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ABSTRACT OF THE DISSERTATION 

Smart EV Energy Management System to Support Grid Services 

by 

Bin Wang 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2016 

Professor Rajit Gadh, Chair 

 

Under smart grid scenarios, the advanced sensing and metering technologies have been applied to 

the legacy power grid to improve the system observability and the real-time situational awareness. 

Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable 

generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being 

integrated into the power system. However, the integration of EVs, which can be modeled as 

controllable mobile energy devices, brings both challenges and opportunities to the grid planning 

and energy management, due to the intermittency of renewable generation, uncertainties of EV 

driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem 

in order to improve the overall grid efficiency, reliability and economics, using online and 

predictive optimization strategies.  

Most of the previous research on EV energy management strategies and algorithms are based on 

simplified models with unrealistic assumptions that the EV charging behaviors are perfectly 

known or following known distributions, such as the arriving time, leaving time and energy 

consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because 
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of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online 

and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we 

develop an online predictive EV scheduling framework, considering uncertainties of renewable 

generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based 

estimator is developed to predict the charging session parameters in real-time with improved 

estimation accuracy. The efficacy of various optimization strategies that are supported by this 

framework, including valley-filling, cost reduction, event-based control, etc., has been 

demonstrated.  

In addition, the existing simulation-based approaches do not consider a variety of practical 

concerns of implementing such a smart EV energy management system, including the driver 

preferences, communication protocols, data models, and customized integration of existing 

standards to provide grid services. Therefore, this dissertation also solves these issues by designing 

and implementing a scalable system architecture to capture the user preferences, enable multi-

layer communication and control, and finally improve the system reliability and interoperability.  
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Chapter 1 Introduction 

In this chapter, we briefly introduce the research background, including the technologies of smart 

grid, demand response (DR), EVs and the existing EV energy scheduling strategies, based on 

which the research challenges and the contributions of this dissertation are summarized. The 

dissertation outline is given at the end. 

1.1 Background technologies 

1.1.1 Smart Grid 

Due to the urgency from the public and government to reduce air pollution caused by burning the 

fossil fuels, a variety of innovative Smart Grid (SG) technologies have been proposed to upgrade 

the legacy electric grid. According to [1], a general definition for SG is provided as a digitally 

enabled electric grid that gathers, distributes, and acts on information about the behavior of all 

components in order to improve the efficiency, reliability, and sustainability of electricity services. 

Advanced communication technologies [2][3][4] and control strategies [5] are critical to fulfill the 

complex energy management tasks, such as load control via demand response (DR) [6], ancillary 

services in wholesale market [7], etc. Accordingly, coordination of a myriad of grid components 

can be achieved under SG scenarios with shared information. Referred as Demand Side 

Management (DSM) [8], multiple types of loads can be managed by intelligent energy 

management strategies, considering a set of different factors, not only from the demand side, but 

also the generation side, such as the properties of on-site solar generation, etc. In addition, Micro-

grid [9] is introduced as the local smaller electric grid that can run in either grid-connected mode 
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or islanded mode, using its local generation and renewable resources. By employing 

communication technologies to support advanced control strategies in multiple levels, the whole 

electric grid, including generation, transmission, distribution systems, can be upgraded to a higher 

level of reliability, efficiency, security and economy.  

As possible alternatives for fossil fuels, distributed energy resources (DERs), including solar 

Photovoltaic generation, wind generation, and Battery Energy Storage System (BESS) and Electric 

Vehicles (EVs), etc., are being integrated into the legacy grid [10], [11]. Each newly added 

component has its distinct properties. For instance, output measures of renewable generation, such 

as solar and wind energy, cannot be predicted with 100% accuracy in extremely short time periods 

[12], [13]. EVs can be regarded as mobile energy storage devices, however, the mobility is largely 

dependent on the drivers’ travel behaviors, which can be described by driver traveling preferences, 

i.e. start charging time, stop charging time, energy consumption values [14], [15], etc. Thus, to 

properly control the DERs, it is required to understand their stochasticity. Taking into account the 

uncertainties of renewable generations, load fluctuations and the customer preferences, the above-

mentioned issues of DERs bring challenges to managing the electric grid in real-time.  

1.1.2 Demand Response and Standards 

With the purpose to improve overall grid reliability and efficiency, DR is a demand-side 

management program offer by utility companies to change the normal power consumption patterns 

during critical system conditions or periods of high market energy costs. [16]. The utility company 

or a microgrid coordinator is facing with a decision making problem of when and how to control 

load on the demand side at different time scales, i.e. long-term planning activities to schedule the 

bulk power purchases, local generation resources, etc., and the real-time energy management 

actions, such as demand response to curtail the electricity load. Enabled by the Advanced Metering 
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Infrastructure (AMI) and time-varying rates, DR is projected as a quantifiable, reliable resource 

for regional planning purposes with potential to improve the overall system cost performances [16]. 

Existing DR programs [7] offered by Regional Transmission Organizer (RTOs)/Independent 

Service Operators (ISOs) and load serving entities (LSEs), such as  California ISO (CAISO), New 

York ISO (NYISO), and PJM, etc., across in the U.S., include Emergency Demand Response 

Program (EDRP), Day-Ahead Demand Response Program (DADRP), Demand-Side Ancillary 

Service Program (DSASP), Real-Time Demand Response (RDR) Program, Participating Load 

Program (PLP), etc. In term of time scale, EDRP and RDR are operated in real-time, while DSASP, 

PLP and DADRP are operated day-ahead or hours-ahead fashion. In addition, it is required for 

some DR programs, such as DSASP and PLP, to aggregate a number of small loads, which can be 

either residential [6], [17], [18] or commercial [19], [20], to participate in the wholesale energy 

market, by providing ancillary/regulation services or load curtailment. Corresponding 

communication protocols[21]–[23], such as OpenADR 2.0 (a), (b) and Smart Energy Profile (SEP) 

2.0, are developed to improve information-sharing and interoperability. IEC 61850 can be 

modified and extended to partially support load management [14]. Based on the aforementioned 

DR frameworks, more complex and intelligent load management strategies can be designed and 

implemented.  

1.1.3 Electric Vehicles, EVSE Standards and Protocols 

Electric Vehicles (EVs) are gaining popularity among consumers in the market according to sales 

statistics in [24], [25]. Thus, there exists increasing demand to deploy electric vehicle supply 

equipment (EVSE) to accommodate Electric Vehicles (EVs). Since EVSE permits EVs to interact 

with the electric grid, proper communication and data transfer protocols have been developed to 

support complex grid integrations. The most up-to-date charging protocols and their corresponding 
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maximum power values are summarized in Table 1-1. For instance, IEC 61850 as a distribution 

automation standard has been used for data and information exchange models, including EVs and 

Plug-in Electric Vehicles (PEVs) [26]. The energy management strategies developed in this 

dissertation are mainly focused on Level II charging devices based on SAE J1772.  

Table 1-1 EV/PEV charging standards and protocols 

Charging Station Type Power Protocol/Standard 

AC Level I 1.4 kW@12 amps SAE J1772/SAE J2847/ISO 15118 

AC Level II 3.3 kW@15 amps 6.6 

kW@30 amps 

SAE J1772/ SAE J2847/ISO 15118 

DC Fast Charging 25-50 kW@100 amps CHAdeMO & SAE Combo/ SAE 

J2847/ISO 15118 

 

1.1.4 EV Energy Management Strategies 

As the penetration of EVs grows larger, uncoordinated charging behaviors will create new load 

peaks in the aggregated load curve, leading to a myriad of issues, such as power quality degradation 

[27], [28] and operational cost increase [29]. According to hardware capabilities, a variety of 

previous researchers have proposed algorithms that consider the Vehicle-to-Grid (V2G) options, 

i.e. sending the power back to the grid to provide services, while the rest solely model the EV 

charging problem. In [11], [30]–[32], V2G strategies are developed considering the automatic load 

sharing among vehicles, DR integrations, stochastic EV driver behaviors, etc. However, due to the 

lack of commercialization and large-scale real-world implementation of V2G technologies, the 

validity of these approaches remain un-verified. Therefore, within the scope of this dissertation, 

we focus primarily on the EV charging problems. Based on the paradigm of optimization 

algorithms, the existing energy management strategies for EV charging problem can be further 
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categorized by: centralized strategies and distributed ones. Centralized strategies formulate the 

scheduling problem as one single optimization problem, e.g. algorithms in [29], [32]–[34], which 

is solved sequentially by a central solver. On the contrary, distributed approaches, e.g. algorithms 

in [35], [36], divide the single large optimization problem into multiple sub-problems with smaller 

size to parallelize the optimization, which improves the computation efficiency and preserves the 

customer privacy. [35]–[37] have defined the load from EV charging as deferrable load, which can 

be shifted to a different time window without compromising user’s schedule requirements. EV 

charging load has also been considered in demand response researches [38], [39], where the 

problem is formulated as a convex optimization problem with the objective to minimize the overall 

operational cost. Time-varying electricity price signals are utilized for controlling the EV energy 

scheduling in order to achieve cost optimal solutions[39]–[44], i.e. optimize the charging schedules 

according to the time-varying electricity prices, reducing the energy bills for participating users. 

However, the simulation-based work assumes that the battery Status of Charge (SOC) values and 

charging session parameters, i.e. the arrival and departure time, energy demand, etc., are perfectly 

known once vehicles are plugged, which is not realistic in practical implementations. These 

methods cannot be applied directly to the EVSEs with multiple power sources and outlets in our 

study since the constraints on different outlets are not explicitly formulated. 

To handle uncertainties in the scheduling system, including renewable generations, base load and 

charging demand, scheduling algorithms based on Model Predictive Control (MPC) [36], [37], 

Markov Decision Process (MDP) and Queue Theory (QT) [45], [46], Monte Carlo simulations 

[34], have been proposed. To estimate the aggregated EV charging load, and EV driver behaviors, 

approaches based on k-Nearest Neighbors(KNN), Lazy-learning Algorithm and Pattern Sequence-

based Algorithm (PSA) [47],  Auto-Regressive Integrated Moving Average (ARIMA) [44], 
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existing distribution in [41], [48], such as Gaussian or Poisson distributions, are developed. These 

prediction and estimation methods assume that there are underlying stochastic models, such as 

Gaussian or Poisson distribution for EV charging behaviors, which is sometimes not realistic, as 

shown by the data collected on the UCLA campus. However, the practical implementation needs 

real-time parameter estimations for each charging session instead of aggregated load predictions. 

1.2 Challenges and Contributions 

The work by previous researches has not fully addressed the challenges to integrate PEVs into 

smart grid scenarios in a both user-friendly and grid-friendly way. The existing challenges are 

summarized in the following aspects: 

First, none of the previous research/projects provides a comprehensive solution and practical 

validation for an EV charging system based on real-world implementations. Analysis and 

conclusion based on pure simulations suffer from over-simplification of models and negligence of 

practical issues in real-world implementations. For instance, a number of previous works assume 

that it is possible to obtain the battery status of charge (SoC) values for any vehicles and use them 

directly in their simulations, which is not realistic due to the proprietary standards among vehicle 

manufacturers. In addition, there is no existing EV energy management framework to consider 

user preferences, e.g. mobile applications that allow users to explicitly specify their requirements. 

The second drawback of most simulation work is that it assumes the parameters for each charging 

session, including start charging time, stop charging time, leave time and the energy consumption 

values, are static. That is to say, before implementing the energy management strategies for PEVs, 

their exact demand and availabilities are perfectly known or known to follow specific distributions, 
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which is also unrealistic. Due to this drawback, it is difficult to accomplish real-time operations 

for electric vehicles (EVs) with dynamic charging behaviors.  

Thirdly, most of the previous research does not jointly model the system uncertainties, including 

renewable generation, EV driver behaviors, and real-time build power consumption within the 

micro-grid scenarios. And there is lack of data-driven frameworks based on real-world data.  

This dissertation aims to solve the above-mentioned issues of existing research projects.  We have 

developed and implemented a real-world smart EV energy management system on the UCLA 

campus with both server and client applications, based on which energy consumption statistics are 

collected for users in campus. The contributions of this dissertations can be summarized: 

First of all, we developed a predictive EV scheduling framework that performs on-line EV energy 

scheduling tasks, considering random user behaviors, uncertainties of building load and the solar 

Photovoltaics generation, etc., based on data from real-world implementations. It reduces load 

variation and operational cost while maintaining an energy delivery rate at a high level. 

Second, a kernel-based estimator is developed to predict the charging session parameters in real-

time, including the stay duration and energy consumption values, with improved estimation 

accuracy.  

Finally, this dissertation presents and discusses a scalable implementation of real-world EV energy 

management system with multi-layer communication and control architecture. User preferences 

on travel schedules, energy prices, real-time DR signals from ISO/third party are considered to 

improve overall system efficiency, reliability and interoperability.  

1.3 Dissertation Structure 
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In Chapter 2, we develop a predictive energy management framework with a kernel-based 

parameter estimator and a receding-horizon control strategy that takes current system states and 

estimated variables into account and predictively computes the optimal EV energy schedules. This 

chapter is adapted from the manuscript [49]. Unlike most previous research, our approach 

considers dynamic user participations in the smart EV charging problem with different user 

behaviors, i.e. the scheduling of EV charging behaviors is an on-line optimization process, which 

supports real-time and dynamic plug-in/off activities. Specifically, our kernel-based estimator is 

developed to adaptively predict the session parameters, including values of stay duration and 

energy consumption, based on the personalized historical charging records. The smoothing effect 

of the Gaussian kernel is demonstrated with improved estimation accuracy compared to the mean 

estimator developed in [15], and the unit energy cost is reduced across the samples.   

An event-based control strategy with the integration of IEC 61850 standard is discussed in Chapter 

3 based on the scheduling framework developed in Chapter 2. We develop an event-based control 

paradigm, where the data retrieval and computation are only initiated by the pre-defined events, 

which represent the critical change of the system states. The simulation results indicate that event-

based strategies can effectively reduce the number of unnecessary computations while maintaining 

the energy delivery rate and unit energy cost at an acceptable level. Besides, data models from IEC 

61850 protocol are developed to standardize the communications of our smart EV charging system, 

which improves system interoperability.  

Chapter 4 discusses energy management strategies with the objectives of flattening the total system 

load, including EV power consumption, renewable solar generation, building load, etc., under a 

micro-grid scenario. Similarly, dynamic EV charging behaviors are considered and the EV 

batteries are modelled as controllable devices to serve the overall optimization objectives, while 
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the optimization tries to satisfy the energy consumption and travel schedule constraints for each 

participating EV. Compared to previous research, this formulation incorporates the real-world EV 

charging data with more dynamic properties. The overall power fluctuation for the micro-grid has 

been reduced up to 40% on the test days. This chapter is based on the publication [14].  

In Chapter 5, a price-based charging strategy and implementation architecture [44] are discussed. 

Considering the EV users’ price preferences and account priority, the proposed strategies with 

implementation are able to dynamically allocate energy to different EVs connected to the same 

EVSE, developed by UCLA SMERC. Retail energy prices are generated locally based on the price 

signals from the wholesale energy market and the predicted EV energy demand on the UCLA 

campus. An architecture including mobile application, scheduling services on the server side and 

communication networks are presented with details. Finally, the experiment results and the 

analysis are provided in Chapter 5. 

In Chapter 6, we introduce the real-world implementation of a smart EV energy management 

system with both client-side and server-side applications, which are capable of performing scalable 

energy management for a number of EVs and supporting various grid-side operational events, such 

as demand response (DR). Practical concerns and the technical details of the proposed system are 

provided.  

Chapter 7 concludes this dissertation with the summary of approaches, findings and contributions. 

Future research work is discussed with potential improvements for the existing methods and 

system. 
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Chapter 2 Predictive EV Energy 

Scheduling Framework 

The randomness of user behaviors plays a significant role in Electric Vehicle (EV) scheduling 

problems, especially when the power supply for Electric Vehicle Supply Equipment (EVSE) is 

limited. Existing EV scheduling methods do not consider this limitation and assume charging 

session parameters, such as stay duration and energy demand values, are perfectly known, which 

is not realistic in practice. In this chapter, based on real-world implementations of networked 

EVSEs on UCLA campus, we developed a predictive scheduling framework, including a 

predictive control paradigm and a kernel-based session parameter estimator to perform the real-

time energy management strategies for EVs. Specifically, the scheduling service periodically 

computes for cost-efficient solutions, considering the predicted session parameters, by the adaptive 

kernel-based estimator with improved estimation accuracies. We also consider the power-sharing 

strategy of existing EVSEs and formulate the virtual load constraint to handle the future EV 

arrivals with unexpected energy demand. To validate the proposed framework, 20-fold cross 

validation is performed on the historical dataset of charging behaviors. The simulation results 

demonstrate that average unit energy cost per kWh can be reduced by 29.42% with the proposed 

scheduling framework and 66.71% by further integrating solar generation with the given capacity, 

after the initial infrastructure investment. The effectiveness of kernel-based estimator, virtual load 

constraint and event-based control scheme are also discussed in detail. 

2.1 Introduction 
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Electric Vehicles (EVs) and Plug-in Hybrid Electric Vehicles(PHEVs) are gaining more popularity 

in the auto-market in recent years according to the statistics published in [24], [25]. Due to the 

pressure from the public to reduce air pollution, 1.5 million zero emission vehicles (ZEV) will be 

put on roads in California by 2025, which requires the EVSEs to support 1 million ZEV by 2020 

[50]. As the penetration of EVs grows larger, uncoordinated charging behaviors will create new 

load peaks in the aggregated load curve, leading to a myriad of issues, such as power quality 

degradation [27], [28] and operational cost increase [29]. Furthermore, there are uncertainties (e.g. 

start time, stay duration and energy demand, etc.) within the scheduling problem for EV charging 

behaviors, which cannot be completely solved by deterministic problem formulations. However, 

coordinating numerous EV charging behaviors in real-time is a challenging task due to the 

following reasons: 1) lack of sharing strategy to accommodate more EVs per EVSE; 2) lack of 

stochastic model to handle uncertainties of EV users’ behaviors, including arriving time, leaving 

time and energy demand; 3) lack of predictive scheduling framework, that adaptively computes 

for cost optimal energy allocations, considering both current and future system states. 

Previous researchers have developed numerous approaches to solve the aforementioned challenges. 

