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1 Introduction 

With the advent of mobile code, there has been a resurgent interest in code 
compression. Compactness is an issue when code is transferred over networks 
limited in bandwidth, particularly wireless ones. It is also becoming increasingly 
important with respect to storage requirements, especially when code needs to 
be stored on consumer devices. Furthermore, denser code representations can 
also act as an enabling technology. For example, good compression can reduce 
the size requirements of proof-carrying code (Nec97]. A benficial side-effect 
of good compression in general is that the reduction of redundancy increases 
the effectiveness of encryption by making statistical attacks harder. Finally, 
processor performance has increased exponentially over storage access time in 
the last decade. It is therefore reasonable to investigate compression as a means 
of using additional processor cycles to decrease the demand on storage access 
[FK97], leading to a net gain in performance. 

Among the major approaches to mobile code compression are (1) schemes 
that use code-factoring compiler optimizations to reduce code size while leaving 
the code directly executable (DEM99], (2) schemes that compress object code 
by exploiting certain statistical properties of the underlying instruction format 
(EEF+97, Fra99, LucOO, Pug99], and (3) schemes that compress the abstract 
syntax tree (AST) of a program by using either dictionary-based (FK97] or 
statistical (Cam88, ECM98] approaches. 

Our approach falls into the last category, or more precisely, we compress 
the AST of a program using novel statistical approaches. Since the AST is 
composed according to a given abstract grammar (AG), we are using domain 
knowledge about the underlying language to achieve a more compact encoding 
than a general-purpose compressor could achieve. 

Our compression framework applies to different kinds of code. It is conve­
nient to think of our compression algorithm as being applied to some source 
language, which-after decompression at the code consumer site-is compiled 
into native code. But generally, our scheme applies to all code formats that 
can be expressed in form of a grammar. Theoretically, this includes all forms 
of code: source code text, ASTs, intermediate representations (byte code or 
SafeTSA (ADFvROO] for example), and object code. Our prototype imple­
mentation compresses Java ASTs, which can then be compiled to native code, 
thereby circumventing compilation into byte code and execution on the JVM. 

We chose to compress Java programs as a proof of concept because there 
already exists a sizeable body of work on the compression of Java code, especially 
Pugh's work on jar-file compression (Pug99]. This gives us a viable yardstick 
to gauge our results against. 

Our compression scheme does not assume that source code will be re-generated 
at the code consumer's site. In fact, in our current implementation the decom­
pressor interfaces directly to the GCC [Fre] backend. 

In our framework, source code is required in order to generate a compressed 
AST and, inversely, a compressed AST possesses the intrinsic capability to re­
generate the source code (deprived of comments and internal identifier names). 
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The prerequisite of source code availability and the benefit of AS Ts being readily 
(re)compilable and well-optimizable, position our encoding as a good distribu­
tion format1 for Open Source Software [OSS). Files in our format are very 
compact and span different architectures, thereby reducing the maintenance 
effort for packaging. 

1.1 Vision 

Our vision for mobile code distribution and deployment is based on the notion 
of code producers and code consumers. The code producer distributes software 
as compressed ASTs, which constitute a platform-independent format at the 
highest possible level of abstraction. Naturally, programs distributed as ASTs 
are as portable as their source language allow. 2 Compression of ASTs is allowed 
to be computationally expensive because it is only a one-time effort performed by 
the code producer. Thus we can imagine augmenting the encoding with hard­
to-compute but easy-to-verify annotations, e.g., alias information for further 
optimizations or proofs of safety properties [N ec97). 

On the code consumer side, the code format has to meet several require­
ments: (1) short start-up time, (2} potentially pliable to more advanced opti­
mizations, and (3) safe to execute. We meet the first requirement by providing 
a very dense encoding, which can be compiled directly into machine code on 
arrival. As shown by Franz and Kistler [FK97), the time saved for transmission 
(or file access) easily pays for the additional decompression and compilation 
effort.3 

Since our compression format contains all the machine-readable information 
provided by the programmer at source language level, the runtime system at 
the code consumer site can readily use this information to provide optimiza­
tions and services based on source language guarantees. 4 Kistler [Kis99) uses 
the availability of the AST to make dynamic re-compilation at runtime feasible. 
Furthermore, distributing code in source language-equivalent form provides the 
runtime system with the choice of a platform-tailored intermediate representa­
tion. The success of Transmeta's dynamic code translation technology shows 
that this is a viable approach, even when starting with an unsuitable interme­
diate representation at a much lower abstraction level. 

