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Bond Pricing with Default Risk*

Jests Saia-Requejo
Banco Bilbao Vizcaya

Pedro Santa-Claral
University of California, Los Angeles

March 23, 1999

We offer a new model for pricing bonds subject to default risk. The event of default is modelled
as the first time that a state variable that captures the solvency of the issuer goes below a certain
level. The payoff to the bond in case of default is a constant fraction of the value of a security
with the same promised payoffs but without the risk of default. We show that our model is very
tractable under different models of interest rate risk and of the interaction between default risk
and interest rate risk, with closed-form solutions for corporate bond prices in special cases. The
model is seen to produce term structures of default yield spreads and forward spreads with more
reasonable properties than other models that have recently been proposed. We illustrate the use of
our model by estimating its parameters and backing up both the default writedown and the state
variable that governs default risk from a panel data set of bond prices issued by RJR Nabisco.
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1 Introduction

We can write the time ¢ value of a (corporate) default risky zero coupon bond with maturity T as

T

C(t,T) = P(t, T) — B[W(T) 1 pogye Jo 7000 (1)

where P(t,T) is the value of a (Treasury) default riskless zero coupon bond with the same maturity;
W(T) is the writedown in case of default (assumed to be incurred at the maturity of the bond);
1¢p<7} is the indicator function of default happening before the maturity of the bond; r is the
default riskless instantaneous interest rate; and the expectation is taken with respect to a risk
adjusted probability measure.!

There are thus three elements to specify when modeling risky bonds: The maturity writedown in
case of default, W(T); the event of default, {D < T'}; and the dynamics of the default riskless spot
rate, r, and the corresponding bond prices, P(t,T).

Two broad approaches have been taken to modeling W(7T"). The traditional approach, that started
with Black and Scholes (1973) and Merton (1974), assumes strict priority rules are enforced, and
distributes the value of the firm’s assets among its claimants accordingly. In these models, W (T) is
the difference between the value of the assets remaining after paying claimants with higher priority
and the value of the bond. Although conceptually appealing, there are two problems with this
approach: it is only tractable to price simple securities issued by firms that have simple capital
structures; and, it does not encompass violations of strict priority that are often observed in practice.

Instead, we take W(T) to be an exogenously given constant, that needs to be estimated.? This
approach has the advantage of allowing the valuation of a security independently of the other
securities issued by the firm, and therefore, makes it possible to use study complex liabilities issued
by firms with complicated capital structures. In particular, a corporate coupon bond can be valued
as a weighted sum of the values of its coupons. The drawback of this approach is, of course, that
the bankruptcy game is left unspecified.

As regards the event that triggers default, we can again identify two types of models.® The first
type of model is stylised, defining the occurrence of default as the first jump of some Poisson
process. An example of such “statistical” models is Duffie and Singleton (1995), who show that
the pricing formulas developed for certain dynamics of default riskless interest rates carry over to
suitably defined default risky interest rates.* This makes this approach obviously attractive for
pricing derivatives and doing empirical work.

The existence of which in the frictionless markets we assume (with no taxes, transaction costs, informational
asymmetries or agency problems) is roughly equivalent to the inexistence of arbitrage opportunities. We do not
assume this probability measure to be unique.

2This approach has also recently been taken by Jarrow, Lando and Turnbull (1997) and Longstaff and Schwartz
(1995) and has been extended by Duffie and Singleton (1995) to make W (T') exogenously dependent on any state
variables, including the value of the claim to be priced just prior to default.

3A third class of models, more deeply rooted in corporate finance, endogeneizes the default decision by making it
a choice variable of the shareholders. This category includes the papers of Anderson and Sundaresan (1992), Leland
and Toft (1996), and Mella-Barral and Perraudin (1996). Although interesting conceptually, this approach places
strong restrictions on the capital structure of the firm issuing the securities to be valued.

4Jarrow and Turnbull (1995), Madan and Unal (1993) and Lando(1994) have also produced models in this spirit.



There are however some drawbacks to this class of models. Since there is no clear connection
between the pricing formulas and the state of the firm, the interpretation of default is rather
abstract. More importantly, the simple parametrizations that have been used in empirical work
imply that the probability of default in the future, conditional on no prior default, does not go to
zero with the length of the time horizon but remains in general positive. This means that there is
no resolution of the uncertainty about the event of default, which is contrary to the intuition that
if a firm survives for a long time, it has a lower probability of defaulting after that. We will show
that our model does not have this feature.

Our model is “structural”, in that we model the assets and the liabilities of the firm. We start from
a process for the value of the firm’s assets, V', and define the occurence of default by the first time
this value crosses some threshold, K, representing insolvency. Examples of this approach start with
Black and Scholes (1973) and Merton (1974) and continue with Black and Cox (1976) and, more
recently, Longstaff and Schwartz (1995).

