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Abstract

Direct lineage reprogramming represents a remarkable conversion of cellular and transcriptome 

states1–3. However, the intermediates through which individual cells progress are largely 

undefined. Here we used single-cell RNA-seq4–7 at multiple time points to dissect direct 

reprogramming from mouse embryonic fibroblasts (MEFs) to induced neuronal (iN) cells. By 

deconstructing heterogeneity at each time point and ordering cells by transcriptome similarity, we 
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find that the molecular reprogramming path is remarkably continuous. Overexpression of the 

proneural pioneer factor Ascl1 results in a well-defined initialization, causing cells to exit the cell 

cycle and re-focus gene expression through distinct neural transcription factors. The initial 

transcriptional response is relatively homogeneous among fibroblasts suggesting the early steps 

are not limiting for productive reprogramming. Instead, the later emergence of a competing 

myogenic program and variable transgene dynamics over time appear to be the major efficiency 

limits of direct reprogramming. Moreover, a transcriptional state, distinct from donor and target 

cell programs, is transiently induced in cells undergoing productive reprogramming. Our data 

provide a high-resolution approach for understanding transcriptome states during lineage 

differentiation.

Direct lineage reprogramming bypasses an induced pluripotent stage to directly convert 

somatic cell types. Using the three transcription factors Ascl1, Brn2 and Myt1l (BAM), 

mouse embryonic fibroblasts (MEFs) can be directly reprogrammed to induced neuronal 

(iN) cells within 2 to 3 weeks at an efficiency of up to 20%8. Several groups have further 

developed this conversion using transcription factor combinations that almost always contain 

Ascl19–12. Recently, we found that Ascl1 is an “on target” pioneer factor initiating the 

reprogramming process13, and inducing conversion of MEFs into functional iN cells alone, 

albeit at a much lower efficiency compared to BAM14. These findings raised the question 

whether and when a heterogeneous cellular response to the reprogramming factors occurs 

during reprogramming and which mechanisms might cause failure of reprogramming. We 

hypothesized that single-cell RNA-seq could be used as a high resolution approach to 

reconstruct the reprogramming path of MEFs to iN cells and uncover mechanisms limiting 

reprogramming efficiencies4,15,16.

In order to understand transcriptional states during direct conversion between somatic fates, 

we measured 405 single-cell transcriptomes (Supplementary Data 1) at multiple time points 

during iN cell reprogramming (Figure 1a, Extended Data Figure 1a). We first explored how 

individual cells respond to Ascl1 overexpression during the initial phase of reprogramming. 

We analyzed d0 and d2 Ascl1-only cells using PCA and identified 3 distinct clusters (cluster 

A, B, C), which correlated with the level of Ascl1 expression (Figure 1b–e). Cluster A 

consisted of all control d0 MEFs and a small fraction of d2 cells (~12%) which showed no 

detectable Ascl1 expression, suggesting these d2 cells were not infected with the Ascl1 

virus. This is consistent with typical Ascl1 infection efficiencies of about 80–90%. We found 

that the d0 MEFs were surprisingly homogeneous, with much of the variance due to cell 

cycle (Extended Data Figure 1b–g, Supplementary Data 3, SI). Cluster C was characterized 

by high expression of Ascl1, Ascl1 target genes (Zfp238, Hes6, Atoh8, etc), and genes 

involved in neuron remodeling, as well as the down-regulation of genes involved in cell 

cycle and mitosis (Figure 1c,e-f and Supplementary Data 2). Cluster B cells represent an 

intermediate population that expressed Ascl1 at a low level, and were characterized by a 

weaker up-regulation of Ascl1 target genes and less efficient down-regulation of cell cycle 

genes compared to cluster C cells. This suggests that an Ascl1 expression threshold is 

required to productively initiate the reprogramming process. In addition, we found that 

forced Ascl1 expression resulted in less intracellular transcriptome variance, a lower number 

of expressed genes (Figure 1d) and a lower total number of transcripts per single cell 
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(Extended Data Figure 2a–b). Notably, the distribution of average expression levels per gene 

was similar for all experiments independent of Ascl1 overexpression (Extended Data Figure 

2c). We observed that the up-regulation of neuronal targets and down-regulation of cell cycle 

genes in response to Ascl1 expression are uniform, indicating that the initial transcriptional 

response to Ascl1 is relatively homogenous among all cells (Figure 1e). This suggests that 

most fibroblasts are initially competent to reprogram and later events must be responsible for 

the moderate reprogramming efficiency of about 20%.

To explore the effect of transgene copy number variation on the heterogeneity of the early 

response, we analyzed single-cell transcriptomes of an additional 47 cells induced with 

Ascl1 for 2 days from secondary MEFs derived via blastocyst injection from a clonal, Ascl1-

inducible ES cell line. As expected, the induction efficiency of Ascl1 was 100% since the 

secondary MEFs are genetically identical and all cells carry the transgene in the same 

genomic location (Figure 1g). Nevertheless, these clonal MEFs had similar transcriptional 

responses and heterogeneity as primary infected MEFs at the d2 time point, as well as 

comparable reprogramming efficiencies and maturation (Extended Data Figure 3a). Finally, 

we compared the early response in our Ascl1-only single-cell RNA-seq data with our 

previously reported bulk RNA-seq data of Ascl1-only and BAM-mediated reprogramming13 

(Extended Data Figure 3b). We found similar downregulation of MEF related genes and 

upregulation of pro-neural marker genes in both Ascl1 and BAM mediated reprogramming. 

These data suggest that the overexpression of Ascl1 focuses the transcriptome and directs 

the expression of target genes.

We next analyzed the transcriptomes of reprogramming cells on day 5. At this timepoint, the 

first robust Tau-EGFP signal can be detected in successfully reprogramming cells and we 

therefore purified 40 Tau-EGFP+ and 15 Tau-EGFP− cells for transcriptome analysis by 

fluorescence activated cell sorting. We found that Tau-EGFP− cells lacked expression of 

neuronal Ascl1 target genes (Genes B), and maintained expression of fibroblast-associated 

genes (Genes A and C; Figure 2a–b, Extended Data Figure 4a, Supplementary Data 4). In 

addition, we found a positive correlation (R2=0.49) between Ascl1 expression and Tau-

EGFP intensities (Extended Data Figure 4b, Figure 2a–b). RT-qPCR and western blot 

analysis of Ascl1 expression on d5-d12 Tau-EGFP sorted cells validated a significant 

decrease in Ascl1 expression in Tau-EGFP− cells compared to Tau-EGFP+ cells (Figure 2c, 