Lastly, high-level encoding of programs protects the code consumer against 
all kinds of attacks based on low-level instructions, which are hard to control 

1 Since the right to modify the source and documentation is an integral part of the Open 
Source philosophy, our format is no alternative to fully commented source text, but it is only 
meant as replacement for the binary distribution of Open Source Software. Note however 
that, in contrast to binary object files, our compressed ASTs still need to go through a code 
generation phase in order to be executable. 

2 Here we allude to portability issues caused by implicit assumptions of the source language. 
For example, some C programs assume an int to have the same size as a pointer. 

3 By now the consensus seems to be that on-the-fly compilation is preferable over bytecode 
interpretation. For example, in Microsoft's .NET architecture, code in intermediate language 
format is never interpreted but always compiled. 

4 As an example, note that the Java language provides much more restrictive control flow 
than Java byte code, which allows arbitrary gotos. 
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and verify. Our encoding also has the desirable characteristic that even after 
malicious manipulation it can only generate ASTs which adhere to the abstract 
grammar (and certain additional semantic constraints), thereby providing some 
degree of safety by construction. This is in contrast to byte code programs, 
which have to go through an expensive verification process prior to execution. 

2 Compressing Abstract Syntax Trees 

Computer program sources are phrases of formal languages represented as char­
acter strings. But programs proper are not really character strings, in much 
the sense that natural numbers are not digit strings but abstract entities. Con­
ventional context-free grammars, i.e., concrete grammars, mix necessary infor­
mation about the nature of programs with irrelevant information catering to 
human (and machine) readability. An AST is a tree representing a source pro­
gram abstracting away irrelevant concrete details, e.g., which symbols are used 
to open/ close a block of statements. Therefore it constitutes the ideal starting 
point for compressing a program. Note also that properties like precedence and 
different forms of nesting are already implicit in the AST's tree structure. 

2.1 Abstract Grammars 

Every AST conforms with an abstract grammar (AG) just as every source pro­
gram conforms with a concrete grammar. A Gs give a succinct description of 
syntactically correct programs by eliminating superfluous details of the source 
program. 

AGs consist of rules (also called productions) defining symbols much like con­
crete grammars define terminals and nonterminals [Mey90}. Whereas phrases 
of languages defined by concrete grammars are character strings, phrases of 
languages defined by AGs are ASTs. Each AST node corresponds to a rule, 
which we will often refer to as the kind of node. For the purpose of a simple 
presentation, we will discuss only three forms of rules. These three forms of 
rules are sufficient to specify sensible AGs and are a subset of the rules used in 
our framework. 

Two forms of rules are compound rules defining symbols corresponding to 
the well-known non-terminals of concrete grammars. Aggregate rules define 
AST nodes (aggregate nodes) with a fixed number of children. For example, the 
rule for the while-loop statement defines a WhileStmt node with two children 
of kind Expression and Statement: 

WhileStmt ~ Expression; Statement. 

The second form of compound rules are choice rules, which define AST nodes 
(choice nodes) with exactly one child. The kind of child node can be chosen 
from a fixed number of alternatives. The following (simplified) rule says that a 
Statement node has either an Assignment, IfStmt, or WhileStmt child: 

Statement ~ Assignment I IfStmt I WhileStmt. 
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The last form of rule is the string rule, which specifies string nodes. The 
right hand side of a string rule is the predefined STRING symbol. String rules 
define the equivalent of terminals in concrete grammars. String nodes contain 
an arbitrary string and they are the leaf nodes of the AST. To define the I dent 
node to be a string node we write: 

!dent ~ STRING. 

User-defined symbols of AGs must be defined by exactly one rule with the 
exception of the predefined STRING symbol. As usual, one symbol is marked as 
the start symbol of the AG. 

2.2 Encoding ASTs 

In order to encode (i.e., store or transport) ASTs they need to be serialized. 
ASTs can be serialized by writing out well-defined traversals. We chose a depth­
first traversal resulting in a pre-order representation. Such a traversal provides 
a linearization of the tree structure only. Several mechanisms exist in order to 
encode the information stored at the nodes. The most common technique pre­
scans the tree for node attributes, stores them in separately maintained lists, 
and augment the tree representation with indices into these lists. For now, we 
ignore the problem of efficiently compressing strings (our only node attributes) 
for the sake of simplicity and assume that strings are directly encoded whenever 
they appear. 

