Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title

Performance analysis of parallel supernodal sparse LU
factorization

Permalink

https://escholarship.org/uc/item/3wd9979d

Authors

Grigori, Laura
Li, Xiaoye S.

Publication Date
2004-02-05

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3wd9979c
https://escholarship.org
http://www.cdlib.org/

Performance Analysis of Parallel Supernodal Sparse LU
Factorization

Laura Grigori Xiaoye S. Li
Lawrence Berkeley National Laboratory, MS 50F-1650
One Cyclotron Road, Berkeley, CA 94720, USA.
email: {lgrigori, xsli}@Ibl.gov

Abstract

We investigate performance characteristics for the LU factorization of large matrices with
various sparsity patterns. We consider supernodal right-looking parallel factorization on a bi-
dimensional grid of processors, making use of static pivoting. We develop a performance model
and we validate it using the implementation in SuperLU_DIST, the real matrices and the IBM
Power3 machine at NERSC. We use this model to obtain performance bounds on parallel com-
puters, to perform scalability analysis and to identify performance bottlenecks. We also discuss
the role of load balance and data distribution in this approach.

1 Introduction

A valuable tool in designing a scalable parallel algorithm is to analyze its performance character-
istics for various classes of applications and machine configurations. Very often, good performance
models reveal communication ineficiency and memory access contention that bound the overall
performance. Modeling these aspects in detail can give insights into the performance bottlenecks
and help improve the algorithm. The goal of this paper is to analyze performance characteristics
and scalability for the LU factorization of large matrices with various sparsity patterns.

For dense matrices, the factorization algorithms have been shown to exhibit good scalability,
like the algorithm in ScalaPACK [2, 4], where the efficiency can be approximately maintained as
the number of processors increases when the memory requirements per processor are held constant.

However, for sparse matrices, the efficiency is much harder to predict since it largely depends
on the sparsity pattern of the matrix. Several results exist in the literature [1, 6, 11], which were
obtained for particular classes of matrices arising from the discretization of a physical domain. They
show that factorization is not always scalable with respect to memory use. For sparse matrices
resulting from two-dimensional domains, the best parallel algorithm lead to an increase of the
memory at a rate of O(Plog P) with increasing P [6]. It is worth mentioning that for matrices
resulting from three-dimensional domains, the best algorithm is scalable with respect to memory
size.

In this paper we use a simple and classical model that describes an ideal machine architecture
in terms of processor speed, network latency and bandwidth. Using this machine model and several
input characteristics (order of the matrix, number of nonzeros, etc), we concentrate on analysing
the parallel runtime and efficiency of LU factorization of arbitrary sparse matrices. We consider
supernodal right-looking parallel factorization on a bi-dimensional grid of processors, making use of
static pivoting. This analysis allows us to obtain performance bounds on parallel computers, to per-
form scalability analysis, to identify performance bottlenecks and to discuss the role of load balance

and data distribution. We validate our analytical runtime model using the actual implementation
in SuperLU_DIST [8], the real matrices and the IBM Power3 machine at NERSC.

The rest of the paper is organized as follows: Section 2 presents a background on the sparse
LU factorization and the methodology used for its performance analysis. Section 3 introduces a
performance model for the right-looking factorization, with its scalability analysis. The experimen-
tal results validating the performance model are presented in Section 4 and Section 5 draws the
conclusions.

2 Background

Consider factorizing an unsymmetric and sparse n X n matrix A into the product of a unit lower
triangular matrix L and an upper triangular matrix U. We discuss a parallel execution of this
factorization on a bi-dimensional grid of processors. The matrix is partitioned into N X N blocks
of submatrices using unsymmetric supernodes (columns of L with the same nonzero structure [3]).
These blocks of submatrices are further distributed among a bi-dimensional grid P, x P, of P
processors (P, x P, < P) using a block cyclic distribution. With this distribution, a block at
position (I, J) of the matrix will be mapped on the process at position ((I —1)modP;, (J—1)modP,)
of the grid. U(K,J) (L(K,J)) denotes a submatrix of U (L) at row block index K and column
block index J.

