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Abstract

Online Social Community Geographic Characterization:

Classification and Neighborhood Formation

Over the past decade, online social networks (OSNs) have experienced unprecedented

growth, attracting billions of users across the globe. These platforms enable individuals

to connect and share content, breaking down the barriers of time and location that limit

offline social interactions. Among these, Facebook public pages stand out as a prominent

type of OSN community, offering spaces for user discussions, business promotions, and

public relations activities. These online social communities interact with each other,

forming an online community network.

In the digital realm of online spaces, people’s behaviors remain closely linked to loca-

tion. Geolocation information enables online social communities to make recommenda-

tions and promote local businesses and services. This dissertation explores the classifica-

tion of geolocation information for communities and examines how geolocation contributes

to neighborhood formation within online community networks.

The dissertation introduces neighborhood state distribution vectors as novel features

for graph neural networks to classify the states of Facebook public pages. It also defines

intrastate and interstate Facebook public pages based on high-probability state label out-

puts from the classification model. Furthermore, it profiles states with varying influences

over online communities through an analysis of the classification confusion matrix, inter-

state page percentages, and the presence of interstate pages across state borders. This

approach achieves an improved accuracy (0.88) and F1 score (0.88) compared to previous

studies.

Additionally, the dissertation identifies key features that influence link formation and

neighborhood structuring within the page graph, employing a methodology that combines

node similarity and the topological algorithm GNN for link prediction. The study reveals

that the page state location stands out as the most significant single feature for link

formation. Furthermore, it is observed that incorporating page node degree and page

-x-



city population features alongside the page state location feature improves link prediction

accuracy.

Lastly, the dissertation explores city, county, and cluster neighborhood distribution

vectors as unique features for page classification. Addressing the challenge of distinguish-

ing among 630 cities with an initial city classification accuracy of 0.6928, a clustering

algorithm is developed to leverage the confusion matrix from city classification, construct-

ing a hierarchical city structure. This approach significantly improves city classification

accuracy to 0.8014, employing a cluster-city hierarchical classification strategy.
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Chapter 1

Introduction

Over the past decade, online social networks (OSNs) have experienced explosive growth,

attracting billions of users across the globe. Platforms like Facebook and Twitter have

revolutionized the way individuals form connections and share content, eliminating the

limitations of time and place that bound traditional social interactions. These users,

forming the core of online social networks, symbolize the commercial potential of these

platforms, representing a vast pool of potential customers for diverse products and ser-

vices. The complex network of social relationships among these users is a fundamental

aspect of user networks.

Another significant activity on OSNs involves various entities, including businesses,

non-profit organizations, and governmental bodies, utilizing these platforms to further

their interests. Along with individual users, these entities create diverse online social

communities aimed at catering to specific interests. These communities encompass a wide

array of groups, from official pages of corporations and non-profits to user-initiated groups

centered around common interests such as neighborhood events, professional connections,

and hobbies like animal enthusiasm.

Facebook public pages are among the most popular platforms for online communities,

serving as venues for information announcements, user discussions, news dissemination,

public relations, and business promotions. These pages interact not only with their fol-

lowers but also with other Facebook pages, establishing connections through ”likes.” This

creates a network of page likes, which is the focus of this dissertation. In this network,
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each node represents a Facebook public page, and outgoing edges from a node signify

pages it likes.

In the digital realm, people’s behaviors are influenced significantly by location. In-

dividuals often show a preference for local news, are inclined to connect with friends

in close proximity, and favor local dining and entertainment options, demonstrating the

importance of location-centric activities. On platforms like the Facebook public page,

location information enhances the relevance of pages and their services, enabling targeted

dissemination of news, personalized product and service recommendations, and timely

notifications for emergencies. The location metadata of a Facebook public page, high-

lighting the primary geographical focus of its activities and user engagement, is a critical

attribute.

1.1 Objectives

The aim of this dissertation is multifaceted, targeting three principal objectives to enhance

our understanding and utility of Facebook public pages.

Initially, a significant gap is identified in the available location information, with only

30.8% of public Facebook pages specifying their geographical data. Addressing this gap,

the dissertation sets out to predict missing locations, focusing on the granularity of sub-

locations like U.S. states. This challenge not only seeks to fill the void of missing geo-

graphic data but also delves into the impact of such locations on the network of page

likes, using pages from the U.S. as the primary dataset for exploration.

The second objective revolves around the network of likes among Facebook pages,

which symbolizes the interconnected web of online social communities. With pages fea-

turing varied metadata such as topics, countries, and cities, this dissertation endeavors to

identify key elements that drive these inter-page connections. By dissecting the page-likes

graph, the research aims to understand the formation of online community neighborhoods

and the dynamics of community interactions within this digital ecosystem.

Lastly, the dissertation recognizes the limitations of State or Province-level classifica-

tion in addressing the needs of services that require more detailed geographic specificity,
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such as city-level information for local business suggestions or election campaigns. Ac-

knowledging the complexity of city-level classification as a step beyond state categoriza-

tion, this work aspires to develop a comprehensive framework for classifying Facebook

pages by country, state, and city. This ambition intends to serve a broad spectrum of re-

search and practical applications, enhancing the relevance and precision of location-based

analyses in online social communities.

1.2 Research Contributions

1.2.1 Online Social Community Sub-Location Classification

Location attributes of Facebook public pages garner significant attention as they provide

insights into the physical footprints of online communities. However, not all pages have

their location information specified by their managers, making the prediction of missing

locations crucial for further geographic location-related research. The classification into

sub-locations, such as states within the United States, presents a substantial challenge

and is of significant importance.

In Chapter Chapter 2, we examine the limitations of prior research on sub-location

classification, particularly focusing on pages from the United States. We introduce neigh-

borhood state distribution vectors as features and utilize graph neural networks for the

state classification of pages. This approach significantly outperforms previous algorithms,

achieving improvements in classification accuracy and F1 scores. Additionally, we de-

fine intrastate and interstate Facebook public pages based on the high-probability state

label output from the classification model and analyze the influence of different states

over online communities by examining the classification confusion matrix, interstate page

percentages, and the presence of interstate pages across state borders.

This work was published as ”Online Social Community Sub-Location Classification” in

the proceedings of the International Conference on Advances in Social Network Analysis

and Mining (ASONAM 2023) [1].
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1.2.2 Online Social Community Neighborhood Formation

Online community subdivision location classification has illuminated the significance of

state location for analyzing Facebook pages within the page-likes graph. Through the

analysis of pages’ high-probability state labels, we identified whether a page could be

categorized as interstate or intrastate. The foundation of this study is the exploration

of the neighborhood of nodes within the page-likes graph, prompting inquiries into how

”likes” relationships are formed from one page to its neighbors, and identifying the key

factors influencing these ”likes” relationships.

In Chapter Chapter 3, we explore a variety of page features to ascertain their influence

on the formation of page neighborhoods. This exploration employs link prediction tech-

niques applied to each feature individually. Our findings highlight the page state label as

the most accurate predictor in link prediction tasks. Furthermore, we discovered that a

combination of features—namely, the page state label, page node degree, and page city

population—delivers the best results in terms of link prediction accuracy.

A preliminary version of this work was published as ”Online Social Community Neigh-

borhood Formation” in the proceedings of the International Conference on Advances in

Social Network Analysis and Mining (ASONAM 2024).

1.2.3 Online Social Community City Classification

Classifying communities at the city level poses a greater challenge than state-level classi-

fication due to the extensive number of cities involved. This finer granularity is essential

for various services, such as recommendations for local businesses, connections with local

friends, and the promotion of local public services or elections. Successfully achieving city

classification would facilitate the creation of a comprehensive system capable of catego-

rizing Facebook pages by country, state, and city. Such a development would significantly

benefit research efforts and services related to community locations.

In Chapter Chapter 4, we focus on the examination of flat city classification for pages,

specifically targeting pages from California. We introduce innovative features for graph

neural networks in city classification of pages, such as city, county, and cluster neigh-

borhood distribution vectors. Additionally, we propose a novel city clustering algorithm

4



and implement a two-stage hierarchical classification method. This approach significantly

improves upon the flat city classification methods for pages, offering a more refined and

effective classification system.

A preliminary version of this work was published as ”Online Social Community City

Classification” in the proceedings of the International Conference on Advances in Social

Network Analysis and Mining (ASONAM 2024).
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Chapter 2

Online Social Community

Sub-Location Classification

2.1 Introduction

The social relationship has long been a subject of academic interest. The social network

represents social interactions and relationships. In the early 21st century, the emergence

of online social platforms, such as Facebook and Twitter, extended social networks from

the physical to the digital world, enabling people to easily make new friends online, akin to

offline interactions. This phenomenon is referred to as an online personal social network.

There exists a vast body of literature covering various aspects of online personal social

networks.

Not only have personal social networks transitioned online, but social communities

have as well. People often belong to multiple communities and engage in conversations

and activities within these communities offline, which could be neighborhoods, workplaces,

or groups with shared interests. Many of these groups or communities maintain online

information pages or discussion forums on Facebook and other online platforms. Moreover,

numerous communities and groups exist solely online, without any in-person activities.

The emergence of a vast amount of online communities in such a relatively short span of

history is indeed a remarkable feat.

Facebook is the most popular platform for online communities and has been the focus

of numerous research projects. Our research centers on public Facebook pages, which serve
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Figure 2.1: The New York Times Facebook Page

as platforms for information announcements, user discussions, news dissemination, public

relations, and business promotions. Figure 2.1 presents an example of the New York

Times Facebook page. A key attribute of Facebook pages is their location, indicating

where the majority of page activities and users are concentrated. Conducting research

based on page location, such as targeting highly influential pages in specific areas, holds

significant potential.

However, not all pages have their location information specified by their managers.

In our dataset of public Facebook pages, only 30.8% (18,895,994 pages) out of a total of

61,263,729 pages have listed their location. Predicting the missing locations is crucial for

further geographic location-related research. The classification of sub-locations, such as

states within the United States, poses an even greater challenge and significance. In this

research, we aim to make the following contributions:

• Investigate the limitations of previous research on sub-location classification, focus-

ing on pages from the United States.

• Introduce neighborhood state distribution vectors as features and utilize graph neu-

ral networks for state classification of pages, significantly outperforming previous
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algorithms with improvements in classification accuracy and F1 scores to 0.88.

• Define intrastate and interstate Facebook public pages based on the high-probability

state label output from the classification model.

• Analyze the influence of different states over online communities by examining the

classification confusion matrix, interstate page percentages, and the presence of

interstate pages across state borders.

This chapter is organized as follows: Section 2.2 introduces related research on user

and page geographic location analysis and the graph neural networks for classification.

Section 2.3 describes the data utilized in this study and the ground truth data for verifica-

tion. Section 2.4 details the investigation into the limitations of previous studies on page

sub-location classification. Section 2.6 proposes the features and graph neural networks

used for classification. Section 2.7 outlines the experimental setups, data-expansion meth-

ods, experiment results, and profiles of pages and states. Finally, Section 2.8 provides a

summary of this chapter.

2.2 Related Work

2.2.1 Facebook User Graph Analysis

The Facebook user graph, representing a network of users connected through friendship

ties, has been extensively researched by social and computer scientists alike. Studies by

Ugander et al. have characterized the global structure of the Facebook user graph, reveal-

ing various network properties [2]. Barnett and Benefield explored the determinants of the

Facebook user network, identifying proximity and cultural homophily as crucial factors in

the formation of friendships on Facebook. Their findings also highlighted that countries

with international Facebook friendships often share borders, languages, civilizations, and

migration patterns [3].

2.2.2 Facebook Page Location Classification

The Facebook page graph is defined as a network of pages connected when one page

likes another. Hong et al. [4] investigated this network, proposing a majority voting
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algorithm to classify missing country location information of Facebook pages. This algo-

rithm is effective for country location classification as most pages linked by edges share

the same cultural, language, and social context. However, it falls short in more granular

classifications, such as state labeling within the United States.

Addressing this shortfall, Lin et al. [5] introduced a Breadth-First Search (BFS)-based

machine learning algorithm, utilizing hand-picked anchor pages as seeds for initiating the

search [5]. Despite its innovative approach, the algorithm’s performance did not meet

expectations due to incomplete data coverage, lower performance on the total dataset,

and other limitations.

2.2.3 GraphSAGE

Graph neural networks (GNNs) are specialized artificial neural networks designed for

graph data processing [6]. GNNs are widely adopted in graph representation learning,

where they are trained to generate node embeddings for downstream tasks, such as node

classification and link prediction. One of the most popular GNNs is the graph convo-

lutional network (GCN). GCNs work by updating the feature vectors for all nodes in

the graph at one iteration. This process, however, requires the entire graph’s adjacency

matrix to compute the aggregated messages for each GCN layer, leading to high com-

putational costs and significant GPU memory requirements[7][8]. GraphSAGE addresses

these scalability issues by learning a function that generates node embeddings through

sampling and aggregating features from a node’s local neighborhood [9]. The embeddings

for a node are produced by aggregating messages first from the node’s neighbors and then

from the node itself, as described by the following equation [9]:

h(l)
v = σ(W (l) · CONCAT (h(l−1)

v , AGG(h(l−1)
u ,∀u ∈ N(v))))

Where:

• h : the aggregated message for a node.

• l : the number of layer.

• σ : a nonlinear activation function such as Relu(·) or Sigmoid(·).
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• W : a weight matrix.

• AGG : aggregation such as Mean or Sum.

• N(v) : the neighborhood of node v.

2.2.4 GraphSAINT

GraphSAINT introduces a novel approach to scale GCNs to large graphs, effectively

managing the ”neighbor explosion” problem by sampling the training graph to construct

mini-batches, rather than sampling nodes or edges across GCN layers [10]. Each iteration

builds a complete GCN from the sampled subgraph, ensuring all layers contain a fixed

number of well-connected nodes, which enhances both training efficiency and model accu-

racy. The technique prioritizes nodes with high mutual influence for subgraph sampling,

allowing sampled nodes to support each other’s learning within the same mini-batch [10].

This method has demonstrated improvements in training speed and accuracy in various

experiments.

2.3 Data Description

2.3.1 Data Acquisition

The Facebook public page data utilized in this study was acquired through the Facebook

Graph API version 2.8, enabling researchers to collect social data. Similar to the datasets

used by Lin et al.[5] and Hong et al[4], our data was also obtained via this API. However,

our dataset is slightly larger than that used by Lin et al.[5] and substantially larger and

more recent than the dataset utilized by Hong et al.[4]. For our research, we concentrated

on specific page meta-information, including page ID, name, location (country and city),

and the list of other pages liked by each page. Our data collection employed snowball

sampling[11] through the API, beginning with popular seed pages and expanding by

incorporating pages liked by these seeds. This method naturally constructs a directed

graph where each edge signifies a page liking another page.
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Figure 2.2: The New York Times Facebook Page Graph

2.3.2 Data Structure

The graph is a pivotal data structure in Social Network Analysis (SNA), exemplified

by the well-documented Zachary’s karate club network[12]. In this network, each node

symbolizes an individual in the club, and edges represent friendships between members.

Similarly, we constructed a page-likes graph as a directed graph, where edges illustrate the

”likes” relationship with inherent directionality. In this graph, every node is a Facebook

page, with outgoing edges to nodes representing pages it likes. Figure 2.2 depicts a

simplified example of the New York Times page graph, showcasing how it is liked by

other pages. Our dataset comprises a total of 61,263,729 pages and 789,494,545 ”page

likes” relationships, with 6,194,277 pages explicitly labeled with cities within the United

States.

