviiiiiiiiniiiiiieieeeceeeeeeee e 57

List of Tables

Table 1: System Memory Write Current & Time Data

xi

Chapter 1 - Introduction

1.1 Background

A plaster or fiberglass cast placed over a broken bone may become loose over time if swelling
decreases. This is particularly a problem with patients who are unable to accurately express what
they are feeling, e.g. children, and who may not be able to identify that their cast is loose. The
SmartCast system uses novel textile pressure sensors to measure the pressure the cast is placing

on the arm to give medical professionals an understanding of how well a cast fits over time.

There are a number of types of sensors that are able to measure applied force or pressure, such

ast®l:

1. capacitive sensor with compressible, elastic dielectric

2. electroactive polymer or conductive elastomer based sensors, e.g. Polyvinylidene fluoride
(PVDF), polypyrrole (PPY)

3. magnetic pressure sensors, e.g. Variable Reluctance Pressure sensors (VRP)

4. optical sensors, e.g. Fabry—Perot interferometer

5. silicon based piezoelectric and piezoresistive sensors for industrial applications

While these sensors have been well validated and used extensively, the SmartCast system instead
uses textile pressure sensors due to their ease of construction and integration into a wearable

sleeve.

Wearable computing and textile sensors have become increasingly popular research topics. The

International Symposium on Wearable Computers (ISWC) has been published annually since

1996, and is currently in its 16th edition. Capacitive and piezoresistive textile sensors capable of
measuring strain, bend, and applied force have recently been developed!'*. Two main types of
textile based sensors are textiles that are coated with electroactive polymers which act as the
sensing element, and those that use the textile itself as the sensing element. The SmartCast
sensor sleeve users the latter. Recent applications of textile sensors include noninvasive

continuous health and biomechanical monitoring, sitting posture classification”, daily

[7, 10, 13] [19]

cardiovascular disease prevention and respiration monitoring , and biosignal monitoring
[20] uses the elasticity of the conductive thread itself as a pressure transducer, but yields a small
dynamic range. [10] describes a capacitive sensor that relies on the changing capacitance
between two parallel plates as they move laterally with applied strain. [19] describes a mattress
sensing system using polymer sensors to monitor biosignals such as heart rate and respiration
during sleep, either at home or in a healthcare facility. The MIT Media Lab has also released
open source e-textile kits that can form the basis of modular designs using textile sensors™. [15]
uses a matrix of polymer based pressure sensors to act as a kind of skin. This thesis explores a
similar matrix of sensors but applied to orthopedic casts and consisting of textile piezoresistive

sensors. The SmartCast sensor sleeve is a new application of textile sensors to Orthopedic cast

monitoring.

1.2 Objectives and Contributions

The goal of the SmartCast system is to help medical professionals and orthopedists understand
how well a plaster or fiberglass cast fits over time with a future goal of early detection of loose
fitting casts. With this knowledge, medical professionals could then better understand the
lifecycle of the cast and make informed decision on when to replace casts before bones set
improperly. To this end, the SmartCast system consists of a mobile, wearable platform capable
of measuring and logging data from an array of piezoresistive sensors worn under a plaster or

fiberglass cast for a period of 2-3 months.

Section 3.3.3 demonstrates that the resolution of the SmartaCast sensors to applied force varies
with the force being applied. The resolution ranges from approximately 0.003 Newtons (N) with
0.01 N force being applied to 0.2 N with 1.4 N force being applied. Section 3.5 shows that the
forces under a cast can range from 0.1 N to 0.5 N, which is right in line with what the SmartCast

sensors can detect.
The work described in this thesis consists of the following contributions:

1. Design, analysis and validation of a mobile, wearable electronics platform, including all
system code and firmware, which measures and records data from an array of
piezroresistive sensors

2. Design, testing, and validation of several piezoresistive textile sensors and sensor sleeves

3. SmartCast sensor network fix to nullify the effects of multiple paths through the sensor

network which confound sensor measurements

Chapter 2 - System & Sensor Design

2.1 Overview of SmartCast Textile Sensors and Sensor

Matrix

The basic textile pressure sensor tested with the SmartCast system is shown in Figure 1. It

consists of several layers of material:

Layer 1. non-conductive fabric, e.g. cotton, polyester, etc.

Layer 2. elastic conductive fabric, e.g. MedTex180

Layer 3. piezoresistive material, e.g. polyester w/ woven carbon fibers or Velostat
Layer 4. elastic conductive fabric

Layer 5. non-conductive fabric

Conductive Material

Stitching

Piezoresistive
Material

Non-conductive
Base Material

Figure 1: Basic Textile Pressure Sensor Design

Layer 3 acts like a pressure sensitive resistor, and Layers 2 and 4 act as wires attached to either
ends of the resistor. As the applied force increases, the resistance decreases. The resistance vs.

applied force curve generally follows a 1/x shape. In the next section, several sensor prototypes
are shown that deviate slightly from the design in Figure 1, but all are based off of and are very

similar to it.

Figure 2 shows a 4x4 sensor matrix consisting of 16 of the sensors shown in Figure 1. Note the
4 pieces of material which are stitched to a row, and then folded over the other rows. The
purpose of these pieces is to bring all the rows to the top of the matrix; as this will be placed
under a cast, we will only have access to those connections at the very top, near the edge of the
cast. They are folded in such a way to avoid shorts between the rows. A sensor can be measured
by attaching leads to the corresponding row and column for that sensor, though a complication

with this method is discussed in Chapter 4 - Sensor Network Fix.

Figure 2: Sleeveless 4x4 Sensor Matrix Design

2.2 Evolution of the SmartCast Sensor Network

The first SmartCast sensor sleeve designed is shown in Figure 3. Comparing this design to
Figure 1, here Layer 1 is a spandex arm sleeve, Layer 3 consists of three layers of polyester with
woven carbon fibers, and Layer 5 has been left out. This was an effective design for measuring
the pressure on the arm, but improvements were made in subsequent prototypes to decrease the
size of the sensors and connection elements, and to add waterproofing. Waterproofing will be
necessary as the sleeve will live in an environment under the cast which may include blood,

sweat, etc.

Figure 3: Original Sleeve Design

Figure 4 shows the most recent prototype constructed by Minta Manning based off of the
original design in Figure 3. Improvements in this design are that here, each sensor is made
separately, and then stitched on to the sleeve, allowing for easier manufacturability. Also, each
sensor has increased waterproofness due to the top and bottom layer of nylon material, though
the conductive material connections are still exposed to the environment, which may cause shorts

to occur. Each sensor uses Velostat as the piezoresistive element, which was much more reliable

than polyester with carbon fibers. Conductive thread was used to bring the columns and rows to
the top of the sleeve in an effort to decrease the size of connecting elements. Some issues with
this sleeve are that it is necessary to use conductive epoxy (i.e. cold solder) at the interface
between each sensor and between the conductive thread and sensors, as stitching two pieces of
conductive material together is not a reliable connection. Copper wires were attached to the

conductive thread at the top of the sleeve by using conductive epoxy and heatshrink.

| LLLLILARRY LRALILLIRY LURKRRRUEY LIRRIRRREY LAURE AR LLULSLURR RRRLILLRLY (ARRVREELT LLRRVURRLY LRLIRRRLY RLLULANY RALLRRLIY |
0 1 2 3 4 5 6 7 8 9 10 " 12
|
!

1 Foot |

Figure 4: First Sensor Sleeve Prototype

Figure 5 and Figure 6 show two sleeveless prototypes covered completely in nylon to make the
entire sensor matrix waterproof. While these sensors exhibited a strong waterproof property, they
were not elastic. Elasticity is an important property for the SmartCast sensor sleeve as a subject's
arm may experience swelling and the sleeve must not be constricting, but must expand and
contract with the subject's arm. Figure 7 shows a full 4x4 sleeveless sensor matrix similar to the

matrix in Figure 5 but without the top and bottom layer of nylon applied. As we will see in

7

section 3.3 Platform Test with Masses, this prototype was not successful, as polyester with

carbon fibers is not reliable as the piezoresistive element.

Figure 5: Grey Nylon Textile Sensor

Figure 7: 1st Sleeveless Sensor Matrix Prototype

8

2.3 System Software Architecture

The SmartCast system has two major software modules:

1. SmartCast Application

2. Memory Management

The SmartCast application is responsible for sampling the sensor matrix, calculating on-line
statistics, and executing necessary sleep and wake up routines. The Memory Management
module is responsible for logging data and utilizing the internal EEPROM and Flash memory as

well as the external SD Card. Figure 8 is a diagram of these two modules and the main routines

in each.

SmartCast Application
1. Sample System Voltage
2. Sample Sensors, Calculate Statistics

3. WriteToMem{char “buf)
‘ 4. CalcSleepTime(), GoToSleep()

N

Figure 8: Software Architecture

As is described in section 3.1 Power Consumption & System Lifetime, the microcontroller

internal memory is used as a buffer for the SD Card, thus saving energy. In order to free the

SmartCast application from the responsibility of handling multiple types of memory, the memory
hierarchy is abstracted away into the Memory Management module. The SmartCast application
converts the calculated sensor means and variances to a string representation and then calls the
WriteToMem(char *buf) function, in which the string buffer is passed. The Memory
Management module then handles how this data is written to the three types of memory. The
data is always written first to a 128 byte buffer; this simplifies the code as Flash and EEPROM
are organized in pages of 128 bytes. Once this buffer is full, the buffer's contents are copied to
EEPROM. Then, when EEPROM becomes full, the buffer's contents are instead copied to Flash
memory. Then, after approximately 45-50 wake events, Flash becomes full and the entire
contents of EEPROM and Flash are written to the SD Card, as well as any extra data still
contained in the 128 byte buffer. In this way, the SD Card is only written to every 45-50 wake

events, thus allowing the SD Card to be turned off most of the time.

It is important to carefully handle the Flash memory writes as the internal Flash memory of the
ATMega328p also contains the program code; it would be disastrous to blindly write to Flash
disregarding the application section. Figure 9 shows the memory map for the ATMega328p
Flash memory. The bottom 4 pages of Flash Memory is a special section which contains the code
that is able to write to internal memory. The application code resides in the top section of Flash,
from address 0x0000 until data load end, a symbol in the Linker .map file which must be
read during run time in order to determine the last Flash address of the program code. Thus, the
section of Flash that can be written to by the SmartCast application resides in the middle of the

memory map, between the application and bootloader sections.

10

Program Memory

BOOTSZ = 11

[0x0000
8
% Application Flash Section
=
$
=
3
he)
3
o«
5 L End RWW
g Start NRWW
2 Application Flash Section
=
2
E. End Application
% Boot Loader Flash Section Start Boot Loader
c - Flashend
Qo
z

Figure 9: ATmega328p Program Memory Map!"!

The following is an example calculation showing how to find the free addresses of Flash

memory which can store SmartCast application data:

BOOTLOADER PAGES =4 (the bootloader code takes up 4 pages)
SPM_PAGESIZE = 128 bytes (i.e. the size of a Flash page)

FLASHEND = 0x7FFF (i.e. the last Flash address)

__data_load end = 24265 (i.e. the program code is 24265, bytes for example)

Address of 1* Free Page = data load end rounded up to nearest multiple of 128 =

2432040

Address of Last Free Page = (FLASHEND + 1 - ((BOOTLOADER PAGES +1) *

SPM_PAGESIZE)) = 32128,

11

(add 1 to FLASHEND and BOOTLOADER PAGES to get the address of the

next free byte and page respectively)

* Available Flash Memory = (Address of Last Free Page +128)—

Address of 1* Free Page = 7936 bytes

12

2.4 Case & Form Factor

The SmartCast sensor sleeve is designed to be worn under the fiberglass or plaster cast. A PCB
and case have also been designed to house the necessary electronics to sample and store the data
from the sensors. This case is also intended to be worn on the arm during the months the cast is
on the arm. Figure 10 shows the case and PCB form factor designed in Solid Works 2010.
Instead of having this custom case produced using injection molding, a similar off-the-shelf case

was used.

Figure 10: SmartCast Initial Case Design and PCB Form Factor

Figure 11 shows the prototype PCB with the SD Card and attached connections.

Figure 11: SmartCast Prototype PCB
(Designed by SmartCast team members Maryam Shahbazi and Carson Umsted and tested by Andrew
Danilovic)

13

Chapter 3 - System & Sensor Validation

3.1 Power Consumption & System Lifetime

The manner in which memory is utilized directly affects system energy consumption because the
three types of memory all have different write times and current draws. As can be seen from the

data in Table 1 (p. 19) the following shows the memory hierarchy in terms of energy cost:

Lowest Energy Cost - Internal Flash

Mid Energy Cost - Internal EEPROM

Highest Energy Cost - SD Card

DAQ Data - 3.3V - EEPROM, Flash, SDCard

T
@
.

o

Write: \'r

USB Power Supply Voltage

—— Current Op Amp Output

= ——PD4

——FD6

—— SDCardVohtage

SwitchVoltage

of LI T 1T 1T 1 11

|

50 100 150 200 250 300
Time (sec)

05

Figure 12: SmartCast Voltage Signals captured by NI DAQ

14

Figure 12 shows several SmartCast voltage signals captured by an NI DAQ, and shows multiple

wake/sample/store events. Figure 13 shows the system current draw for the same period of time.

From this data, we can clearly see the differences in write time and current draw between the

100

mA

40

.12
three types of memory. This data was obtained by using an op-amp current meter circuit'? and a
1 Q resistor. The equation to calculate current was then:
L., = Vaa = Vour
“ 10 10 Fa-l
— %
%4
DAQ Data - 3.3V - EEPROM, Flash, SDCard
System Current Usage
! I [
SD Card Wrié‘tes /
EEPROM Writes Flash Writes EEPROM Writes Flash Writes

100

200 300 400
Time (sec)

Figure 13: SmartCast System Current

500

600

700

From Figure 12 and Figure 13, we can obtain the data in Table 1, which contains the current

draw and write time for the three types of memory. In order to estimate system lifetime based on

this data, Eq. 2 has been plotted in Figure 14.

Lifetime = numcycjes * duration yge

15

Eq.2

Eq. 2 assumes that the battery capacity is drained linearly with time. Real batteries have a more
complicated discharge pattern, but the Ultimate Lithium brand used to power the SmartCast

system are much more linear than regular Alkaline batteries.

System Lifetime vs. Sleep Time for Several System Configurations and Batteries
Bateries are the Ultimate Lithium brand by Energizer
w/ 2400mAh for 2 AAA @3V, 3600maAh for 3AAA @4.5V, and 6000mAh for 2AA @3V

4500 r r r Trmme e ety hekeatetuuuielebisteletistetaaiols Rleiebistetetiutstuuuielastuiet .
= No Internal Mem Use, SDCard |dle, 2AAA |
: : : No Internal Mem Use, SDCard Idle, 3AAA |
4000 : : : : No Internal Mem Use. SDCard Idle, 2AA |2
Internal EEPROM. Flash, 2AAA
Internal EEPROM. Flash, 3AAA
3500 Internal EEPROM. Flash, 2AA
Internal EEPROM. Flash w/ LDO, 2AAA
= Internal EEPROM, Flash w/ LDO, 3AAA
===== Internal EEPROM, Flash w/ LDO. 2AA
3000 . .
- H
=
)
=
» 2500
E
z
3
£ 2000
w
=
(2]
1500
1000
500
0
2000 4000
Sleep Time (sec)
Figure 14: System Lifetime, Zoomed Out
System Lifetime vs. Sleep Time for Several System Configurations and Batteries
Bateries are the Ultimate Lithium brand by Energizer
w/ 2400mAh for 2 AAA @3V, 3600mAh for 3AAA @4.5V, and 6000mAh for 2AA @3V
I 3 | o e
600 —----
500 —----
w
& 400~
@
E
Z
i}
£ 300
W
=
)
No Internal Mem Use, SDCard Idle, 2AAA |
200 ——— Mo Internal Mem Use, SDCard Idle, 3AAA |
Mo Internal Mem Use. SDCard Idle, 2AA
Internal EEPROM, Flash, 2AAA -
Internal EEPROM. Flash, 3AAA
- Intermnal EEPROM. Flash, 2AA -
----- Internal EEPROM, Flash w/ LDO, 20AA
= Internal EEPROM, Flash w/ LDO, 3AAA
Internal EEPROM, Flash w/ LDO, 2AA

Sleep Time (sec)

Figure 15: System Lifetime, Zoomed In

16

Eq. 2 shows the System Lifetime calculation. Here, the term "cycle" refers to the number of
wake/sample/store/sleep events that occur before writing to the SD Card. Because of the size
limitations of the internal memory on the ATMega328p, 1 cycle includes 7
wake/sample/store/sleep events where the internal EEPROM is written to, 44
wake/sample/store/sleep events where the internal Flash is written to, and 1
wake/sample/store/sleep event where the SD Card is written to. numM y¢es is the number of such
cycles, each one including the 7+44+1 wake/sample/store/sleep events, that occur before the
battery capacity is depleted. The units of battery capacity in this discussion are mAh.
durationc, is the time duration of 1 cycle, i.e. the duration of the 7+44+1

wake/sample/store/sleep events.

CapaCitybattery

CConsumedEEpROM + CConsumedplaSh + CConsumedSDCard

NUMcycles =

Eq.3

Eq. 3 shows the calculation of numcycies- Coonsumedggprop 15 the battery capacity that is
consumed for the 7 wake/sample/store/sleep events in which EEPROM is written to. Similarly,
Ceonsumead piqsp,18 the battery capacity that is consumed for the 44 wake/sample/store/sleep events
in which Flash is written to. Ceonsumedspcgrg 1S the battery capacity consumed during the
wake/sample/store/sleep event in which the SD Card is written to. Eq. 4, 5, 6, and 7 show how
these quantities are calculated. nuUMggpromcycies ANd NUMEEsheycles are 7 and 44 respectively.
Iggprom 18 the average current during the wake/sample/store event in which EEPROM is written

to. Similarly, Ir;,sp 1s the average current during the wake/sample/store event in which Flash is

17

written to. Ispcaramic a4 Ispcarawrite are the average currents during the wake/sample/store
event in which the SD Card is written to.
Cconsumedggprom = ((IEEPROM * tggprom) T CConsumedgleep) * NMUMEEPROMCycles Eq- 4

CConsumedFlash = ((IFlash * tFlash) + CConsumedsleep) * NMUMEgsheycles Eq 5

CConsumedSDCaTd = (ISDCardlnit * tSDCard) + (ISDCardWrite * tSDCard)

Eq. 6
+ CConsumedSlegp
CConsumedgleep = ISleep * tSleep Eq 7
Eq. 8 shows the calculation of duration .
durationgyc,e = ((tEEPROM + tSleep) * numEEPROMCycles)
+ ((tFlash + tSleep) * numFlashCycles) Eq 8

+ (tSDCardInit + tSDCa‘rdWrite + tSleep)

Eq. 2 is plotted in the figures on page 16, where tg.;, has been varied from 1 second to 3600
seconds (1 hour).

From Figure 14 we can see that system lifetime is a non-linear function of the sleep time. This is
expected, because as you increase the sleep time, you achieve diminishing returns on the system
lifetime because the system consumes a small amount of current while sleeping. Therefore, with
very long sleep times, the system lifetime begins to level off. Furthermore, Figure 15 shows the
crossover point where it becomes better to turn the SD Card off instead of idle it. Turning the SD
Card off decreases the memory current draw to 0 while it is off, but forces a longer initialization
sequence to occur on wake up. The longer the system is asleep for, the better it becomes to turn

the SD Card completely off as opposed to idling it, which draws a small amount of current.

18

Data Derived from Figure 12 and Figure 13 and used to create Figure 14 and Figure 15

All times are in seconds and all currents are in mA.

No Internal Mem Use, SDCard Idle

I sample [write I sleep t sample t write
10 100 0.6 0.41 0.05
Internal EEPROM, Flash
I EEPROM I Flash I SDCard Init | I SDCard Write | 1 Sleep
15 12 10 100 0.06
t EEPROM t Flash t SDCard Init | t SDCard Write
0.7 0.3 0.7 0.9
Internal EEPROM., Flash w/ LDO
I EEPROM I Flash I SDCard Init | I SDCard Write | I Sleep | I LDO | I LDO_Sleep
15 12 10 100 0.06 0.008 0.0005
t EEPROM t Flash t SDCard Init | t SDCard Write
0.7 0.3 0.7 0.9

Table 1: System Memory Write Current & Time Data

19

3.2 Cyclic Mass Test

3.2.1 Experimental Procedure

In order to put the textile sensors through rigorous testing, Carson Umsted designed and built an
apparatus which can apply a sine wave force to the sensors for an extended period of time. This

apparatus is shown in the right side of Figure 16.

Figure 16: Cyclic Test Experimental Set-Up

This apparatus contains a DC motor which pulls 16 200g masses as it rotates a shaft. This causes
the masses to move up and down with sine wave behavior. This test does not utilize the full
dynamic range of the sensors as the masses were not lifted completely off the sensors each cycle,

but does provide a useful testing platform for both the system and sensor matrix.

20

3.2.2 Results

Figure 17 shows the results from the cyclic mass test performed on the most recent sensor sleeve
prototype with 2 layers of Velostat as the piezoresistive sensing element and shows the resistance

of all 16 sensors vs. time. This test ran for approximately 7 days continuously.

Most Recent Prototype Sleeve, Individual Velostat Sensors

kOhms

Figure 17: Cyclic Mass Test Results for Prototype 1 Sleeve, Approx. 7 days

Figure 18 shows a zoomed in view of Figure 17 and clearly shows the cyclic behavior of the
masses as the motor shaft rotates. We can see from this figure that there is a difference between
the output range of each sensor, but all are in the same order of magnitude. We therefore cannot
compare the output from different sensors directly, as each sensor gives relative, not absolute,

information on the force being applied.

