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ABSTRACT OF THE DISSERTATION

Stochastic Compute-In-Memory Hardware Accelerator for Intelligent Edge Devices

by

Jiyue Yang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Sudhakar Pamarti, Chair

Deep learning is creating many new applications on edge devices such as autonomous driving,

industrial robotics, and wearable health care. Edge devices demand hardware operating at low

power, but processing with a high throughput. Traditional digital Von Neumann architecture such

as CPU and GPU is limited by the data movement’s cost. The computing challenge demands more

efficient memory technology and architectures. Voltage-Controlled Magnetic Tunneling Junction

(VC-MTJ) is an emerging MRAM solution that can achieve much higher density than SRAM

and more efficient write operation than other MRAM technologies. VC-MTJs not only can be

used as memory devices but also in cryptography and probabilistic computing applications such as

Stochastic Computing (SC). VC-MTJ’s special voltage-controlled switching behavior can achieve

stable, but random, switching probability after a long pulse and removes the requirement of cali-

bration circuit. We have demonstrated a VC-MTJ based TRNG in 65nm, which passed the NIST

randomness tests. Compute-In-Memory (CIM) is an emerging solution to move computing inside

the memory to avoid data access. Entire array can be activated for computing and, therefore, breaks

the bandwidth limits of Von Neumann architecture. Stochastic Computing (SC) is an approximate

computing method that uses extreme tiny bit-serial logic gates as computing unit to achieve mas-

sive parallelism on chip. Combining SC and CIM removes the costly Analog-to-Digital converter

(ADC) of traditional CIM architecture and achieves high energy efficiency. The compact SC com-

putation units can also achieve massive throughput density inside memory. In the second half of

this thesis, we propose combining the benefits of SC and CIM as Stochastic Compute-In-Memory

ii



(SCIM) accelerators. We have demonstrated two variants of the SCIM solutions: (1) An SCIM

accelerator in 65nm supporting full CNN operations on chip with 8-bit precision for image clas-

sification applications. The memory stores pre-converted stochastic bit stream and achieves high

energy efficiency by in-memory SC MAC units. (2) An SCIM accelerator in 12nm for high-speed

object tracking application using event cameras. The memory embeds in-situ stochastic number

generator to allow binary number storage and achieves >30x higher throughput density than state-

of-the-art works.
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Chapter 1

Introduction

Deep learning is creating many new applications on edge devices such as autonomous vehicle,

smart industrial robotics and wearable health care. Many of these applications require immedi-

ate response to the environment, but only have a limited energy budget. Edge computing is an

emerging concept to process data on the edge devices to avoid slow and costly communicate to

the cloud. Since sensor data is preserved locally, edge devices can provide enhanced privacy to

users. Although edge computing can unlock many new features, it faces severe challenges from

applications that demand both high throughput and low power at the same time.

The gap between the massive amount of data in deep learning models and the energy pro-

file of conventional computing hardware poses serious challenges. The number of parameters

and operations in deep learning models are several orders of magnitude higher than classical ma-

chine learning models, shown in Fig.1.1(right). Typical neural networks for image classification

require 10-100M parameters and 1-20G operations [3][4][5]. The emerging neural network for

large language models require the number of parameter in trillions [6][7]. However, accessing and

communicating data consumes significantly higher energy compared to actual computation. The

off-chip DRAM read consumes almost 100× higher energy than on-chip SRAM read, and 1000×

1



higher compared to Multiplication and Accumulation (MAC) operations, shown in Fig.1.1(left).

Efficiently using the data on chip to reduce the number of DRAM access can significantly improve

the energy efficiency [8]. Researchers are also coming up with more efficient architectures and

computing paradigms such as Compute-In-Memory (CIM) and Stochastic Computing (SC), which

are the main focuses of this thesis.

640pJ

5pJ

0.8

Energy of Opera�on

32b DRAM Read

32b SRAM Read

16b Mul�plica�on

16b Addi�on

100x
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Deep Learning
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Figure 1.1: Energy consumption of different operation (left); Number of parameter and operations
in machine learning and deep learning models (right).

1.1 Compute-In-Memory Accelerator

Von Neumann architecture has been widely adopted in CPU and GPU processors. Data is accessed

from memory sequentially and transmitted to processor for computing. The array structure of the

memory only allows one row to be accessed at time. The bandwidth limit of the memory and the

long data path between memory and processor constrains the computing throughput and energy

efficiency. Compute-In-Memory (CIM) accelerator is new architecture that moves computing next

to the data. The comparison between Von-Neumann architecture and CIM is shown in Fig.1.2.

The memory cells in the CIM array is custom design to embed computation logic. Usually, weight

coefficients are stored in the memory; inputs are transmitted to the CIM array and applied to the

computing word lines. Each CIM cell includes both the storage element and a multiplier unit.

2



Multiplication between the stored weight bit and the applied input bit is performed inside the CIM

cell. The multiplication results are accumulated in the same column, equivalently achieving a dot-

product operation. Analog-based CIM performs accumulation in analog domain such as current

and charge, but suffers from compute errors[9][10][11]. Transistor’s non-linearity, local mismatch

and Process/Voltage/Temperature(PVT) variations cumulatively contribute to the degradation of

the dynamic range. The analog signals also require bulky and power-hungry Analog-to-Digital

Converters(ADC), which reduce the energy efficiency and area density. Digital-CIM uses digital

adder tree inside the memory to perform accurate addition between accumulation results, but the

adder tree requires large area overhead [12][13][14].

Compute-In-MemoryVon Neumann Architecture

Cell Cell Cell

Cell Cell Cell

Cell Cell Cell

Memory
Computa�on 

Logic

Bandwidth 
limited

Figure 1.2: Von Neumann and Compute-In-Memory Architectures.

1.2 Analog Compute-In-Memory

An example of analog Compute-In-Memory array based on SRAM is shown in Fig.1.3. Each cell

consists of a storage element and a multiplier which performs a multiplication operation between

the stored weight bit and the input bit applied at word line. Two cascaded transistors form a simple

1-bit multiplier, which has a truth table similar to the AND logic gate. The multiplication result is

ON/OFF state.
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Figure 1.3: Multiplication operation of transistor-based analog CIM.

The accumulation is performed on a shared bit line where multiplier’s results are added as

analog signal such as current and charge. Fig.1.4 shows three main categories of analog CIM

differentiated by the types of analog signal: (I) Transistor’s current, (II) Resistive device’s current

such as (RRAM/MRAM), (III) Charge.

1.2.1 Compute Accuracy

Accumulation operation of the analog CIM suffers from errors from local mismatch and PVT

variations. A unified model is created to analyze the dynamic range of the computation at ADC’s

input as a function of mismatch properties for all three types of CIMs. Transistor-based CIM

(Type I) accumulate transistor’s current from multiplier cells, shown in Fig.1.4 (left). Transistor’s

nonlinearity causes the current to change when drain voltage is different. Furthermore, transistors

in different cells draw different current due to local mismatches. In 12nm CMOS technology,

saturation current of a minimal-sized transistor shows 3−5% variation compared to its nominal

current (∆I/I).

CIMs based on non-volatile devices (Type II) such as MRAM and RRAM can achieve much

higher density using an 1-Transistor 1-Resistor (1T1R) cell as the storage element, shown in Fig.1.4

(mid). The stored bit is represented as the resistance state (HIGH/LOW) and some non-volatile de-
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vices can even store multi bits. The 1T1R cell can be directly used as an multiplier, or sometimes,

two cells form a differential structure to keep a constant common-mode signal. Similar to tran-

sistor’s current, nonvolatile devices suffer from mismatch of device’s resistance, and, therefore

current. Besides, non-volatile devices only have a limited ratio between resistance states, while

transistors can be fully turned off to achieve a very large ON/OFF ratio. The small resistance ratio

diminishes the dynamic range and leads to computation errors.

Cell

Cell

ADC

i

i

ADC

i

i

Transistor Current Resis�ve Device Current Charge

ADC

Cell

Q

Cell

Q

Figure 1.4: Analog CIM using transistors, resistive devices and charge.

Charged-based CIMs (Type III) uses capacitors to store multiplication result and accumulates

charges on the shared bit line. It achieves significantly higher compute accuracy due to the good

matching properties of capacitors, but its cell area is much larger compared to other two CIM

types. Metal-Oxide-Metal (MOM) capacitors on CMOS’ backend can achieve mismatch property

(Q/∆Q) lower than 1% [15] and do not suffer from nonlinearity problems as transistors.

A unified model is created to compare the achievable dynamic range of these three types of

CIMs, assuming the errors are dominated by local mismatches. PVT variations and nonlinearity

will further degrade the dynamic range, so the results from this model can be used as an optimistic
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trend line. when N rows are turned on together, in the absence of device mismatches, the summed

signal can be one of at most (N+1) possible levels. Typically, a column ADC is designed to reliably

resolve these levels either in the current domain, or after converting into a proportional voltage, or

time domain. Fig.1.6 (left) shows the quantization levels assuming current or charges are converted

to voltage that has a LSB =VH −VL.

RT > 100

RT = 5

RT = 2

Transistor Current: 
20~30

Charge-Based
> 1000

RRAM :10~20 

STT MRAM : 5~10 

Dynamic Range (linear scale) vs. Mismatch

3% 

Quan�za�on Level

NVL

(N-1)VL+ VH

NVH

VL+(N-1)VH

Figure 1.5: Dynamic range of the CIM dot product at ADC’s input vs standard deviation of local
mismatch.

Invariably, mismatches between the cells in different rows degrade the effective resolution

and the total variation increases with the number of rows. Assuming that the mismatches are

independent zero-mean Gaussian random variables with a normalized standard deviation of σ , the

worst-case standard deviation of the MAC sum is σsum =
√

Nσ . To reliably achieve no degradation

of dynamic range, half the LSB should be greater than 3σsum. It can be shown that:

N ≤ [
1

6σ
(1− 1

RT
)]2

RT = IH/IL or QH/QL

(1.1)

The dynamic range is inversely proportional to the mismatch and the ON/OFF ratio, RT, as
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shown in Fig.1.6(right) which plots N vs σ for different values of RT=2, 5 or >1000. Now, three

types of analog CIMs can be compared. SRAM-based CIM that sums transistor’s currents has

>1000 cell ON/OFF ratio but the mismatch in the minimum sized FETs can easily be up to 3-5%

limiting operation to only about 8-32 simultaneously enabled rows. For non-volatile deviced-based

CIM, dynamic range of only 5−20 can be achived. STT-MRAM with TMR ratio of 200% has been

reported and corresponds to RT = 3 [16] . However, due to the larger resistance value of the access

transistor compared to the MTJ resistance and MTJ resistance variations, the effective bit cell

ON/OFF ratio is much lower. In fact, [17] claims that the tail bit in a large STT-MRAM array only

has 20% TMR ratio. Since both the access transistor and the MTJ contribute to mismatch, a 3%

σ -mismatch is optimistic and would limit the effective number of rows to 8. RRAM has a much

higher ON/OFF ratio (5-10) compared to STT-MRAM but a 3% device mismatch would limit the

number of rows to 20 during compute; state-of-the-art in RRAM based CIM has demonstrated 16

rows [18], [19]. In contrast, charge-based CIM using large MOM capacitors, which owing to their

relatively large size, achieve much better matching and can achieve more than 1000 parallel rows

computation without reduction in dynamic range [10].

1.2.2 Energy Efficiency

ADC Energy Consumption

The energy efficiency of the analog CIM is significantly limited by the power-hungry Analog-to-

Digital Converters (ADC). Assume the ADC has an Effective Number of Bits (ENOB) of NADC and

consumes an energy of EADC per input sample. For a CIM column with Nrow rows accumulating

in parallel, the ADC needs to quantize between Nrow discrete levels without sacrificing signal’s

dynamic range: 2NADC ≥ Nrow. The energy consumption of the CIM column normalized by the

number of inputs is:
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EADC

Nrow
≥ EADC

2NADC
(1.2)

This ADC performance metric is commonly reported and known as Walden Figure of Merit

(FoM)[20]. The Walden FOM of the ADCs implemented in 65nm is plotted in Fig.1.6 as a function

of sampling frequency. To match the throughput of CIM columns, ADCs typically operate at the

frequency >100MHz and the Walden FoM of the state-of-the-art works is around 20fJ/conv-step,

as highlighted in the red dotted box. Since one MAC is counted as two operations, the lowest

ADC energy consumption normalized by the number of operations is 10fJ/Op. Based on these

estimations, ADCs limit the CIM’s overall energy efficiency to 100 TOP/S/W for 1b operation

without considering any other energy consumption. For 8-bit operations and assume bit-serial/bit-

parallel scheme described in [21], the energy efficiency is limited to 1.56 TOP/S/W.
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Figure 1.6: Walden ADC figure of merit (fJ/conversion step) vs Fnyqs implemented in 65nm and
published in ISSCC and VLSI till 2023 [1].
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Trade Off Between Energy Efficiency and Precision

Charge-based CIM achieves much higher compute accuracy by using a large capacitor to improve

matching property, but its higher SNR comes with the sacrifice of energy efficiency. Since the

charge is shared on the bit line during accumulation, the parasitic capacitance of the bit line reduces

the signal’s amplitude by a gain factor : Csignal/(Csignal +Cpar), shown in Fig.1.7. In order to

improve matching property and avoid signal loss, the bit cell capacitance is chosen to several times

larger than the bit line’s parasitic capacitance. Charging the bit cell capacitance leads to higher

energy consumption compared to current-based CIM that only needs to charge bit line capacitance.

Energy efficiency of the CIM macro also trades off with the precision of ADCs. A tall column

with large number of bit cells accumulating in parallel can reduce the average cost of the ADC,

but sacrificing accuracy. Nrow rows in parallel requires ADC to have a ENOB of NADC ≥ log2 Nrow

to capture the full precision, assuming the accumulation is accurate. Reducing the ADC precision

for the applications that do not require high precision lowers the ADC energy per operation and

also saves macro area. The dominant energy cost of a CIM macro and the trade off with precision

is shown in Fig.1.7 (right). ADCs with full precision dominate the macro energy and require

sacrificing 2−3 bits of precision to bring down the cost. The charge-based compute uses bit cell

capacitors to significantly increase the accuracy, but charging the capacitor becomes a big part of

overall energy consumption.

