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SUMMARY

Evolutionary expansion of the human neocortex is
partially attributed to a relative abundance of neural
stem cells in the fetal brain called outer radial glia
(oRG). oRG cells display a characteristic division
mode, mitotic somal translocation (MST), in which
the soma rapidly translocates toward the cortical
plate immediately prior to cytokinesis. MST may be
essential for progenitor zone expansion, but the
mechanism of MST is unknown, hindering explora-
tion of its function in development and disease.
Here, we show that MST requires activation of the
Rho effector ROCK and nonmuscle myosin II, but
not intact microtubules, centrosomal translocation
into the leading process, or calcium influx. MST is
independent of mitosis and distinct from interkinetic
nuclear migration and saltatory migration. Our find-
ings suggest that disruptedMSTmay underlie neuro-
developmental diseases affecting the Rho-ROCK-
myosin pathway and provide a foundation for future
exploration of the role of MST in neocortical develop-
ment, evolution, and disease.

INTRODUCTION

The human neocortex is characterized by a marked increase in

size and neuronal number as compared to other mammals. Neu-

ral stem cells called outer radial glia (oRG), present in large

numbers during human, but not rodent, brain development, are

thought to underlie this expansion (Hansen et al., 2010; Lui

et al., 2011). oRG cells are derived from ventricular radial glia

(vRG), the primary neural stem cells present in all mammals (La-

Monica et al., 2013; Malatesta et al., 2000; Miyata et al., 2001;

Noctor et al., 2001; Shitamukai et al., 2011; Wang et al., 2011).

Both progenitor cell types display basal processes oriented to-

ward the cortical plate, along which newborn neurons migrate

(Hansen et al., 2010; Misson et al., 1991; Rakic, 1971, 1972).

However, oRG cells reside primarily within the outer subventric-

ular zone (oSVZ), closer to the cortical plate than vRG cells, and

lack the apical ventricular contact characteristic of vRG cells
656 Cell Reports 8, 656–664, August 7, 2014 ª2014 The Authors
(Chenn et al., 1998; Hansen et al., 2010).While vRG cell behavior,

mitosis, and lineage have been extensively studied (Bentivoglio

and Mazzarello, 1999; Hartfuss et al., 2001; Noctor et al., 2001,

2004, 2008; Qian et al., 1998; Taverna and Huttner, 2010),

much less is known about regulation of oRG cell proliferation

and the unique mitotic behavior of these cells (Betizeau et al.,

2013; Gertz et al., 2014; Hansen et al., 2010; LaMonica et al.,

2013; Pilz et al., 2013).

oRG cell cytokinesis is immediately preceded by a rapid trans-

location of the soma along the basal fiber toward the cortical

plate, a process termed mitotic somal translocation (MST) (Han-

sen et al., 2010). Due to the relative abundance of oRG cells

in humans, it has been hypothesized that genetic mutations

causing significant brain malformations in humans, but minimal

phenotypes in mouse models, may affect oRG cell-specific be-

haviors such as MST (LaMonica et al., 2012). However, the mo-

lecular motors driving MST have not been identified, hindering

exploration of the function of MST in human brain development

and its possible role in disease. MST is reminiscent of interkinetic

nuclearmigration (INM) of neuroepithelial and vRG cells, in which

nuclei of cycling cellsmigrate back and forth along the basal fiber

between the apical and basal boundaries of the ventricular

zone in concert with the cell cycle. INM is controlled by the

centrosome, the microtubule motors kinesin and dynein, and

associated proteins, with actomyosin motors playing an acces-

sory role (Taverna and Huttner, 2010). As oRG cells are derived

from vRG cells and display analogous nuclear movements, it

has been hypothesized that MST requires similar molecular

motors as INM (LaMonica et al., 2012).

We find that MST requires activation of the Rho effector ROCK

and nonmuscle myosin II (NMII), but not intact microtubules,

centrosomal advancement into the leading process, or calcium

influx. Conversely, oRG cell mitosis requires intact microtubules,

but not NMII activation, demonstrating that MST and mitosis are

mutually dissociable. We examine the expression profiles of

genes implicated in the Rho-ROCK-myosin pathway that cause

large developmental brain malformations when mutated in hu-

mans, but not in mice. Interestingly, several disease genes

thought to primarily affect neuronal migration display expres-

sion profiles similar to known radial glial genes, consistent

with expression in oRG cells. This observation suggests that

defects in oRG behaviors such as MST may partially underlie

cortical malformations currently attributed to defective neuronal
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migration. Together, these results increase our understanding of

the cellular and molecular basis for human cortical evolution and

have important implications for studying disease mechanisms

that cannot be effectively modeled in mice.