In Figure 19, the peaks and troughs of the individual sine waves have been plotted in black using
a peak detector, clearly showing the envelope of each sensor for this 7 day test. All 16 sensors

exhibit a decrease in their output for the first several hours. I conclude from observation of the

21

test apparatus that this is due to the relaxation of the springs holding the masses, i.e. the test

apparatus itself affects the results.

kGhms

kOhms

kGhms

kOhms

Most Recent Prototype Sleeve, Indidual Velostat Sensors

Velostat Sensor Platform Mass Test

64066
Sample #

Figure 18: Zoomed in View of Figure 17

Velostat Sensor Platform Mass Test

Velostat Sensor Platform Mass Test

kOhms

kGhms

Sample #

x
Velostat Sensor Platform Mass Test

Sample #

X
Velostat Sensor Platform Mass Test

Sample #

x
Velostat Sensor Platform Mass Test

3* 15
kNl
£ £
2 20 R R 8 <
15- —
L L - P L
o 1 2 3 4 5 & 1 3 4 &5 6 7 12 3 4 6 7
Sample # P Sample # 1 Sample # 1
Velostat Sensor Platiorm Mass Test Velostat Sensor Platform Mass Test Velostat Sensor Platiorm Mass Test
a0 25 50
2
] E 15 E
210]
1 R]
0 [R A R
7 12 3 4 5 6 7
Sample # o Sample # e Sample # &
Velostat Sensor Platform Mass Test Velostat Sensor Platform Mass Test Velostat Sensor Platiorm Mass Test
16 2 kLl
2
1" " .
z £
e e
12 B
. 15 -~y .
10 L 1 i
o 1 2 3 4 5 6 1 7 T2 3 4 & 6 T
Sample # 1 Sample # e Sample # <10

kOhms.

kOhms

kOhms.

Velostat Sensor Platform Mass Test

Sample #

x
Velostat Sensor Platform Mass Test

1 2

3 4
Sample #
Velostat Sensor Platform Mass Test

5 6

Sample #
Velostat Sensor Platiorm Mass Test

Sample #

Figure 19: Data from Figure 17 w/ Each Sensor Plotted Independently

22

3.3 Platform Test with Masses

3.3.1 Experimental Procedure

In order to select the appropriate material and number of layers for the piezoresistive element,
this test was carried out to determine the resistance vs. force applied curves for each type of
sensor. This test used the platforms shown in Figure 20, which consist of a plastic base covered
by a soft cotton layer, to mimic the environment under a cast. The different piezoresistive
materials were then placed between these two platforms, and known masses were placed on top
while measuring the sensor output using the SmartCast system. In this way, the resistance vs.
mass curves shown in the next section were obtained. The X-axis can easily be changed to Force

by multiplying by the acceleration due to gravity.

Figure 20: Mass Test Platforms

23

3.3.2 Results

The following types of sensors were tested in this experiment:

Sensor 1. 2 & 3 layers of polyester w/ carbon fibers, Figure 21 & Figure 22
Sensor 2. 2 & 3 layers of polyester w/ carbon fibers covered w/ nylon, Figure 23 & Figure
24

Sensor 3. 1, 2, & 3 layers of Velostat w/ and w/o nylon, Figure 25

Sensor 1 was the first type of sensor constructed. As can be seen in Figure 21, 3 layers has a
larger range in resistance vs. mass than 2 layers, but 3 layers of material exhibits large variability
between sensors. Figure 21 clearly shows the 1/x behavior of the sensors with respect to
resistance, and Figure 22 shows that the sensors are linear with respect to conductance. This was

shown to be true for all the types of sensors tested in this experiment.

Poster Board Sensor Test., 2 layers and 3 layers

—6—59-2 layers
—6—510-2 layers
—e— S11-2layers

512- 2 layers

S17- 3 layers
—6— 18- 3 layers
—6— S$19- 3 layers
—6—520-3 layers

kOhms

Figure 21: Polyester-Carbon, 2 & 3 Layers, Mass Test, Resistance

24

<107 Poster Board Sensor Test, 2 layers and 3 layers

Sk 59, valleys

—— 59, best
e §10, valleys
—— 510, best
e §11, valleys
— 511, best
3l $12, valleys

512, best

17, valleys
17, best
@ §18, valleys
—— 518, best
25| 0 519, valleys

—— 519, best
@ 520, valleys
—— 520, best

1R

05

Mass (grams)

Figure 22: Polyester-Carbon, 2 & 3 Layers, Mass Test, Conductance

Figure 23 and Figure 24 show the data for the same sensors, but with a top and bottom layer of
nylon. It was thought that adding the nylon layers would decrease the variability between sensors
by keeping the sandwich of materials tightly held together. The data shows however that this did

not reduce the variability between sensors as expected.

Due to the large variability between individual sensors constructed out of polyester with carbon
fibers, another piezoresistive material, Velostat, was chosen. From the data in Figure 25, we can
see that 2 layers of Velostat with a top and bottom layer of nylon had a suitable resistance range

and had less variability between sensors then the other combinations tested so far.

25

kOhms

40

20

1R (Siemens)

Nylon Sensors Platform Mass Test, Valleys

—6— darkBlue
—&—grey1
—&— grey?2
grey3
grey4d
CircularForceSensor

“"M\/‘

\Q-—e“—";*i: R

33 66 99 132 165 198 231 264
Mass (grams)

Figure 23: Polyester-Carbon-Nylon, 2 Layers, Mass Test, Resistance

Nylon Sensors Platform Mass Test, Best Fit Lines

| —— grey2Fit

- grey2Valleys

grey3Valieys
grey3Fit
greydValieys
grey4Fit
CircularForceValleys

CircularForceFit C. ¥ . SR

33 66 99 132 165 198 231 264

Mass (grams)

Figure 24: Polyester-Carbon-Nylon, 2 Layers, Mass Test, Conductance

26

297

kOhms

80

60

50

40

30

20

—— 1layer, testi
—— 1layer, test2

wi nylon
—— winylon
— wi nylon

—— wi nylon 2layer, tes

Velostat Sensor Platform Mass Test
T

B

>stat] No Nylan

i

Y

L; \Jl | Ul THA E#tuiq: b ugL,S;-m.

i
iw Layer Velostat, No NyloR -
2Ly _ Ana A Kb hihchich
0 33

Figure 25: Velostat, w/ and w/out Nylon, 1, 2, & 3 Layers, Mass Test

27

3.3.3 Sensitivity and Resolution

The sensitivity of a sensor can be defined as the amount of change in the output per unit of
change in the input. The sensitivity of the SmartCast fabric sensors can therefore be obtained as
the slopes of the curves in Figure 21, Figure 23, and Figure 25, as the Y-axis in these plots
represents the output (resistance) and the X-axis represents the input (applied mass or force).
Since these slopes are clearly not constant, the sensitivity of these sensors to applied force varies
with the force being applied, i.e. the sensors are more sensitive when less force is applied and are
less sensitive when more force is applied. It is difficult to obtain the sensitivities from the plots
of conductance vs. applied mass, as these plots mask the fact that the sensitivities change with

applied force.

The force resolution of the SmartCast system plus textile sensor can be obtained from the sensor
sentivitiy and from the resolution of the analog interface. The SmartCast analog interface,
comprised of the transimpedance amplifier and 10-bit ADC, has a resolution of 49 Ohms per

LSB, as the following calculation shows:

1V —Vour

Rsensor = (0.25) x 12.53 kOhms Eq 9

1V — (1023/1024)
0.25

analog inter face resolution = (

> x12.53 kOhms
Eq. 10

= 48.95 Ohms

Eq. 9 is the equation describing the transimpedance amplifier in the analog interface (see
Appendix A), and Eq. 10 shows the calculation to obtain the resolution of the analog interface.

The applied force resolution can then be obtained as:

28

analog interface resolution [Ohms]

Eq. 11
sensitivity(applied force) [%] q

applied force resolution [Newtons] =

Eq. 11 can be used to obtain how well the SmartCast system can resolve applied force. Function
notation parentheses have been used in the denominator of Eq. 11 to illustrate that the sensitivity
is a function of applied force and brackets have been used to show the units of each term.

In order to model the sensitivity of the sensors, the Matlab command polyfit was used to fit
polynomial curves to the curves in Figure 25, which shows the output vs. input for the velostat
fabric sensors. The command polyfit finds the coefficients of a polynomial that fits the data in a

least squares sense. Figure 26 shows the best fit polynomial curves of order 3.

Polynomial Best Fit Curves of Sensor Resistance vs. Applied Force
for the Velostat Sensors in Fig. 25

1 layer, test1
1 layer, test2
0 —— 2 layers, test!
2 layers, Circular Force Sensor
2layers, test2
2 layers, Gircular Force Sensor
wi nylon flayer, test1
wi nylon 1layer, test2
wl nylon Zlayer, test1
wi nylon 2layer, test2

T e

Sensor Resistance (kOhms)

20

15
Applied Force (Newtons)

Figure 26: Polynomial Best Fit Curves of Rensor Resistance vs. Applied Force for the Velostat Sensors

in Figure 25

29

This is essentially the same plot as Figure 25 but with best fit polynomial curves and with the x-
axis rescaled to be in units of Newtons. Now, to obtain the sensitivity of the velostat sensors, the
derivatives of the best fit curves in Figure 26 were taken to obtain the corresponding slopes as

they change with applied force. These slopes are plotted in Figure 27.

Sensitivity vs. Applied Force for the Velostat Sensors in Fig. 25

70

—— 1layer, test1
—— 1layer, test2
—— 2layers, test1
2 layers, Circular Force Sensor
2 layers, test2
60 2 layers, Circular Force Sensor
Wl nylon Tlayer, test1
— wl nylon Tlayer, test2
wl nylon 2layer, test!
—— wl nylon 2layer, test2

40

Sensitivity (kOhms/Newton)

e \

Applied Force (Newtons)

Figure 27: Sensitivity vs. Applied Force for the Velostat Sensors in Figure 25

Figure 27 illustrates that the sensitivity of the velostat sensors decreases quickly when more
force is applied. The sensor resolutions were obtained from the Eq. 11 by dividing the analog
interface resolution, 49 Ohms, by the sensitivity, and are shown in Figure 28. Here, the y-axis is
the resolution of a sensor, i.e. the smallest change in applied force that the sensor can resolve.
Lower values of resolution are better, i.e. lower values of resolution indiciate that the sensor is
better able to resolve applied force. The poles centered around 2 Newtons in Figure 28 are due

to the error in estimating the curves in Figure 25 using polynomials of order 3. It is perhaps

30

more useful to look at Figure 29, which is just a zoomed in view of Figure 28, showing when

the resolution starts to worsen as more force is applied.

Sensor Resolution vs. Applied Force for the Velostat Sensors in Fig. 25

14
1 layer, test1
1 layer, test2
2 layers, test!
2 layers, Circular Force Sensor
2 layers, test2
12

2layers, Circular Force Sensor
wi nylon Tlayer, test1
wil nylon Hlayer, test2
w/ nylon 2layer, test1
wi nylon Zlayer, test?

Sensor Resolution (Newtons)

04
) /
T /_ B
— - -
UU 05 1 2 25 3

15
Applied Force (Newtons)

Figure 28: Sensor Resolution vs. Applied Force for the Velostat Sensors in Figure 25

Sensor Resolution vs. Applied Force for the Velostat Sensors in Fig. 25

——— 1 layer, test1
——— 1 layer, test2
2 layers, test]
2 layers, Circular Force Sensor
05 2 layers, tast2
2 layers, Circular Force Sensor
wl nylan flayer, test1
wl nylan flayer, test?2
wl nylon 2layer, test1
wl nylon 2layer, test2
04
) —
£
£
2
:
z
= 03
S
5
:
.
g
[iq
5
5
P
£
(2] 02
01
? - —
s —_ fme—— i //
I ‘
] I
. : : : —
| [| | | | | |

1
Applied Force (Newtons)

Figure 29: Zoomed in View of Figure 28

31

3.4 Online Statistics Calculations

On-line calculation of the variance of each set of samples was done in order to record a measure

of the validity of a set of samples. If the variance is high for a particular sensor reading, this can

mean either there is a problem with the sensor or the subject is currently moving. Throwing out

samples that contain high variance is also a way to analyze samples that were taken when the

subject was at rest; samples taken while the subject is resting should give a better indication of

the state of the cast.

10,000 Random Numbers w/ Uniform Distribution, [0 1]
140 T T T T T T

140

10,000 Random Numbers w/ Uniform Distribution, [0 32767]

Count

05
Bins

10,000 Random Numbers w/ Normal Distribution, Mean = 25,000, Std
350 T T T T

300 -

250

2001

Count

150 -

100 -

Count

Dev = 1000

Uniform_1.0_mean

Uniform_1_0_var

Uniform_0_32767_mean

Uniform_0_32767_var

Gauss_25000_1000_mean

Gauss_25000_1000_var

Matlab
0.4975
0.0821

1.6302e+04

8.8158e+07
2.4978e+04
9.8517e+05

Figure 30: Online Statistic Calculation Verification

In order to verify the online calculations done by the SmartCast system, three sets of random

ATMega328p
04975
0.0821
16302
88157760
24977
985173

Error
2.0100e-05
8.3780e-06

0.2417
152.4495
07174
06104

% Error
0.0040
0.0102
0.0015

1.7293e-04
0.0029

6.1961e-05

numbers were generated and then run through the online algorithm on the SmartCast platform.

Figure 30 shows the three sets of random numbers generated. Figure 30 also contains a table of

32

data which compares the SmartCast online statistic algorithm with Matlab routines that perform
the same calculations. As can be seen in Figure 30, there is very little error between the Matlab
routines and the SmartCast online algorithm. Furthermore, as the mean and variance of only 10

samples is calculated at one time and then the algorithm reinitialized, the variables cannot grow

unbounded and therefore overflow is not possible.

33

3.5 Forces Under a Cast

In order to determine the range of forces that must be detected under a loose fitting cast, a pre-
made plaster cast was put over a subject's arm for a short duration of time while wearing a
SmartCast sensor. 7 trials were performed, each one with a different SmartCast sensor being
worn on the top of the arm as well as an Interlink Force Sensing Resistor (FSR) as a reference.
The pre-made cast was cut open, placed over the subject's arm, and secured using adhesive tape.
As the cast was pre-made, it was not snug against the subject's arm, and so this experiment

should simulate the conditions of an ill-fitting, or loose, cast.

Cast Test. w/ Blue and Grey Mylon Sensors
10 ! ! ! ! ! ! ! ! ! !

kOhms

1.1 B S T I : : : darkBlue
H H greyl
grey2

I T A sl rad A R fromemmeeeeee oo greyd
: : L VIS VR : : 4
i im : : : gi?:i redo
ETr) S A SR AR s . A [[greyd_redo |

CircularForceSensor

i i i i i i i i i i

0

50 100 180 200 250 300 350 400 450 500 550
Samples

Figure 31: Loose-Fitting Cast Test

Figure 31 shows the data from this experiment. The y-axis is the output of the sensors worn
during the test and the x-axis is the sample number, with 1 sample taken approximately every

second. The light blue lines correspond to the the FSR sensor by Interlink, used as a reference for

34

the SmartCast sensors, and the colored lines correspond to the different SmartCast sensors worn

as well.

For the 1st 50 seconds, the subject held his arm still, i.e. a rest period. For the 2nd 50 seconds,
the subject shook his arm to see the effects movement and vibration would have on the sensor
output. This was followd by another rest period for 50 seconds. Then, the experiment
administrator physically pushed down on the spot directly over where the sensor was located to

simulate a very tight fitting cast. The process continued for the duration of the experiment.

Figure 32 shows the Resistance vs. Applied Mass or Force curve for Interlink's FSR sensor. This

curve will be used to obtain the forces under the cast in the experiment explained above.

100 ==
gz 10 i
2 *k
O
< I
=1 !
(%) L
7
u h‘tj.h
0.1
10 100 1000 10000
FORCE (g)

Figure 32: Resistance vs. Applied Mass for Interlink Force Sensing Resistor” (FSR™)*!
(The Interlink datasheet uses the term "Force" but the x-axis in the plots are in units of grams.)

Before the 1st shake period, when the cast was fitting reasonably well, at least the best it did
during this experiment with a pre-made cast, the output of the FSR during one of the trials was

approximately 30kOhms. From Figure 32, this would correspond to approximately

35

0.02 kgrams * 9.8 SEZ = .196 Newtons of applied force. During the push period, which should
simulate a very tight fitting cast, the output of the FSR was approximately 10 kOhms, which
from Figure 32 corresponds to approximately 0.05 kgrams * 9.8522 = 0.49 Newtons of

applied force. After the 1st shake and push period, the output of the FSR sensor, illustraed by the
light blue lines in Figure 31, rises above 90 kOhms, the limit of detection of the SmartCast

analog interface. Looking at Figure 32, this would correspond to very little applied force,
approximately 0.01kgrams * 9.8 522 = (0.098 Newtons. This experiment therefore

demonstrates that the forces under a cast can range from approximately 0.098 N when very loose

and ill-fitting to 0.49 N when worn very tightly.

36

Chapter 4 - Sensor Network Fix

4.1 Problem Specification

Figure 33 shows the SmartCast resistive sensor network equivalent circuit. Each resistor

corresponds to a textile sensor on the sleeve.

r—-="--"""-""="-"=-"=-"=-"=-"=-"=-"=-"=-"=—-"=-"=—-"=—-"=—-—"==-—-"=-"=-=-=—-—"=- - = —|

ROW1 | |

I I

| RFabric16 RFabric12 RFabricg RFabricd |

| < B0k < 50k < B0k <50k |

I I

| I

ROW2 | |

I I

| RFabric15 RFabric11 RFabric? RFabric3 |

| < 50k < B0k < B0k < 50k |

I I

I I

ROW3 | |
|

| RFabric14 RFabric10 RFabric6 RFabric? l

| < 50k <50k <50k < 50k I

|

! I

I I

ROW4 |

l RFabric13 RFabric3 RFabrich RFabric1 |

: < 50k <50k < 50k < 50k [

|

I I

I — 4

OL1 coL2 IcoL3 oL4

Figure 33: The SmartCast 4x4 Resistive Sensor Network Equivalent Circuit

Figure 34 shows the intended path through the network when the Row1 and Columnl1 switches

are turned on and all other switches are open.

37

r—-""-""-"""-"=-"=-"=-"=-"=-"=-"=-"=-"=-—"=-"=—-—"=—-—"=-—-"=-—"=-=—-——— - = |
NROW1 | |
I I
| < RFabricl6 RFabric12 RFabric8 RFabric4 |
| 2 <50k < 50k < 50k < B0k |
' [
I I
| I
I I
| RFabric15 RFabric11 RFabric? RFabric3 |
| < 50k < 50k < 50k < 50k |
I I
' [
I I
|
| RFabric14 RFabric10 RFabricb RFabric2 l
| <50k <50k <50k < 50k :
' [
I I
L I
l RFabric13 RFabric RFabrich RFabnc1 I
: <50k <50k <50k < 50k I
|
| |
U |
oL1
Z /

Figure 34: How to Select Sensor RFabric16

Figure 35 shows some of the other paths through the network. These paths exist even though the
switches for the other rows and columns are open. The additional paths mean that the resistance

measured is not the actual resistance of a single sensor, but of several sensors in parallel.

T e ——————————— T T T T T T T T T 7 —I
rOWI | ———— |
|
| <¢ RFabricig RFabric12 RFabricd RFabric4 |
| ¥ <50k < b0k < 50k |
! I
I I
! I
! |
| RFabric15 RFabric11 <L RFabric? RFabric3 |
| < 50k < 50k 3 < 50k <50k |
| |
! I
| |
|
;oA . RFabric14 < RFabric10 RFabricé RFabric2 !
R ¥+ <50k <50k <50k :
I I
I I
L I
r RFabric13 <& RFabricd RFabrics RFabrici I
: & <50k < <50k <50k <50k I
|
! |
L - - - - - -] - __ — 4
OL1
< /

Figure 35: Additional Paths in Sensor Network

38

There are actually nine paths in Figure 35 in addition to the intended path through R16. Figure
36 shows the equivalent circuit for all 10 paths. There are 16 of these equivalent circuits, 1 for
each of the possible switch combinations. Vg, is the voltage that is measured using the ADC of

the microcontroller.

+ R1Z é R& R4 R12Z é R& R4 R1Z é R& R4

Vadc§ R16 R11 ; R7 R3 R10 § RE Rz Rg § RS R

R1S R14 R13
colt -

Figure 36: Equivalent Circuit for a Single Path

Figure 37 shows the equivalent circuit for a 2x2 network. The following derives the equations
for the equivalent resistance with the goal of calculating the actual sensor resistances despite the

additional confounding paths.

Row N
% R1 % R2
R:II\".'IE -
R3 Ra
y
Call Col2

Figure 37: Equivalent Circuit for a 2x2 Sensor Network

39

Figure 38 shows all the intended paths through the 2x2 network shown in Figure 37, i.e. the

paths correspond to the correct measurements of each sensor resistance.

R1 %RZ %Rﬂ R2 R1 %Rﬂ %RZ

R2
w2
% R3 % R4 % R3 % R4 R3 % R4 % R3 R4

ol o2 ol ol2

Figure 38: All 4 Intended Paths in 2x2 Network

Figure 39 shows that here, there is only 1 additional path for each of the 4 combinations of

switches, i.e. when a particular sensor is selected, there is only 1 additional path.

b R1

Row

< R3

R4

alt

R1

R3

R4

Row2

o R4

Lol

Figure 40 shows the equivalent circuits for the 2x2 network.

Vade g R1

Coh

Figure 40: The Equivalent Circuits for 2x2 Network

Col2

Vade § R2

R3

40

Figure 39: All Additional Paths in 2x2 Network

Coll

Vade § R3

Row2

T R4

Vade g Ré

Col2

R3

R1

Eq. 12 through Eq. 15 show the equivalent resistances for the circuits in Figure 40.

1 1 1

= —+ —_—)
Reqi Ri R, +R;+ R, Eq. 12
1 _ 1, ! Eq. 13
Reqz Ry R, +R;+ R, q-
1 _ 1, ! Eq. 14
Reis Rs Ri+R,+ R, q-
1 1 1
- Eq. 15

Rega Ry Ri+R;+ R3
Eq. 16 through Eq. 19 are rearranged to try and solve for the equivalent resistances. At first
glance, it seems that with 4 equations and 4 unknowns it should be possible to solve for each Reg,

but in practice this was not possible as these equations are non-linear.