However, to the best of authors’ knowledge, none of them provides a comprehensive solution and 

practical validation based on the real-world implementations. [36], [37], [35] have defined the load 

from EV charging as deferrable load, which can be shifted to a different time window without 

compromising user’s schedule requirements. EV charging load has also been considered in 

demand response researches [38], [39], where the problem is formulated as a convex optimization 

problem with the objective to minimize the overall operational cost. In addition, valley filling and 

load following strategies[35] are also supported in the formulation. However, the simulation-based 

work assumes the battery Status of Charge (SOC) values and charging session parameters, i.e. the 
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arrival and departure time, energy demand, etc., are perfectly known once vehicles are plugged, 

which is not realistic in practical implementations. Time-varying electricity price signals are 

utilized for controlling the EV energy scheduling in order to achieve cost optimal solutions[39]–

[44]. The validity of using Time-of-Use (TOU) prices for EV scheduling is discussed in [39], [41], 

[42], [11]. Maximum revenue model is defined in [43], where both regulation price and electricity 

price for curtailing EV charging load are defined. A social optimal pricing scheme is developed in 

[40] between utility and load aggregator, which is applied to a number of fleet vehicles. Vehicle-

to-Grid and Vehicle-to-Building services[11], [31] are considered in EV scheduling problem. A 

framework for smart energy management is proposed in [51], considering time-varying load 

properties and user participation, etc. 

To handle uncertainties in the scheduling system, including renewable generations, base load and 

charging demand, scheduling algorithms based on Model Predictive Control (MPC), are proposed 

in [36], [37], where virtual load is modelled for future EV energy demands. Markov Decision 

Process (MDP) and Queue Theory (QT) are utilized to handle stochastic EV arrival rate and 

intermittency of renewable generation in [45], [46]. [34] models EV load, time schedules and 

energy prices with Monte Carlo method.  These methods cannot be applied directly to the EVSEs 

with multiple power sources and outlets in our study since the constraints on different outlets are 

not explicitly formulated. To estimate the aggregated EV charging load, [47] evaluates multiple 

methods on EV charging load predictions on each EVSE, including k-Nearest Neighbors(KNN), 

Lazy-learning Algorithm and Pattern Sequence-based Algorithm (PSA). [44] utilizes Auto-

Regressive Integrated Moving Average (ARIMA) to predict aggregated EV load on UCLA 

campus for the next week. Estimation methods in [41], [48] assume that there are underlying 

stochastic models, such as Gaussian or Poisson distribution for EV charging behaviors, which is 
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sometimes not realistic, especially for the data collected on UCLA campus. However, the practical 

implementation needs real-time parameter estimations for each charging session instead of 

aggregated load predictions. 

This chapter focuses on an implementable solution that considers uncertainties of user behaviors, 

time-varying energy prices, renewable generation integration and other practical concerns, such as 

the power source limitation and power sharing strategies. We first introduce a practical system 

architecture for data collection in detail, based on which we show the exploratory analysis for EV 

charging behavioral data by associating session parameters, such as start time, stay duration and 

energy consumption, etc., with specific users. The EV scheduling problem is formulated as a 

predictive convex optimization problem, which achieves a cost-efficient solution while 

maintaining high level of energy delivery rate with uncertainties of user behaviors. An online 

predictive control paradigm is developed, which adaptively estimates charging session parameters 

using kernel-based methods. Specifically, Gaussian kernel is utilized to model the joint probability 

density distributions based on the qualified historical records, which reduces the estimation 

deviations for both values of stay duration (h) and energy consumption (kWh). To handle future 

vehicle arrivals with unknown energy demand, we also model a virtual load constraint with proper 

relaxation strategies to reduce the level of deferability for EV load by limiting power supply for 

future time intervals. The effects of virtual load constraint on energy delivery rate and average unit 

energy cost are also studied. Finally, to minimize the number of estimations and controls, we 

extend the proposed Predictive Energy Scheduling Algorithm (PESA) by developing an event-

based trigger scheme in Event-based Cost-optimal Scheduling Algorithm (ECSA), where re-

computation is only initiated by pre-defined events. The real-world data for EV charging behaviors, 
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which is collected from UCLA test bed for 15 months, is randomly partitioned into training and 

test datasets to further evaluate the overall system performance.   

Compared to the preliminary work in [52], the following new contributions are added: 1) More 

comprehensive  description and analysis for the predictive framework are provided, including the 

details of scheduling services and exploratory analysis for EV charging behaviors, etc. 2) Kernel-

based method is proposed to adaptively estimate parameters in charging sessions by constructing 

joint probability density distribution for the qualified data points with improved estimation 

accuracy. 3) Virtual load constraint is added to handle the unexpected EV energy demand by 

adjusting the deferability level of EV load. Its effects on operational cost and energy delivery rate 

are analyzed using experiment results; 4) 20-fold cross validation is utilized as the evaluation 

method for our proposed scheduling framework. Total charging records are randomly divided into 

20 partitions, each of which is used as test set, and the remaining 19 partitions are used as training 

sets. 

2.2 System Architecture 

The proposed scheduling system includes three main components, i.e. EVSE, control center on 

server side and mobile application on user side, which are shown in Figure 2-1. The networked 

EVSEs are controllable by remote commands from Internet, which can be either from the mobile 

applications or from scheduling services running on the server. Charging requests from EV users 

are transmitted from the mobile applications to EV control center, which maintains an active 

interface that accepts the real-time requests via HTTP secured messages. After a verification 

process, the requests are stored in a database system and meanwhile directed to corresponding 

EVSEs. In addition, the control center also maintains active scheduling services based on the real-
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time monitoring data retrieved by the data collector. Various scheduling algorithms with different 

objectives and constraints can be supported by this architecture that is built on top of the complex 

communication network within UCLA campus, involving multiple communication protocols, such 

as Zigbee, 3G, Wifi and Ethernet, etc. In addition, this architecture also supports event-based 

control strategies, with customized triggers from both server side and user side. 

 

Figure 2-1 System overview 

The hardware modeled in this chapter is the level II EVSE developed by UCLA Smart Grid Energy 

Research Center (SMERC) [53], [54], which has power sharing capability, i.e. split the power 

supply from single source to multiple charging outlets within the preset range. The charging duty-

cycle for each outlet, defined by SAE J1772, is linearly correlated with the charging current 

allocated for this outlet. In our implementation, 50% duty-cycle denotes 30A and 10% duty-cycle 

denotes 6A. The firmware in our EVSEs provides explicit interfaces to modify the duty-cycles in 

order to adjust the power consumption for specific outlet. 

2.3 Predictive Scheduling Framework 
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In this section, we will discuss the predictive scheduling framework, which includes two main 

components: the parameter estimator and predictive scheduling paradigm inspired by model 

predictive control (MPC).  

2.3.1 Kernel-based Estimation for Session Parameters 

2.3.1.1 Tuple Construction for Session Parameters 

In order to simplify the process of behavioral data modeling, a 5-tuple is created for each charging 

session: 

𝑠 ≜ (𝑢, 𝑡𝑠, 𝑡𝑓 , 𝑡𝑙 , 𝑒) 

where 𝑢 is the unique identifier (index) for each user in our system; 𝑡𝑠 and 𝑡𝑓 denote start time and 

finish time, respectively; 𝑡𝑙  is the leave time for each charging session; 𝑒  denotes energy 

consumption.  Note that 𝑡𝑙 is usually later than 𝑡𝑓 since some vehicles get fully charged before 

being un-plugged by users. Stay duration 𝑑 can be obtained by 𝑑 = 𝑡𝑙 − 𝑡𝑠 for each session. This 

sequence is illustrated in  

Figure 2-2, where 𝑡0 is the initial time for each day. 

 

Figure 2-2 Charging session time parameters 

 Start Time: 𝑡𝑠, represents the time when vehicle arrives at certain EVSE and submits a 

charging request. 

 Finish Time: 𝑡𝑓 , denotes the time when this charging session is terminated due to low 

charging current, which might be caused by fully charged battery or disconnected vehicle. 

t0 ts tf tl
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 Leave Time: 𝑡𝑙 , is the time when the user unplugs her vehicle and leaves charging 

infrastructure directly. 

 Charging Power: 𝑟𝑛 = {𝑟𝑡𝑠
, 𝑟𝑡𝑠+∆𝑡, 𝑟𝑡𝑠+2⋅∆𝑡, … , 𝑟𝑡𝑓

} is an array of power consumption rate at 

each time interval between 𝑡𝑠 and 𝑡𝑓. ∆𝑡 is time interval at which data collector service and 

scheduling service is working. 

 Energy Consumption for vehicle 𝑛: 𝐸𝑛, denotes the energy consumed within each charging 

session. 𝐸𝑛 can be computed as: 

 𝐸𝑛 = 𝑒𝑡𝑓 − 𝑒𝑡𝑠 (2.1) 

where 𝑒𝑡𝑓 and 𝑒𝑡𝑠 are accumulated energy consumption value read from meter at session 

start time and finish time, respectively.  

Note that 𝑡𝑓 ≤ 𝑡𝑙 holds by the definition, which is obvious when vehicle is fully charged before 

departure. If vehicle leaves unexpectedly before battery is full, the charging session will be 

terminated by scheduling algorithm automatically and 𝑡𝑓 = 𝑡𝑙  in this case. Another important 

parameter, stay duration 𝑑𝑛 can be obtained by 𝑡𝑙 − 𝑡𝑠 . In later section, 𝑟𝑡  will be the decision 

variable in our problem formulation. 

Session parameters are significant for scheduling algorithms to determine optimal solutions. Once 

a charging session is initiated by a specific user, the estimated stay duration and energy 

consumption values are needed for the scheduling service to compute for energy allocation 

schedules. Thus, the purpose of estimation algorithm is to obtain the estimated values of stay 

duration 𝑑̂ and energy consumption 𝑒̂, given the start time 𝑡𝑠, user’s index 𝑢 and historical records.  

2.3.1.2 Exploratory Data Analysis 
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Exploratory data analysis is performed for each user to exploit the distributions of session 

parameters and latent relations between them, i.e. start time vs. stay duration and stay duration vs. 

energy consumption.  

User 1 User 2 User 3 User 4 User 5
 

Figure 2-3 Typical user behaviors 

The charts in Figure 2-3 show session parameters for typical users in our system. From the plots 

of start time vs. stay duration (upper level), one can tell that users tend to have a relatively stable 

start time in the morning, such as user 1, 2 and 4. However, the plots also show a few deviations 

of start time, i.e. the tails, indicating that users may plug in their vehicles later than usual. The tail 

effect is different among varied users. For instance, tail effect of user 3 is much heavier than that 

of user 1. Another observation is that in the tail part of the plots, the later users plug in their vehicles, 

the shorter their stay durations will be. This makes sense since most EV drivers in university 

campus tend to have fixed departure time. On the other hand, the duration vs. energy plots(lower 

level) cannot show apparent relations between users’ energy consumption and their stay durations 

even though for user 1 and user 5, one can find that the longer user stay plugged the more energy 

will be consumed. However, as the duration grows larger, the variance of energy consumption 

values also increases. For user 2, 3 and 4, no obvious pattern can be identified from the plots.  



19 

These plots are only 5 samples from more than 100 users in our system, whose parameter 

distributions are far more diverse. Therefore, it is difficult to develop a comprehensive parametric 

model to describe the behavioral data for all users, which leads us to develop nonparametric model-

free method. 

2.3.1.3 Kernel Density Estimator 

Nonparametric estimation method, such as kernel density estimation, does not require explicit 

parametric model to fit the data. Discrete kernel estimator with tutorial is discussed in [55]. Given 

the parameters already known (e.g. start time 𝑡𝑠 or estimated stay duration 𝑑̂), the objective here 

is to estimate the unknown session parameters (e.g. stay duration 𝑑 and energy consumption 𝑒) 

with kernel methods. As discussed above, there exists latent relationship between session 

parameters, shown by plots in Figure 2-3, so that a bi-variate kernel density estimator is formulated. 

One can obtain the joint probability distribution of start time vs. stay duration or stay duration vs. 

energy consumption, respectively. Suppose 𝑝(𝑥, 𝑦) is joint probability for one of aforementioned 

chart, point estimation of random variable 𝑋 , i.e. 𝑥̂ , can be calculated by the marginalization 

operation in equation (2.2): 

    ˆ ( , )
X X Y

x E X x p x dx x p x y dy dx       
 

(2.2)  

As an example, to estimate stay duration 𝑑 for a specific user, joint distribution of start time 𝑡𝑠 vs. 

duration 𝑑 is utilized and univariate distribution for 𝑑 is calculated by: 
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(2.3) 

where  𝑡𝑠̅ is the upper bound of start time, denoted by 𝑡𝑠 = 𝑡𝑠 + Δ𝑡. 𝛥𝑡 is a tunable parameter, 

denoting the tolerance bandwidth for start time selections. Similarly, lower bound start time is 
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𝑡𝑠 = 𝑡𝑠 − Δ𝑡. The assumption for this modeling is the latent dependence of stay duration on start 

time and the consistency of users’ behaviors, i.e. user’s future behaviors resemble her historical 

charging records. Thus, the similar sessions with start time falling within the tolerance range of 

the start time 𝑡𝑠 for current session are used as the base dataset to construct the kernelized joint 

distribution. For instance, if start time for current charging session is 8:00 AM and the tolerance 

interval is set to 1 hour, then historical sessions for current user with start time between 7:00 AM 

and 9:00 AM will be extracted. Thus, the following constraints have to be satisfied for each 

qualified tuple 𝑠 in qualified tuple set 𝑆: 

 𝑡𝑠 ≥ 𝑠. 𝑡𝑠 ≥ 𝑡𝑠 (2.4) 

 𝑠. 𝑑 ≥ 𝑡 − 𝑠. 𝑡𝑠 (2.5) 

 𝑠. 𝑒 ≥ 𝑒𝑡
𝑐 (2.6) 

 𝑠. 𝑢 = 𝑢 (2.7) 

where 𝑠. 𝑡𝑠 denotes the start time 𝑡𝑠 of tuple 𝑠; t is the current time when the estimation function is 

called and the 𝑒𝑡
𝑐 is energy already consumed by the time 𝑡. 𝑢 denotes the user index for current 

user. These additional constraints serve to refine the selection of historical sessions. Similarly, 

energy consumption value can also be estimated by the distribution of stay duration vs. energy 

consumption, given estimated duration 𝑑̂  and tolerance bandwidth Δ𝑡 . However, as charging 

session proceeds, the qualified dataset extracted from historical records by equation (2.4) - (2.7) is 

quite different, which leads to the diversity of the joint distributions. The joint probability can be 

obtained as follows: 
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 𝑝𝐾𝐷𝐸(𝑥) =
1

𝑁
∑ 𝐾(𝑥, 𝐵)

𝑁

𝑖=1

 (2.8) 

where 𝐵 denotes the base dataset extracted for modeling and 𝑁 is the total number of data points 

in 𝐵. Thus, 𝐵 ≜ {𝑏1, 𝑏2, ⋯ , 𝑏𝑁} and each data point has 𝐷 dimensions, i.e. 𝑏 ∈ ℝ𝐷. For instance, 

𝐷 = 2 if we model a bi-variate distribution, such as start time vs. stay duration. 𝐾(𝑥, 𝐵) is the 

kernel function that is used to model the weight of each data point 𝑥. We use Gaussian kernel for 

a continuous probability density, i.e.:  

 𝐾(𝑥, 𝐵) =
1

∏ ℎ𝑗
𝐷
𝑗=1

⋅ ∏ 𝐾𝑗(
𝑥 − 𝑏𝑖

ℎ𝑗
)

𝐷

𝑗=1
 (2.9) 

where ℎ𝑗  is the bandwidth for j-th dimension of the data point; 𝐾𝑗 is the kernel function for j-th 

dimension with the following form, where 𝑔 is a random variable: 

 𝐾𝑗(𝑔) = (2𝜋)−
1
2 ⋅ 𝑒−

1
2

𝑔2

 (2.10) 

This modeling process, i.e. (2.8) - (2.10), is performed every loop when the estimation is needed. 

As an illustrative example, sample probability distributions for a user are displayed in Figure 2-4 

and Figure 2-5. The peak of joint probability distribution represents the region with highest 

probability, i.e. the highest density of qualified data points.  
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Figure 2-4 Joint probability for start time and stay duration 

 

Figure 2-5 Joint probability for stay duration and energy consumption 

 

Following the above steps, session parameters can be estimated adaptively. The complete steps for 

parameter estimation are summarized in Algorithm 1. Note that, there will be less qualified tuples 

as the charging session proceeds. Specifically, a new user may also have less similar historical 

records. In this case, we grant priority to these users by updating the estimated energy demand and 

stay durations in each loop with preset values. For example, estimation algorithm may assume the 
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energy demand is about 2 kWh for a new user within the next half an hour. In cases where the 

estimated stay duration 𝑑̂ is smaller than modified current value by time 𝑡, which is denoted by 

𝑡 − 𝑠. 𝑡𝑠 + ∆𝑑, the max operation is added to prevent the early terminations of certain charging 

sessions with less estimation accuracy, which may further lead to lower energy delivery rate. 

Accordingly, the modified estimated leave time is always later than the current time 𝑡. Similar 

operations are made for the estimated energy consumption 𝑒̂, so that the charging sessions will not 

be terminated pre-maturely. Note that the estimation is computed every time if the scheduling 

optimization service is set to run periodically at a fixed time interval. However, under the event-

based control paradigm, where computation is only triggered by pre-defined events, a considerable 

number of computations can be reduced, which we will discuss in later sections.  

Algorithm 1: Kernel-based Parameter Estimator 

Input: current session s, current time t 

Output: 𝑒̂, 𝑑̂ 

Extract historical tuples with the constraints (2.4) - (2.7); 

If  number of tuples found > threshold number 

Calculate Gaussian kernel by (2.8) - (2.10); 

Calculate estimated 𝑑̂ and 𝑒̂ by (2.2) and (2.3); 

𝑒̂ ← 𝑚𝑎𝑥{𝑒̂, 𝑒𝑡
𝑐 + ∆𝑒}; 

𝑑̂ ← 𝑚𝑎𝑥{𝑑̂, 𝑡 − 𝑠. 𝑡𝑠 + ∆𝑑}; 

Else 

𝑒̂ ← 𝑒 + ∆𝑒  

𝑑̂ ← 𝑑 + ∆𝑑 

End 

 



24 

2.3.2 Mean Estimator 

A simplified estimator was developed and described in [15],which is based on averaging the 

session parameters of the qualified sessions, specified by equation (2.4) - (2.7). For the comparison 

purpose, the performance of the mean estimator is also discussed as a benchmark for the proposed 

kernel-based estimator.  

In mean estimator, equation (2.11) - (2.12) are replaced with the following: 

 𝑒̂ =
1

𝑀
⋅ ∑ 𝑆[𝑖]. 𝑒

𝑖∈𝑀

 (2.11) 

 𝑑̂ =
1

𝑀
⋅ ∑ 𝑆[𝑖]. 𝑡𝑙

𝑖∈𝑀

− 𝑆[𝑖]. 𝑡𝑠 (2.12) 

where S is the set of qualified charging session tuples and the M is the number of the qualified 

tuples. In this formulation, all data points are measured with equal importance without considering 

the smoothing effects of the kernel methods. The experiment results from the kernel-based 

estimator and the mean estimator are discussed in later sections.  