2.3.3 Data Cleaning

We constructed a page-likes graph utilizing only the ground truth data, comprising

6,194,277 pages that are located within the United States and include edges connect-

ing these pages. A total of 55,069,452 pages, either located outside the United States

or lacking city location information, were excluded from our analysis. This exclusion is

justified by our focus on sub-location classification within the United States, coupled with

the impracticality of processing an excessive number of pages and edges not relevant to

our study’s scope.
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The generated subgraph of ground truth U.S. pages contains disconnected components

due to the exclusion of some unknown-location pages that connect the U.S. pages. The

largest connected component comprises 5,873,395 pages. Our analysis focuses on this

largest connected component, as the other components are relatively small and thus less

significant for our study. The challenge of state location classification for Facebook public

pages is effectively reframed into a more manageable problem: analyzing a directed graph

where each node represents a Facebook public page labeled with a specific state. In this

graph, each edge originates from one page and points to other pages that are liked by

the initiating page. Our objective is to enhance state classification accuracy within this

page-likes graph, specifically within the largest connected component of the ground truth

U.S. pages.

2.3.4 State-known and State-unknown Pages

Table 2.1: State-known and State-unknown Pages

Page ID Page Name City Name States Has City Name

5281959998 The New York Times New York NY

48842713792 Barack Obama Washington DC, UT, IL, MO, PA, IN,

NC, IA, NJ, GA, WV, KS,

LA, OK, CA, AR, NE, VA

The U.S. ground truth pages are listed with their country and city locations but not

their state locations. This distinction is significant because many cities share names across

different states. Within the largest connected subgraph, which comprises 5,873,395 pages,

there are two categories of U.S. pages:

• State-known Pages: These pages amount to 2,147,399 and are associated with

cities that have unique names within the United States, accounting for 36.6% of

the pages in the largest connected subgraph. We refer to this group of pages as

Dataset A.

• state-unknown Pages: These pages amount to 3,725,996 and are associated with
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Figure 2.3: Country-known neighbor max heap of pages

cities that share their names with cities in other states within the United States,

accounting for 63.4% of the pages in the largest connected subgraph. We refer to

this group as Dataset B.

Table 2.1 presents examples of state-known and state-unknown pages, categorized

based on whether their city names are unique to one state or shared across multiple states.

State-known pages can be directly used as ground truth data because their state locations

are unambiguous. In contrast, state-unknown pages, whose state associations are unclear,

cannot be directly used for this purpose. Nonetheless, excluding state-unknown pages,

which constitute a significant portion (63.4%) of the U.S. ground truth pages, would

severely diminish the graph’s connectivity and result in the loss of valuable information.

Therefore, our approach incorporates both Dataset A and B in the page graph to maintain

connectivity.

2.4 Algorithm Comparison

2.4.1 Majority Voting

2.4.1.1 Algorithm description

Hong et al.[4] addressed the challenge of identifying the geographic country location of

Facebook pages using a majority voting algorithm. This algorithm initiates by placing

all pages with unknown country information into a max heap, ordered by the number of

known-country neighbors each page has. Figure 2.3 illustrates a simplified example of

this heap, with the top page being the one with the highest number of known-country
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Figure 2.4: Majority voting for the New York Times page

neighbors. The algorithm then determines the most frequent country among the known-

country neighbors of the top page and assigns this country to the page. Figure 2.4 depicts

the application of majority voting for the New York Times page, demonstrating how the

most common country label among its neighbors is determined. Finally, the algorithm

removes the top page from the heap and repeats the process for the next page. This

method requires only a dataset of pages and their neighbor relationships, bypassing the

need for a traditional graph structure.

The majority voting algorithm was evaluated on a subset of 8 million pages with

known nationality information, including edges between two known-country pages. The

test set was created by designating 50.24% of all pages as unknown-country pages through

random selection. The algorithm achieved an accuracy of 90% in nationality labeling for

pages.

2.4.1.2 Drawbacks of Majority Voting

Nevertheless, the majority voting algorithm underperforms in state location labeling for

U.S. pages. For this evaluation, 50% of known-state U.S. pages were randomly chosen as

unknown for the test set. The algorithm’s accuracy for state location labeling was only

59.4%[13], highlighting the greater difficulty of subregion labeling compared to country

labeling. This challenge is primarily due to the language and culture distance. Pages

from different countries, typically using different languages, are unlikely to interact with

each other due to language barriers. It’s challenging for users to engage with content in

unfamiliar languages. Conversely, within a single country, despite the presence of various
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subregions, a common language facilitates interactions across these areas. Consequently,

pages are more inclined to like or be liked by other pages from different subregions when

they share the same language and culture.[13]:

The same language and culture result in a denser and more interconnected graph for

subregion-labeled pages than for country-labeled pages. This complexity poses challenges

for the majority voting algorithm in accurately classifying pages by subregions.

2.4.2 BFS-based Machine Learning

Lin et al.[5] proposed a BFS-based machine learning algorithm to address the subregion

labeling problem, noting the inadequacy of the majority voting algorithm for this task[5].

This algorithm requires a graph data structure of pages. Lin et al.[5] utilized state-known

U.S. pages as ground truth from each state and grouped all state-unknown U.S. pages

and all non-U.S. pages, totaling 12,685,090 pages, labeled as ”other.” The distinctions

between state-known and state-unknown pages are detailed in Section 2.3.4.

2.4.2.1 Anchor Page

The BFS-based algorithm necessitates associating pages with features to facilitate machine

learning classifier training and prediction. Lin et al.[5] introduced the state distance vector

(SDV) to denote the hop distances from each page to a hand-selected anchor page in every

state. The success of this algorithm hinges on the choice of anchor pages, ideally situated

at each state’s cluster centroids. However, due to the overlap and entanglement of pages

across states, identifying clear cluster boundaries is challenging.

The study argued that the anchored pages have to be as local as possible. This means

that anchored pages should have most neighbors from its state, not too many neighbors

from other states. In this study, the pages of the local government departments, parks, and

state universities are good examples of anchored pages. The pages of famous sports teams

are bad choices since they are likely to be liked by pages from other states. These two kinds

of pages above are close to the centroid and the boundary of the clusters, respectively. The

authors chose ”OnlyInYourState.com” pages as the anchor page for every state, without

any proof that these hand-picked anchor pages are close to the centroids of the clusters.

For example, the page “Only In Alabama” is the anchor page for the state of Alabama.
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The authors advocate that anchor pages must be as localized as possible, meaning

these pages should predominantly have neighbors from their own state, rather than an

excessive number from other states. Accordingly, pages associated with local government

departments, parks, and state universities serve as ideal examples of anchor pages due

to their localized nature. Conversely, pages representing well-known sports teams are

considered unsuitable choices, as they tend to attract likes from across state boundaries.

These examples illustrate pages that are, respectively, proximal to the centroids and on

the periphery of the clusters. The authors selected ’OnlyInYourState.com’ pages as the

anchor for each state, despite the absence of empirical evidence confirming that these

selected pages are near the cluster centroids. For instance, ’Only In Alabama’ has been

designated as the anchor page for Alabama.”

2.4.2.2 Algorithm description

Lin defined the state distance vector (SDV). Every page’s SDV vector has 102 dimensions,

which are 51 pairs of hop distance from 51 anchors (50 states, but California has two

anchors). Each pair has two distances: the distance to the anchor page in the inward

direction and the distance to the anchor page in the outward direction. The following

equation shows SDV for each page[5]:

SDV (Page) = [[IHOP (Page,Anchori), OHOP (Page,Anchori)] :

i ∈ 1, ..., Nnumber of anchors]

Definitions:

• IHOP (Page,Anchori) denotes the inward hop distance from Page to Anchori.

• OHOP (Page,Anchori) denotes the outward hop distance from Page to Anchori.

The minimum hop distance, MHOP , for each page is defined as the smallest non-zero

distance from all reachable anchor pages [5]:

MHOP = min(min(IHOP ),min(OHOP ))
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Figure 2.5: Example graph with unreachable pages from an anchor page

This essentially means MHOP is the shortest distance from a page to any reachable

anchor, disregarding unreachable (zero-distance) paths.

The BFS-based algorithm proceeds in five steps:

1. Since the anchor pages have been selected, the initial step involves generating feature

vectors, namely the state distance vector (SDV), for every page using a breadth-first

search (BFS). For instance, the BFS begins at the anchor page “Only In Alabama,”

labeling each encountered page with its hop distance from the anchor while following

only the outward edges. Subsequently, the BFS is initiated again from the same

anchor page, this time labeling pages based on hop distance while following only

inward edges. This process is repeated for all designated anchor pages.

2. The next step involves removing all pages whose SDVs are zero vectors. Effective

machine learning features must possess the quality to distinguish between data

points distinctly. The SDV performs inadequately in representing every page since

ideally, each page should be accessible from at least one anchor page, necessitating

at least one non-zero dimension in its SDV for differentiation. However, only 41.5%

(1,009,135) of U.S. pages and 46.1% (5,842,776) of other pages are accessible from

at least one anchor page in practice. A significant majority of pages are unreachable
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from any anchor page, rendering their SDVs as zero vectors. This reachability issue

is predominantly caused by the ”breaking nodes” in a directed graph.

This reachability issue is predominantly caused by ’breaking nodes’ in a directed

graph. Figure 2.5 illustrates this scenario, where Page A acts as the anchor. Page

D, reachable from Anchor A, has an inward path [A, B, D] with a distance of 2 and

an outward path [D, A] with a distance of 1. Pages B, C, D, E, and F are accessible

from Anchor A, whereas Pages G through N are not. Specifically, Page E only has

inward edges, and Page F only has outward edges, making them ’breaking nodes’

within the graph. These nodes serve as the termini of paths originating from Page

A, thereby obstructing any potential paths to Pages G through N.”

3. The author initially calculates the minimum hop distance (MHOP ). Subsequently,

pages with an MHOP value less than or equal to the local tendency threshold

(Nlocal threshold = 3) are classified as pages from the United States. Conversely,

pages with an MHOP value greater than or equal to the global tendency threshold

(Nglobal threshold = 5) are classified as belonging to the ’other’ category. The choice

of these thresholds is made arbitrarily. After applying these criteria, the dataset is

reduced to 541,407 U.S. pages from an initial total of 1,009,135 U.S. pages that were

accessible in the earlier step. Furthermore, the ’other’ category is narrowed down

to 3,107,168 pages from the preceding total of 5,842,776 accessible pages, with only

the first 100,000 ’other’ pages being retained for analysis.

4. To rectify the uneven distribution of page data across different states, the author

implemented a re-sampling strategy to ensure balance among each state. Given

that Nevada had the fewest pages, totaling 824, following the application of step

3, the dataset was standardized to include the first 800 pages from each of the

51 categories—encompassing 50 states plus one ”other” category. Consequently,

this approach yielded 40,800 pages, which were subsequently utilized to train and

evaluate the classifiers in the ensuing step.

5. The dataset of 40,800 pages was divided into 80% for training (32,640 pages) and
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20% for testing (8,160 pages). Subsequently, Naive Bayes, AdaBoost, and Random

Forest classifiers from the scikit-learn package were employed for the training and

testing phases.

2.4.2.3 Drawbacks of BFS-based Machine Learning

• Limited Reachability from Seed Anchors: Only 41.5% of U.S. pages (1,009,135

out of 2,430,356) are accessible from at least one anchor within the graph. This

algorithm can not be applied to those unreachable pages.

• Random Accessibility of Pages: The aforementioned reachability issue indicates

that the choice of anchor pages randomly influences the set of pages that can be

classified. This randomness introduces a significant lack of predictability and control

within the classification process.

• Questionable Centrality of Anchor Pages: The methodology for selecting an-

chor pages does not ensure they are situated at the centroids of state clusters. Given

the arbitrary nature of this selection and the substantial overlap among state clus-

ters, anchor pages might not adequately represent their respective clusters.

• Arbitrary Threshold Selection: The criteria for establishing local and global

thresholds lack explicit justification, rendering the basis for these critical parameters

as arbitrary. Consequently, the reliability of results derived from these thresholds is

questionable, as altering them could lead to markedly different outcomes.

• Ambiguity in the ”Other” Page Classification: The ”other” category amal-

gamates both international pages and domestic U.S. pages lacking specific local

details. This aggregation complicates the algorithm’s ability to discern and accu-

rately classify pages within this broad and heterogeneous category.

2.5 Missing Data Imputation

2.5.1 Missingness Mechanisms

Analysis with missing data has been an active research field for recent decades in statistics

and is gaining increasing attention in the machine-learning community. Rubin introduced
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three types of missing data mechanisms [14], which are: Missing Completely at Random

(MCAR), Missing at Random (MAR), and Not Missing at Random (NMAR). MCAR

means that the probability of a data point having a missing value for an attribute does

not depend on either the observed data or the missing data in the dataset. MAR means

that the probability of a data point having a missing value for an attribute depends on

the observed data in the dataset, but not on the missing data. NMAR means that the

probability of a data point having a missing value for an attribute depends on the missing

data itself, such as the value of the missing data, and not on the observed data in the

dataset.

2.5.2 Methods of Missing Data Imputation

There are various missing data imputation methods proposed. Traditional methods in-

clude listwise deletion, where data with missing values are discarded, and single impu-

tation methods such as mean/mode imputation, regression imputation, and stochastic

regression imputation [14, 15]. Some modern missing data techniques, like maximum

likelihood estimation [16] and multiple imputations [17], are also employed. In the ma-

chine learning community, machine learning and deep learning algorithms are applied to

predict or impute the missing values [18, 19, 20, 21], including methods like K-nearest

neighbors [22], multilayer perceptron [23], generative adversarial network [24], and auto-

encoder [25, 26].

It is worth mentioning that Graph Neural Networks (GNNs) are recently applied to

general data missing problems [27, 21, 28], not necessarily limited to network data. For

example, all data points and all features are formulated into data nodes and feature

nodes in a bipartite graph [27]. If a feature value of a data point is present, an edge

with weight is created from the data point to the feature. Thus, missing data imputation

is formulated to predict the edge weights between data nodes and feature nodes. The

sizes of the datasets in this study range from 314 data points with 6 features to 45,000

data points with 9 features. However, this method is not suitable for our case. First, our

dataset contains about 6 million data points with 306 features, which raises scalability

issues. Second, transforming the networks into a data/feature bipartite graph results in
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the loss of all network topology information.

2.5.3 Missing Data in Social Networks

In social network studies, missing data is also a frequent issue. One of the main causes of

missing data in social networks is survey non-response [29]. This issue can lead to missing

nodes/edges and attribute values. Most influential network data imputation studies fo-

cus on the actor/ties (node/edge) non-response data imputation, thus reconstructing the

missing parts of the networks [29, 30]. Imputation of missing attribute data in networks

is less popular, as many of the missing data imputation methods mentioned above can be

applied.

2.5.4 Case Study: Facebook Public Page

In our Facebook public page study, we also encounter missing data issues. Many page

managers did not provide the country/state/city location on the Facebook platform, which

occurs case by case and depends on neither the observed data nor the missing data in

our dataset. We can classify this as MCAR (Missing Completely at Random). Our

focus is on state-level location data within the U.S., which offers finer granularity than

country-level location data. Therefore, we exclude all pages with unknown country data

and non-U.S. pages. Excluding non-interested nodes from the network and studying an

interested subgraph is a convention in social network research [31], especially given our

data scale of dozens of millions of nodes.

Within the U.S. page subgraph, all pages are labeled with a city name or community

name by their page managers, but not explicitly with the state name. Many cities share

the same names across different states, causing ambiguity and resulting in these pages

being categorized as city-unknown and state-unknown. The probability of missing state

labels depends on the observed city label in the dataset. We classify this scenario as

Missing at Random (MAR).

Comparing our dataset with those used in other research on data imputation and net-

work data imputation, we identified significant differences. First, our dataset is of a very

large scale, containing 2 million complete data points and 3 million with missing labels,
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whereas the datasets in other studies typically comprise only a few tens of thousands of

data points or nodes at most [32, 29, 28, 27, 21, 20, 18]. Medium to small networks are

sensitive to missing data [32] since less complete data will introduce more bias. We argue

that our 2 million complete data points provide more robustness against missing data

comparing small datasets. Second, all the datasets used in the aforementioned studies on

missing data are simulated from complete datasets without any missing data, allowing

these studies to verify the results of data imputation experiments. In contrast, our dataset

consists of large-scale real data, for which there is no ground truth to verify the accuracy

after data imputation.

