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Abstract

The impressive recent performance of large language models
such as GPT-3 has led many to wonder to what extent they can
serve as models of general intelligence or are similar to hu-
man cognition. We address this issue by applying GPT-3 to a
classic problem in human inductive reasoning known as prop-
erty induction. Our results suggest that while GPT-3 can qual-
itatively mimic human performance for some inductive phe-
nomena (especially those that depend primarily on similarity
relationships), it reasons in a qualitatively distinct way on phe-
nomena that require more theoretical understanding. We pro-
pose that this emerges due to the reasoning abilities of GPT-3
rather than its underlying representations, and suggest that in-
creasing its scale is unlikely to change this pattern. Keywords:
reasoning; property induction; neural networks; GPT-3; AI

Introduction
In recent years, transformer-based language models (TLMs)
have attracted interest for their impressive performance on
a wide range of language tasks including translation, sum-
marisation and question answering. Language models such
as GPT-3 (Brown et al., 2020) and Gopher (Rae et al., 2021)
are so adept at engaging in apparently natural conversations
on a broad range of topics that it is tempting to conclude that
they show some degree of general intelligence, and thus that
they are potentially useful as models of human cognition.

This possibility has given rise to an active research area
aiming to probe the scope and limitations of the current gen-
eration of TLMs, as well as to anticipate the abilities of future
generations that are even more powerful. Many families of
tasks are used in this literature, including some that specifi-
cally target linguistic abilities (Hu, Gauthier, Qian, Wilcox, &
Levy, 2020) and others that target commonsense knowledge
and logical reasoning (Rae et al., 2021). Here we propose
that the set of existing tasks can be usefully supplemented by
drawing on the extensive psychological literature on induc-
tive reasoning. To support this general claim we explore the
extent to which one prominent TLM (GPT-3) is able to ac-
count for core phenomena in human property induction.

Inductive reasoning is one of the most central cognitive
tasks people face. It involves arriving at plausible conclu-
sions in the face of uncertainty, and is typically involved when
dealing with sparse or noisy data. In a property induction
task (Rips, 1975), people are given premises that indicate that
a property is shared by one or more categories (e.g. MICE and
SQUIRRELS have sesamoid bones) and must assess whether
the property is shared by a different category (do POSSUMS
have sesamoid bones?). The task is simple and has been
used to study the reasoning of children (Carey, 1985) and
adults from a broad range of cultural backgrounds (López,

Atran, Coley, Medin, & Smith, 1997). Despite this appar-
ent simplicity, the task yields a rich range of phenomena that
draw on many kinds of knowledge (for a review, see Hayes
and Heit, 2018). This knowledge includes not just similar-
ity (Osherson, Smith, Wilkie, Lopez, & Shafir, 1990), but also
causal relationships (Medin, Coley, Storms, & Hayes, 2003)
and assumptions about the process by which the premises
were generated (Ransom, Perfors, & Navarro, 2016).

The range of inductive phenomena – from simple
similarity-based effects to theory-based effects that draw on
richer kinds of knowledge – corresponds to a sequence of in-
creasingly difficult challenges for TLMs and other compu-
tational approaches (Sloman, 1993; Rogers & McClelland,
2004; Kemp & Tenenbaum, 2009). As such, property induc-
tion tasks could potentially lead to benchmarks that help to
drive continued progress in computer science and AI. Indeed,
some of the benchmarks currently used to evaluate TLMs fo-
cus on inductive problems (Sap, Rashkin, Chen, LeBras, &
Choi, 2019). However, as far as we know, property induction
has not been considered at all when evaluating TLMs.

For psychologists, property induction is relevant to a
literature that assesses TLMs and predecessors such as
LSA (Landauer & Dumais, 1997) as computational accounts
of the acquisition, use, and representation of semantic knowl-
edge. Recent work has evaluated the extent to which TLMs
account for human similarity ratings, typicality ratings, and
response times (Bhatia & Richie, 2021; Lake & Murphy,
2021), but there has been relatively little work on inductive
reasoning. A notable exception is the work of Misra, Ettinger,
and Taylor Rayz (2021), who focus on typicality and include
property induction as one of the tasks that they consider. Typ-
icality is among the phenomena considered here, but we in-
vestigate many others as well.