2.3.3 Problem Formulation 

2.3.3.1 EVSE Model 

Since the EVSE in this chapter can be equipped with multiple power sources and certain outlets 

may share the same power source, one more constraint is added to ensure that total power drawn 

from each power source cannot exceed its upper limit. In addition, power consumption rate at each 

outlet cannot exceed the maximum value for that power source: 

 0 ≤ 𝑟𝑛
𝑘(𝑡) ≤ 𝑟𝑘

𝑚𝑎𝑥 ⋅ 𝜂, ∀𝑡 ∈ [𝑡𝑛
𝑠 , 𝑡𝑛

𝑠 + 𝑑̂𝑛] (2.13) 
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where the charging rate at time 𝑡 for vehicle 𝑛 connected to power source 𝑘, is defined as 𝑟𝑛
𝑘(𝑡).  

𝑟𝑘
𝑚𝑎𝑥 denotes the limitation of power source 𝑘 and 𝜂 is the safety coefficient for each power source. 

𝑡𝑛
𝑠  is the start time for vehicle 𝑛. Let 𝑘 ≜ {1,2, … , 𝐾} denote the order of power source number in 

one EVSE. For each power source 𝑘 in the EVSE, we have: 

 0 ≤ ∑ 𝑟𝑛
𝑘(𝑡)

𝑛∈𝑁𝑘

≤ 𝑟𝑘
𝑚𝑎𝑥 ⋅ 𝜂, ∀𝑡 ∈ [𝑡𝑛

𝑠 , 𝑡𝑛
𝑠 + 𝑑̂𝑛] (2.14) 

where 𝑁𝑘 denotes active charging sessions for power source 𝑘. 

2.3.3.2 Battery Model  

As discussed above, each charging session for user 𝑛 can be described by the aforementioned 

parameters defined in the tuple 𝑠𝑛 ≜ (𝑢𝑛, 𝑡𝑛
𝑠 , 𝑡𝑛

𝑓
, 𝑡𝑛

𝑙 , 𝑒𝑛). Thus, the ideal scenario is that scheduling 

algorithm allocates more energy than expected, i.e. e𝑛 > 𝑒̂𝑛, and meanwhile below the battery 

capacity 𝑒𝐵 , before user’s leave time 𝑡𝑛
𝑙 , which is represented by 𝑡𝑛

𝑠 + 𝑑̂𝑛 . The actual energy 

consumption 𝑒𝑛 increases as the charging process goes on.  

 𝑒𝑛(𝑡) = 𝑒𝑛(𝑡 − ∆𝑡) + 𝑟𝑛(𝑡) ⋅ ∆𝑡,   ∀𝑡 ∈ [𝑡𝑛
𝑠 , 𝑡𝑛

𝑠 + 𝑑̂𝑛] (2.15) 

 𝑒𝐵 ≥ 𝑒𝑛(𝑡𝑛
𝑠 + 𝑑̂𝑛) ≥ 𝑒̂𝑛 (2.16) 

2.3.3.3 Virtual Load Constraint 

Since the hardware we are modeling has the power sharing circuit design, it means that the 

charging schedules for vehicles connected to the same power source will be interrelated with each 

other. Another concern with the EV scheduling problem with random user behavior is that the 

scheduling process is not quite robust if the power supply is limited. In other words, the pre-

computed schedules may be not valid if unexpected additional energy demands are requested by 
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new coming users for the same power source. For instance, if the scheduling algorithm arranges 

the energy consumptions in several hours later without considering the future new demand, it is 

highly possible that the limited power source fails to deliver enough energy to satisfy the 

unexpected charging demand because the total power consumption violates the power capacity 

constraints.  

We propose a method based on virtual load constraint to solve this issue, by adding constraints on 

power supply for a future time window. Intuitively, if the future power supply is further limited 

and the scheduling algorithm has to arrange earlier time intervals for vehicle charging. Thus, the 

deferability level of EV load is reduced and more energy consumption will be shifted forward to 

avoid infeasible solutions. The detailed mathematical formulation is in equation (2.17): 

 ∑ ∑ 𝑟𝑛
𝑘(𝜏)

𝑛∈𝑁k

𝜏=𝑇

𝜏=𝑡+Δ𝐻

< λ ⋅ ∑ 𝑟𝑘
𝑚𝑎𝑥

𝜏=𝑇

𝜏=𝑡+Δ𝐻

, ∀𝜏 ∈ [𝑡 + Δ𝐻, 𝑇] (2.17) 

This constraint is to limit the total power consumption for a specific EVSE by virtual load 

constraint coefficient 𝜆. Note this limit is only valid for the time range from 𝑡 + Δ𝐻 to the end 

time T. λ = 1 is equivalent to remove this constraint and λ = 0 is actually only allowing power 

consumption from time 𝑡 to 𝑡 + Δ𝐻. Thus, for different scenarios, 𝜆 value and Δ𝐻 should be tuned 

to achieve better overall scheduling performance. The effects of 𝜆 parameter are discussed in later 

section. 

2.3.3.4 Introduction to Model Predictive Control (MPC) 

Model predictive control is an optimal control strategy based on numerical optimizations. From 

its origin as a computational technique for improving control performance in applications within 

the process and petrochemical industries, predictive control has become arguably the most 
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widespread advanced control methodology currently in use in industry [56]. Typically, MPC has 

three functioning components:  

 Predictor based on system model; 

 Online optimization tool; 

 Receding horizon control implementation. 

The simplified process for executing a typical MPC strategy, which is shown in Figure 2-6 is as 

follows: 

 The future system states 𝑥̂𝑘 , 𝑥̂𝑘+1, ⋯ , 𝑥̂𝑘+𝑁−1 are predicted based on the system model; 

 Using the predicted inputs and system states, an online optimization problem is formulated 

and solved with a numerical optimization solver; The output is inputs 𝑢𝑘 , 𝑢𝑘+1, ⋯ , 𝑢𝑘+𝑁−1; 

 Only the first element of the optimized control signals are implemented. Meanwhile, the 

prediction and optimization steps are repeated as the time step reaches the end of the time 

horizon. 

Loop:

Prediction Optimization Implement uk

 

Figure 2-6 Paradigm of model predictive control 

2.3.3.5 Receding Horizon Control 
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We formulate EV charging scheduling problem as a predictive control problem, which can be 

applied to a variety of objectives, as long as the problem can be formulated as a convex 

optimization problem.  

In our case, the input variables to the system are the current and historical states, e.g. the energy 

consumption values by each connected vehicle, the solar generation value before current, etc. 

Based on these most up-to-date system variables, a predictor is developed to estimate the system 

input variables in the following time series. For instance, the kernel-based session parameter 

estimator discussed in previous sections will be used to obtain estimations of user behaviors. 

Similarly, the predictors for other variables can also be applied in this framework, e.g. solar 

generation predictor, building load predictor, etc. An online optimization solver has the capability 

to combine the current system states and the estimated future variables as an optimization problem 

with the objective to minimize the overall system cost (dependent on definition of system cost, e.g. 

overall operational cost, or total system load variance, etc.), while complying with the constraints 

of each variable. In the case study of this chapter, we select the total operational cost for the 

remaining time intervals as the optimization objective, which is formulated as convex problem and 

computed using an open-source solver. At each time interval, the algorithm hosted by scheduling 

service will call optimization program to compute an optimal EV charging schedule for the 

remaining time intervals, considering the estimated session parameters and energy consumption 

values for all active charging sessions. With only the first element in the list of output variables is 

implemented to control the EV charging behaviors.  More importantly, the process, including 

prediction, optimization, is repeated every time interval, which could be set to different values, 

until the current time step reaches the end of the scheduling horizon.  

The optimization objective is formulated as follows:  
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 𝑚𝑖𝑛  
𝑟𝑛

𝑘(𝜏),𝜏∈[𝑡,T]
∑ 𝑃(𝜏) ⋅ 𝑚𝑎𝑥 (∑ ∑ 𝑟𝑛

𝑘(𝜏) − 𝑃𝑉(𝜏))

𝑛∈𝑁𝑘𝑘∈𝐾

, 0)

𝜏=𝑇

𝜏=𝑡

 (2.18) 

𝑠. 𝑡. (2.13) - (2.17) 

Algorithm 2: Predictive EV Scheduling Algorithm(PESA) 

Generate price data; 

Retrieve forecast solar data; 

𝜏 = 𝑡0; 

Do 

For each power source 𝑘 ∈ 𝐾: 

Terminate charging sessions whose leave time 𝑡𝑙 ≤ 𝜏; 

For each vehicle 𝑛 ∈ 𝑁𝑘: 

Estimate stay duration 𝑑̂𝑛  and energy consumption 𝑒̂𝑛  for vehicle 𝑛 , 

according to Algorithm 1; 

End 

Solve problem (2.18) ,subject to (2.13) - (2.17); 

If solution infeasible: 

Relax constraint (2.17), and set 𝜂 = 1 in equation (2.13) and (2.14); 

End 

For each vehicle 𝑛 ∈ 𝑁𝑘:  

Implement 𝑟𝑛
𝑘(𝜏); 

End 

End 

𝜏 = 𝜏 +Δ𝑡; 

While 𝜏 ≤ 𝑇 
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The solar generation integration, EV power consumption as deferrable load, will be shifted to the 

time interval with abundant solar generations. On the other hand, when solar generations cannot 

support the total EV charging load, algorithm will choose the time range with lower energy prices 

for EV charging. 𝜏 denotes to the current time when the scheduling algorithm is called and 𝑇 is the 

maximum time step for the scheduling horizon. 𝑃𝑉(𝜏) denotes the forecast solar generation at time 

𝜏 from the installed panels. 𝑃(𝜏) is the electricity price at time 𝜏. The 𝑚𝑎𝑥 operation actually 

models the integration of solar generation by comparing the total charging load with the solar 

output value for each future time interval. Inspired by the model predictive control paradigm, the 

optimal energy consumption schedules for all the remaining time intervals are computed, however, 

only the first element, 𝑟𝑛
𝑘(𝑡), is implemented to control EVSE. As the scheduling proceeds, the 

scheduling horizon recedes to the maximum time step 𝑇, indicated by the name receding horizon 

control. The complete charging control algorithm is summarized in the following Algorithm 2. 

Note that this control paradigm requires the scheduling service to be initiated every time step, 

which leads to the successive operations for data retrieval, parameter estimation and optimization. 

In cases when the computing resources are limited or quality of communication network is not 

reliable, failure to update charging schedules may happen. Therefore, to overcome this drawback, 

we propose an event-based scheduling paradigm that minimizes the number of charging session 

controls.   

2.4 Results and discussion 

2.4.1 Experiment setup 

To evaluate the performance of our proposed scheduling framework, charging sessions of real-

world users on the UCLA campus are utilized to set up the simulation experiments. The dataset 
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includes UCLA experiment data from August. 2013 to Mar. 2015. 20-fold cross validation, 

discussed in [57], section 5.3.3, is utilized to justify the performance of the proposed scheduling 

framework. Specifically, the total charging records of 588 days are randomly divided into 20 

partitions, i.e. approximate 30 days in each partition, and the simulation will run for each partition 

as the test set, using the remaining 19 partitions as training datasets. The details of this method are 

shown in Figure 2-7. Training sets provide the historical records for all users as basis for session 

parameter estimation, while test set is used to evaluate the scheduling performances, in terms of 

energy delivery rate, cost performance, etc. The dataset properties are displayed in Table 2-1. 

1 2 3 5 6 7 ... 587 588

1 4 5 ... 3 7 9 ... 2 6 8 ...... ...

8 94

Training Partition #1 Test Partition Training Partition #19

Original Dataset

 

Figure 2-7 20-fold cross validation 

Table 2-1 Dataset properties 

 Training Set Test Set 

Number of Partitions 19 1 

Number of Days 558 30 

Number of Sessions ≈4400 ≈200 

Number of Users 79 79 
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TOU price list is generated based on the wholesale price signals from California Independent 

System Operator (CAISO) [58]. The original prices are modified with additional values for certain 

hours during the day to simulate the retail electricity prices in distribution networks, which are 

displayed in Figure 2-8. 

 

Figure 2-8 Energy price used for simulation 

The solar generation data we used in simulation is from solar integration project [10], [59] on the 

UCLA campus. We assume that each EVSE is equipped with 10 solar panels. Since the focus of 

this scheduling framework is on the uncertainty of user behaviors, details of solar prediction 

algorithm are not within the scope of this dissertation. We simply apply the smoothed solar curve 

as our forecast solar generation data, which is shown in Figure 2-9. 
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Figure 2-9 Sample solar generation data 

Table 2-2 Charging records on 17th, Marth, 2015 

No. User Index Start Time Duration (h) Energy Demand 

(kWh) 

1 CE1* 06:10:12 9.33 8.561 

2 F42* 06:42:33 2.02 4.468 

3 BFE* 07:07:44 6.87 12.207 

4 155* 07:17:24 9.92 9.185 

5 9CA* 14:08:58 7.3 6.154 

6 8D5* 15:30:23 4.2 11.11 

7 2E7* 18:31:56 1.05 5.722 

 

Note that the time interval ∆𝑡 for scheduling algorithm is set to 15 min. For each dimension, 

bandwidth ℎ in kernel based estimator, i.e. equation (2.9), is set to 1.06𝜎 ⋅ 𝑁−
1

5  according to [55], 

where 𝜎  is standard deviation of the values in that dimension. Adjustable values in session 

parameter estimator, i.e. 𝛥𝑑 and 𝛥𝑒 in Algorithm 2, are set to 0.5 hour and 2 kWh, respectively. 

For virtual load constraint in equation (2.17), horizontal length 𝛥𝐻 is set to 3 hours. The EVSE 

picked for simulation has 2 power sources and each one has the maximum output 6.6 kW. The 
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safety coefficient 𝜂 in equation (2.13) and (2.14) is set to 0.7. The virtual load constraint λ is set 

to 0.3. The package in [60] is employed to solve the schedule optimization problem. 

2.4.2 Cost Saving and Load Shifting Effects 

Since the primary objective of the scheduling framework is to optimize the overall cost 

performance for providing charging services and satisfy the charging demand from EV users, we 

randomly pick one day for the single day simulation, with the following records shown in Table 

2-2. 

 

Figure 2-10 EV Load Scheduling Results (𝜆 = 1) 

The scheduling results from the original ESSA and our proposed PESA (virtual load constraint 

λ = 1) are shown in Figure 2-10.The blue dot curve denotes the original EV load created by the 

charging sessions in Table 2-2, while the red curve is the new EV power consumption schedule 

generated by PESA. From the figure, one can see that a large portion of the load is shifted from 

early morning to early afternoon when there is abundant solar generation and the energy prices are 

lower, which can be found in Figure 2-8 and Figure 2-9. Another interesting phenomena is the 
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solar generation following effects of this algorithm. Since the local solar generation can be utilized 

as alternative power source instead of purchasing electricity from grid, the allocation of EV 

charging energy tends to follow the curve of solar generation, as is shown in Figure 2-10. Thus, 

due to the load shifting effects, the total energy cost by PESA has been reduced.  

However, it should be noted that the total delivered energy by the new PESA algorithm is not as 

much as the originally delivered energy, i.e. the area under the red curve is less than that under 

blue dot one. A close investigation reveals that this issue is caused by the uncertainty of session 

parameter estimation. In other words, there exist certain users in this EVSE who leave earlier than 

their estimated leave time so that not enough energy is allocated to their EVs. In the single day 

test, the energy delivered by PESA is 51.6 kWh, which is 10.12% less than the original value. On 

the other hand, the average unit energy cost (¢/kWh) is originally 11.23 ¢/kWh without 

optimization and solar integration, and it is then reduced to 5.72 ¢/kWh by PESA. 

Thus, we define another criteria to evaluate the robustness of the scheduling framework over all 

the test samples in each partition, i.e. Average Schedule Error Rate (ASER), whose mathematical 

form is: 

 𝐴𝑆𝐸𝑅 =
1

𝑀
⋅ ∑ {

1

𝑁𝑚
⋅ ∑

𝑒𝑖
𝑚 − 𝑚𝑖𝑛(𝑒𝑖

𝑚,𝑐 , 𝑒𝑖
𝑚)

𝑒𝑖
𝑚

𝑁𝑚

𝑖=1

}

𝑀

𝑚=1

⋅ 100% (2.19) 

where 𝑒𝑖
𝑚 is the actual energy consumption from ESSA for i-th charging session on m-th test day 

of a particular partition in training sets. 𝑒𝑖
𝑚,𝑐

 is the corresponding energy consumption from PESA. 

𝑁𝑚 here denotes the number of  charging sessions in m-th test day. 𝑀 is the total number of test 

days in m-th partition. Smaller ASER value represents a more robust solution with higher EV 

energy delivery rate, while the larger one indicates higher probability of failures to provide enough 
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energy to EVs due to their uncertain charging behaviors. For a particular charging session, it is 

possible for the system to provide either more or less energy, i.e. 𝑒𝑖
𝑚,𝑐

, than actual consumption 

value 𝑒𝑖
𝑚, however, only the cases where 𝑒𝑖

𝑚,𝑐 < 𝑒𝑖
𝑚, are defined as schedule errors, which should 

be avoided or minimized.  

 

Figure 2-11 Average unit energy cost on partitions 

To validate overall performance, the average unit energy cost and ASER values across all test 

partitions are computed and shown in Figure 2-11 and  

Figure 2-12, respectively. The scheduling results demonstrate that the PESA is more effective in 

cost optimization compared to the original ESSA. With the solar integration and time-varying 

energy prices, PESA will adaptively minimize the total operational cost by searching for the 

optimal time ranges and charging power for each vehicle. The average reduction of unit energy 

cost across all partitions reaches 29.42% (blue vs. yellow bars) and it can be further improved to 

66.71% (blue vs. green bars) by integrating renewable generations with EVSEs. PESA can also 

outperform ESSA when both are with solar integration (green vs. red bars). In our experiment, the 
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maximum solar output is around 3 kW so the cost saving performance can be further optimized by 

increasing the capacity of solar integration, especially when the energy demand is high on the test 

days. Besides, the ASER values for all partitions are also computed to evaluate the energy delivery 

rate. The maximum ASER value, in  

Figure 2-12 is approximately 12%, indicating that the energy delivery rates are acceptable across 

all test samples. Note that, ASER values can be improved by tuning the virtual load constraint (𝜆), 

which is discussed in later sections. 

 

Figure 2-12 ASER values for partitions 

2.4.3 Impact of Solar Infrastructure Investment 

Considering the initial investment on the solar Photovoltaics (PV) infrastructure, including fees of 

installation and maintenance, etc., the overall operational costs by one EVSE with and without 

solar installation, are visualized in Figure 2-13, respectively, by plotting the accumulated values 

of energy consumption and operational cost by PESA and ESSA. According to [61], the solar 

installation and maintenance cost in California in 2015 Q1 is roughly 2.14 $/W, and lifetime of 
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service is longer than 30 years. Therefore, it is estimated that after 82000 kWh energy delivery 

(approximate 6.6 years), the proposed EVSE with solar integration will provide more benefits than 

the traditional solution. As the cost of solar panel drops, the time it takes to reach the cost match 

point in Figure 2-13 is becoming shorter.  