Ri(Ry; + R; + Ry)

R = Eq. 16
1" R, +R,+R;+R, q

®2" R, +R,+R;+R, '

R Rs(Ry + R, + R3) Eq. 18
B3 R, +R,+R;+R, '

R,(Ry + R, + R3)

Roa = Eq. 19
€4* ~ R+ R, +R; +R, q

Eq. 20
Figure 41 shows a Matlab script which tries to solve for the equivalent resistances for a 2x2
network using the symbolic toolbox. The output however is "Warning: Explicit solution could
not be found." Thus, a change must be made to the hardware circuitry in order to account for the

multiple paths in the sensor network.

41

syms R1 R2 R3 R4 Reql Req2 Req3 Req4

[solve RI, solve R2, solve R3, solve R4] = solve(...

'Reql = ((RI*R2) + (R1*R3) + (RI*R4))/(RI + R2+ R3 + R4))', ...

'Req2 = ((R2*R1) + (R2*R3) + (R2*R4)) /(RI + R2 + R3 + R4))', ...

'Req3 = (((R3*R1) + (R3*R2) + (R3*R4)) /(RI + R2 + R3 + R4))’, ...

'Req4 = (((R4*R1) + (R4*R2) + (R4*R3))/(RI + R2 + R3 + R4))")
Figure 41: Matlab Symbolic Toolbox Script (Version 2009b)

42

4.2 Comparison to Literature

[15] contains a very similar circuit for measuring pressure sensors, shown in Figure 42, as that
used in SmartCast. In order to decrease the current through additional paths, drain resistors are
used to leak the current to ground. This circuit was simulated in NI Multisim to better understand
the measurement error vs Rdrain resistor value, the current draw from the drain resistors, and to
help design the SmartCast interface. Adding drain resistors increases the system power
consumption and it was important to analyze the impact of this as SmartCast intends to be a

mobile system.

CLRdraint |- - LRdrain2 | - - - - | oo
ﬁ;ﬂ]ﬂﬁﬁﬁﬁﬁﬁ;ﬂ]ﬂﬁﬁﬁZﬁﬁﬁﬁﬁﬁ'__'VDrﬁiVeﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

B A N e

&

oL CoM
R R A

OPAMP_ST_VIRTUAL- - - -~

DR o7~

Coo | VDrhvet
LT 2BV
SR [A

Figure 42: SmartSkin Analog Interface!"”

43

Figure 43 shows the error in measured resistance value vs. drain resistance values. The Y-axis
on the left is the measured value of R1 (i.e. the sensor). The X-axis is the actual R1 value which
is known at simulation time. The Y-axis on the right is the percent error between the measured
and actual R1 value. The red line is a perfect x=y line; any deviation from this line with respect
to the Y-axis on the left indicates error in the R1 measurement. The solid lines depict the
measured R1 value and correspond to the left Y-axis. The dotted lines depict the percent error.
The blue lines, both solid and dotted, correspond to the case when Rdrainl is infinity (i.e. an
open circuit) and Rdrain2 is 0 ohms (i.e. a short). This is the best case (i.e. the case with the least
error) as non-zero Rdrain values introduce measurement error. The black lines correspond to the
case when then additional paths are disconnected but the Rdrain resistors are still in place,
showing that the drain resistors do introduce some error. The green lines correspond to the case
when the additional paths are connected and there are no drain resistors to correct the
measurement error, i.e. the worst case. The large percent error shown by the dotted green line

indicates that measurement error introduced by the additional paths needs to be addressed.

Figure 44 shows the current draw and percent error for three different sensor resistance values
and for different values of Rdrain. For this simulation the drain resistor values was varied from 0
to 1kOhms; these values correspond to the X-axis. The left Y-axis is the current draw and the
right Y-axis is the percent error. As can be seen from the solid lines, the current draw increases
for small drain resistances, i.e. the drain resistors provide a path for current from Vdrive to
ground. This implies that to decrease energy consumption, it is better to have larger drain
resistors, as the current draw increases when drain resistors are small. What is also apparent from
Figure 44 is that when all sensor resistances are small, more error is introduced, as can be seen

from the dotted red line. This can be explained by examining the circuit because sensors R2, R3,

44

and R4 act as though they are in parallel with R1, due to the additional path through the network.
Thus, when R2, R3 and R4 have lower resistance, this decreases the measured resistance because
it is like a small resistance (R2+R3+R4) in parallel with another small resistance (R1), i.e. a
smaller resistance in parallel will affect the equivalent resistance more than a large resistance.

This implies that to decrease measurement error, we must have a large minimum to the sensor

SmartSkin ak a. MIT Circuit
% Error in R1 Measurement vs. Actual R1 Value for varying values of R1,
R2=R3=R4 =1k
Three Cases Are Plotted
1. Rdrain = open, Rdrain2 = short i.e. the ideal limits for Rdrain1 and Rdrain2
2. All Unintended Paths Disconnected and no Rdrain connections
x10* 3. Unintended Paths are Connected, drain Resistors not connected
3 100
90
5
{80
/ !
4
/ T

— Actual R1
——— Measured R1, Rdrain1 open, Rdrain2 short
— Measured R1. unintended paths disconnected

Weasured R1 (Ohms)
w

Measured R1, unintended paths connected. no Rdrain

% Error in R1 Measurement vs. Actual R1 Value

----- % Error, Rdrain1 open, Rdrain2 short P
----- % Error, unintended paths disconnected
- % Error paths connected, no Refain
30
20
c
10
0] f [[| 1y
0 05 1 15 2 3 35] 45 5
Actual R1 Value (Ohms) -

Figure 43: % Error in SmartSkin Resistance Measurement

45

IVDriv e {mA)

250

200

150

100

Current Drawn From 5V Reference (IVdrive) and % Error of R1 Measurement vs. Rdrain

SmartSkin a.k.a. MIT Circuit

Actual R1value is 25kOhm

—90
_________________________________ i
gl WVdive, R-RIRA=1k |
P —— IVdrive, R2=R3=Ré=10k /-
—— IVdrive, R2=R3=Ré=25k
| - Error, R2=R3=Rd=1k
/ - Error, R2=R3=Rd=10k
o =
e Error, R2=R3=Rd=26k Lo
//
r/
¥
| —50

|
&

9% Error of R1 Measurement

—30
—20
50
—10
\\ _______________________________________
Tfo—e—mczmo oo
e e o i]
0 100 200 300 400 500 600 700 800 900 7000

Rdrain (Ohms)

Figure 44: SmartSkin Analog Interface Current Draw

Figure 45: SmartCast Analog Interface w/ Drain Resistors

46

A similar analysis was carried out for the SmartCast analog interface, shown in Figure 45. Here,
the circuit is a transimpedance amplifier, i.e. the current through the sensor is converted to a
voltage, which is read by the microcontroller ADC (the sensors are in fact in the feedback path,
as opposed to the circuit in Figure 42). Similar conclusions can be drawn as above, namely that
to decrease current draw and power consumption, large drain resistors are needed, and to
decrease measurement error, sensors with a large minimum resistance need to be used. In fact, to
achieve the minimum current draw, the drain resistors connected to the unused rows (i.c. the
rows not connected to the sensor currently being measured) need to be shorts, and to achieve
minimum error, the drain resistor connected to the used row (i.e. the row connected to the sensor
currently being measured) needs to be open. In other words, the unused rows need to be
connected to the 1V reference directly, and the used row needs to completely disconnected from
it. Therefore, in the SmartCast implementation of this fix, no drain resistors are used, and
switches controlled by digital logic are used to connect/disconnect the rows to/from the 1V
reference depending on which sensor is being measured. This implementation negates the
additional paths by connecting the unused rows to the 1V reference, thereby creating a 0V drop
across a resistor in each additional path, which cause no current to flow, thereby killing the

additional path.

47

Weeasured R1 (Ohms)

V1 (mA)

SmartCast Circuit
% Error in R1 Measurement vs. Actual R1 Value for varying values of R1,
R2 =R3 =Rd4 = 1kOhm;
Three Cases Are Plotted
1_Rdrain1 = open. Rdrain2 = short. i e_the ideal limits for Rdrain1 and Rdrain2
2. All Unintended Paths Disconnected and no Rdrain connections, i e. the best case scenario

X 10 3. Unintended Paths are Connected, drain Resistors not connected, i.e. the worst case scenario
5 : / —100
45 =90
4 —80
35 —70
3 — Actual R [80
Measured R1, Rdrain1 open, Rdrain2 short
Measured R1, unintended paths disconnected
Measured R1, unintended paths connected, no Rdrain
25 = % Error, Rdrain1 open, Rerain2 short ==t —50
= % Error. unintended paths disconnected
% Error, unintended paths connected. no Rdrain
2 —40
15 —30
1 —20
o= 10
1 1 1 1 1 1
0 I I t b t t Y
0 05 1 15 2 3 35 4 45 5
Actual R1 Value (Ohms) o
. o . .
.
Figure 46: % Error in SmartCast Resistance Measurement
SmartCast Circuit
Current Drawn From 1V Reference (IV1) and % Error of R1 Measurement vs_ Rdrain
50 —100
45 —90
40 ‘ e 80
3 o -0
30 —60
/
A T T T T Y e % Error, R1=1k R2=R3=R4=1k
25 —50
20 —40
15 —30
10 T
s 10
0 —0
100 200 300 400 500 600 700 800 900 1000

Rdrain (Ohms)

Figure 47: SmartCast Analog Interface Current Draw

48

% Emor in R1 Measurement vs, Actual R1 Value

% Error of R1 Measurement

4.3 Solution Implementation and Validation

Figure 48 shows a functional diagram of the additional circuitry used in the SmartCast system to
implement the network fix. The light blue lines and blocks are the additional components
comprising the fix. In order to save on microcontroller pins, the same control lines for
AnlogMux1 were sent to a 2-4 decoder, thus no changes to the software are needed in this
hardware implementation. The 2-4 decoder decodes the 2 control lines into a 4 bit binary
number, each bit of which controls a single-pole single-throw switch. Each switch shares a
common input, which is the 1V reference shown in the diagram. These are active high switches,
and have the correct logic to connect the unused rows to the 1V reference, thereby killing the

current through the extra paths.

Control
1V Reference o 4 |
: . 4 Active High
i 2-4 Decoder SPST
ADC II :
IS S
MCU ——t—» AnalogMux
1
Control
Lines +
> 4x4 S
4x4 Sensor_
- AL“;EIM Network

Columns

Figure 48: Functional Diagram of Analog Interface w/ Network Fix

49

In order to test the implementation of the network fix, the SmartCast system was connected to a
bank of 16 ceramic resistors. Figure 49 shows the data when the bank was sampled without the
network fix and Figure 50 shows data with the fix applied. Since the resistor values are known,

we can calculate the error between the SmartCast measurements and the actual resistance values,

thereby validating the network fix.

Measured Resistance Values, without Network Fix

5 T T T T T
w
£ :
£ ;

o
== '
0 \ i i i i i i
10 20 30 40 50 60 70 80 90 100
Sample #
Actual Resistance Values
! ! ! ! ! ! ! ! !

BO [=-mmmmm o e [bonmemee [e e it —
L e o S e .
=

20f=------- D ERRREECEEEEEEEE L FREEEECEEEE FRECEECEEEE: L R R R R e e LR e e Rt B

0 {
10 20 30 40 50 60 70 80 90 100
Sample #
Error, without Network Fix
! ! ! ! ! ! ! !

B0 f—-------- R RRREEREEE R e e e R e L LR -
£ 40 R AEREEEE R EECELEEE P s e s S e R LR e LR e EEEEEEE T
Z ' ' . ' ' . ' ' .
= ' ' ! ' ' ! ' ' !

L L e &

[] = 5 5 — 5 5 = 5 5 — -
10 20 30 40 50 60 70 80 90 100
Sample #
% Error, without Network Fix
100
T 1 T

Sample #

Figure 49: Resistance Measurements without Network Fix

50

The top plot of Figure 49 shows the SmartCast measurements for the 16 resistors for 100 wake
events. The next lower plot shows the actual resistance values. The bottom two plots show the
error and error percentage, respectively; likewise for Figure 50. It can be clearly seen in Figure
50 that the error drops considerably when applying the hardware network fix, thus validating this

solution.

Measured Resistance Values, with Network Fix

T T T T

B0 I~ = o o o b e llhlllalll -
= S S S s -
=
o
-

20 e L T L R E L L T T R T E T e e e =

0 —_— — — S — — =

10 20 30 40 50 60 70 80 90 100
Sample #

Actual Resistance Values

w
E
=
&
Sample #
Error, with Network Fix
! ! 1
o1 S b LT SET Rl SRR FEEREEE —
g) U R S S :h __ _
= |
2 :
= !
20_ ___ R s L L e R e R LR L LR R] -
7 :
10 20 30 40 50 60 70 80 90 100
Sample #
% Error, with Network Fix
100 T T T
L B T e i B
1) RS S S S S S I . .
% s s s s s s s s s
A0 --------- ommmeeees drmmmmeees drememes fomnmnns R bonnmnnane mmm e drmeemeees EEREEEEEEE —
e e R T T Lo R T .
[]-A - = o e o Mt SN e - b s
10 20 30 40 50 60 70 80 90 100

Sample #

Figure 50: Resistance Measurements with Network Fix

51

52

Chapter 6 - Conclusion

6.1 Conclusion

A sensor sleeve has been designed that allows the pressure applied by an orthopedic cast to be
measured. A number of experiments were carried out to determine the most appropriate textile
sensor for this application. Out of all the types of sensors tested, two layers of Velostat with a top
and bottom layer of nylon had the least variability between sensors with a suitable resistance
range. Individual sensors can be constructed separately and then sewn onto a spandex-nylon
sleeve to ease the manufacturing process. The output of these sensors cannot be compared

directly as they give an indication of the relative, not absolute, force being applied.

The original SmartCast sensor matrix contained a number of additional paths through the
network which confounded the resistance measurements. In order to develop an appropriate
solution, the sensor network in [15] was examined and compared to the sensor network used in
SmartCast. While the analog interface used in [15] is different than that used in the SmartCast
system, a similar solution was used in SmartCast to weaken the effect of the multiple paths,

namely tying the unused rows to the 1V reference.

The SmartCast system firmware has been developed and verified and is shown in Appendix D.
This code was used to obtain all the sensor measurement data presented in this thesis.
Furthermore, the firmware has been designed to extend the system lifetime, namely by using the
sleep mode of the microcontroller, cutting power to the external SDCard and by using the

internal Flash and EEPROM memory of the microcontroller.

53

6.2 Future Work

A number of improvements can be made to the SmartCast system to increase its usefulness,
durability and ease of use. Waterproof testing should be done to determine the durability of the
SmartCast system sensor sleeve in a real-life environment. While the individual textile sensors
have been made watertight by the addition of a top and bottom layer of nylon, their connections
are exposed and a short may occur if liquid with a high salt content, e.g. sweat, were to touch the

connections.

Work should be done to reduce the size of the PCB and case to allow the SmartCast system to be
easily worn by small children. Currently, the main component adding to the size of the
SmartCast system is the power supply, which consists of 2-3 AAA batteries. A large power
supply is necessitated by the use of the external SD Card, which is not low power storage. A
different class of low power, embedded storage would need to be integrated into the SmartCast
system to reduce the size of the power supply, which would then allow the PCB size to be

reduced as well.

Patient trials should be conducted to obtain data from real subjects. This data can then be
analyzed to determine if algorithms can be developed which could alert the patient or doctor that

the cast is fitting improperly.

54

Appendices

55

(I T EETE| ZI07 20 J5aWBA0N RepUy Seq

qg fuoysn
Jequny wewnoeqg | e

1C

t Schemat

ircui

waishg IseQUEWg T oz a3usen =
o = =
paiswn uosiEy 0 SPIEIQ “FEqUEYS WeMEy SMopuEq MeIpy. noweaig syETXQY |
cleee o2y
“m,u 105 7N |2 L m.z,:
- - S Q0N N =
= =) LN
dgzeeBonIy] 04 el
) w01 S3ThY
lawﬁ (195 '50av) 50d £
= —ger] rad 6w_<ue (vas jas En“ R
- = 58d (408! 28d (¢INIDd) L
¥109 €10 48 1100 508 | Jad (TiNiod) 26d @10 45 5OA
SIPON ootong 1N 51 ogd (10 904
RS [ans pes] 1ad (x1) (0LND) Zad .
| s ; 0ad “xmv , fﬂ: mon“ NOYeQIg PIED Q!

W0 sk —=rEate] 00d (00av) 2od {zoav) ang
! w5 > o5 > yos> s> Iold S1D [—EIas | 15d (15av) £9d (£00V))

! . : 90ld 7O |2 ON e | vad 084 (0LNIDd) [
| 1ouge Ry GouqE LY 6oL £1ouqeRy s ison g0 5 ad 70d od
—
l ¥ 010ld SOId |5 I 7 Ay (19533 95d %S
| ﬂ 110ld $OId |-¢ VAL | oony 20A [@

N SO [Q0A -
| [£ sn Nd2 90A
i Afe oS [5 - =
| 05 > 05 > 05> 405> m]

I o gy FoudELY 019uqESY VlaugEy A N2 DoAY

” Nd9 D0A

|

I

I 05 > 305 > 05> 05 >

i cougegy eS| LioudeLy SlaugeLy

I

| =

o e W | _______

i - 1
05 > 305 > 05> %05 > A =

! pougey gouge Z1ougesy 9lougesy N/

! LLECT7g

| 0y

1

H0ESTH

VPP09dON

soeps|Y| Bojeuy

H0EE ¥709dON

56

Nd9 D0AY

MAIAGETINY
V09N

youms apis UBIH ML-08ZZdY = NdD DAY

7709doN

apoiq JausZ Ay H

(2] Aﬁ 1% 1a nol toup

peag spwey

wyopy 4o
€

+—

Ndo 20A}

A. SmartCast C

B. Sample SmartCast SD Card Data Format

Figure 51 shows an example of the SmartCast SD Card data format. The data from 1 wake-
sample-store event is eventually stored in a text file on the SD Card. One set of data contains 19
lines. The first line is the sample number; in this example the sample number is 358420, which
means this set of data is from the 358420'th wake event. The next line contains the raw output of
the accelerometer, in the format: X-axis, Y-axis, Z-axis. The third line is the system voltage as
measured by the ATMega328p. The remaining 16 lines are the sensor means and variances. For
example, on the 4th line, 3338 is the mean resistance value (in Ohms) of Sensor 1 over 10
samples of the onboard ADC for this particular wake event. 480 is the sensor variance over those

same 10 samples.

2.80

3338 480
2230 871
2974 480
2178 1472
186l 480
15444 2403
1757 480
2054 751
3552 1201
4108 0O
T285 270
15267 €725
10571 &30
9869 2284
14908 830
2631 721

Figure 51: SmartCast SD Card Data Format

57

Additionally, every time data is written to the SD Card, an additional line is inserted into the data

with debug information. This line has the following format:

RXXXX

where the X's are hexadecimal numbers corresponding to debug codes defined in the software,

such as an interrupt occurred or the hard limit to the number of Flash writes defined in software
has been exceeded. In order to remove these lines from the data.txt file, regular expressions can
be used. For example, in a text editor, a search-and-replace can be done for the regex: \nR\d+\n.
This will find all the debug lines and they can then be automatically removed be replacing those

lines with nothing, allowing a Matlab script to then easily parse the data file for plotting.