Since there are no missing nodes or edges within the U.S. page subgraph, we focused

solely on imputing the missing labels. We leveraged the network structure and the concept

of homophily in networks. Node distance is naturally defined by the connecting edges

in the network. Our most-neighbors labeling method is a type of K-NN imputation.

However, we could not verify the imputation performance due to the absence of ground

truth. The complete data points, missing label data points, and the combination of these

two could exhibit three different data distributions.

2.6 Facebook Page State Classification

Given the limitations of both the majority voting algorithm and the BFS-based machine

learning approach, there is a pressing need for innovative methods that address these

challenges. Considering the interconnected nature of pages within a graph, where edges

signify ’likes’ between pages, leveraging graph-based algorithms emerges as a logical so-

lution. Graph neural networks (GNNs), in particular, stand out as an ideal choice for

sub-location classification within country borders. GNNs have the capability to under-

stand the topological relationships between pages, utilizing this knowledge effectively to

classify pages based on their sub-locations.

2.6.1 Neighborhood State Distribution Vector

Machine learning algorithms need features associated with the pages to perform training

and classification. We know the distances from each page to each state anchor page, also
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called state distance vector (SDV) in Lin’s BFS-based machine learning algorithms, are

not a good feature because about 60% of the pages in the data have zero vectors as their

SDVs.

Given the limitations in the majority voting and BFS-based machine learning algo-

rithms, we propose the utilization of neighborhood state distribution vector (NSD) as

an alternative feature set. Unlike state distance vectors (SDVs), every page within the

connected graph possesses a nonzero number of neighbors, ensuring that NSDs are always

nonzero and, therefore, potentially more informative. NSDs quantify the proportion of

a page’s neighbors from each state relative to its total number of neighbors, providing a

more robust feature for machine learning classification.

To capture a comprehensive picture of the local neighborhood, we incorporate NSDs

calculated within both one-hop and two-hop distances, accounting for neighbors in in-

ward, outward, and undirected edge directions. This multi-dimensional approach allows

for a richer representation of page connections, improving the potential for accurate clas-

sification. The NSD vector for a page is defined as follows:

NSD(Page) = [

[INSD1(Page, Statei), ONSD1(Page, Statei), UNSD1(Page, Statei),

INSD2(Page, Statei), ONSD2(Page, Statei), UNSD2(Page, Statei)] :

i ∈ 1, ..., Nnumber of states]

Where:

• INSDk(Page, Statei) denotes the inward neighborhood state distribution for Statei,

calculated within a k-hop distance from the Page.

• ONSDk(Page, Statei) denotes the outward neighborhood state distribution for Statei,

calculated within a k-hop distance from the Page.

• UNSDk(Page, Statei) denotes the undirected neighborhood state distribution for

Statei, calculated within a k-hop distance from the Page.
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Furthermore, each element of the NSD for a page, whether INSD, ONSD, or UNSD,

is defined as the ratio of neighbors from state i within a j-hop distance, normalized by

the total number of neighbors across all states within the same hop distance:

XNSDj(Page, Statei) =
XNeighborij∑Nnumber of states

i=1 XNeighborij
,

i ∈ {1, ..., Nnumber of states},

j ∈ {1, 2},

X ∈ {I, O, U},

Where:

• i denotes the ith state.

• j denotes the one-hop or two-hop distance.

• X denotes one of three edge directions, inward I, outward O, or undirected U .

• XNeighborij : the total number of neighbors from State i within j hop distance

from the Page for inward I, outward O, or undirected U edge direction.

For instance, Figure 2.6 exemplifies the inward one-hop NSD for The New York Times,

revealing a distribution vector of [0.4, 0.1, 0.1, 0.4] for states CA, FL, MD, and NY,

respectively, with other states omitted for brevity.

For pages with a limited number of one-hop neighbors, the state distribution may

exhibit bias. This bias arises because the state distribution is derived by dividing the

count of neighbors from each state by the page’s total number of neighbors. Consequently,

a page with few neighbors can have its state distribution disproportionately affected by a

few neighbors from a single state. To mitigate this bias, we also include two-hop neighbors

in our analysis, thereby increasing the neighbor count for each page and diminishing

the potential for bias in the state distribution. However, we refrain from extending our
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Figure 2.6: Example of inward one-hop neighborhood state distribution for the New
York Times

consideration to three-hop neighbors, as this would significantly enlarge the total neighbor

count, potentially reaching millions. Such an extensive neighbor set would render the state

distribution vectors too homogeneous across nodes, due to an excessively broad receptive

field.

2.6.2 Graph Neural Network Model Selection

The Graph Convolutional Network (GCN) model employs a neighborhood aggregation

scheme, where the feature vector of each node is updated through message passing and

aggregation from its neighbors’ feature vectors[7][8]. Initially, we considered using the

GCN as our baseline GNN model. However, GCN encounters scalability issues due to its

requirement to update the feature vectors for all nodes simultaneously and its reliance

on the entire graph’s adjacency matrix for computing aggregated messages at each layer,

resulting in substantial GPU memory usage[8]. Given the considerable size of our graph

data, which exceeds GPU memory capacity, we decided against adopting the GCN model.

GraphSAGE[9], in contrast, updates feature vectors following a similar propagation

rule to GCN but differs significantly in its approach. Unlike GCN, which updates all nodes’

feature vectors in each iteration, GraphSAGE updates a subset of nodes per iteration by

uniformly sampling a fixed number of neighboring nodes for each node in the batch[9][33].

This method significantly reduces both memory and computational demands, enabling

GraphSAGE to efficiently process large-scale graphs like ours. Consequently, we selected

GraphSAGE as our baseline model. Figure 2.7 illustrates the process of sampling neigh-

bors for the New York Times in a two-layer GraphSAGE model, with the sampled pages
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Figure 2.7: Example of a two-layer GraphSAGE neighbor sampling

highlighted in orange.

We also incorporated the GraphSAINT[10] model into our analysis. GraphSAINT

diverges from GraphSAGE’s neighborhood sampling technique by employing graph sam-

pling. It runs a complete GCN-like model on a subgraph sampled from the original graph

for each batch. This approach of reducing the original graph to manageable subgraphs

allows GraphSAINT to accommodate large graphs while offering enhanced training effi-

ciency and speed.

2.7 Evaluating Page State Classification

2.7.1 Model Setup

Our implementations of the GraphSAGE and GraphSAINT models comprise two layers

each, with the number of output channels set to 51. This figure corresponds to the total

number of states in the United States, including Washington D.C. The output represents

the probabilities for each of the 51 classes, indicating the likelihood of a page belonging to

a specific state. Both the number of input channels and hidden channels are configured to

306, aligning with the number of features in the neighborhood state distribution feature

vectors. These models are developed using the PyTorch Geometric (PyG) framework for

Graph Neural Networks[34].

2.7.1.1 GraphSAGE

GraphSAGE serves as our baseline model due to its efficiency in updating feature vectors

by loading only the sampled neighboring nodes for each node in a batch, significantly

reducing memory usage compared to the GCN approach of loading the entire graph into
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Table 2.2: Accuracy for state-known pages (A)

Algorithm Precision Recall F1-score Overall Accuracy

Majority Voting - - - 0.7308

BFS-based ML 0.7019 0.6620 0.6718 0.6620

GraphSAGE 0.8715±0.0004 0.8684±0.0002 0.8678±0.0003 0.8682±0.0006

GraphSAINT 0.8770±0.0004 0.8752±0.0003 0.8756±0.0003 0.8752±0.0002

GPU memory. However, uniformly sampling a fixed number of neighboring nodes intro-

duces random bias and may slow the model’s convergence.

To mitigate the random bias, we opted to aggregate messages from all neighboring

nodes for each node, foregoing the sampling of neighboring nodes. This approach, while

eliminating random bias, introduces the ”neighbor explosion” issue for nodes with a high

degree of connections in the batch[10]. This phenomenon refers to the computational

challenge of aggregating messages from a vast number of neighbors for high-degree nodes.

By adjusting the batch size downward, we can manage this issue at the cost of in-

creased training time. A reduced batch size decreases the likelihood of including multiple

high-degree nodes within the same batch, thereby lessening the computational load. Con-

sequently, our GraphSAGE implementation resembles the GCN model in its operation

but updates feature vectors in batches rather than processing the entire graph in each

iteration.

2.7.1.2 GraphSAINT

GraphSAINT differentiates itself by sampling a subgraph from the original graph for

each batch during every iteration. GraphSAINT[10] provides multiple choices for the

sampling schemes, such as random node sampling, random edge sampling, and random

walks sampling that samples the nodes by their importance intuitively. We opted for the

random walk sampler, which typically yields superior performance.
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2.7.2 Accuracy for State-known Pages

Our experimental dataset comprises the largest connected subgraph of ground truth U.S.

pages, as detailed in Section 2.3.3. This dataset includes both state-known and state-

unknown pages, described in Section 2.3.4. State-known pages, whose state locations are

unambiguous, serve as our direct ground truth. In contrast, state-unknown pages, with

uncertain state locations, cannot be directly utilized for this purpose. To circumvent

this limitation, we incorporate state-unknown pages within the graph while exclusively

considering the state labels of neighboring state-known pages for the computation of

neighborhood state distribution feature vectors. The state labels of state-unknown page

neighbors are disregarded due to their uncertainty. Consequently, our models are trained

and tested solely on state-known pages, constituting Dataset A.

Previous efforts to address the sub-location classification challenge, namely the major-

ity voting algorithm[4] and the BFS-based machine learning algorithm[5], are discussed

in Section 2.4. These methods serve as benchmarks for comparison. All experiments

are conducted using the same dataset of state-known U.S. pages. Our GNN algorithms,

GraphSAINT and GraphSAGE, significantly outperform both the majority voting and

BFS-based machine learning algorithms, as evidenced by the accuracy results presented

in Table 2.2. The reported accuracy for GraphSAINT and GraphSAGE reflects the mean

and 95% confidence intervals over three experimental runs.

2.7.2.1 Node Sampling

The accuracy of the GraphSAINT model surpasses that of GraphSAGE by a small margin,

as detailed in Table 2.2. This superior performance may be attributed to GraphSAINT’s

strategy of prioritizing ’important’ neighbors through random walk sampling, in contrast

to GraphSAGE, which considers all neighboring nodes in its message propagation without

employing a sampling mechanism. The divergence in their sampling approaches results

in the models engaging with different subsets of nodes from the dataset.

Table 2.3 illustrates the variance in how these models sample nodes of varying degrees,

with the percentages in each row representing the average from five samples. Notably,

both samplers exhibit comparable effectiveness when sampling nodes with degrees ex-
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Table 2.3: GraphSAINT and GraphSAGE sampled node degree distribution

node degree percentage in data GraphSAINT sampler GraphSAGE sampler

1 13.1% 15.5% 0.3%

2 - 4 29.7% 12.3% 5.7%

5 - 9 16.8% 12.9% 11.5%

10 - 99 34.2% 42% 65.3%

100 - 999 6.07% 16.72% 16.83%

1000 - 9999 0.13% 0.12% 0.18%

10000 and above 0.000834% 0.46% 0.19%

total 100% 100% 100%

ceeding 100. However, the random walk sampler utilized by GraphSAINT demonstrates

a pronounced efficiency in engaging nodes with degrees below 100. Consequently, the

random walk sampler achieves a node degree distribution that more closely mirrors the

actual distribution within the graph. This fidelity to the real degree distribution poten-

tially enhances model performance by offering a more accurate reflection of the diverse

relationships existing among nodes of different degrees.

2.7.3 Data Expansion

State-unknown pages comprise 63.4% of our total dataset, prompting an investigation

into whether their inclusion could enhance model performance. The challenge lies in

accurately determining the states for these pages, whose city names are shared across

different states. To address this, we propose two heuristic methods for assigning state

labels to state-unknown pages:

1. Population Labeling: For each state-unknown page, we select the city with the

highest population among those sharing the same name across different states, and

assign the page to that city’s state. This approach is based on the observed positive
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Figure 2.8: Example of Most-Neighbors labeling

Table 2.4: Accuracy for labeling methods

A: State-known Pages B: State-unknown Pages

Labeling Method for B
Training Test GraphSAGE GraphSAINT

Data Data Accuracy Accuracy

- A A 0.8682 0.8752

Most-neighbors labeling A + B A 0.8256 0.8433

Population labeling A + B A 0.8285 0.8394

Most-neighbors labeling B A 0.8015 0.8129

Population labeling B A 0.8017 0.8103

correlation between a state’s population and its number of pages[5]; states with

larger populations are likely to have a higher number of pages.

2. Most-Neighbors Labeling: Each state-unknown page is labeled with the state

of the majority of its neighbors within a two-hop distance. This method leverages

the principle that similar nodes (in this context, pages) tend to cluster together or

have direct connections, making the most common neighboring state the probable

location for the page. Figure 2.8 illustrated the example of labeling the target page

as NY.

Table 2.4 reveals that models trained exclusively on Dataset A (state-known pages)
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achieve the highest accuracy when evaluated against the ground truth test set, also com-

prised of Dataset A. Conversely, models trained solely on Dataset B (state-unknown

pages), which were labeled using heuristic methods, exhibit the lowest accuracy. This

outcome underscores the limitations of both population labeling and most-neighbors la-

beling in accurately reconstructing state labels to the fidelity of ground truth data, with

both methods yielding comparable accuracy levels.

Interestingly, models trained on a combination of Datasets A and B perform better

than those trained only on Dataset B but do not match the accuracy of models trained

solely on Dataset A. Among the models, GraphSAINT consistently outperforms Graph-

SAGE across different training scenarios, highlighting its superiority in handling this

classification task. Given these findings, the GraphSAINT model, trained on Dataset A,

emerges as the optimal approach for subsequent experiments.

2.7.4 Confusion Matrix

The confusion matrix shows the mismatch between each class pair, revealing interesting

findings hidden in the data. The confusion matrix in Figure 2.9, is computed from the

ground truth label and the classification result of running GraphSAINT on state-known

pages. Each state row represents how the ground truth data is classified into each state

column in the matrix. The confusion matrix is normalized by ground truth data, meaning

each row adds up to 100%. Every number in the matrix is a percentage number, blank

cells mean the number is less than 1%.

The confusion matrix, depicted in Figure 2.9, is derived from comparing the ground

truth labels with the classification outcomes of the GraphSAINT model applied to state-

known pages. Each row in the matrix corresponds to a state’s ground truth data, showing

its distribution across the predicted states (columns). The matrix is normalized by the

ground truth for each state, ensuring that the sum of each row equates to 100%. Values

within the matrix represent percentages, with blank cells indicating values less than 1%.

Key insights from the confusion matrix include:

• National Centers: California, New York, and Florida emerge as national centers

for Facebook pages in the U.S., with significant misclassification scores observed
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Figure 2.9: Confusion Matrix

across nearly all states. This trend suggests a higher likelihood of pages from various

states being connected to pages from these three dominant states, attributed to their

having the largest number of pages.

• Regional Centers: Texas, Pennsylvania, and Illinois function as regional centers.

Pages from states adjacent to these regions are more prone to being incorrectly

classified as belonging to one of these three states, highlighting their influence as

regional centers.

• Neighboring States: Notably, states sharing borders, such as Nevada and Cali-

fornia, New Jersey and New York, Connecticut and New York, Rhode Island and

New York, Washington D.C. and Maryland, Washington D.C. and Virginia, Rhode
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Island and Massachusetts, and Oregon and Washington, exhibit elevated misclassi-

fication scores. This pattern underscores the tendency for pages from neighboring

states to be more interconnected than those from distant, non-center states.