The next section introduces the inductive phenomena that
we analyse, along with a theoretical account of these phenom-
ena known as the Similarity Coverage Model (SCM). We then
compare the inferences of GPT-3 with humans on these phe-
nomena (Osherson et al., 1990). We find that GPT-3 accounts
for some aspects of human inductive reasoning, but overall
the match between GPT-3 and humans is relatively poor. Our
results suggest that the primary shortcomings of GPT-3 lie
in the inferential processes it carries out over its represen-
tations rather than the representations themselves. Our final
analysis suggests that simply increasing the scale of GPT-3 is
unlikely to allow it to attain human-level inductive abilities,
and we conclude by discussing implications and identifying
directions for future work.
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Table 1: Eleven property induction phenomena introduced by Osherson et al. (1990) and investigated in this paper. The second
column is based on the levels occupied by premises and conclusion in a category hierarchy. For specific arguments, premises
and conclusion lie at the same level, but for general arguments the conclusion lies at a higher level than the premises.

Phenomenon Type Stronger argument Weaker argument

Premise-Conclusion Similarity Specific {ROBIN, BLUEJAY} → SPARROW {ROBIN, BLUEJAY} → GOOSE
Premise Typicality General ROBIN → BIRD PENGUIN → BIRD
Conclusion Specificity General {BLUEJAY, FALCON} → BIRD {BLUEJAY, FALCON} → ANIMAL
Premise Monotonicity General {SPARROW, EAGLE, HAWK} → BIRD {SPARROW, EAGLE} → BIRD
Premise Monotonicity Specific {PIG, WOLF, FOX} → GORILLA {PIG, WOLF} → GORILLA
Premise Diversity General {HIPPO, HAMSTER} → MAMMAL {HIPPO, RHINO} → MAMMAL
Premise Diversity Specific {LION, GIRAFFE} → RABBIT {LION, TIGER} → RABBIT
Non-Monotonicity General {CROW, PEACOCK} → BIRD {CROW, PEACOCK, RABBIT} → BIRD
Non-Monotonicity Specific FLY → BEE {FLY, ORANGUTAN} → BEE
Premise-Conclusion Asymmetry Specific MICE → BAT BAT → MICE
Inclusion Fallacy Both ROBIN → BIRD ROBIN → OSTRICH

Inductive Phenomena
We follow a long tradition of studies that examine inductive
reasoning by focusing on property induction with semanti-
cally “blank” or unfamiliar properties. In a typical property
induction task, participants are asked to rate the strength of
inductive arguments like “ROBINS have property P, therefore
BIRDS have property P.” We will use the notation ROBIN →
BIRD to indicate that an argument involves generalizing a
property from ROBIN to BIRDS in general.

Although this task may seem simple, it gives rise to numer-
ous phenomena that are indicative of the ways in which hu-
mans reason inductively. Osherson et al. (1990) present thir-
teen such phenomena, and eleven of the thirteen are shown
in Table 1. All eleven are illustrated by comparing a stronger
argument with a weaker argument, and the two phenomena
not included in the table are omitted because they are not for-
mulated in terms of a similar comparison.

Some of the phenomena directly capture effects of similar-
ity or typicality. For instance, Premise-Conclusion Similar-
ity reflects the finding that people are more likely to gener-
alise a property from one concept to another when the con-
cepts are more similar. Premise Typicality is the finding that
arguments are stronger if the premises are more typical of the
conclusions. A slightly less reliable phenomenon, Premise-
Conclusion Asymmetry, reflects the fact that an argument
that generalises from a typical category member to a less typ-
ical one (e.g. MICE → BATS) is often rated as stronger than
the reverse argument (e.g. BATS → MICE) because atypical
categories are more likely to have atypical properties.