Supplementary Data 5). Thus, Ascl1 expression is correlated to Tau-EGFP levels and 

expression of neuronal genes at d5. This raises the hypothesis that Ascl1 is silenced in cells 

that fail to reprogram. Alternatively, cells with low or no Ascl1 expression at d5 and d22 

might have never highly expressed Ascl1. To distinguish between these two mechanisms, we 

used live cell microscopy to track cells over a time course from 3–6 days post Ascl1 

induction using an EGFP-Ascl1 fusion construct (Figure 2d, Extended Data Figure 5). We 

immunostained the cells at d6 using Tuj1 antibodies recognizing the neuronal β-3-tubulin 

Tubb3 to identify cells that differentiated towards neuronal fate. We found that transgenic 

Ascl1 protein levels varied substantially over time and, on average, continued to increase 

over time in Tuj1+ cells, but decreased or plateaued in Tuj1− cells, leading to a significant 

difference in Ascl1 expression within 6 days of Ascl1 induction (Figure 2e, Extended Data 

Figure 4c). This time-lapse analysis demonstrated that Ascl1 is silenced in many cells that 

fail to reprogram.
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We next analyzed the maturation events occurring during late reprogramming stages. We 

performed principal component analysis (PCA) on the single-cell transcriptomes of all 

reprogramming stages analyzed, including d22 cells reprogrammed with Ascl1 alone or with 

all three BAM factors (Extended Data Figure 6a). PC1 separated MEFs and early time points 

(d2, d5) from most of the d22 cells. Surprisingly, PC2 separated most d22 BAM cells from 

d22 Ascl1-only cells despite robust Tau-EGFP expression in both groups. We used t-

distributed Stochastic Neighbor Embedding (t-SNE) to organize all d22 cells into 

transcriptionally distinct clusters, and identified differentially expressed genes marking each 

cluster (Figure 3a). We identified 3 clusters, which contained cells expressing neuron (Syp), 

fibroblast (Eln), or myocyte (Tnnc2) marker genes, respectively (Figure 3b). Consistent with 

this marker gene expression, cells in each cluster had a maximum correlation with bulk 

RNA-seq data from either purified neurons, embryonic fibroblasts, or myocytes (Figure 3c). 

Neuron- and myocyte-like cells expressed a clear signature of each cell type (Figure 3d). 

Although we observed cells with complex neuronal morphologies in the Ascl1-only 

reprogramming experiments as we had reported previously14 (Figure 3e), their frequency 

was too low to be captured in the single-cell RNA-seq experiments. All of the d22 Ascl1-

only cells, and 33% of BAM cells had a highest correlation with myocytes or fibroblasts.

We applied an analytical technique based on quadratic programming to quantify fate 

conversion and to predict when during reprogramming the alternative muscle program 

emerges (Extended Data Figure 6b). This method allowed us to decompose each single 

cell’s transcriptome and express each cell’s identity as a linear combination of the 

transcriptomes from the 3 different observed fates (neuron, MEF, myocyte, Supplementary 

Data 6). Using this method, we observed that there is an initial loss of MEF identity 

concomitant with an increase in neuronal and myocyte identity over the first five days of 

Ascl1 reprogramming. The neuronal identity is maintained and matures in d22 cells 

transduced with BAM (Extended Data Figure 6c). However, the d22 Ascl1-only cells failed 

to mature to neurons and adopted a predominantly myogenic transcriptional program. This 

divergence was already apparent in some d5 cells (Extended Data Figure 6d,e). These 

findings raised the question whether the additional two reprogramming factors Brn2 and 

Myt1l suppress the aberrant myogenic program. Compatible with this notion, we observed 

that Brn2 and Myt1l were lowly expressed in the 5 d22 BAM cells that expressed a 

myogenic program. To directly address this question, we infected MEFs with Ascl1 alone or 

in combination with Brn2 and/or Myt1l and assessed myogenic and neurogenic fates at d22 

based on immunostaining and qRT-PCR (Figure 3e, Extended Data Figure 6f–i). Indeed, 

myocyte markers (Myh3, Myo18b, Tnnc2) were upregulated in Tau-EGFP positive versus 

negative cells and were strongly repressed when Brn2 and/or Myt1l was overexpressed 

together with Ascl1. Moreover, Brn2 and Myt1l enhanced the expression of the synaptic 

genes Gria2, Nrxn3, Stmn3, and Snap25 but not the immature pan-neuronal genes Tubb3, 
Map2. As expected, fibroblast markers were repressed in Tau-EGFP+ cells.

We next set out to reconstruct the reprogramming path from MEFs to iN cells. By 

deconstructing heterogeneity at each time point as described above, we removed cells that 

appeared stalled in reprogramming due to Ascl1 silencing or cells converging on the 

alternative myogenic fate. We used quadratic programming to order the cells based on 

fractional similarity to MEF and neuron bulk transcriptomes. This revealed a continuum of 
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intermediate states through the 22-day reprogramming period (Figure 4a,b). Notably, the 

total number of transcripts per single cell decreased as a function of fractional neuron 

identity (Extended Data Figure 7a). Our ordering of cells based on fractional identities 

correlated well with pseudotemporal ordering using Monocle15, an alternative algorithm for 

delineating differentiation paths (Extended Data Figure 7b–d). Heatmap visualization of 

genes identified by PCA of all cells on the iN cell lineage revealed two gene regulatory 

events during reprogramming with many cells at intermediate stages (Figure 4c, 

Supplementary Data 7). First, there is an initiation stage where MEFs exit the cell cycle 

upon Ascl1 induction, and genes involved in mitosis are turned down or off (such as Birc5, 
Ube2c, Hmga2). Concomitantly, genes associated with cytoskeletal reorganization (Sept3/4, 
Coro2b, Ank2, Mtap1a, Homer2, Akap9), synaptic transmission (Snca, Stxbp1, Vamp2, 
Dmpk, Ppp3ca), and neural projections (Cadm1, Dner, Klhl24, Tubb3, Mapt (Tau)) increase 

in expression. This indicates that Ascl1 induces genes involved in defining neuronal 

morphology early in the reprogramming process. The initiation phase is followed by a 

maturation stage whereby MEF extracelluar matrix genes are turned off and genes involved 

in synaptic maturation are turned on (Syp, Rab3c, Gria2, Syt4, Nrxn3, Snap25, Sv2a). These 

results are consistent with our previous finding that Tuj1+ cells with immature neuron-like 

morphology can be found as early as 3 days after Ascl1-induction, while functional synapses 

are only formed 2 to 3 weeks into the reprogramming process8. Finally, we constructed a 

transcription regulator (TR) network based on pairwise correlation of TR expression across 

all stages of the MEF-to-iN cell reprogramming. This revealed three densely connected sub-

networks identifying TRs regulating MEF cell biology, iN cell initiation, and iN cell 

maturation, respectively (Figure 4d, Extended Data Figure 8, Supplementary Data 8, SI). 