To further explore the center states’ influence, we conducted a control experiment by

excluding all center state labels from Dataset A. The GraphSAINT model was then trained

and evaluated exclusively on pages from non-center states. Upon training completion, we

applied the model to classify pages in Dataset A from both center and non-center states,

but restricted the classification to non-center state labels only. This approach notably

increased the mislabeled pages among neighboring states to the center states. However,

this adjustment inadvertently skewed the dataset, with DC, Washington, and New Jersey

emerging as prominent new center states. These states exhibited a marked increase in

mislabeled pages with nearly every other state.

2.7.5 Intrastate Page and Interstate Page

2.7.5.1 Definition

In our multi-class classification framework, we calculate the cross-entropy loss by com-

paring the ground truth labels with the predictions from our GNN models. The model

outputs, representing unnormalized scores for each class, do not necessarily have to be

positive nor sum to one. By applying the softmax function[35] to the outputs generated

from state-known Dataset A, we obtain the probabilities of a page being associated with

each state. These probabilities range from 0 to 1, with their total summing to 1.

Rather than picking one state with the highest probability as the prediction for the

page in classification, we are interested in all the states with relatively high probabilities

for one page. We define intrastate pages and interstate pages as follows:

• Intrastate page: A page associated with only one state having significantly high

probabilities.

• Interstate page: A page associated with more than one state having significantly

high probabilities.

33



Table 2.5: Interstate and Intrastate page example

Page id ground truth Cut off probability High probability states

5606629547 FL 0.08 FL 0.37, IL 0.17, DC 0.20

5479739307 NY 1.23e-07 NY 0.54, DC 0.45

4846711747 CA 5.94e-15 CA 1.0

5602549475 NJ 0.04 NJ 0.76

To effectively categorize the 51 probabilities into two distinct groups—those with

higher probabilities and those with lower—we employ the Jenks natural breaks algorithm

[36]. This technique aims to minimize the variance within each group, ensuring that

the probabilities grouped together are as similar as possible. The group with the higher

probabilities includes a specified number of probabilities associated with different states.

If this group comprises probabilities for more than one state, the page is classified as

an interstate page; if it contains probabilities for only one state, the page is considered

an intrastate page. Table 2.5 presents examples of both interstate and intrastate pages,

illustrating the criteria for their classification.

2.7.5.2 Interstate Page Distribution

Table 2.6 details the distribution of pages across varying numbers of states with high

probabilities within Dataset A. Among the total, 213,035 pages are classified as interstate,

constituting 9.92% of the combined count of 2,147,399 interstate and intrastate pages.

The proportions of interstate and intrastate pages for each state are further enumerated

in Table 2.8.

2.7.5.3 State Interstate Page Percentage

Figure 2.10 illustrates the percentage of interstate pages for each state across the U.S.

map. The interstate page percentage is defined as the ratio of interstate pages to the total

number of pages within a state. The map reveals that Nevada, Missouri, West Virginia,

Virginia, and Washington D.C. exhibit the highest percentages of interstate pages. To

delve deeper into the dynamics of interstate pages, it is necessary to examine the number

of interstate pages between each pair of neighboring states.
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Table 2.6: Page distribution with different numbers of high-probability states in state-
known page data A

High-probability States Page Numbers

1 1934364

2 120582

3 37357

4 18959

5 10758

6 7319

7 4652

8 3437

9 2426

10 1691

11-20 5690

21-31 164

Figure 2.10: Interstate page percentage map
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Figure 2.11: Numbers of interstate page across state borders

2.7.5.4 Interstate Pages Across Borders

In Figure 2.11, we depict the distribution of interstate pages across borders for each pair

of neighboring states, normalizing the number of interstate pages by the total number of

pages of the state with fewer pages in each pair. For clarity, interstate pages constituting

less than 0.5% on a border are not included. Although Alaska and Hawaii do not share

borders with any states, they both have the highest number of interstate pages with

Washington, reflecting geographic proximity over direct borders. We can see that the

high interstate page percentage states, Nevada, Missouri, West Virginia, and Virginia,

have more interstate pages shared with their neighboring states, and some center states.

Specifically, Nevada shares a significant number of pages with California; Missouri with

Illinois, Kansas, and the District of Columbia (DC); West Virginia with Texas, New

Jersey, Pennsylvania, and Ohio; and Maryland with DC and Delaware. Interestingly, DC

emerges as a sub-regional center not evident in the confusion matrix, showing substantial

interstate page sharing with Maryland, New York, Virginia, California, Missouri, North

Carolina, and Pennsylvania.

36



Figure 2.12: Interstate pages from border cities of CA and NV

2.7.5.5 Interstate Pages Fact Check

We conducted a detailed examination of interstate pages between pairs of states. Notably,

interstate pages between California (CA) and Nevada (NV) predominantly originate from

cities near Lake Tahoe, straddling the CA-NV border—such as Stateline, Zephyr Cove,

Incline Village in Nevada, and South Lake Tahoe and Truckee in California—as shown in

Figure 2.12. A similar pattern of interstate pages is observed between Maryland (MD) and

Washington D.C. (DC), with pages from Washington D.C. closely connected to Maryland

cities like Gaithersburg, Silver Spring, and Hyattsville, among others, as depicted in

Figure 2.13.

Initially, Washington D.C. was not included in the ground truth Dataset A. However,
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Figure 2.13: Interstate pages from border cities of MD and DC

Figure 2.14: Interstate pages from border cities of MO and DC
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Figure 2.15: Interstate pages from border cities of NJ and WV

its significant population and location adjoining Maryland and Virginia warranted its

inclusion as a noteworthy case. Figure 2.7 displays populations for various ’Washington’

cities across states. Due to the smaller populations of other cities named ’Washington’, we

label pages from all cities of Washington as ’DC.’ Consequently, many pages from Missouri

(MO) and Maine (ME) were inaccurately labeled as ’DC,’ likely due to mislabeling of their

’Washington’ cities as ’DC’ in the ground truth data. We confirmed this hypothesis by

analyzing the interstate pages between Missouri (MO) and Washington D.C. (DC). As

illustrated in Figure 2.14, the interstate pages originate from Missouri cities such as St.

Louis, Nixa, Wentzville, and Kirksville, all of which are in proximity to Washington, MO.

Further investigation into the interstate pages between New Jersey (NJ) and West

Virginia (WV) revealed that pages from Galloway, WV, were connected to Atlantic City

and Absecon in NJ. The issue stems from the absence of Galloway, NJ in our U.S. city

dataset, with only Galloway, WV being listed. Consequently, what should have been

identified as page connections between Galloway, NJ, and the nearby cities of Absecon

and Atlantic City in NJ, were incorrectly recognized as connections between Galloway,
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Figure 2.16: Interstate pages from border cities of TX and WV

WV, and these New Jersey cities, in Figure 2.15. This error leads to the misclassification

of these connections as interstate pages between New Jersey (NJ) and West Virginia

(WV).

A similar data issue was identified between WV and Texas (TX), where the absence of

Kingwood, TX, in our dataset resulted in pages from Kingwood, TX, being incorrectly as-

signed to Kingwood, WV. This mislabeling falsely suggests interstate connections between

TX and WV, as both Kingwood, TX, and nearby Humble, TX, share page connections,

as shown in Figure 2.16.

This analysis underscores the utility of interstate pages in validating social ties between

neighboring cities across state borders. It also highlights gaps in U.S. city data and

suggests that closer cities tend to establish social connections, as reflected in our page
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graph.

Table 2.7: City populations for Washington across states

State Population State Population

DC 5,066,973 IN 12,514

UT 28,192 NC 9,555

IL 16,555 IA 7,318

MO 14,052 NJ 6,475

PA 13,404 GA 3,946

WV 1,303 KS 993

AR 134 NE 124

LA 860 VA 77

OK 687 CA 137

2.8 Conclusion

In this chapter, we explored the challenge of subdivision location classification for Face-

book public pages within the United States. We critically analyzed the limitations of

previous studies in sub-location classification and introduced a novel approach leveraging

the GraphSAINT model. This model utilizes neighborhood state distribution vectors to

accurately classify pages. Our evaluation on a dataset of U.S. Facebook public pages

demonstrated a notable improvement in classification accuracy compared to prior meth-

ods.

Furthermore, we applied our model to distinguish between intrastate and interstate

Facebook public pages. Our findings indicate that intrastate pages tend to garner ”likes”

from pages within the same state, whereas interstate pages are more commonly liked

by pages from different states. Through an analysis of the state classification confusion

matrix, the percentages of interstate pages by state, and the distribution of interstate

pages across state borders, we conclude that geographic location plays a crucial role in

the formation of online community networks and the accuracy of sub-location classification

for Facebook public pages.
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Table 2.8: Accuracy of GraphSAINT on state-known page data A

Begin of Table 2.8

State Precision Recall
F1 Intrastate Interstate Number

score Pages % Pages % of Pages

Alabama(AL) 0.90 0.86 0.88 90.2 9.8 27907

Alaska(AK) 0.94 0.88 0.91 92.7 7.3 8324

Arizona(AZ) 0.91 0.89 0.90 92.1 7.9 56288

Arkansas(AR) 0.84 0.83 0.83 88.3 11.7 10869

California(CA) 0.85 0.91 0.88 91.9 8.1 252922

Colorado(CO) 0.91 0.89 0.90 91.4 8.6 45043

Connecticut(CT) 0.81 0.81 0.81 84.1 15.9 4796

Delaware(DE) 0.86 0.80 0.83 86.9 13.1 3760

Florida(FL) 0.89 0.91 0.90 92.4 7.6 203544

Georgia(GA) 0.87 0.86 0.86 89.1 10.9 44859

Hawaii(HI) 0.94 0.88 0.91 92.3 7.7 25969

Idaho(ID) 0.93 0.89 0.91 92.7 7.3 25502

Illinois(IL) 0.88 0.88 0.88 90.7 9.3 120819

Indiana(IN) 0.89 0.88 0.89 90.6 9.4 50521

Iowa(IA) 0.90 0.86 0.88 88.8 11.2 28872

Kansas(KS) 0.91 0.88 0.89 90.9 9.1 23206

Kentucky(KY) 0.88 0.81 0.84 87.1 12.9 12856

Louisiana(LA) 0.93 0.89 0.91 92.2 7.8 47353

Maine(ME) 0.86 0.79 0.82 84.6 15.4 4787

Maryland(MD) 0.83 0.79 0.81 79.8 20.2 30884

Massachusetts(MA) 0.85 0.84 0.85 85.7 14.3 13084

Michigan(MI) 0.92 0.91 0.92 92.8 7.2 69652

Minnesota(MN) 0.88 0.89 0.89 92.0 8.0 30654
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Continuation of Table 2.8

State Precision Recall
F1 Intrastate Interstate Number

score Pages % Pages % of Pages

Mississippi(MS) 0.92 0.84 0.88 89.5 10.5 10642

Missouri(MO) 0.87 0.73 0.79 82.8 17.2 20231

Montana(MT) 0.93 0.91 0.92 93.7 6.3 17009

Nebraska(NE) 0.88 0.83 0.85 87.5 12.5 8893

Nevada(NV) 0.84 0.76 0.80 83.0 17.0 4256

New Hampshire(NH) 0.86 0.77 0.81 83.1 16.9 1388

New Jersey(NJ) 0.86 0.84 0.85 86.6 13.4 46598

New Mexico(NM) 0.94 0.88 0.91 92.3 7.7 21613

New York(NY) 0.82 0.87 0.85 88.1 11.9 175611

North Carolina(NC) 0.89 0.87 0.88 89.1 10.9 54721

North Dakota(ND) 0.91 0.85 0.88 89.3 10.7 6255

Ohio(OH) 0.87 0.85 0.86 89.4 10.6 40344

Oklahoma(OK) 0.90 0.86 0.88 90.6 9.4 38480

Oregon (OR) 0.90 0.89 0.89 90.3 9.7 24246

Pennsylvania(PA) 0.87 0.89 0.88 89.3 10.7 82160

Rhode Island(RI) 0.88 0.78 0.83 85.0 15.0 3361

South Carolina(SC) 0.91 0.87 0.89 89.5 10.5 30984

South Dakota(SD) 0.92 0.86 0.89 90.5 9.5 10389

Tennessee(TN) 0.89 0.85 0.87 88.8 11.2 16198

Texas(TX) 0.89 0.88 0.88 90.6 9.4 127645

Utah(UT) 0.88 0.86 0.87 89.7 10.3 27648

Vermont(VT) 0.82 0.82 0.82 83.6 16.4 7521

Virginia(VA) 0.87 0.86 0.86 87.7 12.3 40355

Washington(WA) 0.92 0.91 0.91 93.0 7.0 97228
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Continuation of Table 2.8

State Precision Recall
F1 Intrastate Interstate Number

score Pages % Pages % of Pages

West Virginia(WV) 0.86 0.73 0.79 80.6 19.4 7163

Wisconsin(WI) 0.93 0.90 0.92 92.8 7.2 45665

Wyoming(WY) 0.92 0.86 0.89 91.2 8.8 5058

Washington D.C.(DC) 0.52 0.57 0.54 72.1 27.9 33266

macro avg 0.88 0.85 0.86 90.1 9.9 2147399

weighted avg 0.88 0.88 0.88 90.1 9.9 2147399

End of Table 2.8
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Chapter 3

Online Social Community

Neighborhood Formation

3.1 Introduction

In the past decade, online social networks (OSNs) have witnessed exponential growth,

attracting billions of users worldwide. These platforms empower individuals to create

profiles, establish connections, and share content, offering unparalleled access without the

traditional constraints of time and location associated with offline social groups. Users can

effortlessly connect with others globally who share similar interests, fostering the rapid

expansion of OSNs. As of May 2023, 33 online social platforms boast over 100 million

monthly active users (MAU)[37], highlighting the vast reach of these networks. Facebook,

in particular, leads as the most popular platform, with nearly 2.99 billion monthly active

users. Figure 3.1 presents the top 20 online social platforms ranked by their number of

monthly active users, illustrating the scale and diversity of OSNs in facilitating digital

social interactions.

A prevalent activity on these online social platforms involves individual users setting

up personal profiles, connecting with friends or strangers, and sharing content. These

individuals form the basis of online social networks, with their numbers indicative of the

platforms’ business potential, as they represent prospective consumers for a wide array of

products and services. This vast user base attracts a variety of entities, including busi-

nesses, non-profit organizations, and governmental bodies, all seeking to leverage these

45



Figure 3.1: Top 20 Online Social Platforms

platforms for their respective interests. These entities, along with individual users, estab-

lish various online social communities to cater to specific interests. These communities

range from corporate and non-profit organization pages to user-created groups focusing

on shared interests like neighborhood activities, workplace connections, and hobbies such

as animal enthusiasts.

Numerous offline groups and communities have established their presence online through

information pages or discussion forums. Additionally, the internet has seen the birth of

myriad communities and groups that operate exclusively online, without any offline in-

teractions. The rapid growth and sheer volume of these online social communities are

remarkable, especially considering their relatively brief history. Unlike their offline coun-

terparts, online communities face no constraints related to time or location, allowing for

unlimited connections and interactions with other online entities. This paper delves into

the dynamics of connections between various online social communities.

Facebook stands out as the most popular platform for online communities, attracting
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considerable attention from researchers. This study specifically focuses on public Face-

book pages, which serve as a platform for disseminating information, facilitating user

discussions, spreading news, and promoting businesses or public relations activities. Like

individual users, these pages can like or follow other Facebook pages, creating a network

of connections among online social communities. This network, in turn, forms a vast

graph of online social community interactions. Our research aims to uncover the pivotal

factors that influence these connections and the development of neighborhoods within the

online social community landscape.