58

C. System Lifetime Calculation Matlab Code

clc;
clear;
set (0, '"defaultlinelinewidth', 2);

t Sleep = (1:1:3600) / 3600;

%These capacities are for the Energizer
%line of Ultimate Lithium batteries

% 2AAA 3AA 2AA

C = [2400 3600 60007;

%0riginal System Configuration, i.e. put the SD card into idle mode
$but write to it at each wake event

I sample = 10; %mA, during sample period

I write = 100; %mA, during SD Card write

I sleep 0.6; SmA, during sleep period

o\

sample duration = 0.41 / 3600; %0.41 sec * 1 hr/3600sec, from DAQ data
write duration = 0.05 / 3600;

cycle duration = sample duration + write duration + t Sleep;
C sample = I sample * sample duration;
C write = I write * write duration;

C sleep = I sleep * t Sleep;
C wake store sleep = C_sample + C write + C_sleep;

for x = 1l:length(C)
num cycles(x, :) = C(x) ./ C _wake store sleep;
end

for x = 1l:1length(C)
Lifetime (x, :) = (num cycles(x, :) .* cycle duration) / 24; S%days
end

%Sys Config with EEPROM and FLASH writes
%Average current during a wake event in which we write to internal memory
I EEPROM = 15; SmA

I Flash = 12; SmA
I SDCard Init = 10; SmA
I SDCard Write = 100; SmA
I Sleep = 0.060; SmA

%These times include the sampling

t EEPROM = 0.7 / 3600; %hours
t Flash = 0.3 / 3600; $hours
t SDCard Init = 0.7 / 3600; $hours
t SDCard Write = 0.9 / 3600; Shours

59

gnum of EEPROM writes in a EEPROM-Flash-SDcard sequence

num_ EEPROM Writes = 7;

gnum of Flash writes in a EEPROM-Flash-SDcard sequence

num Flash Writes = 44;
num SDCard Writes = 1;

cycle duration Config2 =
((t_Flash + t Sleep)

((t_EEPROM + t Sleep)
* num Flash Writes)

t SDCard Write + t Sleep;

C _EEPROM =
C Flash =
C _SDCard Init =
C _SDCard Write =
C Sleep =

C _EEPROM Flash SDCard =
((C_Flash + C_Sleep)

((C_EEPROM + C_Sleep)
* num Flash Writes)

I EEPROM * t EEPROM;
I Flash * t Flash;
I SDCard Init * t SDCard Init;

I SDCard Write * t SDCard Write;
I Sleep * t Sleep;

C SDCard Write + C Sleep;

for x = 1l:length(C)

num cycles Config2(x, :) =
end

for x = 1l:length(C)

Lifetime Config2(x, :) =

cycle duration Config2) / 24; %days
end
%3rd Configuration - With LDO
I EEPROM L = 20; $mA
I Flash L = 18; SMA
I sDCard Init L = 10; SmA
I SDCard Write L = 100; SmA
I Sleep L = 0.06; SmA
I LDO = 0.008; $mA
I LDO Sleep = 0.0005; SmA
%These times include the sampling
t EEPROM L = 0.7 / 3600; $hours
t Flash L = 0.3 / 3600; $hours
t SDCard Init L = 0.7 / 3600; $hours
t SDCard Write L = 0.9 / 3600; $hours
num_ EEPROM Writes L = 7;

SDcard sequence
num Flash Writes L = 44
num_ SDCard Writes L = 1;

cycle duration Config2 L =
((t_Flash L + t Sleep)
t SDCard Write L + t Sleep;

* num_ Flash Writes L)

C(x)

(num_cycles Config2(x,

$num of EEPROM writes in a EEPROM-Flash-

((t_ EEPROM L + t Sleep)

60

* num EEPROM Writes) +
+ t SDCard Init +

* num EEPROM Writes) +
+ C_sSDCard Init +

./ C_EEPROM Flash SDCard;

* num EEPROM Writes L)

+ t_SDCard Init L +

+

C_EEPROM L = (I EEPROM L + I LDO) * t EEPROM L;

C Flash L = (I _Flash L + I LDO) * t Flash L;

C sDCard Init L = (I _SDCard Init L + I LDO) * t SDCard Init L;

C SDCard Write L = (I _SDCard Write L + I LDO) * t SDCard Write L;
C Sleep L = (I _Sleep L + I LDO_Sleep) * t Sleep;

C EEPROM Flash SDCard L = ((C_EEPROM L + C Sleep L) * num EEPROM Writes L) +

((C_Flash L. + C Sleep L) * num Flash Writes L) + C SDCard Init L +
C SDCard Write L + C _Sleep L;

for x = 1l:1length(C)
num cycles Config2 L(x, :) = C(x) ./ C_EEPROM Flash SDCard L;
end

for x = 1l:1length(C)
Lifetime Config2 L(x, :) = (num cycles Config2 L(x, :) .*
cycle duration Config2 L) / 24; %days

end

figure;

hold on;

grid on;

hOrig bl = plot((t_Sleep*3600), Lifetime(l,:), '-b');
hOrig b2 = plot((t Sleep*3600), Lifetime(2,:), '-k');
hOrig b3 = plot((t_Sleep*3600), Lifetime(3,:), '-r');

hInt bl = plot((t_Sleep*3600), Lifetime Config2(l,:), ')
hInt b2 = (: ;

(
plot ((t_Sleep*3600), Lifetime Config2 (
hInt b3 = plot((t_Sleep*3600), Lifetime Config2 (

_ r
plot ((t _Sleep*3600), Lifetime Config2 L(1,:), '--b');
plot ((t _Sleep*3600), Lifetime Config2 L(2,:), '--k');
plot ((t_Sleep*3600), Lifetime Config2 L(3,:), '--r');

ylabel ('System Lifetime (days)');
xlabel ('Sleep Time (sec)');
title({'System Lifetime vs. Sleep Time for Several System Configurations and
Batteries', 'Bateries are the Ultimate Lithium brand by Energizer', ...

'w/ 2400mAh for 2 AAA @3V, 3600mAh for 3AAA @4.5V, and 6000mAh for 2AA
@3v'});
legend ('No Internal Mem Use, SDCard Idle, 2AAA',

'No Internal Mem Use, SDCard Idle, 3AAA',

'No Internal Mem Use, SDCard Idle, 2AA',

'Internal EEPROM, Flash, 2AAA',

'Internal EEPROM, Flash, 3AAA',

'Internal EEPROM, Flash, 2AA',

'Internal EEPROM, Flash w/ LDO, 2AAA',

'"Internal EEPROM, Flash w/ LDO, 3AAA',

'"Internal EEPROM, Flash w/ LDO, 2AA'");

text (20, Lifetime Config2(1,20),...
"\leftarrow20Sec Sleep Time', ...

'FontSize',12);

text (60, Lifetime Config2(1,60),...
"\leftarrowlMin Sleep Time', ...

61

'FontSize',12);

set (TheAxis, 'yticklabel',
reshape (num2str (get (TheAxis,

'YTick'), [1,1),

62

D. Matlab Code to Calculate Sensor Resolution & Sensitivity

close all;
clear all;
clc;

set (0, 'defaultlinelinewidth', 2);

colors — ['r', 'k', 'b', 'g', 'y', 'm', 'g', 'r', 'C', 'k', 'b', 'y', 'm',
'g', 'r' 'C',
'C', 'b'};

disp 'Begin Text Read'

NUM_SENSORS = 16;
NUM SENSOR_PER LINE = 2;
NUM ACC = 1;
NUM ACC PER LINE = 3;
NUM OTHER LINES = 2;
NUM LINES IN GROUP = NUM ACC + NUM OTHER LINES + NUM SENSORS;
%1 Sample # line
%1 acc line
%1 voltage line
%16 Sensor lines

index offset=((NUM SENSORS*2)+ (NUM ACC*NUM ACC_PER LINE)+NUM OTHER LINES) ;

sampleBuf = "$lu\n';
bufferAcceleration = '%d %d %d\n';
bufferVoltage = '%Se\n';
resistanceBufl = '$1lu %lu\n';
resistanceBuf2 = '$1lu %lu\n';
resistanceBuf3 = '$1u %lu\n';
resistanceBuf4 = '$1u %lu\n';
resistanceBuf5 = '$1lu %lu\n';
resistanceBuf6 = '$1lu %lu\n';
resistanceBuf7 = '$1lu %lu\n';
resistanceBuf8 = '$1u %lu\n';
resistanceBuf9 = '$1u %lu\n';
resistanceBufl0 = '$1u %lu\n';
resistanceBufll = '$1lu %lu\n';
resistanceBufl2 = '$1lu %lu\n';
resistanceBufl3 = "$1lu %lu\n';
resistanceBufld = "$1lu %lu\n';
resistanceBufl5 = '$1lu %$lu\n';
resistanceBufl6e = '$1lu %lu\n';
combinedBuf = strcat (sampleBuf, bufferAcceleration, bufferVoltage,

resistanceBufl, resistanceBuf2, resistanceBuf3, resistanceBuf4,
resistanceBuf5, resistanceBuf6, resistanceBuf’/, resistanceBufS,

63

resistanceBuf9, resistanceBufl(O, resistanceBufll, resistanceBufl2,
resistanceBufl3, resistanceBufl4d, resistanceBuflb5, resistanceBuflo);

$THIS USER MUST INPUT THIS!!
numLines = 34923; %you need an extra blank line at the end
NUM GROUPS vllayerl = floor (numLines / NUM LINES IN GROUP); %how many
resistance measurements we have per sensor
file vllayerl = ['C:\Users\D\Documents\Word Documents\EE202C\SmartCast Winter
2013\

'"PlatformTest\try3\velostat llayerl.txt'];
fid = fopen(file vllayerl);
s vllayerl = fscanf (fid, combinedBuf, [index offset, NUM GROUPS vllayerl]);
fclose (fid) ;

o o

$THIS USER MUST INPUT THIS!!
numLines = 35037; %you need an extra blank line at the end
NUM GROUPS vllayer2 = floor (numLines / NUM LINES IN GROUP); %how many
resistance measurements we have per sensor
file vllayer2 = ['C:\Users\D\Documents\Word Documents\EE202C\SmartCast Winter
2013\

'"PlatformTest\try3\velostat llayer2.txt'];
fid = fopen(file vllayer2);
s vllayer2 = fscanf (fid, combinedBuf, [index offset, NUM GROUPS vllayer2]);
fclose (fid);

L

$THIS USER MUST INPUT THIS!!
numLines = 34619; %you need an extra blank line at the end
NUM GROUPS v2layerl = floor (numLines / NUM LINES IN GROUP); S%how many
resistance measurements we have per sensor
file v2layerl = ['C:\Users\D\Documents\Word Documents\EE202C\SmartCast Winter
2013\

'PlatformTest\try3\velostat 2layerl.txt'];
fid = fopen(file v2layerl);
s v2layerl = fscanf(fid, combinedBuf, [index offset, NUM GROUPS v2layerl]);
fclose (fid);

L

$THIS USER MUST INPUT THIS!!
numLines = 34562; %you need an extra blank line at the end
NUM GROUPS v2layer2 = floor (numLines / NUM LINES IN GROUP); %how many
resistance measurements we have per sensor
file v2layer2 = ['C:\Users\D\Documents\Word Documents\EE202C\SmartCast Winter
2013\

'PlatformTest\try3\velostat 2layer2.txt'];
fid = fopen(file v2layer2);
s v2layer2 = fscanf(fid, combinedBuf, [index offset, NUM GROUPS v2layer2]);
fclose (fid);

°

§-———mmm try4 data--———-—7-———-—————————————————-
Fm—mmmmmmm try4 data----------—-—-———-——-—-—-—-——-—
Fm—mmmmmmm tryd4 data--------------———-——-—-—-—-——-—

S o
°

$THIS USER MUST INPUT THIS!!

numLines = 34771; %you need an extra blank line at the end

NUM GROUPS vllayer Bluel = floor (numLines / NUM LINES IN GROUP); Show many
resistance measurements we have per sensor

64

file vllayer Bluel = ['C:\Users\D\Documents\Word Documents\EE202C\SmartCast
Winter 2013\
'"PlatformTest\try3\velostat llayer nylon darkblue 1l.txt'];
fid = fopen(file vllayer Bluel);
s _vllayer Bluel = fscanf(fid, combinedBuf, [index offset,
NUM_GROUPS vllayer Bluel]);
fclose (fid) ;

o

$THIS USER MUST INPUT THIS!!
numLines = 34961; %you need an extra blank line at the end
NUM GROUPS vllayer Blue2 = floor (numLines / NUM LINES IN GROUP); Show many
resistance measurements we have per sensor
file vllayer Blue2 = ['C:\Users\D\Documents\Word Documents\EE202C\SmartCast
Winter 2013\
'"PlatformTest\try3\velostat llayer nylon darkblue 2.txt'];
fid = fopen(file vllayer Blue2);
s vllayer Blue2 = fscanf (fid, combinedBuf, [index offset,
NUM GROUPS vllayer Blue2]);
fclose (fid) ;

$THIS USER MUST INPUT THIS!!
numLines = 35132; %you need an extra blank line at the end
NUM GROUPS v2layer Greenl = floor (numLines / NUM LINES IN GROUP); Show many
resistance measurements we have per sensor
file v2layer Greenl = ['C:\Users\D\Documents\Word Documents\EE202C\SmartCast
Winter 2013\
'PlatformTest\try3\velostat 2layer nylon green 1.txt'];
fid = fopen(file v2layer Greenl);
s _v2layer Greenl = fscanf (fid, combinedBuf, [index offset,
NUM GROUPS v2layer Greenl]);
fclose (fid);

o

$THIS USER MUST INPUT THIS!!
numLines = 34581; %you need an extra blank line at the end
NUM GROUPS v2layer Green2 = floor (numLines / NUM LINES IN GROUP); Show many
resistance measurements we have per sensor
file v2layer Green2 = ['C:\Users\D\Documents\Word Documents\EE202C\SmartCast
Winter 2013\"
'PlatformTest\try3\velostat 2layer nylon green 2.txt'];
fid = fopen(file v2layer Green2);
s v2layer Green2 = fscanf (fid, combinedBuf, [index offset,
NUM GROUPS v2layer Green2]);
fclose (fid) ;

Resistance rows = 6:2:36;

poly order = 3;

65

grams_to Newtons 9.8/1000; %to account for Newtons being kg * m . s”"2
Newtons to grams = 1000 / 9.8;

figure;

hold on;
%the following should be rolled into a loop
%no nylon, 1 layers
[minLoc minMag] =

peakfinder min (s _vllayerl (Resistance rows(l), :)./1000); %minMag has units
of kOhms
minLoc_size(l) = size(minLoc, 2); $for indexing
minLoc v (l,l:minLoc size(l)) = rescale(minLoc, 1, 300); %rescale from
grams to Newtons
[p, ErrorEst] = polyfit(minLoc v(1l,l:minLoc_size(l)), minMag,
poly order); S%curve fit
pop fit v(1l,1l:minLoc_size(l)) = polyval(p, minLoc_v(l,l:minLoc_size(l)),
ErrorEst); S%Spop fit has units of kOhms
plot (minLoc v (1l,l:minLoc size(l)) * grams_ to Newtons,
pop fit v(l,l:minLoc _size(l)), '-r');
[minLoc minMag] = peakfinder min(s_vllayer2 (Resistance rows(l), :)./1000);
minLoc size(2) = size (minLoc, 2);
minLoc_v(2,1l:minLoc_size(2)) = rescale(minLoc, 1, 300);
[p, ErrorEst] = polyfit(minLoc v(2,l:minLoc_size(2)), minMag, poly order);
pop fit v(2,1l:minLoc_size(2)) = polyval(p, minLoc v (2,l:minLoc size(2)),
ErrorEst) ;
plot (minLoc v (2,1l:minLoc size(2)) .* grams_ to Newtons,
pop fit v(2,1l:minLoc_size(2)), '-k');

%no nylon, 2 layers
[minLoc minMag v2layerl] =

peakfinder min(s_v2layerl (Resistance rows(l), :)./1000);

minLoc_size(3) = size (minLoc, 2);

minLoc v (3,1l:minLoc_size(3)) = rescale(minLoc, 1, 300);

[p, ErrorEst] = polyfit (minLoc v(3,1l:minLoc_size(3)), minMag v2layerl,
poly order);

pop fit v(3,1l:minLoc_size(3)) = polyval(p, minLoc v (3,1l:minLoc_size(3)),
ErrorEst) ;

plot (minLoc v (3,1l:minLoc size(3)) * grams_to Newtons,
pop fit v(3,1l:minLoc_size(3)), '-b');

$FSR1

[minLoc minMag] =
peakfinder min(s_v2layerl (Resistance rows(16), :)./1000);

minLoc_size(4) = size(minLoc, 2);

minLoc v (4,1l:minLoc_size(4)) = rescale(minLoc, 1, 300);

[p, ErrorEst] = polyfit(minLoc v(4,l:minLoc size(4)), minMag, poly order);

pop fit v(4,1l:minLoc_size(4)) = polyval(p, minLoc_v(4,1l:minLoc_size(4)),
ErrorEst);

plot (minLoc_v(4,1l:minLoc_size(4)) * grams_to Newtons,
pop fit v (4,1l:minLoc _size(4)), '-c');

[minLoc minMag v2layer2] =
peakfinder min(s_v2layer2(Resistance rows(l), :)./1000, 15);
minLoc_size(5) = size (minLoc, 2);

66

minLoc_v (5,1:minLoc_size(5)) = rescale(minLoc, 1, 300);

[p, ErrorEst] = polyfit (minLoc v(5,1l:minLoc_size(5)), minMag v2layer2,
poly order);

pop fit v (5,1:minLoc_size(5)) = polyval(p, minLoc v (5,l:minLoc_size(5)),
ErrorEst);

plot (minLoc_v(5,1l:minLoc_size(5)) * grams_to Newtons,

pop fit v(5,1:minLoc_size(5)), '-g');

$FSR2
[minLoc minMag] =
peakfinder min(s_v2layer2 (Resistance rows(1l6), :)./1000);
minLoc size(6) = size (minLoc, 2);
minLoc_v(6,1l:minLoc_size(6)) = rescale(minLoc, 1, 300);
[p, ErrorEst] = polyfit(minLoc v(6,1l:minLoc_size(6)), minMag, poly order);
pop fit v(6,1l:minLoc_size(6)) = polyval(p, minLoc v (6,1l:minLoc_size(6)),
ErrorEst);
plot (minLoc v (6,1l:minLoc size (6)) * grams_to Newtons,
pop fit v(6,1l:minLoc_size(6)), '-c');

%I had to tune the peaks vector to calculate the correct difference
%one layer with nylon
[minLoc minMag Bluel] =

peakfinder min(s_vllayer Bluel (Resistance rows(l), :)./1000, 0.3);
minLoc _size(7) = size (minLoc, 2);
minLoc v (7,1l:minLoc_size (7)) = rescale(minLoc, 1, 300);
[p, ErrorEst] = polyfit (minLoc v(7,1l:minLoc_size (7)), minMag Bluel,
poly order);
pop fit v(7,1l:minLoc_size (7)) = polyval(p, minLoc v (7,l:minLoc size (7)),
ErrorEst);
plot (minLoc v (7,1l:minLoc size (7)) * grams_to Newtons,
pop fit v(7,1l:minLoc_size(7)), '-y'):

[minLoc minMag Blue2] =

peakfinder min(s_vllayer Blue2 (Resistance rows(l), :)./1000, 0.6);
minLoc_size(8) = size(minLoc, 2);
minLoc v (8,1l:minLoc_size(8)) = rescale(minLoc, 1, 300);
[p, ErrorEst] = polyfit(minLoc v (8,1l:minLoc_size(8)), minMag Blue2,
poly order);
pop fit v(8,1l:minLoc_size(8)) = polyval(p, minLoc v (8,1l:minLoc_size(8)),
ErrorEst);
plot (minLoc v (8,1l:minLoc size(8)) * grams_ to Newtons,
pop fit v(8,1l:minLoc size(8)), '-m');

$two layers with nylon
[minLoc minMag Greenl] =

peakfinder min(s_v2layer Greenl (Resistance rows(l), :)./1000);
minLoc_size(9) = size(minLoc, 2);
minLoc_v(9,1:minLoc_size(9)) = rescale(minLoc, 1, 300);
[p, ErrorEst] = polyfit(minLoc v (9,1l:minLoc_size(9)), minMag Greenl,
poly order);
pop fit v(9,1l:minLoc_size(9)) = polyval (p, minLoc_v(9,1l:minLoc_size(9)),
ErrorEst);
plot (minLoc_v(9,1l:minLoc_size(9)) * grams_to Newtons,
pop fit v(9,1l:minLoc _size(9)), '-g');

67

[minLoc minMag Green2] =

peakfinder min(s_v2layer Green2 (Resistance rows(l), :)./1000, 6.5);
minLoc size(10) = size(minLoc, 2);
minLoc v (10,1:minLoc_size (10)) = rescale(minLoc, 1, 300);
[p, ErrorEst] = polyfit (minLoc v (10,1l:minLoc_size(10)), minMag Green2,
poly order);
pop fit v(10,1l:minLoc_size(10)) = polyval (p,
minLoc v (10,1:minLoc_size (10)), ErrorEst);
plot (minLoc v (10, l:minLoc size(10)) * grams to Newtons,
pop fit v(10,1l:minLoc_size(10)), '-r');

legend ('l layer, testl', 'l layer, test2', '2 layers, testl',
'2 layers, Circular Force Sensor', '2 layers, test2',
'2 layers, Circular Force Sensor', ...
'w/ nylon llayer, testl', 'w/ nylon llayer, test2',
'w/ nylon 2layer, testl', 'w/ nylon 2layer, test2');

grid on;

title string = sprintf(['Polynomial Best Fit Curves of Sensor Resistance
vs. Applied Force\n'

'for the Velostat Sensors in Fig. 25']);

title(title string);

xlabel ('Applied Force (Newtons)');

ylabel ('Sensor Resistance (kOhms) ') ;

axis ([0 (300 * grams_to Newtons) 0 75]);

ADC resolution = 49; %49 Ohms per LSB of the 10 bit ADC
——m e Calculate and Plot Sensitivity-----—-——----""""---—-
figure;
grid on;
hold on;
colors = [vrv, 'k', 'b', 'C', vgv, 'C', vyv, vmv, vgv, vrv]’
for 3=1:10

%estimate slope

sizel(j) = size(pop fit v (j,l:minLoc size(j)), 2) - 1;

y diff(j,1l:sizel(j)) = diff(pop fit v(j,1l:minLoc size(Jj))); %y diff has
units of kOhms

x diff(j,l:sizel(j)) = diff(minLoc_v(j,l:minLoc size(j))); 3%x diff has
units of grams

Sensitivity(j,1l:sizel(j)) = (y diff(j,1l:sizel(j)) ./ (grams_to Newtons *
x diff(j,1l:sizel(3J)))); $sensitivity, (kOhms / Newtons)

plot (minLoc v(j,l:length(Sensitivity(j,1l:sizel(Jj)))) * grams_ to Newtons,
abs (Sensitivity(j,l:sizel(j))), colors(j));
end

title('Sensitivity vs. Applied Force for the Velostat Sensors in Fig.
25');
xlabel ('Applied Force (Newtons)');

ylabel ('Sensitivity (kOhms/Newton) ") ;

68

%axis ([0 (300 * x axis scaling) 0 700]);
legend ('l layer, testl', 'l layer, test2', '2 layers, testl',
'2 layers, Circular Force Sensor', '2 layers, test2',
'2 layers, Circular Force Sensor', ...
'w/ nylon llayer, testl', 'w/ nylon llayer, test2',
'w/ nylon 2layer, testl', 'w/ nylon 2layer, test2');

%-—-—-—-—-—-—-—-—-—-—-—-———————-%Calculate and Plot Sensor Resolution-----------------
figure;
grid on;
hold on;
for j=1:10

Sensor Resolution(j,l:sizel(j)) = (ADC resolution./1000) ./
Sensitivity(j,l:sizel(j)); %Sunits of Newtons

plot (minLoc v(j,l:length(Sensitivity(j,1l:sizel(Jj)))) * grams_ to Newtons,
abs (Sensor Resolution(j,1l:sizel(j))), colors(j));
end;

title('Sensor Resolution vs. Applied Force for the Velostat Sensors in
Fig. 25");

xlabel ('Applied Force (Newtons)');

ylabel ('Sensor Resolution (Newtons)');

saxis ([0 (300 * x axis scaling) 0 (150 * x axis scaling)]);

legend ('l layer, testl', 'l layer, test2', '2 layers, testl',
'2 layers, Circular Force Sensor', '2 layers, test2',

'2 layers, Circular Force Sensor', ...