1.3 Stochastic Computing

Stochastic Computing (SC) is a promising computing paradigm that becomes increasingly attrac-

tive in low-power deep learning applications on edge devices [22]. In SC, number is represented

as a random binary bit stream and the fraction of 1s indicates its value. This unique representa-
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Figure 1.7: An example of charge-based CIM highlighting the size of bit cell capacitor compared
to parasitic capacitance of the bit line (left); Dominant energy consumption of a CIM macro and
trade off with precision.

tion enables extremely compact SC computing logic that is much smaller than the conventional

digital logic. The SC multiplier is a single AND logic gate, and it is agnostic to the number

precision. Longer bit stream leads to higher precision, therefore the same hardware can support

programmable precision. To perform a multiplication equivalent to 8-bit binary precision, SC

multiplier is 100× smaller in area, shown in Fig.1.8. The area density of SC provides an unique

opportunity to increase parallelism and achieve a higher number of reuse of data. The area benefits,

however, does not come for free. The SC logic gates need to compute 2N cycles for N-bit precision.

SC hardware is fully digital, which is deterministic and robust against errors suffered from analog

compute. Due to these properties, embedding SC in memory is a very attractive solution that can

remove ADCs or digital adder tree, which are required components in traditional analog or digital

CIM solutions.

1.4 Voltage-Controlled MRAM and True Random Number Generator

Data movement cost poses a serious challenge of energy efficiency in conventional Von Neumann

architectures, and the problem is worsened by the increased number of parameters in deep learning

models. SRAM can achieve high read/write performance, but the SRAM cell occupies a large area
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Figure 1.8: Digital and SC multiplier.

and transistors scaling in advanced technology nodes becomes more challenging. Non-Volatile

memory such as Magnetic Random Access Memory (MRAM) has shown increasing popularity

among mobile devices and micro-controllers as a replacement for last-level cache or Flash memory

due to the dense 1-transistor bit cell. Spin-Transfer-Torque (STT) MRAM provides dense and non-

volatile storage solution, but its slow and power-hungry write operation makes it less advantageous

than SRAM, despite its nonvolatility [23]. Its high switching current also limits its density due to

the sizing requirement of the access transistor. Voltage-Controlled (VC)-MRAM, also referred to

as Magneto-Electric RAM (MeRAM), is a promising candidate to drastically improve the write

performance and array density [24][25], Fig.1.9. The voltage-based writing mechanism and high

resistance of VC-MTJ (larger than 10x of STT-MTJ) allows the access transistor to be minimal

size. The Voltage-Controlled Magnetic anisotropy (VCMA) effect at the interface of free and

barrier layer allows the voltage to modulate the perpendicular field. The free layer’s magnetization

will precess under the torque from in-plane field and switches to the opposite state in <1ns. The

free layer becomes stable when voltage is removed.

VC-MRAM’s special switching property can also be used to generate true random numbers,

which are highly demanded in cryptography, statistical simulation and probability-based comput-

ing applications. When a voltage pulse is applied across VC-MTJ, the free layer starts precession

and gradually converges to a metastable state due to damping effect. The switching probability
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Figure 1.9: Digital and SC multiplier.

of the VC-MTJ reaches 50% after a 2ns pulse and remains static for longer pulse width, shown

in Fig.1.9 (bottom right). The stable, but random, switching activities after a long voltage pulse

removes the requirement for calibration circuits, which cause large area and energy overhead in

many existing solutions.

1.5 Overview of This Thesis Research

The thesis consists of four chapters. Chapter 1 provides a brief introduction to the background and

main approaches we take to solve the research problems in my PhD.
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Chapter 2 presents a True Random Number Generator (TRNG) using Voltage-Controlled Mag-

netic Tunneling Junction (VC-MTJ). VC-MTJ is a new MRAM technology that uses Voltage-

Controlled Magnetism (VCM) effect as the write mechanism. It has potential to improve the write

performance by 10× compared to Spin-Transfer-Torque (STT) MRAM. Existing TRNG solutions

harvest entropy from metastablity in cross-coupled inverters [26], jitters in ring oscillators [27][2]

and random switching of STT MRAM [28][29]. Current solutions require calibration before ran-

dom number generation and bias correction post-processing, which hinder the possibility to gener-

ate large number of random numbers in parallel and operate well under system variation or noise.

VC-MTJ’s free layer converges to the metastable state when a voltage pulse is applied across the

MTJ. The longer the voltage pulse, the switching probability is closer to 50%, therefore removing

the requirement for a calibration procedure. We have demonstrated a TRNG using VC-MTJs that

passes the NIST tests. A light-weight digital bias correction algorithm is proposed to guarantee

robust operation against malicious attack.

Chapter 3 presents a Stochastic Compute-In-Memory (SCIM) accelerator for neural network

inference in image classification applications[30]. Embedding SC in memory is enabled by storing

pre-converted stochastic numbers in SCIM macros and computing in a bit-parallel way. The SC

accumulation uses OR logic, which does not require costly ADCs, and, therefore achieves very

high density. The OR-accumulation suffers from nonlinearity if inputs are large, but efficient

training has achieved comparable classification accuracy in CIFAR-10 and MNIST dataset as fixed-

point implementation. We have also proposed a computation skipping technique that reduce the SC

stream length by 4× when convolution layer is followed by a 2×2 average pooling layer. We have

built a complete Convolutional Neural Network (CNN) processor in 65nm using SCIM macros as

the matrix-multiplication cores and supporting 8-bit full neural network operations on chip. The

processor achieves peak energy efficiency of 7.96 TOP/S/W and the SCIM macro achieve energy

efficiency of 20 TOP/S/W. A 14nm chip is also demonstrated with only SCIM macros and achieves

energy efficiency of 35 TOP/S/W without average pooling function and 140 TOP/S/W with average
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pooling function.

Chapter 4 presents a Stochastic Compute-In-Memory (SCIM) accelerator for high-speed object

tracking application using event camera. The SCIM accelerator storing the pre-converted stochas-

tic numbers can achieve high energy efficiency, but it requires large area: N-bit number requires

2N macros if computation skipping technique cannot be used. This work proposed embedding

Stochastic Number Generator (SNG) in memory to enable storing binary numbers and SC stream

is computed bit-serially. SCIM macros do not require ADCs. Increasing the number of multiplier

cells sharing the same weight can increase throughput per area and wouldn’t cause big energy or

area overhead. The weight stochastic numbers from the SNG output are shared by 32 SC multiplier

cells, which maximize a combined performance metric between energy efficiency and throughput

per area. The SCIM macros are used to accelerate a filter-based object tracking algorithm for event

camera and achieves 278M events/s. An early termination technique is proposed to skip computa-

tion with high-sparsity inputs, which improves both throughput and energy efficiency. A complete

object tracking pipeline is implemented and shows very high tracking accuracy.
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Chapter 2

True Random Number Generator Using Voltage-Controlled MTJ

True Random number generators (TRNG) are key components in cryptography applications. With

the advent of the quantum computing, many of the traditional cryptography algorithms may be

impaired or broken in a reasonable number of tries. To prevent security problems in the post-

quantum cryptography, much longer keys are required [31]. This requires the TRNG hardware

to have higher throughput and lower energy cost. Previous works have demonstrated hardware

random number generators in CMOS technology using inverter’s metastability [26] [32] and jitter

in a ring oscillator [2] [27]. Most of them require dedicated circuit with large and power-consuming

calibration and post processing circuits to remove system variations. The memory based TRNG

reduces the cost of energy and area by reusing the memory array to generate random numbers.

Previous works have explored TRNG based on STT-MRAM [28] [29], which exploits metastability

in a current controlled spin-transfer-torque (STT) MRAM. However, the switching probability of

the TRNG is highly sensitive to the amplitude and duration of the critical current. Given inevitable

device variability, extensive calibration may be required to find qualified devices. Besides, the STT

MRAM suffers from large energy consumption and limited endurance due to large write current.

To overcome those issues, we propose an in-memory TRNG using Voltage-Controller MRAM
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that does not require calibration of the write pulse. It improves energy consumption and endurance

by having 50× larger resistance area (RA) product than STT-MRAM. Furthermore, a new bias-

correction lightweight digital circuit is proposed to ensure high speed and robust randomness under

potential magnetic field interference.

2.1 Overview of Existing Solutions

.

2.1.1 Metastability-based TRNG

The metastability of cross-coupled inverters can be harvested to generate random numbers and

several metastability-based TRNGs have been successfully demonstrated in CMOS technology

[26] [33] [34] [32] [35]. When cross-coupled inverters are enabled, usually by switching on the

supply voltages, current from two inverters is racing to charge up their outputs. Thermal noise and

local mismatch between inverters cause one inverter to charge its output faster than the other, and

under the influence of the positive feedback, the inverter pair eventually settles to a stable state.

Switching of the inverter can be extremely fast even under a racing condition, which provides a

high throughput. The challenge of the metastability-based TRNG is to overcome the deterministic

local mismatch between inverters. Complicated calibration circuit or post-processing circuit are

required to remove the effect of mismatch [26] [33]. The TRNG demonstrated in [26] uses a control

loop to program the delay of each inverter’s start-up time, which requires a dedicated calibration

processor to generate the configuration bits, shown in Fig.2.1. The system achieves throughput

of 2.4Gbps and energy efficiency of 2.9pJ/bit. Another work [32] proposed a self-compensated

solution to remove the inverter’s mismatch that does not need a calibration loop. The large time
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constant of the mismatch compensation circuit leads to low throughput (10Kbps), but the circuit

achieves a high energy efficiency of 0.186pJ/bit by using a 0.3V supply.

CLK

delaydelay

Calibra�on 
Circuit Calibra�on bits

Latch Based TRNG 

Figure 2.1: Concept of Metastability-based TRNG.

2.1.2 Ring Oscillator Based TRNG

Ring oscillator (RO) is an essential frequency generation block in many hardware systems. It uses

compact digital logic gates, and, therefore has very compact layout. The phase noise performance

is very poor compared to LC oscillator [36], which becomes an advantage, however, in generating

true random numbers. The original RO-based TRNG uses an slow and uncorrelated clock to sam-

ple the fast clock generated from RO, shown in Fig.2.2. This solution leads to low throughput due

to a long time required to accumulate jitter to achieve high entropy. For example, jitter that causes

0.01% frequency difference would require a slow clock that is 10000× slower to capture random

phase changes. A TRNG based on this concept is demonstrated by IBM and used in the POWER7

processors, achieving a throughput of 2Mbps [37].

Other researchers have proposed solutions to increase the throughput of RO-based TRNGs and

achieve robust operations under supply noise or PVT variations [27] [2] [38]. Researchers of [27]

proposed to detect the beat frequency, ∆ f , of two free-running ring oscillators. The beat frequency

is used to sample a counter that is running at the speed of the RO frequency. To use the same
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Figure 2.2: Concept of RO-based TRNG using a slow clock to sample fast RO.

example shown in the last paragraph: the jitter causes a 0.01% change of the main RO’s frequency

and the beat frequency between two ROs is 1% of the main RO’s frequency. A phase change can

be detected only 100× slower than the RO frequency, faster than the original solution. The ROs

require a calibration loop to set the beat frequency in the desired range to achieve a high entropy

and prevent overflow of counters. The raw random numbers generated from ROs are processed by

a simple Von Neumann bias correction circuit and achieves a throughput of 2Mbps. The energy

efficiency is 66pJ/bit [27].

Other researchers propose to start up the RO at 2× or 3× of the RO frequency by injecting

edges at the intermediate stages and generate random numbers by digitizing the time it takes for

the injected edges to collapse and return to stable 1× frequency [2] [38], shown in Fig.2.3. The

TRNG with 2× start-up frequency achieves 2Mbps and 23pJ/bit. The TRNG with 3× start-up

frequency achieves 23Mbps and 23pJ/bit. Still, the TRNG requires a calibration loop to ensure

that the RO frequency is within the desired range to account for system variations. To improve the

robustness of the RO-basd TRNG in a power supply attack, researchers of [39] proposed to use

differential RO to achieve better immunity to supply noise. It achieves throughput of 9.9Mbps and

energy efficiency of 42pJ/bit.
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Figure 2.3: Diagram of the RO-based TRNG proposed by [2].

2.1.3 Memory-Based TRNG

Dedicated TRNG requires substantial area when a large number of true random numbers are

demanded and researchers have proposed to reuse memory array to generate random numbers

[28][40] [41] [29] [42]. Researchers of [42] uses the leakage current of an SRAM’s column to

generate random numbers. When the SRAM is idle, leakage current from the SRAM cells will

discharge the bit line if the bit line buffer is disabled. The time for the bit line to reach a threshold

is random due to the noise current. Since the leakage current is small, it takes long time to discharge

the bit line. The TRNG achieves throughput of 3.6 Mbps and energy efficiency of 9.6pJ/bit [42].

[29] and [28] explore using Spin-Transfer-Torque (STT) MRAM to generate random numbers.

STT MRAM shows random switching behavior when the write pulse is controlled at the preferred

amplitude and duration. Researchers of [29] uses an off-chip calibration feedback loop to tune the

write pulse in order to achieve random numbers with probability close to 50%. The calibration

setup requires very fine control of the pulse width. [29] reported sub-50ps resolution required by

the pulse width tuning circuit. Instead of randomly switch the STT MRAM, researchers of [28]

uses the time to deterministically write the STT MRAM to generate random numbers. A compara-

tor detects the moment when the MTJ state is changed and samples the counter clocked by a ring

oscillator running very fast. The TRNG achieves throughput of 66Mbps and energy efficiency of

18pJ/bit. A calibration loop is require to set the write time in the desired range in order to prevent

overflow of counters.
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Figure 2.4: Energy and throughput of existing TRNG works.

2.1.4 Performance Overview of Existing Solutions

The performance of the existing TRNG solutions are compared and shown in Fig.2.4. The main

performance metrics are energy consumption and throughput. The metastability-based TRNGs

achieve both highest throughput (>100Mbps) and lowest energy consumption (<10pJ) because

the cross-coupled inverters can switch at a very fast speed and draws very small dynamic power.

This class of solutions, however, require the most complicated calibration process. When a large

number of TRNGs are required, the calibration process might take a long time if all of them

share the same calibration circuits. When the voltage or temperature conditions are changed, the

calibration process is required again. The ring oscillator-based TRNGs have a low throughput

(<10Mbps) and consumes significantly more energy (10−100pJ). The jitter in the RO requires

a long time to accumulate to a detectable phase change, which is also the reason it consumes

much more energy. The RO-based TRNG requires some calibration process in order to prevent

overflow. The memory-based TRNG is a hybrid class since each type of device has a different
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mechanism to generate random numbers. The current memory-based TRNGs show performance

between ring oscillator and metastability-based TRNGs. Energy consumption close to 10pJ/bit

and throughput close to 100Mbps are demonstrated. Since the memory array is repurposed for

the TRNG application, only a few circuit blocks are needed besides those used in normal memory

operations.
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Figure 2.5: 1T-1MTJ cell; Voltage-controlled switching.

