
UC Irvine
ICS Technical Reports

Title
Generic adaptive syntax-directed compression for mobile code

Permalink
https://escholarship.org/uc/item/3wb1h478

Authors
Stork, Christian H.
Haldar, Vivek
Franz, Michael

Publication Date
2001

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wb1h478
https://escholarship.org
http://www.cdlib.org/

Notice:
may be protected
by Copyright Law
(Title 17 U.S.C.)

Generic Adaptive Syntax-Directed
Compression for Mobile Code

Christian H. Stork
cstork@ics.uci.edu

Vivek Haldar
vhaldar@ics.uci.edu

Michael Franz
franz@uci.edu

Technical Report 00-42
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

November 2000
Revised April 2001

Contents

1 Introduction
1.1 Vision ..

2 Compressing Abstract Syntax Trees
2.1 Abstract Grammars
2.2 Encoding ASTs
2.3 Arithmetic Coding
2.4 Prediction by Partial Match .

2.4.1 Adapting PPM for ASTs
2.4.2 Weighing Strategies

2.5 Compressing Constants ..

3 Implementation and Results
3.1 Binary and Source Compatibility
3.2 Preliminary Results

4 Related Work

5 Discussion
5.1 Statistical versus Dictionary-based Encoding
5.2 Devising an Abstract Grammar

6 Conclusion

1

2
3

4
4
5
5
6
7
7
8

8
9

10

11

13
13
13

14

1 Introduction

With the advent of mobile code, there has been a resurgent interest in code
compression. Compactness is an issue when code is transferred over networks
limited in bandwidth, particularly wireless ones. It is also becoming increasingly
important with respect to storage requirements, especially when code needs to
be stored on consumer devices. Furthermore, denser code representations can
also act as an enabling technology. For example, good compression can reduce
the size requirements of proof-carrying code (Nec97]. A benficial side-effect
of good compression in general is that the reduction of redundancy increases
the effectiveness of encryption by making statistical attacks harder. Finally,
processor performance has increased exponentially over storage access time in
the last decade. It is therefore reasonable to investigate compression as a means
of using additional processor cycles to decrease the demand on storage access
[FK97], leading to a net gain in performance.

Among the major approaches to mobile code compression are (1) schemes
that use code-factoring compiler optimizations to reduce code size while leaving
the code directly executable (DEM99], (2) schemes that compress object code
by exploiting certain statistical properties of the underlying instruction format
(EEF+97, Fra99, LucOO, Pug99], and (3) schemes that compress the abstract
syntax tree (AST) of a program by using either dictionary-based (FK97] or
statistical (Cam88, ECM98] approaches.

Our approach falls into the last category, or more precisely, we compress
the AST of a program using novel statistical approaches. Since the AST is
composed according to a given abstract grammar (AG), we are using domain
knowledge about the underlying language to achieve a more compact encoding
than a general-purpose compressor could achieve.

Our compression framework applies to different kinds of code. It is conve­
nient to think of our compression algorithm as being applied to some source
language, which-after decompression at the code consumer site-is compiled
into native code. But generally, our scheme applies to all code formats that
can be expressed in form of a grammar. Theoretically, this includes all forms
of code: source code text, ASTs, intermediate representations (byte code or
SafeTSA (ADFvROO] for example), and object code. Our prototype imple­
mentation compresses Java ASTs, which can then be compiled to native code,
thereby circumventing compilation into byte code and execution on the JVM.

We chose to compress Java programs as a proof of concept because there
already exists a sizeable body of work on the compression of Java code, especially
Pugh's work on jar-file compression (Pug99]. This gives us a viable yardstick
to gauge our results against.

Our compression scheme does not assume that source code will be re-generated
at the code consumer's site. In fact, in our current implementation the decom­
pressor interfaces directly to the GCC [Fre] backend.

In our framework, source code is required in order to generate a compressed
AST and, inversely, a compressed AST possesses the intrinsic capability to re­
generate the source code (deprived of comments and internal identifier names).

2

The prerequisite of source code availability and the benefit of AS Ts being readily
(re)compilable and well-optimizable, position our encoding as a good distribu­
tion format1 for Open Source Software [OSS). Files in our format are very
compact and span different architectures, thereby reducing the maintenance
effort for packaging.

1.1 Vision

Our vision for mobile code distribution and deployment is based on the notion
of code producers and code consumers. The code producer distributes software
as compressed ASTs, which constitute a platform-independent format at the
highest possible level of abstraction. Naturally, programs distributed as ASTs
are as portable as their source language allow. 2 Compression of ASTs is allowed
to be computationally expensive because it is only a one-time effort performed by
the code producer. Thus we can imagine augmenting the encoding with hard­
to-compute but easy-to-verify annotations, e.g., alias information for further
optimizations or proofs of safety properties [N ec97).