'w/ nylon llayer, testl', 'w/ nylon llayer, test2',

'w/ nylon 2layer, testl', 'w/ nylon 2layer, test2');

69

E. SmartCast System Code

/*
ConfigFile.h

* ¥

*

Created: 11/29/2012 8:40:35 PM
* Author: Andrew Danilovic
*/

#ifndef CONFIGFILE_H_
#define CONFIGFILE H_

#include <stdint.h>
#define NUM_LINES_CONFIG_FILE 7

void ParseConfigFile(uint8_t acc_data[]);
void BlinkRedLED();

#endif /* CONFIGFILE_H_ */

70

/*

* ¥

ConfigFile.cpp

*

Created: 11/29/2012 8:40:42 PM
Author: Andrew Danilovic

*

*/

#include "ConfigFile.h"
#include "../SmartCastApp/SmartCast.h"
#include "SmartCardUser.h"

int8_t ReadSignedByte(File &configFile);

int8_t ReadDec_CR_LF_EOF_HEX(File &configFile);

int8_t ReadDec_CR_LF_EOF(File &configFile);

uintl6_t ConfirmSafe_int(uintl6_t max);

uint8_t ConfirmSafe_hex(uint8_t min, uint8_t max);

void ParselLinel(File &configFile);

void ParselLine2_end(File &configFile, uint8_t acc_data[]);
void PrintParsedData(uint8_t acc_data[]);

void BlinkRedLED();

char *config_init = "SCC\r\n"; //1st line of config file

/***

File: ConfigFile.cpp
NAME : void BlinkRedLED()
Description: Blink LEDs
Inputs: None
Outputs: None
***/
void BlinkRedLED() {
while(1) {
PORTB |= (uint8 t)(1<<CONFIG_LED);
//Serial.println(where);
delay(50);
PORTB &= (uint8 t)~(1<<CONFIG_LED);
delay(50);

* ¥ X * ¥

}

/***

File: ConfigFile.cpp

NAME : int8_t ReadSignedByte(File &configFile)

Description: Check if byte read from file is a signed char

Inputs: configFile, ptr to a file

Outputs: signed byte representing an ASCII char
***/
int8_t ReadSignedByte(File &configFile) {

int16_t unsafe = configFile.read();

if(unsafe >= -128 && unsafe <= 127) {return unsafe;}

else {BlinkRedLED();}

* ¥ X * *

}

[k sk sk stk sk sk sk skok sk sk sk skl kol sk skl kol skl kol sk sk stk sk sk sk skt sk koot skl ok skl ook
File: ConfigFile.cpp

NAME : int8_t ReadDec_CR_LF_EOF_HEX(File &configFile)

Description: check if byte is /r, /n, eof, or a valid hexadecimal
number

* ¥ ¥ *

71

* Inputs: configFile, ptr to a file
* Qutputs: signed byte representing an ASCII char
stk ks ok sk ook sk o sk sk ok sk ok sk ok sk st sk ok sk sk stk stk ok sk ok sk sk sk ok sk sk sk sk sk skok sk sk sk sk ok ok sk ko sk ok
int8_t ReadDec_CR_LF_EOF_HEX(File &configFile) {
int8_t unsafe = ReadSignedByte(configFile);
if(unsafe >= 48 && unsafe <= 57) {return unsafe;} //return if ASCII decimal
else if(unsafe >= 65 && unsafe <= 70) {return unsafe;} //return if hex char, i.e.
A,B,C,D,E,F
else { //else check if CR or LF or eof (which is -1)

if(unsafe == '\r') {return unsafe;}
else if(unsafe == '\n') {return unsafe;}
else if(unsafe == -1) {return unsafe;}

else {BlinkRedLED();}

}

[HFHAEAAK KA A A KA KA A KA KA KA KA KA KA KA KA KA KA KK A KKK KK KK K

* File: ConfigFile.cpp
* NAME : int8_t ReadDec_CR_LF_EOF(File &configFile)
* Description: check if byte is /r, /n, or end of file
* Inputs: configFile, ptr to a file
* Qutputs: signed byte representing an ASCII char
stk stk ok ok ok ok sk sk ok sk ok sk sk sk sk ok sk ok sk ok stk sk ok sk sk sk stk ok sk sk sk sk sk ok sk ok sk ok sk sk ok ok sk sk ok sk ok ok ok /
int8_t ReadDec_CR_LF_EOF(File &configFile) {
int8_t unsafe = ReadSignedByte(configFile);
if(unsafe >= 48 && unsafe <= 57) {return unsafe;} //return if ASCII decimal
else { //else check if CR or LF or eof (which is -1)
if(unsafe == '\r') {return unsafe;}
else if(unsafe == '\n') {return unsafe;}
else if(unsafe == -1) {return unsafe;}
else {BlinkRedLED();}

}

/***

File: ConfigFile.cpp

NAME : uintl6_t ConfirmSafe_int(uintl6_t max)

Description: check if unsigned 16 bit number is positive, equal to
or below the max input value

Inputs: max, the maximum the value the number can be, temp_buf
Outputs: valid unsigned 16 bit number

sk skof ko ok ok ok sk ok sk kst o st sk sk sk sk sk ok sk ok sk ok stk sk ok ok sk sk ok stk ok sk sk sk sk sk ok sk ok sk ok sk sk ok ok sk sk ok sk ok
uintle_t ConfirmSafe_int(uint16_t max) {

int32_t unsafe = atoi(temp_buf);

if(unsafe >= @ && unsafe <= max) {return unsafe; /*safe*/}
else {BlinkRedLED();}

* ¥ ¥ ¥ ¥ %

}

[R KA KA KA KA KA HAK KA A KKK KK KK KA KA KKK KK KK KK KK K

File: ConfigFile.cpp

NAME : uint8_ t ConfirmSafe_hex(uint8 t min, uint8_t max)
Description: check if a number is between min and max

Inputs: min, max, temp_buf

Outputs: valid 8 bit number
***/
uint8_t ConfirmSafe_hex(uint8_t min, uint8_t max) {

long unsafe = strtol(temp_buf, NULL, 16);

if(unsafe >= min && unsafe <= max) {return unsafe; /*safe*/}

* %X X X ¥

72

else {BlinkRedLED();}
}

/***

File: ConfigFile.cpp
NAME : void ParselLinel(File &configFile)
Description: parse the 1st line of the config file, which must
conform to a specific format defined by config_init
Inputs: configFile, config_init
Outputs:
stk ks o sk ook sk o sk sk ok sk ok sk ok sk sk sk sk ok sk sk stk stk ok sk sk sk sk ok sk sk sk sk sk skok sk ok sk stk sk ok ok sk ko sk ok
void ParselLinel(File &configFile) {
for(uint8 t i = 0; 1 < 5; i++) {
if(ReadSignedByte(configFile) == config_init[i]) {/*do nothing, you're

* ¥ X X X ¥

good*/}

}

else {BlinkRedLED();}

}

oK K Kk Kk Kk Kk ok o ok o oK oK K R K K K kKK ok ok ok ok oK oK K K R Kk ok ok kK ok ok Kok kK ok Kk K

/
* File: ConfigFile.cpp
* NAME : void ParseLine2_end(File &configFile, uint8_t acc_data[])
* Description: continue parsing the rest of the config file, if any
* errors are found in the format, blink red LED in an infinite loop
* Inputs: configFile, acc_data[], which stores the accelerometer
* parameters
* Qutputs:
stk kot ook stk ok sk kol ok skl skl kol skl ko skl sk skl koot sk skokoksk skl kol kol kol sk skl okok /
void ParselLine2_end(File &configFile, uint8_t acc_data[]) {

uint8 t i = 0;

uint8 t j = 0;

bool eof = 0;

//the i index here is the line number, the data starts on line 2
for(i = 2; i <= NUM_LINES_CONFIG_FILE; i++) { //max NUM_LINES_CONFIG_FILE lines
of data
for(j = 0; j < 10; j++) {//here, j is the column num, assume max 10 columns

in file
if(i < 3) { //for the decimal lines
temp_buf[j] = ReadDec_CR_LF_EOF(configFile);
if(temp_buf[j] == '\n') {break; /*end of line*/}
else if(temp_buf[j] == -1) {eof = 1; break; /*end of file*/}
else {/*keep going*/}
}
else { //for the HEX lines
temp_buf[j] = ReadDec_CR_LF_EOF_HEX(configFile);
if(temp_buf[j] == '\n') {break; /*end of line*/}
else if(temp_buf[j] == -1) {eof = 1; break; /*end of file*/}
else {/*keep going*/}
}
}
if(j == 10) {BlinkRedLED();} //i.e. didn't find \n
if(leof) {
//at this point, we have read in a full line, but must null
terminate.

//we've read up to the \n, so insert a \o@.
//j is the index of the last element
if(j >= 1 & j <= 25) {temp_buf[j] = '\@';}

73

else {BlinkRedLED();} /*i.e. the number was too small*/

//convert to integer and assign to variable
int unsafe = 0;
switch (i) {
case 2:
sleep_time = ConfirmSafe_int(3600);
//sleep_time = 5000;
break;
/*
case 3:
collect_stat_loop = ConfirmSafe_int(100);
break;
*/
case 3:
acc_data[@] = ConfirmSafe_hex(23, 28);
break;
case 4:
acc_data[1]
break;
case 5:
acc_data[2] = ConfirmSafe_hex (0, OxFF);
break;
case 6:
acc_data[3]
break;
case 7:
acc_data[4]
break;
default:
BlinkRedLED();

ConfirmSafe_hex (0, OxFF);

ConfirmSafe_hex (0, OxFF);

ConfirmSafe_hex (0, OxFF);

}

else if(i < NUM_LINES_CONFIG_FILE) {BlinkRedLED();} //error

bytes from file
}

}

/*

void PrintParsedData(uint8_t acc_data[]) {
Serial.println(sleep_time);
Serial.println(collect_stat_loop);
Serial.println(acc_data[@]);
Serial.println(acc_data[1]);
Serial.println(acc_data[2]);
Serial.println(acc_data[3]);
Serial.println(acc_data[4]);

}
*/

/***

* File: ConfigFile.cpp

* NAME : void ParseConfigFile(uint8_t acc_data[])

* Description: top level parse function, called by init
* Inputs: acc_data[], which stores the accelerometer

* parameters

* Qutputs:

stk ko ok sk ook ok sk o sk sk ok sk ok sk sk sk sk ok sk ok sk stk stk ok sk ok sk sk sk ok sk sk sk sk sk skok sk ok sk sk sk ok ok sk skok sk ok
void ParseConfigFile(uint8_t acc_data[]) {

74

reading

char *config_file = "config.txt";
SDPowerCtrl(ON);
if(InitializeSDCard() == 0) {
if(error_flags & SMARTCAST_ERROR) {BlinkRedLED();}
File configFile = SD.open(config file, FILE_READ);
if (configFile) {
ParseLinel(configFile);
ParselLine2_end(configFile, acc_data);
}
else {BlinkRedLED();} //error opening config file
//PrintParsedData(acc_data);
SDPowerCtrl(OFF);

}
else {BlinkRedLED();} //i.e. no SD card present

75

/*
* SmartCardUser.h

* Created: 7/22/2012 6:35:36 PM
Author: Andrew Danilovic

*

*/

#ifndef SMARTCARDUSER_H_
#define SMARTCARDUSER_H_

#include "../SD.h"
#include "../SmartCastApp/SmartCast.h"

//#define INCLUDECHECKSD
//#define INCLUDEDUMPFILE
//#define USE_TIMERS
//#define USE_SD_CARD

extern const uint8_ t CardDetect; //This is PD2, also known as INT®
extern const uint8_t hardwareSS; //PB2

uint8 t InitializeSDCard();

void WriteToSDCard(int myVal);

extern boolean WriteToSDCardbuf(uintl6_t start_page, uintl6_t end_page);
void checkSDCard();

void DumpFile(char* myFile);

void rmFile(char* myFile);

void rmAllFiles();

#endif /* SMARTCARDUSER H_ */

76

/*

* SmartCardUser.cpp

* Created: 7/22/2012 6:35:26 PM

*

Author: Andrew Danilovic

*/
#include "Arduino.h"
#include "SmartCardUser.h"
#include "../utility/Sd2Card.h"
#include "../SmartCastApp/RunningStat.h"
#include "../SmartCastApp/SmartCast.h"
#include "../utility/memdebug.h"
#include "../utility/StackPaint.h"
#include "../utility/myFlash.h"
#include "../SmartCastApp/Interrupts.h”
#include "../utility/myEEPROM.h"
const uint8_t hardwareSS = 10; //PB2
char flag buf[8]; //create temp buf to put error flags in, must be 8 long to

include null term

/********

NAME

SD Card

* K X X ¥ ¥ ¥

Inputs:
Outputs

>k >k 3k 3k >k 5k 3k 3k >k 5k 3k >k >k 3k >k >k 5k %k >k 3k %k >k 5k 3k >k 5k 5k %k >k 5k 3k >k 5k 3k %k >k 3k 3k >k 5k 3k >k >k 5k %k >k 5k 3k >k >k 3k >k >k >k %k Xk >k %k %

File: SmartCardUser.cpp
: uint8_t InitializeSDCard()
Description: Initialize the SD Card by calling the Arduino

library functions for initialization, blink LED,

set error flags based on return code from Arduino library

: returns @ on success, 1 on failure

***/

uint8 t InitializeSDCard() {
pinMode(hardwareSS, OUTPUT); //just to make sure

/*returns an 8 bit number,

<<
<<
<<
if
if
*/

1 card.init status

2 volume.init status

3 root.openRoot status
all 3 are 1, success
any are 0, failure

LED_ON(&LED3);

uint8_t ret = SD.begin(hardwareSs);

//a ret value of 7 or 6 is OK, i.e. card.init can fail if we've called initialize
//again without taking the card out, because it's already been initialized

//but if the ret is anything other than 7 or 6, total fail

switch (ret) {

case 0x00:
error_flags |= SMARTCAST_ERROR;
error_flags |= SDCARDTIMEOUT_ ERROR;
ret = 1;

break;

case 0x01:

77

error_flags

error_flags

ret = 1;
break;

SMARTCAST_ERROR;
SDCARDTIMEOUT_ERROR;

case 0x02:
error_flags |
error_flags |
ret = 1;
break;

SMARTCAST_ERROR;
SDCARDTIMEOUT_ERROR;

case 0x03:
error_flags |
error_flags |
ret = 1;
break;

SMARTCAST_ERROR;
SDCARDTIMEOUT_ERROR;

case Ox04:
error_flags |= SMARTCAST_ERROR;
error_flags |= SDCARDTIMEOUT_ERROR;
ret = 1;

break;

case Ox05:
error_flags |= SMARTCAST_ERROR;
error_flags |= SDCARDTIMEOUT_ERROR;

ret = 1;
break;
case 0x06:

ret = 9;
break;
case Ox07:

ret = 0;
break;
default:

error_flags |= SMARTCAST_ERROR;
error_flags |= SDCARDTIMEOUT_ERROR;
ret = 1;

break;

}

LED_OFF(&LED3);
return ret;

}

[R AR A KA KA KA A KA KA KA KA H KKK KK KK KA KKK KK KK KK KK K

File: SmartCardUser.cpp

NAME : boolean WriteToSDCardbuf(uintl6_t start_page, uintl6_t end_page)
Description: this function is misnamed, write to 3 different kinds of
memory, 1lst EEPROM, then Flash, then SD Card, rigourously

check for errors

Inputs: start_page, 1st page of memory that can be written to,
end_page, last page of memory that can be written to

Outputs: return @ on success, 1 on fail
***/

* K X X X ¥ ¥ *

78

boolean WriteToSDCardbuf(uintl6_t start_page, uintl6_t end_page) {
uint8_t ret = 9;

//Serial.println("WRSD");
//Serial.println(start_page);
//Serial.println(end_page);

char* myFile = "data.txt";

#ifdef USE_SD_CARD
detachInterrupt(9);
PORTB &= (uint8_t)~(1<<6);
SDPowerCtr1(ON);

#ifdef USE_TIMERS
StartTimer();

#endif

if(InitializeSDCard() == @) {

#ifdef USE_TIMERS
//sprintf(Func_name, "ISD");
StopTimer();

#endif

File dataFile = SD.open(myFile, FILE_WRITE);

#ifdef USE_TIMERS
StartTimer();
#endif

if (dataFile) {
//save the data in the order we took it
memset (FlashBuf, @, FLASH BUF_SIZE); //clear buffer, as
its global and we use it in the following

//save EEPROM first
if(!(error_flags & EEPROM_LIFE_EXCEEDED)) {
for(uint8_t i = @; i < NUM_CHUNKS; i++) {
PORTB A= (1<<6);
ReadFromEEPROM(FlashBuf, (i<<7));
ret = dataFile.print(FlashBuf);
if(ret <= @) {error_flags |= SMARTCAST_ERROR;
error_flags |= SDCARDWRITE_ERROR; TurnOff();} //write error

}

//then save Flash
if(!(error_flags & FLASH_LIFE_EXCEEDED)) {
for(uintle_t i = start_page; i > end_page; i-
=SPM_PAGESIZE) {
for(uintl6e_t j = ©; j < FLASH_BUF_SIZE; j++) {
PORTB "= (1<<6);
FlashBuf[j] = ReadFlashByte(i, j);
}
ret = dataFile.print(FlashBuf);
if(ret <= @) {error_flags |= SMARTCAST_ERROR;
error_flags |= SDCARDWRITE_ERROR; TurnOff();} //write error

79

}

//write error flags to SDCard
ret = sprintf(FlashBuf, "\nR%X\n", error_flags);
if(ret <= 0) { //if failed to write to temp buf
error_flags |= SMARTCAST_ERROR;
error_flags |= BUFF_ERROR;
} else { //write to temp buf succeeded
ret = dataFile.print(FlashBuf);
if(ret <= @) {error_flags |= SMARTCAST_ERROR;
error_flags |= SDCARDWRITE_ERROR; TurnOff();} //write error
else {ClearErrorFlags();} //only clear the flags if
they were written to the SDCard successfully

} else {error_flags |= SMARTCAST_ERROR; error flags |=
SDCARDFILE_ERROR; TurnOff();} //failed to open SDCard file

#ifdef USE_TIMERS
//sprintf(Func_name, "1lstWrite");
StopTimer();

#endif //USE_TIMERS

#endif //USE_SD_CARD

#ifdef USE_SD_CARD
#ifdef USE_TIMERS
StartTimer();
#endif
dataFile.close();
#ifdef USE_TIMERS
//sprintf(Func_name, "CloseFile");
StopTimer();
#tendif
#endif //USE_SD_CARD

#ifdef USE_SD_CARD
/*#ifdef USE_TIMERS //don't need GoToIdle now because we're turning the SD
card on and off each time
StartTimer();
#endif
if(!SD.card.GoToIdle(SPI_HALF_SPEED, hardwareSS)) {
error_flags |= SMARTCAST_ERROR;
error_flags |= SDCARDTIMEOUT_ ERROR;
}
#ifdef USE_TIMERS
sprintf(Func_name, "GoTolIdle");
StopTimer();
#tendif
*/

SDPowerCtrl(OFF);

PORTB &= (uint8 t)~(1<<6);
attachInterrupt(@, myINTO_ Func, RISING);
return 0;

80

else {
SDPowerCtrl(OFF);
PORTB &= (uint8 t)~(1<<6);
attachInterrupt(@, myINTO_Func, RISING);
//Serial.println("SDInitFail");
return 1;

}

#endif //USE_SD_CARD

81

Interrupts.h

Created: 10/18/2012 3:31:44 PM
Author: Andrew Danilovic

#ifndef INTERRUPTS_H_
#define INTERRUPTS H_

//for ADC measurements
extern volatile uint8_t hi,lo;

extern void myINTO_Func();
extern void myINT1_Func();

#endif /* INTERRUPTS_H_ */

82

/*

* ¥

Interrupts.cpp

*

Created: 10/18/2012 3:31:20 PM
Author: Andrew Danilovic

*

*/

#include <avr/interrupt.h>
#include "Interrupts.h"
#include "Arduino.h"
#include "Sleep.h"
#include "SmartCast.h"

//for ADC measurements
volatile uint8_t hi,lo;

[R KA A KA AR A KA KA KA HAK K AK KA KKK K AK KA KKK KA KKK KK KK KK KK K

File: Interrupts.cpp

NAME : ISR(BADISR vect)

Description: default interrupt vector, i.e. if no vector is

specified for a particular interrupt but an interrupt occurs,

this function is executed, shouldn't happen in normal execution

Inputs:

Outputs:

stk ks o sk ook sk o sk sk ok sk ok sk ok sk s sk sk ok sk ok sk stk sk ok ok sk sk sk sk sk sk sk sk sk skok sk ok stk sk ok sk ok ok sk sk ok ok

ISR(BADISR vect) {
error_flags |

error_flags |

* K XK X X X ¥

MARTCAST_ERROR;
NTERRUPT_ERROR;

1]
H Wn

}

[R AR A KA A KA KA A AA KK AK KA KKK KA KK KA KKK KK KK KK KK K

File: Interrupts.cpp

NAME : ISR(ADC_vect)

Description: interrupt vector called when reading the ADC

Inputs:

Outputs: lo, hi, the bits of the ADC

stk ko o sk ook sk o sk s ok sk ok sk sk o sk sk sk ok sk ok sk stk sk sk ok sk sk sk ok ok sk sk sk sk sk skok sk ok sk sk sk ok ok ok sk ok sk ok
ISR(ADC_vect) {

sleep_disable();

lo = ADCL;

hi = ADCH;

* ¥ ¥ * x

}

/***

File: Interrupts.cpp

NAME : void myINTO_Func()

Description: ADXL345 interrupt 0, set flag for background execution
of code in main loop