RESULTS

MST is thought to contribute to radial expansion of the oSVZ dur-

ing human brain development (Lui et al., 2011). Supportive of this

idea, we imaged oRG cell divisions in human fetal cortical slices

at the border of the upper oSVZ and intermediate zone (IZ) during

peak neurogenesis and oSVZ growth (gestational weeks 15–20).

We observed many divisions in which oRG cells translocated out

of the oSVZ and into the IZ, thereby increasing oSVZ size (Movie

S1). We found that MST trajectory in the human oSVZ was over-

whelmingly toward the cortical plate (Figure 1A). Furthermore,

MST frequency and translocation distances were greater in hu-

mans as compared to ferrets and mice, species displaying pro-

portionally smaller oSVZ sizes (Figures 1B–1D). These observa-

tions are suggestive of a role for MST in human oSVZ expansion.

However, in-depth exploration of the function of MST in develop-

ment and disease first requires an understanding of the underly-

ing molecular mechanisms, which have remained elusive.

We initially hypothesized that MST depends on the same mo-

lecular machinery as INM. To determine the relative contribu-

tions of microtubule motors and actomyosin to MST, we applied

inhibitors of microtubule polymerization and NMII (the most well-

characterized myosin in brain development; Tullio et al., 2001;

Vallee et al., 2009) to human fetal cortical slice cultures. We per-

formed time-lapse imaging of oRG cell behaviors and quantified

translocation (MST) and division frequency in each slice before

and after addition of inhibitors or DMSO (control) (Figures 1E–

1I and S1). Treatment of slices with a high concentration

(100 mM) of blebbistatin, a selective NMII inhibitor, nearly abol-

ished both translocations and divisions (data not shown).

However, treatment with a low concentration (5 mM) of blebbis-

tatin caused a significantly greater reduction in translocations

than in divisions, suggesting that NMII plays a relatively larger

role in MST than in mitosis. Conversely, treatment with the

microtubule depolymerizing reagent nocodazole (1 mM) reduced

divisions significantly more than translocations. Additionally, no-

codazole, but not DMSO or blebbistatin, decreased the propor-

tion of translocations that ended in division. We found that oRG

cells express two isoforms of NMII, NMIIa and NMIIb (Figures 1J,

1K, and S1), which have both been shown to play essential roles

in neuronal migration (Vicente-Manzanares et al., 2009). These

results demonstrate that MST and mitosis are mutually disso-

ciable in oRG cells. MST requires NMII activation, but not intact

microtubules, and thus, not microtubule motors. Conversely,

mitosis is relatively more dependent on intact microtubules

than on NMII activation. We asked whether inhibition of MST

directly affects daughter cell fate. Blebbistatin treatment of

human fetal cortical slices did not alter the ratio of TBR2+ to

SOX2+ cells in the oSVZ as compared to DMSO (p = 0.38, un-

paired Student’s t test), suggesting that MST does not control

cell fate. Inhibition of MST may lead to cell crowding or have

other indirect effects that could influence cell fate on a longer

timescale than we could analyze using our slice culture system.
To control for non-cell-autonomous effects and to enable ex-

amination of subcellular mechanisms, we used dissociated neu-

ral progenitor cell cultures. Blocks of gestational week 15–20

(GW15–20) dorsal neocortical tissue spanning the ventricle

to the cortical plate were dissociated by papain treatment

and trituration. We previously observed that oRG-like cells

undergo MST in dissociated fetal human cortical cultures (La-

Monica et al., 2013). To confirm oRG identity of oRG-like cells,

we performed fate staining on daughter cells after MST division

(Figures 2A–2C and S2). Similar to oRG cells in slice culture (Han-

sen et al., 2010), daughters of MST divisions in dissociated

culture expressed SOX2 (65 out of 65) and PAX6 (17 out of 17),

usually expressed nestin (18 out of 24), rarely expressed TBR2

(2 out of 34), and never expressed bIII-tubulin (0 out of 20). As

in slice culture, we observed expression of both NMIIa (14 out

of 14 cells) and NMIIb (ten out of ten cells) in dissociated oRG

cell daughters (Figures 2I and 2J). We concluded, based on

morphology, behavior, and marker expression, that cells under-

going MST in dissociated culture are oRG cells, validating the

use of dissociated cultures to study oRG cell behaviors.