In this study, we aim to contribute to the understanding of online social communi-

ties by investigating a range of page features to determine their impact on the formation

of page neighborhoods. This is achieved through a methodology that applies link pre-

diction techniques to each individual feature. We identified the page state label as the

single most accurate predictor in link prediction tasks, which also is the most efficient

feature with the smallest number of classes. Additionally, we find that a combination

of features—specifically the page state label, page node degree, and page city popula-

tion—yields the best performance in link prediction accuracy.

This chapter is organized as follows: Section 3.2 introduces related research on user

geographic location analysis, link prediction, page geographic location analysis, and graph

neural networks we used for classification. Section 3.3 describes the data used for this

study and the ground truth data for verification. Section 3.4 introduced the methodol-

ogy we used and some proposed node features to perform link prediction. Section 3.5

shows experiment setups, results of the experiments, and analysis of the results. Finally,

sSection 3.6 offers a summary of this Chapter.

3.2 Related Work

3.2.1 User Social Network Analysis

The analysis of user social networks has received more focus than that of community

networks in the fields of network science and social network analysis. Ugander et al.

explored the global structure of the Facebook user network, identifying a range of network
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properties[2]. Barnett and Benefield[3] discovered that proximity and cultural homophily

significantly influence Facebook friendship ties, noting that countries with international

Facebook friendships often share borders, languages, and cultural traits[3].

3.2.2 Link Prediction

Link prediction has been a popular research area for the past decades. In social network

link prediction, researchers typically employ three methodologies: similarity, probabilis-

tic, and algorithmic approaches [38]. The similarity approach leverages graph-measures

and content-measures (attributes of nodes or edges). Among algorithmic methods, deep

learning has emerged as a particularly popular technique. In our study, we employ both

similarity and algorithmic approaches to predict links.

3.2.3 Online Social Community Location Classification

Facebook public pages represent a prominent platform for online communities, with each

page embodying a distinct social community. While page managers have the option to

label their pages with country and state/province locations, many pages lack this geo-

graphical information. Hong et al.[4] explored the Facebook page graph—a network where

pages can ”like” each other—and introduced a majority voting algorithm for inferring the

missing country locations of pages. This method proved effective for country-level classi-

fication, leveraging shared cultural, linguistic, and social contexts among pages from the

same country.

Nonetheless, the majority voting approach showed limitations in more granular subdi-

vision location classifications, such as state labeling within the United States. In Chapter

1, we introduced the concept of neighborhood state distribution vectors and applied Graph

Neural Networks for the classification of Facebook pages’ subdivision locations, achieving

notable accuracy. This methodology offers insights into a page’s influence across different

states.

3.2.4 Graph Neural Networks

Graph neural networks (GNNs) are a subset of artificial neural networks designed for

processing graph-structured data[6]. Graph convolutional networks (GCNs) are one type
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of GNN that are often used in graph representation learning. These representations aim to

encapsulate the graph’s topological structure in low-dimensional vectors, facilitating tasks

such as node classification and link prediction. Nonetheless, GCNs’ reliance on full graph

adjacency matrices makes them computationally intensive, particularly for sizable graphs,

leading to significant GPU memory demands and prolonged training durations[7][8].

To mitigate these challenges, node sampling techniques have been developed to adapt

GCNs for larger graphs. GraphSAINT, specifically, introduces an inductive learning strat-

egy through graph sampling, enhancing both the efficiency and accuracy of training. It

generates mini-batches by sampling sub-graphs from the entire graph for each iteration.

This approach ensures that nodes influencing each other significantly are likely to be in-

cluded in the same mini-batch, allowing for mutual support within the mini-batch and cir-

cumventing the need for broader graph traversal[10]. Such innovations significantly curtail

the computational burden associated with GCNs, concurrently bolstering accuracy[10].

3.3 Data Description

3.3.1 Data Acquisition

In this chapter, we use the same Facebook public page data as Chapter 1, sourced via

Facebook Graph API 2.8. This dataset encompasses a broad spectrum of page metadata,

including identifiers, names, descriptions, categories, as well as geographical data like

country and city, alongside relational data such as liked pages. Notably, this collection

process ensures the exclusion of any user-specific private information. The methodol-

ogy for data acquisition relied on snowball sampling[11], initiating from a set of popular

Facebook public pages and progressively encompassing pages liked by these initial nodes.

This approach organically constructs a directed graph representation of the Facebook

page network.

3.3.2 Data Cleaning

In this directed page-likes graph, each node represents a page, with outgoing edges in-

dicating pages liked by this page. The graph comprises 61,263,729 pages connected by

789,494,545 edges. However, only 30.8% of these pages, totaling 18,895,994, have location
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information (country and city) specified by their page managers. We consider location

information a key feature for predicting links between pages. Our analysis is centered

on the subgraph comprising all U.S. pages, given that the U.S. encompasses the largest

number of pages among all countries in our dataset.

The page-likes graph is constructed exclusively from ground truth data, comprising

6,194,277 pages with verified city locations within the United States and connections

between them. We exclude 55,069,452 pages and their associated edges either located

outside the United States or lacking city location information. Consequently, the resultant

subgraph of U.S. pages exhibits disconnected components, primarily due to the exclusion

of some connecting pages. The largest connected component encompasses 5,873,395 pages

and 84,480,575 edges. Our analysis prioritizes this component due to its significant size

relative to others.

All Facebook pages within our U.S. graph have their city locations in the United

States, as listed by their managers. Among these, 36.6% of the pages are associated with

cities that have unique names across all 50 states, making their city and state locations

determinable. We refer to these as state-known pages. Conversely, the remaining 63.4%

of pages are linked to cities with names that duplicate across multiple states; we classify

these as state-unknown pages. Our study concentrates on the state-known pages.

3.4 Page-Likes Link Prediction

3.4.1 Link Prediction

Link prediction spans various research fields, including statistics, network science, data

mining, and machine learning, focusing on predicting the presence of links between nodes

in a network. This task aligns with real-world applications such as predicting social

connections in social networks or recommending products in user-product graphs.

From the social network perspective, Liben-Nowell and Kleinberg have developed link

prediction techniques based on measures for analyzing the ”proximity” of the nodes in

a network[39]. The nodes within the ”proximity” in the network are similar in some

sense, leveraging the concept of homophily. Therefore, these nodes are more likely to
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interact with each other and be connected by edges. Thus, the most commonly used link

prediction algorithms are similarity-based algorithms[40].

Given our data’s graph structure, where edges represent ”likes” between pages, graph-

based algorithms are particularly suitable for link prediction. Graph-based representation

learning effectively addresses this by encoding node features and graph topology into vec-

tor representations. These vectors are then used to calculate scores indicating the likeli-

hood of edge formation between node pairs. Existing edges (positive edges) are labeled as

1, while non-existing edges (negative edges), introduced through uniform negative sam-

pling, are labeled as 0[41]. Our use of link prediction algorithms aims to identify key

factors influencing the formation of page neighborhoods.

3.4.2 GraphSAINT

Graph Convolutional Networks (GCNs) face scalability challenges due to the necessity

of updating all feature vectors within each iteration, making them less efficient for large

graphs. To address these limitations, both GraphSAGE and GraphSAINT models adopt

node sampling strategies, albeit through differing approaches. GraphSAGE employs uni-

form sampling to select a fixed number of neighboring nodes for each node in every layer

and iteration. Conversely, GraphSAINT samples a sub-graph of the whole graph by nodes’

importance as the mini-batch in each iteration, subsequently applying a GCN-like model

on this sub-graph. This method effectively reduces the size of the original graph to a more

manageable sub-graph, significantly enhancing training efficiency and time compared to

GraphSAGE. Our prior research in Chapter 1 has shown the GraphSAINT model to

exhibit superior performance on the page graph, leading us to select GraphSAINT for

encoding node representation vectors within the graph.

3.4.3 Feature Selection

In our study, we delve into the dynamics behind the ”likes” relationships among Facebook

pages to unveil the mechanisms underlying online social community neighborhoods. This

investigation is framed as a link prediction challenge, aiming to identify features that yield

precise predictions within a directed Facebook page graph.
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We introduce an array of candidate features for utilization within graph neural net-

works to forecast page-likes connections. By evaluating the predictive accuracy of these

diverse features, we uncover the pivotal elements influencing the formation of page edges

and neighborhoods. These features are categorized into two primary types:

1. Topology-related features: These features relate to the page’s position and role

within the graph’s structure, such as its degree, or the network information for its

neighborhood, such as state neighborhood distribution.

2. Community-specific features: These features relate to the intrinsic attributes

of the page community, including the page’s category, the population of the page’s

city, geographic coordinates of the page’s city, and labels for both the city and state

of the page.

By analyzing the effectiveness of these features in link prediction, we aim to eluci-

date the foundational factors that drive the establishment of online social community

neighborhoods.

3.4.3.1 Constant Feature

Graph neural networks (GNNs) harness both node features and the graph’s structural

information to facilitate learning. The quality and informativeness of node features are

crucial as they encapsulate the attributes of the nodes. Conversely, edge connections

unveil the graph’s structural intricacies. To enable a baseline comparison, we employ a

constant value of 1 as the node feature across all nodes. This approach restricts the model

to learning exclusively from the graph’s topology and its connections, rendering all nodes

indistinguishable based on their features.

The principle of homophily suggests that similar nodes tend to be closer or directly

linked within a graph[42]. Our adoption of a uniform feature stems from the hypothesis

that pages in proximity within the graph share certain similarities, thereby increasing

their likelihood of forming connections. This method provides a foundational comparison,

emphasizing the role of graph structure over individual node attributes in predicting

linkages.
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3.4.3.2 Page Degree

The degree of a page, defined as its number of neighbors, signifies its connectivity within

the page-likes graph. The degree values range from a minimum of 1 to a maximum of

51,045. To visualize this distribution, we present the degree distribution across pages

in Figure 3.2, with linear and logarithmic scales used in Figure 3.2a and Figure 3.2b,

respectively. The linear scale plots show an axis-aligned pattern, while the logarithmic

scale plots show a heavy-tailed pattern. This pattern aligns with the degree distribution

observed in other real-world networks, such as the MSN messaging network[43], indicating

adherence to a log-normal distribution.

Node degree is an often used feature in network analysis. Therefore, we propose the

degree of the page node as one candidate feature. The page graph is a directed graph.

Hence, we use both normalized inward degree and normalized outward degree as features.

3.4.3.3 Page’s Category

Facebook public pages categorize their topics as assigned by their managers, encompassing

over a thousand distinct categories within the page-likes graph. For instance, the top 20

categories are enumerated in Table 3.1, extracted directly from the page metadata without

modification. Despite the presence of duplicate categories, their impact on prediction

accuracy is minimal. According to the theory of homophily[42], pages sharing the same

category are more likely to form connections. Given the impracticality of employing

one-hot vectors due to the extensive number of categories, binary encoding is utilized.

This method efficiently compresses category data into eleven binary digits, significantly

reducing memory usage while maintaining accuracy comparable to one-hot encoding[44].

3.4.3.4 Page’s State Label

In previous analyses, notably in Chapter 1, neighborhood location information has emerged

as a pivotal feature for classifying pages within the Facebook page-likes graph, aligning

with the principles of homophily theory[42]. This theory suggests that pages within the

same geographical state are more likely to establish connections than those across diverse

states. Consequently, we advocate for the incorporation of a page’s state label as a crucial

feature for enhancing link prediction accuracy. Our analysis is confined to state-known
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(a) Page Degree Distribution

(b) Page Degree Distribution on Log Scale

Figure 3.2: Page Degree Distributions
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Table 3.1: Top 20 Categories of Facebook Public Page

Page Category number

Local Business 1,086,041

Non-Profit Organization 230,240

Professional Service 178,543

Restaurant 171,568

Real Estate 127,801

Company 124,187

Community 111,223

Education 109,761

Religious Organization 98,712

Shopping & Retail 95,284

Medical & Health 86,503

Shopping/Retail 84,897

Organization 79,744

Artist 79,668

Musician/Band 69,365

Arts & Entertainment 69,270

Public Figure 69,026

School 63,274

Community Organization 63,272

Nonprofit Organization 57,952
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pages, whose state identities are verifiable, thereby ensuring the reliability of our pre-

dictions. To represent the geographical state of each page, we employ a 51-dimensional

one-hot encoding scheme, accommodating the 50 states and Washington, D.C.

3.4.3.5 Page’s State Neighborhood Distribution

In Chapter 1, we employed state neighborhood distribution vectors as node features

for classifying the states of Facebook pages, yielding significant accuracy improvements.

These vectors represent the distribution of a page’s neighbors across different states, of-

fering a nuanced perspective beyond mere state labels. While direct state labels provide

definitive location information, neighborhood distribution vectors offer predictive insights

based on the proximity and connections of pages within the graph. Although not as

unequivocally accurate as state labels, these vectors serve as an informative feature, sug-

gesting the potential state affiliation of a page based on the geographic distribution of its

connections.

3.4.3.6 Page’s City Label

Inspired by the insights gained from analyzing page state neighborhood distributions and

aligned with the principles of homophily theory[42], our investigation extends into more

granular location data of Facebook pages—their city locations. City-level data offer a

finer granularity than state-level information, suggesting that pages within the same city

may exhibit even tighter connections than those merely within the same state. However,

the extensive variety of cities in our dataset, numbering in the tens of thousands, presents

a much more complex challenge for classification compared to the 51 state-level categories.

This analysis is confined to state-known pages, as their city affiliations are unequivocally

determined, in contrast to state-unknown pages. Given the vast number of city categories,

binary encoding serves as an efficient method to encode city information, mitigating the

increase in feature dimensions associated with one-hot encoding methods.

3.4.3.7 Page’s City Population

Observations from the dataset reveal a pattern where popular pages from major urban

centers, such as New York and Los Angeles, exhibit higher connectivity, including links to

pages from smaller municipalities. We posit that the population size of a city could serve
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as a pivotal feature in link prediction models. The underlying hypothesis is that larger

cities, with their denser populations, host a broader array of activities and enterprises,

casting a wider sphere of influence that captivates the attention of individuals from less

populous areas. This dynamic is proposed to facilitate the formation of connections

between pages representing large urban areas and those from smaller cities.

3.4.3.8 Page’s City Geographic Coordinate

In Chapter 1, our analysis revealed a notable trend among interstate pages, particu-

larly those associated with cities situated along state borders. These pages demonstrated

substantial connections to pages from proximate neighboring cities across state lines,

suggesting a potential influence of geographical proximity on the establishment of page

neighborhoods. Consequently, we propose incorporating the latitude and longitude of

cities—specifically for state-known pages—as features to explore the extent to which ge-

ographic location factors into the formation of these online community networks.

3.5 Evaluating Page Features

3.5.1 Experimental Setup

Link prediction inherently presents a binary classification challenge, necessitating a focus

on accurately distinguishing between positive and negative edges. Consequently, the Area

Under the Receiver Operating Characteristic Curve (AUC-ROC) serves as a critical metric

for evaluating classifier performance, offering insights beyond mere accuracy by assessing

the model’s ability to differentiate each class effectively.

Table 3.2: Highest AUC-ROC on test set on different Positive/Negative edge ratio
with page state label as feature

Ratio 1:1 1:5 1:10

AUC-ROC 0.8898 0.9175 0.9125

In this study, we employ a two-layer GraphSAINT model with random walk sampling

to encode node features and topology. Each layer, implemented via the PyTorch Geomet-

ric (PyG) framework, contributes to a GNN layer[45]. The outputs from both layers are
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(a) page state label as feature

(b) page state neighborhood distribution as feature

Figure 3.3: Loss and AUC-ROC curves of different features (Part 1)
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(c) page city label as feature

(d) constant number 1 as feature

Figure 3.3: Loss and AUC-ROC curves of different features (Part 2)
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(e) page category as feature

(f) page city geographic coordinates as feature

Figure 3.3: Loss and AUC-ROC curves of different features (Part 3)
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(g) page node degree as feature

(h) page city population as feature

Figure 3.3: Loss and AUC-ROC curves of different features (Part 4)
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concatenated as the input to a linear layer, which outputs the node embedding vector.