Inputs:

Outputs:

stk st ok o o ok ook ok sk ok s ok sk sk ok sk s sk sk ok sk ok sk stk ko ok sk sk sk ok ok ok sk sk sk sk sk ok sk ok sk ok sk sk ok ok sk ok sk ok
//INT1 on the ADX345 goes to INTO

void myINTO_Func() {

detachInterrupt(9);

* ¥ ¥ X X *

//read int source on the ADXL to clear the interrupt on the ADXL

//uint8_t ret = myADXL345.getInterruptSource();
//blink LEDs
error_flags |= SMARTCAST_ERROR;

83

error_flags |= INTO_TRIGGERED;
}

/***

File: Interrupts.cpp

NAME :myINT1_Func()

Description: ADXL345 interrupt 1, set flag for background execution
of code in main loop

Inputs:

Outputs:

stk kot ook kol sk sk kol ok skl skl kol kol sk sk sk sk skl sk kst skl skl sk skl kol sk skl kol sk sk okok /
void myINT1_Func() {

//EIMSK &= ~(1<<INT1);

error_flags |= SMARTCAST_ERROR;

error_flags |= INT1_TRIGGERED;

//service_int = 1;

* ¥ ¥ X X *

84

RunningStat.h

*
*

* Created: 8/26/2012 6:19:21 PM

* Original Code by: John Cook http://www.johndcook.com/standard_deviation.html
* Adapted by: Andrew Danilovic

#ifndef RUNNINGSTAT H_
#define RUNNINGSTAT H_

#include <stdint.h> //for Atmel data types, such as uint32_t

//#define TEST_STATS

struct RunningStat {
int8_t m_n;
float m_oldM, m_newM, m_oldS, m_newsS;

1

void Clear(struct RunningStat *s);

void Push(struct RunningStat *s, uint32_t x);
uint32_t Mean(struct RunningStat *s);
uint32_t Variance(struct RunningStat *s);

#ifdef TEST_STATS
int random(int range, int shift);
float uniform_1_0();
int uniform_a b(int a, int b);
uint32_t BoxMuller_custom(float mean, float std_dev);
void TestStats();

#endif /* RUNNINGSTAT H_ */

85

RunningStat.cpp

Created: 8/26/2012 7:08:29 PM
Original Code by: John Cook http://www.johndcook.com/standard_deviation.html
Adapted by: Andrew Danilovic

* X X X X ¥

*
~

#include "RunningStat.h"
#tinclude <math.h> //the Atmel math.h file
#include "Arduino.h"

/***

File: RunningStat.cpp
NAME : void Clear(struct RunningStat *s)
Description: set m_n to © which in effect re-initializes s
Inputs: s, a ptr to a RunningStat struct
* Qutputs:
stk kot sk stk sk skl kol ok sk kol kol kol sk ko kst stk sk skl kool sk skl skl ksl kol sk stk okok
void Clear(struct RunningStat *s) {
s->m_n = 0;
}

/***

* % % %

File: RunningStat.cpp

NAME : void Push(struct RunningStat *s, uint32_t x)

Description: update statistics with next data point

Inputs: s, X, a 32 bit unsigned number, i.e. the next data point

* Qutputs:
***/
void Push(struct RunningStat *s, uint32_t x) {

S->M_N++;

* % ¥ %

if(s->m_n == 1)

{
s->m_o0ldM = s->m_newM = Xx;
s->m_o0ldS = 0.0;
}
else
{
s->m_newM = s->m_oldM + (x - s->m_oldM)/s->m_n;
s->m_newS = s->m_oldS + (x - s->m_oldM)*(x - s->m_newM);
// set up for next iteration
s->m_o0ldM = s->m_newM;
s->m_o0ldS = s->m_newsS;
}

}

/***

File: RunningStat.cpp

NAME : uint32_t Mean(struct RunningStat *s)

Description: calculate and return mean value of data

Inputs: s

Outputs: mean value of data so far
***/
uint32_t Mean(struct RunningStat *s) {

return (s->m_n > @) ? s->m_newM : 0.0;

EE R S

86

}

[R AR A KA KA KA KA KA A KA KA KKK KK KA KKK KKK KK KK KK KK K

File: RunningStat.cpp

NAME : uint32_t Variance(struct RunningStat *s)

Description: calculate and return variance of data

Inputs: s

* Qutputs: variance of data so far
***/
uint32_t Variance(struct RunningStat *s) {

return ((s->m_n > 1) ? s->m_newS/(s->m_n - 1) : 0);

* ¥ ¥

}

#ifdef TEST_STATS
/***
File: RunningStat.cpp

NAME : int random(int range, int shift)

Description: generate random number from © to range, shifted by
shift

Inputs: range, shift

* Qutputs: random number
stk kot ook stk sk sk kol ok skl skl kol skl ko kol sk skl stk sk skl kool sk skl sk skl kol kool sk stk okok /

* ¥ % *

int random(int range, int shift) {
return (rand() % range) + shift;
}

/***

File: RunningStat.cpp
NAME : float uniform_1 0()
Description: generate uniform random float from @ to 1
Inputs:
* Qutputs: uniform random float from @ to 1
***/
float uniform_1_0() {
return float(random(RAND_MAX, ©)) / RAND_MAX;
}

/***

* % % *

File: RunningStat.cpp

NAME : int uniform_a _b(int a, int b)

Description: generate uniform random number between a and b
Inputs: a, b, the range of the uniform random number

* Qutputs: uniform random float from a to b
***/

* % X ¥

int uniform_a_b(int a, int b) {
return random((b-a), a);
}

[AR A A A KA KA KKK KA KKK KA KK KA K KA KK KA KK KK KK KKK KKK Ko K

File: RunningStat.cpp

NAME : uint32_t BoxMuller_custom(float mean, float std_dev)
Description: generate a normally distributed random number

Inputs: desired mean, std_dev

* Qutputs: normlly distributed random number
***/

uint32_t BoxMuller_custom(float mean, float std_dev) {

* ¥ ¥ *

float U = 0;

87

float V = uniform_1_0();

do {
U = uniform_1_0();
} while (U == 0);

float X
float Y

sqrt(-2*log(U)) * cos(2*M_PI*V);
sqrt(-2*log(U)) * sin(2*M_PI*V);

return (X*std_dev) + mean;

}

/***

* File: RunningStat.cpp

* NAME : void TestStats()

* Description: top level function called to test the on-line statistics
* calculations. print to serial terminal so as to save to a log file

* on a PC

* Inputs:

* OQutputs:

***/

//if you're using this function, remember to change the return values of Mean
//Variance to floats!
void TestStats() {

RunningStat myStatTest;
Clear(&myStatTest);

randomSeed(43);

/*

Serial.println("uniform_1_0()");

for(int i = 0; i < 10000; i++) {
float ran = uniform_1 0();
Push(&myStatTest, ran);
Serial.println(ran, 4);

}

Serial.println("uniform_1_0(), m");

Serial.println(Mean(&myStatTest), 4);

Serial.println("uniform_1 0(), v");

Serial.println(Variance(&myStatTest), 4);

*/

/*

Serial.println("uniform_© 32767()");

for(int i = 0; i < 10000; i++) {
uint32_t ran = uniform_a_b(@, RAND_MAX);
Push(&myStatTest, ran);
Serial.println(ran);

¥

Serial.println("uniform_© _32767(), m");

Serial.println(Mean(&myStatTest));

Serial.println("uniform_0_32767(), v");

Serial.println(Variance(&myStatTest));

*/

/*
Serial.println("BM_25000_1000()");

88

for(int i = 0; i < 10000; i++) {
uint32_t ran = BoxMuller_custom(25000, 1000);
Push(&myStatTest, ran);
Serial.println(ran);
b
Serial.println("BM_25000 _1000(), m");
Serial.println(Mean(&myStatTest));
Serial.println("BM_25000 _1000(), Vv");
Serial.println(Variance(&myStatTest));

while(1) {}
*/

#tendif

&9

* Sleep.h

*

* Created: 9/2/2012 7:54:42 PM
*

*

Original code: Arduino Narcoleptic library, https://code.google.com/p/narcoleptic/
Adapted by: Andrew Danilovic

#ifndef SLEEP_H_
#define SLEEP_H_

#include <avr/interrupt.h>

#include <avr/wdt.h>

#include <avr/sleep.h>

extern void _ GoToSleep(uint8_t wdt_period);

extern void GoToSleep(uint32_t milliseconds);

#endif /* SLEEP_H_ */

90

Sleep.cpp

*

*

* Created: 9/2/2012 7:54:48 PM

* Original code: Arduino Narcoleptic library, https://code.google.com/p/narcoleptic/
* Adapted by: Andrew Danilovic

#tinclude <Arduino.h>
#include "Sleep.h"
#include "SmartCast.h"

/***

* File: Sleep.cpp

* NAME : SIGNAL(WDT vect)

* Description: watchdog timer interrupt, just reset it as
* it's used as a sleep timer

* Inputs:

* Qutputs:

SRS K K KKK K KKK SK KKK K S KK S KK K o KK KK o KK S S KK Sk K K
SIGNAL(WDT_vect) {

wdt_disable();
wdt_reset();
WDTCSR &= ~ BV(WDIE);

}

[R AR A KA AR A KA KA A HAK K AKH A KKK KK KK KA KKK KK KK KK KK K

File: Sleep.cpp

NAME : void __ GoToSleep(uint8_t wdt_period)

Description: put the MCU to sleep for wdt_period

Inputs: wdt_period, amount of time to sleep for

Outputs:

stk ko o s ook sk o sk s ok sk ok sk sk s sk sk ok sk ok sk ok sk stk sk sk ks sk sk ok ok sk sk sk sk sk skok sk ok sk sk sk ok ok sk sk sk ok

void __GoToSleep(uint8_t wdt_period) {

* ¥ ¥ X% *

wdt_enable(wdt_period); //enable the Watchdog timer
to trigger after wdt_period milliseconds

wdt_reset(); //reset the Watchdog timer
to begin counting from ©

WDTCSR |= _BV(WDIE); //put watchdog timer in Interrupt
Mode (and possibly System Reset Mode depending on the value of WDE)

set_sleep_mode(SLEEP_MODE_PWR_DOWN); //enter Power-down Mode

sleep_mode(); //go to sleep

wdt_disable(); //disable the
Watchdog timer if possible

WDTCSR &= ~_BV(WDIE); //disable the Watchdog
timer Interrupt Mode

}

[H A AR A KA KA A KA KA KA KA KA KA KA A AK KKK KKK AR KK KK K

File: Sleep.cpp

NAME : void GoToSleep(uint32_t milliseconds)

Description: put the MCU to sleep for milliseconds, calls internal
function to implement the sleep, if greater than 8 seconds, the MCU
will wake up and immediately go back to sleep, the watchdog timer
can only be put to sleep for 8 seconds max

Inputs: milliseconds, sleep time

¥ X X X X ¥ ¥

91

* Qutputs:
***/

void GoToSleep(uint32_t milliseconds) {
//sei();

while (milliseconds >= 8000 && (!(error_flags & INTO_TRIGGERED))) {
__GoToSleep(WDTO_8S); milliseconds -= 8000;
if(error_flags & INTO_TRIGGERED) {
break;
}
}

if (milliseconds >= 4000 && (!(error_flags & INTO_TRIGGERED)))
{ _GoToSleep(WDTO_4S); milliseconds -= 4000; }

if (milliseconds >= 2000 && (!(error_flags & INTO_TRIGGERED)))
{ __GoToSleep(WDTO_2S); milliseconds -= 2000; }

if (milliseconds >= 1000 && (!(error_flags & INTO_TRIGGERED)))
{ __GoToSleep(WDTO_1S); milliseconds -= 1000; }

if (milliseconds >= 500 && (!(error_flags & INTO_TRIGGERED)))
{ _GoToSleep(WDTO_500MS); milliseconds -= 500; }

if (milliseconds >= 250 && (!(error_flags & INTO_TRIGGERED)))
{ __GoToSleep(WDTO_250MS); milliseconds -= 250; }

if (milliseconds >= 125 && (!(error_flags & INTO_TRIGGERED)))
{ __GoToSleep(WDTO_120MS); milliseconds -= 120; }

if (milliseconds >= 64 && (!(error_flags & INTO_TRIGGERED)))
{ _GoToSleep(WDTO_60OMS); milliseconds -= 60; }

if (milliseconds >= 32 && (!(error_flags & INTO_TRIGGERED)))
{ __GoToSleep(WDTO_3@MS); milliseconds -= 30; }

if (milliseconds >= 16 && (!(error_flags & INTO_TRIGGERED)))
{ __GoToSleep(WDTO_15MS); milliseconds -= 15; }

//cli();

92

/*
* SmartCast.h
*

* Created: 7/22/2012 6:06:20 PM
Author: Andrew Danilovic

*

*/

#ifndef SMARTCAST H_
#define SMARTCAST H_

#include <stdint.h>
#include "RunningStat.h"
#tinclude "ADXL345.h"

#define MEASUREMENTDELAY_US 30 //us delay between resistance measurements
#tdefine NUM_SENSORS 16
#define COLLECT_STAT_LOOP 10

//config variables
extern uintl6_t sleep_time;
//extern uint8_t collect_stat_loop;

#tdefine OFF ©
#tdefine ON 1

#define TEMP_BUF_SIZE 25

[]=mmmmm

//-------- Pin Defines---------

extern const uint8 _t ADC_0; //This is pin 23, i.e. ADCO
extern const uint8_t ADC_1; //This is pin 24, i.e. ADC1
extern const uint8_t SEL4_PC2; //A1 for analogMux2

extern const uint8 t SEL3_PC3; //A@ for analogMux2

#define CONFIG_LED 7
#define SDCARD_LED 4
#define SEL2_PBO 8

#define SEL1_PD7 7

#define PWR_CTRL_PIN PD5
#define PWR_CTRL_SD_CARD 6

[

[

//SmartCast bitFields for error conditions

#define SMARTCAST_ERROR (1<<0) //Active high
#define ACC_ERROR (1<<1) //Active high
#define SDCARDTIMEOUT ERROR (1<<2) //Active high

#define SDCARDWRITE_ERROR (1<<3) //Active high

#define SDCARDFILE_ERROR (1<<4) //Active high

#define BUFF_ERROR (1<<5) //Active high
#tdefine INTERRUPT_ERROR (1<<6) //BADISR_vect has been
called

#define INT®_TRIGGERED (1<<7) //
#define INT1_TRIGGERED (1<<8) //
#define EEPROM_1_PAGE_LEFT (1<<9) //

#define EEPROM_FULL (1<<10) //
#define EEPROM_LIFE_EXCEEDED (1<<11) //

93

#define FLASH_FULL (1<<12) //

#define FLASH_LIFE_EXCEEDED (1<<13) //

extern uintl6_t error_flags;

//to clear a bit: error_flags &= ~SMARTCAST_ERROR;

//to set a bit: error_flags |= SMARTCAST_ERROR;

//to check a bit: if(error_flags & SMARTCAST_ERROR) {}

//to print error codes as a hex value: printf("%X\n", error_flags);

//or Serial.println(error_flags, HEX); // print as an ASCII-encoded hexadecimal

extern uintl6_t myTo;
extern uintl6_t myT1;
extern char Func_name[15];

enum LED_state {LON, LOFF};

typedef struct LED {
LED_state state; //on or off
uint8_t pin;

¥

extern LED LED1, LED3;

extern ADXL345 myADXL345;

typedef struct myVoltage {
uint8_t ones;
uint8_t tenths;

extern uint32_t num_coll_samles;

extern char temp_buf[TEMP_BUF_SIZE];

extern void LED_OFF(struct LED *myLED);
extern void LED_ON(struct LED *myLED);
extern void LED_TOGGLE(struct LED *myLED);

extern void MeasureRMatrix(struct RunningStat Sensors[]);

extern void MeasureResistance_loop(struct RunningStat Sensors[]);
extern void MeasureVoltage();

extern void MeasureAcceleration();

extern void TakeMeasurements();
extern void RecordData();

extern void SCDumpFile(char* myFile);
extern void PowerCtrl(uint8_t on_off);
extern void SDPowerCtrl(uint8_t on_off);
extern void ClearErrorFlags();

extern void BlinkLEDs();

extern void SleepManagement();

extern void StartTimer();
extern void StopTimer();

extern void TurnOff();

94

#tendif /* SMARTCAST H_ */

95

/*
* SmartCast.cpp
*

* Created: 8/26/2012 7:08:05 PM
Author: Andrew Danilovic

*

*/

#include <avr/power.h>

#include "SmartCast.h"

#include "Arduino.h"

#include "RunningStat.h"

#include "../SmartCardApp/SmartCardUser.h"
#include "Sleep.h"

#include "Interrupts.h"

#include "../utility/myFlash.h"

void PrepareSleep();
void BlinkLED2();

#define RESOLUTION 86.0215053763 //Rf = 22k
#ifdef USE_TIMERS

uintl6e_t myTO = 0;

uintle_t myTl = 0;

char Func_name[15] = {0};
#endif

//config variables

uintl6_t sleep_time = 250; //default
//uint8_t collect _stat_loop;

struct LED LED1, LED3;

uintl6_t error_flags;

ADXL345 myADXL345;

char temp_buf[TEMP_BUF_SIZE];

struct RunningStat Sensors[NUM_SENSORS];
int accval[3];

myVoltage sysVoltage;
uint32_t num_coll samles;

//TODO: Make these consts
//These are here because you can't initialize variables to non-constant values in a C
file

const uint8_t ADC_© = A@; //This is pin 23, i.e. ADCO

const uint8 t ADC_1 = Al; //This is pin 24, i.e. ADC1 //the MON channel
const uint8_t SEL4_PC2 = A2; //A1 for analogMux2

const uint8_t SEL3_PC3 = A3; //A@ for analogMux2

J]mmmm

[/ ==mmmmmmm e

96

[R AR AR A KA A KA KA KA KA HH KKK KA KA KKK KKK KK KK KK KK K

File: SmartCast.cpp

NAME : uint32_t _ MeasureResistance_loop(uint8_t counter)
Description: set analog mux control signals to select a particular
sensor based on counter. then, read adc value and convert to
resistance in ohms

Inputs: counter, 8 bit number corresponding to a particular

sensor

Outputs: ADC_val_int, resistance of a particular sensor

stk kot sk kol sk ook kol ok skl skl kol kol sk sk ks skl sk kst skl kool sk skl ok ksl kol stk okok /

uint32_t _ MeasureResistance_loop(uint8_t counter)

{

* X X X X X ¥ ¥

uint32_t ADC_val_int = 0;
float ADC_val_float = 0;

//create a 4 bit binary number to set the analog muxes appropriately

uint8_t A@b = counter & 0x01;

uint8_t Alb = (counter & 9x02) >> 1;
uint8_t A@a = (counter & 0x04) >> 2;
uint8_t Ala = (counter & 0x08) >> 3;
digitalWrite(SEL1_PD7, A®@a); //A@
digitalWrite(SEL2_PB@, Ala); //A1
digitalWrite(SEL3_PC3, A@b); / /Ao
digitalWrite(SEL4_PC2, Alb); //Al1

//THIS DELAY IS VERY IMPORTANT!------------

//you don't want to take a sample when the pins SEL1_PD7 etc. are switching,
//so wait a bit until the voltages settle

delayMicroseconds (MEASUREMENTDELAY_US);

//THIS DELAY IS VERY IMPORTANT!------------

ADC_val_int = analogRead(ADC_0);

//the maximum analogRead can return is 1024

//1 - AnalogRead/1024, this is from our equation of our circuit
//Rg / (Vb-Va) 22000 / (0.25) = 88000, this is the max R value
//88000 / 1024 = 88000 >> 10 = 85.9375

/*ADC_val_int = 1024 - ADC_val_int;

ADC_val float = (float)ADC _val int * 85.9375;

ADC_val_int = (uint32_t)ADC_val_ float;

return ADC_val_int;*/

ADC_val_int = 1024 - ADC_val_int;

ADC_val_float = (float)ADC_val _int * RESOLUTION;
ADC_val_int = (uint32_t)ADC_val_float;

return ADC_val_int;

//Alternatively we could do:

/*

ADC_val_int = analogRead(ADC_0);
ADC_val _int = 1024 - ADC_val_int;
ADC_val_int = ADC_val_int * 50120;
return ADC_val_int >> 10;

*/

/*
ADC_val_float = (float)ADC_val_int / 1024.0;

97

ADC_val float = 1.0 - ADC_val float;

ADC_val_int = ADC_val_float * 50120; //
return ADC_val_int;
*/

}

/***

File: SmartCast.cpp

NAME : void _ ClearStats(struct RunningStat Sensors[])

Description: clear the on-line statistics, this is done

for every wake event, i.e. the statistics are only calculated

for a single wake event

Inputs: ptr to RunningStat struct array

Outputs:

***/

void __ClearStats(struct RunningStat Sensors[]) {

for(uint8_t i = @; i < (NUM_SENSORS); i++) {
Clear(&Sensors[i]);

}

* K X X ¥ ¥ ¥

}

[AR A A K AK A KKK HAK KK KA AR KK KK KK KK KK KK KK KK KKK HOK Ko K

File: SmartCast.cpp

NAME : void MeasureResistance_loop(struct RunningStat Sensors[])

Description: read sensor, and update online statistics for that

sensor with the new value

Inputs: ptr to runningstat array

Outputs:

stk st ok s o sk sk ok sk s ok sk ok sk sk sk sk ok sk ok sk sk stk stk ok sk ok sk sk ok sk ok sk sk sk sk skt sk ok sk sk sk ok ok sk ok sk ok

void MeasureResistance_loop(struct RunningStat Sensors[]) {

for(uint8 t i = @; i < (NUM_SENSORS); i++) {
Push(&Sensors[i], _ MeasureResistance_loop(i));

* X X X ¥ ¥

}
}

/***

File: SmartCast.cpp

NAME : void MeasureRMatrix(struct RunningStat Sensors[])
Description: 1st clear statistics, then sample the matrix of
sensors in a loop, toggle LED's for visible indication of sampling
Inputs: ptr to runningstat array