The actual tree representation can make effective use of the AG. Given the 
AG, much information in the pre-order encoding is redundant. In particular, the 
order and the kind of children of aggregate nodes are already known. Therefore 
the encoding boils down to noting the choices made at each choice node. Since 
the order of alternatives in choice nodes is fixed, it suffices to encode only the 
position (1, 2, 3, ... ) of the chosen alternative. Of course, if only one alternative 
is given there is "no choice" and therefore nothing needs to be encoded. 

2.3 Arithmetic Coding 

So far we reduced the serialization of compound rules to encoding the choices 
made at each choice node as an integer c E {1, 2, ... , n }, where n depends on the 
kind of choice node and is equal to the number of given alternatives. We want 
to use as few bits as possible for encoding the choice c. The two options are 
to use Huffman coding or arithmetic coding. Using Huffman code as discussed 
in Stone [Sto86] is very fast, but is much less flexible than arithmetic coding. 
Cameron [Cam88J shows that arithmetic coding is more appropriate for good 
compression results and recent improved implementations [MNW98] make it 
also very fast. 

An arithmetic coder [WNC87] is a flexible means to encode a number of 
choices if each alternative i E {1, 2, ... , n} has a certain probability Pi, where 
'2:::~=l Pi = 1 and n is given by the kind of choice node. The tuple lvl = 
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(p1,p2 , .•• ,pn) is called the model M for the arithmetic coder. When encoding, 
an arithmetic coder takes a sequence of choices Cj along with their respective 
models Mj as argument and outputs a sequence of bits B. From this informa­
tion, the arithmetic coder produces a close to optimal encoding of the sequence 
of choices c1 , c2 , . . . . When decoding, an arithmetic coder takes the sequence 
of bits B and the above sequence of models M1 , M 2 , ... as arguments. For 
each given model Mj it then reproduces the next choice Cj. It is important 
to note that the model Mj can depend on all previous choices c1 , c2 , ... , Cj- l . 

The choice of models determines the quality of compression. If the probabilities 
are picked in an "optimal" fashion (i.e., taking "all" available information into 
account and adapting the probabilities appropriately) then the encoding has 
minimal redundancy. 

A simple and fast way to chose the models is to fix the probability distri­
butions for each kind of node. Good fixed models can be determined based on 
statistics over a representative set of programs. 

2 .4 Prediction by Partial Match 

Prediction by Partial Match (PPM) [CW84] is a statistical, predictive text com­
pression algorithm. PPM and its variations have consistently outperformed 
dictionary-based methods as well as other statistical methods for text compres­
sion. 

Our experience shows that PPM adapts so fast to each program's peculiari­
ties that efforts to improve compression by using statistically determined initial 
probabilities for the models did not yield any significant gains in compression. 

PPM maintains a list of already seen string prefixes, conventionally called 
contexts. For example, after processing the string ababc, the contexts are the 
empty context, a, b, c, ab, ba, be, aba, bab, abc, abab, babe, and ababc. For each 
context PPM maintains a list of characters that appeared after the context. 
PPM also keeps track of how often the subsequent characters appeared. So in 
the given example the counts of subsequent characters for, say, ab are a and c 
both with a count of one. Normally, efficient implementations of PPM maintain 
contexts dynamically in a context trie [ CT97]. A context trie is a tree with 
characters as nodes and where any path from the root to a node represents 
the context formed by concatenating the characters along this path. The root 
node does not contain any character and represents the empty context (i.e., no 
prefix). In a context trie, children of a node constitute all characters that have 
been seen after its context. In order to keep track of the number of times that 
a certain character followed a given context, the number of its occurrences is 
noted along each edge. Based on this information PPM can assign probabilities 
to potential subsequent characters. 

The length of contexts is also called their order. Note that contexts of differ­
ent order might yield different counts leading to varying predictions. Different 
strategies have been devised to blend the information given by contexts of dif­
ferent orders. 
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2.4.1 Adapting PPM for ASTs 

When applying PPM to trees the first problem to solve is the definition of 
contexts for ASTs. We chose a simple definition: 

The context of an AST node is defined as the concatenation of its 
ancestors on the path to the root. 