A dot product function, renowned for its efficacy in computing embedding similarities,

acts as the decoder. Given the sparse nature of the page graph, the actual edges are

significantly outnumbered by the potential non-existent edges. Because the total number

of negative edges is enormous, we use negative sampling to sample a certain number of

negative edges in the training[41]. We optimize the ratio of positive to negative edges

at 1:5 for training and testing purposes. This specific ratio demonstrates superior AUC-

ROC performance compared to alternative ratios, as evidenced in Table 3.2. The training

process has 2000 epochs, necessitating approximately 20 hours to complete.

3.5.2 Single Feature

In this section, each experiment isolates a proposed feature as the sole node attribute.

Comparative analysis reveals the page state label as the superior node feature, distin-

guished by the highest scores in Table 3.3, the most stable training loss curve, and the

most consistent testing AUC-ROC score curve in Figure 3.3a.

3.5.2.1 Performance

Table 3.3: Summary of feature analysis across the entire dataset, ordered by average
AUC-ROC

Feature Avg. AUC-ROC Avg. TPR Avg. TNR

Page State Label 0.9308 0.8485 0.8832

Page State Neighborhood Distribution 0.9306 0.8481 0.8729

Page City Label 0.9107 0.8113 0.8581

Constant Number 1 (baseline) 0.9075 0.8109 0.8508

Page Category 0.9041 0.8040 0.8493

Page City Geographic Coordinates 0.8964 0.7844 0.8609

Page Node Degree 0.7632 0.5832 0.9672

Page City Population 0.6849 0.5140 0.9043

The graph topology can affect the link formation between two nodes based on whether
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they are within their proximity. The Graph Neural Network algorithm automatically uses

the graph topological information to learn the embeddings for the nodes in the graph.

Inputting node features into Graph Neural Network adds node information to the graph

topological information for generating node embeddings. It could be better or worse.

Therefore, we need a baseline of the classifier performance, which is performed only on

the graph topological information. We assign constant number 1 to all nodes as their

features. Since all nodes have the same feature 1, the Graph Neural Networks only use

the topological information in the training and testing.

Table 3.3 presents the prediction results for each feature. The results are averaged

values of 3 runs. Column AUC-ROC represents how well the algorithm classifies the

positive and negative edges. Columns TPR and TNR represent the true positive rate and

true negative rate of the optimal threshold in the ROC curve for edge predictions. The

table shows that the feature page state label has the best performance. Page state label,

city label, and state neighborhood distribution features have better performance than the

constant number 1 feature. These node features add useful node information to the graph

topological information for the edge prediction. The rest of the features perform worse

than the baseline feature constant number 1. Their node information interferes with the

topological information, which causes the algorithm to perform worse on the prediction.

The marginal advantage of the page state label feature over the page state neighbor-

hood distribution feature may stem from its direct and definitive representation of state

labels. While the state neighborhood distribution offers insights into a page’s state asso-

ciation, it does not achieve the exact correspondence of the actual state labels. Notably,

the page state neighborhood distribution feature encompasses 306 dimensions, in contrast

to the page state label feature’s more concise 51 dimensions.

Three categorical features, state label, city label, and category, demonstrate superior

performance. We select features based on the homophily phenomenon in networks, which

suggests that nodes are more likely to connect within the same class. Table 3.4 shows that

the model performs better on intra-class edges for all features. Therefore, the higher the

intra-class edge ratio, the better the model’s performance. This explains why the state
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Table 3.4: Categorical feature comparison for positive edges

Feature class#
intra-class edge inter-class edge

ratio accuracy ratio accuracy

State
51 0.7354 0.8512 0.2645 0.8321

Label

City
12196 0.5080 0.8332 0.4919 0.7971

Label

Constant
1 - 0.8109 - 0.8109

baseline

Page
1412 0.1098 0.8155 0.8901 0.8034

Category

label exhibits the best performance. Page location label shows a strong effect on pages

connecting with their neighbors.

3.5.2.2 Learning Curve

The learning curves in the training process offer insights into each feature’s performance

on the page graph data. Training loss curves and testing AUC-ROC score curves for all

features are presented in Figure 3.3, with each subplot applying a consistent log scale

for training loss and a linear scale for testing AUC-ROC scores. Among these, the page

state label feature, as illustrated in Figure 3.3a, displays the most stable and conventional

loss curve and AUC-ROC score, indicating its superior fit for the page graph data and

effectiveness in link prediction. In contrast, features like the page state neighborhood

distribution (Figure 3.3b), page city label (Figure 3.3c), constant number 1 (Figure 3.3d),

page category (Figure 3.3e), and page city geographic coordinates (Figure 3.3f) exhibit

unstable training loss curves, particularly in their plateau phases. Both the page node

degree and page city population features demonstrate atypical loss and AUC-ROC curves,

further distinguishing the page state label feature’s distinct advantage.
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Table 3.5: Combine one feature with page state label feature analysis across the entire
dataset

Combined Feature Avg. AUC-ROC Avg. TPR Avg. TNR

Page Node Degree
0.9317 0.8463 0.8850

+ Page State Label

Page City Population
0.9289 0.8436 0.8793

+ Page State Label

Page State Label(baseline) 0.9308 0.8485 0.8832

Page Category
0.9243 0.8358 0.8701

+ Page State Label

Page City Geographic Coordinates
0.9241 0.8365 0.8623

+ Page State Label

Constant Number 1
0.9228 0.8298 0.8688

+ Page State Label

Page City Label
0.9131 0.8178 0.8595

+ Page State Label

3.5.3 Combined Feature

We have determined that the page state label feature outperforms other single features

for link prediction within the page graph. Given the relative underperformance of other

features, we proceed to enhance link prediction accuracy by investigating feature combi-

nations.

3.5.3.1 Performance

Initially, we explored the combination of two features, focusing on the page state label fea-

ture due to its superior performance. We paired it with other features to assess potential

enhancements in accuracy. Table 3.5 reveals that combining the page state label feature

with the page node degree feature improves performance beyond the baseline established

by the sole use of the page state label feature. When the page state label feature is com-

65



Table 3.6: Combine more features with page state label feature analysis across the
entire dataset

Combined Feature Avg. AUC-ROC Avg. TPR Avg. TNR

Page Node Degree

0.9394 0.8590 0.8857+ Page City Population

+ Page State Label

Page Node Degree
0.9317 0.8463 0.8850

+ Page State Label

Page City Population
0.9289 0.8436 0.8798

+ Page State Label

Page State Label(baseline) 0.9308 0.8485 0.8832

Constant Number 1

0.9159 0.8168 0.8608

+ Page Category

+ Page Node Degree

+ Page City Population

+ Page State Label

Page Category

0.9126 0.8141 0.8541+ Page Node Degree

+ Page State Label

bined with the page city population feature, the performance is similar to the baseline.

However, integrating other features with the page state label feature leads to a decrease

in performance compared to the baseline.

Further experimentation led us to combine three features: page node degree, page city

population, and page state label, which collectively exhibited the highest performance, as

depicted in Table 3.6. The table also illustrates that merging the page category, page city

geographic coordinates, constant number 1, and page city label features with the page

state label feature resulted in suboptimal performance. While exhaustive combinations
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Figure 3.4: Edge prediction rates by state

of these less effective features were not explored, a few examples are provided in Table

3.6 for illustrative purposes.

3.5.3.2 Prediction Analysis

In Chapter 1, we identified two types of edges in the page graph: interstate edges and

intrastate edges. Intrastate edges connect pages within the same state, while interstate

edges link pages from different states. We evaluated the accuracy of predicting interstate

and intrastate edges for each state, as well as for all states combined, using an algorithm

that incorporates a feature combination of page state label, page node degree, and page

city population. The results are presented in Table 3.8.

In this examination, we detail the true positive rates (TPR) and true negative rates

(TNR) for both intrastate and interstate edges across various states, as presented in Table

3.8. The ”Start” and ”End” columns denote the originating and terminating states of the

edges, respectively. Given the uniform and random sampling of negative edges within the
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graph, intrastate and interstate negative edges constitute 4.85% and 95.15%, respectively,

of all negative edges, as shown in Table 3.7a. Conversely, intrastate and interstate positive

edges represent 73.54% and 26.46%, respectively, of all positive edges. The distribution of

intrastate edges, split into 75.22% positive and 24.78% negative, contrasts with interstate

edges, which are divided into 5.27% positive and 94.73% negative, according to Table

3.7b. This disparity in data distribution likely influences the observed discrepancies in

TPR and TNR values for intrastate and interstate edges, underscoring the complexity of

accurately predicting link formations within the page graph.

We visualize the data from Table 3.8 using a line chart in Figure 3.4 for an intuitive

understanding of the predictive statistics. The x-axis represents states ordered by their

increasing interstate page percentages. Displayed are the true positive rates (TPR) and

true negative rates (TNR) for both intrastate and interstate edges. Notably, the high

TPR for intrastate edges (blue line) corresponds to states with lower interstate page per-

centages, whereas states with higher interstate page percentages exhibit lower intrastate

edge TPRs. This pattern suggests that pages with numerous out-of-state connections are

more often involved in interstate edges, while intrastate pages, primarily linked within

their own state, tend to form intrastate edges. Consequently, a lower interstate page

percentage implies a higher number of intrastate pages and edges, resulting in increased

intrastate edge TPRs. However, some states show anomalously low intrastate edge TNRs

(orange line), attributed to a notably smaller number of intrastate negative edges than

average, a byproduct of random sampling. This discrepancy likely contributes to the

observed outliers.

3.6 Conclusion

In this chapter, we delve into the identification of pivotal features that influence link

formation and neighborhood structuring within the page graph. Initially, we explore a

series of potential features, both graph-based and content-based, that may impact link

connectivity. Subsequently, we present our methodology, combining the node similarity

and topological algorithm GNN to perform the link prediction. Through meticulous
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Table 3.7: Percentage distribution of edges

(a) Positive/Negative edges percentage distribution

Positive Edges Negative Edges

Intrastate 73.54% 4.85%

Interstate 26.46% 95.15%

Total 100.00% 100.00%

(b) Intrastate/Interstate edges percentage distribution

Positive Edges Negative Edges Total

Intrastate 75.22% 24.78% 100%

Interstate 5.27% 94.73% 100%

experimentation with both individual and combined features, we ascertain that the page

state label emerges as the most influential single feature for link formation. Moreover, we

observe that augmenting the page state label feature with page node degree and page city

population features further enhances link prediction accuracy. Ultimately, our analysis

reveals a correlation between the true positive rate of intrastate positive edges and the

interstate page percentage concept introduced in Chapter 1, underscoring the nuanced

dynamics of link formation within the page graph.

Table 3.8: Link Prediction Performance by State

Intrastate Edge Interstate Edge

Start End TPR TNR Start End TPR TNR

AL AL 0.8939 0.7331 AL other states 0.8107 0.8672

AK AK 0.9293 0.6189 AK other states 0.7883 0.8856

AZ AZ 0.8742 0.6932 AZ other states 0.7972 0.9101

AR AR 0.6455 0.9074 AR other states 0.7083 0.9284

CA CA 0.8560 0.7862 CA other states 0.7974 0.9266

Continued on next page
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Table 3.8 – continued from previous page

Intrastate Edge Interstate Edge

Start End TPR TNR Start End TPR TNR

CO CO 0.9402 0.6131 CO other states 0.8423 0.8828

CT CT 0.7332 0.8960 CT other states 0.7457 0.9125

DE DE 0.6622 0.9225 DE other states 0.7927 0.9178

FL FL 0.8862 0.7226 FL other states 0.7434 0.9322

GA GA 0.7234 0.8347 GA other states 0.7847 0.8964

HI HI 0.9750 0.3560 HI other states 0.8258 0.8542

ID ID 0.8014 0.8158 ID other states 0.7839 0.9227

IL IL 0.9182 0.6853 IL other states 0.8571 0.8606

IN IN 0.8454 0.7603 IN other states 0.7961 0.9160

IA IA 0.8410 0.7661 IA other states 0.8238 0.8747

KS KS 0.7926 0.8218 KS other states 0.7730 0.9130

KY KY 0.5909 0.9390 KY other states 0.7604 0.9304

LA LA 0.9322 0.6585 LA other states 0.8258 0.8613

ME ME 0.7867 0.8281 ME other states 0.7580 0.9023

MD MD 0.5835 0.9360 MD other states 0.7749 0.9338

MA MA 0.7740 0.8788 MA other states 0.7210 0.9413

MI MI 0.8666 0.7839 MI other states 0.7960 0.8934

MN MN 0.9151 0.5924 MN other states 0.8163 0.8683

MS MS 0.8294 0.8026 MS other states 0.8104 0.8958

MO MO 0.7741 0.8600 MO other states 0.7369 0.9215

MT MT 0.9986 0.0511 MT other states 0.9133 0.6254

NE NE 0.8387 0.7380 NE other states 0.7493 0.9298

NV NV 0.6582 0.9123 NV other states 0.8005 0.9203

NH NH 0.7436 0.9211 NH other states 0.7125 0.9121

Continued on next page
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Table 3.8 – continued from previous page

Intrastate Edge Interstate Edge

Start End TPR TNR Start End TPR TNR

NJ NJ 0.7538 0.8722 NJ other states 0.7703 0.9204

NM NM 0.8925 0.6930 NM other states 0.7865 0.8933

NY NY 0.9129 0.7251 NY other states 0.8600 0.8739

NC NC 0.9677 0.5267 NC other states 0.8389 0.8298

ND ND 0.9486 0.2824 ND other states 0.6974 0.9308

OH OH 0.7705 0.8342 OH other states 0.7552 0.9183

OK OK 0.8764 0.7080 OK other states 0.7732 0.8985

OR OR 0.9206 0.6436 OR other states 0.7933 0.9008

PA PA 0.9242 0.6318 PA other states 0.8127 0.8808

RI RI 0.6227 0.9249 RI other states 0.7019 0.9234

SC SC 0.7511 0.8189 SC other states 0.7383 0.9288

SD SD 0.9551 0.3744 SD other states 0.8402 0.7917

TN TN 0.5773 0.9375 TN other states 0.7359 0.9354

TX TX 0.7614 0.8455 TX other states 0.7194 0.9433

UT UT 0.8965 0.7098 UT other states 0.8469 0.8433

VT VT 0.7668 0.8589 VT other states 0.7828 0.9140

VA VA 0.7386 0.8817 VA other states 0.7542 0.9333

WA WA 0.9186 0.5946 WA other states 0.8503 0.8684

WV WV 0.6275 0.9462 WV other states 0.7342 0.9368

WI WI 0.8921 0.5569 WI other states 0.7257 0.9254

WY WY 0.9143 0.6074 WY other states 0.7161 0.9134

DC DC 0.8838 0.7079 DC other states 0.9104 0.8340
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Chapter 4

Online Social Community City

Classification

4.1 Introduction

In the digital realm of online spaces, people’s behaviors remain closely linked to location.

Individuals tend to show greater interest in local news, are more likely to connect with

nearby friends, and have preferences for local dining options, among other location-centric

activities. Location information plays a crucial role in both economic activities and public

services, including targeted news dissemination, product and service recommendations,

and emergency event notifications.

Since the inception of online social network platforms, automatically identifying users’

geographic locations has gained popularity. A substantial body of research has explored

various methods for geolocating users. Some studies predict location based on content

analysis, including words in posts, comments, and tweets. Other research examines user

networks, such as friendships and following relationships, to predict locations based on

the tendency of users to interact with geographically close individuals.

The geolocation of online social communities, such as Facebook pages and Reddit,

which serve as digital town halls for information dissemination and user discussion, has

not been extensively explored. The task of predicting the geolocation of geographically

unlabeled Facebook public pages has been approached with varying levels of granularity.