Outputs:

stk kst s ok stk ks sk kot skl sk skl kol skl ok kol kol skl kol sk sk stk skt skl sk kokok skl ok sk skok ok okok /
void MeasureRMatrix(struct RunningStat Sensors[]) {

LED_OFF(&LED1);

PORTB &= (uint8_t)~(1<<6);

* X X X ¥ ¥

__ClearStats(Sensors); //clear statistics

pinMode (ADC_O@, INPUT);
//ADCSRA |= (uint8_t)(1 << ADEN); //turn ADC back on
//ADCSRA |= (1<<ADIE); //enable the ADC interrupt

//ADMUX = (@<<REFS1) | (@<<REFS®) | (©<<ADLAR) | (@<<MUX3) | (@<<MUX2) | (@<<MUX1)

| (@<<MUX0);

//set_sleep_mode(SLEEP_MODE_ADC); //configure sleep mode for ADC measurements

for(uint8_t i = @; i < COLLECT_STAT_LOOP; i++) {
LED_TOGGLE (&LED1);

98

MeasureResistance_loop(Sensors);
//Serial.println();

}

//ADCSRA &= ~(1<<ADIE); //disable the ADC interrupt

LED_OFF (&LED1);
PORTB &= (uint8_t)~(1<<6);
}

ok oK Kk Kk Kk Kk ok o ok o oK oK oK R K K Kk Kk ok ok ok ok oK oK K K R Kk Kk ok ok ok Ok ok ok kK ok Kk K

/
* File: SmartCast.cpp
* NAME : void MeasureVoltage()
* Description: measure system voltage
* Inputs:
* Qutputs:
stk sk sk ok stk ok sk kol ok skl skl kol skl ko sk sk sk skl sk kst skl kool sk skl kol ksl kol sk stk okok /
void MeasureVoltage() {
uint32_t ADC_val_int = 0;

pinMode(ADC_1, INPUT);

//e.g. analogRead = 838

//val = 838 * 4 = 3352; 0.248 ~ 0.25 = 1/4, so just use 4 so we can bit shift
//ones = 3352 / 1024 = 3.27 rounded down, so just 3

//tenths = ((3352 * 100) / 1024)) - (ones * 100)

//delay(100);

ADC_val_int = analogRead(ADC_1); //units = ADC counts
sysVoltage.ones = ADC_val_int >> 8;

ADC_val_int = ADC_val_int * 100;

ADC_val_int = (ADC_val_int >> 8) - (sysVoltage.ones * 100);
sysVoltage.tenths = ADC_val_int;

//we have a voltage divider, with 1M and 330k
//vout = vin * 330k / (1M + 330k) = 0©.2481203008
//we want to calculate Vin = Vout / 0.248
//sysVoltage = ADC_val_float / 0.248;

//return sysVoltage;

}

[HFHA AR A KA KA KA KA KA KA KA K AAK K HA KA AK A KKK KKK AR KK KK K

File: SmartCast.cpp

NAME : void MeasureAcceleration()
Description: measure system acceleration
Inputs:

Outputs:
stk ok ok sk ok stk ok sk ok ok stk s ok stk ok ok stk ok stk ok skokokok stk sk ok stk stk ok koo ok ok f

¥ ¥ X X %

void MeasureAcceleration() {
myADXL345.readAccel(&accval[@], &accval[l], &accval[2]);
}

/***

* File: SmartCast.cpp

* NAME : void TakeMeasurements()

Description: perform measurements, optionally time each measurement
for debugging

Inputs:

* ¥ ¥

99

* Qutputs:
stk kot sk kol sk skl ok ok skl skl kol kol ks sk ks skl sk kst skl ook sk skl kol ksl kol sk stk okok /

void TakeMeasurements() {
num_coll samles++;

#ifdef USE_TIMERS
StartTimer();
#endif
MeasureVoltage();
#ifdef USE_TIMERS
//sprintf(Func_name, "MV");
StopTimer();
#endif

#ifdef USE_TIMERS
StartTimer();
#tendif
MeasureRMatrix(Sensors);
#ifdef USE_TIMERS
//sprintf(Func_name, "MR");
StopTimer();
#tendif

#ifdef USE_TIMERS
StartTimer();
#tendif
//MeasureAcceleration();
#ifdef USE_TIMERS
//sprintf(Func_name, "MA");
StopTimer();
#tendif

}

/***

* File: SmartCast.cpp

* NAME : void RecordData()

* Description: convert measurement data to strings and log
* measurement data to memory with a particular format

* Inputs:

* Qutputs:

shof stk ko ok sk ook sk ok sk s ok sk sk sk ok sk ook sk ok stk sk ok sk ok ok sk sk kst ok ok ok sk sk sk sk skok sk ok sk sk ok ok sk ok sk ok ok ok
void RecordData() {

intl6_t ret = 0;

//f11ll num_samples buffer
ret = sprintf_P(temp_buf, PSTR("%1lu\n"), num_coll samles);
if(ret <= 0) {
error_flags |= SMARTCAST_ERROR;
error_flags |= BUFF_ERROR;
} else {Serial.print(temp_buf); /*WriteToMemory(temp_buf);*/}

//fill accelerometer buffer
ret = sprintf_P(temp_buf, PSTR("%d %d %d\n"), accval[@], accval[l], accval[2]);
if(ret <= 0) {

error_flags |= SMARTCAST_ERROR;

error_flags |= BUFF_ERROR;

100

} else {Serial.print(temp_buf); /*WriteToMemory(temp_buf);*/}

//fill voltage buffer
if(sysVoltage.tenths < 10) {
ret = sprintf_P(temp_buf, PSTR("%u.@%u\n"), sysVoltage.ones,
sysVoltage.tenths);
¥
else {
ret = sprintf_P(temp_buf, PSTR("%u.%u\n"), sysVoltage.ones,
sysVoltage.tenths);

}
if(ret <= 0) {
error_flags |= SMARTCAST_ERROR;
error_flags |= BUFF_ERROR;
} else {Serial.print(temp_buf); /*WriteToMemory(temp_buf);*/}

for(uint8 t i = @; i < NUM_SENSORS; i++) {
ret = sprintf_P(temp_buf, PSTR("%1lu %lu\n"), Mean(&Sensors[i]),
Variance(&Sensors[i]));
if(ret <= 0) {
error_flags |= SMARTCAST_ERROR;
error_flags |= BUFF_ERROR;
} else {Serial.print(temp_buf); /*WriteToMemory(temp_ buf);*/}

//ret = sprintf(temp_buf, "R%X\n", error_flags);
//Serial.print(temp_buf);
//Serial.println();

}

void SCDumpFile(char* myFile) {
#ifdef INCLUDECHECKSD
checkSDCard();
#endif

#tifdef INCLUDEDUMPFILE
DumpFile(myFile);
#endif
}

void LED_OFF(struct LED *myLED) {
digitalWrite(myLED->pin, OFF);
myLED->state = LOFF;

}

void LED_ON(struct LED *myLED) {
digitalWrite(myLED->pin, ON);
myLED->state = LON;

b

void LED_TOGGLE(struct LED *myLED) {
if(myLED->state == LOFF) LED_ON(myLED);
else LED_OFF(myLED);

}

[R AR A KA KA KA A KA KA A KK HH K KA K AK KKK KKK KK KK KK KK K

* File: SmartCast.cpp

101

* NAME : void PowerCtrl(uint8_t on_off)

* Description: turn on or off power to analog sub-systems
* Inputs:

* Outputs:

SR S K K KK K KKK KKK K S KK KK K KK KK KK SR K S KK Sk K kK

void PowerCtrl(uint8 t on_off) {
digitalWrite(PWR_CTRL_PIN, on_off);
}

/***

* File: SmartCast.cpp

* NAME : void SDPowerCtrl(uint8_t on_off)

* Description: turn on or off power to SD Card, delay when turning
* on to allow SD Card to initialize properly

* Inputs:

* Outputs:

SR K K K S RK K K KKK KKK SR S KK S KK K S KK KK o KK S KK Sk K kK

void SDPowerCtrl(uint8 t on_off) {
digitalWrite(PWR_CTRL_SD_CARD, on_off);
if(on_off == ON) {delay(100);}

}

[R AR A KA A KA KA A K HAK K AK KA KKK KK KA KK KKK KK KK KK KK K

File: SmartCast.cpp

NAME : void ClearErrorFlags()

Description: clear error flags, this function is only called if
the SDCard write was successful

Inputs:

Outputs:

***/

* ¥ X X X ¥

void ClearErrorFlags() {

//Serial.print("f");
//Serial.println(error_flags, HEX);

//reset only some of the error flags, i.e. don't reset the interrupt flags, do
that in the background process
error_flags &=
~((SMARTCAST_ERROR) | (ACC_ERROR) | (SDCARDTIMEOUT_ERROR) | (SDCARDWRITE_ERROR) |
(SDCARDFILE_ERROR) | (BUFF_ERROR) | (INTERRUPT_ERROR) | (INT1_TRIGGERED));

}

[R AR A A KA AR A A HAK KA KA KKK KK KK KA KKK KK KK KK KK K

File: SmartCast.cpp
NAME : void TurnOff()
Description: turn off power to all sub systems and sleep indefinitely,
called in case an error occurs to
Inputs:
Outputs:
***/
void TurnOff() {
detachInterrupt(9);
Serial.println("TurnOff()");
while(1) {
SleepManagement();
BlinkLED2();

* X X X X ¥

102

[R AR AR A KA A KA KA KA KA HH KKK KA KA KKK KKK KK KK KK KK K

File: SmartCast.cpp

NAME : void BlinkLEDs()

Description: tblink system LEDs as visual indication of activity
Inputs:

Outputs:

stk kot sk kool sk sk kol ok skl kol kol kol sk sk ks skl sk ksl sk skl kool sk skl ko kol ko ok stk ok /
void BlinkLEDs() {

PORTB |= (uint8 t)(1<<6);

PORTB |= (uint8_t)(1<<CONFIG_LED);

LED_ON(&LED1);

LED_ON(&LED3);

delay(100);

PORTB &= (uint8_t)~(1<<6);

LED_OFF (&LED1);

LED_OFF(&LED3);

PORTB &= (uint8_t)~(1<<CONFIG_LED);

* ¥ ¥ % *

}

void BlinkLED2() {
PORTB |= (uint8_t)(1<<6);
delay(100);
PORTB &= (uint8 t)~(1<<6);
¥

/***

File: SmartCast.cpp

NAME : void PrepareSleep()

Description: turn off all the pins we don't need while sleeping,
and prepare system for sleep

Inputs:

Outputs:

stk kst sk ok stk soksok skt skl skl kol skl kol kol kol kol sk sk sk skokskosk skl kol sk skl kol sk skok ok okok /

void PrepareSleep() {

* ¥ ¥ X X ¥

digitalWrite(SEL1_PD7, OFF); / /A0
digitalWrite(SEL2_PBO, OFF); //Al
digitalWrite(SEL3_PC3, OFF); //A@
digitalWrite(SEL4_PC2, OFF); //Al

ADCSRA &= (uint8 t)~(1 << ADEN); //This saves an extra ©0.1mA!
//power_adc_disable();
//ACSR |= (uint8_t)(1 << ACD);

[=
//turn off SD card, i.e. turn off SPI interface
SPCR &= (uint8_t)~(1 << SPE); //This turns off the SPI interface

//pinMode(SPI_MISO_PIN, OUTPUT); //DO NOT DO THIS, THIS CAUSES CURRENT TO LEAK TO

GROUND
//digitalWrite(SPI_MISO_PIN, LOW);

pinMode(hardwareSS, OUTPUT); //make sure there is no voltage on the SPI pins

digitalWrite(hardwareSS, LOW);
pinMode(SPI_MOSI_PIN, OUTPUT);
pinMode(SPI_SCK_PIN, OUTPUT);
digitalWrite(SPI_MOSI_PIN, LOW);

103

}

//myADXL345. power0Off();

LED_OFF(&LED1);
LED_OFF (&LED3);
PORTB &= (uint8_t)~(1<<6);

SDPowerCtrl(OFF);
PowerCtrl(OFF);

[R AR A KA KA KA KK A KK AK KA KKK KK KK KA KK KK KK KK KK KK K

* X X ¥ ¥

File: SmartCast.cpp

: void PrepareWake()

Description: prepare system for wake up
Inputs:
Outputs:

SRS H K K KKK KKK KK S KK K S KK S KK SR o KoK S K S KK S K KK K kK

void PrepareWake() {

}

//power_adc_enable();
ADCSRA |= (uint8 t)(1 << ADEN); //turn ADC back on

PowerCtrl(ON);

//Serial.println("turnonl");
//MeasureAcceleration();
//myADXL345. power0On();
//Serial.println("turnon2");
//MeasureAcceleration();

//THIS DELAY IS VERY IMPORTANT!------------

//we need to wait for the analog reference voltage to settle
delayMicroseconds(500);

//THIS DELAY IS VERY IMPORTANT!------------

//myADXL345. power0On();

AR HAK A KKK HAK KK KA KKK KA KKK KK KA KKK KK KR KKK KKK Ko K

* K X X ¥ ¥

File: SmartCast.cpp

: uint32_t _ CalcSleepTime()

Description: currently, just return global variable, but in the
future, we could calculate sleep time based of system voltage etc.
Inputs:

Outputs:

stk ko ok s ook sk ok sk s ok sk ok sk sk sk sk ks ok sk ok sk stk ko ok sk sk sk ok ok sk sk sk sk sk ok sk ok sk sk sk ok ok sk ok sk ok
uint32_t _ CalcSleepTime() {

return sleep_time;

//calc sleep time as a function of the system voltage
//uintl6_t temp_volt = sysVoltage.ones + sysVoltage.tenths/10;
/*if(sysVoltage.ones >= 2) {
if(sysVoltage.tenths >= 70) { //i.e. 2.70
return 10;

104

}
else {TurnOff();}

} else {TurnOff();}
*/
¥

/***

* File: SmartCast.cpp

* NAME : void SleepManagement()

* Description: top level sleep function, prepares system for sleep
* and wake

* Inputs:

* Qutputs:

SHOH K KK KKK KKK SRS KK KK S KK S KK S KK KK SR oK S KK o KK S S KK kK kK

void SleepManagement() {
PrepareSleep();
GoToSleep(___CalcSleepTime());
PrepareWake();

}

#ifdef USE_TIMERS

void StartTimer() {
PORTB |= (uint8_t)(1<<7);
myTO = (uintl6_t)millis();

}
void StopTimer() {

myTl = (uintl6e_t)millis();
PORTB &= (uint8 t)~(1<<7);
Serial.print(Func_name);
Serial.print(" ");
Serial.print(myT1l - myTe);
Serial.println("ms");

}
#endif

105

/*
myFlash.h

* ¥

*

Created: 10/31/2012 5:55:03 PM
Author: Andrew Danilovic

*

*/
#ifndef MYFLASH H_
#define MYFLASH H_
#include <avr/pgmspace.h>
#include <avr/boot.h>

#include "../SmartCastApp/SmartCast.h”

//Use SPM_PAGESIZE, which is also defined to be 128
//#define FLASH_PAGE_SIZE 128 //64 words = 128 bytes, see p. 302 in datasheet

//need to add 1 to line up with the page boundaries, i.e. FLASHEND is Ox7FFF, not 0x8000
//#define LAST_ACCESSIBLE_PAGE (((FLASHEND)-640)+1) //currently the bootloader is
taking up 4 pages, so 1lst page is 128*5=640 less

#define LAST_ACCESSIBLE_PAGE 32128 //hardcoded value, when the bootloader is only 4 pages
#define MAX_FLASH_WRITES 9500 //Flash has a 10,000 write/erase cycle lifetime

#define FLASH_BUF_SIZE SPM_PAGESIZE
//#define FLASH_BUF_SIZE 64

extern char FlashBuf[FLASH BUF_SIZE];

BOOTLOADER_SECTION extern void _ WriteToFlash(uintl6_t page, char *buf);
extern void WriteToMemory(char *buf);

BOOTLOADER_SECTION extern char ReadFlashByte(uintl6_t page, uint8_t offset);

extern uint32_t RoundPow(uint32_t numToRound, uint8_t multiple);
extern void initFlashPageIndices();

#endif /* MYFLASH_H_ */

106

/*

* myFlash.cpp

*

* Created: 10/31/2012 5:54:53 PM
* Author: Andrew Danilovic

*/

#include "myFlash.h"

#include "../SmartCardApp/SmartCardUser.h"
#include <avr/eeprom.h>

#include "myEEPROM.h"

#include "../SmartCastApp/SmartCast.h"

void DecreaseFlashIndex();
void ResetFlashPtr();

char FlashBuf[FLASH_BUF_SIZE];

uintl6_t flash_page_index; //point to the current flash page
extern int __data_load_end; //use this to avoid overwriting program
memory

uintl6_t first_accessible_page; //this tells us which is the first page
available

intl6_t flash_pages_avail; //keep track of how many pages are
available

uintl6_t num_flash_writes; //use this to avoid going past the

lifetime of the flash

[AR AR A KA KA K KA KA K KA KK KA AR KK KK KK KK KK KK KKK KKK KK K

File: myFlash.cpp

NAME : void _ WriteToFlash(uintl6_t page, char *buf)

Description: writed a buffer of data to flash memory.

adapted from the non-gnu Atmel online manual, see:
http://www.nongnu.org/avr-libc/user-manual/group__avr__boot.html
Inputs: page to write to, and buffer to write to memory

Outputs:

stk sk s ok stk ok sk skl kb skl sk skl kol ksl ok kol kol kol stk ok sk stk skt sk kot skl okt skok ok okok /

void _ WriteToFlash(uintl6_t page, char *buf) {

* ¥ ¥ X X X ¥

uintl6_t i;
uint8_t sreg;

// Disable interrupts.
sreg = SREG;
cli();

eeprom_busy_wait();

boot_page_erase(page);
boot_spm_busy wait(); // Wait until the memory is erased.

for (i=0; i<SPM_PAGESIZE; i+=2)

{
// Set up little-endian word.
uintle_t w = *buf++;
w += (*buf++) << 8;

boot_page fill(page + i, w);

107

}

boot_page write(page); // Store buffer in flash page.
boot_spm_busy wait(); // Wait until the memory is written.

// Reenable RWW-section again. We need this if we want to jump back
// to the application after bootloading.
boot_rww_enable();

// Re-enable interrupts (if they were ever enabled).
SREG = sreg;
}

[R AR A KA KA KA KA KA HA KK AK KA KA AR KK KA KA KKK KK KK KK KK K

File: myFlash.cpp

NAME : uint8_t TrySDCardWrite()

Description: tries to write to the SD Card, if successful,

reset flash and eeprom memory pointers and indices as we
successfully wrote the data in those memories to the SD Card
Inputs:

Outputs: return @ if successful, 1 otherwise

stk sk ook stk ok skl kol ok skl skl kol kol sk kol sk skl ks stk skl okl sk skl sk skl sk skl ko ok skok ok okok

uint8_t TrySDCardWrite() {

* K X X X ¥ ¥

[]====mmm - write to SDCard memory----------------

if(WriteToSDCardbuf (LAST_ACCESSIBLE_PAGE, first_accessible_page) == 0) {
ResetFlashPtr(); //ONLY RESET FLASH PTR IF SDCARD write was successful
ResetEEPROMPtr();
return 0;

}

else {return 1;} //no SDCard present

}

/***

* File: myFlash.cpp

* NAME : void WriteToFlash()

* Description: this function is misnamed and needs refactoring.

* this function contains the memory management logic, i.e.