One consequence of this definition is that the order of contexts is bounded by 
the depth of the AST. Our alphabet corresponds to the rules, i.e., symbols, of 
the AG because our modified PPM algorithm treats AST nodes like the original 
PPM algorithm treats characters. 5 The PPM algorithm is applied to the nodes 
as they appear while traversing the AST in depth-first order. 

PPM maintains a set of nodes in the context trie called active nodes. Active 
nodes mark the positions, where the current contexts end. The root of the 
trie, representing the empty context, is always active. When the AST traversal 
descents to a child node, new nodes in the context trie are created as children of 
active nodes. This corresponds to the familiar addition to the current contexts. 
However, whenever the AST traversal proceeds from a leaf node to an internal 
node (as in DFS) suffixes of the current contexts are annihilated, i.e. the input 
seen by the modified PPM does not consist of contiguous characters anymore. 
This changed requirement makes it necessary to partly pop contexts, i.e., all 
nodes marked as active (except the root) in the context trie are moved up one 
node to their parents. (The root always stays active.) This ensures that all 
children of a node Nin the AST appear as children of Nin the context trie too. 
This works because we traverse the AST in depth-first order while building up 
contexts. 

We adapted the unbounded variant of the PPM algorithm (PPM*) [CT97] 
for our implementation. Given our definition of context together with the way 
we pop contexts, the depth of our context trie is bounded by the AST's depth. 
Therefore we don't have to worry about unlimited growth of the context trie in 
spite of using PPM*. 

2.4.2 Weighing Strategies 

In order to generate the model for the next encoding/ decoding step, we look up 
the counts of symbols seen after the current context in the context trie. Since 
the active nodes, to which we have direct pointers, correspond to the last seen 
symbol, this is a fast lookup and does not involve traversing the trie. These 
counts can be used in several ways to build the model. Normally, the context 
trie contains counts for contexts of various orders. We have to decide how to 
weigh these predictions of various orders to get a suitable model. The trade-off 
is that shorter contexts occur more often, but fail to capture the specificity and 
sureness of longer contexts (if the same symbol occurs many times after a very 

5 Note that if an aggregate node has several children of the same kind then their position 
is relevant for the context. Since this does not happen often, we have not implemented this 
refinement yet. 
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long context, then the chance of it occurring again after that same long context 
is very high), and longer contexts do not occur often enough for all symbols 
to give good predictions. Note that the characteristics of AST contexts differ 
from text contexts-AST contexts are bound by the depth of the AST and 
tend towards more repetitions since the prefixes of nodes for a given subtree are 
always the same 

We tried various weighing strategies, and our experiments indicate that ig­
noring predictions made by order 0 contexts (which are simply relative frequen­
cies of symbols, and form the first level of the context trie) and weighing all 
other predictions equally yields the best compression. This will be explored 
further in an upcoming paper. 

Note that this approach for adapting PPM to compress abstract syntax trees 
is general enough to compress any kind of tree, and not just ASTs. 

2.5 Compressing Constants 

A sizable part of an average program consists of constants like integers, floating­
point numbers, and, most of all, string constants. String constants in this sense 
encompass not only the usual string literals like "Hello World!" but also type 
names (e.g., java.lang.Object), field names and more. In our simplified def­
inition of AGs, we used the predefined STRING symbol to represent constants 
within ASTs. However, when observing the use of strings in ASTs of typical 
programs, it is apparent that many strings are used multiple times. Therefore 
it saves space to encode the different strings once and refer to them at later 
occurrences. Such a reference is an index into a list of strings. The higher the 
number of strings is, the more bits are needed to encode the corresponding in­
dex. By distinguishing different kinds of strings (e.g., type names, field names, 
and method names) different lists of strings can be created. These split lists are 
each smaller than a global list. Given that the context determines which list to 
access, references to strings in split lists require less space to encode. As these 
considerations show, context-sensitive (as opposed to context-free) information 
such as symbol tables can be encoded and compressed at varying degrees of 
sophistication.6 Our framework provides the facility of so-called pools, which 
embody different ways of compressing, maintaining, and accessing lists of con­
stants. 