Other phenomena relate to the hierarchical organization of
categories. Conclusion Specificity reflects the intuition that
greater inductive leaps are required to support broader gener-
alisations; arguments are thus stronger if the conclusion cat-
egory is more specific. The Inclusion Fallacy relates to the
observation that a general argument from a category to its en-
closing class (e.g. ROBIN → BIRD) can appear stronger than
a more specific argument (e.g. ROBIN → OSTRICH) that is
nonetheless logically entailed by the first. The inclusion fal-

lacy appears in Table 1 for completeness, but because it is
normally viewed as a fallacy it may not necessarily be appro-
priate as a target for AI models like GPT-3.

There are also phenomena which appear to reflect more
sophisticated or theory-based reasoning about underlying
mechanisms. Premise Diversity refers to the fact that ar-
guments are more compelling if their premises are less simi-
lar to one another. This captures the general intuition, based
on an understanding of statistical sampling, that diverse evi-
dence is more compelling than narrow evidence. A similar
mechanism may underlie systematic violations of Premise
Monotonicity, which is the phenomenon that additional pos-
itive premises increase the strength of an argument. Premise
Monotonicity often holds if all premises are drawn from the
same superordinate category, but adding premises from a
different superordinate category can lead to Premise Non-
Monotonicity. For example, the inclusion of ORANGUTAN
in the argument {FLY, ORANGUTAN} → BEE means that
the context of the argument (the smallest category which in-
cludes the premise and inclusion categories) changes from
INSECT to ANIMAL. This suggests that the property in ques-
tion is not insect-specific, and thus reduces the chance that
bees share it. These systematic violations of premise mono-
tonicity and premise diversity have been shown to be influ-
enced by the reasoner’s theoretical assumptions about how
the premises were generated (Ransom et al., 2016; Hayes,
Navarro, Stephens, Ransom, & Dilevski, 2019).

Similarity-Coverage Model
In addition to characterizing the inductive phenomena just de-
scribed, Osherson et al. (1990) presented a theory known as
the Similarity Coverage Model (SCM) that is able to account
for all of these phenomena. We introduce the SCM here be-
cause it will be used as part of our evaluation of GPT-3.

The SCM builds on the fact that several inductive phenom-
ena can be derived purely from concept similarity. For exam-
ple, ROBIN → SPARROW is stronger than ROBIN → GOOSE
because robins are more similar to sparrows than geese. Sim-
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ilarly, ROBIN → BIRD is stronger than PENGUIN → BIRD be-
cause robins are more similar to the prototypical bird than
penguins are. In both cases, the probability that the premise
and conclusion categories share a property increases solely
based on the similarity of the two sets of categories.

Although similarity based accounts of property induction
are simple and intuitive, they fail to account for more com-
plex phenomena such as non-monotonicity and diversity. The
SCM accounts for these phenomena by incorporating a no-
tion called coverage, which denotes the degree to which the
premise categories are similar to members of the lowest level
category class that encapsulates each of the premise and con-
clusion categories. Osherson et al. (1990) demonstrate that
a weighted combination of coverage and premise-conclusion
similarity captures all eleven of the phenomena in Table 1.

Comparing GPT-3 with humans
In order to assess the extent to which GPT-3 captures people’s
judgments, we need a principled way to elicit its responses.

Presenting arguments to GPT-3

Because effective prompt design is a critically important as-
pect of interacting with GPT-3, we experimented with multi-
ple prompts. This included a question-answer format, a con-
ditional format akin to that used by Misra et al. (2021), and
a format that omitted properties and simply listed a sequence
of premise categories followed by a conclusion. We also ex-
perimented with including written task instructions within the
prompt and varied whether we asked GPT-3 for direct com-
pletions or instead provided it with a predetermined set of an-
swers. Different prompts led to slightly different patterns of
responses, but our general conclusions about the limitations
and abilities of GPT-3 are broadly consistent no matter what
prompts were used. As a result, we report the single prompt
design that elicited the most human-like performance.