2.2 Voltage-Controlled Magnetic Tunneling Junction (MTJ)

2.2.1 Device Mechanism and Properties

Voltage-Controlled Magnetic Tunneling Junction (MTJ) uses Voltage-Controlled Magnetism

(VCM) as the switching mechanism to achieve much faster speed compared to Spin Transfer

torque (STT) [25][43]. The VC-MTJ has similar device structure as STT-MRAM but requires

a thicker MgO layer to enhance the VCM effect and suppress STT effect, as shown in Fig.2.5.

When a voltage is applied across the VC-MTJ, it instantly eliminates the Perpendicular Magnetic

Anisotropy Field(HPMA). Due to the torque between free layer’s magnetization and an in-plane

reference field, the free layer will start a damped precessionas shown in Fig.2.5. If the voltage pulse

is removed after half a precession period e.g., when the free layer magnetization reaches t2 from
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t1, HPMA will recover to the opposite direction and the free layer becomes stable. The precession

is ultra-fast and previous works have shown 0.7ns switching speed [25].

Figure 2.6: VC-MTJ film stack.

Figure 2.7: (a) R-H curves of free layer with various gate voltages. (b) Voltage dependence of
thermal stability factor (∆).

In this work, we have fabricated an array of VC-MTJs on an 8-inch silicon wafer. The film

stack consists of a CoFeB free layer, CoFeB/W/Co fixed layer, and MgO tunneling barrier, shown

in Fig.2.6. The MTJ pillars are patterned to the diameter of 80nm after 400°C annealing. Due to

the thicker MgO layer, the RA of 200 Ω×µm2 is achieved, which is about 50x larger than the STT-

MRAM [44]. An external magnetic bias field is given to use as a processional axis and compensate

for the fixed layer’s stray field. Hysteresis loop for the free layer at various bias voltages are shown
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in Fig.2.7(a). Anti-parallel state’s resistance of 65K ohm and TMR of 160% are achieved. The

voltage-controller magnetic anisotropy (VCMA) can be extrapolated from the thermal stability vs

voltage curve [25], shown in Fig.2.7(b). The VCMA coefficient of 41.5fJ/Vm is measured and

corresponds to a write voltage of 1.4V.
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Figure 2.8: Comparison of stochastic mechanism between STT-MRAM and VC-MRAM.

2.2.2 Using VC-MTJ as Random Number Generators

The VC-MTJ has the unique property of converging to metastability asymptotically without the

requirement of any calibration, making it a perfect solution of generating true random numbers

inside the memory. A comparison of the random number generation mechanism between STT-

MRAM and VC-MRAM is shown in Fig.2.8. STT-MRAM rely on a critical current that has a

pre-determined amplitude and pulse width to achieve metastability. High resolution timing control

of the write pulse for each device during the operation or calibration ahead of the operation is

needed to achieve high entropy [29]. In contrary, VC-MRAM does not require calibration before

or during the operation. When a voltage is applied, the free layer’s magnetization precesses along
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the in-plane axis. It oscillates between P and AP state and asymptotically converges to the in-

plane axis due to damping effect. The longer the voltage pulse is, the closer it is aligned to the

in-plane direction, which corresponds to 50% probability. After the voltage pulse is removed, the

free layer’s magnetization is randomly switched to P or AP state under the influence of the thermal

noise. The measured switching probability approaches 50% after the voltage pulse is applied 3n

second, as shown in Fig.2.9.

Figure 2.9: Switching probability vs pulse duration; VC-MTJ based TRNG architecture.

VC-MRAM makes the in-memory true random number generation of multiple rows possible

when high throughput is required. The array arrangement of the memory makes only one row of

the bitcells available for read or write at a time. Since STT-MRAM requires a calibration for each

individual device inside the memory, the multi-row in-memory operation is not possible to achieve.

However, since VC-MTJ does not need calibration, devices in multiple rows can generate random

numbers at the same time. In a multi-row operation, several wordlines turn on together, as shown

in Fig.2.9(right). The bitcells on the same bitline share the same write pulse. A longer pulse can

make sure that most of the bitcells generate high-entropy random bits even if device variations are

considered. A post processing circuit can remove any potential bias during read out. The multi-row
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in-memory RNG can significantly increase the throughput with no extra hardware cost.

2.3 VC-MTJ Write and Read Operation
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Figure 2.10: VC-MTJ write operation.

Raw random numbers are first generated by applying a long voltage pulse across the VC-MTJs.

The Voltage-Controlled Magnetism (VCM) based write is uni-directional: the voltage in one polar-

ity reduces the Perpendicular Magnetic Anisotropy (PMA), which is condition to switch the MTJ;

the voltage in the opposite polarity can enhance the PMA and makes the magnetic moment more

stable. In an VC-MTJ array the voltage pulse is applied to the source line (SL) during write op-

eration, while current is sensed at the bit line (BL) during read opeartion, shown in Fig.2.10. The

write pulse for the random number generation requires much longer duration than the determinis-

tic write, and, therefore, can be efficiently generated using digital circuits. A counter generates a

voltage pulse with tunable pulse width, which is synchronized with the system’s clock. A tri-state
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buffer applies the voltage pulse on SL. It can be optionally turned off when the memory is idle

to minimize the leakage current. The memory controller can turn on a single device or multiple

devices togther by controlling the word line drivers to support high-throughput options.
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Figure 2.11: VC-MTJ write operation.

The conventional voltage-based sense amplifier compares the voltages between the MTJ’s bit-

line and a reference bitline. However, the speed of sensing is limited by the large RC constant of

the biltine parasitic capacitance and the MTJ resistance. The current sense amplifier can achieve

faster speed by a common-gate stage which has a lower parallel resistance between MTJ and com-

mon gate stage’s input impedance, therefore achieving lower time constant. The read operation’s

scheme and timing diagram are shown in Fig.2.11. A feedback amplifier regulates the bitline volt-

age and reduces the SA’s input impedance by the loop gain. The difference between the MTJ and

reference’s current is amplified at the read node V0 that has much smaller capacitance. During the

precharge phase, the bitline is pre-charged to a bias voltage. Then during the voltage-developing

phase, the bitline voltage is kept constant at Vbias by the regulator. When the read switch is turned

on, the current from the selected MTJ cell is passed to the read node V0. The pFET connected to

V0 copies the current from a reference branch that sets the current at the middle of the MTJ’s P
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and AP state. The currents between the MTJ and reference cell are subtracted and amplified at the

end of voltage developing phase. In the latch phase, a voltage comparator compares V0 and V1

and latches the result to VDD or GND. A fast 5nsec sensing speed is achieved in the presence of

large ( pF) bitline capacitance due to the small time constant at V0.

2.4 Digital Bias Correction Circuits Using Stochastic Number Generator

In order to guarantee robust operation under system variation and potential malicious attacks, we

propose a light-weight digital bias correction circuit to process the raw random numbers generated

from VC-MTJs. Although the ideal switching probability after the metastable state of the VC-MTJ

is 50%, multiple sources can cause a probability bias. For example, the stray field from the fixed

layer may not be completely compensated by the external field. Malicious attackers may also apply

an interference magnetic field externally to disturb the TRNG. The residue field can cause the free

layer to bias towards a state, and thus causing probability errors in the random number output.
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Figure 2.12: Bias correction circuit using binary-weighted stochastic number generator.

The proposed bias correction circuit is shown in Fig.2.12. The core of the bias-correction
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circuit is a Binary Weighted Stochastic Number Generator (BW-SNG) [45]. It is originally used

to convert binary to stochastic numbers for applications of Stochastic Computing (SC) [46]. The

BW-SNG can almost accurately convert a multi-bit binary number into a random bit stream such

that the fraction of one is equal to the binary input. At every cycle, a raw random number (RN) is

shifted into the buffer and converts a binary number (b) to random bit stream at OUT . Every 8-bit

raw random numbers (RN0−7) are used as the control signals for a chain of 8 multiplexers. The

0-selected input signal is the output from the previous multiplexer and the 1-selected input signal

is each bit of the binary number b0−7. Assuming the raw random numbers are Independent and

Identically Distributed (I.I.D.), the output of the BW-SNG is a stochastic bit stream with probability

represented as Equation.2.1.

PSNGOUT (b,PRN) =
8

∑
n=1

b8−n ×PRN(1−PRN)
n−1 (2.1)

PRN : probability of the raw random numbers, assuming I.I.D. conditions.

The probability tracking circuit in the feedback loop counts the number of 1s in 256 output bits

serially and compare the probability with 50%. Binary number b is added or subtracted by 1 based

on the comparison result until the output probability is close to 50%. The SNG OUT’s probability

(PSNGOUT ) is a function of b and PRN . Assume certain PRN , Fig.2.13 (top) plots PSNGOUT vs. b for

PRN = 0.3, 0.4 and 0.5. The binary number b is initialized at 0.5 (1000000), then the feedback loop

will find the closest solution for the optimization problem defined in Equation2.2:

argmin
b
{Max(PSNGOUT (b,PRN)−0.5,0)} (2.2)

The discontinuity of the output probability in the Fig.2.2(top) shows that even if the feedback

loop converges to a local minimal, the corrected output might still have small probability errors.
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Fig.2.2(bottom) plots the probability error (PSNGOUT − 0.5) vs. PRN . The error probabilities are

mostly below 0.3% across all bias range. Better bias correction results can be achieved by using

BW-SNG with higher precisions. Fig.2.2(bottom) also plots the error correction results using a

10-bit and 12-bit BW-SNG, which can achieve errors well below 0.1%.
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Figure 2.13: (Top) PSNGOUT vs. b for PRN =0.3, 0.4, 0.5; (Bottom) Probability error compared to
50% after correction vs PRN .

2.5 Measurement and Evaluation

The VC-MRAM based TRNG is demonstrated by having the MRAM array circuitry fabricated in

65nm CMOS technology and VC-MTJ devices fabricated on another die. The core circuit occupies
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Figure 2.14: Photograph of TRNG chip and testing setup.
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Figure 2.15: Correction output probability and b vs correction iteration (left); Autocorrelation
function of streams corrected from multiple biases (right).

an area of only 20µm×70µm. Eight VC-MTJ devices are connected in a column and wire-bonded

with the CMOS chip, shown in Fig.2.14. Multiple VC-MTJs have been tested with the CMOS chip.

The device properties of the VC-MTJ is summarized in Fig.2.16(right). It has a TMR of 150% and

VCMA coefficient of 41.5fJ/Vm.

For each VC-MTJ, we collected multiple 2M bit random number streams for the NIST 800-22

randomness test. All VC-MTJs pass the NIST test. Fig.2.16(left) shows a summary of the NIST

test results for two example devices. To test the bias correction circuit, we deliberately create a

probability bias in the raw random numbers using a external magnetic field. Fig.2.15(left) shows

the probability of the corrected random numbers and the binary weighted number b vs correction

iterations during the probability tracking process. The raw random numbers are biased at 40% at

the beginning. As the binary weighted number starts to increase, the output probability increases

correspondingly and reaches a stable state of 50% probability within the first 20 cycles. Several

different bias fields are also tested to show that probability tracking circuit can work in a wide range

of raw random number bias probabilities. Fig.2.15(right) shows the autocorrelation function of the
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three corrected random bit streams biased at different starting probabilities. They are bounded

within the threshold assuming that the bit streams are white noise with 95% confidence level.

Figure 2.16: NIST 800-22 test results; Summary of VC-MTJ device properties and TRNG perfor-
mance.

The random number output has a throughput of 400Kb/s and consumes energy of 135pJ/bit.

The throughput and energy efficiency are limited by the large parasitic capacitance of the I/Os

between chip and VC-MTJ devices. The performance is expected to significantly improve if the

VC-MTJs are integrated with CMOS.
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2.6 Conclusion

In this work, we demonstrate a TRNG using Voltage-Controlled MTJs that don’t need calibration

of write pulse. The dynamic properties of VC-MTJ is investigated. We also show a light-weight

digital bias correction circuit that can correct from a wide input bias range. Furthermore, the

potential of using VC-MRAM as a in-memory random number generator is explored as a high

performance solution.
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Chapter 3

An ADC-Less Stochastic Compute-In-Memory CNN Processor

3.1 Introduction

Deep Neural Networks (DNNs) have been widely used in the applications of computer vision,

voice recognition and natural language processing [47] [48]. Deploying deep learning algorithms

on mobile edge devices can significantly reduce decision latency and protect users’ privacy, but

the edge device’s limited energy budget poses a big challenge on the hardware’s energy efficiency.

DNNs use a large number of convolution layers and parameters to improve accuracy, which leads to

increasing model sizes. State-of-the-art models for ImageNet dataset require >100 MB of param-

eters and >109 of multiplication & accumulation (MAC) operations[49]. A general deep learning

accelerator such as GPU and FPGA can process large DNN models on a workstation. It accom-

modates a wide range of applications and programmable computation precisions for training and

inference. However, GPUs require a large power consumption that might exceed edge devices’

power budget.

Recent works proposed custom deep learning accelerators for resource-constrained edge de-
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vices. The accelerators can achieve much higher energy efficiency for low-precision and inference-

only neural network applications. [8] proposed a digital deep learning accelerator that uses efficient

data flows to maximize data reuses in DNNs and significantly reduces the off-chip memory access

costs. The accelerator builds an array of processing units with fixed point computation logic and

local scratch pads. However, data movement costs from the on-chip memory dominates the overall

energy consumption.
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Figure 3.1: High level diagram of a Stochastic Compute-In-Memory macro, comparison between
SCIM and analog CIM. .

Compute-in-Memory (CIM) accelerator for deep learning is an emerging solution that pro-

vides high energy efficiency by embedding computation logic inside the memory array to reduce

the data movement cost. The custom designed CIM macros are used for both memory and compu-

tation. During computation, multiple rows are activated at the same time to perform matrix-vector
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multiplications. Many recently proposed CIM solutions are based on computing in analog do-

main and converting to binary results by Analog-to-Digital Converters (ADC). Authors of [9] and

[11] proposed accumulating bit cell’s current on the bit line. However, the computation accuracy

is significantly limited by the transistor’s local mismatch and nonlinearity. Although large num-

ber (64−128) of rows are activated in parallel, only 3 4bit accurate computation accuracy can

be achieved per dot-product operation. ADCs also cause large area and energy overhead. Other

researchers have proposed charge-based compute [10] using metal-based capacitor embedded on

top of the memory’s bit cell at the back end. Multiplication results are stored as charges on the

capacitor, and then accumulated on the bit line. Due to the large size of the capacitor, much better

matching property is achieved. More than 2000 parallel rows and 8-bit computation accuracy are

demonstrated. However, charging the bit cell’s capacitor causes a significant amount of energy.

