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Abstract 

Recent studies have shown that current dynamic vegetation models have serious 

weaknesses in reproducing the observed vegetation dynamics and contribute to bias in 

climate simulations.  This study intends to identify the major factors that underlie the 

connections between vegetation dynamics and climate variability and investigates vegetation 

spatial distribution and temporal variability at seasonal to decadal scales over North America 

(NA) to assess a 2-D biophysical model/dynamic vegetation model’s (SSiB4/TRIFFID) 

ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite 

data are employed as constraints for the study and to compare the relationships between 

vegetation and climate from the observational and the simulation data sets. Trends in NA 

vegetation over this period are examined.    

The optimum temperature for photosynthesis, leaf drop threshold temperatures, and 

competition coefficients in the Lotka-Volterra equation, which describes the population 

dynamics of species competing for some common resource, have been identified as having 

major impacts on vegetation spatial distribution and obtaining proper initial vegetation 

conditions in SSiB4/TRIFFID.  The finding that vegetation competition coefficients 

significantly affect vegetation distribution suggests the importance of including biotic effects 

in dynamical vegetation modeling.    

The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions 

of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its 

seasonal, interannual, and decadal variability.  The simulated NA LAI also shows a general 

increasing trend after the 1970s in responding to warming.  Both simulation and satellite 
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observations reveal LAI increased substantially in the southeastern U.S. starting from the 

1980s.  The effects of the severe drought during 1987-1992 and the last decade in the 

southwestern U.S. on vegetation are also evident from decreases in the simulated and 

satellite-derived LAIs. 

Both simulated and satellite-derived LAIs have the strongest correlations with air 

temperature at northern middle to high latitudes in spring reflecting the effect of these 

climatic variables on photosynthesis and phenological processes.  Meanwhile, in 

southwestern dry lands, negative correlations appear due to the heat and moisture stress there 

during the summer.  Furthermore, there are also positive correlations between soil wetness 

and LAI, which increases from spring to summer.  

 The present study shows both the current improvements and remaining weaknesses in 

dynamical vegetation models. It also highlights large continental-scale variations that have 

occurred in NA vegetation over the past six decades and their potential relations to climate. 

With more observational data availability, more studies with different models and focusing on 

different regions will be possible and are necessary to achieve comprehensively 

understanding of the vegetation dynamics and climate interactions. 

Key words: dynamic vegetation, climate variability, SSiB4/TRIFFID, North America 
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1. Introduction 

The climate exerts dominant control on the spatial distribution of the major vegetation 

types on a global scale (e.g., MacDonald, 2002; Woodward et al., 2004), and vegetation in 

turn can influence climate, both directly through surface energy and water budget via 

exchanges of radiation, heat, water, and momentum (e.g., Xue, 1997; Xue et al., 2010; 

Bounoua et al, 2010), and indirectly through biogeochemical processes via their effects on 

atmospheric CO2 (e.g., Cox et al., 2000; Kaufmann et al. 2003; Beringer 2010).  While the 

modelled effects of vegetation on climate with specified land surface vegetation conditions 

have been extensively investigated, as indicated above, the understanding of the broad range 

of vegetation response to climate variability and change is less clearly developed. 

In recent decades, the scientific community has attempted to quantify the missing 

climate-vegetation feedbacks by incorporating dynamic vegetation models (DVMs) within 

climate models, such that the land cover is treated as an interactive element (e.g., Dickinson 

et al., 1998; Foley et al., 1998; Friend et al., 1998; Daly et al., 2000; Cox, 2001; Sitch et al., 

2003; Delire et al., 2004; Wang et al., 2004; Crucifix et al., 2005; Krinner et al., 2005; Zeng 

et al., 2005; Bonan et al., 2006; Scheller et al., 2007). While DVMs have demonstrated their 

utility in paleoclimate studies (e.g., Kutzbach et al., 1996; Claussen and Gayler, 1997), in 

which temporal scales are consistent with most DVMs’ original design, a few sensitivity 

studies suggest that two-way land/atmosphere feedbacks, which the DVMs are intended to 

simulate, may also be important in climate studies even at seasonal/interannual/decadal scales. 