We quantified translocation (MST) and division frequency in

dissociated culture after motor protein inhibition. Similar to re-

sults in slice culture, blebbistatin treatment reduced translo-

cations significantly more than divisions, while nocodazole

treatment reduced divisions without significantly affecting

translocations (Figures 2D–2H and Movie S2). Upon drug

washout, blebbistatin-treated cultures showed an increase in

translocations, while nocodazole-treated cells that had re-

mained rounded up after MST underwent cytokinesis, suggest-

ing that the effects of inhibitors were reversible and not due to

cell death (Movie S3; Figure S2). Furthermore, inhibitor-treated

cultures did not display increased staining for cleaved cas-

pase-3, confirming that the effects of inhibitor treatment could

not be attributed to apoptosis (Figure S2). Thus, results in disso-

ciated culture confirm observations in slice culture that MST and

mitosis are mutually dissociable in oRG cells. Intact microtu-

bules are required for oRG cell mitosis, but not for MST, while

NMII activation is required for oRG cell MST and is relatively

less important for mitosis.

Thoughmicrotubule polymerization is not required for oRG cell

MST in humans, nocodazole treatment significantly increased

MST distance in both slice culture and dissociated cells (Fig-

ure 3A). Based on previous observations in rodent (Wang et al.,

2011), we hypothesized that the centrosome migrates into

the basal fiber prior to translocation, remains connected to the

nucleus via a microtubule cage, and ultimately determines the

location of translocation cessation and cytokinesis (Tsai et al.,

2007). Nocodazole treatment would disrupt nucleus-centro-

some coupling, eliminating the ‘‘stop’’ signal for translocation.

To determine whether the centrosome precedes the nucleus

into the basal process, we performed time-lapse imaging of

centrosome behavior in dissociated human oRG cells after

transfection with a construct encoding the centrosomal protein

Centrin-2 (Cetn2) fused to the fluorescent reporter dsred (Fig-

ure S2) (Tanaka et al., 2004). While centrosome location was var-

iable during interphase, centrosomes consistently returned to

the soma prior to MST and remained adjacent to the nucleus

throughout translocation (Figures 3B and 3D; Movie S4). In
Cell Reports 8, 656–664, August 7, 2014 ª2014 The Authors 657
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Figure 1. oRG Cell MST Requires Myosin II Activation, but Not Intact Microtubules

(A) Vector plot of MST trajectory angles in human cortical slices (n = 62MSTs). Angles grouped in 30� increments; lengths of black arrows represent proportion of

MSTs of a given angle, and the red arrow depicts net MST trajectory (vector sum).

(B and C) oSVZ sizes and average MST distance in species of analogous gestational ages. (B) Rat and ferret oSVZ measurements are from studies by Martı́nez-

Cerdeño and coworkers (Martı́nez-Cerdeño et al., 2012). (C) Mouse measurements were reanalyzed from Wang et al. (Wang et al., 2011) to only include

translocation distances ofR20 mm, the definition of MST used in our study. At least three slices from three different tissue samples were summed for ferret and

human measurements, and sample sizes are indicated on each column. Error bars, SEM. *p < 0.01. **p < 0.001, unpaired Student’s t test.

(D) Proportion of mitoses preceded by MST in the oSVZ of ferret and human fetal cortical slices and in dissociated human fetal cortical cultures. Total number of

divisions analyzed are indicated on each column; nR 3 slices from three different tissue samples for ferret and human oSVZ; n = 3 wells for human dissociated

cultures. *p < 0.0001, c2 test.

(E–G) Time-lapse stills of oRG cell behaviors in GW20.5 human fetal cortical slices labeled with Adeno-GFP. Time is in hours:minutes. Scale bars, 15 mm. (E) In a

DMSO (control)-treated slice, the oRG cell (open white arrowhead) undergoes MST and cytokinesis (asterisk) to produce an apical daughter (closed blue

arrowhead) and a basal daughter that retains oRG cell morphology (open yellow arrowhead). (F) In a slice treated with the myosin II inhibitor blebbistatin, the oRG

cell (open white arrowhead) divides (asterisk) without MST to produce an apical daughter (closed blue arrowhead) and a basal daughter that retains oRG cell

morphology (open yellow arrowhead). (G) In a slice treated with the microtubule depolymerizing agent nocodazole, the oRG cell (open white arrowhead)

undergoes MST, fails to divide, and remains rounded up at the end of imaging.