On the code consumer side, the code format has to meet several require­
ments: (1) short start-up time, (2} potentially pliable to more advanced opti­
mizations, and (3) safe to execute. We meet the first requirement by providing
a very dense encoding, which can be compiled directly into machine code on
arrival. As shown by Franz and Kistler [FK97), the time saved for transmission
(or file access) easily pays for the additional decompression and compilation
effort.3

Since our compression format contains all the machine-readable information
provided by the programmer at source language level, the runtime system at
the code consumer site can readily use this information to provide optimiza­
tions and services based on source language guarantees. 4 Kistler [Kis99) uses
the availability of the AST to make dynamic re-compilation at runtime feasible.
Furthermore, distributing code in source language-equivalent form provides the
runtime system with the choice of a platform-tailored intermediate representa­
tion. The success of Transmeta's dynamic code translation technology shows
that this is a viable approach, even when starting with an unsuitable interme­
diate representation at a much lower abstraction level.

Lastly, high-level encoding of programs protects the code consumer against
all kinds of attacks based on low-level instructions, which are hard to control

1 Since the right to modify the source and documentation is an integral part of the Open
Source philosophy, our format is no alternative to fully commented source text, but it is only
meant as replacement for the binary distribution of Open Source Software. Note however
that, in contrast to binary object files, our compressed ASTs still need to go through a code
generation phase in order to be executable.

2 Here we allude to portability issues caused by implicit assumptions of the source language.
For example, some C programs assume an int to have the same size as a pointer.

3 By now the consensus seems to be that on-the-fly compilation is preferable over bytecode
interpretation. For example, in Microsoft's .NET architecture, code in intermediate language
format is never interpreted but always compiled.

4 As an example, note that the Java language provides much more restrictive control flow
than Java byte code, which allows arbitrary gotos.

3

and verify. Our encoding also has the desirable characteristic that even after
malicious manipulation it can only generate ASTs which adhere to the abstract
grammar (and certain additional semantic constraints), thereby providing some
degree of safety by construction. This is in contrast to byte code programs,
which have to go through an expensive verification process prior to execution.

2 Compressing Abstract Syntax Trees

Computer program sources are phrases of formal languages represented as char­
acter strings. But programs proper are not really character strings, in much
the sense that natural numbers are not digit strings but abstract entities. Con­
ventional context-free grammars, i.e., concrete grammars, mix necessary infor­
mation about the nature of programs with irrelevant information catering to
human (and machine) readability. An AST is a tree representing a source pro­
gram abstracting away irrelevant concrete details, e.g., which symbols are used
to open/ close a block of statements. Therefore it constitutes the ideal starting
point for compressing a program. Note also that properties like precedence and
different forms of nesting are already implicit in the AST's tree structure.

2.1 Abstract Grammars

Every AST conforms with an abstract grammar (AG) just as every source pro­
gram conforms with a concrete grammar. A Gs give a succinct description of
syntactically correct programs by eliminating superfluous details of the source
program.

AGs consist of rules (also called productions) defining symbols much like con­
crete grammars define terminals and nonterminals [Mey90}. Whereas phrases
of languages defined by concrete grammars are character strings, phrases of
languages defined by AGs are ASTs. Each AST node corresponds to a rule,
which we will often refer to as the kind of node. For the purpose of a simple
presentation, we will discuss only three forms of rules. These three forms of
rules are sufficient to specify sensible AGs and are a subset of the rules used in
our framework.

Two forms of rules are compound rules defining symbols corresponding to
the well-known non-terminals of concrete grammars. Aggregate rules define
AST nodes (aggregate nodes) with a fixed number of children. For example, the
rule for the while-loop statement defines a WhileStmt node with two children
of kind Expression and Statement:

WhileStmt ~ Expression; Statement.

The second form of compound rules are choice rules, which define AST nodes
(choice nodes) with exactly one child. The kind of child node can be chosen
from a fixed number of alternatives. The following (simplified) rule says that a
Statement node has either an Assignment, IfStmt, or WhileStmt child:

Statement ~ Assignment I IfStmt I WhileStmt.

4

The last form of rule is the string rule, which specifies string nodes. The
right hand side of a string rule is the predefined STRING symbol. String rules
define the equivalent of terminals in concrete grammars. String nodes contain
an arbitrary string and they are the leaf nodes of the AST. To define the I dent
node to be a string node we write:

!dent ~ STRING.