The performance model we analyze for the sparse LU factorization is close to the performance
model used for dense factorization algorithms in ScaLAPACK [4]. Processors have local memory
and are connected by a network that provides each processor direct links with any of its 4 direct
neighbours (mesh-like).

To simplify analysis and to make the model easier to understand, we make the following as-
sumptions:

e We use one parameter to describe the processor flop rate, denoted v, and we ignore com-
munication collisions. We estimate the time for sending a message of m items between two
processors as « + mf, where a denotes the latency and 8 the inverse of the bandwidth.

e We approximate the cost of a broadcast to p processors by log p [4]. Furthermore, the LU fac-
torization uses a pipelined execution to overlap some of the communication with computation,
and in this case the cost of a broadcast is estimated by 2 [4].

o We assume that the computation of each supernode lies on the critical path of execution, that
is the length of the critical path is N. We also assume that the load and the data is evenly
distributed among processors. Later in Sections 3 and 4, we will provide the experimental
data to show that these assumptions are reasonably realistic.

The parallel efficiency E(N, P) for a problem of size N on P processors is defined as:

1 Ty(N)
E(N,P) = ———+—
(N, P) PT(N,P)
where T'(N, P) is the runtime of the parallel algorithm and T(N) is the runtime of the best
sequential algorithm. N can be the size of the input matrix, as in [4], or the amount of work, as
in [6]. An algorithm scales well if the efficiency is an increasing function of N/P, the problem size
per processor.

3 Right-looking sparse LU factorization

In the following we estimate the runtime of the right-looking sparse LU factorization. We start
with an evaluation of the sequential runtime. We than analyze the parallel runtime, considering a
rectangular grid P = P, x P, and a square grid of processors P = v/P x v/P.

3.1 Runtime estimation

Algorithm 1 describes a right-looking factorization and Figure 1 illustrates the respective execution
on a rectangular grid of processors. This algorithm loops over the N supernodes. In the K-th
iteration, the first K — 1 block columns of L and block rows of U are already computed. At this
iteration, first the column of processors owning block column K of L factors this block column
L(K : N,K); second, the row of processors owning block row K of U performs the triangular
solve to compute U(K, K + 1 : N); and third, all the processors update the trailing matrix using
L(K+1:N,K)and U(K,K +1: N). This third step requires most of the work and also exhibits
most of the parallelism in the right-looking approach.

Algorithm 1 Right-looking factorization
for K :=1to N do
Factorize block column L(K : N, K)
Perform triangular solves: U(K,K +1: N):= L(K,K) ! x A(K,K +1:N)
for J:= K + 1 to N with U(K,J) # 0 do
for I := K +1to N with L(I,K) # 0 do
Update trailing submatrix:
A(L,J):=A(I,J)-L(I,K) xU(K,J)
end for
end for

end for

Distributed matrix Grid of processors
0f1]2
3/4|5

Figure 1: Illustration of parallel right-looking factorization

We use the following notation to estimate the runtime to factorie an n X n matrix:

e ¢; - number of off-diagonal elements in each column of block column K of L;

e 1 - number of off-diagonal elements in each row of block row K of U;

nnz(L) - number of nonzeros in the off-diagonal blocks of L;

nnz(U) - number of nonzeros in the off-diagonal blocks of U;

M =23%7_ ckri - total number of flops in the trailing matrix update, counting both multi-
plications and additions;

e F =nnz(L)+ M - total number of flops in the factorization.

With the above notation, the sequential runtime can be estimated as:

Ts = nnz(L)y + My = Fy (1)

To analyze the performance of the algorithm, we consider the elapsed time of each iteration K,
and then sum over all the iterations, thus approximating the total runtime. This assumes that each
iteration lies on the critical path of execution. For sparse matrices, it is possible that only some
of the processors participate in each iteration; it can even happen that two different iterations are
executed simultaneously by two disjoint sets of processors. In that case, the structure of the matrix
must be analyzed in order to determine the computation on the critical path, thus obtaining a
better estimate of the runtime.