Although capacitors have good matching properties, author of [50] found out that global process,

voltages and temperature variations can greatly degrade the computation accuracy.

To alleviate analog compute’s error and energy overhead problems, researchers have proposed

robust digital Compute-In-Memory macro [50][12]. 1-bit multiplication is done in the bit cell and

accumulated by in-memory digital adder tree. It achieves accuracy close to fixed-point computa-

tion, but adder trees degrade macro’s density. Stochastic Computing (SC) is a digital probabilistic

computing framework that uses random bit streams to represent numbers and simple bit-wise digi-

tal logic (AND, OR) gates to compute in the domain of probability. Previous work [51] has shown a

deep learning accelerator using standard cell’s digital circuit to implement SC. It has demonstrated

significantly improved computation density and energy efficiency compared to digital accelerator.

In this work, we propose Stochastic Compute-in-Memory (SCIM) deep learning accelerator which

combines the benefits of SC and compute-in-memory architecture. Due to digital computation

of SC, the CIM macro eliminates the large and power-hungry analog blocks: DACs/ADCs. The

OR-based SC accumulation is embedded as the memory’s wired-OR structure on the compute line.

The accumulation is a 1-bit operation, and therefore does not cause area overhead. An efficient
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training for SC is performed and achieves comparable accuracy to INT8 on MNIST and CIFAR-

10 classification. The DNN accelerator achieves energy efficiency up to 7.96TOPS/W, which is

2-3x higher than analog CIM solutions. The main contributions of our works are: 1) A bit-parallel

dataflow that maps bit-wise stochastic computing to SCIM macros in parallel. 2) Storing pre-

converted stochastic numbers in memory to achieve massive reuse of stochastic number generator

3) Computation skipping technique to reduce SC stream length when convolution layer is followed

by average function.

3.1.1 Stochastic Computing

Stochastic Computing (SC) represents numbers and performs computation in the probability do-

main. The value of a number is represented by the probability of ones in a random binary bit

stream. For example, in a stochastic stream of 8 bits A=01000001, 2 bits are one and 6 bits are

zero. It represents the value of 2/8, Fig.3.2. Each bit represents an equal weight of 1/N, where N

is the stream length. The position of the one should be randomly located in the bit stream to avoid

correlation between different bit streams during computation.

The conversion from binary to stochastic numbers is done by Stochastic Number Generator

(SNG) as shown in Fig.3.2. A randomness source is required. True random number generator

(TRNG) can generate uncorrelated bit streams, but the high energy and area makes it impractical

to implement. Pseudo-random number generators such as linear feedback shift register (LFSR) are

commonly used. To avoid correlations between different SNGs, LFSRs with different polynomial

functions or seeds are used, which can be easily programmed on the chip. The conversion can be

implemented by comparator or a chain of multiplexer.

If the location of the ones in the SC bit stream are chosen randomly, the multiplication arith-

metic of SC follows the rules of probability: Prob(A∩ B) = Prob(A)× Prob(B). This can be
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Figure 3.2: Number representation and basic building blocks of Stochastic Computing (SC).

achieved by AND gate in hardware. Addition can be implemented by multiplexer and OR gates

[52]. Multiplexer achieves the scaled addition between input streams. The control bit randomly

selects between the inputs, which performs an average function. When addition is performed be-

tween a large number of inputs, mux-based addition leads to small output amplitude due to the

scaling factor. APC accumulates and adds the input streams by binary adder tree to generate bi-

nary output. Although it performs accurate addition, the adder hardware costs large area and energy

consumption. The OR gate performs approximate addition follows the union of two random vari-

ables Prob(A∪B) = Prob(A = 1)+Prob(B = 1)−Prob(A∩B)≈ Prob(A)+Prob(B). Although

the OR-based accumulation does not implement the accurate addition function, a previous work

proposed to account for the nonlinearity of the OR accumulation in neural network’s training [46].

Previous works of SC proposed training methods to improve the computation errors in accu-

mulation and stream generation when used in deep learning [46][53]. SNGs using pseudo random
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number generator create deterministic bit streams given the same inputs and stream. The training

model can learn the errors in the fixed stream and also allow moderate sharing of random numbers

between SNGs without degradation to the accuracy. State-of-the-art classification accuracy has

been demonstrated for MNIST/CIFAR-10 data set with deep neural network that is comparable to

8-bit fixed-point implementations.

3.1.2 Motivation and Challenge of SC

Memory access consumes significantly higher energy than conventional binary computation. Re-

ducing the number of on-chip and off-chip memory access is critical to achieve higher energy

efficiency. Previous work of digital accelerator [8] has significantly improved energy efficiency by

maximizing the reuse factor and reduces off-chip memory access. The energy consumption, how-

ever, is still dominated by the on-chip memory access. Stochastic Computing uses tiny bit-wise

logic gates to achieve extremely high parallelism and further reduce the on-chip memory access.

The previous work [8] has built a highly programmable Stochastic Computing deep learning ac-

celerator using fully synthesizable standard cell digital gates. The density of the multiplication and

accumulation (MAC) achieves 38.4K/mm2, which is >10x higher than fixed-point logic. The area

includes all the necessary components for stochastic number conversion ,buffers and control logic.

Compute-In-Memory (CIM) architecture can achieve even higher reuse factor for two rea-

sons: 1) No memory access is required for weight since computation happens inside the memory.

Reloading of the CIM macro is necessary for larger network, but the cost can be reduced by a large

reuse factor. 2) CIM breaks the bandwidth limits of the Von Neumann architecture by activating

multiple rows or entire array for computation. The dense array can achieve very high parallelism.

Combining the benefits of Stochastic Computing’s light-weight digital computation with CIM’s

low data movement cost is an attractive solution. The Stochastic Compute-in-Memory (SCIM)
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accelerator embeds robust digital multiplication and accumulation circuits in the memory and does

not suffer from analog noise. The accumulated output is a 1b signal at logic level and does not

require large ADCs. Despite the benefits, there are a few challenges that need to be overcome:

1) Stochastic Number Generator (SNG)’s energy consumption is significantly larger than the SC’s

computation. A large SNG reuse factor is needed to reduce the average cost per operation. 2)

The stream length of the stochastic number representation increases as power of two with num-

ber precision. The long stream length degrades the energy efficiency and the throughput. 3) SC’s

OR-based approximate accumulation is a nonlinear addition function. An efficient model of the

accumulation function is needed during neural network training is required to achieve comparable

accuracy to integer.

3.2 Stochastic Compute-In-Memory Processor
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Figure 3.3: Architecture of Stochastic Compute-In-Memory (SCIM) accelerator.
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Figure.3.3 shows an overview of the CNN processor based on the concept of Stochastic-

Compute-In-Memory (SCIM). It has 32 SCIM macros that perform bit parallel processing of con-

volution between activations and weights in Stochastic Computing (SC) domain. The convolution

results are converted to fixed-point domain by the parallel counters. ReLU, max pooling and batch

normalization are performed in fixed-point. The layer outputs are stored in the output SRAM until

the next layer starts processing.

3.2.1 Bit Parallel and In-Memory Compute Data Flow

Conventional Stochastic Computing (SC) operates serially since the bit stream is generated one

bit at a time in sequence. Embedding bit-serial SC computation in memory requires also embed-

ding stochastic number generators (SNG), which might occupy a large area. To enable stochastic

computing-in-memory, entire bit streams can be stored in memory and computation will happen

in parallel. A bit-parallel and in-memory SC data flow is designed to store input bit streams since

activations are positive values and require less storage compared with weights. Unipolar stochas-

tic representation directly maps probability of ones to range of [0, 1], therefore only representing

positive numbers. Split-Unipolar SC representation is a simple way to use the difference between

two unipolar bit streams, positive and negative stream, to represent signed number between -1 and

1. Fig.4 shows an example. For a negative number: W=-2/8, the magnitude 2/8 is encoded in the

negative stream and the positive stream is zero. The probability difference between positive and

negative stream is -2/8.

The Multiplication and Accumulate (MAC) arithmetic of the split-unipolar stochastic bit

streams needs to account for the cross product between the operands’ positive and negative streams.

For neural networks, inputs to each layer are positive numbers. For example, the first layer’s inputs

are images with positive pixel intensities and the hidden layers’ inputs are the outputs of nonlin-
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ear activation function such as ReLU and the negative values are clipped to zero. Inputs only

need one unipolar bit stream to represent positive values. Weight parameters are signed numbers

and require both positive and negative streams of split-unipolar representation. The cross product

between input’s positive stream: a, and weight’s split-unipolar streams: wp/wn is illustrated in

Fig.3.4. Assume both input and weight are 1-D vector with K elements. Each element of input a is

multiplied with wp and wn by intersection AND logic: ak ∩wpk and ak ∩wnk, and then accumu-

lated by the union logic. The output streams of the two union operation are positive and negative

stream of output: outp and outn, which are the split-unipolar representation of the dot product’s

result.

Fig.4 shows how bit wise processing of the conventional SC MAC operation is mapped to

SCIM macros. Assume the stream length is N. Conventional bit-serial SC arithmetic process

1 bit at a time through the AND and OR gates. To perform stochastic computing in memory,

each SCIM macro stores one bit representation of the input vector: macro1 stores a1_t1 ∼ ak_t1,

where a1 ∼ ak denotes the k elements of vector a and t1 denotes 1st bit of stochastic bit stream.

Macro2 stores a1_t2 ∼ ak_t2 and macroN stores a1_tN ∼ ak_tN . Each 1-bit representation of the

weight vector is applied to macros: wp1_t1 ∼ wpk_t1 and wn1_t1 ∼ wnk_t1 are applied to macro-1.

wp1_tN ∼ wpk_tN and wn1_tN ∼ wnk_tN are applied to macro-N. The dot product between inputs

and weights are performed in the memory macros together. The bit-parallel processing unrolls the

bit-wise operation in space so that all the output bits are computed and available in one cycle.

3.2.2 Stochastic Number Generator

A bottleneck with conventional SC is the large energy cost of the conversion from binary to SNs.

Stochastic number generators (SNG) typically use pseudo-random number generators (PRNG)

such as linear feedback shift register (LFSR) as the randomness source. The LFSR-based PRNG
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consumes 25x more energy than an SC MAC unit, which only performs 1-bit in-memory AND and

OR operations. A large reuse factor of the SNG output is required to reduce the energy cost. Fig.5.

shows the diagram of the SNG circuit. Each register of the LFSR controls one multiplexer. The

multiplexers are cascaded, and each control signal selects between a binary bit of the input and the

output of the previous multiplexer, Fig.5. N multiplexers are required to convert an N-bit binary

number to stochastic bits. It can be shown that the SNG can almost accurately convert binary

numbers if two conditions are met: 1) Maximal-length LFSR is used as the randomness source

2) The order of the LFSR’s characteristic polynomial matches the bit width of the input binary

number [53]. An N-bit maximal-length LFSR will iterate over all the possible combinations of

N-bit numbers except zero and therefore has a period of 2N-1. Each N-bit combination is iterated

exactly once. The most significant bit of the binary number is multiplexed to the SNG output for

exactly 2N−1 times. Other bits are multiplexed with binary weighted frequencies: 2N−2, 2N−3, . . .

, 20, and therefore the frequency of one in the stochastic bit stream accurately represents binary

input. Since the accelerator performs 8-bit computation with 1 bit for sign and 7 bits for magnitude.

The LFSR size is chosen to be 7 bits. The demultiplexer at the output of the SNG selects between

xp and xn based on the sign of the binary input.

SNG for Input Loading

The SCIM macro stores the pre-generated stochastic bit stream of inputs. Fig.3.5 shows how the

per-column SNG supports both loading inputs and applying weights during computation. Each

column has an SNG and driver for bit lines: BL/BLb and Compute word lines: CPWLP/N. The

SNG converts the binary number X to split-unipolar stochastic representation: xp/xn. Since the

activations use unipolar representation, only xp needs to be stored in the memory. During input

loading, xp is sent to BL buffer, which drives BL/BLb and writes the xp to a bit cell. Each macro

only stores one stochastic bit of the activation. A parallel stochastic number generation scheme
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supports the bit-parallel SC processing shown in Fig.3.5. The LFSR state table characterizes the

changes in the shift registers at different cycles. To parallelize the SNG, each LFSR state is used

to initialize the LFSR in different SCIM macros: seed 1 for the 1st macro and seed K for the Kth

macro. The results of K SNGs in one conversion cycle are the same as a single SNG generating

for K cycles.
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The stored activation stochastic bits can be reused from sliding windows and different output

channels, shown in Fig.3.6. Assume the 2-D filter has the shape of RxR and there are M output

channels, the activation can be reused with the maximal factor of RxRxM. The SNG cost is lowered

by the same factor since SNG only consumes energy when activations are loaded into the memory.
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The actual activation reuse factor depends on the size of each layer and whether the SCIM macro

can support sliding windows across X and Y dimensions without reloading the activations. Our

proposed accelerator computes Y-axis sliding windows in parallel due to the parallel operation

of rows in the SCIM macro and X-axis sliding windows in serial. If the layer’s X dimension is

too large, the SCIM macro might not support sliding windows on the X axis without reloading

the activations into the SCIM macro. The activation reuse over output channels can be easily

supported with increased intermediate storage when the output channel size is large. Therefore, the

lower bound of the activation SNG reuse factor is: RxM. In our experiment with CNNs supporting

MNIST and CIFAR-10 classifications, the activation SNG reuse is >32.

SNG for Filters

The filters share the same SNGs as inputs. The binary filter coefficients are converted by SNGs

in different SCIM macros in parallel to stochastic bits. The compute port word line (CPWLP/N)

drivers buffer the split-unipolar bits xp and xn. All the rows in the SCIM macro operate in parallel,

and therefore the energy cost of filter SNG and CPWL driver is shared by the number of rows:

32. The comparison of the energy cost of the activation SNG, filter SNG and SNG without any

sharing is shown in Fig.3.6. Although the SNG energy is 25x higher than a single SC MAC unit,

the activation and filter SNG energy cost is reduced by more than 32x due to reuse.