For example, Lu et al. (2001) used the coupled Regional Atmospheric Modeling System and 

CENTURY ecosystem model with a specified climate-leaf area index (LAI) curve to study 
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regional-scale two-way interactions between the atmosphere and biosphere in the central 

United States. The results show that seasonal vegetation phenological variation strongly 

influences regional climate patterns through its control over land surface water and energy 

exchange. The coupled model captures the key aspects of weekly, seasonal, and annual 

feedbacks between the atmospheric and ecological systems. In another study, using a 

prognostic LAI parameterization, which depends on temperature and soil water, Levis and 

Bonan (2004) found a dynamic coupling between the atmosphere and vegetation, in which 

the observed reduction in the springtime warming trend over northern Europe, central Canada, 

and eastern China occurred only when photosynthesis, stomatal conductance, and leaf 

emergence were synchronized with the surface climate; the prescribed LAI failed to simulate 

this phenomenon. In another study on soil moisture-vegetation-precipitation feedback over 

the North American (NA) summer with/without dynamic vegetation feedbacks (Kim and 

Wang, 2012), it was found that with vegetation being fixed, there was no clear signal in 

responding to dry soil moisture anomalies (SMAs).  In contrast, with dynamic vegetation 

feedback included, the simulation showed a positive feedback between vegetation and 

precipitation under dry SMA conditions. 

Meanwhile, studies have also investigated relationships between vegetation and 

climate variability over NA with statistical techniques applied to observed climate data and 

satellite-derived vegetation data. These studies show significant relationships between 

large-scale climatic conditions and remotely sensed vegetation variables (e.g., Zhou et al., 

2003; Alessandri and Navarra, 2008; Rehfeldt et al., 2006; Liu et al., 2006; Notaro et al., 

2006; Wang et al., 2006; Potter et al., 2008; Wang et al., 2011; Zeng et al., 2013).  All of 
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these studies show the importance of including the DVM in land/atmosphere interaction 

studies at seasonal, interannual, and decadal scales. However, although the DVMs have 

shown the promise in climate studies as discussed above, it still remains a great challenge to 

properly simulate the vegetation/climate interactions at different scales due to the uncertainty 

in correctly modeling ecosystem processes with adequate parameterization (e.g., Zaehle et al., 

2005). 

Recent analyses based on the multi-DVMs simulations show substantial deficiency in 

DVMs in decadal climate studies. Using the Global Inventory Monitoring and Modeling 

System (GIMMS, Zhu et al., 2013) leaf area index (LAI) product from the period July 1981 

to December 2010 at a 15-day frequency, several DVMs’ performance in offline experiments 

as well as when coupled with the general circulation models (GCMs) in the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) simulations over the High-Latitude Northern 

Hemisphere have been evaluated (Murray-Tortarolo et al., 2013; Anav et al., 2013).  LAI, 

defined as the one-sided green leaf area per unit ground area, is an important vegetation 

variable because it affects the radiative transfer process within the canopy as well as 

evapotranspiration and photosynthesis processes and consequently modulates near-surface 

climate and atmospheric circulations.  It is found that all the models in both offline and 

coupled modes greatly overestimate the mean LAI, length of the growing season, and 

seasonal amplitudes, particularly over the boreal forest.  Because LAI is an important 

vegetation parameter and LAI and associated vegetation biogeophysical processes (BGP) 

have important effects on global and regional climate simulation (e.g., Kang et al., 2007; Li et 

al., 2007; Xue et al., 2010), the deficiency in the mean LAI and its seasonality would have 
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important implications for climate change study.  Murray-Tortarolo et al. (2013) have found 

that all these coupled CMIP5 GCMs/DVMs except one, which properly simulated LAI, 

produced substantially higher precipitation compared with observation.  They also found 

that models that included more plant functional types (PFTs) and those that calculate their 

phenology based on temperature rather than with complex photosynthetic modules produced 

better results.  Moreover, they found that ―models with prescribed vegetation more closely 

match observations than those that simulate it dynamically.‖  Since the dynamic simulation 

of PFT distribution is the core of the DVMs, these discoveries indicate an important 

deficiency in today’s DVMs.   