Length of critical path Before continuing with the runtime analysis, we first compute the length
of the critical path and verify that using N in our assumption is valid. Algorithm 2 computes the
length of the critical path. lcpRL denotes the overall length of the critical path, while lcpProcs
denotes the length of the critical path for each processor. At each iteration, we determine the set
of processors owning a block which is updated at this iteration and we determine the processor
with the longest critical path [. During this iteration the processors will need to synchronize at
the broadcast step, which is good reason to adjust to [the length of the critical path of all the
processors in this set, and than increment it by 1.

Algorithm 2 Compute length of critical path in right-looking factorization
for p:=1to P do
lepProcs[p] := 0
end for
for K :=1to N do
1:=0
for p:=1 to P such that p owns a block to be modified in this iteration do
I := max(l, lepProcs|p])
end for
for p:=1 to P such that p owns a block to be modified in this iteration do
lepProces[p] := 1+ 1;
end for
end for
lepRL := 0;
for p:=1to P do
lepRL := max(lepRL, lepProcs[p))
end for

Table 1 shows the length of the critical path computed by this algorithm as a fraction of the
order of the supernodal matrix N (lepRL/N). Notice that with one exception, the lengths of the

4

|[P=4|P=16[P=32|P =064 | P =128

onetonel 0.89 0.85 0.82 0.76 0.73
twotone 0.92 0.91 0.90 0.90 0.89
wang4 1.00 1.00 0.99 0.99 0.98
af23560 1.00 1.00 1.00 0.99 0.99
venkat(01 1.00 1.00 0.99 0.98 0.97
rmal0 1.00 0.98 0.97 0.96 0.94
ecl32 0.63 0.63 0.62 0.62 0.62
ir.K-sM 1.00 1.00 1.00 0.99 0.99
bbmat 1.00 1.00 1.00 1.00 1.00
inv-extrl 1.00 1.00 1.00 1.00 0.99
exll 1.00 1.00 1.00 1.00 1.00
fidapm11 1.00 1.00 1.00 1.00 1.00
dds15.K-sM 1.00 1.00 1.00 1.00 1.00
mixingtank 1.00 1.00 1.00 1.00 1.00
dds.quadratic. K-sM 1.00 1.00 1.00 1.00 1.00

Table 1: Fraction of the iteration steps which are on the critical path (IcpRL/N).

critical paths of all the matrices are very close to N. The exception is the matrix ecl32, for which
the length of the critical path represents only 60% of the size of the supernodal matrix N. We also
observe that with an increasing number of processors, the length of the critical path is subject to
very small decrease (almost none). Thus, assuming a critical path of length N is well justified.

Rectangular grid of processors We consider now in detail the K-th iteration of algorithm 1,
divided into 5 steps. We assume each processor in the column processors owning block column K
gets s - ¢y /P, elements, where s - ¢ is the number of nonzeros in the block column K and P, is the
number of the column processors. Block row K of U is distributed in a similar manner.

1. Factor supernode K formed by s columns: compute the diagonal block L(K, K); broadcast
the diagonal block L(K, K) to the column of processors that holds supernode K; scale and
perform rank-1 update of the trailing submatrices L(K + 1: N, K).

2 3 2 Ck Ck 371,
S8yt a+s B+ sy + |25) 1
357 B+ (P”Z; v

2. Send supernode L(:, K) to the processors who need it within the rows of processors. Using a
pipelined execution, this is overlapped with the factorization of supernode K + 1:

2 (a + %3,8)

3. Parallel triangular solves U(K,K +1: N) = L™ (K,K)A(K,K +1: N):

Tk

s(s+ l)P
c

v

4. Send block row U(K, K+1 : N) to the processors who need it within the columns of processors:
T
log P, (a + F’Zsﬂ)
5. Update trailing matrix A(K +1: N,K +1: N):