3.3 Stochastic Compute-In-Memory Macro

The Stochastic Compute-In-Memory (SCIM) macro embeds simple digital SC computation logic

inside the memory to achieve high energy efficiency for matrix multiplication operations: AND

gates for multiplication and OR gates for approximate accumulation. Each 1-bit stochastic repre-

sentation of the activation is stored in the 10-T bit cell before the computation. The storage cell uses
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the standard 6-T SRAM cell design. The bit cell structure is shown in Fig.6 (bottom). Each pair

of cascaded nMOS transistors performs an AND operation between the stored activation bit and

a weight stochastic bit applied at the compute-wordline (CPWLP/CPWLN). The two multiplier

circuits in the bit cell perform multiplication between activation (a) and weight (wp/wn), which

correspond to one positive bit and one negative bit of a weight parameter. The shared compute port

(CPP/CPN) across a row realizes a wired-OR operation between 256 bit cells. The CPWLP/N is

routed in vertical direction and shared by all the bit cells in the same column. A simplified diagram

of SC MAC units of one row is shown in Fig.3.7 (top). The computation follows the operation of

the precharged pseudo-nMOS logic family. The timing waveform of the MAC operation is shown

in Fig.6. The compute port is initially precharged to VDD and all the CPWLs are grounded. Once

the computation starts, the compute port’s precharging pMOS transistor is turned off and CPWL

driver is enabled. If the OR accumulation result is zero, only leakage current will draw charges

from the compute port. PVT and corner simulations show that the compute port only drops 12mV

during the evaluation period. If at least one bit cell is conducting current, the OR accumulation

result is one and the compute port will be discharged towards ground. The slowest discharging

rate is when only one bit cell conducting current. The evaluation period is long enough for the

compute port to be fully depleted for the worst discharging rate to ensure a robust operation. A

simple inverter acts as a sense amplifier and buffer to provide tolerance to noise and coupling.

Once the compute port evaluation is done, the 1-bit result is registered in a flip flop. The macro

is 32 rows tall and 256 columns wide. Each row performs two 256-long dot product and the one

macro contains 16.4K MAC units.

3.4 Computation Skipping for Average Pooling

A computation skipping technique is developed to save both latency and energy when the convolu-

tion layer is followed by an average pooling function. The Pooling layer is a necessary component
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in neural networks to make the output features less sensitive to the location of the input and re-

duces layer dimension to save computation complexity. Pooling based on the maximal or average

value are both effective. Max pooling helps highlight the prominent pixel in the window while av-

erage pooling can smooth out the images. An averaging function can be implemented in stochastic

computing using simple multiplexer logic. Consider an average pooling window of K by K. It is

realized by a K2:1 mux that selects one of the K2 inputs randomly, Fig.3.8. The probability of the

multiplexer’s output is the average of input probabilities. For a 4-input average pooling function,

each stochastic input is selected for 1/4 of its sequence length. For each input stream, the uns-

elected stochastic bits do not contribute to the output and the computation for those bits can be

avoided to save energy and latency, which is originally proposed by [46] . Each input only needs

to compute for N/4 bits for an original N-bit stream. The shorter stream length equivalently scales

each input by 0.25 and the four inputs are added by accumulative parallel counters (APC).

Stochastic Computing’s energy consumption and latency increase exponentially versus compu-

tation precision due to its stochastic representation: N bit binary number requires 2N stochastic bits

and 2N evaluation of bitwise SC logic. In contrast, fixed point digital logic’s energy increases as

N2. An N-bit multiplier requires N2 of full adders. Analog based CIM commonly uses bit-parallel

bit-serial scheme to perform multi-bit multiplication [21], which also causes the energy to increase

quadratically. Weight bits are stored as 1 bit per column and compute in parallel, but input bit is

serially applied to the CIM macro in N cycles. For an N-bit computation, CIM requires N2 of in-

memory MAC and ADC evaluation. For 4-bit or lower precisions, the number of MAC evaluations

is comparable between SC and ADC-based bit-serial CIM (42 = 24 = 16). However, an 8-bit SC

computation requires 28 = 256 MAC evaluations, which is 4x larger than the ADC-based bit-serial

CIM.

A comparison of energy cost between CIM and SCIM macro is shown in Fig.3.9. The SCIM

macro’s energy cost is dominated by SNGs for input stochastic number conversion, counters for
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output binary conversion and in-memory SCIM MAC. The charge based CIM macro consumes

energy from input driver, charge based CIM MAC and column ADC. The energy consumption of

each block is normalized to 1-bit operation and plotted in Fig.9. The energy consumption of the

charge based CIM uses energy breakdown from [21] demonstrated in 65nm technology. The ADC

in the charge based CIM only accounts for 20% of the macro energy, but the ADC’s precision

is 3 bits less than the full dynamic range of the column dot product. If the ADC with the full
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dynamic range is used, its energy will increase by 8x and dominate other parts of the energy. After

summing up the components, the SCIM achieve 6x higher energy efficiency than CIM for 1-bit Op.

For higher precision, SC benefits diminish due to the longer stream length. For example, 8-bit SC

compute requires 256 1-bit Op, but CIM only requires 64 1-bit Op. The advantages of SCIM drop

to 1.6x for 8-bit computation. The average pooling reduces the stream length by 4x and makes

SCIM 6.4x more energy efficient than CIM.
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3.5 Efficient Micro-Architecture for CNN

The proposed SCIM CNN accelerator supports end-to-end operation for convolutional neural net-

work inferences and it is highly programmable to accommodate different layer topologies. In this

section, we introduce different micro-architecture designs that support efficient implementation of

CNNs.

3.5.1 Near-Memory Partial Binary Accumulation
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The near-memory accumulation circuit supports partial binary accumulation between rows.

Partial binary accumulation is a technique to improve accuracy by breaking large SC dot product

and add partial SC outputs using fixed point adders. The in-memory dot product of two vectors in

SC domain uses AND logic as the multiplier, then the multiplication results are accumulated by the

wired-OR structure of the SCIM macro’s compute port. The partial binary accumulator block has

32 rows, matching the height of SCIM macro. Each row has two row multiplexer circuits, a 1-bit

split-unipolar number decoder and a binary integrator circuit. The multiplexer can select every 8

adjacent rows to the accumulator’s input, which supports the row stationary dataflow discussed in

the next section, Fig.3.10. One multiplexer selects among the positive stochastic bit of the rows’

output (outp), and the other multiplexer selects the negative stochastic bit (outn). The split-unipolar

decoding circuits subtract 1-bit outn from outp. The 2-bit subtraction result is accumulated by the

fixed-point accumulation circuit.

3.5.2 Input and Row Stationary Dataflow for Conv Layer

The input activation’s stochastic bits are stored in the SCIM macro due to the shorter stream length

of the unsigned numbers compared to the signed weight parameters. An Input and Row Stationary

(IRS) dataflow is used to maximize the input reuse during the convolution. Instead of flattening the

3-D activation tensor into a 1-D vector, only the depth channel is fattened to the same dimension

as row so that rows can be reused during convolution sliding. Each activation row is stored in one

row of the SCIM macro. A total of 32 activation rows are stored. The weight tensor is flattened

in the same manner to keep the row dimension. Convolution operation prioritizes sliding across

Y direction because the physical structure of the macro allows multiplication between rows to

happen in parallel. Weight rows are applied to the macro serially in different cycles, which is

supported by a ping-pong structure of FIFO cyclic shift registers. Each register stores one row of

the weight kernel. The ping-pong structure enables computation and loading new weight kernels
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simultaneously to hide the latency of SRAM access. One FIFO provides weight parameters to

32 SCIM macros and the other FIFO loads the next kernel from SRAM. Once the computation

of one FIFO is finished, roles of two FIFOs are switched and the multiplexer will select the new

FIFO. The weight row is converted to stochastic bits by SNGs inside the macro and applied to the

compute port word line (CPWL). Each SCIM row performs a dot product between an activation

row and weight row. In the next cycle, FIFO register shifts and the next weight row is applied to

the macro. The row multiplexers shift the sense amplifier’s outputs to the next row’s partial binary

accumulator such that the row outputs are accumulated diagonally, as shown in Fig.3.11. The row-

wise convolution is done until all the weight rows are shifted from the FIFO. The row multiplexers

can select every 7 rows’ output, which support 3x3, 5x5 and 7x7 convolution kernel size.

Convolution layer’s dataflow is controlled by the on-chip finite state machine, which can be

broken down into three recursive FOR loops: (a) convolution sliding across rows, (b) convolution

sliding across columns and (c) computing different output channels. Sliding across rows (a) is

prioritized because of the row-parallel structure of the SCIM array. The order between column

sliding (b) and output channel (c) depends on the layer and kernel dimensions.

1) If the SCIM macro’s width is larger than the flattened kernel width, the macro’s row can

store activations of more than one convolution sliding windows. The column sliding is scheduled

first before loading a different weight kernel because sliding across the SCIM macro’s columns to

avoid reading new weights from SRAM. Since the kernel width is smaller than the macro width,

the weight kernel needs to be shifted to match the CPWL of a sliding window. This is achieved

by a programmable barrel shifter at the output of Ping-Pong FIFO registers, shown in Fig.3.11.

Other CPWLs not inside the sliding window are masked by zero. The shifting step for each sliding

window is calculated by a controller based on the current sliding location and stride. Once a kernel

has finished convolution over the stored input activation, the next kernel is applied by switching the

Ping-Pong FIFO. If the activation map’s size is larger than the SCIM array width, new activations
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need to load into the SCIM array to complete convolution over the entire activation map. Since the

kernel width is smaller than the SCIM array width, the SCIM array is under utilized and the energy

efficiency will degrade. This usually happens in the first few layers of neural networks when the

number of output channels is small.

2) If the SCIM array width is equal or smaller than the flattend kernel width, the current ac-

tivations stored in the SCIM array can only support one column-wise sliding window. Output

channels (c) loop will be scheduled first because the energy cost of reading new weight kernels

is smaller than loading inputs to the SCIM macros. To compute a different column-wise sliding

window would require accessing input SRAM and loading 32 rows of input activation to the SCIM

array. The kernel size (3x3 or 5x5) is much smaller than the height of activation map and therefore

requires less SRAM accessing and communication energy. The output channels are scheduled to

perform convolution over the current activations stored in the SCIM macros, then the SCIM array

will be reloaded with new activation. Since the entire array is utilized for computation, the energy

efficiency is the highest in this case. This usually happens for hidden layers in deep neural network

where the flattened activation map’s dimension is large.

3.5.3 Stochastic-to-Binary Conversion and Fixed Point Processing

The convolution outputs from the SCIM macros are converted to binary numbers in order to per-

form nonlinearity and scaling functions in fixed-point domain. The proposed accelerator performs

bit-parallel stochastic processing where each SCIM macro computes one stochastic bit of the con-

volution operation in parallel. The stochastic outputs are converted to binary numbers by an array

of parallel counters, Fig.3.12. Each SCIM macro produces 32 4-bit partial binary outputs. The

outputs corresponding to the same convolution result in all 32 SCIM macros are passed to a par-

allel counter, which adds 32 binary numbers and produces a 9b result. The parallel counter uses
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a binary tree architecture with 2-stage pipeline to reduce the impact on the overall latency. The

first pipeline register is placed after the third adder stage, which makes the delay of two pipeline

sections about the same.
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Figure 3.12: Parallel counter for stochastic to binary conversion; Fixed point domain processing.

After the convolution outputs from SCIM macros are converted to binary numbers, the output

processing functions such as pooling, batch normalization and ReLU are done in fixed-point do-

main, Fig.3.12. They are implemented in pipelined stages and do not influence system’s through-

put. The first step of the fixed-point processing is average pooling. The computation skipping

implemented in the Stochastic Computing domain reduces the stream length and therefore implic-

itly scales down the output value by the number of elements in the pooling window. To complete

the average pooling function, the scaled outputs within pooling window need to be added. This
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design supports a pooling window of 2 x 2 and the inputs to the average pooling’s adders are avail-

able at two different clock cycles. In the first clock cycle, the outputs from the parallel counters

contain one column of the output feature map and they are stored in the shift registers next to the

average pooling adders. The adjacent output feature map’s column is computed after the kernel

slides to the next column. Once the results of two adjacent output columns are available, the adder

sums four inputs from the shift register. The average pooling can also be bypassed to support layer

without the pooling function. The results are scaled with batch normalization’s scaling parameter

and then subtracted with bias. The batch normalization’s outputs are then processed by ReLU

function, which clips the negative values to zero. The outputs are loaded in the activation SRAM

on chip until the start of the next layer.

3.5.4 OR-Accumulation and Neural Network Training

There are two main sources of random errors in the proposed SC system: 1) OR-based nonlinear

accumulation function and 2) random bit stream representation generated from SNG. The OR-

based accumulation is a nonlinear addition function. Take a 2-input OR operation as an example.

If the two input stochastic bit streams have the probability of a and b, the output probability is

a+b-ab. When multiple inputs are accumulated by the OR-based accumulation, the output can be

derived as shown in the Fig.3.13, and approximately equals to 1− e−s , where s is the accurate

sum of all the inputs. The plot of OR-accumulator’s outputs vs accurate sum of the inputs is shown

in Fig.3.13 (top). The curve is close to a linear function in the range between 0 and 1. When the

inputs become large, the accumulation saturates at 1 and becomes nonlinear. The backpropagation

of the neural network training needs to account for the accumulation error. While modeling the

stochastic computing bit by bit is the most accurate way, it takes impractically large amount of time

to converge. We model the OR accumulation as a nonlinear activation function after an accurate

accumulation, as proposed in [46]. The error in random bit stream representation is modeled by
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using the exact LFSR sequence and SNG during training. Multiplication is also modeled using

AND operation between stochastic bit streams of input and weight. The multiplication outputs

are converted to floating point and accurately added. The details of modeling the errors in stream

generation is discussed in [53].
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3.6 Prototype Measurement Results

The accelerator chip is fabricated in 65nm CMOS technology, and a macro test chip is fabricated

in 14nm to better characterize the performance of the macro individually. The accelerator chip in

65nm has an area of 9.36 mm2. A die photo is shown in Fig.3.16. The activation and weight SRAM

are located at the bottom of the chip. 32 SCIM cores are placed in a 4x8 array and contain 260kb

in-memory storage and 520Kb of MAC units in total, which achieves 130Kb/mm2 MAC density.

The nominal voltage of the 65nm process is 1V. The macro’s read/write and dot product function

are verified at different supply voltage and operating frequency, shown in Fig.3.16. The maximal

clock frequency at 1V is 5MHz. It is limited by a problem of on-chip power delivery structure and

could achieve a much higher frequency and throughput given a more optimized design. The macro

is fully functional down to 0.7V supply with a clock speed of 3.2MHz. The area breakdown of the

SCIM core and whole chip is shown in Fig. 16. The SCIM core area is dominated by the bit cells

and the sense amplifers only occupy 2% of area. SNG and row accumulator accounts for 15% and

6.25% of the SCIM core area. Input and Weight SRAM accounts for similar area as SCIM cores

in the top level. The rest of the area is split among local register buffers, parallel counters, layer

processing circuits, FSM and JTAG interface.
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Figure 3.14: 65nm and 14nm Chip micrograph.