 

Figure 2-13 Accumulated energy consumption and cost 

2.4.4 Effects of Virtual Load Constraint 

Since the energy delivery deviations are caused by users’ early departures which cannot be 

estimated with 100% accuracy, here we demonstrate the effects of virtual load factor on improving 

the ASER values.  
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Figure 2-14 EV load scheduling results (λ=0.3) 

 

Figure 2-15 Virtual load constraint factor effect 

First, single-day experiment is performed to demonstrate the load shifting effect of the virtual load 

constraint. By setting 𝜆 = 0.3, we explicitly throttle the power supply for each EVSE with multiple 

vehicles connected, so that less energy should be provided after 𝛥𝐻 intervals. Accordingly, the it 

is projected that portion of the charging energy, which should consumed in later time intervals, are 

actually consumed in earlier time intervals. Real-world charging records in Mar. 17th, 2015, are 
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utilized for the simulation, which is shown in Figure 2-14.  Compared to the results shown in 

Figure 2-10 where load constraint factor is set to 1, new EV load curve is slightly different, i.e. 

there is a portion of the charging load shifted to the time range between 06:30 AM and 08:00 AM 

in the morning. The ratio of the shifted energy consumption from the original time intervals to new 

time intervals is monotonically related to the value of virtual load constraint λ. That is to say, the 

as the constraint λ goes tighter, more energy consumption from EVs will be shifted forward to 

time range with higher energy prices or less solar generation (6:30 AM – 8:00 AM in the case 

shown in Figure 2-14). Meanwhile, due to this load shifting effect, it is also projected that the 

ASER value should be improved because the system becomes less vulnerable to the unexpected 

vehicle departures, since load from EVs is less deferrable.  

Intuitively, constraints on the future power supply renders the algorithm to allocate more energy 

as soon as possible in order to avoid infeasible schedules, i.e. the power source cannot provide 

enough energy to match the total demands from active charging sessions after 𝛥𝐻. For one test 

day, the ASER value and the total operational cost are computed with different λ values and the 

results are shown in Figure 2-15. As the value of constraint factor λ  goes smaller, tighter 

restrictions after 𝛥𝐻 are applied on power sources, the algorithm tends to shift as much EV energy 

consumption as possible to time intervals before time 𝑡 + 𝛥𝐻, so that energy delivery rate is 

improved even though users may leave unexpectedly earlier. However, as more energy is 

consumed in earlier non-preferable time ranges with higher prices or less solar generation, which 

is forced by virtual load constraints, the solution becomes less optimal. Thus, the total energy cost 

increases as 𝜆 goes smaller. Due to the uncertainties of user behaviors, this is a trade-off one has 

to consider. For example, in scenarios where requirements on schedule error rates are restrict, a 
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smaller 𝜆 is minimize the ASER value down to 5%, however, it will not achieve the best overall 

cost. 

2.4.5 Estimation Accuracy 

In preliminary work [52], a simpler estimator was utilized to estimate session parameters, 

including stay duration and energy consumption. The original solution is a simple mean estimator, 

which calculates the mean value across all qualified sessions extracted by (2.4) - (2.7). At each 

time interval when the scheduling algorithm is initiated, the estimated values from both the simple 

mean estimator and kernel-based estimator are recorded for performance assessment. Due to the 

variety of session parameters, the number of estimations for each charging session may be varied 

so that we define another metric, i.e. sample estimation deviation to evaluate the overall estimation 

accuracy.  

 𝐷𝑒𝑣𝑚 = √
1

𝑁𝑚
⋅ ∑

1

𝐿𝑛
⋅ ∑(𝑣𝑙

𝑖 − 𝑣𝑇
𝑖 )2

𝐿𝑛

𝑙=1

𝑁𝑚

𝑖=1

 (2.20) 

where 𝐿𝑛  is the total number of estimations  that belongs to i-th charging session in the m-th 

partition. Note there must be at least one estimation for each charging session. 𝑁𝑚 denotes the total 

number of charging sessions on partition 𝑚. 𝑣𝑙
𝑖 is the l-th estimated value of i-th session and 𝑣𝑇

𝑖  is 

the actual parameter, i.e. true values for stay duration or energy consumption. 

According to equation (2.20), the estimation deviations for stay duration and energy consumption 

are both displayed in Figure 2-16. The performance of kernel-based estimator is better than the 

mean estimator for both stay duration and energy consumption, with smaller deviation values. The 

advantage of Gaussian kernel estimator is the smoothing effect across all the variable space, which 

does not require a specific model. The averaged estimation deviation for stay duration by kernel-



42 

based estimator is 1.52 h, which is 26.05% less than that of mean estimator, while for energy 

consumption, the deviation value is reduced from 2.91 kWh to 2.50 kWh by 14.22%. The 

effectiveness of kernel-based estimator is demonstrated thereby.  

 

Figure 2-16 Estimation deviation 

2.5 Summary 

In this chapter, we propose a predictive scheduling framework which takes into account the 

uncertainties of EV user behaviors. Specifically, Gaussian kernel estimator is designed to 

dynamically estimate the charging session parameters with improved estimation accuracies. In 

addition, virtual load constraint is also formulated to handle the unexpected EV energy demand 

arriving in the near future. Real-world data on the UCLA campus is utilized for the cross validation 
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of the proposed framework to demonstrate the improved cost performance and EV energy delivery 

rate.
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Chapter 3 Event-based EV Charging 

Strategy with Integration of IEC 61850 

Coordinating charging behaviors of a number of EVs is a challenging task, which involves not 

only the deterministic schedule computing but also nondeterministic EV driver behaviors with 

random arrival time and energy demands. Chapter 2 introduces the predictive energy management 

framework, which is adaptable to a myriad of energy management strategies with varied 

optimization objective, however, it requires the system states and session parameters related to 

EVs to be updated every time interval, which is not efficient, and even not practical in real-world 

systems. In this chapter, an implementable event-based cost optimal scheduling algorithm (ECSA) 

is developed, which solves EV scheduling problem by dynamically estimating the stay duration 

and energy demand for each participating EV user. The steps to update the system states and to 

solve the optimization problem are only triggered by the pre-defined the events, which indicate a 

critical system state change. Datasets, including users’ historical charging records and time series 

meter data collected from EVSEs on the UCLA campus, are utilized for feature extraction. In 

addition, IEC 61850 is integrated with the smart EV management program, which provides a 

standardized communication protocol and data model to improve the overall system 

interoperability. The proposed approaches are tested and validated by real EV charging schedules 

of users on the UCLA campus. The results from simulation experiment demonstrate that the 

proposed algorithm has a better performance in cost minimization and load shifting compared to 
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existing equal-sharing scheduling algorithm (ESSA). Meanwhile, we also compare ECSA to 

PESA in terms of different performance metrics.  

3.1 Introduction 

Numerous energy management strategies on EVs have been developed by previous researchers 

with different objectives and constraints, e.g. algorithms in [35], [36], [41], [48], [62]–[66]. 

However, few of them consider three practical issues in real-world implementations: 1) there exists 

delay and packet loss among the communication network; 2) frequent data retrieval and 

optimization, such as PESA described in Chapter 2, may exert great burden on the server, 

increasing the chance of server crash; 3) standardization of the data models with different variables, 

such as physical parameters of the power system, and the energy consumer related variables, etc.  

Therefore, considering these issues, we develop an event-based cost-optimal scheduling algorithm 

(ECSA) based on the predictive energy management strategies from Chapter 2, with integration of 

IEC 61850 standard. Event-based control strategies are widely used as advanced control 

technologies that have been applied to a variety of applications, e.g. traffic flow optimization [67], 

software engineering with high communication load or high computational efficiency requirement 

[68] [69], [70], supply-chain management [71] and robotics [72], etc. Typically, event-based 

strategies improve the system efficiency by reducing the number of un-necessary computations, 

while still satisfying the system performance requirements. Specifically, if the system states and 

the predicted input values do not change very much, it is not necessary to re-initiate the 

optimization step. Case studies are provided to verify the performance of the proposed ECSA and 

the simulation results indicate that ECSA is effective in reducing system computation load while 
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maintaining the values of the system operational cost and energy delivery rate on an acceptable 

level.  

In addition, we provide a method to integrate IEC 61850 into EV smart charging infrastructure 

with multiplexing capabilities [44], [73]–[75], by defining customized data models. The data 

transmitted between EVSE and the aggregated control center includes charging control commands, 

power metering data and user interactions, etc. IEC 61850 is integrated to standardize these data 

strings, making them immediately available to others devices. New features such as power sharing, 

current multiplexing and mobile app charging control is also integrated [44].  

The contributions of this work can be summarized as:  

 Event-based EV energy management strategy is developed with improved system 

efficiency, while maintaining acceptable system performance on cost and energy delivery 

rate; 

 Standardize communication and data models involved in smart EV charging to improve 

the system interoperability and scalability;  

 Extend IEC 61850 with new features, such as mobile applications, power source 

constraints, energy prices, etc;  

3.2 Event Trigger Scheme 

In most cases, the continuous estimation of session parameters does not have large variations, 

which means the schedules obtained previously are still valid under current conditions and the re-

computation is not necessary. Under the proposed event-based control paradigm, the scheduling 

services will only be initiated when the pre-defined events are detected, instead of being computed 

every time interval. The pre-defined events should represent obvious deviations of system states. 
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Therefore, the do-while structure in Algorithm 2 needs to be updated with the event trigger 

structure based on the real-time monitoring of charging sessions, shown in Algorithm 3. The 

following events are defined.  

Event 1: New vehicle arrives with charging request; 

Event 2: Vehicle leaves from EVSEs or terminates charging; 

Event 3: Energy already consumed exceeds the estimated one, which is believed as an abnormal 

behavior and we infer that this user needs more energy than consumed;  

Event 4: Leave time exceeds the estimated one, which might indicate the extended stay duration 

for this user; 

Event 5: New estimated session parameters deviates the original estimations by a pre-defined 

value. 

As shown in Figure 3-1, an Event Monitor is running periodically to check if the system has 

changed and only when such an event is detected, the scheduling algorithm developed in Chapter 

2, will be invoked. 

Event Monitor

Prediction OptimizationDetected Y

N

Loop:

Implement uk

 

Figure 3-1 Event-based control paradigm 
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Algorithm 3: Event-based Cost-optimal Scheduling Algorithm(ECSA) 

Generate price data; 

Retrieve forecast solar data; 

Event triggered: 

For each power source 𝑘 ∈ 𝐾: 

Terminate charging sessions whose leave time 𝑡𝑙 ≤ 𝜏; 

For each vehicle 𝑛 ∈ 𝑁𝑘: 

Estimate stay duration 𝑑̂𝑛  and energy consumption 𝑒̂𝑛  for vehicle 𝑛 , 

according to Algorithm 2; 

End 

Solve problem (2.18) ,subject to (2.13) - (2.17); 

If solution infeasible: 

Relax constraint (2.17), and set 𝜂 = 1 in equation (2.13) and (2.14); 

End 

For each vehicle 𝑛 ∈ 𝑁𝑘:  

Implement 𝑟𝑛
𝑘(𝜏); 

End 

End 

 

3.2.1 Experiment setup 

Event-based EV scheduling paradigm is first introduced in [52], which is believed to reduce the 

number of controls and computer resources, while maintaining system performances. Event-based 

Cost-optimal Scheduling Algorithm (ECSA) is compared with Predictive Energy Scheduling 

Algorithm(PESA) and Equal-sharing Scheduling Algorithm (ESSA) in terms of ASER values and 

unit energy cost. The only difference between these two algorithms is that ECSA is initiated by 

the pre-defined events while PESA runs periodically at fixed time interval. Three sets of different 

experiments are performed to verify the proposed event-based EV charging control strategy: 1) 
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ESSA vs. ECSA on continuous 10 days; 2) ECSA vs. PESA on continuous 10 days; 3) ECSA vs. 

PESA by cross-validation. Real-world EV charging sessions on the UCLA campus are utilized to 

set up the simulation. The extracted charging sessions are ordered by the start time and labeled 

with power source number so that real charging events can be reproduced exactly. ∆𝑡, i.e. time 

interval for scheduling algorithm is set to 15 min. In the first 2 case studies, the virtual load 

constraint is set to 1, and in the third simulation, 𝜆 = 0.3. 

3.2.2 Case Studies 

3.2.2.1 Case 1: ECSA vs. ESSA on continuous 10 days 

Figure 3-2 is the comparison of operational costs from 3 scheduling algorithms, ESSA, ESSA with 

solar integration and ECSA.  Solar integration reduces the cost for both ESSA and ECSA. For 

ECSA, the cost decreases because of two reasons: 1) delayed energy consumption at the early 

stage of charging session 2) charging load shifted from regions with higher price and abundant 

solar energy, to regions with higher energy price and less solar energy. Suppose the energy 

consumptions are the same from ESSA and ECSA, there will still be larger portion of load in 

regions with lower price and ample solar energy, which can be observed from Figure 3-2.  Thus, 

1) is not dominant reason for cost reduction. The effectiveness of ECSA for cost minimization is 

demonstrated. 

The other criteria is the deviation between actual energy consumption for each vehicle and that 

obtained from ECSA. A metric named Average Schedule Error Rate (ASER) is defined to 

represent this deviation: 
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 𝐴𝑆𝐸𝑅 =
1

𝐿
⋅ ∑

𝑒𝑖 − 𝑒𝑖,𝑐

𝑒𝑖

𝐿

𝑖

⋅ 100% (3.1) 

where 𝑒𝑖 is the actual energy consumption from ESSA for one charging session on a particular day. 

𝑒𝑖,𝑐  is the energy consumption from ECSA. 𝐿 denotes the number of charging sessions on a 

particular test day. Smaller ASER value corresponds to less deviations. ASER values for the test 

days are generally acceptable considering the randomness of EV charging sessions. The energy 

consumption from ECSA, ESSA and ASER values are shown in Figure 3-3.  

 

Figure 3-2 Operational cost from EV scheduling algorithms 

To achieve smaller ASER values, scheduling algorithm needs to deliver as much energy as the 

ESSA does before each session ends. There exist trade-offs between cost minimization and error 

rate minimization. Being greedy for energy cannot guarantee optimal cost and vice versa. A 

possible modification to current ECSA is to increase the greediness for charging sessions that start 

not long ago and then perform optimal scheduling after energy consumption reaches certain level. 

Hereby, cost saving performance can be preserved while global ASER values can also be improved. 
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Figure 3-3 Energy consumption and error rate 

3.2.2.2 Case 2: ECSA vs. PESA on continuous 10 days; 

 

Figure 3-4 Scheduling results of PESA and ECSA for continuous 10 days 

We randomly select a period of continuous 10 days to verify the performance of the proposed 

event-based strategy. With the dataset of the selected 10 days for a specific EVSE as the test dataset, 
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and the remaining data as the training dataset, overall operational cost and ASER values are 

displayed in Figure 3-4. In test day #2 and #9, there exist large deviations of ASER values between 

PESA and ECSA, which indicates less energy delivered to connected vehicles by ECSA. Without 

capturing the system dynamics, including the values of solar generations and the change of the 

estimated session parameters in every time interval, ECSA fails to allocate enough energy 

compared to PESA. The other phenomena is observed that the overall operational cost for ECSA 

is slightly higher than that of PESA on certain days, which is shown in the right diagram in Figure 

3-4. One plausible explanation is that failure of ECSA to capture the most up-to-date system 

dynamics leads to the less optimal energy schedules from the optimization problem. For instance, 

if one of the vehicles in the morning stays longer than the previous estimated duration, meaning 

that it is possible to shift this amount of EV load backward with more solar generation and lower 

energy prices.  

3.2.2.3 Case 3: ECSA vs. PESA by 20-fold cross-validation 

The second case study is based on the 20-fold cross-validation on the whole dataset. The averaged 

ASER values and the unit energy cost (cent/kWh) are computed for each partition to study the 

averaged performance of ECSA compared to PESA. In the simulation, 𝛥𝑡 is set to 15 minutes, the 

results are compared in Figure 3-5 and Figure 3-6. For all partitions, PESA has better ASER values, 

which indicates the better performance on energy delivery rate, than ECSA, which fails to capture 

the most up-to-date system states by skipping over certain time steps and assuming the previous 

estimations are still right. The average ASER values across all partitions for PESA and ECSA are 

7.5% and 11.65%, respectively, shown in Figure 3-5.  Interestingly, even though ECSA has a little 

worse ASER values, it has comparable average unit energy cost at 4.81 ¢/kWh, which is only ¢0.03 

higher than that by PESA. Note that the maximum ASER value by ECSA is still less than 15%. 
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Therefore, ECSA can serve as a cost-efficient solution with acceptable performance, if the 

requirements on energy delivery rate are not too strict.  

 

Figure 3-5 ASER values for PESA and ECSA 

 

Figure 3-6 Unit cost for PESA and ECSA 

3.3 IEC 61850 Integration with Smart Charging 
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3.3.1 Introduction to IEC 61850 

Table 3-1 IEC 61850 Standard 

Part #  Title  

IEC 61850-1  Introduction of Overview  

IEC 61850-2  Glossary of Terms  

IEC 61850-3  General Requirement  

IEC 61850-4  System and Project Management  

IEC 61850-5  Communication Requirements  

IEC 61850-6  Substation Configuration Language  

IEC 61850-7-2  Abstract Communication Service Interface (ACSI)  

IEC 61850-7-3  Common Data Classes  

IEC 61850-7-420  Logical Nodes in DER system  

IEC 61850-8  Mapping to MMS and ISO/IEC  

IEC 61850-9  Mapping to Sample Values  

IEC 61850-90-8  Logical Nodes in EV system  

IEC 61850-10  Conformance Testing  

 

IEC 61850 is an international standard for Ethernet-based communication in substations[76], 

founded by the International Electro-technical Commission's (IEC) Technical Committee 57 

(TC57). IEC 61850 is gaining its popularity in smart grid design and implementation due to its 

advantage to reduce the configuration and maintenance cost by its nature of object-oriented data 

models. There are 10 major parts in current IEC 61850 standard, defining the different aspects of 

substation communication [77], [78], which are shown in Table 3-1. 
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3.3.2 IEC 61850 Integration 

IEC 61850 interface is integrated into smart charging infrastructure to standardize the data and 

communication. The data model of IEC 61850 is customized to carry data to describe charging 

behaviors and mobile applications, which extends the current content of the standard. Figure 3-7 

shows the integration architecture. 