2s Fr Fc’)’
The total computation time over a rectangular grid of processors T'(N, P, X P.) can be expressed
as a sum over the number of iterations of the previously presented steps. In a way similar to [2],
we neglect the time to factorize supernode K (step 1), and we also neglect the time of the parallel
triangular solves (step 3), considering that the broadcast following these steps dominates the time
of these operations.

nnz(L) N nnz(U)

M
T(N,P, x P,) = -7 + (2N + Nlog Py)a + (2 2 2

log P,) J5}

Square grid of processors On a square grid of processors, P = v/P x /P, the above equation
becomes:

(2nnz(L) + $nnz(U)log P)
VP
The first term represents the parallelization of the rank-s update. The second term represents

the number of broadcasting messages. The third term represents the volume of communication
overhead.

M 1
T(N,VP x VP) = ?'y—l- (2N + ENlogP)a—F

3.2 Scalability analysis

Let us examine scalability on a square grid of processors of size P, where the efficiency of the
right-looking algorithm is given by the following formula:

_ Ts(N)
e(N,vP x VP) = PTN VP x VP (2)

M N NPlogP o N (2nnz(L) + nnz(U) log P)\/ﬁé - 3)
F F 0% F ¥

Q

The interesting question here is which of the three terms dominates efficiency (depending on the
size of the matrix and the sparsity of the matrix). The preliminary remark is that, for very large
and dense problems (N, F' and nnz(L + U) large), the first term significantly affects the parallel
efficiency.

For the other cases, we can compare the last two terms to determine which one is dominant.
That is, if we ignore 2 and log P factors in the third term, we have to compare v P2 with w
Assuming that the network’s latency-bandwidth product is given (%), we can determine if the ratio
of the latency to the time per flop («/ term) or the ratio of the inverse of the bandwidth to the flop
rate (3/v term) dominates efficiency. Overall, we can make the following statements for different
cases:

Case 1 For sparser problems (\/ﬁ% > W), the a/7v term dominates efficiency.

Case 2 For denser problems (\/1_3% < %), the /v term dominates efficiency.

Case 3 For problems for which W is close to %, the /7 term can be dominant on smaller
number of processors, and with increasing number of processors the a/v term can become
dominant.

Note that even for Case 2, the algorithm behaviour varies during the factorization: at the
begining of the factorization, where the matrix is generally sparser and the messages are shorter,
o/~ term dominates the efficiency, while at the end of the factorization where the matrix becomes
denser, 3/ term dominates the efficiency.

Let us now consider matrices in Case 2. For these matrices, in order to maintain a constant
efficiency, m must grow proportionally with v/P. For a scalable algorithm in terms of
memory requirements, P should grow with the memory nnz(L + U). Thus, for problems for which
the condition F' o< nnz(L+ U)3/ 2 is satisfied, when the latency and the variation of log P are ignored,
the efficiency can be approximately maintained constant. In reality, even for these matrices, a/~y
term as well as log P factor will induce efficiency degradation.

Matrices with N unknowns satisfying this condition are matrices arising from discretization of
Laplacian operator on three-dimensional finite element grids. Using nested dissection, the number
of nonzeros of such a sparse matrix is on the order of O(N*/?) while the amount of work is on
the order of O(N?). Maintaining a fixed efficiency requires that the number of processors P grows
proportionally with N*/3, the size of the matrix. In essence, the efficiency for these problems can
be approximately maintained if the memory requirement per processor is constant. Note that a/~y
term grows with N 1/3, which also contributes to efficiency loss.

4 Experimental results

In the previous sections we presented an analytical estimation of the parallel execution time for
right-looking sparse factorization algorithm, making several simplifying assumptions that will most
certainly induce deviations from the results obtained with actual implementation runs. The aim
of this section is to compare the analytical results obtained against experimental results performed
on a IBM Power3 machine at NERSC, with real world matrices.

We have used a test set of large matrices from various application domains. These matrices
and their characteristics are presented in Table 2 which includes the matrix order, the number of
supernodes N, the number of nonzeros in the matrix A, the number of nonzeros in the factors L
and U, and the number of floating-point operations. The matrices are ordered according to the
last column, nnz(L + U)/N, which we use as a measure of the sparsity of the matrix.