Notably, Ascl1 was found to correlate strongly with the TRs in both the initiation and 

maturation subnetworks and anticorrelate with TRs specific to MEFs. This data corroborates 

evidence that persistent Ascl1 expression is required to maintain chromatin states conducive 

to iN cell maturation13.

It has been suggested that direct somatic lineage reprogramming may not involve an 

intermediate progenitor cell state as seen during iPS cell differentiation17,18,19. However, our 

fractional analysis showed that the identity of intermediate reprogramming cells could not be 

explained by a simple linear mixture of the differentiated fibroblast and neuron identities, as 

revealed by an intermediary increase of Lagrangian residuals (Figure 4a). Therefore, we 

tested whether a neural precursor cell (NPC) state is transiently induced by adding NPC bulk 

transcriptome data along with that of MEFs and neurons into the quadratic programming 

analysis (Figure 4e). We found that the fractional NPC identity of cells increased specifically 

for cells at intermediate positions on the MEF-to-iN cell lineage path, and then decreased as 

a function of iN cell maturation. In addition, several NPC genes (i.e. Gli3, Sox9, Nestin, 
Fabp7, Hes1) are expressed in intermediates of the iN cell reprogramming path20 (Figure 

4f). However, canonical NPC marker genes such as Sox2 and Pax6 were never induced. This 

indicates that cells do not go through a canonical NPC stage, yet a unique intermediate 

transcriptional state is induced transiently that is unrelated to donor and target cell program 

similar to what was observed for iPS cell reprogramming21–23

A fundamental question in cell reprogramming is whether there are pre-determined 

mechanisms that prevent the majority of the fibroblasts from reprogramming or whether all 
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donor cells are competent to reprogram but the reprogramming procedure is inefficient. We 

did not observe any MEF subpopulations, other than cell cycle variation, that suggested 

differences in the capacity to initiate reprogramming. Furthermore, we observed that 48 

hours after infection the majority of the cells induced Ascl1 target genes and silenced MEF-

associated genes. This does not preclude the possibility that underlying epigenetic variation 

in donor cells influences reprogramming outcomes; however, our analysis suggests that it is 

unlikely that MEF heterogeneity contributes significantly to reprogramming efficiency. We 

found that divergence from the neuronal differentiation path into an alternative myogenic 

fate, as well as Ascl1 transgene silencing, were both significant factors contributing to 

reprogramming efficiency. Though Ascl1 induces lineage conversion, it is inefficient to 

restrict cells to the neuronal fate. This suggests that intermediate stages of iN cell 

progression are unstable, perhaps due to epigenetic barriers, and additional factors promote 

cells to permanently acquire neuron-like identity, rather than revert to MEF-like or diverge 

toward the alternative myocyte-like fate. In summary, we present a single-cell transcriptomic 

approach that can be used to dissect direct cellular reprogramming pathways or 

developmental programs in which cells transform their identity through a series of 

intermediate states.

 Methods

 Cell derivation, cell culture and iN cell generation

Tau-EGFP reporter MEFs, tested negative for mycoplasma contamination, were isolated, 

infected with dox-inducible lentiviral constructs and reprogrammed into iN cells as 

previously described8. Day 0 (d0) cells were uninfected MEFs that served as a negative 

control. Day 2 (d2) cells were infected with Ascl1 and harvested 2 days after dox-induction. 

Day 5 (d5) cells were infected with Ascl1, FAC-sorted for Tau-EGFP+ and Tau-EGFP− cells 

5 days after dox-induction and the two cell populations were mixed again in a 1:1 ratio. Day 

20 or 22 (d20/d22) cells were infected either with Ascl1 alone, or combined with Brn2 and 

Myt1l, plated with glia 7 days post-dox induction, and FAC-sorted for Tau-EGFP+ iN cells 

20 or 22 days after dox-induction. Each of these groups was then loaded onto separate 

microfluidic mRNA-seq chips for preparation of preamplified cDNA from single cells.

Clonal Ascl1-inducible MEFs were derived as previously described13. 12-well plates were 

coated with Matrigel and incubated at 37°C overnight. 350 thousand cells were then plated 

per well and kept in MEF media. Doxycycline (dox) was added a day after plating. For 

single-cell RNA-seq, cells were harvested 2 days post-dox induction and loaded onto a 

microfluidic mRNA-seq chip. To evaluate efficiency in reprogramming, MEF+dox media 

was switched out for N3+dox media after 48 hrs, and cells were fixed for immunostaining 

12 days post-dox.

 Capturing of single cells and preparation of cDNA

Single cells were captured on a medium-sized (10–17 μm cell diameter) microfluidic RNA-

seq chip (Fluidigm) using the Fluidigm C1 system. Cells were loaded onto the chip at a 

concentration of 350–500 cells/μl, stained for viability (LIVE/DEAD cell viability assay, 

Molecular Probes, Life Technologies) and imaged by phase-contrast and fluorescence 
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microscopy to assess number and viability of cells per capture site. For d5 and d22 

experiments, cells were only stained with the dead stain ethidium homodimer (emission 

~635 nm, red channel) and Tau-EGFP fluorescence was imaged in the green channel. Only 

single, live cells were included in the analysis. cDNAs were prepared on chip using the 

SMARTer Ultra Low RNA kit for Illumina (Clontech). ERCC (External RNA Controls 

Consortium) RNA spike-in Mix (Ambion, Life Technologies)26,27 was added to the lysis 

reaction and processed in parallel to cellular mRNA. Tau-EGFP fluorescence intensity of 

each single cell was determined using CellProfiler28 by first identifying the outline of the 

cell in the image of the respective capture site and then integrating over the signal in the 

EGFP channel.

 RNA-seq library construction and cDNA sequencing

Size distribution and concentration of single cell cDNA was assessed on a capillary 

electrophoresis based fragment analyzer (Advanced Analytical) and only single cells with 

high quality cDNA were further processed. Sequencing libraries were constructed in 96 well 

plates using the Illumina Nextera XT DNA Sample Preparation kit according to the protocol 

supplied by Fluidigm and as described previously29. Libraries were quantified by Agilent 

Bioanalyzer using High Sensitivity DNA analysis kit as well as fluorometrically using Qubit 

dsDNA HS Assay kits and a Qubit® 2.0 Fluorometer (Invitrogen, Life Technologies). Up to 

110 single cell libraries were pooled and sequenced 100 bp paired-end on one lane of 

Illumina HiSeq 2000 or Illumina NextSeq 500 to a depth of 1–7 million reads. CASAVA 

1.8.2 was used to separate out the data for each single cell using unique barcode 

combinations from the Nextera XT preparation and to generate *.fastq files. In total, the 

transcriptome of a total of 405 cells was measured from the following 8 independent 

experiments: d0 (73 cells, 1experiment), d2 (Ascl1-only in regular MEFs, 81 cells, 1 

experiment; Ascl1-only in clonal MEFs, 47 cells, 1 experiment), d5 (Ascl1-only, 55 cells, 1 

experiment) and d20 (Ascl1-only, 33 cells, 1 experiment) and d22 (BAM, 43 cells, 1 

experiment; Ascl1-only, 34 and 39 cells, 2 independent experiments). See Supplementary 

Data 1 for the transcriptome data for all 405 cells with annotations (quantification in 

log2(FPKM)).