Black and Scholes (1973) and Merton (1974) posit a single point default boundary, such that
default can only happen at maturity, with K being the face value of the debt. Black and Cox
(1976) and Longstaff and Schwartz (1995) allow for a continuous, deterministic boundary, so that
default may occur at any point in time rather than only at maturity. This captures the idea that,
in reality, default occurs whenever the firm is unable to meet any payment on any of its debt
issues outstanding, or when it fails to meet some criterion stipulated in the covenants of these debt
contracts, which can happen at any time.

There is however a conceptual problem with the way the continuous default boundary has been
defined in the latter models. The big advantage of “structural” models as compared to “statistical”
models lies in giving some economic meaning to the event of default. Now, in order to have economic
meaning, we want default to be triggered by the value of assets falling below the level of liabilities,
since, in a frictionless world, default will only happen when the value of liquidating the assets of
the firm is not sufficient to cover the value of the liablities. The firm will only be unable to face a
due payment by raising new funds if its net worth is not positive.

From a technical point of view, V' and K play no direct role in the analysis, what matters is the
risk adjusted probability of the ratio of V' by K, call it the solvency ratio, hitting one. Now, if V'
and K are assets that some agent is willing to hold, their risk adjusted drift will be equal to the
instantaneous interest rate.® Therefore, from Ito’s lemma, the drift of the log of the solvency ratio,
X, will not depend on the instantaneous interest rate.

Unfortunately, Black and Cox (1976) and Longstaff and Schwartz (1995) make the drift of X
dependent on r, which does not allow the event of default in these models to be interpreted as
being caused by insolvency.” This is not the case of our model.

We must be careful here. We do not have a full model of all the securities issued by the firm,
including the covenants that trigger default, nor do we necessarily presume to observe the value

SMinus some payout rate.

6Unless, of course, r shows up in the diffusion coefficients of V or K, which is not the premise of any of these
models.

"Unless we assume that the liabilities have a payout rate equal to the instantaneous interest rate. See comments
below.



of the assets and the value of all the liabilities. We just argue that, in the assumed world with
no frictions, the only economically meaningful definition of default is the event of the value of the
assets falling bellow the value of the liabilities.® It is the fact that these assets are held by investors
that puts the (economic) constraint on the risk adjusted drift of X.

The final element in a model of risky bonds is the dynamics of default riskless interest rates. Our
model is tractable for a wide variety of models of default riskless bond prices. In the special case
of independence between interest rate and default risks, we obtain closed form solutions. In other
cases, we provide tractable numerical solutions of bond prices.

Our model can be used for pricing and hedging default risky bonds and their derivatives. It may
also have an application in rating, since we can extract both the implied (risk adjusted) probability
of default and the implied writedown in case of default from observed bond prices.

2 Bond Pricing

We assume trading occurs continuously, in perfect and frictionless financial markets with no taxes,
transaction costs or informational asymmetries. We posit the existence of a risk adjusted probability
measure that prices all assets in this economy as an expectation of their payoffs discounted at the
instantaneous interest rate. All processes bellow are defined under this risk adjusted probability
measure.

2.1 Default Risk

We consider a firm whose capital structure may include a variety of securities with different matu-
rities, coupons, or covenants in general. The process followed by the value of the assets of this firm
is assumed to be independent of the financing decisions taken by the firm. We further assume that
the value of the assets of this firm, denoted V/, follows

dv(t)

—= = |r(t) — &|dt + g,dZ,(t 2
where ¢, is a positive constant and Z,, a standard Brownian motion under the risk adjusted prob-
ability measure Q. We allow for a constant payout rate to the investors of the firm, d,.

The instantaneous interest rate, r, follows a process with uncertainty driven by a Brownian motion
Z,(t). We leave the parametrization of this diffusion for now unspecified. We just assume Z, to
be correlated with Z,(t) with correlation coefficient p,.,.

We assume that, because of contractual provisions, default is triggered simultaneously for all the
debt issues'® the first time that the value of the assets of the firm reaches a critical level, defined
by a process K. We assume that this default barrier corresponds to the value of the liabilities of

81 could be the value of only part of the assets of the firm, namely those that can be readily liquidated.
We will assume Z, (t) to be one-dimensional, althought the extension to higher dimensions is straightforward.
107 his is in accordance with cross default provisions that are widely used in practice.



the firm. The risk adjusted dynamics of K is then modelled as a joint diffusion with V and r

dK (t

J = [r(t) — Ox|dt + 0%rdZ, (1) + O3 dZ,(t)

K(t)
where o, and oy, are positive constants and §;, is a constant payout rate to the debtholders of the
firm. Being related to the debt of the firm, K has uncertainty related to the interest rates and to
the value of the assets of the firm. The default boundary that we propose is therefore stochastic.