* write to EEPROM until, then write to Flash, then when both are full,

* write all that data to the SD Card. This code could also be cleaned up,
* but this has been tested to work

* Inputs:

* Qutputs:

KKK KKK KK KKK K KK KK KK S KK SR K KK S KK SR K KK S K SR K S K KRS K K K/

void WriteToFlash() {
if(error_flags & FLASH_LIFE_EXCEEDED) { //FLASH has
exceeded
if((error_flags & EEPROM_LIFE_EXCEEDED) == @) {//EEPROM has not exceeded
if((error_flags & EEPROM_1_PAGE_LEFT) == @) {
WriteToEEPROM(FlashBuf);
memset(FlashBuf, ©, FLASH_BUF_SIZE); //clear buffer for
next go around
}
else { //there's just 1 EEPROM page left
WriteToEEPROM(FlashBuf);
memset(FlashBuf, ©, FLASH_BUF_SIZE); //clear buffer for

next go around
[[FR sk ko ok sk skok sk kol ok skok

108

while(TrySDCardWrite() == 1) { //i.e. while SDCard write
not successful
SleepManagement();

[] FHFA KA A A A A KA A KKK KKK

}
}

else { /*There is no internal memory left at this point*/
//this will just write the error flags to the SDCard
WriteToSDCardbuf (LAST_ACCESSIBLE_PAGE, first_accessible_page);
//just turn off really

}

else { //Flash is still working
if((error_flags & EEPROM_LIFE_EXCEEDED) == @) {//EEPROM has not exceeded
if((error_flags & EEPROM_FULL) == @) { //EEPROM is not full
WriteToEEPROM(FlashBuf);
memset(FlashBuf, ©, FLASH_BUF_SIZE); //clear buffer for
next go around
b
else { //EEPROM is full, go to Flash
if(flash_pages_avail > 1) {
__WriteToFlash(flash_page_index, FlashBuf);
DecreaseFlashIndex();
memset (FlashBuf, @, FLASH BUF_SIZE); //clear
buffer for next go around
}
else {
if(flash_pages_avail > @) { //there's just 1 flash page
left, so fill it and write to the SDCard
__WriteToFlash(flash_page_index, FlashBuf);
DecreaseFlashIndex();
memset(FlashBuf, @, FLASH_BUF_SIZE);
//clear buffer for next go around

//*************************

while(TrySDCardWrite() == 1) { //i.e. while SDCard

write not successful
SleepManagement(); //go to sleep until we can

write to the SD Card

}

[[FF Rkt sk ook sk sk ok ok sk ok sk ok sk ok
}
}
else {/*EEPROM has exceeded before Flash, which should never happen*/}

}

/***

File: myFlash.cpp

NAME : WriteToMemory(char *buf)

Description: top level function called by the SmartCast app to save
data to memory

Inputs: buffer of data

Outputs:
stokokok ok stk ok stk ok stk sk stk ok kbl sk koo sk skl ok skl ok skl ok stk ok kool ok skokok ok ok /

* ¥ ¥ X X *

void WriteToMemory(char *buf) {

109

int16_t lenTempBuf = strlen(buf);
intl16_t lenFlashBuf = strlen(FlashBuf);
uint8_t room_left = FLASH BUF_SIZE - lenFlashBuf;

if(lenTempBuf <= room_left) {
strncat(FlashBuf, buf, lenTempBuf);

}
else {
strncat(FlashBuf, buf, room_left); //fill up the buffer before writing to
flash
WriteToFlash();
memset (FlashBuf, @, FLASH_BUF_SIZE); //clear buffer for next go around

lenFlashBuf = strlen(FlashBuf); //don't forget to copy the !'REMAINING!
part of the buffer that put us over the limit!

if((lenTempBuf + lenFlashBuf - room_left) <= FLASH_BUF_SIZE) {

strncat(FlashBuf, buf+room_left, lenTempBuf-room_left);

}

else {} //Flash buffer overflow error, shouldn't happen, i.e. we don't
send that much at once

3

}

[HFHAAAK KA A A KA KA A A KA KA KA KA KA KA KA KA KA KKK KA KKK KK KK K

File: myFlash.cpp

NAME : char ReadFlashByte(uintl6_t page, uint8_t offset)
Description: read from Flash

Inputs: page and offset to read from

Outputs: 8 bit data from Flash

sk stk ko ok sk ook sk o sk sk ok sk sk sk sk sk ook sk ok stk sk ok sk ok ok sk sk kst ok sk ok sk sk sk sk ok sk sk sk sk ok sk sk ok sk ok ok ok
char ReadFlashByte(uintl16_t page, uint8_t offset) {

return pgm_read_byte((const uintl6_t)page+offset);

* X X X ¥

}

[H AR A KA KA A KA AR KA KA KA KA KA KA KK A KKK KA KKK KK KK oK

* File: myFlash.cpp

* NAME : extern void initFlashPageIndices()

* Description: init indices to Flash memory, these indices

* allow the program to know which addresses of Flash can be written to
* Inputs:

* Qutputs:

***/

extern void initFlashPageIndices() {
first_accessible page = RoundPow((int)&_ data_load_end, SPM_PAGESIZE);
flash_page_index = LAST_ACCESSIBLE_PAGE;
flash_pages_avail = (LAST_ACCESSIBLE_PAGE - first_accessible_page)>>7;

}

[R A A A A KA KA KA KA KA KA KA KA KA AH KA KA KKK KA KKK KK KK K

File: myFlash.cpp

NAME : extern void DecreaseFlashIndex()
Description: decrement index with error checking
Inputs:

Outputs:
stk ok sk sk ok stk sk sk ok ok sk sk stk ok ok sk ok stk ok sk stk stk ok stk ok koo ok koo ok ok /

¥ ¥ ¥ X %

extern void DecreaseFlashIndex() {
if(flash_page_index >= SPM_PAGESIZE) { //don't decrement flash_page_index unless
it is larger than SPM_PAGESIZE
flash_page_index -= SPM_PAGESIZE;

110

}
flash_pages_avail = (flash_page_index - first_accessible_page)>>7;
if(flash_pages_avail <= 0) {

error_flags |= SMARTCAST_ERROR;

error_flags |= FLASH_FULL;

}

/***

* File: myFlash.cpp

* NAME : extern void ResetFlashPtr()

* Description: reset flash indices and increment write counter,
* as Flash has a write lifetime, don't want to exceed that

* Inputs:

* Qutputs:

***/

extern void ResetFlashPtr() {
if(num_flash_writes < MAX_FLASH_WRITES) {
num_flash_writes++; //increment counter here because we will be writing to
flash in a round robin fashion
flash_page_index = LAST_ACCESSIBLE_PAGE;
flash_pages_avail = (LAST_ACCESSIBLE_PAGE - first_accessible_page)>>7;
error_flags &= ~FLASH_FULL;

}

else {
/*stop writing to flash*/
flash_page_index = LAST_ACCESSIBLE_PAGE;
flash_pages_avail = 0;
error_flags |= SMARTCAST_ERROR;
error_flags |= FLASH_LIFE_EXCEEDED;

¥

}

[H AR AR A KA KA KA A A KA KA KA KA KA KA A KK AR KK KA KKK KKK KK K

File: myFlash.cpp

NAME : uint32_t RoundPow(uint32_t numToRound, uint8_t multiple)
Description: round a number up to a specific multiple

Inputs: number to round and multiple

Outputs: rounded number

stk ko skl sk skl ks ok skeok stk ksl skt skl ksl ksl skl kol kol ko skl sk ko ok sk skok sk ok

uint32_t RoundPow(uint32_t numToRound, uint8_t multiple) {

* ¥ ¥ ¥ ¥

if(numToRound > 32767) { //32*%1024 = 32768, subtract to account for the -1 sign
bit
//this page does not exist in the ATMega328p, so make this equal to
FLASHEND-512, i.e. the last available page
//this way, when we later check if first_accessible_page <
LAST_ACCESSIBLE_PAGE, we'll
//fail there if first_accessible_page is larger
return FLASHEND-512; //i.e. subtract the size of the bootloader, in this
case 4 pages, 4*128 = 512
}

if(multiple == 0) {
return numToRound;
}

uint32_t remainder = numToRound % multiple;

111

if(remainder == 0) {
return numToRound;
¥

if(remainder > (numToRound + multiple)) {
return FLASHEND>>7; //don't want to return a negative number

}

return numToRound + multiple - remainder;

112

/*
myEEPROM. h

* ¥

*

Created: 10/31/2012 5:53:50 PM
Author: Andrew Danilovic

*

*/
#ifndef MYEEPROM_H_
#define MYEEPROM_H_
#include <avr/eeprom.h>
#define EEPROMSizeATmega328p 1024
#tdefine NUM_CHUNKS 8
#tdefine MAX_NUM_WRITES 99500
extern void InitEEPROMPtrs();
extern void WriteToEEPROM(char *buf);
extern void ResetEEPROMPtr();
extern void ReadFromEEPROM(char *buf, uintl6_t address);

#endif /* MYEEPROM H_ */

113

/*

* ¥

myEEPROM. cpp

*

Created: 10/31/2012 5:53:37 PM
Author: Andrew Danilovic

*

*/

#include "myEEPROM.h"

#include <avr/interrupt.h>

#include "myFlash.h"

#include "../SmartCastApp/SmartCast.h”

uintl6_t __address;
uintl6_t num_EEPROM writes;

/***

File: myEEPROM.cpp

NAME : void InitEEPROMPtrs()

Description: initialize pointers to EEPROM memory and write counter
Inputs:

Outputs:

stk kst ook kol sk sk kol ok skl skl kol kol sk ko sk skl sk koot skl skl sk skl skl ksl kol stk okok /
void InitEEPROMPtrs() {

__address = 0;

num_EEPROM_writes = 0;

* ¥ ¥ % *

}

[R AR A KA A KA KA KK A KK AK KA KKK KA KA A KK KKK KK KK KK KK K

File: myEEPROM.cpp

NAME : void WriteToEEPROM(char *buf)

Description: write buffer to eeprom, with error checking to ensure
the lifetime is not exceeded before write and valid address
Inputs: buffer of data

Outputs:

***/

void WriteToEEPROM(char *buf) {

* X X X ¥ ¥

if((error_flags & EEPROM LIFE_EXCEEDED) | (error_flags & EEPROM FULL)) {return;}
//don't write anymore

uint8_t sreg = SREG;

cli();

eeprom_busy wait();

eeprom_write_block(buf, (uintl6_t *)__address, FLASH_BUF_SIZE);
SREG = sreg;

__address += FLASH_BUF_SIZE;

if(__address == 896) { //this is the 2nd to last free page of EEPROM
error_flags |= EEPROM_1 PAGE_LEFT;

} else {error_flags &= ~EEPROM_1_PAGE_LEFT;}

if(__address >= EEPROMSizeATmega328p) {
error_flags |= EEPROM_FULL;
}

}

[/ sk sk stk sk sk ok sk sk ok sk stk ok sk kol ok skl ksl kol skl kol kol sk skl sk sk kol kokok
* File: myEEPROM.cpp

114

NAME : void ResetEEPROMPtr()
Description: reset eeprom indices, and increment write counter
Inputs:
Outputs:
stk ks ok sk ook sk o sk sk ok sk ok sk sk sk sk ok sk sk stk sk ok sk sk sk sk ok sk sk sk sk sk skok sk ok sk sk sk ok ok sk sk sk ok
void ResetEEPROMPtr() {
if(num_EEPROM writes < MAX_NUM_WRITES) {
num_EEPROM_writes++;
__address = 0;
error_flags &= ~EEPROM_FULL;
error_flags &= ~EEPROM_1_PAGE_LEFT;

* ¥ ¥

}

else {
error_flags |= EEPROM_LIFE_EXCEEDED; //don't write anymore
}
}

/***

* File: myEEPROM.cpp
* NAME : void ReadFromEEPROM(char *buf, uintl6_t address)
* Description: read into buf from address
* Inputs: buf, address
* Qutputs:
***/
void ReadFromEEPROM(char *buf, uintl6_t address) {
if(__address > EEPROMSizeATmega328p) {return;}
uint8_t sreg = SREG;
cli();
eeprom_busy_wait();
eeprom_read_block(buf, (uintl6_t *)address, FLASH_BUF_SIZE);
SREG = sreg;

115

/*
SDCardCORETesla.cpp

* ¥

* Created: 5/10/2012 10:46:24 PM
Author: Andrew Danilovic

*

*/
/*

Notes:

The project is now linking to libm.a, which is the Atmel

math.h library. This has been hand optimized for the Atmel
processors, and is better then the GCC library, according to Google.
I believe you can also add just 'm' in the project properties

under Linker->Libraries as per this site:
http://support.atmel.com/bin/customer.exe?=&action=viewkbEntry&id=339

*/

#include "Arduino.h"

#include "SmartCastApp/SmartCast.h"
#include "SmartCastApp/ADXL345.h"
#include "SmartCardApp/SmartCardUser.h"
#include "SmartCastApp/Interrupts.h”
#include "SmartCastApp/Sleep.h"
#include "utility/memdebug.h"
#include "utility/StackPaint.h"
#include "utility/myFlash.h"

#include "utility/myEEPROM.h"
#include "SmartCastApp/RunningStat.h"
#include "SmartCardApp/ConfigFile.h"

/***

* File: SDCardCORETesla.cpp

* NAME : void InitializePins()

* Description: initialize all required pins for the SmartCast app

* Inputs:

* Qutputs:
***/

void InitializePins() {

[/-------- Configure Pins---------

pinMode(SEL1_PD7, OUTPUT);

pinMode(SEL2_PB@, OUTPUT);

pinMode(SEL3_PC3, OUTPUT);

pinMode(SEL4_PC2, OUTPUT);

pinMode (PWR_CTRL_PIN, OUTPUT);

pinMode (PWR_CTRL_SD_CARD, OUTPUT);

pinMode (hardwareSS, OUTPUT); //This is the hardware SS pin, must be set as
output for the SD library to work

pinMode (ADC_@, OUTPUT); //just set these here, not really needed
pinMode (ADC_1, OUTPUT);

pinMode (ADXL345_INT1_PIN, INPUT);
pinMode(ADXL345_INT2_PIN, INPUT);

116

digitalWrite(SEL1_PD7, LOW);
digitalWrite(SEL2_PBO@, LOW);
digitalWrite(SEL3_PC3, LOW);
digitalWrite(SEL4_PC2, LOW);

PowerCtrl(OFF);

SDPowerCtrl(OFF);

[/ =mmmmmmm e
[/==mmmmmmmmmm e
[/ ===
/. DEBUG Pins------------

DDRB |= (uint8_t)(1<<7); //set PB7 as an output, for Debug
PORTB &= (uint8 t)~(1<<7);

LED1.pin = 9;
pinMode(LED1.pin, OUTPUT);
LED_OFF (&LED1);

LED3.pin = SDCARD_LED;
pinMode(LED3.pin, OUTPUT);
LED_OFF(&LED3);

DDRB |= (uint8 t)(1<<6); //set PB6 as an output, one of the LEDs
PORTB &= (uint8_t)~(1<<6);

DDRB |= (uint8 t)(1<<CONFIG_LED); //set PB7 as an output, one of the LEDs
PORTB &= (uint8_t)~(1<<CONFIG_LED);

[/ ===

[/ === mmm e

}

/***

* File: SDCardCORETesla.cpp

* NAME : void InitializeSerial()

* Description: initialize the serial port

* Inputs:

* Qutputs:

sk sk skl sk skl ks kst sk stk ksl skl kot sk sk skt skl sk skl ok kol ko skl ko stk ok ok ko

void InitializeSerial() {

Serial.begin(9600);

//Calibrate the serial connection

/*

while(1) {
Serial.print("(abc, ");
Serial.print(8);
Serial.print(") ");
//delay(500);

}

*/

/*

uint32_t testl2 = 0;

117

while(1) {
UBRROL = testl2;
Serial.print("(abc, ");
Serial.print(test12);
Serial.print(") ");
testl2 += 1;

}

*/

UBRROL = 8; //needed to calibrate the serial comm, because we're using the
onboard clock

}

/***

* File: SDCardCORETesla.cpp

* NAME : void InitializeMisc()

* Description: initialize other necessary variables and turn power
* on to analog sub system

* Inputs:

* Qutputs:

KKK KK KKK KK KKK KSR KK KK S KK K K KK S KK SR KK oK SR K K KK K K/

void InitializeMisc() {
analogReference(EXTERNAL);

error_flags = 0;
num_coll_samles = 0;
PowerCtrl(ON);

}

/***

File: SDCardCORETesla.cpp

NAME : void InitializeInternalMem()
Description: initialize memory indices
Inputs:

* Outputs:

***/

* ¥ ¥ ¥

void InitializeInternalMem() {
InitEEPROMPtrs();
initFlashPageIndices();

}

/***

* File: SDCardCORETesla.cpp

* NAME : void setup(void)

* Description: top level initialize function, only called once at boot
* Inputs:

* Outputs:

***/

void setup(void) {
uint8 t acc_data[5] = {@x19, @x15, Ox15, Ox50, 0xA@}; //default values
InitializePins();
InitializeSerial();

InitializeMisc();
BlinkLEDs();

118

//ParseConfigFile(acc_data);
InitializeInternalMem();

Y/ — ADXL345 Initialize--------------
//myADXL345.init (ADXL345_ADDR_ALT_LOW, acc_data);
[/ == e e

//if(no errors) {
BlinkLEDs(); //shows we're done initializing and ready to begin sampling

/1%

//else {

// Blink in a certain pattern to indicate error
/1}

}

/***

* File: SDCardCORETesla.cpp

* NAME : void loop()

* Description: main infinite loop, measure sensors, log data,

* go to sleep, handle background processing of interrupts on wake,
* interrupts will wake up the microcontroller

* Inputs:

* Qutputs:

KK KKK KK KKK K KKK K KK S KK SR K KK S KK SR KK S K S KK S K S KoK KK K

void loop() {

TakeMeasurements();
RecordData();
SleepManagement();

if(error_flags & INTO_TRIGGERED) {
error_flags &= ~INTO_TRIGGERED;
uint8_t ret = myADXL345.getInterruptSource();
attachInterrupt(®, myINTO_Func, RISING);

119

References

[1] Atmel. "ATmega328p Datasheet." Atmel.com, Feb. 2013. Web.
<http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller-

ATmega48A-48PA-88A-88PA-168A-168PA-328-328P datasheet.pdf>.

[2] "AVR Libc." AVR Libc. Savannah.nongnu.org, 3 Jan. 2012. Web.

<http://www.nongnu.org/avr-libc/user-manual/index.htmI>.

[3] Brady, S. et al. "The Development and Characterisation of Conducting Polymeric-
based Sensing Devices." Synthetic Metals 154.1-3 (2005): 25-28. ScienceDirect. Web.

<http://www.sciencedirect.com/science/article/pii/S0379677905004613#>.

[4] Buechley, Leah. "LilyPad Arduino: How an Open Source Hardware Kit Is Sparking
New Engineering and Design Communities." Web.

<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.168.5521>.

[5] Carpi, F., and D. De Rossi. "Electroactive Polymer-Based Devices for E-Textiles in
Biomedicine." Information Technology in Biomedicine, IEEE Transactions on9.3
(2005): 295-318. IEEEXplore. Web.

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1504800>.

120

[6] Cook, John D. "Accurately Computing Running Variance." John D. Cook, n.d. Web.

1 May 2013. <www.johndcook.com>.

[7] Dunne, L., S. Brady, B. Smyth, and D. Diamond. "Initial Development and Testing of
A Novel Foam-Based Pressure Sensor for Wearable Sensing." Journal of
Neuroengineering and Rehabilitation (2005): NCBI. Web.

<http://www.ncbi.nlm.nih.gov/pmc/articles/PMC554000/>.

[8] Fraden, Jacob. Handbook of Modern Sensors: Physics, Designs, and Applications.

3rd ed. New York: Springer, 2004. Print

[9] Mattmann, C., Amft, O., Harms, H., Troster, G., Clemens, F. "Recognizing Upper
Body Postures using Textile Strain Sensors," Wearable Computers, 2007 11th IEEE
International Symposium on , vol., no., pp.29,36, 11-13 Oct. 2007

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4373773>.

[10] Merritt, C., T. Nagle, and E. Grant. "Textile-Based Capacitive Sensors for

Respiration Monitoring." IEEE Sensors Journal 9.1 (2009): 71-78. IEEEXplore. Web.

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4711330&tag=1>.

[11] Meyer, J., P. Lukowicz, and G. Troster. "Textile Pressure Sensor for Muscle

Activity and Motion Detection." Wearable Computers, 2006 10th IEEE International

121

Symposium on (2006): 69-72. IEEEXplore. Web.
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4067729>.

[12] Microchip. "MCP6041/2/3/4, 600 NA, Rail-to-Rail Input/Output Op
Amps."MCP6041 Datasheet. Microchip, 3 Apr. 2013. Web.

<http://ww1.microchip.com/downloads/en/DeviceDoc/21669c.pdf>.

[13] Mitchell, E. et al. "Breathing Feedback System with Wearable Textile
Sensors." Body Sensor Networks (BSN), 2010 International Conference on (2010):
56-61.IEEEXplore. Web.

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5504719&tag=1>.

[14] Pacelli, M., L. Caldani, and R. Paradiso. "Textile Piezoresistive Sensors for
Biomechanical Variables Monitoring." 35th Annual Internation Conference of the
IEEE Engineering in Medicine and Biology Society 1 (2006): 5358-361. NCBI. Web.

<http://www.ncbi.nlm.nih.gov/pubmed/17946696>.

[15] Papakostas, T.V., J. Lima, and M. Lowe. "A Large Area Force Sensor For Smart
Skin Applications." Sensors 2 (2002): 1620-624. [IEEEXPLORE. Web.

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1037366>.

[16] Plusea. "Neoprene Bend Sensor IMPROVED." Instructables.com.
Instructables.com, 23 Apr. 2009. Web. <http://www.instructables.com/id/Neoprene-

Bend-Sensor-IMPROVED/>.

122

[17] Rekimoto, J. "SmartSkin: An Infrastructure for Freehand Manipulation On
Interactive Surfaces." Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (2002): 113-20. ACM. Web.

<http://dl.acm.org/citation.cfm?id=503397>.

[18] Sergio, M. et al. "A Dynamically Reconfigurable Monolithic CMOS Pressure
Sensor for Smart Fabric." Solid-State Circuits, IEEE Journal of 38.6 (2003): 966-
75.IEEEXplore. Web.

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1201999>.

[19] Wang, Mingjiang. et al. "A Matress System for Human Biosignals
Monitoring." Prognostics and System Health Management (PHM), 2012 IEEE
Conference on (2012): 23-25. IEEEXplore. Web.

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6228967>.

[20] Zhang, Hui, and Xiao-Ming Tao. "A Single-Layer Stitched Electrotextile As
Flexible Pressure Mapping Sensor." Journal of The Textile Institute 103.11 (2012):
1151-159. Web.

<http://www.tandfonline.com/doi/abs/10.1080/00405000.2012.664868>.

123

[21] "Force Sensing Resistor Integration Guide and Evaluation Parts Catalog." N.p., 26

Feb. 2008. Web.

124

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 - Introduction
	1.1 Background
	1.2 Objectives and Contributions

	Chapter 2 - System & Sensor Design
	2.1 Overview of SmartCast Textile Sensors and Sensor Matrix
	2.2 Evolution of the SmartCast Sensor Network
	/

	2.3 System Software Architecture
	2.4 Case & Form Factor
	/

	Chapter 3 - System & Sensor Validation
	3.1 Power Consumption & System Lifetime
	3.2 Cyclic Mass Test
	3.2.1 Experimental Procedure
	3.2.2 Results

	3.3 Platform Test with Masses
	3.3.1 Experimental Procedure
	3.3.2 Results

	/
	3.3.3 Sensitivity and Resolution

	3.4 Online Statistics Calculations
	3.5 Forces Under a Cast

	Chapter 4 - Sensor Network Fix
	4.1 Problem Specification
	4.2 Comparison to Literature
	4.3 Solution Implementation and Validation

	Chapter 6 - Conclusion
	6.1 Conclusion
	6.2 Future Work

	Appendices
	A. SmartCast Circuit Schematic
	/
	B. Sample SmartCast SD Card Data Format
	C. System Lifetime Calculation Matlab Code
	D. Matlab Code to Calculate Sensor Resolution & Sensitivity
	E. SmartCast System Code

	References