 Processing, analysis and graphic display of single cell RNA-seq data

Raw reads were pre-processed with sequence grooming tools FASTQC30, cutadapt31, and 

PRINSEQ32 followed by sequence alignment using the Tuxedo suite (Bowtie33, 

Bowtie234,TopHat35 and SAMtools36) using default settings. Transcript levels were 

quantified as Fragments Per Kilobase of transcript Per Million mapped reads (FPKM) 

generated by TopHat/Cufflinks37.

After 7 days of reprogramming, TauGFP reporter MEFs (with C57BL/6J and 129S4/SvJae 

background) are co-cultured with glia derived from CD-1 mice. To determine if any feeder 

cells contaminated the 20–22d time points, we used the single cell RNA-seq reads to 

identify positions that differ from the mouse reference genome (mm10, built from strain 

C57BL/6J mice). We used the mpileup fuction in samtools to generate a multi-sample 

variant call format file (vcf), and a custom python script to genotype the cells by requiring 

coverage in all cells for all positions, with a coverage depth of 5 reads, a phred GT 
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likelihood == 0 for called genotype and >= 40 for next-best genotype. This resulted in 95 

informative sites distinguishing more than 1 cell from the reference genome. We clustered 

cells based on their genotype (homozygous reference, heterozygous, homozygous alternate), 

and identified cells that were strongly different from the reference genome. These cells 

expressed either astrocyte (GFAP) or microglia marker genes suggesting they were 

contaminants from the feeder cell culture. We removed these cells from subsequent analyses.

Approximate number of transcripts was calculated from FPKM values by using the 

correlation between number of transcripts of exogenous spike-in mRNA sequences and their 

respective measured mean FPKM values (Extended Data Figure 2). The number of spike-in 

transcripts per single cell lysis reaction was calculated using the concentration of each spike-

in provided by the vendor (Ambion, Life Technologies), the approximate volume of the lysis 

chamber (10 nl) as well as the dilution of spike-in transcripts in the lysis reaction mix 

(40,000x). Transcript levels were converted to the log-space by taking the logarithm to the 

base 2 (Supplementary Data 1). R studio38 (https://www.rstudio.com/) was used to run 

custom R39 scripts to perform principal component analysis (PCA, FactoMineR package), 

hierarchical clustering (stats package), variance analysis and to construct heatmaps, 

correlation plots, box plots, scatter plots, violin plots, dendrograms, bar graphs, and 

histograms. Generally, ggplot2 and gplots packages were used to generate data graphs.

The Seurat package40,41 implemented in R was used to identify distinct cell populations 

present at d22 of Ascl1-only and BAM reprogramming (Figure 3a–d). T-distributed 

stochastic neighbor embedding (tSNE) was performed on all d20/d22 cells using the most 

significant genes (p-value <10−3, with a maximum of 100 genes per principal component) 

that define the first 3 principal components of a PCA analysis on the data set. To further 

estimate the identity of each cell on the tSNE plot, we color coded cells based on Pearson 

correlation of each single cell’s expression profile with the expression profile of bulk 

cortical neurons 13,24, myocytes25, and MEFs13 (Figure 3). The Monocle package15 was 

used to order cells on a pseudo-time course during MEF to iN cell reprogramming 

(Extended Data Figure 7). Covariance network analysis and visualizations were done using 

igraph implemented in R42 (http://igraph.sf.net).

To generate PCA plots and heatmaps in Figures 1c–e, 2a, 3a and 4c, PCA was performed on 

cells using all genes expressed in more than two cells and with a variance in transcript level 

(log2(FPKM)) across all single cells greater than 2. This threshold resulted generally in 

about 8,000–12,000 genes. Subsequently, genes with the highest PC loadings (highest (top 

50–100) positive or negative correlation coefficient with one of the first one to two principal 

components) were identified and a heatmap was plotted with genes ordered based on their 

correlation coefficient with the respective PC (Figures 1e, 2a, 4c). Cells in rows were 

ordered based on unsupervised hierarchical clustering using Pearson correlation as distance 

metric (Figures 1e, 2a) or based on their fractional identity as determined by quadratic 

programming (Figure 4c, see below)

Gene ontology enrichment analyses were performed using DAVID informatics Resources 

6.7 of the National Institute of Allergy and Infectious Diseases 43. Functional annotation 

clustering was performed and GO terms representative for top enriched annotation clusters 
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are shown in Figure 1f, Extended Data Figures 1e and 4a with their Bonferroni corrected p-

values. In addition, results of GO enrichment analyses are provided in the Supplementary 

Data.

To express a single cell transcriptome as a linear combination of primary cell type 

transcriptomes, we used published bulk RNA-seq data sets for primary murine neurons24, 

myocytes25, and embryonic fibroblasts13 (Extended Data Figure 6b,c), neurons24 and 

embryonic fibroblasts13 (Figure 4a) or neurons24, embryonic fibroblasts13 and neuronal 

progenitor cells13 (Figure 4e). In each quadratic programming analysis, we first identified 

genes that were specifically (log2-fold change of 3 or higher) expressed in each of the bulk 

data sets compared to the respective others (Supplementary Data 6). Using these genes, we 

then calculated the fractional identities of each single cell using quadratic programming (R 

package “quadprog”). The resulting fractional neuron identities of cells on the MEF-to-iN 

cell reprogramming path (265 cells in total, excluding cells that were Tau-EGFP-negative at 

d5 or myocyte- and fibroblast-like cells at d22) were used to order cells in a pseudo-

temporal manner (Figure 4a,b,c,e,f). We compared this fractional neuron identity based cell 

ordering with pseudo-temporal ordering of cells based on Monocle (Extended Data Figure 

7b–d), an algorithm that combines differential dimension reduction using independent 

component analysis with minimal spanning tree construction to link cells along a 

pseudotemporally ordered path15. Monocle analysis was performed using genes 

differentially expressed between neuron24 and embryonic fibroblast13 bulk RNA-seq data 

(same gene set that was used when calculating fractional neuron and fibroblast identities in 

Figure 4a, genes listed in Supplementary Data 6).