Control 
Center

IEC 61850
Interface

IEC 61850
Interface

Mobile
App

Control 
Center

IEC 61850
Interface

IEC 61850
Interface

EVSE

EVSE
Meter

Meter

Meter

Meter

EV

EV

EV

EV

MMS Protocol

MMS Protocol

Zigbee Zigbee

 

Figure 3-7 Smart charging infrastructure with IEC 61850 interface 

As shown in Figure 3-7, all the communications between the mobile app, control center and EVSE 

are standardized by IEC 61850 interface and communicating using MMS protocol which is 

specified by IEC 61850-5. Inside EVSE, local communication between smart meter and EVSE is 

using Zigbee, and Powerline Communication (PLC) via control pilot line connection is 

implemented between EVSE and the EVs. 

3.3.3 IEC 61850 Modeling 
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The procedure to integrate IEC 61850 data model and standardized communications with the smart 

charging infrastructure are presented as follows: 

 Summarize the information and charging session parameters exchanged among the smart 

charging system; 

 Design the IEC 61850 Service framework to describe the components in the smart charging 

infrastructure 

 Design IEC 61850 data set to map the charging parameters and data into the system 

framework 

 Construct Substation Configuration Language (SCL) file based on the data models from 

(2) and (3); 

 Develop web service to manipulate variables in SCL file, integrate the IEC 61850 system 

framework into existing control center program, serving as the communication interface   

 IEC 61850 Service Framework Design 

In the IEC 61850 service framework, the root of system is the physical device, which has an IP 

address that can be accessed by other smart devices in the network. A physical device is defined 

as an Intelligent Electronics Device (IED) by IEC 61850 in the smart grid network. In this chapter, 

we define each EVSE as an IED. An IED contains a number of logical devices (LD), which are 

the function blocks inside the IED. Each LD is a collection of logical nodes (LN) that implement 

particular functions. LNs carry the dataset to describe the IED status, charging data and session 

parameters, such as energy consumption, charging current, user ID, charging time, etc. This data 

is made immediately available to other IEC 61850 devices. Figure 3-8 shows the smart charging 

infrastructure described by the IEC 61850 service framework. 
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IED: EVSE

LD: ChargerLD: Gateway LD: Mobile App

LN: DECSLN: DESELN: MMXULN: LPHD

DataObj DataObj DataObj DataObj

LD: Solar Panel

LN: MMXU

DataObj
 

Figure 3-8 IEC 61850 framework for smart EV charging 

There are one gateway, 4 EV chargers in each EVSE. Each charger is associated with one mobile 

app, i.e. one user can only use his mobile app to access data of the charger plugged in his EV. The 

data in each IED should be made available to all other IEDs in the network. Logical device gateway 

acts as an interface between the EVSE and outside network and not responsible for any data 

measuring and processing tasks. Logical device charger performs all interactions with EV, 

including authentication, charging control and monitoring. There are two logical nodes assigned 

to the charger, i.e. MMXU for data measuring and DESE for authentication and monitoring. 

Logical device mobile app is the user end charging control interface. User preference in the mobile 

should also be made accessible by IEDs, thus a DECS logical node is assigned to the mobile app 

to satisfy this need. Logical device solar panel provides real-time value of generated power to 

control center for the decision-making by charging scheduling algorithms. A logical node MMXU 

is assigned to this measurement unit.  

3.3.4 Logical Node and Data Set Design 
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Several chapters of IEC 61850 are related to the logical node data set design. IEC 61850-7-2 is 

used for the design of data set, and it defines structure of data objects (DO) in the logical node. 

IEC 61850-7-3 is used to define the common data class (CDC) in the communication structure. 

IEC 61850-7-4 is used to select logical node classes and data classes. IEC 68150-90-8 is for logical 

node related to E-mobility, EV and EVSE. Data set of 4 different types of logical node in IED are 

shown in Table 3-2. 

Table 3-2 LN: MMXU IN CHARGER 

MMXU Class 

DO DA CDC Explanation 

Timestamp stVal INC Charging session start time 

PhV mag MV Charging voltage 

A mag MV Charging current 

Hz mag MV Grid frequency 

PF mag MV Power factor 

W mag MV Charging active power 

VA mag MV Charging apparent power 

TotWh mag MV Total active power consumption 

 

MMXU is a measurement type LN. MMXU logical node in the charger LD has 8 data objects. 

They represent the charging parameters in real-time including the charging voltage, current, power 

and total energy consumed, etc. Charging parameters are retrieved by the control center via 

gateway with a predefined time interval for smart charging algorithm analysis. Data object (DO) 

is the element in SCL file that contains the definition of data values in IEC 61850 format. Data 

attribute (DA) is the element inside a DO which defines the data type of a data object. DA can be 

status value (stVal), magnitude (mag), etc. Common data class (CDC) is properties of data object. 

CDC are mapped into concrete object definitions that are to be used for a particular protocol (e.g. 
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MMS) for communication. In Table 3-2, there are two CDC types, where INC stands for 

controllable integer status and MV stands for measured value. 

Table 3-3 LN: DESE IN CHARGER 

DESE Class 

DO DA CDC Explanation 

MeterStatus stVal INC A flag shows meters on/off 

RelayStatus stVal INC A flag shows charger relay status 

DutCycle mag MV Current PWM duty cycle on CP 

ID stVal INC ID number of charger 

Organization stVal INC The organization EVSE belong to 

AccessUsername stVal INC Name of charger user 

Availbility stVal INC Charger is ready for charging 

Offline stVal INC Whether the charger is offline 

 

Table 3-4 LN: DECS IN MOBILE APP 

DECS Class 

DO DA CDC Explanation 

Price stVal INC Real time energy price 

Threshold mag MV User price preference level  

requireEnergy stVal INC Indicate the user charging demand 

EnergyRequired mag MV The amount of energy needed 

StartTime stVal MV Charging start time 

Duration mag MV Whole charging session time span 

 

Table 3-3 shows another logical node named DESE inside the charger logical device. DESE 

records user information and charger status. The data sets in DESE are obtained at the beginning 

of charging session except DutCycle, which contains the PWM duty cycle on the control pilot line 
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between EVSE and EV. The duty cycle determines charging current rate and may be changed 

during charging session by the control of smart charging algorithm.  

Table 3-4 is the logical node data set in the mobile app logical device.  These data are exchanged 

between the control center and user mobile app, representing user charging preference and demand. 

Table 3-5 is logical node in the solar panel, showing the photovoltaic power generated by solar 

panels connected with the smart charging infrastructure. 

Table 3-5 LN: MMXU IN SOLAR PANEL 

MMXU Class 

DO DA CDC Explanation 

PV mag MV Power generated by solar panels 

 

3.3.4.1 SCL File and Web Service 

With all of these charging data and parameters mapped into IEC 61850 abstract data model, an 

SCL file is then written to carry the data. SCL file is used in IEC 61850 standardized 

communication between the controllable devices. 

Before IEC 61850 integration, charging data and parameters are communicated in JSON and 

proprietary string formats between EVSE, control center and mobile apps. To integrate with IEC 

61850 in the communication, a web service is developed to extract data from JSON files and 

strings, then map them into IEC 61850 SCL file data objects. The web service can also read data 

values in SCL file and map them back to JSON and string files. The web service serves as the 

interface to standardize the communication in the smart charging infrastructure.  

The web service interface guarantees that all the charging related data inside the control center are 

in IEC 61850 format. With the integration of IEC 61850 by web service interface, all incoming 
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charging data to the control center are standardized into IEC 61850 SCL format, thus open to all 

other IEDs and smart grid applications in the network using IEC 61850 to read and manipulate, 

greatly improving the interoperability. All outgoing data are converted back to private protocols 

to be processed by particular local devices.   

Figure 3-9 shows the visualization of integrated charging information with IEC 61850 data frame 

in SCL file. The information and data models are extracted during the simulation of real-world 

charging events. Left hand side of Figure 3-9 is the hierarchy architecture of IEC 61850 model, 

while some data object value extracted from hardware and meters are displayed on the right. 

Charging data and user preference are processed by the web service and stored in certain SCL data 

object. As shown in the figure, solar panel generation, charging power, real-time energy price, 

estimated remaining charging duration etc., which are critical parameters in ECSA, are mapped 

into the standardized IEC 61850 SCL data objects and ready to be used by the charging scheduling 

algorithm.   
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Figure 3-9 IEC 61850 SCL file visualization 
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3.4 Summary 

In this chapter, event-based EV energy scheduling algorithm is developed based on predictive 

scheduling framework discussed in Chapter 2. ECSA has been demonstrated with the capability 

to reduce the number of unnecessary computations while maintaining a high level of energy 

delivery rate and system cost performance. With a variety of parameters, including the physical 

device status and the parameters in scheduling algorithms, IEC 61850 has been extended to 

implement such as smart EV charging system. With this IEC 61850 integration, the smart charging 

data and new features such as mobile app, current sharing are standardized into SCL configuration 

file, making them immediately available to any smart grid device and applications. Thus the works 

in this chapter not only extend the content of IEC 61850 in smart charging field but also greatly 

improve the scalability and interoperability of smart charging infrastructure. 
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Chapter 4 Load Flattening with 

Uncertainties 

Un-coordinated Electric Vehicle (EV) charging can create unexpected load in local distribution 

grid, which may degrade the power quality and system reliability. As higher penetration of 

distributed energy resources (DERs), including EVs, renewable generation, battery energy storage 

system (BESS), etc. into the grid, grid services are needed to flatten the power/load fluctuation. 

The uncertainty of EV load, user behaviors and other types of DERs in the distribution system, is 

one of challenges that impedes optimal control for EV charging problem. Previous researches did 

not fully solve this problem due to lack of real-world EV charging data and proper stochastic model 

to describe the properties of DERs in a microgrid, including building load, solar generation and 

EV power consumption, etc. In this chapter, we extend the predictive EV energy management 

framework discussed in chapter 2, to support the scenarios in a microgrid scenarios. The 

scheduling objective is to reduce load variation caused by the system uncertainties, under the 

constraints of individual component. Current-multiplexing function in each Electric Vehicle 

Supply Equipment (EVSE) is considered and accordingly a virtual load is modeled to handle the 

uncertainties of future EV energy demands, which is different from the virtual load constraint 

defined in chapter 2. Additionally, IEC 61850 protocol is utilized to standardize the data models 

involved in this framework, which brings significance to more reliable and large-scale 

implementation to improve the interoperability. This system is validated by the real-world EV 

charging data collected on the UCLA campus and the experimental results indicate that our 
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proposed model not only reduces load variation up to 40% but also maintains a high level of 

robustness.  

4.1 Introduction 

Electric Vehicle and corresponding charging infrastructure have received much attention in recent 

years due to the lack of fossil fuel and pressure from government to reduce carbon emission. The 

initiative from California government, 1 million zero-emission EVs are expected to be on road by 

2020[79]. Accordingly, there will be more Electric Vehicle Supply Equipments (EVSEs) to be 

installed as the penetration of EV increases in the foreseeable future. Un-coordinated Electric 

Vehicle charging can create unexpected load in local distribution grid, which may degrade the 

power quality and system reliability[80]. Many pioneer researches[15], [30], [73], [75], [81], [82] 

on advanced charging infrastructure, including both software and hardware that are developed to 

facilitate the acceptance of EVs. However, it is still a challenging task to regulate numerous EV 

charging behaviors in real-time due to the following reasons: 1) the randomness of EV user 

behaviors, such as arrival time, departure time and energy demand; 2) complexity of stochastic 

models that comprehensively describe the loads, renewables and EVs. Thus, more efforts should 

be made to design a real-time energy scheduling system that considers the above factors. 

Previous researches have proposed several viable scheduling schemes for deferrable load control. 

An optimal distributed charging protocol is designed and implemented in simulations with a large 

number of EVs in [35]. Valley-filling and load-following strategies are proposed to provide grid-

side regulations with deferrable EV load. However, these solutions assume static travel schedules 

for EV users without uncertainties, which is not true in reality. Price-based charging algorithm is 

designed and implemented with user preferences in [81]. Uncertainties of renewable generation 
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and EV load are considered in [36], [37], [48], [64]. [36] utilizes receding horizon scheduling 

techniques based on MPC to handle uncertainties of EV arrival and renewable generation 

periodically. In addition, in [36] a proof for optimality is provided given the Gaussian noise of 

baseload. However, the estimation for the short-term EV energy demand is derived from a simple 

assumption rather than from real-world EV energy consumption data, which undermines the 

problem formulation and the simulation results. The power consumptions for different EVSEs are 

also assumed to be un-correlated and no power sharing scheme exists. The EVSE [73] designed 

and manufactured by UCLA Smart Grid Energy Research Center (SMERC) has the capacity to 

allow multiple charging sessions at the same time by power-sharing and current-multiplexing 

circuit design. Event-based scheduling algorithms, considering random user behaviors are 

developed in [15]. Vehicle-to-Grid and Vehicle-to-Building services [30], [82] are developed for 

various EV energy consumption scenarios. Accordingly, smart EV charging algorithms are 

designed to support more complex functions that satisfy both EV energy demand and also provide 

grid-side services, such as load flattening and load following. 

In this chapter, we proposed a new real-time EV charging scheduling algorithm inspired by MPC, 

which is designed and simulated in a micro-grid scenario, including building load, solar generation 

and EV load. A dynamic load estimation and a predictive optimization module are implemented 

to handle the uncertainties in system. The contributions of this chapter can be summarized as: 1) 

Current-multiplexing is considered in the problem formulation and accordingly a virtual load for 

each EVSE is modeled to simulate the uncertain short-term EV energy demand. 2) Dynamic 

estimation method based on K-nearest neighbor (KNN) are utilized for charging session 

parameters. 3) Online predictive optimization method based on MPC is formulated with the 

objective to flatten the system load in a microgrid scenario, considering the uncertainties of 
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building load and user behaviors; 4) IEC 61850 is utilized to standardize the information exchange 

by modeling the data involved in this algorithm, which gives practical meaning to more reliable 

and large-scale implementation. 

4.2 System Overview 

4.2.1 System Architecture 
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Figure 4-1 System overview 

The proposed system architecture is illustrated in Figure 4-1. In general, the system has 5 main 

components, i.e. EVSE, building load, solar generation, client mobile application and a control 

center. Real-time energy consumption data with user index and device ID are retrieved and 

transmitted through advanced communication networks [74] constructed within UCLA campus, 
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and finally stored in a central database. EVSEs [81] are controllable by commands from scheduling 

service on server side or client mobile applications, via assigning different duty-cycles to different 

outlets that share the same power source from the grid. The mobile application can perform the 

remote control function for each EVSE in our system. Based on the real-time power data from all 

engaged buildings, solar generation sites, EVSEs and mobile charging requests, scheduling 

services are able to compute periodically for an optimal EV energy scheduling given dynamic 

estimation of short-term energy demand. The building load used here is from Cornell University 

Facilities Service[83] and the solar data is from UCLA Ackerman Union Solar Integration project 

[84]. To support reliable and large-scale implementation, IEC 61850 is implemented in EVSE 

gateways and the control center to encode/decode all the involved data and communication. This 

architecture has been tested by real EV users in UCLA and is friendly to more advanced charging 

algorithms. 

4.2.2 IEC 61850 Protocol and Integration 

 

Figure 4-2 Communication and data modeling using IEC 61850 
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IEC 61850 is an international standard that provides a standardized framework that specifies the 

communication protocols, originally for power substation automation [85].The advantages include 

interoperability, free configuration and long-term stability [86]. A specialized IEC 61850 gateway 

is designed as communication interface for both control center and EVSE in our system. Data 

models, that include power information, EVSE status, charging requests and control signals, are 

all encoded as virtual components in xml-based messages to improve the system interoperability 

and reliability. Figure 4-2 is the schema view of communication and data modeling for EV system, 

based on IEC 61850 protocol. 

4.3 Problem Formulation 

4.3.1 Dynamic Parameter Estimation 

The optimization method in this chapter is based on the framework discussed in Chapter 2, which 

is an online optimization method inspired by Model Predictive Control (MPC) and computes 

optimal schedules periodically in the future, however just realize the first element in the schedule 

results. The procedure continues in every step, taking the updated system states into consideration. 

The details of this framework can be found in Chapter 2. In our system, the optimization program 

needs to involve the estimations of leave time and energy consumption values for all the active 

charging sessions. Thus, proper estimation methods play a significant role in improving the system 

performance. The leave time and energy consumption values are estimated dynamically, using K-

nearest neighbor (KNN) method. 

4.3.1.1 Session Parameter Estimation 
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Each charging session, with a number of properties values, such as user index, device ID and start 

time, finish time, leave time and energy consumption, are stored as a record in database. We model 

each record associated with a charging session as a tuple: 

𝑠 ≔ (𝑢𝑛, 𝑡𝑠, 𝑡𝑓 , 𝑡𝑙, 𝑒, 𝑑) 

where 𝑢 is the user index for this session, 𝑑 is the EVSE ID or power source ID. 𝑡𝑠, 𝑡𝑓 denotes the 

start time and finish time for the charging session, respectively; 𝑡𝑙 is the leave time; 𝑒 denotes the 

energy consumption. K-nearest neighbor (KNN) method is utilized to estimate 𝑒 and 𝑡𝑓. In general, 

KNN calculates the weighted mean of neighbor values, which are among top 𝑘 smallest distances 

with input value. In our case, the start time and stay duration in qualified sessions with top 𝑘 

smallest distances with current session value are extracted from database and averaged with 

weights.  

 𝑑𝑖𝑠𝑖,𝑗 = ‖𝑠𝑖. 𝑡𝑠 − 𝑠𝑗. 𝑡𝑠‖ (4.1) 

 𝑤𝑖 =
𝑑𝑖𝑠𝑘+1,𝑗 − 𝑑𝑖𝑠𝑛,𝑗

𝑑𝑖𝑠𝑘+1,𝑗 − 𝑑𝑖𝑠1,𝑗
 (4.2) 

where 𝑑𝑖𝑠𝑖,𝑗 denotes the distance between session 𝑠𝑖 and session 𝑠𝑗;  wi denotes weight of the ith 

session 𝑠𝑗. 

 𝑒̂𝑛 =
1

𝑘
⋅ ∑ 𝑤𝑖 ⋅ (𝑠𝑖. 𝑒)

𝑘

𝑖=1

 (4.3) 

 𝑡̂𝑛,𝑓 = 𝑡𝑛,𝑠 +
1

𝑘
⋅ ∑ 𝑤𝑖 ⋅ (𝑠𝑖. 𝑡𝑙 − 𝑠𝑖. 𝑡𝑠)

𝑘

𝑖=1

 (4.4) 

where 𝑒̂𝑛 and 𝑡̂𝑛,𝑓 are estimations of energy consumption and stay duration; 𝑘 denotes the total 

number of qualified sessions. 
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4.3.1.2 Virtual Load Estimation 

Since the hardware we are modeling has the power sharing and current multiplexing function, it 

means that the charging schedules for vehicles connected to the same power source will interact 

with each other. If taking uncertainties of future EV energy demands into consideration, the 

proposed system models an additional virtual EV load for each power source to account for the 

potential deviation. For each EVSE, historical data are extracted to construct the estimation of 

future EV load demand. Two steps are needed for dynamic virtual load estimation, i.e. total 

demand estimation and real-time update for remaining demand. Total demand after time 𝑡 can be 

computed offline for all charging sessions in one specific EVSE: 

 𝐷𝑡
𝑘 =

1

𝑀
⋅ ∑ 𝑠𝑖. 𝑒

𝑖=𝑀

𝑖=1

 (4.5) 

where the qualified session 𝑠𝑖 is subject to 𝑠𝑖. 𝑡𝑠 = 𝑡 and 𝑠𝑖. 𝑑 = 𝑘. Based on this methodology, we 

process the historical data for each EVSE on the UCLA campus and the remaining demand values 

are shown in Figure 4-3.  