It is beyond the scope of this paper to derive a corporate finance model which endogenizes the
contractual provisions defining default. Both the existence of default and the process followed by
the default boundary are taken as given. However, we can provide an interpretation of the modeling
approach to default adopted here.

In practice, default is triggered either by the value of the assets of the firm falling below the value of
the liabilities (stock-based insolvency) or by the firm’s failure to make a cash payment (flow-based
insolvency). However, flow-based default only reflects the firm’s incapability to obtain financing
for its due payments. Facing a due payment, the firm can use its own available cash flow or funds
raised by issuing new securities. Therefore, only the incapability of the firm to raise new funds
will ultimately trigger flow-based default. Certainly, in a frictionless world, flow-based insolvency
can only be due to stock-based insolvency, since the firm will only be unable to raise new funds
when the total market value of its assets in place and investment opportunities is smaller than the

current market value of the outstanding contractual obligations'!.

To be consistent with stock-based default, we must be able to define the event that triggers default
as the first time the value of some assets, V/, hits the value of some liabilities, K. Now, depending
on the legal framework and the covenants negotiated in the debt issues, V' can be the value of the
total assets of the firm or their liquidation value, and K can be the (market) value of the total debt,
or only of the senior debt, or can even be the present value, discounting at the default riskless rate,
of the face value of the liabilities. In any of these cases, V and K are values of assets. Hence, under
the risk adjusted probability measure, their drift should be equal to r, minus the payout rate.

We assume that, in the event of default at or prior to maturity, the bond pays a fixed value
1 — W per unit of face value at maturity. In reality, the payoff to a particular security in case of
default depends on its degree of subordination, its collateral, and, more generally, on the nature
of the bargaining game among the different corporate claimants to be played when default occurs.
Positing a constant writedown has the advantage of being general in the sense that the outcome
of financial distress does not have to be specified, that is, the firm can be liquidated or some form
of restructuring can occur. Also, no explicit assumption has to be made about the priority of the
security under study, and the security can be valued independently of the other securities issued
by the firm. Thus, for example, the value a coupon bond will be equal to the value of a portfolio of
zero-coupon bonds with the same promised payments. Additionally, it should be noted that, prior
to default, there is very little information about the magnitude of the writedown.

"However, due to a number of reasons like asymmetric information problems, agency and legal conflicts, bankruptcy
costs and others, this comparison of market values may not be the only criterion for investors to decide whether or not
to invest new funds in the firm. Therefore, in the presence of market frictions stock-based insolvency and flow-based
insolvency may be different.



The risky payoff of a corporate zero-coupon bond with maturity 7' is equivalent to the certain
maturity payoff
C(T7 T) =1- I/Vl{ng} (3)

where 7 is the first passage time of the value-of-the-firm process through the default boundary, so
that 1«7 is an indicator function which takes the value one if the process of the value of the
assets hits the default boundary during the life of the bond, and zero otherwise.

The first passage time is defined formally by
T=inf{u>t,V(u) = K(u)} =inf {u >t, X(u) =log V(u) — log K(u) = 0} (4)

We thus see that V' and K do not matter directly to the valuation of default risky bonds but only
through their ratio, which is a measure of the solvency of the firm. From Ito’s lemma, the risk
adjusted dynamics of X are given by

dX(t) = pdt + 0dZ,(t) (5)

where the constant drift and diffusion coefficients are given by

1
p= 0 — &y — 9 (‘712) — (07 + Of + 2/””0"”0”)) ©)

and

0% = (oy — Ukv)2 + U]%r =20 (0y = Ok )Okyr (7)

We define Z, as a new Brownian motion
074(8) = (04 — Oky) Zo(8) — Okr Zr(3) (8)
which is correlated with Z,, with correlation coefficient

prv(av - O-kv) — Okr
- ’ ()

p

Note that, for zero payout rates,'? when the volatility of the assets is higher than the volatility of
the debt, the drift is negative. In this case, the (risk adjusted) probability of default goes to 1 as
T goes to infinity.

In Longstaff and Schwartz (1995), the drift of the process that corresponds to our X is equal to the
spot rate, r, minus a constant. We then see that their model can be made compatible with ours
if the difference in the payout rates of the assets and the liabilities is equal to the spot rate. This
assumption seems unduly restrictive and with no clear economic meaning.

12Which mean that any payments that are made to the debtholder of the company are financed by issuing new
debt and payments to the equity holders are finance by new equity issues.