For the transcription factor network analysis (Figure 4d), we computed a pairwise 

correlation matrix (Pearson correlation, visualized in correlogram in Extended Data Figure 

8a) for transcriptional regulators annotated as such in the “Animal Transcription Factor 

Database” (http://www.bioguo.org/AnimalTFDB/)44 and identified those transcriptional 

regulators (TRs) with a Pearson correlation of greater than 0.35 with at least 5 other TRs (82 

TRs, shown in Extended Data Figure 8b). We used a permutation approach to determine the 

probability of finding TRs meeting this threshold by chance. We performed 500 random 

permutations of the expression matrix of all TRs across cells on the MEF-to-iN cell lineage, 

and calculated the pairwise correlation matrix for each permutation of the input data frame. 

All randomized data frames resulted in 0 TRs that met our threshold. This shows that our 

correlation threshold is strict, and all nodes and connections that we present in the TR 

network are highly unlikely to be by chance. We used the pairwise correlation matrix for the 

selected TRs as input into the function graph.adjacency() of igraph implemented in R42 

(http://igraph.sf.net) to generate a weighted network graph, in which the selected TRs are 

presented as vertices and all pairwise correlations >0.25 are presented as edges linking the 

respective vertices. The network graph was visualized using the fruchterman-reingold layout 

and the three clear subnetworks (MEF, initiation, maturation) were manually color-coded.

We used Pearson correlation of each single cell expression profile with the expression 

profile of bulk cortical neurons 13,24, myocytes25, and MEFs13 to further estimate the 

identity of each single cell and to estimate when alternative fates emerge (Figure 3c, 

Extended Data Figure 6d,e). For this analysis, we considered the same cell type specific 
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gene sets that were used in the quadratic programming analysis, i.e. were genes specifically 

expressed (log2-fold change of 3 or higher) in a respective bulk RNA-seq data set compared 

to the others (Supplementary Data 6).

To estimate intercellular heterogeneity of d0 MEFs, we calculated the variance for each gene 

across all MEF cells as well as across mouse embryonic stem cells under 2iLIF culture 

conditions45 and across glioblastoma cells46. We then plotted the distribution of variances 

for all genes per cell population as boxplot.

 Quantitative RT-PCR and Immunostaining

Ascl1 infected Tau-EGFP reporter MEFs were FAC-sorted 5, 7, 10, 12 or 22 days post-

Ascl1 induction with dox. RNA was then extracted from both Tau-EGFP positive and 

negative populations from each time point, as well as uninfected control MEFs and unsorted 

d2 Ascll infected MEFs using the TRIzol RNA isolation protocol (Invitrogen, 15596-018). 

Reverse transcription into cDNA was performed using the SuperScript III First-strand 

Synthesis System (Invitrogen, 18080-051) and qRT-PCR was performed using Sybr Green 

(Thermo Fisher Scientific, 4309155). Immunostaining was performed as previously 

described8. Antibodies and qRT-PCR primers are listed in the Supplementary Information.

 Time-lapse imaging of Ascl1 expression

MEFs were isolated from E13.5 CD-1 embryos (Charles River) and infected with a dox-

inducible, N-terminal-tagged EGFP-Ascl1 fusion construct using the protocol previously 

described1. Cells were plated on 35 cm glass bottom dishes (MatTek), coated with 

polyorthinine (Sigma P3655) and laminin (Invitrogen 23017-015). Imaging experiments 

were performed between 3 and 6 days post-dox induction, in a temperature and CO2-

controlled chamber. Images were taken for up to 10 positions per dish, for 3 dishes, every 45 

minutes with a Zeiss AxioVert 200M microscope with an automated stage using an EC Plan-

Neofluar 5x/0.16NA Ph1 objective or an A-plan 10x/0.25NA Ph1 objective. Cells were fixed 

at 6 days and immunostained using Tuj1 antibodies recognizing the neuronal β-3-tubulin 

Tubb3 (Covance MRB-435P) to confirm neuronal identity. We used ImageJ to segment 

individual cells and measure the level of GFP for 7 Tuj1+ cells and 7 Tuj1− cells over time. 

Average intensity was obtained by normalizing the average intensity of a cell segment by the 

average background intensity of an adjacent segment of the same size. A t-test was 

performed comparing Tuj1+ and Tuj1− cells at each time-point to evaluate significance.

 Antibodies

Rabbit anti-Ascl1 (Abcam ab74065), chicken anti-GFP (Abcam ab13970), rabbit anti-Tubb3 

(Covance MRB-435P), mouse anti-Tubb3 (Covance MMS-435P), mouse anti-Map2 (Sigma 

M4403), rabbit anti-Myh3 (Santa Cruzsc-20641), goat anti-Dlx3 (Santa Cruz sc-18143), 

mouse anti-β-Actin (Sigma A5441), rabbit anti-Tcf12 (Bethyl A300-754A).

 Primers

General: Gapdh (forward: AGGTCGGTGTGAACGGATTTG, reverse: 

TGTAGACCATGTAGTTGAGGTCA); Ascl1 (TetO) (forward: 

CCGAATTCGCTAGCCACCAT, reverse: AAGAAGCAGGCTGCGGG)
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Initiation factors: Atoh8 (forward: GCCAAGAAACGGAAGGAGTGA, reverse: 

CTGAGAGATGGTACACGGGC); Dlx3 (forward: CGCCGCTCCAAGTTCAAAAA, 

reverse: GTGGTACCAGGAGTTGGTGG); Hes6 (forward: TACCGAGGTGCAGGCCAA, 

reverse: AGTTCAGCTGAGACAGTGGC); Sox11 (forward: 

CCTGTCGCTGGTGGATAAGG, reverse: CTGCGCCTCTCAATACGTGA); Sox9 

(forward: CGAGCACTCTGGGCAATCTCA, reverse: ATGACGTCGCTGCTCAGTTC); 

Tcf4 (forward: CAGTGCGATGTTTTCGCCTC, reverse: ATGTGACCCAAGATCCCTGC); 

Tcf12 (forward: GTCTCGAATGGAAGACCGCT, reverse: 

GTTCCGACCATCGAAGCTGA)

Maturation factors: Camta1 (forward: CCCCTAAGACAAGACCGCAG, reverse: 

ACATAGCAGCCGTACAAGCA); Insm1 (forward: GACCCGGCACATCAACAAGT, 

reverse: GAAGCGAAGCGAAGAGGACA); Myt1l (forward: 

ATGTTCCCACAACCACACCA, reverse: TACCGCTTGGCATCGTCATA); St18 (forward: 

TGCCAAGGGAGCTGAGATAGA, reverse: GAAGGCTGCTTGCGTTGAAT)