The best-performing prompt design was a question-answer
based prompt that included a task description and contextual
information followed by a yes/no entailment question. We
used a feature of the GPT-3 API1 that allowed us to extract the
probability assigned by the model to a particular word after
it had seen some preceding context. For example, to obtain a
strength rating for the argument DOGS → BEARS, the model
was given the text:

You are an expert on the properties
that animals have, and you understand
how animals share properties in common.
Recently some animals have been discovered
to have property P. We know that dogs have
property P. Does this mean that bears have
property P? Please answer ’Yes’ or ’No’.

1Interaction with GPT-3 was carried out via the Python “Ope-
nAI” library using the text-davinci-001 engine, the most capable
GPT-3 model available at the time. To eliminate stochasticity, we set
temperature t = 0.

The final token in the answer was then either Yes or No, and
the probability assigned to Yes relative to No was taken as its
rating of the strength of the argument.

Does GPT-3 account for individual phenomena?
Using this approach, we now ask whether GPT-3 is sensi-
tive to the eleven individual phenomena in Table 1. For each,
Osherson et al. (1990) presented participants with the pairs
of arguments in the table and asked them to choose the ar-
gument whose premises “provide a better reason for believ-
ing its conclusion.” The proportions of people who preferred
the stronger argument are shown as black dots in Figure 1.
For example, for Premise-Conclusion Similarity, around 90%
of people indicated that they thought {ROBIN, BLUEJAY} →
SPARROW was stronger than {ROBIN, BLUEJAY} → GOOSE.

As an initial test, we gave the same pairs of arguments
to GPT-3 and asked it to choose the stronger of each pair.
To allow for a comparison between GPT-3 and human re-
sponses, for each argument pair we took the strength rating
that GPT-3 assigned to the stronger argument and divided it
by the sum of strength ratings assigned by GPT-3 to both
arguments; this corresponds to the white dots in Figure 1.
All responses are relatively close to 0.5, but this could sim-
ply reflect different scaling. The more interesting question is
thus whether the model response exceeds 0.5 (i.e., indicating
that the model prefers the same argument that people think is
stronger). Based on the white dots, it appears that while GPT-
3 may capture a few of the phenomena, it struggles on most
of them. Each dot is based on a single argument pair, how-
ever, and we are wary of drawing strong conclusions about
any particular phenomenon on that basis.

We therefore performed a more systematic test by gener-
ating a larger set of argument pairs for each phenomenon.
These arguments involved the 129 animals included in
the Leuven Natural Concept database (De Deyne et al.,
2008), which are grouped into five superordinate categories
(MAMMALS, BIRDS, FISH, INSECTS, and REPTILES). For
each phenomenon we generated 100 argument pairs that fol-
lowed the same basic template as shown in Table 1. For ex-
ample, each pair for Premise-Conclusion Similarity included
two arguments with matching premises and within each of
these pairs the premises and conclusion were drawn from the
same superordinate category.

In order to evaluate GPT-3 on these argument pairs it
was necessary to determine which member of each pair was
stronger. We therefore followed Osherson et al. (1990) and
classified arguments as stronger or weaker on the basis of
the predictions of the SCM. For most phenomena we were
able to directly calculate SCM scores for both arguments in a
pair using pairwise similarity ratings obtained from the same
database the animals were sampled from (De Deyne et al.,
2008). However, this dataset only includes ratings between
pairs of categories within the same superordinate class, which
meant that SCM scores could not be obtained for both mem-
bers of the argument pairs for Conclusion Specificity and
Non-Monotonicity. In these cases, however, it is straight-
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Figure 1: Inductive reasoning phenomena exhibited by GPT-3 and human reasoners. Response probability in favour of the
stronger of two inductive arguments for the 11 inductive reasoning phenomena shown in Table 1. White dots (GPT-3) and black
dots (humans) show response probabilities for the specific argument pairs presented in Osherson et al. (1990), and violin plots
(with median shown) reflect GPT-3 responses across all generated argument pairs. While GPT-3 somewhat captures phenomena
involving similarity, specificity, and typicality, it performs more poorly on those involving (non)-monotonicity and diversity.