Real-time EV energy demand will be updated based on current active charging sessions in power 

source 𝑘 and their estimated energy consumptions. The update for virtual load is illustrated in the 

following equation: 

 0 ≤ 𝑟𝑣
𝑘(𝜏) ≤ 𝑟𝑣

𝑚𝑎𝑥. 𝜂, ∀𝜏 ∈ [𝑡, 𝑡𝑣,𝑓
𝑘 ] (4.6) 

 𝑡𝑣,𝑓
𝑘 = max (𝑠𝑖. 𝑡𝑓) (4.7) 

 
𝑒𝑣

𝑘 = max (0, 𝐷𝑡
𝑘 − 𝐷𝑡𝑓

𝑘 −  ∑ 𝑠𝑖. 𝑒

𝑖∈𝑁

) (4.8) 
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Taking the blue curve as an example, each data point 𝐷𝑡 denotes the expected energy demand by 

EVs on this EVSE after time 𝑡. At the beginning of each day, the estimated value is 34 kWh and 

the value drops due to the new vehicles arrives with energy demand. Note that, 5:30 AM to 8:00 

AM is the period with highest chance of new energy demand during the day. At each time step, 

the expected energy demand by future vehicles will be generated based on this curve using 

equation (3.6) and (3.7). 

 

Figure 4-3 Remaining EV charging demand for different EVSEs 

The virtual load charging rate 𝑟𝑣
𝑘(𝑡) for power source𝑘 is modeled as a regular EV load and will 

be input into the overall optimization problem. That is to say, there will be the 5-th charging station 

added to EVSE with original 4 charging stations, exclusively to simulate the future EV demand.  

 ∑ 𝑟𝑣
𝑘(𝜏)

𝑡𝑣,𝑓

𝜏=𝑡

= 𝑒𝑣
𝑘

 (4.9) 

4.3.2 Load Modeling with Uncertainties 
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4.3.2.1 Building Load and Solar Generation 

The power consumption for the building and solar power generation cannot be exactly known in 

advance and there exists little variation between different days. In this scheduling strategy, wiener 

filter and historical data are combined as a simple load predictor.  

 𝑃𝑏(𝑡) = 𝑃𝑏
𝑒(𝑡) + 𝑃𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅ (4.10) 

 𝑃𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅ = 𝑃𝑑(𝑡)̅̅ ̅̅ ̅̅ ̅ − 𝑃𝑠(𝑡)̅̅ ̅̅ ̅̅  (4.11) 

where 𝑃𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅ denotes the average value of base load at the time 𝑡, which is the difference between 

average building power consumption value 𝑃𝑑(𝑡)̅̅ ̅̅ ̅̅ ̅ and the average solar generation value 𝑃𝑠(𝑡)̅̅ ̅̅ ̅̅ . 

𝑃𝑑(𝑡)̅̅ ̅̅ ̅̅ ̅ and 𝑃𝑠(𝑡)̅̅ ̅̅ ̅̅  can be simply obtained by averaging historical data for time 𝑡. The assumption 

for wiener filter is that the estimation error can be accumulated by previous steps and thus, real-

time error calculation is performed by: 

 𝑃𝑏,𝑡
𝑒 = ∑ 𝜉(𝑖) ⋅ 𝑓(𝑡 − 𝑖),      ∀𝑡 ∈ [1, 𝑇]

𝑖=𝑇

𝑖=1

 (4.12) 

where 𝑃𝑏,𝑡
𝑒  is the error between real base load and predicted average baseload at time 𝑡. 𝜉 is an 

identically distributed random variable with zero mean and variance 𝜎2. 𝑓 is the impulse response 

of a causal filter, with following form: 

 𝑓(𝑡) = {
0, 𝑡 < 0

𝑎−𝑡, 𝑡 ≥ 0
 (4.13) 

Thus, the prediction error for current time 𝑡 is only the summation of the previous estimation errors 

with different weights. Note that 𝑓(0) = 1. 

4.3.2.2 EVSE Model 
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Due to the characteristics of our EVSE design, more than one vehicle can share the power source 

at the same time, which means each charging session has separate constraints. For each connected 

vehicle, we use 𝑟𝑛 = {𝑟𝑡𝑠
, 𝑟𝑡𝑠+∆𝑡, 𝑟𝑡𝑠+2⋅∆𝑡, … , 𝑟𝑡𝑓

}  to denote the power consumption rates from 

session start time 𝑡𝑠  to session finish time 𝑡𝑓 . 𝛥𝑡  is the time step we use in this chapter. The 

constraint for each charging session: 

 0 ≤ 𝑟𝑣
𝑘(𝑡) + 𝑟𝑛

𝑘(𝑡) ≤ 𝑟𝑘
𝑚𝑎𝑥. 𝜂, ∀𝑡 ∈ [𝑡𝑛,𝑠, 𝑡̂𝑛,𝑓] (4.14) 

where 𝑟𝑛
𝑘(𝑡) is the power consumption rate for vehicle 𝑛, which is connected to power souce 𝑘, at 

time 𝑡. 𝑟𝑘
𝑚𝑎𝑥 is the maximum power supply for power source 𝑘; 𝜂 is the safety coefficient for this 

power source. 𝑡̂𝑛,𝑓 denotes the estimated finish time for vehicle 𝑛.  

For each power source (EVSE), the same limitation of total power consumption also applies: 

 
0 ≤ 𝑟𝑣

𝑘(𝑡) + ∑ 𝑟𝑛
𝑘(𝑡)

𝑛∈𝑁𝑘

≤ 𝑟𝑘
𝑚𝑎𝑥 . 𝜂, ∀𝑡 ∈ [𝑡𝑛,𝑠, 𝑡̂𝑛,𝑓] (4.15) 

where 𝑁𝑘 denotes the number of active charging sessions for power source 𝑘.  

4.3.2.3 User Model 

Each charging session in our system is labeled with a number of properties, such as user ID, session 

start time 𝑡𝑛,𝑠, session finish time 𝑡𝑛,𝑓, vehicle leave time 𝑡𝑛,𝑙 and the session energy consumption 

𝑒𝑛. At the beginning of each charging session, estimation algorithm will calculate the predicted 

energy consumption 𝑒̂𝑛 and the real energy consumption should be larger than the predicted value, 

but less than battery capacity 𝐸𝑛: 

 𝑒̂𝑛 ≤ 𝑒𝑛(𝑡𝑛,𝑓) ≤ 𝐸𝑛  (4.16) 

As the time goes on, energy consumption is accumulated at each time interval: 
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 𝑒𝑛(𝑡) = 𝑒𝑛(𝑡 − ∆𝑡) + 𝑟𝑛(𝑡) ⋅ ∆𝑡,   ∀𝑡 ∈ [𝑡𝑛,𝑠, 𝑡̂𝑛,𝑓] (4.17) 

4.3.2.4 Receding Horizon Control 

Algorithm 4: Predictive EV Scheduling Algorithm (PESA) 

Calculate baseload 𝑃𝑏,𝑡
̅̅ ̅̅̅ by averaging historical data; 

Estimate EV demand for each EVSE: 𝐷𝑡
𝑘, using (4.1)(4.2)(4.5); 

𝑡 = 1; 

Do 

Estimate 𝑃𝑏(𝑡) with error using (4.10)(4.11)(4.12); 

For each vehicle 𝑛 ∈ 𝑁: 

Estimate leave time 𝑡̂𝑛,𝑓 and energy consumption 𝑒̂𝑛 for vehicle 𝑛,         

using (4.3)(4.4); 

End 

Estimate virtual load parameters, using (4.1)(4.2), (4.6) - (4.9); 

Solve problem (4.18) ,subject to (4.8)(4.9), (4.14) - (4.17); 

For each vehicle 𝑛 ∈ 𝑁  

Implement 𝑟𝑛(𝑡) 

End 

𝑡 = 𝑡 + 1 

While 𝑡 ≤ 𝑇 

 

At each time interval, the scheduler on control center will call optimization program to compute 

for an optimal EV charging schedule, considering the estimated travel schedules and energy 

consumption values for all active charging sessions. To minimize the overall load fluctuations, the 

optimization problem, referring to [8], is modeled as: 

𝑂𝑏𝑗:  
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 min ∑(𝑃𝑏(𝜏) + ∑ 𝑟𝑛(𝜏)

𝑛∈𝑁

−
1

𝑇 − 𝑡 + 1
⋅ (𝑃𝑏(𝜏) + ∑ 𝑟𝑛(𝜏)

𝑛∈𝑁

))2

𝜏=𝑇

𝜏=𝑡

 (4.18) 

𝑠. 𝑡.  (4.8), (4.9), (4.14) - (4.17) 

After the algorithm initiation, the base load that consists of building load and solar generation, and 

EV demand will be estimated. At each time interval, parameters for all active charging sessions in 

system will be extracted from database, and virtual load will be estimated to solve the optimization 

program. Only the first element in scheduling results  𝑟𝑛(𝑡) is used to control specific EVSE and 

then algorithm moves forward to next time interval. This procedure repeats until the end of the 

day. The whole algorithm is summarized in Algorithm 4. 

4.4 Results and Discussion 

In this section, results from PESA is discussed, based on comparisons with those algorithms 

without considering uncertainties. The overall load variation is utilized as metric for performance 

evaluation of PESA. Potential improvements are also discussed.  

4.4.1 Experiment setup 

Real-world charging records from users on the UCLA campus are utilized for our experiment setup. 

One day in March, 2015 is randomly selected as a test day. There are totally 21 charging sessions 

from multiple users on test day, associated with all Level II EVSEs. We set the time interval Δ𝑡 

for all data preprocessing and PESA to 15 minutes, which is long enough considering our problem 

size and performance requirement. The standard variance 𝜎  of 𝜉  is set to 2 according to our 

observation and 𝑎 is set to 0.4 in the wiener filter. Safety coefficient 𝜂 is set 0.9. CVX package 

[60] is used for solving the optimization problem in each step. As shown in Figure 4-4, real-world 
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data of building load for 70 days has been extracted from the database [83]. Note that, not all 

buildings on the campus are selected as test samples.  

 

Figure 4-4 Building load data 

Meanwhile, the corresponding solar generation data is displayed in Figure 4-5. According to the 

equation (4.10) – (4.13), the baseload is obtained by subtracting solar generation values from the 

build load, to represent the nominal power demand in microgrid, except EV charging load. Thus, 

the objective here becomes to utilize the EV charging load with uncertainties to flatten the baseload 

curve. Based on the historical records, the emulated baseload curved is generated and shown in 

Figure 4-6 (blue dotted curve). The read curve is the historical average of the baseload in each 

time interval of the day, denoted by 𝑃𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅ in equation (4.11). The emulated blue dotted curved is 

latter used in optimization program, i.e. equation (4.18). 
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Figure 4-5 Solar data from UCLA solar integration project 

 

Figure 4-6 Baseload modeling 

4.4.2 Scheduling Results and Future Improvements 
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Figure 4-7 Predictive Scheduling Results 

In Figure 4-7, the brown step curve is the baseload generated by (4.10) - (4.13) on the test day and 

the red dotted curve is the original EV load caused by the real-world charging behaviors. PESA is 

performed every 15 minutes and only the first schedule elements from the output is implemented. 

The blue curve is the new energy consuming schedules created by PESA. Visually, there is a 

portion of EV load is shifted from around 9:00 AM to 2:00 PM. Thus, the total load with EV, solar 

generation and building load is updated as the green curve in Figure 4-7. Thus, PESA’s ability for 

valley filling is demonstrated.  

Table 4-1 Comparison of load variation 

 With PESA Without PESA 

Load Variation 40.1413 70.7471 

 

Quantitatively, equation (4.18) can serve as a numerical metric for load variation. After applying 

the updated EV load, the variation values for system loads with and without PESA are compared 

in Table 4-1. Scheduled EV load with PESA can reduce the load variation drastically by more than 

40%. 
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However, it should be noted that there is a slight difference between original total EV energy 

consumption and the new total EV consumption, which is reflected by the areas under the red-

dotted curve and the blue curve, respectively. This deviation, caused by uncertainties of user 

behaviors, can be used as another criteria for performance evaluation.  We define Average 

Schedule Error Rate (ASER) to represent this deviation: 

 𝐴𝑆𝐸𝑅 =
1

𝐿
⋅ ∑

𝑒𝑛 − 𝑒𝑛,𝑐

𝑒𝑛

𝐿

𝑛

⋅ 100% (4.19) 

where 𝑒𝑛  is the original energy consumption for one charging session. 𝑒𝑛,𝑐  is the energy 

consumption obtained from PESA. 𝐿 denotes the number of charging sessions on a particular 

EVSE. Smaller ASER values denote less deviations and higher levels of satisfactions of energy 

demand from EV users. For each level II EVSE in experiment, single ASER is calculated as well 

as the overall value in Table 4-2. 

Table 4-2 ASER values for different EVSEs 

EVSE ID EVSE 1 EVSE 2 EVSE 3 EVSE 4 Overall 

ASER(%) 7.4061 24.6687 1.6531 19.6281 14.9745 

 

After comparing different ASER values for different EVSEs, we find that, for EVSE 2 and EVSE 

4, there are users, whose travel schedules and energy demands have quite large deviations from 

their historical routines, i.e, they leave unexpectedly at a much earlier time than before or demand 

much higher energy than usual. Even though the overall deviation level represented by ASER 

values are acceptable, users, whose daily charging behaviors are beyond estimations, will 

undermine the overall scheduling results. To solve this problem, the resemblance between current 

charging session and historical sessions should be estimated dynamically based on more 

information extracted from live system. 
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4.5 Summary 

In this chapter, a predictive EV scheduling algorithm (PESA) is developed, taking into account the 

uncertainties of building load, renewable generation and EV load. Specifically, Wiener filter is 

utilized to model the intermittency of solar generation and building load, and virtual EV load is 

formulated based on the historical charging records. The simulation results indicate that PESA 

reduces the system load variation and maintains high level of satisfaction for energy demand from 

EV users.  
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Chapter 5 Price-based EV Charging 

Strategies  

In this chapter, we propose and implement a smart Electric Vehicle (EV) charging algorithm to 

control the EV charging infrastructures according to users’ price preferences. Charging boxes 

(EVSEs), equipped with bi-directional communication devices and smart meters, can be remotely 

monitored by the proposed charging algorithm applied to EV mobile app. On the server side, 

ARIMA model is utilized to fit historical charging load and perform day-ahead prediction. A 

pricing strategy with energy bidding policy is proposed and implemented to generate a charging 

price list to be broacast to EV users through mobile app. On the user side, EV drivers can submit 

their price preferences and daily travel schedules to negotiate with Control Center to consume the 

expected energy and minimize charging cost simultaneously. The proposed algorithm is tested and 

validated through the experimental implementations in UCLA parking lots. 

5.1 Introduction 

Electric Vehicle (EV) is considered as the innovative technology to gradually replace petroleum-

driven vehicles that rely on diminishing reserves of crude oil [80], [87], [88]. Accordingly, many 

governments are now establishing clear deployment goals for EVs.  The U.S. government, for 

instance, aims to achieve one million EVs on the road by the year 2015 [89], and up to 35% of 

total vehicles by 2020 [50]. Since the EV motors are powered by rechargeable battery sets, EVs 

need to be charged periodically. However, the increasing penetration of EVs will have a serious 
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impact on the power grid in uncontrolled charging scenarios, or named “dumb” charging. For 

example, the emerging fleet of EVs will introduce considerable amount of addition load, which 

potentially increases peak demand or generates new peak, and increase demand side uncertainties 

to local distribution power system. Even a small penetration of EVs might result in the 

unacceptable disturbance in power grid. Therefore, smart charging strategies become significantly 

important to schedule EV charging behaviors intelligently and effectively.  

There are a number of EV smart charging studies have been addressed to date (see e.g. [33], [90]–

[92]). The algorithm proposed in [33] introduced a method to maximize the electricity energy that 

is to be delivered to all the EVs in a fixed period of time. In [90], an operating framework for 

aggregators of EVs has been proposed, and a minimum-cost load scheduling algorithm is designed 

to determine the energy transaction strategy in the day-ahead market. The problem of optimizing 

EV charge strategy in order to reduce the energy cost and battery degradation is proposed in [91]. 

The intelligent EV scheduling method in [92] is based on the parking lot level to maximize the 

profit in grid power transactions. However, none of these studies considers charging behavior of 

EV users, and there is a lack of real-world implementations to support their algorithms through the 

testing EV infrastructures.  

Many researches for “smart” algorithms to regulate EV charging behaviors have been proposed. 

Generally, they can be divided into  three categories: centralized control [29], [32], [34], distributed 

control [35] and time of use (TOU) price based control [32], [93] on the side of utility and 

aggregator. However, these studies are non-practical, and they are conventionally based on static 

scenarios, where the model parameters (e.g. number of EVs, EV battery sizes, charging rates and 

schedule availabilities) are assumed to be known or fixed factors. On the other hand, vehicle arrival 

and departure are stochastic behaviors other than static assumptions. Additionally, lack of user 
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interaction mechanism with price and schedule preferences undermines the validity of the 

simulation results.   

In this chapter, we model an aggregator to regulate all charging facilities in UCLA parking 

structures, which can perform bi-directional communication with a control center configured in 

the lab. Users are able to manage their charging sessions with price and schedule preferences 

through mobile App. This software system implementation is based on the charging hardware 

developed by UCLA Smart Grid Energy Research Center (SMERC) equipped with wireless 

communication modules, current multiplexing circuits and smart meters [54]. Thus real-time 

charging profile, such as charging rate and meter status, can be obtained by control center and user 

mobile App to perform charging controls.  The algorithms on control center will be able to retrieve 

and pre-process the historical data into a proper format. ARIMA model is selected to model the 

real-world charging records in a fashion of time series. In the system model, we assume that 

Control Center is required to flatten the load curve based on day-ahead load prediction and 

generate corresponding price list for users to respond to. A simple price model is proposed to 

generate price according to the predicted load and the desired load curve. On user side, different 

price options (from highest to lowest) are available for selection, which indicates user’s charging 

will start only the price value falls below the accepted one.  