Neuronal genes: Gria2 (forward: GGGGACAAGGCGTGGAAATA, reverse: 

GTACCCAATCTTCCGGGGTC); Map2 (forward: CAGAGAAACAGCAGAGGAGGT, 

reverse: TTTGTTCTGAGGCTGGCGAT); Nrxn3 (forward: 

TGTGAACCAAGTACAGATAAGAGT, reverse: CAGCTCAGGGGACAAAGAGG); 

Snap25 (forward: TTCATCCGCAGGGTAACAAA, reverse: 

GTTGCACGTTGGTTGGCTT); Stmn3 (forward: AGCACCGTATCTGCCTACAAG, 

reverse: TGGTAGATGGTGTTCGGGTG); Tubb3 (forward: 

CAGATAGGGGCCAAGTTCTGG, reverse: GTTGTCGGGCCTGAATAGGT)

Myocyte genes: Acta1 (forward: CTAGACACCATGTGCGACGA, reverse: 

CATACCTACCATGACACCCTGG); Myh3 (forward: AAATGAAGGGGACGCTGGAG, 

reverse: CAGCTGGAAGGTGACTCTGG); Myo18b (forward: 

TGCCCTCTTCAGGGAAGGTA, reverse: GAGCTTCTCCACTGACACCC); Tnnc2 

(forward: CAACCATGACGGACCAACAG, reverse: GTGTCTGCCCTAGCATCCTC)

Fibroblast genes: Col1a2 (forward: AGTCGATGGCTGCTCCAAAA, reverse: 

ATTTGAAACAGACGGGGCCA); Dcn (forward: GCAAAATCAGTCCAGAGGCA, 

reverse: CGCCCAGTTCTATGACAAGC)
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 Extended Data

Extended Data Figure 1. The majority of MEFs are actively undergoing cell cycle, but exit cell 
cycle upon Ascl1 induction
(a) Live cell imaging of Tau-EGFP reporter over the course of BAM-mediated iN cell 

reprogramming. Tau-EGFP fluorescence normalized to the maximum expression is shown in 

relation to days post-BAM induction. Tau-EGFP expression began at d5 and reached a peak 

at d8 after induction. Shown are representative images from d0, d5 and d9

(b) Boxplots of intercellular transcriptome variance showed that MEFs are more 

heterogeneous than mouse embryonic stem cells under 2iLIF culture conditions45 and less 

heterogeneous than glioblastoma cells46.

(c) PCA of genes with most variance in d0 MEFs revealed MEF heterogeneity (blue, A). 

Density plot showing the distribution of number of cells along PC1 loading is shown above 

the PCA plot.

Treutlein et al. Page 12

Nature. Author manuscript; available in PMC 2016 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(d) Heatmap and hierarchical clustering of genes used for the PCA in panel (c) shows 2 

major MEF subpopulations. Each column represents a single cell, and each row a gene. 

Subpopulation A is highlighted in blue in the dendrogram.

(e) GO enrichment for genes in (c) shows that MEF subpopulation A is distinguished by the 

low or lack of expression of genes enriched for cell cycle terms.

(f–g) PCA and heatmap of the same genes used in panels (c–e), this time including d0 MEFs 

(circles, light green) and d2 cells (squares, dark green), showed that most of the d2 cells had 

the same cell cycle signature as MEF subpopulation A. Cells in columns of both heatmaps 

are ordered based on PC1 loading.

Extended Data Figure 2. Total number of transcripts per cell decreases during MEF-to-iN cell 
reprogramming
(a) Average detected transcript levels (mean FPKM, log2) for 92 ERCC RNA spike-ins as a 

function of provided number of molecules per lysis reaction for each of the 8 independent 
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single-cell RNA-seq experiments. Linear regression fits through data points are shown. The 

length of each ERCC RNA spike-in transcript is encoded in the size of the data points. No 

particular bias towards the detection of shorter versus longer transcripts is observed. The 

linear regression fit was used to convert FPKM values to approximate number of transcripts.

(b) Boxplots showing the distribution of the total number of transcripts per single cell for 

each experiment. Number of transcripts per cell were calculated from the FPKM values of 

all genes in each cell using the correlation between number of transcripts of exogenous 

spike-in mRNA sequences and their respective measured mean FPKM values (calibration 

curves are shown in panel a). The total number of transcripts expressed by a single cell and 

detected by single-cell RNA-seq is highest in MEFs and is more than 2-fold decreased upon 

overexpression of Ascl1 or BAM.

(c) Boxplots showing the distribution of the median transcript number per gene across all 

cells of one experiment. The distributions are similar over the course of iN cell 

reprogramming.
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Extended Data Figure 3. Clonal MEFs reprogram successfully into iN cells and Ascl1-only and 
BAM induce similar responses during early iN cell reprogramming
(a) Immunostaining of heterogenous Ascl1-infected MEFs and clonal MEFs with 

homogenous Ascl1 transgene insertions, fixed 12 days after Ascl1 induction, using rabbit 

anti-Tubb3 (red) and mouse anti-Map2 (cyan) antibodies and dapi (blue) as a nuclear stain. 

Reprogramming efficiencies are comparable regardless of variation in Ascl1 copy numbers. 

Images are representative for one reprogramming experiment.

(b) Barplots showing expression of Ascl1 target genes (Hes6, Zfp238, Snca, Cox8b, Bex1, 
Dner) and MEF marker genes averaged across single cells from d0 MEFs and d2 Ascl1-only 

cells, as well as from bulk RNA-seq data from MEFs, d2 BAM, and d2 Ascl1-only cells. 

This data shows that the initiation of reprogramming at d2 is similar for Ascl1 alone- and 

BAM-mediated reprogramming.

Extended Data Figure 4. Failed reprogramming at d5 correlates with silencing of Ascl1
(a) Bonferroni corrected p-values for gene ontology enrichments are shown for each group 

of genes from Figure 2a, with representative genes listed (Supplementary Data 4).

(b) Biplot showing Tau-EGFP fluorescence intensity as a function of Ascl1 transcript level 

in d5 cells. Point size is proportional to EGFP transcript levels in log2(FPKM). There is a 

positive correlation (R2=0.49) indicating that cells with higher Ascl1 expression are more 

likely to reprogram.

(c) Heatmap of EGFP-Ascl1 expression in 14 individual cells (columns) during live cell 

imaging. Rows represent time post Ascl1 induction in 45 min intervals.
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Extended Data Figure 5. Live cell imaging shows diminishing of EGFP-Ascl1 signal in cells that 
fail to reprogram
(a) Immunostaining for Tubb3 and Map2 at d12 post induction of Ascl1, C-terminal tagged 

Ascl1-EGFP and N-terminal tagged EGFP-Ascl1 in CD-1 MEFs. EGFP-Ascl1 has 

comparable reprogramming efficiency with untagged Ascl1 while Ascl1-EGFP has a much 

reduced reprogramming efficiency, so EGFP-Ascl1 was chosen for live-cell imaging. Images 

are representative for one reprogramming experiment per condition.