CNNs for MNIST and CIFAR-10 datasets are demonstrated on the 65nm accelerator chip, and
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the performance is summarized in Table.3.1. We designed and trained CNN networks that can

keep all parameters on the chip during computation. The measurement of energy consumption in-

cludes all components on the chip and there is no off-chip data movement during computation. For

MNIST dataset, LeNet-5 topology is used. There are two CONV layers, each followed by average

pooling to take advantage of SC’s computation skipping and three fully connected layers. The clas-

sification results of the MNIST dataset achieve accuracy of 99.1% over 1000 test images, which

is close to the training accuracy. Activation and weight both have 8-bit precision. Due to small

size of filters used in LeNet-5, the peak macro utilization is only 5.1% and it causes significantly

degradation of energy efficiency. The peak system energy efficiency for MNIST classification is

0.35 TOPS/W.

For CIFAR-10 dataset, we designed a 4-layer network called TinyConv-4. There are three con-
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CIFAR-10MNIST Dataset

0.8V/4MHzVDD/CLK
TinyConv-4LeNet-5 

Performance Details

E EfficiencyU�liza�onLayerInputE EfficiencyU�liza�onLayerInput
0.4 

TOPS/W
5.8%

CONV (5x5)x32
Avg Pool 2x2

32x32x30.15 TOPS/W1.7%
CONV (5x5)x6
Avg Pool 2x2

28x28x1

2.2 
TOPS/W

31.3%
CONV (5x5)x32

Avg Pool 2x2
16x16x320.35 TOPS/W5.1%

CONV (5x5)x16
Avg Pool 2x2

14x14x6

1.1 
TOPS/W

15.6%
CONV (5x5)x64

Avg Pool 2x2
8x8x320.32 TOPS/W4.8%FC 25x1205x5x16

0.2 
TOPS/W

3.1%FC 256x101028x10.13 TOPS/W1.5%FC 120x64120x1

0.1 
TOPS/W

1.1%FC 64x1084x1

8bit Weight, 8bit Act, 11bit OutBit Precision

78%99%INT Training Accuracy

75%99.2%SC Training Accuracy

73.5% (Top-1), 98.4%(Top-5)99.1%Measured Accuracy

35.6µJ18.3µJEnergy/Classifica�on

11.5msec/frame5.85msec/frameLatency

Table 3.1: Neural Network Demonstration

volution layers with 5x5 filters followed by 2x2 average pooling, batch normalization and ReLU

function. The last layer is a fully connected layer generating the classification results. TinyConv-

4 is trained in both floating point and SC. The classification accuracy using INT8 is 78%. The

training accuracy using SC achieves 75%. The test accuracy measured on the SCIM accelerator

is 73.5% in 1000 images. TinyConv-4 is larger than LeNet-5 and utilization problem is slightly

relieved, summarized in Table.1. The largest macro utilization is 31.3% at the second layer and

the peak system energy efficiency is 2.2 TOP/S/W. The second layer’s filter size is 5x5x32. After

flattening to 2D, the size becomes 5x160. The width of filter, 160, is smaller than the width of

SCIM macro, 256.

A convolution layer with full macro utilization is tested to measure the peak energy efficiency

of the accelerator. Activation and filter with a flattened width of 256 and no sparsity is applied

in activation and weight. The energy efficiency at 0.8V supply is 5.75 TOP/S/W. The energy

efficiency at different supply voltages is tested and shown in Fig.3.17. The peak energy efficiency

at 0.7V supply is 7.96 TOP/S/W. A breakdown of the accelerator’s energy consumption is shown

in Fig.3.17. The most dominant components are SCIM cores (49%), clock communication (26%),

controller and local buffers (15%). The energy of sending 32 SCIM cores’ output to parallel
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Figure 3.17: Energy breakdown and energy efficiency vs voltage.

counter and loading weights from SRAM to 32 SCIM cores account for 11%. Parallel counter and

fixed-point processing account for 2%.

Another test chip is fabricated in 14nm to characterize the performance of the SCIM macros.

The summary of the chip in comparison with 65nm accelerator chip is shown in Table 3.2. It has

16 SCIM macros of 32x32 array. The bit cell and sense amplifier design are the same as 65nm

chip. Each row performs a 32-long dot product and generates 2 stochastic output bits (outp/outn).

The 16 SCIM macros generate 32 stochastic bits for a given MAC operation, which is equivalent

to 5b computation precision. The macro’s outputs are directly accumulated by the parallel counter

without row mux and accumulator at a frequency of 130MHz. The measured energy efficiency is

258 TOP/S/W. The energy efficiency scaled to 8b operation is 32.3 TOP/S/W. If average pooling

is used in combination with the convolution layer, the 8b operation has an energy efficiency of 130

TOP/S/W.

A comparison table with other works is shown in Table 3.3. The 65nm chip packs 520Kb of

in-memory MAC unit on chip, which is way larger than most of other works expect [10]. With

smaller number of on-chip MAC units, more data movement is needed from on-chip buffer or off-

chip DRAM, which might not be account in the energy measurement. Our work builds a complete
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65nm Accelerator Chip14nm Macro Test Chip

32 x 25632 x 32SCIM Macro Size

3216Number of Macro

542.3K32.7K
Number of 
1b SC MAC

130 Kb/mm2850 Kb/mm2MAC Density

0.7 V0.65 VSupply Voltage

5MHz130MHzMaximal Frequency

SCIM Matrix Mul�plica�on, 
Row mux and accumulator

Average Pooling (2x2),
ReLU, Batch Norm,

CNN FSM Controller

SCIM
Matrix Mul�plica�on

Opera�ons

64 or 256 (with avg pool)32SC Stream Length

6b or 8b (with avg pool)5bEquivalent Precision

7.96 TOP/S/WNot AppliedSystem Energy Efficiency

20 TOP/S/W258 TOP/S/WMacro Energy Efficiency

Table 3.2: Summary of two chips.

CNN inference process on chip and keeps all the parameters on chip to account for all energy

costs. The MAC density is also superior to other analog and digital MAC solutions. The 65nm

chip has a density of 130Kb/mm2 and 14nm chip has a density of 860Kb/mm2, which is 2x higher

than all other works. We report energy efficiency for 8b MAC operation and compare both system

and macro efficiency. For SC, 8b computation requires processing 256-long stochastic bit stream.

Energy efficiency with and without average pooling are reported. The 65nm accelerator has a peak

system energy efficiency of 7.96 TOPS/W and 20 TOPS/W with average pooling. The 14nm macro

chip achieves 140 TOPS/W for 8b compute with average pooling and 35 TOPS/W without average

pooling.

3.7 Conclusion

In this work, we have demonstrated an ADC-less Stochastic Compute-In-Memory (SCIM) accel-

erator for convolutional neural networks. The accelerator has 32 SCIM macros storing the pre-

converted stochastic numbers of activation and compute in a bit-parallel way. Since the OR-based
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SCIMSCDigital CIMAnalog CIMDigital

This Work
Romaszkan

SSCL 22
Chih,

ISSCC 23
Yue, 

ISSCC 23
Yue,

ISSCC 21
Jia,

ISSCC 21
Dong,

ISSCC 20 
Chen,

ISSCC 16 

14nm65nm14nm22nm28nm65nm16nm7nm65nmTechnology

0.06mm29.40.5mm2Not reported3.75mm212 25 Not reported16Size

0.038mm24.2 mm2Not Applied0.2 mm20.27mm21.7mm215 0.0032Not AppliedMacro Area

0.65 – 1V
0.7-1.05V (CIM),  

0.8V(SRAM)
0.6-0.9V0.7-0.9V0.4-0.7V

0.65V (Digital)
1V (CIM)

0.8V1V0.8-1.2VVoltage

32.7Kb520Kb
Non CIM

(19.2K MAC)
64Kb16.4Kb 64Kb 4.5Mb 4Kb

Non CIM
(168 PE)

On-Chip CIM Size

860 Kb/mm2130 Kb/mm238.4Kb/mm2320Kb/mm260.7Kb/mm237.6 Kb/mm2300 Kb/mm21250 
Kb/mm2Non CIMCIM MAC Density 

32b SC ( INT 5 )256b SC ( INT 8 )256b SC (INT8)INT 8INT 8Weight 4b, Act 8bINT 8INT 4INT 16Precision

Not Applied7.96 TOPS/W4.4 TOPS/WNot Applied12.8 TOPS/W2.3 TOPS/WNot reportedNot reported
0.332 

TOPS/W
Peak System Energy 

Efficiency (8b Op) 

35~140 
TOPS/W

5~20 TOPS/WNot applied24.4 TOPS/W68.7 TOPS/W7.32 TOPS/W30 TOPS/W88 TOPS/WNot applied
Peak Macro Energy 
Efficiency (8b Op)

1.66 – 6.6 
TOPS/mm2

0.014 
TOPS/mm2

0.3 
TOPS/mm2

0.15 
TOPS/mm2

1.52 
TOPS/mm2

0.014-0.46
TOPS/mm2

0.2
TOPS/mm2

29
TOPS/mm2

0.3 
TOPS/mm2Throughput Density

Table 3.3: Comparison with other works.

SC accumulation is a 1-bit logic, the in-memory computation does not require an ADC. We have

proposed a computation skipping technique to reduce the SC stream length by 4x when the aver-

age pooling layer is used. The accelerator has efficient architecture supporting full neural network

application on chip: convolution is performed in SCIM macros and average pooling, ReLU, batch-

norm are processed after stochastic numbers are converted to binary. Classification of MNIST and

CIFAR-10 dataset are demonstrated with all parameters remain on chip. The accelerator has en-

ergy efficiency of 7.96 TOP/S/W for system and 20 TOP/S/W for macro. A test chip is fabricated

in 14nm with only SCIM macro and shows 35 TOP/S/W in 8-bit operation and 140 TOP/S/W with

computation skipping in average pooling layer.
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Chapter 4

Stochastic-CIM Accelerator for Event Camera Object Tracking Application

4.1 Introduction

Frame Based Camera Event Camera

Figure 4.1: Comparison between frame and event camera.

Event Camera such as Dynamic Vision Sensor (DVS) is a bio-inspired imaging technology

that has attracted many new computer vision applications recently [54] [55] [56]. DVS pixels only

report changes of brightness and ignore static background that is not moving relative to the sensor.

The sensor does not have a periodic sampling clock to read out pixels periodically like traditional
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frame-based cameras, Fig.4.1. Each pixel generates binary outputs (ON/OFF) asynchronously

and can respond as fast as 1us. Due to these unique properties, event cameras can be used in

high speed object tracking applications [57][58] [59][60]. However, hardware to process event

camera’s data faces serious challenges. The high-speed event output requires architectures with

low latency and high energy efficiency. Researchers have experimented using event camera on

Micro-Aerial Vehicles (MAV) to avoid high-speed obastacle and concluded that MAV needs to

respond in mili seconds to avoid object moving faster than 10m/s [60]. For an event camera with

a frame size of 640x480, the hardware needs to process > 100M events per second. A previous

work has demonstrated an object tracking accelerator for event camera by near-SRAM circuits for

accelerating spiking neural network for event data [61], achieving throughput of 11M events/s.

Compute-In-Memory (CIM) is an emerging accelerator architecture that can achieve extremely

high throughput and energy efficiency by embedding computing logic inside memory [61][10][12].

Multiple rows or the entire CIM array are activated for computation in parallel, therefore break-

ing the bandwidth limits of memory in traditional Von Neumann architecture such as CPU/GPU.

Previous CIM works have demonstrated analog-based computation where accumulation is done in

current or charge domain and the analog output is converted to binary numbers by analog-to-digital

converters (ADC) [10] [11]. ADC requires multiple cycles and long settling time to converge,

therefore limiting the system’s throughput. Typical ADC sampling rate reported in CIM accelera-

tors is below 100MHz [10] [62] [1]. A way to increase the throughput in a given area (TOPS/mm2)

is to increase the number of multiplier cells per weight storage element. Each column of multiplier

cells performing the dot product requires an ADC, and the area overhead of the ADC, therefore,

significantly degrades the overall density. Stochastic Compute-In-Memory (SCIM) is an ADC-less

CIM solution embeds Stochastic Computing’s (SC) digital logic gate inside the memory and only

requires 1-bit sense amplifier for each dot-product column that can operate a very fast rate [30].

SC represents binary number by the fraction of ones in a random bit stream, which requires 2N bits

for an N-bit number. Previous SCIM work [30] stores the entire stochastic bit stream inside the
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memory, and, therefore, occupies a large area.

In this work, we propose an SCIM accelerator that can achieve high throughput and energy

efficiency requirement of the event camera. The SCIM macro stores binary number and reduces

the number of storage cells for a parameter from 2N to N. An in-situ Stochastic Number Generator

(SNG) converts the binary number to stochastic bits in memory. The stochastic bits of every

stored parameter are shared by 32 SC MAC units. Since the dot-product column does not need

an ADC, operation frequency of 600−800MHz is achieved. The event camera only captures the

moving objects and removes noisy background. A convolutional filter-based algorithm is used that

is highly effective and fast. The accelerator’s architecture supports efficient convolution operation

using both ternary events and multi-bit dense inputs to support flexible pre-pocessing of raw event

streams. An early termination technique is proposed to turn off parts or entire operation of the

chip when inputs have a high sparsity in the event processing mode. The accelerator achieves a

throughput of 278-730 Mevents/s and system energy efficiency of 158 TOP/S/W.

4.2 Convolution Kernel: Stochastic Compute-In-Memory (SCIM) Macro

4.2.1 SCIM Macro Architecture

The Stochastic Computing-In-Memory (SCIM) macro accelerates the convolution operation un-

rolled as matrix-matrix multiplication between object tracking filters and input sliding windows

Fig.4.2. The SCIM unit, consisting of a 6 memory cells, in-situ SNG, and a MAC array of 32

MACs, is the smallest compute primitive within the macro, and corresponds to a single weight.