3 Implementation and Results 

Our current implementation is a prototype written in Python [Pyt) consisting of 
roughly 40 modules handling AGs, ASTs, and their compression/ decompression. 
In order to compare our compression results to other established methods we 
chose to compress Java programs. Our Java frontend is written in Java and uses 
the Barat framework [BS98) for parsing. We devised an AG for Java, which is 

6 Note that conventional symbol tables can conveniently be expressed as some kind of AST 
with the appropriate string nodes. 
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both suitable for easy generation from Barat's internal representation of Java 
programs and suitable to generate a dense encoding. A visitor for walking 
Barat's AST was then adapted to output a Lisp-like textual representation of 
the AST according to our AG. The textual representation of the AST is then 
parsed and compressed by our Python prototype. This compressed binary file 
can be stored or sent over networks. After decompressing the binary file, the 
prototype can interface directly to any kind of backend. Currently, we work on 
the integration with GCC as code-generating backend. 

It is natural to implement most of our AST processing with the visitor de­
sign pattern [GHJV95]. Visitors are used to walk the AST and perform different 
tasks on the tree, e.g., gathering all occurring constants or computing the prob­
abilities for the arithmetic coder. Visitors are a good means to separate and 
recombine different passes over the AST. We evolved the visitor design pattern 
into the weaver /yam pattern, which allows us to re-use the same visitor code 
for compressing and decompressing despite the fact that the AST is being built 
by the code consumer while being traversed by several visitors (i.e., yarns) in 
lockstep. This design pattern will be described in a separate paper. This archi­
tecture has helped us tremendously during the development of the prototype. 

In our implementation we provide generic ways to mark and reference nodes 
within the AST. This gives us the means to allow very concise augmentations of 
the AG that specify how to encode constructs like labels or local (i.e., statically­
scoped) variables very effectively. Furthermore, we provide generic building 
blocks (pools) to handle string, integer, and floating point constants. 

All information necessary to specify the AST's compression and decompres­
sion is condensed into one configuration file. The configuration file contains 
the AG augmented with additional information, e.g., on how to compress dif­
ferent kinds of constants. Given the availability of our framework at the code 
producer and consumer sites, the only requirement for supporting the com­
pression/ decompression of an additional language is that identical copies of the 
configuration file are present at both sites. 7 

3.1 Binary and Source Compatibility 

The Java Language Specification (JLS) [GJSBOOJ devotes the entirety of chapter 
13 on binary compatibility of Java class files. Binary compatibilty ensures that 
class files (i.e., binaries), which have been compiled against other class files, 
will still link correctly with newer versions of the accessed class files. This 
enables library vendors to update their libraries without forcing client code to 
be recompiled. In order to achieve this goal the vendor must restrict the library 
class changes to the list of binary compatible changes defined in the JLS. 

The AG currently used in our framework fullfills most requirements for bi­
nary compatibility. 8 It is based on Barat's representation of Java classes and in-

7 Note that in order for the code consumer to deploy the transported code, it still needs to 
compile it into some executable format. 

8 We do not yet replace fields that are final and initialized at compile-time with their con­
stant value and we do not yet resolve methods/constructors at compile-time to their qualifying 
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Class Name 
Size in Bytes 

CAST/Pugh 
Class File Gzip Bzip2 Pugh CAST 

ErrorMessage 305 256 270 209 105 503 
CompilerMember 1192 637 641 396 230 583 
BatchParser 4939 2037 2130 1226 1069 873 
Main 11363 5482 5607 3452 3295 953 
SourceMember 13809 5805 5705 3601 2988 833 
SourceClass 32157 13663 13157 8863 7849 893 

Table 1: File size comparision of compressed AST files (CAST) with class files 
from sun. tools . j avac compressed using alternative techniques. 

Package Name 
Size in Bytes 

CAST/Pugh 
Jar Gzip Bzip2 Pugh CAST 

sun. tools . j avac 36787 32615 30403 18021 14070 783 
jess 232041 133146 97852 48331 31083 643 

Table 2: File size comparision of compressed collections of classes from two Java 
packages. 

terfaces, which among other advantages removes ambiguities like the ones caused 
by the type-import-on-demand declaration (e.g., import some. package.*;) by 
performing a static name analysis and always referring to fully-qualified type 
names. 

3.2 Preliminary Results 

In this section we compare the compression results of our prototype against 
other general-purpose and special-purpose compression algorithms. We split 
the comparison in two parts: First we measure compression of single classes 
and, second, we measure compression of collections of classes as they appear in 
Java packages or jar-files. Our basic Java AG defines how to represent Java 
classes as ASTs. With a two-line addition, our original AG can also deal with 
collections of classes as present in packages or jar-files. These collections of 
classes share the same pools (lists of strings, etc.) thereby reducing redundancy 
caused by entries, which appear in several classes. We can use our framework 
with the extended AG to compresss the classes contained in jar-files. This gives 
us the basis for a good comparison with Pugh's work. 