The objective of this chapter is to introduce, utilize and implement the proposed smart EV charging 

strategy considering user’s price preferences to demonstrate a user-friendly and grid-friendly EV 

charging infrastructure. The contributions can be summarized as the following. First, we 

implement a flexible charging scheme with control algorithms on both server side and user side. 

Second, we deploy a pricing policy with simple bidding strategy, considering aggregator’s 
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predicted charging load by ARIMA model and desired load profile. Third, the effectiveness of this 

algorithm to shift load from higher price period is validated by experiment data. 

5.2 System Model 

In the implementation of this smart charging system, generally there are three key components: 

server side control algorithms, user side mobile App and smart charging hardware, as shown in 

Figure 5-1.  

 

Figure 5-1 System overview 

On server side, control center is able to monitor and regulate all charging behaviors. Historical 

charging records are fitted into ARIMA model for day-ahead load prediction. The predicted EV 
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load is then applied into a pricing model to generate EV price list, with the desired system EV load 

curve considered. The interval for price list is set to one hour in this implementation. Power 

information and meter status for all charging boxes are automatically collected. The other 

functional module on server side is the controlling algorithm to dynamically regulate charging 

behaviors by splitting current or time quantum according to users’ varied schedule preferences and 

price preferences.  

On user side, a mobile app is deployed to enable users to manage charging sessions interactively. 

EV users, whose daily travel schedules may vary, are able to select charging profile, when they 

arrive in parking structures in campus. Then, after user selects charging facility, he/she will be able 

to select charging parameters and schedule preferences, including price options (from higher to 

lower) and estimated departure time listed in mobile App. The selected price is maximum price 

this user accepts, which indicates the charging will start when price falls below the accepted one. 

After selection of charging profile, the server will respond to this charging request and calculate 

the predicted energy supply based on users’ preferences and charging time range. If users do not 

agree with this arrangement, it is free for them to modify the charging preferences. This negotiation 

mechanism will help EV user avoid high prices intervals automatically. 

5.3 EV Demand Prediction by ARMA 

We average system-wide charging load on an hour basis for better prediction. As is shown in 

Figure 5-2 the system EV charging load indicates a periodicity property, i.e. the load has a similar 

pattern every other week and on each workday except Friday. However, the historical data is 

imperfect with data missing for certain time intervals and wrong value caused by hardware failure. 

Thus, data modification method is implemented to correct the data series.  
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Figure 5-2 EV load from Mar. 30th to Jun. 6th 

Autoregressive moving average (ARMA), as a stationary time series model, is chosen to model 

the data and perform prediction. There are two parts in ARMA model, i.e. autoregressive (AR) 

part with order p, and moving-average (MA) part with order q. The general expression is, 

 𝑋𝑡 − 𝜙1 ⋅ 𝑋𝑡−1 − ⋯ − 𝜙𝑝 ⋅ 𝑋𝑝−1 = 𝜖𝑡 − 𝜃1 ⋅ 𝜖𝑡−1 − ⋯ − 𝜃𝑞 ⋅ 𝜖𝑡−𝑞  (5.1) 

And 𝜖𝑡 is a white noise with 0-mean and variance equal to 𝜎𝜖
2. The procedures to handle historical 

charging load records are:  

 Error correction and data pre-process; 

 Determine orders for ARMA model, i.e. p and q; 

 Model fit, i.e. calculate 𝜙, 𝜃 values 

 Model validation, i.e. error analysis 

Since the raw data, even after modification, has non-stationarity property, differencing steps are 

necessary to transform into stationary time series. The seasonal factor is identified as 168 hours 

from plot, equivalent to one week, to remove data periodicity. Additionally, to make the model 
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stable without incremental and decremental trend, tY is first-order differentiated with adjacent 

values in time series. 

 𝑌𝑡 = 𝑋𝑡 − 𝑋𝑡−1 (5.2) 

 𝑊𝑡 = ∇1𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 (5.3) 

Akaike and Bayesian Information Criteria (AIC, BIC) is utilized to evaluate the selections of 

model orders. The prediction results are shown in Figure 5-3. 

 

Figure 5-3 Actual load vs. virtual load on Jun. 3rd 

5.4 Pricing  and Bidding Strategy 

5.4.1 Pricing Strategy 

The purpose of designing an appropriate pricing strategy is to encourage EV users to shift their 

EV charging load to a preferable time range. Since charging facilities are installed in a university 

campus, charging behaviors are believed to have similar patterns in terms of arriving time, leaving 

time and energy required by faculty and students. It is assumed that varied persons may have 
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different reactions towards price options, e.g. for a certain day, 20% of all customers are willing 

to pay the highest prices to charge enough energy as soon as possible. Another assumption is that 

electricity price is linearly related to system-wide load/demand, i.e. price increases as predicted 

demand increases. Thus, 24 prices, one for each hour, are generated day ahead, by taking both EV 

predicted EV charging load and desired load into consideration. The price is defined by: 

 𝑃𝑖 = 𝑃𝑏 + 𝛼 ⋅ (𝐿𝑖
𝑝 − 𝐿𝑖

𝑑) (5.4) 

iP denotes charging price in thi hour of current day, bP  denotes the base price for the EVSE selected, 

piL  is predicted load value for thi hour, diL  denotes the desired load value for thi hour.  is a 

coefficient defined to reflect the relationship between load and price. We offer users with 5 price 

options, from highest to lowest, as a charging threshold, i.e. accepted maximum price. As an 

example, if charging aggregator’s purpose is to dis-encourage EV users to charge between 1:00 

PM and 3:00 PM.  

5.4.2 Bidding Strategy 

For each level I EVSE, it has 4 outlets and only one input power source. Only one vehicle is 

allowed to charge due to the inner circuit design. Thus, the policy is to determine timing to switch 

from one vehicle to another according to users’ preferences and priorities. An accepted price 

threshold is select before users submit charging, which is assumed to reflect how urgent he/she 

needs to charge. As a result, a charging session with higher price has higher priority and is able to 

consume more energy within every time quantum. The criteria for algorithm to switch charging 

session is 



 

90 

 𝑇𝑖 = (𝑃𝑖/ ∑ 𝑃𝑘

𝑛

𝑘=1

) ⋅ Δ𝑇 = 𝛾𝑖 ⋅ Δ𝑇 (5.5) 

Where 𝑇𝑖 is continuous charging time since turned on last time, 𝑃𝑖 the price selected by 𝑖𝑡ℎ user, 

Δ𝑇 is the time quantum, denoting the timespan of EVSE control loop. 𝛾𝑖  is defined as priority 

coefficient according to bids provided by users for current EVSE.  

The scenario for level II is different since level II EVSE has higher power supply with ability to 

multiplex current. The EVSE selected for implementation has single power source (240V, 30A). 

Multiple outlets (stations) can charge at the same time but current for each outlet should be between 

5A (10% duty cycle) to 30A (50% duty cycle). Accordingly, the algorithm will determine the 

energy sharing policy in a current multiplexing manner. To determine each participating vehicle’s 

charging duty cycle (DC), a two-step process is conducted. The first step calculation will rule out 

the vehicles whose duty cycle values are lower than 10%, and second step will calculate again to 

reallocate the source current.  

 𝐷𝐶𝑖 = 𝐼𝑚𝑎𝑥 ⋅ (
𝑃𝑖

∑ 𝑃𝑘
𝑛
𝑘=1

) = 𝐼𝑚𝑎𝑥 ⋅ 𝛾𝑖 (5.6) 

where priority coefficient 𝛾𝑖 is defined as 𝛾𝑖 = (
𝑃𝑖

∑ 𝑃𝑘
𝑛
𝑘=1

). 

5.4.3 Billing Policy 

The final cost for participating users consists of not only expense for purchasing electricity but the 

fee for occupying the charging service priority. Thus, the final cost for each user can be expressed 

in a simple model with electricity price for specific hour, iP and current user’s priority ratio, 𝛾𝑖: 
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 𝐶 = ∑ 𝜂𝑘 ⋅ Δ𝑡 ⋅ 𝑃𝑘 ⋅ 𝑅𝑘 =

𝑘𝑙

𝑘=𝑘0

∑ (1 + 𝛽 ⋅ 𝛾𝑘) ⋅ Δ𝑡 ⋅

𝑘𝑙

𝑘=𝑘0

𝑃𝑘 ⋅ 𝑅𝑘  (5.7) 

Where C denotes the final cost, 𝜂𝑘 is the cost factor considering priority to occupy power source 

in 𝑘𝑡ℎ timeslot. For simplicity, we apply 𝜂𝑘 = 1 + 𝛽 ⋅ 𝛾𝑘  to include both the cost for purchasing 

electricity and priority service fee. 𝜂 denotes priority price coefficient and is set to 0.1 tentatively 

in experiment. 𝑃𝑘 is the price for 𝑘𝑡ℎ timeslot and 𝑅𝑘 is the charging rate in 𝑖𝑡ℎ timeslot. In both 

level I and level II charging scenarios, priority coefficient 𝛾𝑘  can be obtained by calculating the 

ratio of current user’s bid among all players in certain EVSE.  

5.5 Algorithms for Implementation 

Implemented algorithms on server side are capable of regulating charging sessions with dynamic 

arriving time, departure time and varied price preferences. For explanation, the simplified versions 

of implemented algorithms are illustrated Figure 5-4 and Figure 5-5.  

For level I EVSE, after each control loop starts, algorithm will select active charging sessions for 

current EVSE from database, and sort them by their accepted prices and departure time. Only the 

charging sessions, whose prices agree with user price preferences, can be retrieved. It is assumed 

that EV drivers, with higher accepted prices and earlier departing time, are in more urgent need 

for energy and will be given higher priorities than others. To guarantee the energy assigned among 

users in each time quantum is proportional to their priorities, algorithm calculates priority 

coefficient 𝛾𝑖 and the continuous charging time 𝑇𝑖 in each control loop. If current charging session 

has used up its portion of charging time in current time quantum, algorithm will switch from this 

charging to a lower one from charging session list. For level II EVSE, priority coefficients and 

corresponding duty cycle are calculated in a two-step manner. In the first step, charging session 
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will temporarily be disabled if the duty cycle calculated is lower than 10% or user accepted price 

is lower than current price. Then, after ruling out the unqualified charging sessions, algorithm will 

re-allocate the power source to each remaining session, proportionally to its priority coefficient. 

The charging sessions will be closed if current is lower than threshold or schedule deadline is 

reached.  
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Figure 5-4 Level I scheduling strategy 
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Figure 5-5 Level II scheduling strategy 
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5.6 Result Analysis 

To explain the energy sharing and scheduling mechanism, charging records for typical days are 

retrieved from database for analysis.  For level I EVSE, records for July 5th, 2014 are selected 

since there are 4 users submitted their charging sessions with different price preferences. The 

highest price is 15 cents/kWh, which happens around 13:30 PM.  

 

Figure 5-6 Level I experiment data 
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Figure 5-7 Level I cost vs. energy consumption 

According to experiment data shown above, the first user (user4) started charging around 7:00 AM 

in the morning with 11 cents/kWh and finished charging around 10:30 AM.  After a while, user2 

and user3 joined the energy sharing program and occupied charging periods, which are 

proportional to their priority coefficients. The last user, user1, selected the lowest price of the day 

around noon. Thus, his/her charging was disabled soon after charging session initialization and re-

activated after 16:00 PM when system price signal is lower than his/her accepted price. Since 

her/his duration of stay in campus is longer than other users, it is wise of her/him to wait until price 

is lower in latter hours and avoid higher price period. Charging cost plot implies that users may 

save charging cost by placing a proper price. Moreover, experiment results also suggest that users’ 

schedules with price preferences is potentially grid-friendly because the charging load for higher 

price period, usually also higher system load period, can be shifted to time intervals with lower the 

system pressure. 
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Figure 5-8 Level II experiment data 

 

Figure 5-9 Level II cost vs. energy consumption 

For level II EVSE, multiple vehicles can consume power from a single power source 

simultaneously. Charging records on July 29th, 2014, when the highest price is 37 cents/kWh, are 
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retrieved from database. As is shown in Figure 5-8, 4 active charging sessions are submitted by 

users. The first user (user1) selected a medium price (the third highest price) from the five price 

options offered by aggregator around 7:00 AM. When he is the only consumer for that EVSE, his 

priority coefficient 𝛾𝑖 is 1 and he was assigned with the maximum duty cycle. For circuit stability 

reason, maximum duty cycle for this EVSE is set to 45%. Around 8:15 AM, additional 2 users 

with higher prices submitted their charging sessions for that EVSE. Accordingly, the current is 

multiplexed for each user proportionally to 𝛾𝑖. Around 12:00 PM, as the system price increases to 

a level which is higher than both user1 and user4’s accepted prices, their charging sessions are 

disabled temporarily. Thus, user 2 with the highest price could consume all power supply until it 

finished charging. User1 and user4 halted their charging and waited for price to drop down. Finally 

user1 finished his charging around 17:00 PM. User 3 was unable to obtain any power supply, 

because the system price was never lower than her/his accepted price even she/he submitted 

charging schedule as from 9:00 AM to 12:00 PM. From the experiment results, charging sessions 

with higher price tend to charge at a higher rate and consume more energy than other users in the 

same period. Moreover, for users with longer time of stay in campus, a better price or bid strategy 

exists to charge enough energy, while save charging cost. The cost and energy consumption 

comparison is plotted in Figure 5-9. 

5.7 Summary 

In this chapter, we implemented a price-based smart charging algorithm in a university campus.  

ARIMA was applied to model the historical charging load and perform day-ahead prediction. We 

deployed a pricing strategy and a bidding policy, considering wholesale energy prices, predicted 

load and system desired load curve. The online scheduling algorithm has been implemented to 
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dynamically regulate charging sessions for a single EVSE according to price and schedule 

preferences. The experiment results indicate that the proposed strategy is beneficial for EV drivers 

in terms of cost saving and that it has potential to further optimize the EV energy allocations 

according to users’ preferences.   
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Chapter 6 System Architecture and 

Implementation 

6.1 Introduction 

A multi-layer EV energy management system (EMS) has been implement to regulate EV charging 

behaviors with various scheduling strategies. There are three main components in the hierarchical 

3-layer system architecture, i.e. smart Electric Vehicle Supply Equipment (EVSE), EV aggregated 

control center (EVCC), and the Integrated Super Control Center (iSCC). The major benefit of a 

centralized iSCC is to implement intelligent energy management strategies with a holistic 

consideration of the electricity market and resources within the entire microgrid, including Battery 

Energy Storage System (BESS), renewable generations, etc. In this chapter, we focus on the 

development and implementation of EVCC with components and interfaces to manage a number 

of charging devices and interact with the grid operation signals from upper layer. A communication 

network for all components in different layers is constructed to support the complex operations. 

EV energy scheduling algorithms within EVCC, with varied objectives and constraints, are 

developed to manage EV charging behaviors, considering the user energy price preferences, travel 

schedules, and the real-time grid signals from iSCC, utility companies or ISOs. For the entire 

energy management service, customized data models are constructed to support both the 

standardized and proprietary grid operations, e.g. demand response (DR), etc. The merits for this 

system can be summarized as follows: 
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 Multi-layer hierarchical architecture is developed to improve the system efficiency, 

reliability and interoperability, considering availability of other Distributed Energy 

Resources(DERs) in local distribution systems; 

 Customized data models are developed among components in different layers to support 

more flexible grid operations, such as demand response, etc.; 

 Adaptable application program interface (API) is developed with evolvable templates for 

energy scheduling algorithms and EVSEs. Based on that, the scheduling services are 

developed, incorporating the real-time DR signals; 

 User-friendly mobile applications are developed for EV drivers with interfaces to 

initiate/terminate/monitor charging sessions, as well as submitting personal energy 

management preferences. 

6.2 System Components and Integration 

In the hierarchical system shown in Figure 6-1, the first layer is the integrated super control center 

(iSCC), the second layer is the EV aggregator and other distributed resources in local distribution 

grid, such as solar PV generation, Battery Energy Storage System (BESS), and the third layer is 

the physical devices, i.e. the Electric Vehicle Supply Equipment (EVSE) with current multiplexing 

capabilities. With communication devices inside the EVSE, EV drivers/users are able to monitor 

and control the charging sessions for their vehicles via mobile applications. 

The iSCC performs management tasks considering both historical and real-time data for the 

components in the microgrid. Various algorithms can be implemented by iSCC to support 

microgrid regulation tasks, such as minimal EV power control, etc. In addition, iSCC has interfaces 

to communicate with each other component in microgrid with both standard and proprietary 
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protocols. For instance, OpenADR2.0a and a customized DR protocol are both supported between 

iSCC and the EV control center to aggregately control the EV energy consumption.  

Integrated 
Super Control 
Center(SCC)

Solar 
Generation

EV Aggregator 
Control Center

Battery Energy 
Storage 

System(BESS)

EVSE-1 EVSE-2 EVSE-n

1. Solar Power Info
1. DR Signal
2. Aggregated EV Power Info

1. Battery Power Info
2. Battery Control Signal

1. EV Charger Power Info
2. EV Charger Status Info
3. EV Charger Control Commend

 

Utility

 

DR Signal

1. EV Charger Power Info
2. User Charging Request
3. User Preferences

Market Info

Figure 6-1. System architecture 

EVCC manages both private EVs and public fleet EVs on the UCLA campus by real-time 

scheduling algorithms. It is capable of retrieving market information, including energy price 

signals from CAISO wholesale market, local utility or pricing services from third-party 

organization, and pulling real-time power/status information from a myriad of EVSEs on the 

UCLA campus. Based on the EV communication network, the scheduling algorithms that consider 

user preferences, energy prices, and DR signals from iSCC, are implemented to perform more 

efficient management of EV charging behaviors. 
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The EVSEs in the third layer of the implemented system have current multiplexing and power 

sharing capabilities, i.e. split the charging current to multiple connected vehicles from single power 

source, developed by UCLA SMERC. Network communication is also deployed in these devices 

to enable remote power monitoring and control functions. 

6.3 Customized Data Model 

To increase the system flexibility, multiple proprietary communication protocols and data models 

are developed. Data model for the communication between first layer and second layer is 

customized to include DR event parameters, exclusively for the parking structures and 

organizations. Similarly, the data model between second layer and third layer, is modified based 

on the combination of the real-time power information and charger status information. The details 

of their models are discussed as follows. 