The SRAM-based memory cell array stores a 6-bit binary weight. We use 6-bit weights since the

simulation has indicated it is sufficient for our target application. The in-situ Stochastic Number

Generator (SNG) converts the weight from binary to a stochastic number using a 5-bit random
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Figure 4.2: Stochastic Compute-In-Memory (SCIM) macro architecture.

number: RN1 −RN5. The random numbers are generated from the pseudo-random number gen-

erators, described in Section 4.2.3, next to the memory and shared across the SCIM units on the

same row. The SNG output within each SCIM unit is multiplied with 32 inputs (IN1 − IN32) in an

SC MAC array and accumulated with other SCIM units in the same SCIM slice. Each SCIM slice

stores an unrolled, 9×9 filter and computes 32 outputs, using nine unrolled input half-rows (9x36,

including overlap). We process ROI rows split in half vertically, due to the physical limitations

of the macro layout. There are 32 SCIM slices within the macro that share the same inputs, each

implementing a different filter. The outputs of the SCIM MAC are streams of 1-bit values and are

converted to digital bits by the inverter at each Compute Line (CL). A replica slice is built to track

the process, voltage, and temperature (PVT) variation of the circuit and generate the timing signals

for the output sampling. The following sections will provide a detailed description of the in-situ

SNG, near-memory random number generator, and the in-memory SC MAC units.
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4.2.2 In-Situ Stochastic Number Generator

Conversion in Probability Domain:

P(WSC=1) =W4 x 0.5 + W3 x 0.52 + … + W0 x 0.55
WL

BLBLB RN

SNG-BL

QQB

SNG-BL

WSC+WSC-

SRAM 

In-Situ 
BC

PCHB

P(RN4)=0.5

Sign Bit

Magnitude Bits

Wsc

Demux

SNG

In-Situ 
BC

In-Situ 
BC

Binary-Weighted Random Numbers

W4 W3 W0 W5

P(RN3)=0.52 P(RN0)=0.55

Sign Magnitude Bits SNG

0111

Demux
Wsc+:00000000
Wsc- :10100010 

Split Unipolar SC : P(WSC+) – P(WSC-)= -3/8  

Binary-to-SC Conversion
Binary Number:

e.g., 1 0 1 1  

- (0x +1x + 1x )=-3/8

Figure 4.3: (Top) Binary-to-Stochastic conversion concept. (Bottom) In-Situ SNG’s circuit dia-
gram.

The compact Stochastic Number Generator (SNG) can be embedded inside the memory to

achieve in-situ binary-to-stochastic number to allow storing binary numbers. Prior bit-parallel

stochastic-CIM macro stores 2N stochastic number in the memory for N-bit precision. By embed-

ding in-situ SNGs, only N number of cells are required. Using the in-situ SNG also means that the

implementation is now agnostic to the stream length, which was not the case for previous SCIM

work where all the stochastic bits are computed in parallel [30]. Different stream length can be
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supported by varying the number of conversion cycles and the hardware remains the same.

The in-situ SNG supports conversion of signed numbers to split-unipolar stochastic represen-

tations. A block diagram of the in-situ SNG is shown in Fig.4.3. The magnitude bits of the binary

number are first converted by the SNG circuit into an unsigned unipolar stochastic bit stream. The

sign bit controls a demuliplexer that passes the unipolar bit stream to either Wsc+ or Wsc−. Wsc+

and Wsc− follows the convention of split-unipolar representation where the probability difference

between two streams represents the bianry number [46]. The circuit implementation of the in-situ

SNG is shown in Fig.4.3 (bottom). The SRAM memory cells store 6-bit binary weight numbers.

The magnitude bits are selected by random numbers with binary-weighted probabilities. For ex-

ample, the MSB(5th) is selected by random numbers with a probability of 0.5, the 4th bit is selected

with a probability of 0.52, and the LSB is selected with a probability of 0.55. Each bit cell has two

extra cascaded NMOS transistors beside the 6T SRAM cell to perform an AND operation between

the stored binary bit and the random number. The output of AND logic in each cell is connected by

a local bitline (SNG-BL), which performs a wired-OR operation to add the probability represented

by each bit. An inverter amplifies in-situ SNG’s local bit line and inverts the signal to maintain

the correct logic. The sign bit stored in a memory cell controls passing the unipolar stream Wsc

to either Wsc+ or Wsc−. The unselected output is grounded to zero. An inverter is added at each

output to generate the correct logic state and drive the next stage. The operation of the in-situ SNG

is similar to domino logic [63]. The ’PCHB’ signal controls the PMOS transistors that precharge

the output before the operation starts and all the ’RNs’ are grounded to avoid short circuit path

through NMOS and PMOS transistors. Once the operation starts, precharge PMOS transistors are

turned off and ’RNs’ are applied to the in-situ SNG.
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Efficient Parallel PRNGs
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Figure 4.4: (Top) An efficient pseudo random number generator circuit; Binary-weighted RNG.
(Bottom) Auto Correlation function of 5-bit LFSR and 5-bit LFSR with an extra zero state.

4.2.3 Efficient Near Memory Pseudo Random Number Generator (PRNG)

A shift register based pseudo-random number generation method and binary-weighted encoding

are used to reduce the cost of the random number generation. Maximal-length Linear Feedback

Shift Registers (LFSR) with the order of characteristic polynomial that matches the bit width of

the binary number is shown to be able to accurately convert binary numbers to a stochastic [46]

. The Nth order maximal length sequence (m-sequence) has a unique property that every N-bit

combination except zero only appears once and has a period of 2N − 1. In this work, the m-

sequence plus an additional zero state is stored in a cyclic shift register that rotates when clock is

switching. The autocorrelation function of the m-sequence is −1/31. With the extra zero state,
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Cost of PRNG (as number of flip flops)

Naive Implementation Proposed

N ∗ (2N −1) 2N

Table 4.1: Cost of generating Nth order maximal length LFSRs with all possible seeds, evaluated
as number of flip flops required.

the autocorrelation function of the pseudo random number sequence becomes zero. Different taps

of the shift registers are used by different SNGs. For example, SNG1 uses {L0 −L4}, SNG2 uses

{L1 −L5} ... SNG32 uses {L31,L0 −L3}. Due to the zero autocorrelation of the pseudo-random

number sequence, different SNG’s random number does not have any correlation.

Storing the entire pseudo random number sequence has significant benefits of energy and area

compared to fully-unrolled LFSRs. Consider a naive implementation of an array of Nth order

LFSR that has all possible seeds, which result to 2N − 1 LFSRs. Each of LFSR requires N flip

flops. The proposed method only requires 2N flip flops and generate an extra zeros state, Table.

4.1. Both the energy consumption and area are reduce by N times using the proposed method.

The in-situ SNGs require random numbers with binary-weighted probabilities: 0.5,0.52,0.53, ....

A random number generator converts outputs of the PRNG into binary-weighted probabilities and

guarantees one-hot outputs to reduce switching activities. As an example shown in Fig.4.4, inputs

L0 −L4 are generated from the PRNG. RN4 is high when L0 = 1, which happens 1/2 of the time in

a period of the modified m-sequence. RN3 is high when L0 = 0 and L1 = 1, which happens exactly

1/4 of the time, and so on for the rest of the output: RN2, RN1, RN0 have probabilities of 1/8, 1/16

and 1/32. The circuit also guarantees that only one RN output is high in each step. The inversion

plus AND gate makes sure that if a given RNk is high, all the lower order RN j, j < k are zero.

For example, if RN4 = 1, then the rest of the RNs are all zero. The one-hot encoding reduces the

switching activities of the random numbers, and, therefore, coupling noise.
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4.2.4 In-Memory SC MAC Array

a) Multiplier Cell Supporting Signed and Unsigned Inputs

W+
W-

IN

CLp CLn

W+
W-

IN+

IN-

Fully Unrolled 
Mul�plier

Half-Cell
Mul�plier

Time-Interleaved Input Encoding:

Sparse:
e.g., -1

+1
0

Dense:
e.g., -3/8

+3/8

+ phase - phase

0 1

1 0

0 1 0 0 1 1 0 0 0

01 0 0 1 10 00

CLnCLpIN

W-× IN+W+ × IN+IN+ + Phase

W-× IN-W+ × IN-IN-- Phase

Figure 4.5: (Top) Implementation of fully unrolled SC multiplier and time-interleaved SC multi-
plier. (Bottom) Time-interleaved encoding of input for both event and dense numbers.

Previous work has demonstrated an in-memory SC MAC for unsigned inputs in neural net-

work applications where activations are positive numbers after nonlinearity functions [30]. To

support both unsigned and signed inputs, a half-cell multiplier is used to maintain area density

and interleave split-unipolar streams in time. To support signed SC multiplication, one can fully

unroll the cross product between input and weight’s two bit streams as four 1-bit SC multipliers

(+/+,+/−,−/+, and −/−), shown in Fig.4.5(top). If input is an unsigned number, however,

half of the multiplier cell is not utilized. The larger multiplier cell leads to lower energy efficiency
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for both unsigned and signed number. Instead, the half-cell multiplier only uses half the area and

the signed multiplication is supported by interleaving input’s split-unipolar streams in time.

Scheduling of time-interleaved input bit streams is shown in Fig.4.5 (bottom). The posi-

tive/negative bit stream of the inputs are applied in +/− phases. In + phase, CLp is the dot

product between weight’s positive stream and input’s positive stream: W+× IN+, which has a pos-

itive sign. CLn is the dot product between weight’s negative stream and input’s positive stream:

W−× IN+ , which has a negative sign. When input is applied in the − phase. The sign of CLp

and CLn are flipped: CLp has a negative sign and CLn has a positive sign, summarized in Fig.4.5

(middle). Counters will accumulate CLp and CLn’s output with their corresponding sign. The

macro supports both event and fixed-point inputs. Event inputs are ternary numbers −1/0/+ 1

, therefore do not need stochastic number generator and remain constant within the phase. Input

streams for each of −1/0/+1 are shown in Fig.4.5. For fixed point inputs, SNGs convert them to

split-unipolar stochastic streams and positive/negative streams are applied in +/− phases.

SCIM Slice and Layout Optimization for Energy Efficiency

Analog Compute-In-Memory macro requires one analog-to-digital converter (ADC) for every dot-

product column. Increasing the number of dot-product column sharing the same memory bit cells

causes large area and energy overhead from ADCs. Since SC uses digital logic that does not require

ADCs, the SCIM macro can embed 32 SC MACs for each weight and the sense amplifiers only

account for 10% of macro area. Fig.4.6 shows the structure of one SCIM slice. Each row of the

slice is one SCIM unit including 6 SRAM cells storing the binary weight, an in-situ SNG and an

array of 32 SC MACs. 32 input lines are routed on top of SCIM units in each row. The computation

happens in MAC array where 32 inputs multiply with the shared in-situ SNG’s outputs: Wsc+ and

Wsc−. The SCIM slice has 81 rows; therefore one slice computes multiplication between an 81x1

weight vector and 81x32 input matrix.
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Figure 4.6: One SCIM slice.

The number of SC MACs sharing a weight, denoted as weight reuse factor, is chosen to opti-

mize both energy efficiency and throughput per area. Increasing the reuse factor can amortize the

cost of in-situ SNG and increase SCIM macro’s throughput. The metal wiring of input or compute

line can be routed on top of the memory cells without causing extra area penalty for a small reuse

factor. When the reuse factor becomes too large, however, the energy efficiency starts to drop due

to significant increase of area. Fig.4.7 shows the performance metric for different weight reuse

factors. The metric achieves the optimal point for the reuse factor of 32. Larger reuse factors can

achieve similar performance, but they lead to significant layout complexity, therefore we pick a

reuse factor of 32.

The aspect ratio of the SCIM unit’s layout impacts the energy consumption of SCIM unit,

which is dominated by switching the parasitic capcitance on the input and output lines. Different

layout options are compared to optimize energy efficiency. An SCIM unit includes six SRAM

cells, an in-situ SNG and 32 SC MAC units. Three layout options are considered and the energy

consumption of each option is estimated: 1) 1×6, SRAM cells are placed as a 1×6 array and
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Figure 4.8: Three different options of laying out the SCIM unit.

MAC units are placed as a 4×8 array. 2) 2×3, SRAM cells are placed as a 2×3 array and MAC

units are placed as 8×4 array. 3) 3×2, SRAM cells are placed as a 3×2 array and MAC units are

placed as 12×3 array of 36 MAC units. In all three options, the height of the SRAM cells match

the SC MAC array. The dimension of three options and the parasitic capacitance of the routing

are estimated and verified by layout extraction. A switching activity of 50% is assumed for both

input and compute line. The energy consumption of three options are shown in Fig.4.9. The 1x6
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option consumes the most energy due the long distance of the input lines. The 2x3 and 3x2 options

consume similar energy, but 2x3 option achieves the best energy efficiency. The SCIM unit with

2x3 array configuration is laid out in 12nm technology using the standard DRC rules, as shown in

Fig.4.10. It occupies an area of 3.2µm x 7.5µm. The SRAM cells use 1/4 of the area and 32 SC

MAC units dominate rest of the area. 32 input lines are routed in horizontal direction above the

SCIM unit and 64 compute lines are rounted in vertical direction above the MAC array.

Input Communica�on + MAC Energy (Normalized)

1x6 3x2 2x3

17

12
11

Figure 4.9: Energy of input communication and MAC operation for three different options.
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Figure 4.10: Layout of SCIM unit with 2x3 option in 12nm technology.
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4.2.5 High Speed Sensing Circuitry with PVT Tracking

The event camera accelerator demands fast and low-power computation in SCIM macros. A high-

speed sensing circuit is designed to guarantee fast and robust operations across Process, Voltage

and Temperature (PVT) variations using a PVT tracking slice, shown in Fig.4.11. Each Multiplier

cell performs an 1-bit multiplication such the ON/OFF of the cascaded NMOS circuit represents

1/0. The in-memory wired-OR accumulation is equivalent to a multi-input OR gate: if any of

the inputs is ’true’, the output will be ’true’. The sensing circuit, therefore, needs to distinguish

between no multiplier cell and at least one multiplier cell is conducting between the compute line

and ground. The logic operation follows the domino logic such that the compute line is precharged

before the computation. The sense amplifier can wait until the compute line to fully discharge to

ground and then register the output, but the large parasitic capacitance on the compute line requires

a long time to discharge in the worst case. To save sensing time and energy, the sense amplifier

compares a voltage threshold when the compute line is only discharged for a fraction of VDD.

Transistor’s local mismatch and global PVT variation can lead to decision errors. A replica slice

tracks the PVT variation and generates asynchronous timing signals with programmable sensing

margin to account for mismatches. The circuit diagram of the sense amplifier is shown in Fig.4.12.

The inverter has four programmable thresholds. Three transmission gates are cascaded between

drains of nMOS and pMOS transistors in a normal inverter as a resistor ladder. Gates of the

transmission gate are shorted to input voltage. Voltages at the four terminals of the transmission

gates have the similar input-output transfer function of inverters, each of them, however, has a

different switching threshold. The transfer function between input and four outputs are shown

in Fig.4.12. The multiple thresholds are used to provide programmable sensing margins for read

operation.