The Java code chosen for compression is the Java compiler package from 
Sun (Linux Blackdown Version 1.1.2) and Jess, a rule engine and scripting 
environment ([Jes], version 5.1). Both packages were used in the SPEC JVM98 
Benchmark suite [Sta] and they are the only ones thereof for which the source 

type of invocation plus their signature. 
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code is available. We use the most current (source) versions of these packages as 
indicated above. In case of Jess, we compressed all classes that are part of the 
distribrution, i.e., including the subpackage and example classes. The class files 
were compiled under javac (Linux Blackdown Version 1.1.2) with all debugging 
information excluded (-g: none option). They were not stripped with a tool 
equivalent to Pugh's StripZip program since we want to give a comparison 
with what is in common use today. We compare only the compression of Java 
classes proper by eliminating all other resource files including the manifest. 

We choose primarily Pugh's compression scheme [Pug99] for comparison be­
cause, to our knowledge, it provides the best compression ratio for Java archives 
(and class files) and it is freely available for educational purposes. It should be 
noted that Pugh actually designed his compression scheme for jar files, which 
are collections of (mostly) class files. His algorithm therefore does not perform 
as well on small files as it does on bigger ones. We fed the evaluation version 
0.8.0 of Pugh's Java Packing tool with jar-files generated with the -M option 
(no manifest). 9 The other comparable compression scheme is syntax-oriented 
coding [ECM98]. But for this scheme there are no detailed compression num­
bers available, only an indication that the average compression ration between 
their format and regular class files is 1 : 6.5. 

We furthermore compare our results with two widely available general pur­
pose compression algorithms, gzip and bzip2. Collections of classes (Table 2) 
have been tar'ed before applying gzip or bzip2. 

The comparision of compressing Java classes is presented in Table 1 and the 
comparision for collections of classes is presented in Table 2. Our choice of sin­
gle classes tries to be representative of the sizes of classes in the SPEC JVM98 
Benchmark suite. The resulting numbers show that our compression scheme 
is an improvement by 5-503 over Pugh's results, which translates to a com­
pression of regular jar-files by a factor of 3 to 8, roughly. The results indicate 
that we compress very well for either very small classes or larger collections of 
classes. Some more statisitcal investigation is needed to precisely analyse and, 
ultimately, enhance our compression results. 

4 Related Work 

The initial research on syntax-directed compression was conducted in the 1980's 
primarily in order to reduce the storage requirements for source text files. Con­
tla [Con81, Con85] describes a coding technique essentially equivalent to the 
technique described in section 2.2. This reduces the size of Pascal source to 
at least 443 of its original size. Katajainen et. al. [KPT86] achieve similar re­
sults with automatically generated encoders and decoders. Al-Hussaini [AH83J 
implemented another compression system based on probabilistic grammars and 
LR parsing. Cameron [Cam88J introduces a combination of arithmetic coding 
with the encoding scheme from section 2.2. He assigns fixed probabilities to 

9 This means in case of compressing classes we first make a jar-file from an individual class 
file and then compress the resultant jar-file using Pugh's tool. 
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alternatives appearing in the grammar and uses these probabilities to arith­
metically encode the pre-order representation of ASTs. Furthermore, he uses 
different pools of strings to encode symbol tables for variable, function, proce­
dure, and type names. Deploying all these (even non-context-free) techniques 
he achieves a compression of Pascal sources (including comments) to 10-173 of 
their original size. Katajainen and Makinen [KM90) present a general survey 
of tree compression mentioning the above methods. It seems that before this 
paper all of the above four efforts were pursued independently of each other. 
Tarhio (Tar95) suggests the application of PPM to drive the arithmetic coder in 
a fashion similar to ours. He reports increases in compression of Pascal ASTs 
(excluding constants, i.e., pools of strings, etc.) by 203 compared to a technique 
close to Cameron's.10 Cheney [CheOOJ suggests applying PPM in the context of 
term compression. 

All of these techniques are concerned only with compressing and preserving 
the source text of a program in a compact form and do not attempt to represent 
the program's semantic content in a way that is well-suited for further process­
ing such as dynamic code generation or interpretation ([KPT86) even reflects 
incorrect semantics in their tree). Franz [Fra94, FK97) was the first to use a tree 
encoding for (executable) mobile code. He uses a dictionary-based encoding to 
compress the abstract syntax tree of Oberon programs. 