2.2 Pricing Bonds and Derivatives

We are now ready to price default risky bonds. Given our definition of the event of default and a
constant writedown, we can rewrite (1) as

T
C(t,T) = Pt,T)—WE |1yome Jr 1@
= P(L.T) = WP(t.T)E; [Lirer)]
= P(t,T)-WP(T)Q] ({r <T}) (10)
where Q] ({7 < T}) is the forward, risk adjusted, probability of default before time T. The forward
risk adjusted probability is the measure under which asset prices normalized by the price of the
T-maturity default riskless bond are martingales.'® Note that the writedown suffered at maturity,

W(T), can be random in our model, as long as it is uncorrelated with both the solvency ratio of
the firm and interest rates. In this case, we would replace W in (10) with E;[W(T)].

Under this forward risk adjusted probability measure, the dynamics of X are given by
dX(t) = [u— pos(t,T)|dt + odW,(t) (11)

where s(t,T') is the (percent) volatility of the T-maturity Treasury bond price and W, is a standard
Brownian motion.*

The added term in the drift pos(t,T) serves to correct for interest rate risk and its correlation with
default risk, p. If this correlation between the two sources of risk is positive, which corresponds
to p < 0, there is an increase in the drift of X, making default less likely under the forward risk
adjusted probability measure."® The reverse happens when p is positive.

To obtain more intuition, we can yet again rewrite (1) as

C(t,T) = P(t,T) — WP(t, T)Qi({r < T}) — WCovi[1(rery, €~ S} rtwduy (12)

13See Duffie (1996). We will now refer to the risk adjusted probability measure with discounting at the instantaneous
interest rate as the “spot risk adjusted probability measure” to distinguish it from the forward measure.

Under the spot risk adjusted probbility measure, we can decompose Z, into pZ, and /1 — p2Z,, with Z, a
standard Brownian motion orthogonal to Z,. Now define a new two-dimensional process W with dynamics

Wi(t) - Zr(t) s(t,T)
d(%(t))‘d(zo(w)‘( 0 )‘“

The two Brownian motions W3 and Ws are still orthogonal and therefore constitute a two-dimensional standard
Brownian motion under the forward risk adjusted probability measure. The dynamics of X can be written with
respect to W as

dX(t) = (u+ pos(t,T))dt + podWi(t) + /1 — p2odWa(t)

To simplify, we can define a standard Brownian motion W,

Wa(t) = pWi(t) + /1 — p2Wa(t)

and (11) follows.
1511 this case, even if @ < 0, the probabiliy of default does not have to go to 1 as T goes to infinity.



where we use the definition of covariance. So, we see that, in general, the hitting time probabilities
are different under the forward and spot risk adjusted measures. Only when the risk of default is
independent of interest rates are the two equal. If the covariance is positive, the writedown will be
incurred when interest rates are high, so that its expected value is low and corporate bond prices
are higher.

The forward risk adjusted probability of default Q7 ({7 < T}) can in general be computed by
simulation. It is only necessary to generate a large number of sample paths of X,'6 from date t to
date T', and compute the proportion of these that hit zero. We will see in the next section that in
some special cases it is possible to obtain closed form solutions for the above probability and, in
other cases, make use of efficient numeric approximations.

Finally, we note that coupon bonds can be valued simply as a portfolio of zero coupon bonds, with
weights equal to the promised cashflows. Pricing risky bond derivatives is straightforward. The
value at time ¢ of a future random payoff ®(7") at date T is given by

o(t) = P(t, T)E] [&(T)] (13)

3 Examples

3.1 Independent Risks

When the event of default is independent of the instantaneous default riskless interest rate'”, p = 0,

we have, from (12),
C(t,T)=Pt,T)—WP(Et,T)Q:({r <T}) (14)

and we can obtain a closed-form solution for corporate bond prices since Q:({7 < T}) is just the
probability that an arithmetic Brownian motion, X, will hit zero between times ¢ and T, starting
from an initial value X (t) > 0.

From Karatzas and Shreve (1991), the first passage time density of X evaluated at 7 > t is

¢(7_) . X(t) eXp{—[X(t) _N(T_t)]2} (15)

o (2m)V2(r —t)3/2 202(1 —t)
so that
Q{r<TYH =1-N (X(ti_;(_Tt_ t)> + et X (_X(? __T“_(j; — t)> (16)

where A denotes the standard normal cumulative distribution function.

We note that this model gives closed form corporate bond prices when coupled with any dynamic
model of the term structure that produces closed form Treasury bond prices, such as Vasicek (1977)

16 he process X may be a diffusion jointly with other state variables, depending on the form of the bond price
volatility s(¢,T). In this case, it is necessary to generate the joint sample paths.
" That is, default risk is idiosyncratic or it is only related to systematic risks that are independent of interest rates.



or Cox, Ingersoll and Ross (1985), in single factor or multifactor versions. The solvency ratio X acts
as a single additional state variable that, if assumed not to be directly observable, can be extracted
from bond prices. Note that, given bond prices and the current level of X, only one parameter
needs to be estimated, o. This model is therefore as tractable as the usual implementations of
Duffie and Singleton (1995),'® who also impose independence between the factors to obtain closed
form solutions for corporate bond prices.