(H) Quantification of ratio of divisions and translocations (MSTs) after/before treatment for control (DMSO, 0.5%), blebbistatin (Bleb, 5 mM), and nocodazole

(Noco, 1 mM). *p < 0.01, **p < 0.0001, Fisher exact test.

(I) Quantification of % MSTs resulting in cytokinesis. **p < 0.0001, Fisher exact test.

(J and K) oRG cells in GW17.5 human fetal oSVZ express SOX2, the mitotic marker phospho-vimentin (pVIM), NMIIa (J), and NMIIb (K). Scale bars, 5 mm.

658 Cell Reports 8, 656–664, August 7, 2014 ª2014 The Authors
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Figure 2. Dissociated Human Cortical Progenitor Cells Express oRG Cell Markers and Require Myosin II for MST
(A–C) Fate staining of daughters (open yellow and solid blue arrowheads) of MST divisions in GW16.5 dissociated fetal human cortical progenitor cell cultures.

Scale bars, 20 mm. (A) Both cells express SOX2 and nestin. (B) Both cells express PAX6. (C) Neither cell expresses TUJ1 or TBR2.

(D–F) Time-lapse stills of oRG cells (open white arrowheads) in GW15.5–18.5 dissociated cultures labeled with Adeno-GFP. Time is in hours:minutes. Scale bars,

20 mm. (D) oRG cell in DMSO (control)-treated culture undergoes MST and divides (asterisk) to produce an ‘‘apical’’ daughter (closed blue arrowhead) and a

‘‘basal’’ daughter that retains oRG cell morphology (open yellow arrowhead). (E) Cell with oRG morphology in blebbistatin-treated culture divides (asterisk)

withoutMST to produce an ‘‘apical’’ daughter (closed blue arrowhead) and a ‘‘basal’’ daughter that retains oRG cell morphology (open yellow arrowhead). (F) oRG

cell in nocodazole-treated culture undergoes MST, fails to divide, and remains rounded up at the end of imaging.

(G) Quantification of ratio of divisions and translocations (MSTs) after/before treatment for control (DMSO, 0.5%), blebbistatin (Bleb, 5 mM), and nocodazole

(Noco, 1 mM). *p < 0.05, **p < 0.0001, Pearson’s chi-square test or Fisher exact test (depending on sample size).

(H) Quantification of % MSTs resulting in cytokinesis. **p < 0.0001, Fisher exact test.

(I and J) Fate staining of daughters of MST divisions in GW16 dissociated fetal human cortical progenitor cell cultures. Daughter cells (indicated with open yellow

and closed blue arrowheads) express the oRG cell marker SOX2 and the myosin isoforms NMIIa (I) and NMIIb (J). Scale bars, 20 mm.
contrast, during saltatory migration of other cells in dissociated

culture, the centrosome often preceded the nucleus into the

leading process prior to a migratory step (Figures 3C and 3D;
Movie S4). Interestingly, somal translocation distances were

much greater during MST than during saltatory migration steps,

suggesting that an increased translocation distancemay limit the
Cell Reports 8, 656–664, August 7, 2014 ª2014 The Authors 659
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Figure 3. Role of Microtubules and the Centrosome in MST

(A) Quantification of MST distances after treatment with DMSO (control, 0.5%) or nocodazole (Noco, 1 mM). *p < 0.05, unpaired Student’s t test. Error bars are

SEM; sample size is indicated on each bar.

(B and C) Time-lapse stills of oRG cell and centrosome behaviors in GW18.5 dissociated culture transfected with dsred-Cent2 to label centrosomes. Cent2

(Cetn2) is false-colored in green. Each time point shows transmitted light and cent2merge on the left and cent2 on the right, with a dashedwhite line depicting the

outline of the soma. Time is in hours:minutes. Scale bars, 20 mm. (B) oRG cell undergoesMSTwith centrosomes adjacent to the nucleus. (C) Centrosome behavior

in cell undergoing saltatorymigration. The location of the centrosome (white arrowhead) and the center of the soma (white circle) in the axis parallel to the direction

of migration are shown on the left side of the transmitted light images.