User-defined symbols of AGs must be defined by exactly one rule with the
exception of the predefined STRING symbol. As usual, one symbol is marked as
the start symbol of the AG.

2.2 Encoding ASTs

In order to encode (i.e., store or transport) ASTs they need to be serialized.
ASTs can be serialized by writing out well-defined traversals. We chose a depth­
first traversal resulting in a pre-order representation. Such a traversal provides
a linearization of the tree structure only. Several mechanisms exist in order to
encode the information stored at the nodes. The most common technique pre­
scans the tree for node attributes, stores them in separately maintained lists,
and augment the tree representation with indices into these lists. For now, we
ignore the problem of efficiently compressing strings (our only node attributes)
for the sake of simplicity and assume that strings are directly encoded whenever
they appear.

The actual tree representation can make effective use of the AG. Given the
AG, much information in the pre-order encoding is redundant. In particular, the
order and the kind of children of aggregate nodes are already known. Therefore
the encoding boils down to noting the choices made at each choice node. Since
the order of alternatives in choice nodes is fixed, it suffices to encode only the
position (1, 2, 3, ...) of the chosen alternative. Of course, if only one alternative
is given there is "no choice" and therefore nothing needs to be encoded.

2.3 Arithmetic Coding

So far we reduced the serialization of compound rules to encoding the choices
made at each choice node as an integer c E {1, 2, ... , n }, where n depends on the
kind of choice node and is equal to the number of given alternatives. We want
to use as few bits as possible for encoding the choice c. The two options are
to use Huffman coding or arithmetic coding. Using Huffman code as discussed
in Stone [Sto86] is very fast, but is much less flexible than arithmetic coding.
Cameron [Cam88J shows that arithmetic coding is more appropriate for good
compression results and recent improved implementations [MNW98] make it
also very fast.

An arithmetic coder [WNC87] is a flexible means to encode a number of
choices if each alternative i E {1, 2, ... , n} has a certain probability Pi, where
'2:::~=l Pi = 1 and n is given by the kind of choice node. The tuple lvl =

5

(p1,p2 , .•• ,pn) is called the model M for the arithmetic coder. When encoding,
an arithmetic coder takes a sequence of choices Cj along with their respective
models Mj as argument and outputs a sequence of bits B. From this informa­
tion, the arithmetic coder produces a close to optimal encoding of the sequence
of choices c1 , c2 , When decoding, an arithmetic coder takes the sequence
of bits B and the above sequence of models M1 , M 2 , ... as arguments. For
each given model Mj it then reproduces the next choice Cj. It is important
to note that the model Mj can depend on all previous choices c1 , c2 , ... , Cj- l .

The choice of models determines the quality of compression. If the probabilities
are picked in an "optimal" fashion (i.e., taking "all" available information into
account and adapting the probabilities appropriately) then the encoding has
minimal redundancy.

A simple and fast way to chose the models is to fix the probability distri­
butions for each kind of node. Good fixed models can be determined based on
statistics over a representative set of programs.

2 .4 Prediction by Partial Match

Prediction by Partial Match (PPM) [CW84] is a statistical, predictive text com­
pression algorithm. PPM and its variations have consistently outperformed
dictionary-based methods as well as other statistical methods for text compres­
sion.

Our experience shows that PPM adapts so fast to each program's peculiari­
ties that efforts to improve compression by using statistically determined initial
probabilities for the models did not yield any significant gains in compression.

PPM maintains a list of already seen string prefixes, conventionally called
contexts. For example, after processing the string ababc, the contexts are the
empty context, a, b, c, ab, ba, be, aba, bab, abc, abab, babe, and ababc. For each
context PPM maintains a list of characters that appeared after the context.
PPM also keeps track of how often the subsequent characters appeared. So in
the given example the counts of subsequent characters for, say, ab are a and c
both with a count of one. Normally, efficient implementations of PPM maintain
contexts dynamically in a context trie [CT97]. A context trie is a tree with
characters as nodes and where any path from the root to a node represents
the context formed by concatenating the characters along this path. The root
node does not contain any character and represents the empty context (i.e., no
prefix). In a context trie, children of a node constitute all characters that have
been seen after its context. In order to keep track of the number of times that
a certain character followed a given context, the number of its occurrences is
noted along each edge. Based on this information PPM can assign probabilities
to potential subsequent characters.

The length of contexts is also called their order. Note that contexts of differ­
ent order might yield different counts leading to varying predictions. Different
strategies have been devised to blend the information given by contexts of dif­
ferent orders.

6

2.4.1 Adapting PPM for ASTs

When applying PPM to trees the first problem to solve is the definition of
contexts for ASTs. We chose a simple definition:

The context of an AST node is defined as the concatenation of its
ancestors on the path to the root.