The difference between our formulation and Longstaff and Schwartz (1995) is readily apparent
in the case of independent risks. In their model the drift of X under the forward risk adjusted
probability measure is r + y, instead of simply w in our model. Thus, under their formulation,
when interest rates go up, so does the drift of X, making the (forward) risk adjusted probability of
default go down. This effect can be so important as to make the price of the risky bond increasing
in r, implying negative duration. Note that this effect has nothing to do with a price adjustment
for the covariation between the two sources of risk. It is only due to their modeling of the default
boundary as a deterministic process rather than as an asset value.

3.2 Deterministic Bond Volatilities

Also of interest is the general case of deterministic (default riskless) bond volatilities.'® Prominent
examples in this category are given by Vasicek (1977) and several models in the Heath, Jarrow and
Morton (1992) framework.

We assume that the percent volatility of bond prices, s(¢,T), is a deterministic function of time. In
this case, we only need to compute the first hitting time probability of X (that starts at X (¢) > 0)
through zero in the interval [t,T], where the dynamics of X are give by (11). This problem can be
restated as the computation of the first hitting time probability of a standard Brownian motion,
through a boundary that is a deterministic function of time. This boundary is given, for ¥ in the

interval [¢t,T], by
B(y) = X +py=t) p/ty s(u, T)du (17)

g

This probability can be computed analytically only for the case of constant bond volatility, which
does not make much sense. In general, we can use the results from Durbin (1992), who shows that
the above first hitting time probability can be well approximated by

T
A<t ~ [ (Z2-Fw)ewd
' /t” (@ - BI(”)) (M - B'(u)) o(u,v)dvdu (18)

t v U —v

B(u)

where B’(u) denotes the slope of the boundary at u; p(u) is the density of ot the Brownian motion
at time u, evaluated at B(u); and ¢(u) is the joint density of the Brownian motion at times u and

18 As multifactor term structure models, of the Cox, Ingersoll and Ross (1985) type, with one factor to model the
term structure of default yield spreads.
9Coupled with any model for the default boundary, rather than the very special case of the previous subsection.



v, evaluated at B(u) and B(v). It is well known that

—(B(u) — 2
w(u)z@w(u—t))—wexp{ S e } (19)

and

_ _ 2
o(u,0) = () 2 (v — )2 exp { e } (20)
The first hitting time probability can thus be easily computed numerically for most cases where
the volatility of bond prices is tractable.

The numerical approximation for the first passage time probability from Durbin (1992) can be
used with any model in the Heath, Jarrow and Morton (1992) framework, as long as the volatility
function is a deterministic function of time. The simplest example in this class is the well known

Ho and Lee (1986) model, for which s(t,T) = s(T — t) with constant s.

3.3 Other Term Structure Models

In the more general case where Treasury bond prices depend on a set of state variables, corporate
bond prices can still be valued by simulation. Only now the trajectories of X have to be simulated
jointly with these state variables.

As a simple example, consider the one-factor Cox, Ingersoll and Ross (1995) model.?? In this
model, the state variable is the instantaneous interest rate, which is assumed to follow a square
root process

dr(t) = a(b—r(t))dt + s\/r(t)dZ,(t) (21)
Bonds can be priced in closed form and have volatilities equal to s(t,T) = sB(t,T)\/r(t) where

2 (eV(T’t) - 1)

B, 1) = (v +a) (T — 1) + 2y

(22)

and v = va? + 2s°.

In order to price corporate bonds, or credit risky derivatives, it is necessary to simulate jointly the
following two processes

dr(t) = |a(b—r(t))+ "B T)r(t)] dt +s\/r()dWi (1)
dX(t) = {u + posBl(t, T)\/@} dt + podWi(t) + \/1 — p2odWy(t) (23)

where the two Brownian motions are orthogonal.

20The extension to the multi-factor case is straightforward.



4 Yield Spreads and Forward Spreads

We can obtain a better understanding of our model by looking at default yield spreads and forward
spreads. We can write corporate yields as

ye(t,T) = ——IOgTC Et’tT)
 legpt,1) log(1-WQI({r <T})
T T—-t T—t
T
~ (6T + W ({r <T}) (24)

T—1
where the subscripts ¢ and p refer to corporate and Treasury bonds.

We see that, since W is a fixed parameter and Q7 ({7 < T}) (being a probability) is bounded above
by 1, the term structure of default yield spreads must eventually go to zero.

For intuition, imagine that the first passage time density, of which Q7 ({7 < T}) is the time integral,
is constant forever.2! Then, Q7 ({7 < T'}) would be the (constant) probability of default per year,
conditional on no previous default, times (7" — t) years. So that the spread would be proportional
to the yearly (conditional) probability of default.