The PVT tracking slice replicates a normal computation slice and generates timing signal with

extra sensing margin to account for local mismatch. 32 computing slices’ sense amplifiers (SA)
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Figure 4.11: Read scheme of the SCIM macro.

are programmed with the highest threshold Vth1 = 516mV . When one or more cells discharge the

compute line to a voltage below Vth1, the SA will switch to high. The tracking slice allows only

one cell to discharge the compute line and generates a clock signal, LATCH_EN, if its compute

line is discharged below the sense amplifier’s threshold. LATCH_EN is shared across all the

output flip flops to latch the sense amplifiers’ outputs. The PVT tracking slice’s sense amplifier

is programmed with a lower threshold voltage to allow compute lines to discharge for a longer

time before flip flop is latched, and, therefore has more voltage margin against local mismatches.

The dominant sources of the mismatch come from multiplier cell’s current and sense amplifier’s

threshold, summarized in 4.12. The total voltage variation has a standard variation of 22mV. If the

Vth2 is set for SA in tracking slice, there is a sensing margin of 96mV, which leads a yield of 4.4σ .

The replica slice’s sense amplifier can be programmed with lower threshold to allow more margin.
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4.3 Filter Based Object Tracking Pipeline

Event camera removes texture-rich static background and makes the filter-based algorithm highly

effective for object detection and tracking applications [64]. Fig.4.13 shows our filter-based object

tracking pipeline. The event inputs are accumulated in uniform time steps and quantized to ternary

polarity format (-1/-/+1) as pseudo event frames to reduce the redundancy. The quantization can

be also skipped and the event frames are processed in 6-bit precision. We use 32 convolution

Gabor filters combining 8 different directions and 4 speeds, shown in Fig.4.14. Other tracking

filters matching the specific shape of the object can also be used if prior knowledge is given. The

object tracking pipeline includes convolution tracking filter, clustering, bounding box generation

and Norfair multi-object tracker. The computation cost of each section of the pipeline is estimated.
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Figure 4.13: Object tracking pipeline.

Convolution tracking filters account for 80.1% of the cost, which is the most dominant part.

Figure 4.14: Gabor filters.

Convolution tracking filters are computed on the SCIM accelerator and the rest of tracking

pipeline is implemented in Python. A Region-of-Interest (ROI) based processing is used to support
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ROI proposal algorithms. The pseudo event frame is 640 pixel × 480 pixel. The frame is divided

into a 8 × 11 ROI grid. Each ROI is 64 pixel × 64 pixel. Region proposal can predict the most

likely ROI containing the object and only the predicted ROI is processed by the convolution filters.

The SCIM accelerator takes two pseudo event frames as input. 32 of 9x9x2 convolution filters are

stored in two SCIM macros. Each macro stores one time channel of the filters. The accelerator

computes 32 of 9x9x2 convolution sliding windows in x direction. The rest of ROI is serially

loaded to SCIM macros to complete convolution. The filter outputs are passed to a column max

function that takes the maxima value of each column in ROI to save the output bandwidth.

4.4 Accelerator Architecture

Figure 4.15 shows the overall architecture of accelerator. The control logic is implemented as a

finite-state machine (FSM) controlled through a set of programmable registers. The communica-

tion between the chip and external device is through the JTAG I/O interface. The accelerator is

designed to process a single 64× 64 ROI at a time with up to two time channels. Based on that,

the architecture is organized into two columns, each consisting of an input SRAM, staging buffer,

and a SCIM macro.

Each input SRAM is provisioned to buffer one time channel of a ROI and has a width of 64

to match ROI’s width. The SRAM uses a bit-transpose layout to support different precision. For

example, the 1st row stores the MSB, the 2nd row store (MSB-1) bit, and so on. For the event inputs

with ternary precision, two bits are stored in two rows. For a dense frame with 6-bit precision, each

number is stored across six rows.

Values from input SRAM are first read into staging buffers. The bit-transpose format is decoded

after every N SRAM read cycles for an N-bit inputs. The staging buffer can optionally rotated to

pass a certain time channel to a different SCIM macro, supporting convolution across time domain.
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Figure 4.15: Architecture of the accelerator.

Since, as described in the previous Sections, the SCIM macro can only process half of the row at a

time, staging buffers are provisioned for 36 2-bit values. Within each SCIM macro, the input values

are written to the input buffers, where they are used to generate SC streams when the computation

starts. Each bank has nine input buffers, which collectively hold nine rows of 36 values, making it

possible to unroll to convolutional sliding windows spatially: the 9×36 inputs are unrolled to 32

sliding windows of 9×9 with a stride of one.

The weights are pre-loaded in the SCIM, and their streams are generated in situ, as described in

the previous Section 4.2.2. Within each macro, a sliding 9x9 convolution is performed across nine

input rows, generating 32 outputs, for 32 filters, for a total of 1024 outputs per macro. Outputs of

each compute line, are fed into counters. After the computation is finished, counter outputs from

different SCIM macros are sent to the global accumulator to implement a 9x9x2 filter.
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Figure 4.16: (Top) Concept of early termination; (Bottom) Early termination logic circuit.

4.4.1 Early Termination

SCIM macro’s energy consumption is significantly reduced when switching activities are low, but

the energy of synchronous logic such as counter and clock buffers remains constant. Three levels

of termination logic are implemented to save energy at high sparsity level. The concept of early

termination is shown in Fig.4.16 (top). The proposed SCIM accelerator computes bit-serially and

counters accumulate the output bit stream in 64 cycles for 6b compute. Since each bit in the

stochastic bit stream has an equal weight, counter’s result grows linearly with bit stream length in

average and the variation becomes smaller, which is known as stochastic computing’s progressive

precision [22]. The partial results of the counter are compared with a threshold. If it is smaller
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than the threshold, it shows a low correlation with the filter and the object is unlikely to show up

in the convolution window. The remaining stream can be skipped to save both energy and time.

The circuit implementation is shown in Fig.4.16 (bottom). A comparator compares counter output

with the threshold and the result is used to turn off the counter.
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Figure 4.17: Three levels of early termination.

Three levels of early termination are shown in Fig.4.17. The first level can turn off individual

counter in a slice. There are 1024 counters in an SCIM macro and each of them can be turned

off individually. The second level turns off clock tree buffer. A group of counters share the same

clock tree and applying gating signals at the clock buffer can cut down clock switching energy.

The third level terminates all operation on the chip and move on to compute a new set of inputs.

The criteria is met when all the counter’s enable signals are low. The first and second categories

only save energy, while the third category saves both energy and time. The termination criteria is

checked for every 8 cycles to avoid energy overhead from the early termination’s control logic. An
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example timing diagram of the early termination is shown in Fig.4.18. Input uses a time-interleaved

encoding, therefore half of the 8 cycles computes positive input stream and the other half computes

negative input stream. Criteria of three levels of termination are checked when ET Check signal

is high. Counters that meet the level 1 early termination’s condition will be disabled for the rest of

the chip operation. Clock buffers are gated by level 2 early termination if groups of counters are

disabled. Since the SC stream length is 64 for 6b compute, the early termination is checked for 8

times. If the level 3 early termination is triggered, it stops the chip’s operation on the current ROI

and new ROI needs to be loaded from the input SRAM.

ET Check

MAC_EN1

MAC_EN2

MAC 1 + Phase - Phase

Chip_Terminate

MAC 1 Counter Disabled

MAC 2 + Phase - Phase + Phase - Phase

Terminate Chip

Figure 4.18: Timing diagram of early termination.

4.5 Results and Evaluation

The prototype chip is fabricated in GF 12nm LP technology. The testing setup and die photo are

shown in Fig.4.19. The core area of the chip is 1mm×0.5mm. A current mode logic differential-

input and single-ended-output clock buffer is on chip to support high-frequency clock sent from

external. Arduino micro-controller is used to interface with the chip’s JTAG controller and PC.

The operating clock frequency of the chip at different supply voltages are characterized, shown

in Fig.4.20. The system is working at frequency range of 600MHz-850MHz under supply voltages
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Figure 4.20: Clock frequency vs. supply voltages .

between 0.64 and 0.85V. The testing data set is acquired by a static event camera capturing a

flying object. The events are accumulated every 2m second and quantized to ternary numbers as

pseudo-event frames: positive numbers quantized to +1, negative numbers quantized to -1 and zero

remains as 0. An example dense frame and event video of 250 frames of 480 pixel × 640 pixel are

shown in Fig.4.21. The event frame is divided into 8×11 grid of ROIs. The sparsity of each ROI

is measured and shown in Fig.4.21 (right). The ROIs without a moving object has a sparsity above

99%, while the ROI with the object has a sparsity around 98%.
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Figure 4.21: Dense frame and event data set; Sparsity of ROIs at different locations in an example
frame .

4.5.1 Analysis of SC Errors

The SC’s computation error compared to fixed point ground truth is very small due to high sparsity.

In-situ stochastic number generation of weights using binary-weighted random numbers is accurate

[45]. Multiplication is also accurate since input is a constant value within + or − phase so that

the AND-based multiplication does not introduce any error. The OR-accumulation approximates

the accurate summation of inputs when they are small, but suffers from nonlinearity when the sum

of inputs is large [65]. Since the event images have very high sparsity (99%), the average sum of

inputs is small and leads to very accurate accumulation using OR logic. The SC computation’s

results vs. fixed-point ground truth in one ROI is shown in Fig.4.22 (Top). Results of both show

close match between each other. The average error between SC computation and the expected

ground truth value is plotted in Fig.4.22 (Bottom). The errors are below one LSB with only few
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exceptions, which do not impact the tracking results.

4.5.2 Object Tracking Demonstration

The object tracking is demonstrated using the pipeline describe in section 4.3. The convolution

filters are accelerated on the SCIM chip and the rest of the pipeline is performed in python. The

tracked object’s location shows close match with ground truth, as shown in Fig.4.23 (top left and

right). Without early termination, the tracked location has an average error distance of less than

5 pixels. When early termination is turned on, computation can be skipped to save energy. The
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higher the early termination (ET) thresholds, more computation is skipped, but tracking accuracy

is degraded. The average error distance increases to 10 pixels when ET threshold is larger than 0.5.

The object tracking performance is also evaluated by Higher Order Tracking Accuracy (HOTA)

metric [66]. HOTA is an accuracy metric for Multi-Object Tracking (MOT) application combining

scores of localization, association and detection. We choose to use HOTA-0 score as the per-

formance metric which sets localization threshold as 0: localization is successful if intersection

between predicted and ground-truth bounding is larger than zero. The HOTA-0 score is above 90

for threshold lower than 0.5 and drop to 70 when threshold is above 0.5, which might due to too

much computation skipped by the early termination logic. The average execution time of different

ET thresholds is summarized in Fig.4.23 (bottom right). Early termination using threshold of 0.375

skips 46% execution time and does not lead to accuracy drop compared to computation without

early termination.

Tracked Object Moving Path Over Time 

start

end

Error Distance (in pixel) vs ET Threshold

HOTA-0 vs ET Threshold Execu�on Time (Normalized) vs ET Threshold

46% Reduc�on of 
Time and Energy

Figure 4.23: (Top Left) Tracked location over time for different early termination (ET) threshold;
(Top Right) Distance error versus ground truth vs. ET threshold; (Bottom left) HOTA-0 score vs
ET threshold; (Bottom right) Execution time vs ET threshold.
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4.5.3 Energy Efficiency and Throughput

The energy efficiency is measured for both event and dense inputs. The energy breakdown of the

accelerator is shown in Fig.4.24. The clock communication and SCIM macro account for most

of the energy consumption. The energy of input driver and in-memory MAC units correspond

to switching the input and output lines, which can be scaled with switching activities. Counter’s

energy consumption is not significantly changed with input’s switching activity due to large clock

switching energy. The energy is only reduced by 3× from dense to event processing. The clock

communication energy is unchanged between dense and event processing. The level-3 early ter-

mination reduces both macro and clock communication energy by 1.9×. The overall energy effi-

ciency of macro and system is summarized in the table in Fig.4.24. For the event processing, the

energy efficiency is 158 TOP/S/W for system and 495 TOP/S/W for macro.
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Figure 4.24: Energy breakdown of the dense compute; Scalability between dense and sparse com-
pute; Energy efficiency of macro and system.

The throughput of the accelerator is measured as number of events per second for different

supply voltages. It ranges from 278 Mevents/s at 0.64V supply without early termination to 730
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Mevents/s at 0.85V supply with early termination. The higher throughput benefits from the dense

SC MAC array within each SCIM unit and the fast clock frequency. Analog CIMs using the bit-

serial/bit-parallel scheme requires 6 clock cycles to compute a 6-bit MAC operation. Although

SC requires 64 clock cycles for a 6-bit MAC operation, each SCIM unit packs 32 SC MACs. In

average, each SC MAC only takes 2 clock cycles. which is 3 times faster. Due to SC’s ultra-fast 1-

bit operation, the SCIM macro operates at 600-850MHz, which is 6-8 times higher than the analog

CIM solutions. The combination of the dense array and fast clock rate leads to 20-30 times higher

throughput. When early termination is enable, it can reduce the stream length and helps increase

the throughput further.
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Figure 4.25: Throughput (Mevents/s) of the accelerator.

The comparison with other state-of-the-art works is shown in Fig.4.26. [61] is the only work

that demonstrated object tracking application using event camera. It uses RRAM-based CIM

macros for CNN acceleration and near-SRAM circuit to process event inputs, achieving event

processing throughput of 11.1 Mevents/s and a throughput density around 3.7M events/mm2. Our

event camera accelerator achieves the energy efficiency of 158 TOP/S/W for event processing and

46 TOP/S/W for 6-bit dense image processing. The dense mode energy efficiency is much higher

than [61] when scaled to 4b compute. The event processing throughput is 278M events/s at 0.64V

supply and without early termination, which is 25x higher than [61]. The throughput density is

556M events/mm2. We have also compared with digital CIM [13] [12], analog CIM [11] and

SCIM with pre-converted stochastic numbers [30], but they are used for deep learning applica-
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tions. Our work has shown dense-load throughput density >10x higher than other CIM works and

comparable energy efficiency when scaled to the same computation precision.
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Figure 4.26: Comparison with other works.

4.6 Conclusion

In this work, we have demonstrated a Stochastic Compute-in-Memory accelerator for event cam-

era’s high-speed tracking application. We propose embedding stochastic number generators in

memory so that Stochastic Computing can take place right next to the stored data in binary format

instead of storing pre-converted stochastic numbers. A massive 32 SC MAC units share in-situ

SNG’s output, which significantly increase throughput density. An early termination technique is

proposed for Stochastic Computing to skip unnecessary computation when the preliminary outputs

do not predict an object of interest. Our design has been validated by a 12nm chip hardware mea-

surement and a complete object tracking pipeline in Python. The accelerator achieves a throughput

of 278-730 Mevents/s and 158 TOP/S/W system energy efficiency, which is much better than the

state-of-the-art works.
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