(b) Representative images from live cell imaging showing an example of diminishing of 

EGFP signal in a cell that failed to reprogram (i.e. cell was Tuj1-negative at d6).

(c) Live cell imaging of EGFP signal of EGFP-Ascl1 infected MEFs between 3–6 days post-

dox induction.

(d) EGFP imaging of live cells 6 days post induction of Ascl1 and corresponding 

immunostaining for Tubb3 after fixation.
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Extended Data Figure 6. Brn2 and Myt1l repress alternative fates that compete with the iN cell 
fate during advanced Ascl1 reprogramming
(a) Scatterplot showing PC1 and PC2 loadings from principal component analysis (PCA) of 

single cells from all time points with experimental time point and reprogramming condition 

(Ascl1 vs BAM) encoded in point shape and color.

(b) Overview of quadratic programming. Fractional identities are calculated assuming a 

linear combination of different cell fates.

(c) Biplots showing the fractional fibroblast identity as a function of fractional neuron (left) 

and fractional myocyte (right) identity for each cell with points shaped and colored-coded 

based on reprogramming timepoint and condition.

(d) Correlation of transcriptomes from d0, d2, d5, and d20/22 cells (Ascl1-only and BAM 

induced) with bulk RNA-seq from MEFs, cortical neurons and myocytes. Bottom bars show 

Tau-EGFP fluorescence intensity.

(e) Barplot quantifying the number of cells with a maximum correlation to bulk RNA-seq 

data from each of the observed fates (panel d).

(f) Immunofluorescent detection of Tau-EGFP (green), DAPI (blue), Myh3 (red) and Tubb3 

(cyan) for d22 cells that were infected with Ascl1 co-infected with Brn2 or Myt1l. See 

Figure 3e for respective data for cells infected with Ascl1-only or all three BAM factors. 

Images are representative for 4 biological replicates. Right: Mean fractions of EGFP+ cells 

that express either Tubb3 or Myh3. Only Tubb3+ cells with a neuronal morphology were 

counted. Co-expression of Ascl1 with Brn2 and/or Myt1l increases fraction of Tau-EGFP+ 

cells that are also Tubb3+, while decreasing the number of cells that are Myh3+. 6–7 images 

were analyzed for each of 4 biological replicates. Error bars: s.e.m.

(g–i) qRT-PCR of selected (g) myogenic, (h) neuronal, and (i) fibroblast markers using d22 

cells that are infected with Ascl1 only or co-infected with Brn2 or Myt1l or both and FAC-

sorted by Tau-EGFP (n=3, biological replicates, error bars: s.e.m.). Myogenic genes were 

significantly downregulated in TauGFP+ cells that were co-infected with Brn2 and/or Myt1l 
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compared to those infected with Ascl1 alone, while some neuronal genes are significantly 

upregulated (Map2, Gria) (* p < 0.05, ** p < 0.01, *** p < 0.001, two-tailed t-test).

Extended Data Figure 7. Comparison of Monocle and quadratic programming with respect to 
ordering of neuronal cells through the reprogramming path
(a) Biplot showing the total number of transcripts per cell for all cells on the MEF-to-iN cell 

lineage as a function of the fraction neuron identity of each cell (see Figure 4). The total 

number of transcripts decreases during the reprogramming process.
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(b) Cells (depicted as circles) are arranged in the 2-D independent component space based 

on the expression of genes used for quadratic programming in Figure 4a. Lines connecting 

cells represent the edges of a minimal spanning tree with the bold black line indicating the 

longest path. Time points are color-coded.

(c) Monocle plots with single cells colored based on gene expression that distinguishes the 

stages of iN cell reprogramming.

(d) Biplot shows the correlation between ordering of cells based on pseudotime (Monocle) 

and fractional identity (Quadratic programming). Time points are color-coded. Pearson 

correlation coefficient = 0.91.

Extended Data Figure 8. Neuronal maturation proceeds through expression of distinct 
transcriptional regulators
(a) Correlogram showing transcriptional regulators (TRs) highly correlated within MEFs as 

well as the initiation phase and the maturation phase of reprogramming.

(b) Heatmap shows expression of TRs that control the two stages of MEF to iN cell 

reprogramming (Figure 4d) in cells ordered based on fractional neuron identity. Each row 

represents a single cell, each column a gene. Experimental time-point (green/blue sidebar) 

and fractional neuron identity (yellow/red sidebar) are shown to the top.

(c–e) Pseudo-temporal expression dynamics of exemplary TRs marking (c) the initiation 

stage and (d) the maturation stage of iN cell reprogramming as well as (e) MEF identity. 
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Transcript levels of the TRs are shown across all single cells on the MEF to iN cell lineage 

ordered based on fractional neuron identity. Growth curves based on a model-free spline 

method were fitted to the data.

(f) qRT-PCR of selected TRs from initiation and maturation subnetworks from Figure 4d. 

Uninfected MEF controls and d2-d12 Ascl1-infected cells were assayed for all selected TRs, 

and d22 Ascl1 alone and BAM infected cells were additionally assayed for maturation TRs. 

Cells for d5 to d22 samples were FAC-sorted into Tau-EGFP+ and Tau-EGFP− populations 

(n=4 for all populations, biological replicates, error bars: s.e.m.).

(g) Western blot for selected TRs from the initiation subnetwork presented in panel b. Beta-

Actin was used as a loading control (Supplementary Data 8).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Ascl1 overexpression elicits a homogeneous early response and initiates expression of 
neuronal genes
(a) Mouse embryonic fibroblasts stably integrated with neuronal reporter Tau-EGFP8 were 

directly transformed to neuronal cells through overexpression of a single (Ascl1), or three 

factors (Brn2, Ascl1, Myt1l; BAM) as described8. Cells were sampled using single-cell 

RNA-seq at day 0 without infection (d0, 73 cells), day 2 (d2, 81 cells Ascl1-infected and 47 

cells clonal), day 5 (d5, 55 cells, EGFP+ and EGFP− cells), day 20 (d20, 33 cells, EGFP+ 

cells), and day 22 (d22, 73 cells, EGFP+ cells) post-induction with Ascl1. As a comparison, 

cells reprogrammed using all three BAM factors were analyzed at 22 days (d22, 43 cells, 

EGFP+ cells).