Define now default risky instantaneous forward rates®? by

C(t,T) = exp {— /t ! fc(t,u)du} (25)

Then
dlog C
LAT) — — logazst,T)
 dlogP(t,T) Olog (1-WQI({r <T}))
- oT B oT
4 T
Tt 1 QT ({r <T})

T WQl(r<T))  oT

W (1-QT({r < TV)) aQT ({r < T})/0T

- D ReT T Qi < )

= f(t,T) + (. T)A(L,T) (26)

where [ is the percent writedown on the value of the corporate bond in the event of current default,
termed the “default loss rate”; and h is the conditional density of default at time T',%% given survival

2'Which obviously it cannot be.

22These are not literally forward rates in the sense that they would be interest rates contracted today for instanta-
neous borrowing or lending in the future by the firm, but we still define them by analogy to default riskless forward
rates.

2 The first passage time density of X through 0 evaluated at time T

10



until time T, which is the forward hazard rate. The difference in forward rates is therefore the
expected “default loss rate”.

Since the first passage time density goes to zero as T goes to infinity, the expected loss rate goes to
zero, and the corporate forward rate converges to the Treasury forward rate as T increases without
bound. This is in contrast to usual implementations of Duffie and Singleton (1995), where the
expected loss rate is modeled as a state variable following a square root process. In this case,
the difference in forward rates does not converge to zero but to a positive constant. There is no
asymptotic resolution of uncertainty: the fact that the firm survives for a very long time does not
affect its expected loss rate.

5 An Empirical Illustration

This section offers an illustration of the empirical uses of our model. We consider two parametric
models examined in section 3: the model with independent risks (I) and the model with determin-
istic term structure of volatilities (II). In both models, we treat the solvency ratio X as an abstract
state variable to be extracted from the data.

Note that our econometric method allows the joint estimation of the writedown parameter and
the filtering of the solvency ratio. This means that we can recover both the (risk adjusted) term
structure of probabilities of default and the expected payoff in case of default.

5.1 The Data

All data is obtained from Datastream. We obtain 42 monthly prices, from November 1993 to
February 1997, of 22 bonds issued by RJR Nabisco.?* All are simple coupon bonds, with no
embedded options or sinking fund provisions, with ratings below investment grade.

We select a sample of 5 bonds from the above 22.25 The selection tries to: obtain a variety of
maturities;?® select bonds that have existed for more than 4 years, to construct a sufficiently long
sample size; and collect prices that seem to be reasonably liquid. This leaves us with a sample of
5 bonds, which are described in Table 5.1. Finally, we adjust prices for accrued interest.

The S&P Bond Guide lists bonds for RJR Nabisco and its subsidiary, Nabisco Inc. In November
1993, there were 20 bonds listed for RJR Nabisco, with a total outstanding amount of $9 billion.
The rating for the notes and senior notes, including 17 of the 20 issues, was “BBB-" and the rating
of the other 3 issues, all subordinated debentures, was “BB+". Of the 20 bonds outstanding, 13
had no call or sinking fund provisions.

By December 1996, RJR Nabisco had 12 bonds tracked in the S&P Bond Guide for a total outstand-
ing amount of $3.7 billion. There were no subordinated issues left at this time and all remaining

24 A1l prices refer to the 24th of the month, or the previous work day when the 24th was a holiday.

25The data is obtained from Datastream and checked against the S&P Bond Guides for the years 1993 through
1996.

260f no more than 10 years, which is the longest risk free rate in our data.
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Bond 1999 8.3% 2002 8 5/8% 20037 5/8% 2004 8 3/4% 2005 8 3/4%

Type Debt Senior Notes Notes Notes Senior Notes Notes
Redemption Date 04/15/99 11/22/02 09/15/03 04/15/04 08/15/05
Life Remaining 2.13 5.76 6.55 7.13 8.46
Coupon Rate 8.300% 8.625% 7.625% 8.750% 8.750%
Coupon Dates 04/1510/15  06/01 12/01  03/1509/15  04/1510/15  02/15 08/15
Issue Year 1992 1992 1992 1992 1993
Options Embedded None None None None None
Sinking Fund None None None None None
Bond Form R BE BE R BE
Amount Tssued $600 million  $875 million  $750 million  $600 million  $500 million

Amount Outstanding  $61 million $875 million  $750 million  $600 million  $500 million

S&P Rating 1993-97 BBB- BBB- BBB- BBB- BBB-

Table 1: This table reports the characteristics of the corporate bonds used in the empirical applica-
tion. All bonds are plain vanilla coupon bonds, with no sinking fund provisions or option features.
All amounts in millions of Dollars. The amount of the 1999 8.3% notes was reduced to $61.9 million
in July of 1995. All data in the table as of December 1996.

issues were rated “BBB-". This rating did not change since the beginning of our sample in Novem-
ber 1993. Of the 12 bonds listed in December 1996, 11 were non-callble and had no sinking fund
provisions.