Hong introduced the Majority Voting method to categorize Facebook public pages by
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country. In Chapter 1, we furthered this research by utilizing the GraphSAINT model in

conjunction with neighborhood state distribution (NSD) feature vectors. This approach

facilitated the more challenging task of classifying pages into specific sublocations, such

as States within the U.S.

Classifying Facebook pages by cities presents a greater challenge because a city is a

much smaller and more fragmented area than a country or state. For example, our dataset

includes 630 California cities, which complicates classification.

In this chapter, we introduced a virtual geographic structure of cities, which are city

clusters resembling counties, to enhance classification performance. This virtual geo-

graphic structure of cities is not represented in the data explicitly. The composition of

cities in each cluster results from our clustering algorithm, which is based on the con-

fusion matrix of the flat city classification. Based on the results of the clustering, we

implemented a two-stage hierarchical classification method that classifies pages by city

clusters first and then by cities within each cluster. These innovations have significantly

improved our city classification performance.

This chapter is structured as follows: Section 4.2 delves into related research on user

geographic location analysis, studies related to online community locations, and hierar-

chical classification. Section 4.3 details the data used in this study, including the ground

truth data for validation purposes. Section 4.4 outlines the baseline models for city and

county page classification, serving as benchmarks for subsequent experiments. Section 4.5

explores feature engineering with neighborhood distribution vectors to enhance perfor-

mance. Section 4.6 discusses hierarchical classification leveraging the natural taxonomy

structure of counties and cities. Section 4.7 presents our clustering method designed to

construct a city hierarchical structure to improve classification performance. The chapter

concludes with Section 4.8, providing a summary of the discussions and findings.
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4.2 Related Work

4.2.1 User Location Prediction

Twitter user location prediction has been extensively studied, with research efforts focus-

ing on both user home location prediction[46, 47, 48, 49, 50] and tweet location predic-

tion [51, 52]. Our interest primarily lies in user home location prediction, which aligns

more closely with our objectives. There are two predominant approaches to predicting

user home location. The first relies on content analysis, identifying local vernacular or

place-specific words, such as ”howdy” and ”Phillies,” which are frequently used in certain

regions[46, 47]. The second approach analyzes user networks, focusing on friendships,

interactions, or other relational ties to infer location[48, 49].

4.2.2 Online Community Location Studies

Online communities have been primarily studied in the context of user engagement[53, 54]

and information consumption[55]. Facebook, known for its emphasis on location, prior-

itizes local recommendations and advertising[56]. Several studies have explored the ge-

ographical aspects of Facebook communities. For instance, [57] analyzed the location

data of businesses’ Facebook pages to provide geolocation recommendations for new busi-

nesses. Another study[58] found that Facebook pages belonging to news providers tend to

interact more with other pages within the same geographical confines, such as continents

and countries. The study [59] detects the geolocation of Twitter user communities by

extracting and summarizing users’ location data within each community.

4.2.3 Hierachical Classification

Hierarchical classification is widely utilized in various real-world classification challenges,

as documented in the literature [60]. This method is particularly beneficial in domains

where classes or categories inherently form hierarchical structures, including bioinformat-

ics, text mining [61, 62], among others [63]. Typically, hierarchical classification involves

the initial classification of meta-classes, followed by a more detailed classification within

each meta-class. This approach leverages the advantage of model specialization in a

multi-stage classification process [64], where employing distinct models for different data

74



subsets or specific types of information can lead to superior performance compared to

using a single, flat classifier that may not capture all nuances effectively.

4.3 Data Description

4.3.1 Data Acquisition

In this chapter, we utilize the same dataset of Facebook public pages as presented in

Chapter 1. This data was obtained via the Facebook Graph API 2.8, courtesy of Facebook.

The metadata for each page includes its ID, name, description, category, country, city,

the other pages it likes, and the number of fans, among other details. Importantly, these

datasets do not contain any private user information. To collect the data, we employed

snowball sampling[11], initiating the crawl from several popular Facebook public pages

and progressively moving to the pages they like. This process naturally constructs a

directed graph of Facebook pages.

4.3.2 Data Cleaning

In Section 2.3.4, we differentiated between state-known and state-unknown pages. State-

known pages correspond to cities with unique names across the United States, while

state-unknown pages are linked to cities whose names are shared by cities in different

states. For the purposes of city classification, we focus exclusively on state-known pages.

Facebook pages from California, having the highest number of state-known pages, serve

as our dataset for city classification experiments. The California page graph comprises

324,887 pages and 2,378,881 edges, encompassing 58 counties and 630 cities.

However, we encountered cities listed as ground truth that were absent from our city

database, including some rural and small community areas within larger cities or counties.

To retain as much data as possible, we manually relabeled these pages to their nearest

recognized city. This process involved identifying these cities individually, relocating

urban communities to their larger parent cities, and rural communities to the nearest

cities in our database. As a result, we modified the city labels for 26,371 pages.
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4.4 Classification Baseline

4.4.1 GraphSAINT Model

As discussed in Chapter 1, the GraphSAINT model addresses the challenge of processing

large graphs by reducing them into smaller, sampled subgraphs through random walk

sampling. This method significantly decreases memory usage compared to the GCN

strategy, which involves loading the entire graph into GPU memory. By transforming

the original graph into manageable subgraphs, GraphSAINT enhances the model’s ability

to process large datasets, thereby improving training efficiency and speed. Evidence of

GraphSAINT’s superior performance over GraphSAGE is presented in Table 2.2. Con-

sequently, we employ two-layer GraphSAINT models for all experiments in this chapter,

utilizing the PyTorch Geometric (PyG) framework, a specialized tool for Graph Neural

Networks[34].

4.4.2 City Neighborhood Distribution Vector

To effectively classify pages by city, we require not only the GraphSAINT model to under-

stand the page graph’s topology but also node features that offer additional information

to enhance performance.

Building on the findings from Chapters 1 and 2, we have demonstrated that neighbor-

hood state distribution serves as an effective node feature for both page state classification

and link prediction. Extending this approach to city classification, we introduce the city

neighborhood distribution vector (City −ND) as a novel node feature.

The City − ND vectors represent the ratio of a page’s neighbors from each city to

its total number of neighbors. Since every page in the California page graph is con-

nected, these vectors are guaranteed to be non-zero, offering a reliable feature for ma-

chine learning-based classification. To ensure a thorough understanding of a page’s local

network, we calculate City − ND for both one-hop and two-hop distances, considering

neighbors connected through inward, outward, and undirected edges. This comprehensive,

multi-faceted strategy enriches the representation of page associations, thereby enhancing

the accuracy of city classification. The formulation of the City−ND vector is as follows:
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City −ND(Page) = [

[City − IND1(Page, Cityi), City −OND1(Page, Cityi), City − UND1(Page, Cityi),

City − IND2(Page, Cityi), City −OND2(Page, Cityi), City − UND2(Page, Cityi)] :

i ∈ 1, ..., Nnumber of cities]

where:

• City − INDk(Page, Cityi) denotes the inward city neighborhood distribution for

Cityi, calculated within a k-hop distance from the Page.

• City−ONDk(Page, Cityi) denotes the outward city neighborhood distribution for

Cityi, calculated within a k-hop distance from the Page.

• City − UNDk(Page, Cityi) denotes the undirected city neighborhood distribution

for Cityi, calculated within a k-hop distance from the Page.

Furthermore, each element of the City−ND for a page, whether City−IND, City−

OND, or City − UND, is defined as the ratio of neighbors from city i within a j-hop

distance, normalized by the total number of neighbors across all cities within the same

hop distance:

City −XNDj(Page, Cityi) =
XNeighborij∑Nnumber of cities

i=1 XNeighborij
,

i ∈ {1, ..., Nnumber of cities},

j ∈ {1, 2},

X ∈ {I, O, U},

Where:

• i denotes the ith city.
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Figure 4.1: Example of a two-hop inward neighborhood for a target page within a page
graph covering three cities

• j denotes the one-hop or two-hop distance.

• X denotes one of three edge directions, inward I, outward O, or undirected U .

• XNeighborij : the total number of neighbors from City i within j hop distance for

inward I, outward O, or undirected U edge direction.

For example, Figure 4.1 illustrates the two-hop inward neighborhood of a target page

within a page graph that includes three cities. For the target page, the one-hop inward

city neighborhood distribution, City − IND1(Target), is [0.5, 0.1, 0.4], and the two-hop

inward city neighborhood distribution, City − IND2(Target), is [0.35, 0.5, 0.15]. Given

the dataset encompasses 630 cities, the City − ND vector features 3780 dimensions for

each page. This characteristic is leveraged for our baseline experiment as it seamlessly

extends the concept of state neighborhood distribution discussed in Section 2.6.

Using the GraphSAINT model and the city neighborhood distribution vectors as node

features, we achieved a page city classification accuracy of 0.6928, as shown in Table 4.1.

This accuracy is lower than the page state classification accuracy of 0.8752, reported in

both Table 2.2 and Table 4.1.

4.4.3 County Neighborhood Distribution Vector

Page city serves as the ground truth data. In Chapter 1, we utilized the cities of state-

known pages to determine their respective states. Similarly, we can derive the page county

from the page city. Given that the city classification accuracy in Table 4.1 falls short of
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Table 4.1: Baseline accuracy for Pages in California Page Graph

Baseline Overall Accuracy

Page City Classification 0.6928

Page County Classification 0.8869

Page State Classification 0.8752

the state classification accuracy, we also undertake county classification as an additional

reference point. This effort aims to explore avenues for enhancing the performance of

page city classification.

We introduce the county neighborhood distribution (County − ND) vectors as node

features for the classification of page counties. The definition is as follows:

County−ND(Page) = [

[County − IND1(Page, Countyi), County − IND2(Page, Countyi),

County −OND1(Page, Countyi), County −OND2(Page, Countyi),

County − UND1(Page, Countyi), County − UND2(Page, Countyi)] :

i ∈ 1, ..., Nnumber of counties]

where:

• County− INDk(Page, Countyi) denotes the inward county neighborhood distribu-

tion for Countyi, calculated within a k-hop distance from the Page.

• County −ONDk(Page, Countyi) denotes the outward county neighborhood distri-

bution for Countyi, calculated within a k-hop distance from the Page.

• County − UNDk(Page, Countyi) denotes the undirected county neighborhood dis-

tribution for Countyi, calculated within a k-hop distance from the Page.

In the California page graph, page cities are associated with 58 distinct counties,

resulting in 364 dimensions in the county neighborhood distribution (County − ND)
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vectors. Employing the GraphSAINT model with county neighborhood distribution vec-

tors as node features, we achieved a county classification accuracy of 0.8869, detailed in

Table 4.1. This accuracy surpasses the city classification accuracy of 0.6928 by a large

margin. This outcome suggests potential avenues for enhancing the performance of city

classification.

4.5 City Classification Feature Engineering

4.5.1 Integrate Predicted County Information

To improve the page city classification performance, our initial strategy focused on ana-

lyzing and adjusting the expressiveness of features. Specifically, the City − ND vectors

comprise six subvectors: City − IND1, City − OND1, City − UND1, City − IND2,

City − OND2, and City − UND2. Each subvector is a 630-dimensional vector, corre-

sponding to the 630 cities. For a target page associated with city A, if city A’s distribution

in any of these subvectors is the highest and unequivocal, then there is a strong likelihood

that the page will be correctly classified to city A. For instance, as shown in Table 4.2,

within the subvector City − IND1, the highest city distribution that matches the city

label accounts for 70.42% of the pages. Among these pages, 73.99% have the matching

city label uniquely, without ties to other city labels.

Table 4.2: Percentage of highest distribution match and no tie for city label

Subvector Highest Distribution Match City Label % no Tie %

City − IND1 70.42 73.99

City −OND1 82.83 38.09

City − UND1 68.85 84.99

City − IND2 63.65 82.51

City −OND2 78.34 38.69

City − UND2 57.97 98.40

Given the superior performance of page county classification over city classification in

Table 4.1, we explored the integration of county information into the City −ND vectors
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to potentially enhance accuracy. Initially, we predicted each page’s county label through

county classification, then amplified the city distribution values within the City − ND

vectors for cities corresponding to the predicted county. This approach aimed to highlight

the cities within the predicted counties. However, this modification did not significantly

improve accuracy, suggesting that amplifying the city distribution for all cities in the

predicted county may not be the correct way to integrate the county information. We

need to explore other options.

4.6 City Classification within Counties

4.6.1 Derived County Classification

We compare the baseline city classification and baseline county classification by analyzing

the county classification accuracy derived from the baseline city classification results, as

discussed in Section 4.4.2. Consider a scenario where City − A and City − C belong to

County −A, and City −B belongs to County −B; these represent ground truth one-to-

one relationships. If Page− A, with a ground truth label of City − A and consequently

belonging to County−A, is correctly classified as City−A, it implies that Page−A is also

correctly classified as belonging to County − A. Conversely, if Page − A is misclassified

as City − C, it is incorrectly classified at the city level but correctly at the county level

(County−A). However, if Page−A is misclassified as City−B, it indicates an incorrect

classification at both the city and county levels, as it would be incorrectly assigned to

County − B. This derivation approach allows for an assessment of how the baseline city

classification performs at the county level.

The derived county classification accuracy stands at 0.8425, lower than the baseline

county classification accuracy of 0.8869 but significantly surpassing the baseline city clas-

sification accuracy of 0.6928. This observation suggests the potential benefit of first classi-

fying pages by county using a county classifier, which demonstrates superior performance

at the county level, followed by classifying pages into specific cities within those coun-

ties. This method necessitates a two-step approach: initially classifying pages by county,

then further classifying pages into cities within those counties. This process requires two
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distinct types of classifiers: a county classifier and fifty-eight city classifiers, one for each

county.

4.6.2 County Classifier

The county classifier employs a two-layer GraphSAINT model to predict the classification

of pages across 58 counties within the California page graph dataset. Utilizing county

neighborhood distribution (County−ND) vectors, as introduced in Section 4.4.3, as node

feature inputs, and the California (C.A.) Page graph as the graph input, this classifier

achieves a high prediction performance, with an accuracy of 0.8869.

4.6.3 City Classifier For Each County

All city classifiers for each county utilize a two-layer GraphSAINT model, along with city

neighborhood distribution (City − ND) vectors, as introduced in Section 4.4.2, as node

features to predict page classifications within each county. The key differences include

the graph input, which is the specific county page graph for each classifier, and the

(City − ND) vectors for each page, calculated based on the cities within the respective

county. The total number of cities within each county ranges from 1 to 60, leading

to significantly fewer dimensions in the (City − ND) vectors compared to the baseline

(City − ND) vectors for 630 cities. However, this approach requires the training and

inference process to be executed fifty-eight times.

4.6.4 City Classification Accuracy

After training two kinds of classifiers—a county classifier and city classifiers for each

county—we perform inference for all California pages in two steps:

1. Classify all California pages into different counties using the county classifier based

on the California page graph and County − ND node features. We disregard the

pages misclassified at the county level, retaining only those correctly classified for

the subsequent step.

2. For each county, we take the pages correctly classified to the respective county from

step one and classify these pages into different cities within the county using the
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city classifier specific to that county. This classification is based on the page graph

and City − ND node features specific to the respective county. We record the

pages correctly classified at the city level in this step to calculate the overall city

classification accuracy later. This step is repeated for every county.

Table 4.3: Accuracy for City Classification within Counties

Algorithms
City Level County Level

Total Pages
Accuracy Accuracy

City Classification within Counties 0.7494 0.8869 324887

Baseline City Classification 0.6928 0.8425 324887

Improvement 0.0566 0.0444 324887

The overall accuracy of city classification within all counties is 0.7494, significantly

higher than the baseline city classification accuracy of 0.6928, as shown in Table 4.3.

The improvement in city level accuracy is greater than the improvement in county level

accuracy between these two methods, as illustrated in Table 4.3. This indicates that the

higher county level accuracy achieved by the county classifier in step one not only improves

performance at the county level but also enhances city level classification performance

within each county.