The first goal is to show how the experimental results support the analytical performance
model developed in Section 3. For this, we use the analytical performance model to predict the
speedup that each matrix should attain with an increasing number of processors. Then we plot the
predicted speedup against the speedup obtained by SuperLU_DIST. The plots in Figure 2 display
these results, where the predicted speedup for each matrix M is denoted by Mp, and the actually
obtained (measured) speedup is denoted by Mm.

As the plots show, the analytical performance model predicts well the performances on a small
number of processors, while the predicted speedup starts to deviate above the measured speedup
with an increase in the number of processors. This is because on a smaller number of processors

Matrix Order N | nnz(A4) | nnz(L+U) | Flops(F) | nnz(L+U)/N

x 106 x10° x103
onetonel 62424 18461 341088 3.15 1.35 0.16
twotone 120750 | 64726 1224224 10.7 7.32 0.16
wang4 26064 15620 177196 10.5 8.78 0.67
af23560 23560 10440 484256 11.8 5.41 1.13
venkat01 62424 9454 | 1717792 11.8 2.41 1.25
rmall 46835 6427 | 2374001 9.36 1.61 1.45
ecl32 51993 25827 380415 414 60.45 1.60
ir.K-sM 186230 | 46431 2910202 113.1 147.87 2.43
bbmat 38744 11212 1771722 35.0 25.24 3.12
inv-extrl 30412 6987 1793881 28.1 27.26 4.02
ex11 16614 2033 1096948 11.5 5.60 5.65
fidapm11 22294 3873 623554 26.5 26.80 6.84
dds15.K-sM 834575 | 100491 | 13100653 877.63 1578.86 8.73
mixingtank 29957 4609 | 1995041 44.7 79.57 9.69
dds.quadratic.K-sM | 380698 | 33282 | 15844364 642.98 2121.74 19.31

Table 2: Benchmark matrices.

the assumptions made are rather realistic, but on a larger number of processors the assumptions
are deviating from reality, and this will degrade the scalability of the algorithm.

We can still remark that the analytical performance model gives indications on the behaviour of
the right-looking factorization. This aspect can be better observed with the help of Figure 3, where
we plot four curves, corresponding to 4,16,32 and 64 processors respectively. Each curve plots
the measured speedup for all the matrices in our test set against the efficiency predicted by our

analytical model (Eqn.(3)). Since the efficiency is defined as E = 1;‘% and the speedup is defined as

S = %, for the same number of processors, each curve should increase linearly with the predicted
efficiency. We can observe this trend, except for matrix ecl32 for which the analytical performance
model is inaccurate. This is because the model assumption that the length of the critical path is
N is not quite right, see Table 1 in Section 3.

The second goal of the experiments is to study the actual efficiency case by case for all the
test matrices. One approach to do this is to observe how the factorization runtime degrades as the
number of processors increases for different matrices. For this we report in Table 3 the runtime in
seconds of the SuperLU_DIST solver for all the matrices in our test set. These results illustrate that
good speedups can be obtained on a small number of processors and show how efficiency degrades
on a larger number of processors. As one would expect, the efficiency degrades faster for problems
of smaller size (number of flops smaller), and slower for larger problems. We expect that for even
larger problems, the algorithm will scale to a larger number of processors.

We now examine how the actual model parameters (sparsity, «, 3, and) affect the performance.
On the IBM Power3, the latency observed is 8.0 usecs and the bandwidth for our medium size of
messages is 494 MB/s [12], and thus the ratio of latency to inverse of bandwidth is /8 =~ 4 x 103.
The last column in Table 2 shows that the algorithm’s efficiency for some of the matrices is clearly
dominated by the a/v term (Case 1), like matrices onetonel, twotone, and wang4. For matrices
dds.quadratic.K-sM, mixingtank, dds15.K-sM, fidapm11, inv-extrl, the efficiency is significantly
influenced by the 3/ term (Case 2).