The Nabisco subsidiary had 2 issues outstanding in November 1993. Both issues had sinking fund
provisions and accounted for only $40 million. The rating was “BBB-". By December 1996, there
were 7 issues outstanding for a total of $2.5 billion. All were non-callable, with no sinking fund
provisions, and were rated “BBB”.

The five bonds used in this study are all denoted as non-callable, with no sinking fund provisons.
The amount of the issue outstanding was constant over our time period for four of the five bonds.
The first bonds’ amount outstanding decreased from $600 million in June of 1995 to $61.9 million
in July of 1995. This amount remained constant thereafter. This decrease was the result of an
exchange offer where the remaining $539.9 million was exchanged into a Nabisco bond with the
exact same features.

Three of the five bonds are denoted as “notes” while the other two are denoted as ”senior notes”.
The senior notes are registered while the notes are listed as book entry. There is no rating differ-
entiation between notes and senior notes. The senior notes were formerly of RJR Nabisco Capital.
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Finally, these bonds have sufficient liquidity. The S&P Bond Guide shows the month-end prices to
be sale prices for over 4 of the 5 bonds every month. These issues also have a substantial amount
issued, with $500 million being the minimum amount issued. Note that this is not the case of all
RJR Nabisco bonds. For the bonds not in the sample, we often found exactly the same prices
in the database for more than three months in a row. This suggests that the prices reported are
not for the date give but for the last date in which they traded, which was possibly in a previous
month. We selected our sample such that the bonds used have prices that change every month.
Nevertheless, it is still possible that these prices are not all from the same day.

For the term structure of default riskless interest rates, we use daily data on Libor and swap rates,??
between August 1993 and February 1997.28 We obtain zero coupon rates by fitting the Libor and
swap data with piecewise constant forward rates,?? using least squares, as proposed by Coleman,
Fisher and Ibbotson (1992). The prices of default riskless bonds to use in our pricing formulas,
at each sample date, are obtained by taking the exponential of the relevant time integral of the
forward rates.

For the model I, the data above is enough for the estimation method. Model II however requires
estimates of the term structure of volatilities at each sample date.?’

To obtain the term structure of volatilities, we first estimate the standard deviations of the changes
in the forward rates. At each sample date, we use the previous 40 daily changes in the corresponding
forward rate to compute its standard deviation. Then, we construct the volatilities of bond prices
by integrating the piecewise constant forward rate standard deviations until the relevant maturity.
We make use of the fact that the diffusion term of the 7" maturity bond, P(¢t,7T)s(t,T), can be
written as P(t,T) ftT o(t,y)dy, where o(t,y) is the diffusion of the instantaneous forward rate with
maturity y.

5.2 The Method

According to our model, the time ¢ price of corporate bond j with coupon rate £ and M; remaining
coupon payment dates is

M
Vit =3 Clt,tm;0, X (t))r + C(t,ta;; 0, X () (27)
m=1

where C(t,T;6) is computed using model I or II, and we make explicit the dependence on the
parameter vector @ = (u, o, p, W) and the state variable X.

We assume that at the true parameters and realization of the state variable, the observed bond

2T Although, strictly speaking, these rates have some default risk, Grinblatt (1995) argues that they are closer to
the true default riskless interest rates than Treasury bond rates, which have important liquidity premia incorporated.

287he Libor rates use have maturities of 7 days, 1, 3 and 6 months and 1 year. The swap rates have maturities of
2,3, 4,5, 7and 10 years.

2With nodes at 3 and 6 months, 1, 2, 3, 4, 5, 7 and 10 years.

30Being deterministic, the term structure of volatilities should not change throughout the sample. However, follow-
ing the usual practice in applying Heath, Jarrow and Morton (1992) models, we estimate a different term structure
of volatilities at each date in the sample.
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rice, Vi, is equal to the model price, Vi, plus a mean zero error term
s Vb PRV IS

Vit = Vit +¢ji (28)
We further assume that the norm of the error term is minimized at the true parameter values and
realized value of the state variable. The econometric method thus estimates the parameters and

extracts the state variable X by minimizing the norm of the vector &, with dimensions j = 1,...,5
and t = tq,...,t49.