One consequence of this definition is that the order of contexts is bounded by
the depth of the AST. Our alphabet corresponds to the rules, i.e., symbols, of
the AG because our modified PPM algorithm treats AST nodes like the original
PPM algorithm treats characters. 5 The PPM algorithm is applied to the nodes
as they appear while traversing the AST in depth-first order.

PPM maintains a set of nodes in the context trie called active nodes. Active
nodes mark the positions, where the current contexts end. The root of the
trie, representing the empty context, is always active. When the AST traversal
descents to a child node, new nodes in the context trie are created as children of
active nodes. This corresponds to the familiar addition to the current contexts.
However, whenever the AST traversal proceeds from a leaf node to an internal
node (as in DFS) suffixes of the current contexts are annihilated, i.e. the input
seen by the modified PPM does not consist of contiguous characters anymore.
This changed requirement makes it necessary to partly pop contexts, i.e., all
nodes marked as active (except the root) in the context trie are moved up one
node to their parents. (The root always stays active.) This ensures that all
children of a node Nin the AST appear as children of Nin the context trie too.
This works because we traverse the AST in depth-first order while building up
contexts.

We adapted the unbounded variant of the PPM algorithm (PPM*) [CT97]
for our implementation. Given our definition of context together with the way
we pop contexts, the depth of our context trie is bounded by the AST's depth.
Therefore we don't have to worry about unlimited growth of the context trie in
spite of using PPM*.

2.4.2 Weighing Strategies

In order to generate the model for the next encoding/ decoding step, we look up
the counts of symbols seen after the current context in the context trie. Since
the active nodes, to which we have direct pointers, correspond to the last seen
symbol, this is a fast lookup and does not involve traversing the trie. These
counts can be used in several ways to build the model. Normally, the context
trie contains counts for contexts of various orders. We have to decide how to
weigh these predictions of various orders to get a suitable model. The trade-off
is that shorter contexts occur more often, but fail to capture the specificity and
sureness of longer contexts (if the same symbol occurs many times after a very

5 Note that if an aggregate node has several children of the same kind then their position
is relevant for the context. Since this does not happen often, we have not implemented this
refinement yet.

7

long context, then the chance of it occurring again after that same long context
is very high), and longer contexts do not occur often enough for all symbols
to give good predictions. Note that the characteristics of AST contexts differ
from text contexts-AST contexts are bound by the depth of the AST and
tend towards more repetitions since the prefixes of nodes for a given subtree are
always the same

We tried various weighing strategies, and our experiments indicate that ig­
noring predictions made by order 0 contexts (which are simply relative frequen­
cies of symbols, and form the first level of the context trie) and weighing all
other predictions equally yields the best compression. This will be explored
further in an upcoming paper.

Note that this approach for adapting PPM to compress abstract syntax trees
is general enough to compress any kind of tree, and not just ASTs.

2.5 Compressing Constants

A sizable part of an average program consists of constants like integers, floating­
point numbers, and, most of all, string constants. String constants in this sense
encompass not only the usual string literals like "Hello World!" but also type
names (e.g., java.lang.Object), field names and more. In our simplified def­
inition of AGs, we used the predefined STRING symbol to represent constants
within ASTs. However, when observing the use of strings in ASTs of typical
programs, it is apparent that many strings are used multiple times. Therefore
it saves space to encode the different strings once and refer to them at later
occurrences. Such a reference is an index into a list of strings. The higher the
number of strings is, the more bits are needed to encode the corresponding in­
dex. By distinguishing different kinds of strings (e.g., type names, field names,
and method names) different lists of strings can be created. These split lists are
each smaller than a global list. Given that the context determines which list to
access, references to strings in split lists require less space to encode. As these
considerations show, context-sensitive (as opposed to context-free) information
such as symbol tables can be encoded and compressed at varying degrees of
sophistication.6 Our framework provides the facility of so-called pools, which
embody different ways of compressing, maintaining, and accessing lists of con­
stants.

3 Implementation and Results

Our current implementation is a prototype written in Python [Pyt) consisting of
roughly 40 modules handling AGs, ASTs, and their compression/ decompression.
In order to compare our compression results to other established methods we
chose to compress Java programs. Our Java frontend is written in Java and uses
the Barat framework [BS98) for parsing. We devised an AG for Java, which is

6 Note that conventional symbol tables can conveniently be expressed as some kind of AST
with the appropriate string nodes.