5 = —— T 35 T T T T
- -l —= onetonelp —x= bbmatp
e = = | = onetone1m —— bbmatm
v o rmap o ecl3zp
45 h £ rmam 30k 4 ecldzm
I
o
af ’ © o 4
/ L 1
! ° 25 °
!
35
'
/
'
3r
25
2k
15}
0 20 40 60 80 100 120 140
km

—— mix-ta
O twotonep
& twotonem

-7 [inv-extrim

140

100 120

0 20 40 60 80 100 120 140

Figure 2: Predicted speedup by our analytical performance model versus obtained speedup by
For each matrix M, the predicted

SuperLU_DIST for several of the matrices in our test set.
speedup is denoted by Mp, while the measured speedup is denoted by Mm.

25 T
—— 4
+ 16
-0~ 32
/<>\ < 64
L O i
20 , .
7/
, VR
A
/
, AN
, Q s v
151 7 s \ 4
/Q\g L’ <Xt v
/ s N \
7z 2 oy 4
%/ /@ +\ N
ﬁ e , TS
101 h TN [N 4
L N \
Loy ! + A
/ \
/AT R \
J I 9] A
! + \ b
5r ,/ 6’ \ + B
, .o + \
-
Lo * _//V\LX
L
o ® ot
¢
0 I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Right-looking: speedup versus estimated efficiency for all the matrices in the test set

| P=1|P=4[P=16|P=32[P=64]|P =128 |

onetonel 5.98 2.85 2.12 2.12 3.42 3.67
twotone 183.12 | 75.27 24.12 15.52 16.44 15.44
wang4 14.79 5.09 2.81 2.55 3.93 3.99
af23560 9.95 3.95 2.36 2.30 3.17 3.38
venkat01 4.75 2.84 2.56 2.58 3.96 3.86
rmal(3.41 2.12 1.90 1.99 3.03 3.17
ecl32 104.27 | 29.34 9.49 7.25 7.31 7.22
ir. K-sM 245.61 | 73.61 28.17 22.45 23.60 23.69
bbmat 67.37 | 19.50 7.61 5.64 6.05 6.50
inv-extrl 73.13 | 19.08 6.46 4.72 4.95 5.29
exll 9.49 3.27 1.54 1.33 1.65 2.07
fidapm11 51.99 | 14.21 4.84 3.57 3.47 3.81
dds15.K-sM 810.24 | 145.88 | 126.06 133.64
mixingtank 119.45 | 33.87 9.52 6.47 5.53 5.27
dds.quadratic.K-sM 212.33 | 123.59 90.62 75.79

Table 3: Runtimes (in seconds) for right-looking factorization on 2D grid of processors

Matrices af23560 and ex11 have an approximately equal number of flops, and almost similar
runtimes on one processor. We observe that efficiency degrades faster for af23560 than for ex11.
This is because the efficiency of af23560 is mostly influenced by the a/v term (Case 1), while the
efficiency of ex11 is mainly influenced by the §/7v term (Case 2), and thus its performance degrades
slower than for af23560.

The third goal of our experiments is to analyze the different assumptions we have made during
the developement of the performance model. Consider again the efficiency formula 3 obtained in
Section 3. For the first term, we assume that the load is evenly distributed among processors, while
for the third term we assume that the data is evenly distributed among processors. Note that the
second term is independent of these assumptions.

We now analyze the distribution of the load as well as of the data among processors for all the
matrices in our test set. The first term assumes a well balanced computation of the rank-s update
on P processors. We now measure the load balance, denoted by LB. For this we define the entire
load F' to be the number of floating point operations to factorize the matrix. We then compute the
load lying on the critical path Fop by adding at each iteration the load of the most loaded processor
in this iteration. More precisely, consider f,; being the load of processor p at iteration ¢ (number of
flops performed by this processor at iteration 7). Then Fop = Zfil maxf;l fpi- The load balance
factor is computed as LB = FCF—PP. In other words, LB is the load of heaviest processors lying
on the critical path divided by the average load per processor. The closer this factor approaches
1, the better is the load balance. Contrary to the “usual” way, when the load balance factor is
computed as the average load divided by the maximum load among all the processors, a more
precise computation of the load balance is obtained.