Even though seemingly placed in the same application domain, research on 
"code compression" (EEF+97, Fra99, LucOO, DEM99J is generally not compara­
ble to the above line of work on source text and AST compression. The reason 
is that code compression focuses much more on the specifics of machine code 
like choice of op codes, operand formats, lack of apparent high-level structure, 
and so on. Nevertheless, will we try to identify potential overlap between our 
work and other work on code compression. 

Java, currently the most prominent mobile code platform, attracted much 
attention with respect to compression. Horspool and Corless [HC98J compress 
Java class files to roughly 363 of their original size using a compression scheme 
specifically tailored towards Java class files. In a follow-up paper Bradley, Hor­
spool, and Vitek [BHV98J further improve the compression ratio of their scheme 
and extend its applicability to Java archives (jar-files). A better compression 
scheme for jar-files was proposed by Pugh [Pug99]. His format is typically 1/2 
to 1/5 of the size of the corresponding compressed jar-file (1/4 to 1/10 the size 
of the original class files). Pugh offers his tool for free evaluation. 

All of the above Java compression schemes start out with the byte code of 
Java class files, in contrast to the source program written in the Java program­
ming language. Eck, Changsong, and Matzner [ECM98) employ a compression 
scheme similar to Cameron's and apply it to Java sources. They report com­
pression down to around 153 of the original source file, although more detailed 
information is needed to assess their approach. 

10Unfortunately, we learned of Cameron's and Tarhio's work only after we developed our 
solution independently of both. 
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5 Discussion 

This section discusses additional issues related to our compression scheme. 

5 .1 Statistical versus Dictionary-based Encoding 

The only other AST compression scheme for mobile code [FK97] uses a dictionary­
based encoding. Our statistical encoding scheme diverts from this approach 
because the compression ratio of dictionary-based compression seems lower and 
when we tried to guarantee additional semantic constraints while decoding, the 
cost of maintaining valid entries in a dictionary became unbearable in terms of 
time and complexity. 

In general, dictionary-based compression has the disadvantage that, in order 
for compression to succeed, an exact match from the dictionary needs to be 
found. Therefore either the dictionary needs to be very big to provide many 
potential matches or the matching algorithm needs to be rather complicated 
to allow some kind of "fuzzy" matching (possibly mimicking some statistical 
approach). 

5.2 Devising an Abstract Grammar 

Essentially, the combination of arithmetic coding and PPM gives full freedom 
in the choice of grammar. Stone [Sto86] and Cameron [Cam88] propose differ­
ent grammar expansion techniques in order to make nested choices accessible 
to statistical approaches. But since PPM keeps track of the nesting (i.e., "ex­
pansion") of rules in its context we do not have to worry about rewriting the 
grammar. More specifically, with respect to Al-Hussaini's scheme Stone [Sto86] 
discourages layering of rules in AGs for two reasons: (1) When using Huffman 
encoding the "quality" of the encoding can only become worse, and (2) layered 
rules used in different contexts waste potential for a better model. With our 
compression scheme, we alleviate the first problem by using an arithmetic coder 
and the second by proper use of PPM. 

Another advantage is that due to arithmetic coding we do not need to chose 
selection rules with 2n choices in order to encode the choices efficiently within 
n bits. Put another way: "Layering" of choice rules can not hurt us as feared 
by Stone who assumed Huffman coding as the best encoding method. 

The freedom to choose an arbitrary abstract grammar can be used to tailor 
the grammar towards other desirable properties: 

• Allowing easy generation of the AST from a given frontend. 

• Facilitating fast generation of good code. 

o Supporting annotations such as proofs for proof-carrying code. 
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6 Conclusion 

Our results indicate that our generic approach to syntax-directed AST compres­
sion is not only feasible but actually outperforms existing methods in compres­
sion effectiveness. We compared our compression scheme to Pugh's Java-specific 
compression scheme, which is the best published so far for Java, and improved 
compression by 5-503. Our main contribution is to show that compressing 
abstract syntax trees outperformes other approaches to high-level code com­
pression in terms of code density, even though it is the more generic approach. 

Currently our research is focused on improving the compression ratio by 
exploring extended context definitions and different blending schemes for PPM. 
Additionally, we aim at enhancing the genericity of our framework and then we 
will focus on improving the speed of compression and decompression. 
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