forward to derive which member of the pair is considered
stronger by the SCM even without knowing the scores as-
signed to individual arguments: for Conclusion Specificity,
the stronger argument is always the argument to the more
specific conclusion, and for Non-Monotonicity the stronger
argument is always the one with fewer premises.

For each argument pair we randomly sampled categories as
needed, and for the argument pairs based on SCM scores we
randomly sampled 2000 argument pairs before picking the
100 with the greatest disparity between their SCM scores.
To control for similarity and typicality effects in our set of
Premise Diversity and Monotonicity arguments, we consid-
ered the strength of the inductive projection (as measured by
the SCM) from each individual premise category to the con-
clusion category. For Premise Diversity, we sampled premise
categories such that the second premise category in either
argument projected less strongly to the conclusion category
than the first premise category. For Monotonicity, we ensured
that the third premise category projected less strongly to the
conclusion category than at least one of the first two premise
categories. Sampling argument pairs in this way ensures that
the comparison between strong and weak arguments is driven
by diversity or monotonicity respectively, and not by any sin-
gle premise category in isolation.

The violin plots in Figure 1 summarise the responses of
GPT-3 across the arguments sampled for each phenomenon.
GPT-3 captures the first four to some extent, and also captures
non-monotonicity (specific) and the inclusion fallacy. In all
of these cases the median of the violin lies above the dotted
0.5 line, indicating that GPT-3 reliably prefers the stronger ar-
gument in each pair. That said, the performance of GPT-3 was
more variable and less convincing for phenomena involving
Premise Monotonicity and Premise Non-Monotonicity, and it
did not capture Premise Diversity at all.

Although GPT-3 does not show a strong effect of premise-

conclusion asymmetry, this failure can perhaps be excused
because the human data in Figure 1 also reveal no effect (al-
though Osherson et al. (1990) present a second study that
does reveal the effect). The results for Premise Diversity,
Premise Monotonicity, and Non-monotonicity therefore re-
veal the greatest limitations of the model. Although all three
phenomenena appear to be robust in Western adults, they
do not always emerge in other populations (López, Gelman,
Gutheil, & Smith, 1992; López et al., 1997). For example,
López et al. (1992) found support for similarity, typicality and
conclusion specificity in kindergarteners but no evidence for
premise diversity and monotonicity, and only partial support
for non-monotonicity. Figure 1 therefore raises the possibil-
ity that GPT-3 might provide a better account of inductive
reasoning in children than adults.

Does GPT-3 account for human argument rankings?
Considering inductive phenomena in isolation is a useful
starting point, but this approach is limited because multiple
phenomena are relevant to some inferences, and these phe-
nomena sometimes conflict. For example, from the perspec-
tive of diversity {FLAMINGO, ALBATROSS} → BIRD is rela-
tively strong because the premise categories are so different
from each other. However, it is weak from the perspective of
typicality since the premise categories are atypical of birds.

In this section we therefore move beyond the individual
phenomena in Table 1 by assessing the ability of GPT-3 to
rate the inductive strength of relatively large sets of argu-
ments. Osherson et al. (1990) obtained this data for hu-
mans by asking participants to rank two sets of arguments
involving mammals. One set included 36 two-premise Spe-
cific arguments such as {COW, CHIMP} → HORSE, where
the conclusion in all cases was HORSE. The second included
45 three-premise General arguments such as {HORSE, COW,
MOUSE} → ALL MAMMALS, where the conclusion category
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Figure 2: A. Overall, the correlation between GPT-3 and human strength ratings for the Specific and General arguments
reported in Osherson et al. (1990) is moderate at best. B. Correlation between human argument strength ratings and SCM
predictions based on GPT-3 derived similarity. Performance is much better, suggesting that the problem with GPT-3 does not
lie in the nature of its representations. C. Correlations between GPT-3 and human similarity ratings for different categories are
moderately strong, again suggesting that the representations of GPT-3 are reasonably accurate. Error bars show standard errors.

was always ALL MAMMALS. For each argument set, we com-
pared mean human rankings with ratings of argument strength
elicited from GPT-3 using the method described above.