8

both suitable for easy generation from Barat's internal representation of Java
programs and suitable to generate a dense encoding. A visitor for walking
Barat's AST was then adapted to output a Lisp-like textual representation of
the AST according to our AG. The textual representation of the AST is then
parsed and compressed by our Python prototype. This compressed binary file
can be stored or sent over networks. After decompressing the binary file, the
prototype can interface directly to any kind of backend. Currently, we work on
the integration with GCC as code-generating backend.

It is natural to implement most of our AST processing with the visitor de­
sign pattern [GHJV95]. Visitors are used to walk the AST and perform different
tasks on the tree, e.g., gathering all occurring constants or computing the prob­
abilities for the arithmetic coder. Visitors are a good means to separate and
recombine different passes over the AST. We evolved the visitor design pattern
into the weaver /yam pattern, which allows us to re-use the same visitor code
for compressing and decompressing despite the fact that the AST is being built
by the code consumer while being traversed by several visitors (i.e., yarns) in
lockstep. This design pattern will be described in a separate paper. This archi­
tecture has helped us tremendously during the development of the prototype.

In our implementation we provide generic ways to mark and reference nodes
within the AST. This gives us the means to allow very concise augmentations of
the AG that specify how to encode constructs like labels or local (i.e., statically­
scoped) variables very effectively. Furthermore, we provide generic building
blocks (pools) to handle string, integer, and floating point constants.

All information necessary to specify the AST's compression and decompres­
sion is condensed into one configuration file. The configuration file contains
the AG augmented with additional information, e.g., on how to compress dif­
ferent kinds of constants. Given the availability of our framework at the code
producer and consumer sites, the only requirement for supporting the com­
pression/ decompression of an additional language is that identical copies of the
configuration file are present at both sites. 7

3.1 Binary and Source Compatibility

The Java Language Specification (JLS) [GJSBOOJ devotes the entirety of chapter
13 on binary compatibility of Java class files. Binary compatibilty ensures that
class files (i.e., binaries), which have been compiled against other class files,
will still link correctly with newer versions of the accessed class files. This
enables library vendors to update their libraries without forcing client code to
be recompiled. In order to achieve this goal the vendor must restrict the library
class changes to the list of binary compatible changes defined in the JLS.

The AG currently used in our framework fullfills most requirements for bi­
nary compatibility. 8 It is based on Barat's representation of Java classes and in-

7 Note that in order for the code consumer to deploy the transported code, it still needs to
compile it into some executable format.

8 We do not yet replace fields that are final and initialized at compile-time with their con­
stant value and we do not yet resolve methods/constructors at compile-time to their qualifying

9

Class Name
Size in Bytes

CAST/Pugh
Class File Gzip Bzip2 Pugh CAST

ErrorMessage 305 256 270 209 105 503
CompilerMember 1192 637 641 396 230 583
BatchParser 4939 2037 2130 1226 1069 873
Main 11363 5482 5607 3452 3295 953
SourceMember 13809 5805 5705 3601 2988 833
SourceClass 32157 13663 13157 8863 7849 893

Table 1: File size comparision of compressed AST files (CAST) with class files
from sun. tools . j avac compressed using alternative techniques.

Package Name
Size in Bytes

CAST/Pugh
Jar Gzip Bzip2 Pugh CAST

sun. tools . j avac 36787 32615 30403 18021 14070 783
jess 232041 133146 97852 48331 31083 643

Table 2: File size comparision of compressed collections of classes from two Java
packages.

terfaces, which among other advantages removes ambiguities like the ones caused
by the type-import-on-demand declaration (e.g., import some. package.*;) by
performing a static name analysis and always referring to fully-qualified type
names.

3.2 Preliminary Results

In this section we compare the compression results of our prototype against
other general-purpose and special-purpose compression algorithms. We split
the comparison in two parts: First we measure compression of single classes
and, second, we measure compression of collections of classes as they appear in
Java packages or jar-files. Our basic Java AG defines how to represent Java
classes as ASTs. With a two-line addition, our original AG can also deal with
collections of classes as present in packages or jar-files. These collections of
classes share the same pools (lists of strings, etc.) thereby reducing redundancy
caused by entries, which appear in several classes. We can use our framework
with the extended AG to compresss the classes contained in jar-files. This gives
us the basis for a good comparison with Pugh's work.

The Java code chosen for compression is the Java compiler package from
Sun (Linux Blackdown Version 1.1.2) and Jess, a rule engine and scripting
environment ([Jes], version 5.1). Both packages were used in the SPEC JVM98
Benchmark suite [Sta] and they are the only ones thereof for which the source

type of invocation plus their signature.