For model I, assuming independent risks, zero coupon default risky bond prices are computed with
the formula (14), and, for model 11, with deterministic term structure of bond volatilities, bonds
are priced by simulation. In this case, at each sample date, t, and for each promised cash flow (of
each bond in the sample), we produce 1000 simulated paths of a standard Brownian motion W,
and obtain the corresponding (forward risk adjusted) discretized process X , starting at X (t), from

A~ A~

X{t+(m+1)h) = X({t+mh)+[pn—pos(t+mh,T)h
+ o [Wi(t+ (m+1)h) — Wy(t + mh)] (29)

for m = 1,..., M, where h is a daily interval (expressed in years) and M is the number of days
between the sample date and the cash flow date.?! We approximate Q] ({r < T}) by the proportion
of simulated paths of X that fall below zero and plug this estimated probability in our general
formula for pricing corporate bonds (10).

The econometric method starts with an initial guess of the values of the parameter vector § and of
the state variable X at each sample date and then numerically minimizes the norm of the differences
between the observed bond prices and the prices computed with our model. We state the estimation
problem, in the context of GMM, as the minimization of a distance function of the form

J(0,X) = f:(f/t(&X(t)) —Vi)'STH(Vi(6. X (1)) = V2) (30)
t=1

where V; and V;(0, X (t)) are the vectors of observed and computed model prices for the five bonds
at date t, and S is a five-by-five, symmetric, positive definite weighting matrix.

We treat X as a vector of additional parameters. In doing this, we do not make full use of the
implications of the model. In particular, we do not make use of the transition distribution of X,
and thus avoid having to specify the drift of X under the true probability measure. Although not
efficient, the method remains consistent.

The only remaining problem is determining S. We follow a two-step procedure. In the first step,
we take S equal to the identity matrix. In the second step, we make S equal to the covariance
matrix of the errors estimated in the first step. This is a consistent estimator of Hansen’s (1982)
optimal weighting matrix, under the assumption of no serial correlation in the errors.

3'We use antithetic variables. In order to decrease the variance of the simulation, we obtain the increments of
500 simulated paths of the Brownian motion from a (pseudo) random number generator and the other 500 paths by
taking the negatives of the increments generated in the first place. Prices vary less than 2 basis points when we take
different sets of simulated paths. This variation is presumably smaller than the errors in the data. Finally, pricing
of the 5 bonds, with 85 promised cash flows, at the 42 sample dates, takes approximately 5 minutes on a personal
computer.
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5.3 The Results

Table 2 shows parameter estimates, their respective standard deviations, and the value of the
objective function at the optimum, for both models I and II.

Model m o p w J
Model I 0.0466 0.4501 0 0.6816  25.0530
(0.0035)  (0.0087) (0.2765)

Model II  -0.0324  0.1492  -0.0705  0.4551  15.4145
(0.0014)  (0.0007)  (0.0233)  (0.1965)

Table 2: This table reports parameter estimates and their standard errors for model I and II. The
value of the criterium function, .J, at the optimum is also shown for both models.

We can now test the constraint that p = 0. For this, we use a pseudo likelihood ratio test
= J(0r,X1)— J(0r1, X11) (31)

Under the null, [ is distributed as a x7. The p-value of the test is 0.0019, which leads us to reject
the hypothesis. Interestingly thus, the dependence between interest rate and default risks appears
to be important in explaining corporate bond prices.

The parameter estimates under model 11 are of the right magnitudes and signs. In particular, we
estimate p to be negative, which corresponds to a positive correlation between the interest rate risk
and default risk. The coefficient multiplied by the volatility of the Treasury bond prices increases
the forward risk adjusted drift of X, amaking default less likely. Another parameter of interest is
the writedown, which we estimate to be of the order of 45%. Therefore, in case of default, the
market is expecting that only 55% of the face value of these securities may be recovered.

Figure 1 shows the estimated sample path of the state variable X under model II. For ease of
interpretation we show the exponential of X, which can be interpreted as the solvency ratio of the
firm.

Finally, Figure 2 provides a graphical illustration of the pricing errors under our parameter estimates
and filtered state variable path. Although economically significant, they do not seem to be of a
higher order of magnitude than the noise in the data. We thus conclude that the model thus a
good job at pricing this sample of corporate bonds.

Note that there are other ways of fitting the model. The parameter W can be estimated from
historical data rather than the implicit approach taken here. The forward risk adjusted hazard
rate can as well be estimated from historical data on probabilities of default and the corresponding
forward risk premium.
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Figure 1: Model II implied sample path of the sovency ratio with two-standard-deviation interval.
The related parameter estimates are presented in Table 2.
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Figure 2: For the five bonds in the sample, at each sample date, the figure shows the deviation

between the observed price and the price computed from the model, with the parameter estimates
for model Il presented in Table 2.
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6 Conclusion

This article presents a model of default risk that allows for tractable pricing of default risky claims
under a variety of models for the Treasury term structure of interest rates, and dependence between
interest rate and default risks. We show that our model has better theoretical properties than others
that have been proposed in the recent literature. We estimate the model from a panel data set of
bond prices from RJR Nabisco, and show its good empirical performance.
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