(D) Frequency histogram showing distances between the edge of the soma and the center of the centrosome furthest from the soma (C-S distance). The average

C-S distance is 0.37 mm at the start, and 0 mm (centrosomes within the soma) at the end of MST, whereas the C-S distance during a migratory step averages

23.8 mm at the start, and 4.2 mm at the end.

(E) Boxplots depicting somal translocation distances of cells analyzed in (D) during MST (left) and migratory steps (right); n = 17 for MSTs, n = 21 for migratory

steps.

660 Cell Reports 8, 656–664, August 7, 2014 ª2014 The Authors
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Figure 4. MST Is Dependent on ROCK Signaling, but Not Calcium
Influx

(A) Quantification of ratio of divisions and translocations (MSTs) after/before

treatment with DMSO; myosin light chain kinase inhibitor ML-7; calcium

channel blockers NiCl2, ruthenium red (RR), and 2-APB; or ROCKi inhibitors

Y-27632 and dimethylfasudil (DMF). *p < 0.05, **p < 0.0001, Fisher exact test.

Unless otherwise indicated, inhibitor treatments were not significantly different

from DMSO.

(B) Proposed molecular pathway controlling MST. Genes associated with

human cortical malformations that have previously been demonstrated to

regulate specific pathway proteins are shown next to those proteins. MLCP,

myosin phosphatase.
role of the centrosome during MST (Figure 3E). We concluded

that MST does not require centrosomal advancement into the

leading process prior to nuclear translocation. Instead, microtu-

bule polymerization may directly regulate actomyosin contrac-

tility (Schaar and McConnell, 2005).

Our results thus far suggested thatMST does not require intact

microtubules or centrosomal translocation into the basal pro-

cess, but that MST is dependent on NMII activation. To verify

that the effects of blebbistatin on MST were specifically due to

NMII inhibition, we tested whether inhibition of ROCK, an up-

stream activator of NMII, similarly blocked MSTs (Govek et al.,

2011). Treatment of dissociated cultures with the ROCK inhibitor
Y-27632 (10mM) mimicked the effects of blebbistatin treatment,

greatly reducing translocations without significantly affecting

divisions (Figure 4A). While blebbistatin had a small effect on

mitosis, ROCK inhibition had no effect, likely due to myosin play-

ing a bigger role in oRG cell cytokinesis than ROCK. Treatment

with a second, more potent and selective ROCK inhibitor, dime-

thylfasudil (1 mM),mimicked blebbistatin and Y-27632 treatment,

reducing translocations without significantly affecting divisions

(Figure 4A). These results confirm that the effects of blebbistatin

on MST are specifically due to NMII inhibition, and suggest

that the Rho-ROCK-NMII pathway may control MST, as ROCK

is activated by the GTPase RhoA (Heng and Koh, 2010).

ROCK- and NMII-dependent actomyosin contraction may occur

throughout the soma and basal process, as we often observed

shortening and thinning of the primary process during MST in

dissociated oRG cells (Figure S2). This observation is consistent

with NMII expression throughout oRG cell processes (Figures 2I

and 2J).

We asked whether calcium influx, a parallel activator of NMII,

is required for MST. We treated human fetal progenitor cultures

with ML-7, an inhibitor of myosin light chain kinase (MLCK).

MLCK activates NMII and is downstream of Ca2+-calmodulin,

but not ROCK. ML-7 (10 mM) had no effect on translocations or

divisions (Figure 4A). We further verified these results by subject-

ing dissociated cultures to treatment with a panel of calcium

channel inhibitors, including the nonspecific calcium channel

blocker NiCl2 (50 mM), ryanodine receptor blocker ruthenium

red (50 mM), and the IP3-gated calcium channel blocker 2-APB

(50 mM). Calcium channel inhibition had no effect on either trans-

locations or divisions (Figure 4A). These results suggest that cal-

cium influx is not responsible for NMII activation leading to MST.