10

code is available. We use the most current (source) versions of these packages as
indicated above. In case of Jess, we compressed all classes that are part of the
distribrution, i.e., including the subpackage and example classes. The class files
were compiled under javac (Linux Blackdown Version 1.1.2) with all debugging
information excluded (-g: none option). They were not stripped with a tool
equivalent to Pugh's StripZip program since we want to give a comparison
with what is in common use today. We compare only the compression of Java
classes proper by eliminating all other resource files including the manifest.

We choose primarily Pugh's compression scheme [Pug99] for comparison be­
cause, to our knowledge, it provides the best compression ratio for Java archives
(and class files) and it is freely available for educational purposes. It should be
noted that Pugh actually designed his compression scheme for jar files, which
are collections of (mostly) class files. His algorithm therefore does not perform
as well on small files as it does on bigger ones. We fed the evaluation version
0.8.0 of Pugh's Java Packing tool with jar-files generated with the -M option
(no manifest). 9 The other comparable compression scheme is syntax-oriented
coding [ECM98]. But for this scheme there are no detailed compression num­
bers available, only an indication that the average compression ration between
their format and regular class files is 1 : 6.5.

We furthermore compare our results with two widely available general pur­
pose compression algorithms, gzip and bzip2. Collections of classes (Table 2)
have been tar'ed before applying gzip or bzip2.

The comparision of compressing Java classes is presented in Table 1 and the
comparision for collections of classes is presented in Table 2. Our choice of sin­
gle classes tries to be representative of the sizes of classes in the SPEC JVM98
Benchmark suite. The resulting numbers show that our compression scheme
is an improvement by 5-503 over Pugh's results, which translates to a com­
pression of regular jar-files by a factor of 3 to 8, roughly. The results indicate
that we compress very well for either very small classes or larger collections of
classes. Some more statisitcal investigation is needed to precisely analyse and,
ultimately, enhance our compression results.

4 Related Work

The initial research on syntax-directed compression was conducted in the 1980's
primarily in order to reduce the storage requirements for source text files. Con­
tla [Con81, Con85] describes a coding technique essentially equivalent to the
technique described in section 2.2. This reduces the size of Pascal source to
at least 443 of its original size. Katajainen et. al. [KPT86] achieve similar re­
sults with automatically generated encoders and decoders. Al-Hussaini [AH83J
implemented another compression system based on probabilistic grammars and
LR parsing. Cameron [Cam88J introduces a combination of arithmetic coding
with the encoding scheme from section 2.2. He assigns fixed probabilities to

9 This means in case of compressing classes we first make a jar-file from an individual class
file and then compress the resultant jar-file using Pugh's tool.

11

alternatives appearing in the grammar and uses these probabilities to arith­
metically encode the pre-order representation of ASTs. Furthermore, he uses
different pools of strings to encode symbol tables for variable, function, proce­
dure, and type names. Deploying all these (even non-context-free) techniques
he achieves a compression of Pascal sources (including comments) to 10-173 of
their original size. Katajainen and Makinen [KM90) present a general survey
of tree compression mentioning the above methods. It seems that before this
paper all of the above four efforts were pursued independently of each other.
Tarhio (Tar95) suggests the application of PPM to drive the arithmetic coder in
a fashion similar to ours. He reports increases in compression of Pascal ASTs
(excluding constants, i.e., pools of strings, etc.) by 203 compared to a technique
close to Cameron's.10 Cheney [CheOOJ suggests applying PPM in the context of
term compression.

All of these techniques are concerned only with compressing and preserving
the source text of a program in a compact form and do not attempt to represent
the program's semantic content in a way that is well-suited for further process­
ing such as dynamic code generation or interpretation ([KPT86) even reflects
incorrect semantics in their tree). Franz [Fra94, FK97) was the first to use a tree
encoding for (executable) mobile code. He uses a dictionary-based encoding to
compress the abstract syntax tree of Oberon programs.

Even though seemingly placed in the same application domain, research on
"code compression" (EEF+97, Fra99, LucOO, DEM99J is generally not compara­
ble to the above line of work on source text and AST compression. The reason
is that code compression focuses much more on the specifics of machine code
like choice of op codes, operand formats, lack of apparent high-level structure,
and so on. Nevertheless, will we try to identify potential overlap between our
work and other work on code compression.

Java, currently the most prominent mobile code platform, attracted much
attention with respect to compression. Horspool and Corless [HC98J compress
Java class files to roughly 363 of their original size using a compression scheme
specifically tailored towards Java class files. In a follow-up paper Bradley, Hor­
spool, and Vitek [BHV98J further improve the compression ratio of their scheme
and extend its applicability to Java archives (jar-files). A better compression
scheme for jar-files was proposed by Pugh [Pug99]. His format is typically 1/2
to 1/5 of the size of the corresponding compressed jar-file (1/4 to 1/10 the size
of the original class files). Pugh offers his tool for free evaluation.