At each time interval, the raw data packets retrieved from EVSEs are first parsed by the data 

collector service on the EV control center. Subsequently, charger status information is retrieved 

and combined with the previous power information to be inserted into the database table with the 

data model shown in Figure 6-2. The advantage of the modified data model comes from 3 aspects: 

1) completeness for power monitoring; 2) convenience to debug and troubleshooting, such as the 

[StatusErrorCode] field in the data model; 3) simplicity to process, i.e. each data tuple is labeled 

with a [Timestamp], which makes it easier to process large volume monitoring data.  
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Figure 6-2 Customized data models 

For the EV charging system implemented on the UCLA campus and other organizations with 

different numbers of parking structures, there exist different needs to perform varied DR events in 

different parking lots. However, the original data model definition from OpenADR 2.0a and 
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OpenADR2.0b, does not distinguish the signals for parking lots and organizations, which makes 

the system deployment less efficient and reliable in cases where load curtailment should be applied 

to specific locations. For the implementations at UCLA, each parking lot is equipped with different 

communication network, which requires different computation process to handle the power 

management for the EVs in different parking lots. Thus, the original OpenADR data model, which 

is meant to specify the properties of a DR event, is extended to include the following parameters: 

1) ParkingLotID, 2) OrganizationID, and 3) IsOpenADRVEN. Consequently, the scheduling 

service and database system at EV control center will be able to handles requests based on both 

standard OpenADR protocol and the proprietary ones, in which parking lot ID, event start time, 

event stop time and strategy ID, which specifies the different operation algorithm performed by 

EV control center, can be specified. With the additional flexibility, iSCC is able to issue more 

detailed DR signals to adapt to diverse local grid situations. Therefore, the modified data model 

improves the overall system flexibility and interoperability, especially in the case of 

implementations with multiple organizations.   

6.4 Application Program Interface (API) and Scheduling 

Service 

For monitoring and controlling the charging stations, we have developed the Application Program 

Interface (API) for EV charging system, which defines the patterns of communication and control 

signals to EV charging stations. Our design of API stems from the concept of OOP (Object 

Oriented Programming). We model the complex communications and control behaviors of 

charging stations as logically distinct classes. For instance, the EVSE class comprises the EVSEs 

and charging plugs of different levels, Chargingutility class provides functionality for web services 
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and web-based applications, and the Charging Algorithm class regulates the charging behaviors 

within control loops. This format provides a convenient scheme for developers to derive more 

EVSE and charging algorithm classes with different properties and methods. This format will also 

save time and energy for system administrators to maintain the EV charging system. In addition, 

we have also implemented other modules for use by utilities, such as a security module that ensures 

incoming function calls meet the system’s security requirements. 

Besides, physical and virtual devices are also modeled in this system API, involving all the 

possible status and values for the devices. Enumerations and structures are used to include all the 

parameters in a light-weight fashion. These data structures are available to be called by other 

functions or services that are built on top on the API.  The architecture and main components of 

API is shown in Figure 6-3 and Figure 6-4. 
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+reset() : void
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+rsRelayStatus : RelayStatus
+plPluggedInStatus : PluggedInStatus

«struct»
SMERCStateOfCharge

+strStateOfCharge : string
+blnSuccessfulStateOfCharge : bool

+GetStationId() : string
+GetStationName() : string
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+GetLatestRebootTime() : DateTime
+GetPowerNo() : int
+GetCreateTime() : DateTime
+GetMaxDutyCycle() : int

SMERCChargingBox

#intChargingBoxID : int
#intNetworkID : int
#strChargingBoxName : string
#strChargingBoxIPAddress : string
#strParkingLotLevel : string
#clChargingLevel : ChargingLevel
#gdParkingLotID
#fltMaxChargingBoxCurrent : float
#fltMaxStationCurrent : float
#fltMaxChargingBoxVoltage : float
#fltMaxStationVoltage : float
#fltMaxPowerSourceCurrent : float
#fltMaxPowerSourceVoltage : float
#intChargingAlgorithmID : int
#intRetrieveInterval : int
#intTimeQuantum : int
#intTimeout : int
#intRetryTimes : int
#blnEnable : bool
#fltCurrentThreshold : float
#intNodeControlDelay : int
#blnActive : bool
#intScheduleDays : int
#intMaxSchedulesInDay : int
#blnSupportSOC : bool
#blnControllable : bool
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Figure 6-3 EVSE classes 
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+SetDBConnectionString() : string
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Figure 6-4 Architecture and data model for scheduling algorithms 

6.5 EV Charging Monitoring & Control Center 

In this section, system setup, configuration, network structure etc., are given with details. We have 

tested various communication networks and designed an optimal communication architecture 

based on the specific characteristics of the parking structures. Multiple communication protocols 

are involved in this network architecture, i.e. Wifi, 3G, Zigbee, etc. The EV charging network 

utilizes a centralized control system to monitor and regulate the network for real-time smart 

charging services. This smart charging infrastructure uses standard networking technologies to 
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create a network that facilitates charging services for the end users and monitors and controls tasks 

for maintainers/operators. Figure 6-5 shows the topology of the EV network’s architecture. 
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Figure 6-5. UCLA network architecture 

As shown in Figure 6-5, built under UCLA campus network, the EV communication network 

utilizes campus Ethernet, PLC, WiFi or 3G/4G service to connect with ZigBee communication 

gateways which, in turns, connect with each individual EV charging stations through ZigBee 

communication protocol. The webserver and database server receive and send data through this 

hierarchical network connections. The mobile devices interact with the EV network through 

connection with 3G/4G or UCLA campus network. 
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Figure 6-6. EV control center 

The SMERC Monitoring and Control Center is a high performance server that allows 

administrators/operators to monitor and control all EV charging stations, registered to the network. 

The system defines control algorithms, provides real time and historical data for analysis, and 

allows the editing of information pertaining to charging boxes and EVs. The sitemap in Figure 6-6 

shows the current features that are accessible after logging in. 



 

111 

 

Figure 6-7. Monitoring of EV user behaviors 

In Figure 6-7, the monitoring page for the EV charging behaviors on the UCLA campus can be 

utilized for showing the real-time charging events. The EV info and the corresponding EVSE 

where this user’s vehicle is in charging are shown. The user name are block in this figure for 

privacy concern. The available charging stations will be indicated as “Standby”. Meanwhile, the 

real-time charging power, voltage, current and the accumulated energy consumed for the particular 

meter are recorded. 
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A more detailed visualization page for charging behaviors at the EVSE level have also been 

developed. As is shown in Figure 6-8, two charging sessions can be identified, including the time 

when the session initiated and the power consumption value while the vehicle is in charging. 

 

Figure 6-8. Monitoring of single EVSE 

6.5.1 Data collection 

In our previous implementation, the existing scheduling algorithm that serves the purpose to 

collect EV charging related data is a simple energy-sharing algorithm, i.e. Equal-Sharing 

Scheduling Algorithm (ESSA). It splits the total power supply from the power source equally by 

the number of connected vehicles in each scheduling loop. For simplicity, this ESSA does not 

require any input for user preferences but only a click on mobile application to initiate the charging 

session. However, significant session parameters for each user are preserved this way, such as 

charging start time, finish time, leave time and the energy consumption value for each session. 

Algorithm 4 indicates the details of ESSA when multiple vehicles are connected. 

𝑚𝑎𝑥𝐷𝐶 denotes the maximum duty-cycle for each power source and  𝜂  is a safety coefficient. In 

this algorithm, each vehicle will be assigned a percentage of circuit duty-cycle and continues 
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charging until current drops below a pre-defined threshold. Accordingly, the start time, finish time 

and energy consumption are collected. Another significant parameter indicating the vehicle leave 

time is the plug-in status, which is also returned by the firmware in EVSEs and hereby user’s stay 

duration can be obtained by the difference between start time and leave time.  

Algorithm 4: Equal Sharing Scheduling Algorithm (ESSA) 

Each Loop: 

Retrieve EVSE status; 

V ← connected vehicles; 

n ←number of active vehicles 𝑉; 

Calculate average Duty-cycle: 𝐷𝐶 ←
𝑚𝑎𝑥𝐷𝐶

𝑛
⋅ 𝜂 ⋅ 100%; 

For 𝑖 ∈ [1,2, … , 𝑛] 

If current value drops close to 0 or unplug 

Close charging session; 

Record session parameters in database; 

Else  if different 𝐷𝐶 value detected 

Set duty-cycle to 𝐷𝐶 for 𝑖𝑡ℎ vehicle in 𝑉; 

Wait for current to stabilize; 

End 

End 

 

6.5.2 Inference for EV Charging Parameters 

Decisions made by scheduling algorithms are based on the real-time data collected from EVSEs 

in time series. Unfortunately, there does not exist explicit signals from EVSEs, indicating 

termination of a charging session. Thus, proper inference is needed to determine some of the 

aforementioned parameters, such as leave time.  
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6.5.2.1 Determine when to close a charging session 

Scheduling algorithm must adaptively check if power consumption rate falls below a threshold. 

However, at the end of charging sessions, power drawn by some types of EVs is not stable, which 

might be caused by different designs of internal Battery Management System (BMS). Therefore, 

we employ a method based on moving average to adaptively evaluate the power consumption rate.  

Assume the real-time power data for each meter at time 𝑡 is denoted by 𝑦𝑡. The action to close a 

charging session is determined by a parameter for the averaged power consumption level, denoted 

by 𝑐𝑡, which can be calculated by: 

 𝑐𝑡 =
1

𝐻
⋅ ∑ 𝑦𝑡−𝑖−1

𝑖=𝐻

𝑖=1

 (6.1) 

where 𝐻 is the length of moving window, 10 in our case. When the average power consumption 

level 𝑐𝑡 drops below a pre-defined threshold 𝑐, 0.1 kW in our case, the close charging decision 

will be made. Figure 6-9 illustrates this inference process. 

In addition, by evaluating the latest power data before closing the charging session, one can infer 

whether or not EV is fully charged. If the power value is still higher than the threshold, the plug is 

believed to be disconnected by the user when the charging is still in process. 
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Figure 6-9 Inference Process to Close Charging Sessions 

6.5.2.2 Determine leave time 

Leave time can also be inferred from time series data by detecting the earliest time when plug-in 

status changes to negative. The inference is illustrated below: 

 𝑡𝑙 = {
𝑡𝑓 , 𝑐𝑡𝑓 > 𝑐

 𝑚𝑖𝑛 (𝑡), 𝑐𝑡𝑓 ≤ 𝑐, 𝑡 >  𝑡𝑓 𝑤ℎ𝑒𝑟𝑒 𝑝𝑙(𝑡) = 0  
(6.2) 

If the power consumption rate when charging session is being close, 𝑐𝑡𝑓 is larger than the threshold, 

𝑐, the time to close charging session is exactly the leave time because the vehicle is believed to be 

manually un-plugged. On the other hand, when power consumption is lower than threshold, the 

leave time can only be inferred from the time when plug-in status changes from 1 to 0. 𝑝𝑙(𝑡) 

denotes the plug-in status at time 𝑡. 

6.5.3 Scheduling Services 
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The scheduling service running on server can perform schedule optimization either periodically or 

triggered by pre-defined events. As shown in Figure 6-10, charging requests from users are 

submitted through the mobile application and are then stored in database as records before being 

directed to scheduling service, from which specific control commands are sent. Once the control 

action finishes, operation status is returned to users. Meanwhile, the scheduling service is able to 

host numerous threads, each of which can be a specific scheduling algorithm with varied 

optimization objective and constraints. The algorithm can be initiated periodically at the pre-set 

time interval, which is shown in the red box of Figure 6-10. Before any optimization is made in 

each loop, the first action is to retrieve the real-time data and status from EVSEs, which enables 

the algorithm to compute the optimal schedules based on the most up-to-date system states. 

Another interface to initiate the scheduling service is via pre-defined events through the interface 

between database and scheduling service. The events are detected by monitoring the real-time data 

from EVSEs. Once a charging session is terminated or any status updates are detected, 

notifications will be sent to users through mobile applications. Note that the data and status for 

EVSE come through mesh networks (from EVSE to control center) and thereby communication 

delay exists. In addition, if the commands lead to adjustments of power consumption, it will take 

longer time for the circuit to stabilize. Thus, delays of several seconds based on practical 

experiences are expected and too frequent control (e.g. more than 5 times per minute) is not 

recommended in this system.  
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Figure 6-10 Sequence chart for scheduling service 

6.6 EV Charging Mobile Application 

Mobile applications are developed to satisfy the users by remotely and intelligently managing their 

charging sessions by their cell phone. Various functions are supported within mobile applications, 

such as specifying travel preferences, energy preferences, looking for EVSE availabilities, 

checking real-time status and power information, etc. When an EV is plugged into an EV charger, 

the user can activate a charging session through a smart phone or any Internet-connected device. 
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If a vehicle is equipped with the State of Charge (SOC) box, the SOC information is also obtained. 

These operations can be illustrated by the screen shots taken from the mobile app/interface in the 

Figure 6-11. 

Other than the web-based mobile App for users to manage their charging sessions, we are also 

developing an iOS version, which is supposed to offer a better user experience, including 

responsive touch controls and more interactive actions. Based on the library of Swift languages 

provided by Apple, more functions, such as Navigation to charging stations, will be designed to 

provide more convenience for EV users. Similar to the web-based App, the control and display 

logic will guide the users to input their charging preferences step by step. After a user logs on 

through the App, the modified home view is presented in Figure 6-11 Navigation is a very 

significant function we have developed in the latest version, which will automatically provide links 

for each parking lot at UCLA with SMERC charging EVSEs and build connections with the Apple 

map navigation system. Thus, users are able to follow the highlighted routes on the map to initiate 

their charging sessions. Other functions remain similar to the web-based app, as shown in Figure 

6-11. 

The notification services will inform the users about the status change of their charging sessions. 

For example, the email with the charging information, including total energy consumed, charging 

cost and the charging location information, will be sent to users.  
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Figure 6-11 Interfaces of mobile application  

The typical procedure to initiate a charging session is described as follows: 

 Account log-in; 

 Select available organization; 

 Select available parking structure; 

 Select/Input Charging preferences; 
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 Start charging session by selecting available charging outlet (station); 

 Check the charging status;  

Note that for the users, who have existing charging records in the system, selections of organization, 

parking structure, and even charging preferences, will be automatically performed.  

 

Figure 6-12 User-interface for price-based algorithms 

In addition, user interfaces with the option to select price preferences and the personal travel 

schedules, are developed. As shown in Figure 6-12, 5 price levels are provided based on the 

regional price curve generated by (5.4), i.e. High, Medium-High, Medium, Medium-Low and Low. 

Priories are calculated for the connected vehicles on each EVSE, and accordingly the charging 

time ratio or duty-cycle values will be assigned by (5.5) and (5.6). Furthermore, a prediction 

service is provided as a feedback for users to make their charging decisions. Specifically, based 

on users’ input schedules and the electricity price preferences, the estimated value of energy 

delivery is pushed back to users’ mobile applications, so that the back-and-forth negotiation can 

be supported by this scheme. Finally, the charging behaviors are regulated in real-time by the 

price-based scheduling algorithms shown in Figure 5-4 and Figure 5-5. 
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6.7 DR Experiment 

To support the integration of Demand Response signals from ISOs/Utility companies and even 

third-party organizations, OpenADR 2.0 standard has been integrated into the scheduling services 

on the EV control center. Each EVSE on campus is registered as a Virtual End Node (VEN) and 

the signal issuers are regarded as Virtual Top End (VTN). Based on the customized DR actions 

and data models, discussed in section 6.3, both one parking lot and or the whole campus can be 

modeled as the acting group to respond to the same DR signal. Besides, within the real-time EV 

scheduling algorithms, the steps to check the availability and status of DR signals are embedded, 

followed by the load curtailment steps. Through mobile applications, it is also viable for users to 

specify whether or not they are willing to engage in the DR program. The DR event monitoring 

page is shown in Figure 6-13. To test the functionalities of the EV energy management system 

with DR capabilities, real-world experiment results are displayed in Figure 6-14. Each curve 

represents the power consumption by EVs in each parking lot on campus. Once the DR signal is 

active, the power consumption is suppressed to the minimum to provide grid regulation services, 

while the signals are expired, the charging sessions will be resumed to previous states.  

 

Figure 6-13 Demand response monitoring page 
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Figure 6-14 DR experiment results on campus parking lots 

6.8 Summary 

In this chapter, a real-world implementation of a smart EV energy management system is discussed 

with details of system architecture and the practical considerations. A multi-layer structure is 

constructed to support the interactions between EV system and the higher level energy 

management system via Demand Response signals. Customized data structures and 

communication protocols are developed among different system components to improved 

reliability, efficiency and interoperability. Finally, methods for data collection and parameter 

inferences are also discussed.        
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Chapter 7 Conclusion and Future 

Work 

The integration of EVs under smart grid scenarios involves a variety of challenging tasks, which 

have not been completely solved by previous research.  As the penetration of DERs grow larger, 

it becomes even more difficult to coordinate EV charging behaviors in real-time, considering the 

intermittency of renewable generation and stochastic user behaviors. Therefore, we develop an 

online predictive EV scheduling framework, which dynamically computes optimal EV energy 

scheduling. Meanwhile, this dissertation also solves practical issues by designing and 

implementing a scalable system architecture to capture the user preferences, enable multi-layer 

communication and control, and finally improve the system reliability and interoperability.  

In Chapter 2, we develop a predictive scheduling framework which takes into account the 

uncertainties of EV user behaviors. Specifically, Gaussian kernel estimator is designed to 

dynamically estimate the charging session parameters with improved accuracies and receding 

horizon control strategies are implement to compute optimal EV energy schedules with virtual 

load constraint. The cost performance has been significantly improved while guaranteeing a high 

level of energy delivery rate. Based on the developed framework in Chapter 2, an event-based 

control strategy with the integration of IEC 61850 standard is developed in Chapter 3. Under event-

based control paradigm, the data retrieval and computation are only initiated by the pre-defined 

events, which represent the critical change of the system states. The simulation results indicate that 

event-based strategies can effectively maintain a high level of energy delivery rate with low unit 



 

124 

energy cost while reducing the number of unnecessary computations. Chapter 4 extends this 

predictive framework to support load flatten/valley filling strategies, considering the uncertainties 

of building load and solar generation in a microgrid. The overall power fluctuation for the micro-

grid is reduced up to 40% on the test days.  

For the future work on the predictive energy management framework, more components in the 

microgrid scenario will be evaluated and formulated as controllable devices, to provide more grid 

service besides cost saving, and load flattening/valley filling, etc. Other data-driven methods for 

parameter estimation and behavior prediction, etc., will be studied. 

In Chapter 5 and Chapter 6, a scalable architecture of system implementation is discussed. A price-

based charging strategy, considering the EV users’ price preferences and account priority, is 

developed to bridge end-user EV drivers with the wholesale energy markets. The online scheduling 

algorithm allocates energy to the connected vehicles dynamically through the scheduling services, 

which supports customized data models and communication protocols/standards with ISOs/utility 

companies, to implement more complex grid operations.  

For the future work on this part, more research will be conducted to regulate the aggregated EVs 

to provide grid services in a more intelligent fashion. Methods based on statistical learning and 

distributed algorithms have the potential to provide further more reliable and efficient EV system 

implementations.  
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