DISCUSSION

We have demonstrated here that MST and mitosis can be un-

coupled, and that MST requires ROCK and NMII activation, but

not intact microtubules, centrosomal translocation into the lead-

ing process, or calcium influx. It is possible that in oRG cells,

RhoA-activated ROCK either directly phosphorylates NMII, in-

hibits myosin phosphatase, or both, leading to actomyosin

contraction and MST (Figure 4B). The expression and activity

of known cell-cycle regulators support a role for the Rho-

ROCK-myosin pathway in MST: RhoA is activated in a cell cy-

cle-dependent manner by CDK1, and RhoA has been demon-

strated to participate in the G2 to M transition (Heng and Koh,

2010). Several evolutionary forces could have led to the unique

dependence of MST on actomyosin motors. Nuclear transloca-

tion distance may dictate molecular motor dependence. Interki-

netic nuclear migration and saltatory migration involve small

nuclear translocation steps, limiting the distance between

the centrosome and the nucleus. The larger transloca-

tion distances of MST could hinder maintenance of tension

between the centrosome and a perinuclear microtubule cage,

making a centrosome-based mechanism untenable. Actomy-

osin motors are also approximately 10-fold faster than microtu-

bule motors, and may be better suited to drive the rapid, large-

amplitude translocations of MST (Månsson, 2012). Additionally,

we observed chromosome condensation and establishment of
Cell Reports 8, 656–664, August 7, 2014 ª2014 The Authors 661



ametaphase plate duringMST using time-lapse transmitted light

microscopy, suggesting that prophase and metaphase occur

prior to the completion of MST (Figure 3B; Movie S4). Microtu-

bule depolymerization occurs during prometaphase and may

preclude dependence of MST on microtubule motors (Rusan

et al., 2002).

A recent study suggested a broader diversity of progenitor cell

types and behaviors within themacaque oSVZ thanwe observed

in humans, including a larger proportion of apically directed

MSTs (Betizeau et al., 2013). While the definition of oRG cells

used by Betizeau and colleagues is more ambiguous than

ours, it is clear that at least a subset of oSVZ progenitor cells

display basally directed MST that shifts the border of the oSVZ

toward the cortical plate, appearing to expand oSVZ size by

moving neural stem cells further away from the ventricle. Thus,

while we observed that MST does not directly control cell fate,

MST may accelerate fetal brain development by delivering

oRG daughters, including intermediate progenitor cells and their

neuronal progeny, closer to their destinations in the cortical plate

(Hansen et al., 2010; Wang et al., 2011). Apically directed MST,

along with other oSVZ progenitor cell behaviors not described

in our study, may also function to reduce cell crowding. It is

possible that discrepancies in oRG behaviors observed in ma-

caques and humans reflect species-specific differences in

MST function or a labeling bias in one or both studies. Alterna-

tively, Betizeau and colleagues may have interpreted apically

directed progenitor cell migration followed by division as MST

due to a lower sampling frequency (one frame per 1–1.5 hr)

than ours (one frame per 8–20 min).

Wewondered whether MST and other oRG-specific behaviors

are affected in human neurodevelopmental disorders. Several

genetic mutations that target the Rho-ROCK-myosin pathway

lead to cortical malformations in humans that have historically

been attributed to defective neuronal migration (Figure 4; Table

S1). However, our finding that MST depends on this pathway

suggests that MSTmay also be affected. Indeed, the expression

patterns within the fetal human cortex of several cortical malfor-

mation candidate genes resemble the expression patterns of

known radial glial genes, and hence of oRG cells, more closely

than those of immature neuronal genes (Figure S3). oRG cells

comprise only a small proportion of neural progenitor cells in

mice as compared to humans (Wang et al., 2011), and this

difference could help explain why mouse models of cortical mal-

formations such as microcephaly, periventricular heterotopia,

and lissencephaly often display relativelymild phenotypes (Table

S1). Future studiesmay reveal thatmutations that affect the Rho-

ROCK-myosin pathway and have minimal or altered phenotypes

when reproduced in mouse models primarily target MST and not

neuronal migration in human patients.

EXPERIMENTAL PROCEDURES

Fetal Tissue Collection

Fetal brain tissue was collected from elective pregnancy termination speci-

mens at San Francisco General Hospital, and was transported in ice-chilled

artificial cerebrospinal fluid (ACSF) to the laboratory for further processing.

Tissues were collected only with previous patient consent and in strict obser-

vance of legal and institutional ethical regulations. Research protocols were

approved by the Gamete, Embryo, and Stem Cell Research Committee (insti-
662 Cell Reports 8, 656–664, August 7, 2014 ª2014 The Authors
tutional review board) at University of California, San Francisco. See Supple-

mental Experimental Procedures for further details.