4.6.5 Hierarchical Classification

Page city classification within counties essentially adopts a hierarchical classification ap-

proach, commonly employed in real-world classification problems [60][63][64][65]. By con-

trast, the baseline city classification represents a flat classification model. Here, page cities

serve as the target classes, while page counties act as meta-classes for these cities, form-

ing a natural taxonomy based on ground truth. This method, which involves classifying

pages into a meta-class followed by classification within that meta-class, exemplifies hier-

archical classification. Such an approach benefits from model specialization in multi-stage

classification[64], where training distinct models for data subsets or specific information

leads to improved performance compared to a singular, flat classifier that struggles to
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encompass all information effectively. As evidenced in Table 4.3, ensembled specialized

models demonstrate superior performance at every class level compared to a single model.

4.7 City Classification within Clusters

4.7.1 Building Hierarchical Structure

In hierarchical classification, two primary types of meta-classes are identified: the first

type comprises pre-existing taxonomies related to the target classes, such as counties for

cities in the context of city classification within counties. The second type involves meta-

classes that are newly created based on the similarity among target classes. A common

methodology entails initially conducting a flat classification of the target classes, followed

by the generation of a confusion matrix for this classification. The confusion matrix

serves to reveal class similarities, which are then used to construct meta-classes. Subse-

quently, based on the hierarchical structure of these meta-classes, hierarchical classifiers

are developed to execute the hierarchical classification process.

The critical step in forming meta-classes involves determining the optimal number of

these groups by analyzing the classification confusion matrix. Attempting to explore all

possible clustering configurations is computationally equivalent to identifying all possible

partitions of n samples. The complexity of this task is quantified by Bell numbers, which

increase rapidly in a manner known as combinatorial explosion. For example, the number

of possible partitions for just 10 items is 115,975. Considering the challenge involves

630 city classes, the task of assessing all potential clustering options for these classes is

practically unfeasible due to the exponential growth in the number of possible partitions.

4.7.2 Affinity Clustering

A common strategy for constructing meta-classes involves adopting a systematic approach

that leverages clustering algorithms. These algorithms cluster classes based on their sim-

ilarity, as indicated within the confusion matrix. This method is documented in various

studies, including those focused on the use of confusion matrices for hierarchical classifi-

cation construction and others that explore semantic and probability-based approaches to

understanding class similarities[66][67][68][69]. In this research, given the unknown opti-
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mal number of meta-classes, we reference the affinity clustering algorithm, which organizes

classes into a suitable number of meta-classes based on their similarity distances.

Affinity clustering is particularly beneficial in scenarios where the number of clusters

is not predetermined. By adjusting its configuration, we managed to group the city

classes into two distinct sets of city clusters: one comprising 3 city clusters and another

encompassing 75 city clusters. Subsequent hierarchical classifications were conducted

based on these two varying hierarchical structures to facilitate a comparative analysis.

Each hierarchical classification setup requires a dedicated city cluster classifier along with

multiple city classifiers. Table 4.4 illustrates how the adoption of 75 city-cluster and 3

city-cluster hierarchical structures enhances the accuracy of city classification.

Table 4.4: Accuracy for Hierarchical Classification

Hierarchical Structure
City Level Cluster Level

Accuracy Accuracy

Baseline City Classification (1 Cluster) 0.6928 1

75 City Clusters (Affinity Clustering) 0.7512 0.8573

3 City Clusters (Affinity Clustering) 0.7744 0.9375

17 City Clusters (Our Clustering Method) 0.8014 0.9778

4.7.3 Our Clustering Method

4.7.3.1 Intuition of Confusion Matrix

The confusion matrix of the flat page city classification reveals the extent to which pages

from each city are incorrectly labeled as belonging to other cities. A high number of

misclassified pages between city A and city B suggests that the flat city classifier struggles

to distinguish pages between these two cities, indicating a certain level of similarity or

closeness between them in the context of 630 cities. This challenge arises because the

flat city classifier must differentiate among pages from all 630 cities, making it difficult

to capture the subtle distinctions between any two specific cities, such as city A and city

B. For instance, as depicted in Figure 4.2, if cities A and B have a high misclassification
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Figure 4.2: City Cluster Example

rate, and cities C, D, and E also share high misclassification rates among themselves, it

implies that cities A and B are close to each other, and cities C, D, and E form another

close group. We could interpret these findings as indicating two clusters, with the flat

classifier being more capable of distinguishing between these two clusters, since cities A

and B have lower misclassification rates with cities C, D, and E.

4.7.3.2 City Clustering Based on Misclassification Rates

Based on an intuitive analysis of the confusion matrix, we propose an algorithm for

clustering cities according to their misclassification rates. For each city, we sort the

misclassification rates from its respective row in the confusion matrix (normalized by row)

in descending order. By connecting a city to its neighbor with the highest misclassification

rate via an edge, we cluster these two cities together in the city graph. Upon adding edges

for all cities, the resulting city clusters are identified as disconnected components within
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Algorithm 1 City Clustering Based on Misclassification Rates

Require: desc ordered rates, max edges, thresholds

Ensure: Edge list E with tuples (city, neighbor, rate)

1: E ← [] ▷ Initialize edge list

2: for city ← 0 to number of cities− 1 do

3: edges added← 0

4: for j ← 0 to number of cities− 1 do

5: (rate, neighbor)← desc ordered rates[city][j]

6: if neighbor ̸= city and thresholds[edges added] ≤ rate then

7: E.append((city, neighbor, rate))

8: edges added← edges added+ 1

9: end if

10: if edges added = max edges then

11: break

12: end if

13: end for

14: end for

the graph.

The configuration of clusters can be adjusted by two parameters: the number of edges

to add based on the highest misclassification rates for each city, and the misclassifica-

tion rate threshold for including an edge. Increasing the number of edges enhances the

connectivity of the city graph and decreases the number of clusters. Conversely, raising

the threshold for edge inclusion filters out connections with lower misclassification rates,

leading to reduced connectivity and an increased number of city clusters. The detailed

methodology is outlined in Algorithm 1.

By setting the number of edges to 1 and the threshold rate to 0, we exclusively link

each city to its most frequently misclassified neighboring city, resulting in the formation of

17 city clusters. Subsequent hierarchical classification leverages this cluster configuration.

Altering the threshold rate to 0.05 for the edge leads to an increased number of city
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clusters. Introducing a second edge with a threshold rate of 0.5 slightly consolidates the

clusters.

4.7.4 Cluster Neighborhood Distribution Vector

Based on the city cluster configurations, we calculate node features for cluster classifi-

cation, introducing the cluster neighborhood distribution (Cluster − ND) vector as the

cluster-level node feature. The definition is as follows:

Cluster−ND(Page) = [

[Cluster − IND1(Page, Clusteri), Cluster − IND2(Page, Clusteri),

Cluster −OND1(Page, Clusteri), Cluster −OND2(Page, Clusteri),

Cluster − UND1(Page, Clusteri), Cluster − UND2(Page, Clusteri)] :

i ∈ 1, ..., Nnumber of clusters]

where:

• Cluster − INDk(Page, Clusteri) denotes the inward cluster neighborhood distri-

bution for Clusteri, calculated within a k-hop distance from the Page.

• Cluster−ONDk(Page, Clusteri) denotes the outward cluster neighborhood distri-

bution for Clusteri, calculated within a k-hop distance from the Page.

• Cluster−UNDk(Page, Clusteri) denotes the undirected cluster neighborhood dis-

tribution for Clusteri, calculated within a k-hop distance from the Page.

In the California page graph, with pages associated with 17 city clusters, the Cluster−

ND vectors result in 102 dimensions. Using the GraphSAINT model with Cluster−ND

vectors as node features, we achieved a cluster classification accuracy of 0.9778, as detailed

in Table 4.4.

4.7.5 City Classifier within Each Cluster

City classifiers for each cluster utilize a two-layer GraphSAINT model, along with city

neighborhood distribution (City − ND) vectors, as introduced in Section 4.4.2, as node
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features to predict page classifications within each county. The key differences include

the graph input, which is the page graph for each cluster, and the (City − ND) vectors

for each page, calculated based on the cities within the respective cluster.

4.7.6 City Classification Accuracy

After training two kinds of classifiers—a cluster classifier and city classifiers for each

cluster—we perform inference for all California pages in two steps:

1. Classify all California pages into different clusters using the cluster classifier based

on the California page graph and Cluster − ND node features. We disregard the

pages misclassified at the cluster level, retaining only those correctly classified for

the subsequent step.

2. For each cluster, we take the pages correctly classified to the respective cluster from

step one and classify these pages into different cities within the cluster using the

city classifier specific to that cluster. This classification is based on the page graph

and City − ND node features specific to the respective cluster. We record the

pages correctly classified at the city level in this step to calculate the overall city

classification accuracy later. This step is repeated for every cluster.

The overall accuracy of city classification within all clusters reaches 0.8014, which

is significantly higher than the baseline city classification accuracy of 0.6928 (with no

hierarchy, implying a single city cluster) and the accuracies achieved using other hierar-

chical structures, as depicted in Table 4.4. The accuracy for cluster classification stands

at 0.9778. This performance underscores the effectiveness of our clustering algorithm in

grouping similar cities within our dataset. Such grouping facilitates the task of the cluster

classifier in differentiating pages across clusters, thereby contributing to the improvement

in overall city classification accuracy.

This method classifies pages into a meta-class followed by classification within each

meta-class. This approach benefits from model specialization in multi-stage or hierarchical

classification [70, 71, 64], where training distinct models for data subsets or specific infor-

mation leads to improved performance compared to a singular, flat classifier that struggles
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to encompass all information effectively. The performance improvement in this two-step

hierarchical classification primarily results from reducing the classification complexity for

each classifier involved. Handling 630 classes is overwhelming for a single machine learn-

ing classifier, as it can easily confuse similar classes. In contrast, dividing these into 17

clusters makes the task more manageable, as each cluster contains a significantly smaller

number of classes. These clusters are distinctly different from each other and can be easily

distinguished by a classifier, as they have been clustered based on the confusion matrix of

the 630 cities. Moreover, each cluster does not contain too many cities, facilitating better

performance by the classifiers. In the second step, the city classifiers focus on learning the

nuanced differences between similar cities within the same cluster, free from interference

from cities in other clusters.

4.8 Conclusion

In this chapter, we looked into the task of Facebook public page classification by cities

within California. We introduced city, county, and cluster neighborhood distribution

vectors as distinctive features for page classifications. With an initial city classification

accuracy of 0.6928, the complexity of distinguishing among 630 cities presents a significant

challenge. We introduced a virtual geographic city structure resembling counties to im-

prove the classification performance. We developed a clustering algorithm that leverages

the confusion matrix from the flat city classification to construct a virtual geographic city

structure. Based on this virtual structure, we implemented a two-stage hierarchical clas-

sification method, first classifying pages by virtual city clusters and then within clusters

by city. This implementation of a cluster-city hierarchical classification achieves a notable

improvement in city classification accuracy to 0.8014.
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Chapter 5

Concluding Remarks

5.1 Summary

In this dissertation, we focus on the geographic characterization of online social commu-

nities within social network platforms. Our objective is to predict missing geographic

locations at various levels of granularity, including state, county, and city levels, and to

demonstrate the significant impact of geo-location on the formation of links and neigh-

borhoods within online community graphs. We outline the primary contributions of our

research in the sections below, highlighting our achievements in enhancing the under-

standing and predictive capabilities related to the geographic dimensions of online social

communities.

5.1.1 Online Social Community Sub-Location Classification

In Chapter 2, we addressed the challenge of classifying subdivision locations for Facebook

public pages, focusing on pages within the United States. This section critically evaluated

the limitations of previous approaches to sub-location classification and introduced a new

method using the GraphSAINT model, which leverages neighborhood state distribution

vectors for more accurate classification. Our method demonstrated significant improve-

ment in classification accuracy over previous techniques when applied to a dataset of U.S.

Facebook public pages.

Additionally, our model was used to differentiate between intrastate and interstate

Facebook public pages, revealing that intrastate pages typically receive ”likes” from within
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the same state, while interstate pages attract likes from pages across different states.

Through an analysis of the state classification confusion matrix, examination of interstate

page percentages by state, and exploration of interstate pages across state borders, we

demonstrated the significant influence of geographic location on the formation of online

community networks and the precision of sub-location classification for Facebook public

pages.

5.1.2 Online Social Community Neighborhood Formation

In Chapter 3, our investigation targeted key factors contributing to link formation and

neighborhood structuring within the Facebook page graph. We examined an array of

features—graph-based and content-based—potentially influencing link formation. We

then introduced our method, leveraging node similarity and the topological capabilities

of Graph Neural Networks (GNN) for link prediction.

Through detailed experiments with both individual and combined features, we identi-

fied the page state label as the most effective single feature for predicting link formation.

Additionally, enhancing the page state label with page node degree and page city popula-

tion features improved link prediction accuracy. Our findings also highlighted a relation-

ship between the true positive rate for intrastate positive edges and the interstate page

percentage, introduced in Chapter 1. This correlation further illuminates the complex

dynamics of link formation within the page graph.

5.1.3 Online Social Community City Classification

In Chapter 4, we tackled city classification for Facebook public pages in California, in-

troducing innovative features such as city, county, and cluster neighborhood distribution

vectors for classification. The task posed a considerable challenge, given the necessity

to discriminate among 630 cities with an initial accuracy of only 0.6928. By implement-

ing a two-stage hierarchical classification method—initially classifying pages by county,

then further classifying within each county by city—we managed to improve accuracy to

0.7494.

Building on this method, we devised a clustering algorithm based on the confusion
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matrix from city classification, enabling the construction of a hierarchical city structure.

This approach facilitates a more nuanced cluster-city hierarchical classification, markedly

enhancing city classification accuracy from the baseline of 0.6928 to 0.8014.

5.2 Future Works

5.2.1 Confusion Matrix Clustering and Hierarchical Classifica-

tion Accuracy

In Chapter 4, we explored a novel clustering algorithm applied to the confusion matrix

from flat city classification, aiming to construct a hierarchical city structure that enhances

the accuracy of hierarchical city classification. Additionally, we compared this method

with affinity clustering. However, exploring all possible clustering algorithms on the

confusion matrix was impractical. This limitation arises because each clustering approach

requires training a cluster classifier and multiple city classifiers for city clusters, a process

that could extend over one or two days given our large dataset. The possible number of

city clustering combinations also grows exponentially.

Each city clustering modifies the flat city confusion matrix into a matrix representing

city clusters, alongside multiple city-specific confusion matrices within those clusters. We

sought to understand how these transformed confusion matrices correlate with the accu-

racy of hierarchical classification for each city clustering. Identifying a relationship that

allows these transformed confusion matrices to serve as indicators of final hierarchical

classification accuracy—without undergoing the actual classification process—could sig-

nificantly conserve computational resources by guiding our efforts based on the insights

gained from the transformed confusion matrices.

5.2.2 Applications of Geolocation Characterized Networks

In this dissertation, we utilize location information to accurately classify Facebook public

pages by city and state and to predict links between pages. The high accuracy achieved

underscores the effectiveness of location information in characterizing online community

networks. Based on the geographic characteristics identified, we can extend our research

to other areas related to geolocation.
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One such area is the analysis of the political spectrum within online community net-

works. The political landscape of each state, typically categorized as blue, red, or purple,

has remained relatively stable over the past decades. By examining the content of these

pages, we can explore how political pages across different parts of the political spectrum

interact with one another.

Another area of interest is state economics. Economic powerhouses such as Califor-

nia, Texas, and New York likely exhibit more independent economic activities and exert

influence on other states rather than being influenced by them. For instance, Nevada ex-

periences significant influence from California. This presents an opportunity to scrutinize

the economic dynamics for national and regional economic centers, as identified in Section

2.7, and their interactions with peripheral states, providing insights into the inter-state

economic landscape and influence patterns.
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