The results are presented in table 4, in the rows denoted by LB. We can observe that the
workload distribution is good for large matrices on a small number of processors. But it can suffer
an important degradation for some of the matrices like rmal0 or venkat01l, where the load balance
can degrade by a factor of 2 when increasing the processor number by a factor of 2. Consequently,

10

efficiency will also suffer an important degradation.

The third term reflects our data distribution assumption. We suppose that when a block column
K of size scg is distributed among P, processors, each processor will own % elements. To verify
this assumption we compute a data distribution factor as follows. For each column block K we
determine the processor owning the maximum number of nonzero elements of this block column.
We then sum over all the block columns and we denote by Dgp this sum. We denote by D
the number of nonzeros in the factor L. Then we compute the distribution factor DB as being
DB = %. That is, we divide the amount of data lying on the critical path by the average
number of nonzeros on each processor. The results are displayed in table 4, rows DB. We can see
that a good data distribution is obtained for almost all the matrices. Similar results were observed
for the data distribution of U

These experiments show that a 2D distribution of the data on a 2D grid of processors leads to a
balanced distribution of the data. For some matrices, it also leads to a balanced distribution of the
load among processors. For these matrices load imbalance is not the main factor affecting efficiency.
But for some of the matrices we have however observed a poor load balance on large number
of processors. For example, matrix bbmat has a load balance factor of 4.88 on 128 processors.
Moreover, when we look at different steps of factorization, we observe that the load balance factor
can go up to 7. So even when the overall load balance is not very poor, we can still have a severe load
imbalance at different steps of the factorization. We conclude that on large number of processors,
load imbalance significantly contributes to efficiency degradation.

5 Conclusions

In this paper we have analyzed a performance model for the sparse right-looking LU factorization
algorithm and we have validated this model using the SuperLU_DIST solver, real world matrices
and the IBM Power3 machine at NERSC.

Using this model, we first analyzed the efficiency of this algorithm with increasing number of
processors and problem size. We concluded that for matrices satisfying a certain relation (namely
F o nnz(L + U)??) between their problem size and their memory requirements, the algorithm is
scalable with respect to memory use. This relation is satisfied by matrices arising from 3D model
problems. For these matrices the efficiency can be approximately maintained constant when the
number of processors increases and the memory requirements per processor is constant. But for
matrices arising from 2D model problems, the algorithm is not scalable with respect to memory
use [6].

Secondly, we analyzed the efficiency of this algorithm for fixed problem size and increasing
number of processors. Using the matrices with various sparsity patterns in our test set, we ob-
served that good speedups can be obtained on smaller number of processors. On larger number
of processors, the efficiency degrades faster for sparser problems which are more sensitive to the
latency of the network. A 2D distribution of the data on a 2D grid of processors lead to a balanced
distribution of the data. It also lead to a balanced distribution of the load on smaller number of
processors. But the load balance is usually poor on larger number of processors. We believe that
load imbalance and insufficient amount of work F' relative to communication overhead are the main
reasons for poor efficiency on large number of processors.

Two main performance improvements can be made to the current right-looking factorization.
The first comes from algorithmic improvement. We can use a better matrix to processor map-
ping, like the subtree-to-subcube mapping [6] or the proportinal mapping [10]. These mappings
reduce the number of messages and the overall communication overhead. The second comes from