Slice Culture and Real-Time Imaging

Blocks of tissue from GW15–20 fetal dorsal cortex were imbedded in agarose,

and 300 mm vibratome slices were generated and transferred to cortical slice

culture medium containing CMV-GFP adenovirus. After labeling, slices were

imaged using an inverted Leica TCS SP5 with an on-stage incubator at

15–25 min intervals for up to 6 days. Maximum intensity projections of the

collected stacks were compiled and generated into movies, which were

analyzed using Imaris. See Supplemental Experimental Procedures for further

details.

Dissociated Cortical Progenitor Culture and Real-Time Imaging

Dorsal cortical tissue was subjected to papain-based dissociation, and disso-

ciated cells were plated at a density of 500,000–1,000,000 cells per well in

matrigel-coated 12-well cell culture plates. Cultures were maintained in a Dul-

becco’s modified Eagle’s medium-based dissociated culture medium. For cell

fate and inhibitor experiments, cells were labeled with CMV-GFP adenovirus.

For centrosome imaging experiments, cells were transfected with dsred-

Cent2 (Cetn2) plasmid (Addgene plasmid 29523). Cultures were transferred

to an inverted Leica TCS SP5 with an on-stage incubator and imaged using a

310 objective at 8 min to 20 min intervals. See Supplemental Experimental

Procedures for further details.

Chemical Inhibitors

Stock solutions of inhibitors were as follows: blebbistatin (100 mM in DMSO),

nocodazole (2 mM in DMSO), Y-27632 (10 mM in DMSO), dimethylfasudil

(10 mM in water), ML-7 (10 mM in DMSO), NiCl2 (1 M in water), ruthenium

red (10 mM in DMSO), and 2-aminoethoxydiphenyl borate (2-APB) (Sigma;

10 mM in DMSO). Control treatment was 0.5% DMSO, which was greater

than or equal to the final DMSO concentration for each inhibitor. See Supple-

mental Experimental Procedures for further details.

Immunohistochemistry

See Supplemental Experimental Procedures for a detailed description of

methods, which were standard procedures.

Ferret Slice Culture and Real-Time Imaging

Embryonic day 27 (E27) timed-pregnant ferrets were obtained from Marshall

BioResources and maintained according to protocols approved by the Institu-

tional Animal Care and Use Committee at the University of California, San

Francisco. E39 pregnant dams were deeply anesthetized with ketamine

followed by isoflurane administration. Ovariohysterectomy for fetus collection

was then performed and embryonic brains, along with meninges, removed in

ice-chilled ACSF bubbled with 95% O2/5% CO2. The dorsal cortex was

dissected away from ventral structures, imbedded in 3% low-melting-point

agarose in ACSF, and sectioned using a vibratome to obtain 250–300 mm

slices. Slices were transferred to cortical slice culture medium and treated

as described for human slices, including labeling with Adeno-GFP and imaging

using an inverted Leica TCS SP5 microscope. Maximum-intensity projections

of the collected stacks were compiled and generated into movies, which were

analyzed using Imaris.

Measurement of MST Distances, MST Trajectory, and oSVZ Size

MST was defined as a translocation of greater than or equal to 20 mm (approx-

imately one cell diameter) of the soma along the basal process (slice culture) or

the primary process (dissociated culture), with a velocity of greater than or

equal to 20 mm/hr, coinciding with cell rounding, and ending either in immedi-

ate cytokinesis or in a prolonged, rounded state. Angle with respect to the

ventricular surface was measured, and trajectories were grouped in incre-

ments of 30�. A vector sum was computed to determine the overall trajectory

of all MSTs. See Supplemental Experimental Procedures for further details.

Microarray Profiling

To examine the expression across brain regions of genes associated

with human neurodevelopmental diseases, we used the BrainSpan laser



microdissection and microarray profiling data set made available by the Allen

Institute (BrainSpan, 2011). The data set was generated from four brains of

ages GW17, 18, 23, and 23.5, which were cryosectioned, microdissected,

and subjected to mRNA profiling by hybridization to custom Agilent microar-

rays. See Supplemental Experimental Procedures for further details.

Statistics

All quantifications were performed blind, and p values < 0.05 were considered

statistically significant. See Supplemental Experimental Procedures for a

detailed description of statistical methods.

SUPPLEMENTAL INFORMATION
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