(b–c) PCA of single-cell transcriptomes from d0 MEFs (circle, 73 cells) and d2 Ascl1-

induced cells (square, 81 cells) shows reduced intercellular variation at d2. Points are 

colored based on (b) hierarchical clustering shown in (e), or (c) Ascl1 expression.

(d) Left, Distribution of transcriptome variance within single cells grouped by cluster 

assignment of (b) shows that Ascl1 expression reduces the intracellular transcriptome 

variance. Right, Distribution of total number of genes expressed by single cells grouped by 

cluster assignment shows that Ascl1 overexpression reduces the range of gene expression.

(e) Hierarchical clustering of d0 and d2 cells (rows) using the top 50 genes (columns) 

correlating (Genes I) and anticorrelating (Genes II) with PC1. Cells are clustered into three 

clusters (left sidebar): A (83 cells, MEFs), B (20 cells, intermediates), C (51 cells, d2 

induced cells).

(f) Top gene ontology enrichments of genes I and II (d) are shown with Bonferroni corrected 

p-values.
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(g) Distribution of PC1 loadings are shown for d2 cells carrying variable numbers of Ascl1 

transgene copies (dark green, Ascl1-infected) or carrying the same Ascl1 copy number and 

genomic location (yellow, clonal). PC1 effectively separates un-induced MEFs (cluster A) 

from induced cells highly expressing Ascl1 target genes (cluster C) and both, Ascl1-infected 

and clonal cells, productively initiate reprogramming. The induction efficiency is higher for 

clonally induced MEFs, however even in the clonal population Ascl1 induction is variable.
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Figure 2. Transgenic Ascl1 silencing explains early reprogramming failure
(a) Hierarchical clustering of d5 cells using genes correlating and anticorrelating with PC1 

and PC2 from PCA of d5 Ascl1-only cells. Note that EGFP fluorescent intensity and Ascl1 

mRNA expression shown in the left side bar appear correlated.

(b) Violin plots show the distribution of Ascl1 and neuronal marker Tubb3 in d0 MEFs, as 

well as Tau-EGFP+ and Tau-EGFP− d5 cells.

(c) qRT-PCR for exogenous Ascl1 expression (top, n=4, biological replicates) and western 

blot of Ascl1 protein levels (bottom, Supplementary Data 5) for unsorted control MEFs and 

d2 cells, as well as d5, d7, d10 and d12 cells FAC-sorted using Tau-EGFP as a neuronal 

marker. Both RNA and protein levels of Ascl1 are significantly higher in Tau-EGFP+ cells, 

and gradually decrease in Tau-EGFP− cells. (* p< 0.05, ** p < 0.01, *** p < 0.001, two-

tailed t-test, error bars: s.e.m.)

(d) Schematic for live cell imaging experiment. CD1 MEFs were infected with an EGFP-

Ascl1 construct at −1d, induced with doxycycline at d0, switched to N3 media at d1 and 

imaged between 3 and 6 days post-doxycycline. Cells were fixed at 6 days and stained for 

Tubb3 expression.

(e) Average EGFP-Ascl1 intensity (error bars: s.e.m.) was plotted at 45min intervals for 

Tuj1+ (n=10) and Tuj1− (n=12) cells between d3 and d6. Tuj1+ cells significantly (one-tailed 

t-test, p<0.05) increased Ascl1 expression through time compared to Tuj1− cells, which 

appeared to silence Ascl1.
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Figure 3. iN cell maturation competes with an alternative myogenic cell fate that is repressed by 
Brn2 and Myt1l
(a) tSNE reveals alternative cell fates that emerge during direct reprogramming. Shapes and 

colors indicate the d20/22 Ascl1-only (dark green) or d22 BAM factor (blue) induced cells. 

Note that all cells are Tau-EGFP+.

(b–c) tSNE plot from (a) with cells colored based on (b) expression level of marker genes, or 

(c) correlation with bulk RNA-seq data from different purified cell types (neurons24, 

myocytes25, fibroblasts13).

(d) Heatmap showing expression of genes marking the two alternative fates in d20/22 Ascl1-

only (upper sidebar, dark green) and d22 BAM (upper sidebar, blue) Tau-EGFP+ cells. 

Genes (rows) have the highest positive and negative correlation with the first principal 

component in a PCA analysis on all d20/d22 cells and all genes. Columns represent 121 

single cells, ordered based on their correlation coefficient with the first principal component. 

Lower sidebars: Ascl1 transcript level and Tau-EGFP fluorescence for each cell.

(e) Immunofluorescent detection of Tau-EGFP (green), DAPI (blue), Myh3 (red) and Tubb3 

(cyan) for d22 cells infected with Ascl1 alone, or with all BAM factors. Images are 

representative for 4 biological replicates. Right: Mean fractions of EGFP+ cells that express 
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either Tubb3 or Myh3. Only Tubb3+ cells with a neuronal morphology were counted. 6–7 

images were analyzed for each of 4 biological replicates. Error bars: s.e.m..
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Figure 4. Reconstructing the direct reprogramming path from MEFs to iN cells
(a) Top: For each cell on the iN cell reprogramming path, the similarity to bulk RNA-seq 

from either MEFs13 or neurons24 was calculated using quadratic programming and plotted 

as fractional identities (left axis, circle, fractional MEF identity; right axis, triangle, 

fractional neuron identity). Points are colored based on the experimental time point. Bottom: 

Lagrangian residuals of the quadratic programming for each single cells ordered based on 

their fractional identity as above. Points are colored based on the experimental time point.

(b) Fractional neuron identities of all cells on the iN cell reprogramming path are shown as a 

function of the experimental time point.

(c) Ordering of single-cells (rows) according to fractional neuron identity revealed a cascade 

of gene expression changes leading to neuronal identity. Genes (columns) with the highest 

correlation and anti-correlation to PC1 and PC2 are shown. Left sidebars: Experimental 

time-point (green/blue) and fractional neuron identity (yellow/red); Right sidebars: Ascl1 

transcript levels (log2(FPKM), blue/yellow) and EGFP fluorescence intensities (log10(RFU), 

black/white).

(d) Transcriptional regulator (TR) covariance network during iN cell lineage progression. 

Shown are nodes (TRs) with more than 3 edges, with each edge reflecting a correlation 

>0.25 between connected TRs.

(e) Fractional MEF (left axis) or fractional neural precursor cell (NPC) identities (right axis) 

are plotted against fractional neuron identity for single cells on the MEF-to-iN cell lineage. 

Points are shaped based on the experiment.

(f) Expression of selected genes (columns) that mark NPCs, intermediate progenitor cells 

(IPCs), neurons, or proliferating cells (Prolif.) are shown for cells on the iN cell lineage 

(rows). Left sidebars: fractional neuron identity (yellow/red) and experimental timepoint 

(green/blue).
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