All of the above Java compression schemes start out with the byte code of
Java class files, in contrast to the source program written in the Java program­
ming language. Eck, Changsong, and Matzner [ECM98) employ a compression
scheme similar to Cameron's and apply it to Java sources. They report com­
pression down to around 153 of the original source file, although more detailed
information is needed to assess their approach.

10Unfortunately, we learned of Cameron's and Tarhio's work only after we developed our
solution independently of both.

12

5 Discussion

This section discusses additional issues related to our compression scheme.

5 .1 Statistical versus Dictionary-based Encoding

The only other AST compression scheme for mobile code [FK97] uses a dictionary­
based encoding. Our statistical encoding scheme diverts from this approach
because the compression ratio of dictionary-based compression seems lower and
when we tried to guarantee additional semantic constraints while decoding, the
cost of maintaining valid entries in a dictionary became unbearable in terms of
time and complexity.

In general, dictionary-based compression has the disadvantage that, in order
for compression to succeed, an exact match from the dictionary needs to be
found. Therefore either the dictionary needs to be very big to provide many
potential matches or the matching algorithm needs to be rather complicated
to allow some kind of "fuzzy" matching (possibly mimicking some statistical
approach).

5.2 Devising an Abstract Grammar

Essentially, the combination of arithmetic coding and PPM gives full freedom
in the choice of grammar. Stone [Sto86] and Cameron [Cam88] propose differ­
ent grammar expansion techniques in order to make nested choices accessible
to statistical approaches. But since PPM keeps track of the nesting (i.e., "ex­
pansion") of rules in its context we do not have to worry about rewriting the
grammar. More specifically, with respect to Al-Hussaini's scheme Stone [Sto86]
discourages layering of rules in AGs for two reasons: (1) When using Huffman
encoding the "quality" of the encoding can only become worse, and (2) layered
rules used in different contexts waste potential for a better model. With our
compression scheme, we alleviate the first problem by using an arithmetic coder
and the second by proper use of PPM.

Another advantage is that due to arithmetic coding we do not need to chose
selection rules with 2n choices in order to encode the choices efficiently within
n bits. Put another way: "Layering" of choice rules can not hurt us as feared
by Stone who assumed Huffman coding as the best encoding method.

The freedom to choose an arbitrary abstract grammar can be used to tailor
the grammar towards other desirable properties:

• Allowing easy generation of the AST from a given frontend.

• Facilitating fast generation of good code.

o Supporting annotations such as proofs for proof-carrying code.

13

6 Conclusion

Our results indicate that our generic approach to syntax-directed AST compres­
sion is not only feasible but actually outperforms existing methods in compres­
sion effectiveness. We compared our compression scheme to Pugh's Java-specific
compression scheme, which is the best published so far for Java, and improved
compression by 5-503. Our main contribution is to show that compressing
abstract syntax trees outperformes other approaches to high-level code com­
pression in terms of code density, even though it is the more generic approach.

Currently our research is focused on improving the compression ratio by
exploring extended context definitions and different blending schemes for PPM.
Additionally, we aim at enhancing the genericity of our framework and then we
will focus on improving the speed of compression and decompression.

Acknowledgments The authors would like to thank Peter Frohlich for his
many contributions to this paper, Peter Housel, Niall Dalton, and Naomi Car­
penter for their reviews, and Dan Hirschberg for interesting discussions. We
want to express our gratitude towards Sumit Mohanty, Bratan Kostov, and
Ziemowit Laski, who contributed to this project in its early stages, and Sergiy
Zhenochin, who is currently working on integrating GCC as our backend.

This effort is partially supported by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Com­
mand, USAF, under agreement number F30602-99-l-0536 and by the National
Science Foundation, Program in Operating Systems and Compilers, under grant
CCR-9901689.

We dedicate this work to Bratan Kostov.

References

[ADFvROO] Wolfram Amme, Niall Dalton, Michael Franz, and Jeffery von
Ronne. SafeTSA: A type safe and referentially secure mobile-code
representation based on static single assignment form. Technical
Report 00-43, University of California, Irvine, November 2000.

[AH83] A. M. M. Al-Hussaini. File compression using probabilistic gram­
mars and LR parsing. PhD thesis, Loughborough University, 1983.

[BHV98] Quetzal Bradley, R. Nigel Horspool, and Jan Vitek. JAZZ: An
efficient compressed format for Java archive files. In Proceedings of
CASCON'98, pages 294-302, Toronto, Ontario, November 1998.