As Figure 2A reveals, GPT-3 and human argument ratings
are moderately correlated for Specific arguments and virtu-
ally uncorrelated for General arguments. If anything, the
GPT-3 ratings for the general argument set are actually anti-
correlated with human responses.

Taken together, our results suggest that GPT-3 performs
relatively poorly at capturing human inductive reasoning
overall. The model accounts to some degree for six of the
11 qualitative phenomena tested, but the remaining five and
the ranking task expose more substantial limitations.

Distinguishing representation from reasoning
Having shown that GPT-3 provides a relatively poor account
of human inductive inferences, we now consider two possi-
ble explanations for this finding. One possibility is that the
internal representations GPT-3 relies on are flawed and do
not contain the information necessary to support human-like
inductive inferences. A second possibility is that its represen-
tations are relatively accurate, but GPT-3 does not use them
for inductive inference in the same way that humans do.

We can explore these possibilities by examining the repre-
sentations that GPT-3 uses. The OpenAI API allows its em-
beddings to be extracted, allowing us to treat the embedding

corresponding to each category label as GPT-3’s representa-
tion of that category. Each of these representations lies in
a 12288-dimension vector space where closeness denotes se-
mantic similarity.2 The similarity between any two categories
according to GPT-3 is therefore calculated as the similarity
between the corresponding embeddings. Here we use cosine
similarity, but similar results are obtained by using dot prod-
uct or Euclidean similarity.

We compared these GPT-3 similarity ratings with human
similarity ratings reported by De Deyne et al. (2008). Al-
though only the animal categories were relevant to our previ-
ous analyses, the full dataset contains 14 superordinate cate-
gories; these include clothing, weapons, kitchen utensils, and
more. The human ratings we used in our comparison were
calculated based on the average similarity rating among the
15-25 participants who rated each category pair.

As Figure 2C shows, the GPT-3 similarity ratings are cor-
related to some extent with human ratings. This is consistent
with previous work suggesting that the internal representa-
tions of TLMs can be used to make reasonable predictions
about human similarity judgments (Bhatia & Richie, 2021).

2These representations are typically derived by combining token
embeddings from the hidden layers of the model itself. Although the
specific implementation of OpenAI’s Embeddings API is not pub-
licly available, it is advertised to be built directly on top of GPT-3’s
model weights and is thus probably an accurate reflection of its core
representation space.
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Figure 3: Correlation of different generations of GPT with
human argument strength ratings show no consistent im-
provement in the performance of GPT over time. Error bars
show standard errors.

GPT-3 accounts for some superordinate categories better than
others, with correlations ranging between 0.16 (fish) and 0.58
(professions). The correlation for mammals is towards the
upper end of the range, which suggests that the poor perfor-
mance of GPT-3 for the mammal-based argument sets in Fig-
ure 2A is probably not primarily due to poor representations
of mammal categories.

If GPT-3’s representations of mammals do capture reliable
information, then combining a GPT-3 derived similarity mea-
sure with the SCM may provide a relatively good account
of human inductive judgments. Figure 2B shows that this
hybrid model does indeed account relatively well for the hu-
man argument ranking data. The correlation of 0.92 achieved
on the specific data set is comparable to the 0.95 correlation
achieved when the SCM uses human-generated similarity rat-
ings. The correlation for the general data set is lower (0.49
compared to 0.87 achieved when the SCM uses human sim-
ilarity ratings), but still substantially higher than the GPT-3
result in Figure 2A.