11

| |[P=4|P=16|P=32[P =064 | P =128

onetonel LB 1.23 1.92 2.43 3.28 5.08
DB 1.14 1.44 1.44 2.01 2.01
twotone LB 2.30 3.14 3.35 3.69 4.11
DB 1.52 1.87 1.87 2.24 2.24
wang4 LB 1.14 1.45 1.80 2.26 3.19
DB 1.08 1.23 1.24 1.56 1.56
af23560 LB 1.28 2.05 2.92 4.21 6.67
DB 1.12 1.40 1.40 1.97 1.97
venkat(1 LB 1.52 3.25 5.18 8.48 14.92
DB 1.25 1.81 1.81 2.90 2.90
rmal(LB 1.66 2.75 5.62 9.13 16.07
DB 1.27 1.80 1.79 2.86 2.86
ecl32 LB 1.09 1.28 1.52 1.80 2.37
DB 1.05 1.14 1.14 1.35 1.35
ir. K-sM LB 1.13 1.42 1.71 2.09 2.88
DB 1.07 1.22 1.22 1.52 1.52
bbmat LB 1.21 1.75 2.35 3.17 4.88
DB 1.08 1.28 1.28 1.68 1.68
inv-extrl LB 1.14 1.42 1.87 2.45 3.51
DB 1.07 1.19 1.19 1.54 1.54
exl1 LB 1.27 1.90 2.58 3.53 5.32
DB 1.11 1.34 1.34 1.79 1.79
fidapml1 LB 1.15 1.46 1.83 2.31 3.13
DB 1.07 1.20 1.20 1.49 1.49
dds15.K-sM LB 1.15 1.52 1.89 2.36 3.29
DB 1.08 1.26 1.26 1.60 1.60
mixingtank LB 1.08 1.25 1.43 1.63 2.04
DB 1.04 1.13 1.13 1.30 1.30
dds.quadratic.K-sM | LB 1.08 1.26 1.47 1.73 2.27
DB 1.06 1.18 1.18 1.43 1.43

Table 4: Load and data distribution for right-looking factorization on a 2D grid of processors

12

the underlying system improvement, in particular reducing the communication latency for small
messages. This is because the algorithm incurs many small messages involving MPI point-to-point
and broadcast operations, and so is very sensitive to latency, especially for sparser problems.

References

[1]

[10]
[11]

[12]

C. Ashcraft. The fan-both family of column-based distributed Cholesky factorization algorithms. In
A. George, J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory and Sparse Matrix Computation,
pages 159-191. Springer Verlag, 1994.

J. Choi, J. Demmel, D. L., J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers - Design
Issues and Performance. LAPACK Working Note 95, 1995.

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A Supernodal Approach to
Sparse Partial Pivoting. STAM Journal on Matrix Analysis and Applications, 20(3):720-755, 1999.

J. K. Dongarra, R. A. van de Geijn, and D. W. Walker. Scalability Issues Affecting the Design of a
Dense Linear Algebra Library. Journal of Parallel and Distributed Computing, 22(3):523-537, 1994.
J. R. Gilbert and J. W. Liu. Elimination structures for unsymmetric sparse LU factors. STAM J. Matriz
Anal. Appl., 14(2):334-352, April 1993.

A. Gupta, G. Karypis, and V. Kumar. Highly Scalable Parallel Algorithms for Sparse Matrix Factor-
ization. IEEE Transactions on Parallel and Distributed Systems, 8(5):502-520, 1997.

S. M. Hadfield and T. A. Davis. Potential and Achievable Parallelism in Unsymmetric-Pattern Multi-
frontal LU Factorization. Technical Report TR-94-027, University of Florida, 1994.

X. S. Li and J. W. Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct solver for
unsymmetric linear systems. ACM Trans. Mathematical Software. To appear. Also Technical Report
LBNL-49388.

L. S. Ostrouchov, M. T. Heath, and C. H. Romine. Modeling Speedup in Parallel Sparse Matrix
Factorization. Technical Report ORNL/TM-11786, Oak Ridge National Laboratory, 1991.

A. Pothen and C. Sun. A Mapping Algorithm for Parallel Sparse Cholesky Factorization. STAM Journal
on Scientific Computing, pages 1253-1257, 1993.

R. Schreiber. Scalability of sparse direct solvers. In A. George, J. R. Gilbert, and J. W. H. Liu, editors,
Graph Theory and Sparse Matrix Computation, pages 191-211. Springer Verlag, 1994.

A. Wong. Private communication. Lawrence Berkeley National Laboratory, 2002.

13