[BS98] Boris Bokowski and Andre Spiegel. Barat - A front-end for Java.
Technical Report B-98-09, Freie Universitat Berlin, December 1998.

[Cam88] Robert D. Cameron. Source encoding using syntactic informa­
tion source models. IEEE Transactions on Information Theory,
34(4):843-850, July 1988.

14

[CheOO] James Cheney. Statistical models for term compression. In Data
Compression Conference, page 550, 2000.

[Con81] Jose Felipe Contla. Compact Coding Method for Syntax-Tables and
Source Programs. PhD thesis, Reading University, England, 1981.

[Con85] J. F. Contla. Compact coding of syntactically correct source pro­
grams. Software-Practice and Experience, 15(7):625-636, 1985.

[CT97] John G. Cleary and W. J. Teahan. Unbounded length contexts for
PPM. Computer Journal, 40(2/3):67-75, 1997.

[CW84] John G. Cleary and Ian H. Witten. Data compression using adap­
tive coding and partial string matching. IEEE Transactions on
Communications, 32(4):396-402, 1984.

[DEM99] Saumya Debray, William Evans, and Robert Muth. Compiler tech­
niques for code compression. In Workshop on Compiler Support for
System Software, May 1999.

[ECM98) Peter Eck, Xie Changsong, and Rolf Matzner. A new compres­
sion scheme for syntactically structured messages (programs) and
its applications to Java and the Internet. In Data Compression
Conference, page 542, 1998.

[EEF+97] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proebsting.
Code compression. In Proceedings of the A CM Sigplan '97 Confer­
ence on Programming Language Design and Implementation, pages
358-365, 1997. Published as Sigplan Notices, 32:5.

[FK97] M. Franz and T. Kistler. Slim Binaries. Communications of the
ACM, 40(12):87-94, December 1997.

[Fra94] M. Franz. Code-Generation On-the-Fly: A Key to Portable Soft­
ware. PhD thesis, ETH Zurich, March 1994.

[Fra99] C. W. Fraser. Automatic inference of models for statistical code
compression. In Proceedings of the ACM Conference on Program­
ming Language Design and Implementation, 1999.

[Fre] Free Software Foundation. GNU Compiler Collection. See online
at http://gcc.gnu.org/ for more information.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Massachusetts, 1995.

[GJSBOO] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Second Edition. Addison Wesley, 2000.

15

(HC98] R. Nigel Horspool and Jason Corless. Tailored compression of Java
class files. Software-Practice and Experience, 28(12):1253-1268,
October 1998.

(Jes] Jess, the Java Expert System Shell. See online at
http://herzberg.ca.sandia.gov/jess/ for more information.

(Kis99] Thomas Kistler. Continuous Program Optimization. PhD thesis,
University of California, Irvine, November 1999.

(KM90] Jyrki Katajainen and Erkki Makinen. Tree compression and opti­
mization with applications. International Journal of Foundations
of Computer Science, 4(1):425-447, 1990.

(KPT86] J. Katajainen, M. Penttonen, and J. Teuhola. Syntax-directed
compression of program files. Software-Practice and Experience,
16(3):269-276, 1986.

[LucOO] S. Lucco. Split stream dictionary program compression. In Pro­
ceedings of the ACM Conference on Programming Language Design
and Implementation, 2000.

[Mey90} Bertrand Meyer. Introduction to the Theory of Programming Lan­
guages. PHI Series in Computer Science. Prentice Hall, 1990.

[MNW98} Alistair Moffat, Radford M. Neal, and Ian H. Witten. Arith­
metic coding revisited. ACM Transactions on Information Systems,
16(3):256-294, 1998.

[Nec97} George C. Necula. Proof-carrying code. In Proceedings of the 24th
ACM Symposium on Principles of Programming Languages, Paris,
France, January 1997.

[OSS} Open Source Software. See online at http://www.opensource.org
for more information.

[Pug99} William Pugh. Compressing java classfiles. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 247-258, 1999.

(Pyt}

[Sta]

(Sto86}

Python programming language. See online at
http://www.python.org for more information.

Standard Performance Evaluation Corportation. SPEC JVM98
benchmarks. See online at http://www.spec.org/osg/jvm98 for
more information.

R. G. Stone. On the choice of grammar and parser for the compact
analytical encoding of programs. Computer Journal, 29(4):307-314,
1986.

16

(Tar95] Jonna Tarhio. Context coding of parse trees. In Data Compression
Conference, page 442, 1995.

(WNC87] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for
data compression. Communications of the ACM, 30(6):520-540,
June 1987.

17