Will GPT-3 improve with scale?
Our results so far suggest that GPT-3’s internal representa-
tions may be of sufficient quality to support human-like in-
ferences, but that GPT-3 does not possess a reasoning mecha-
nism that can extract the full value from these representations.
Is this limitation fundamental to the design of GPT-3, or is
this something that (like many other natural language tasks)
we can expect to improve by increasing the size of the model
or the quantity of its training data?

To address this question we turn to earlier variants of the
GPT family of language models, GPT and GPT-2. They are
extremely similar to GPT-3 by design, with their main differ-
ence being the scale of their model parameters and training
datasets. As GPT variants increase in scale (as measured by
model parameter count) by at least one order of magnitude
with every generation, leaps in performance across a broad
set of language understanding benchmarks have also been
observed. If successive generations have improved in their
ability to account for human inductive judgments, it seems
plausible that this improvement will continue in the future.

To evaluate performance across these generations we used

pretrained, off the shelf implementations of previous GPT
variants available via the Transformers library (Wolf et al.,
2020). We examined five variants in increasing order of scale:
GPT, GPT-2 Small, GPT-2 Medium, GPT-2 Large and GPT-2
XL. Each model was given the same prompts and evaluated
using the same method described previously.

Figure 3 shows that successive GPT variants failed to
demonstrate any clear improvements in how correlated their
argument strength ratings were with those of humans. In fact,
there seems to be no relationship between scale and perfor-
mance at all. Uncertainty inevitably remains about the abil-
ities of future variants, but our results provide no reason to
think that improvement is simply a matter of scale.

Discussion
We found that GPT-3 provides a relatively poor account of
human inductive reasoning, which raises two important di-
rections for future work. First, given that GPT-3 does not
closely follow the reasoning principles used by humans and
captured by the SCM, how can we understand what GPT-3
is actually doing? A possible way to address this question is
to implement a family of interpretable models and to identify
which of the models in this family correlate most strongly
with GPT-3. We took a preliminary step in this direction
by considering a set of variants of the SCM; this includes
one that does not include the coverage term and is consistent
with the inferences of kindergarteners (López et al., 1992),
and another called SumSim (Tenenbaum, Kemp, & Shafto,
2007) that replaces the similarity function used by the SCM
with an alternative more consistent with exemplar models of
categorization. Because GPT-3 appears to capture similarity
and typicality effects but not diversity and non-monotonicity
effects, we were optimistic that removing the coverage term
from the SCM might yield a model that correlated highly with
GPT-3. All of the variants we considered, however, matched
GPT-3 relatively poorly, which means that we do not yet have
real insight into why GPT-3 reasons as it does.

A second important future direction is to develop computa-
tional approaches that maintain the generality and flexibility
of GPT-3 – including its ability to handle arguments with non-
blank properties – but provide a closer account of human in-
ductive reasoning. Our results exploring the effect of scaling
suggest that simply increasing the size of GPT-3 is unlikely
to achieve this goal. This means that alternative architectures
and/or training objectives will probably be needed. Some re-
searchers discuss intrinsic limitations of large language mod-
els: for example, Bender and Koller (2020) suggest that these
models are unable in principle to acquire meanings, and can
succeed only in predicting forms. It seems unlikely that the
results in this paper expose any such intrinsic limitation, and
the respectable performance of the GPT-3/SCM hybrid sug-
gests that a general-purpose model that builds on GPT-3 may
be able to perform well on the datasets considered here. De-
veloping such a model is a natural next step towards the ul-
timate goal of capturing and understanding the rich intricacy
of human inductive reasoning.
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López, A., Atran, S., Coley, J. D., Medin, D., & Smith, E. E.
(1997). The tree of life: Universal and cultural features of

folkbiological taxonomies and inductions. Cognitive Psy-
chology, 32(3), 251–295.
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