Lack of validation data has hampered efforts in evaluating DVMs’ performance in 

relation to seasonal to decadal variability and their role in climate variability.  New 

high-resolution satellite data are now available, covering a period of several decades and 

providing an opportunity to validate DVM estimates.  In past decades, validation and 

calibration using observational data, especially through model intercomparison projects such 

as the Project for Intercomparison of Land surface Parameterization Schemes (PILPS, 

Henderson-Sellers et al., 1993) and the Model Parameter Estimation experiment (MOPEX, 

Duan et al., 2006; Di et al., 2014), have proved to be extremely helpful for the development 

of land models.  We believe these model validation, calibration, and intercomparison 

approaches are also important for the development of satisfactory DVMs.  In this study, we 

will demonstrate that after improvement in parameterizations and important parameter 

settings using observational data over NA, a DVM model with few carefully selected plant 

functional types (PFTs) is able to produce realistic vegetation results when compared with 
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satellite products.  This study contributes to the necessary steps of conducting 

comprehensive investigations on how plant functional and/or physiological characteristics 

affect the spatial distribution and competition of plant functional types (PFTs).  It is also 

highlights the value of applying large-scale satellite-derived products to evaluate the 

DVM-simulated spatial distribution and temporal variability.  This ultimately increases our 

understanding of the BGP mechanisms at work, especially how vegetation responds to soil 

wetness and surface air temperature under different conditions. 

In this study, a biophysical/dynamic vegetation model, Simplified Simple Biosphere 

Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora 

Including Dynamics Model (SSiB4/TRIFFID, Xue et al., 1991; Cox et al., 2001; Zhan et al., 

2003), is used to investigate the response of vegetation processes to climate variability in NA 

and uncertainty in the parameterization and/or parameters.  In previous studies (as discussed 

above), either the validation of simulated LAI or climate/NDVI relationship was the only 

focus.  This study focuses on four aspects: 1. the production of initial vegetation conditions 

under current climate for long turn DVM simulation; 2. the ability of this coupled model to 

produce proper spatial vegetation distributions; 3. The ability to reproduce vegetation 

seasonal, interannual, and decadal variability; and 4. the ability to elucidate the relationships 

of the spatiotemporal variability of the vegetation with climate and surface conditions. In 

section 2, we will present the model, the data, and the general methodology for this study.  

Section 3 will present the results of the quasi-equilibrium vegetation production as vegetation 

initial conditions for long term simulation and the important factors affecting the 

quasi-equilibrium vegetation condition. In section 4, the spatial and temporal variability of 
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the NA vegetation is investigated by analyzing and comparing model simulation results with 

satellite-derived products. Finally, we analyze the relationships between LAI and 

climate/surface condition based on both observation and model simulations. 

2. Model, Datasets, and Methodology 

2.1 General Approaches of this Study 

A coupled biophysical-dynamic vegetation model SSiB4/TRIFFID is applied for this 

study and the climate forcing from 1948 to 2008 over NA is used to drive the 

SSiB4/TRIFFID to produce NA vegetation conditions.  The satellite derived products are 

used to validate and calibrate the model to produce proper vegetation spatial distribution and 

temporal variability.  Since the DVMs take long time to spin up, an approach to obtain the 

1948 initial vegetation condition, which would not cause severe spin-up for the long-term 

simulation, is investigated. The results from this study show the substantial effects of climate 

on the model-produced vegetation distribution; it is important to evaluate whether the model 

produced a valid climate/vegetation relationship.  Therefore, the observed and simulated 

relationships between these two components are investigated, which not only provides 

another way to evaluate the model results but also help understand the mechanisms at work.  

2.2. Brief description of SSiB4/TRIFFID 

SSiB4/TRIFFID is based on the balance of energy cycle, water cycle, and carbon 

cycle at the terrestrial surface and has been tested for several sites with different climate and 

land cover conditions (Xue et al., 1991; Cox, 2001; Zhan et al., 2003). The SSiB4/TRIFFID 

has been validated with 13 observational data sets from different latitudes and landform 

conditions, including Sahel savanna and shrubs, Amazon tropical rainforest, Alaskan tundra, 
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and boreal forest.  In addition to vegetation properties, observed surface latent heat, sensible 

heat fluxes, and carbon flux, whenever available, are also used for evaluation.  In general, 

the model is able to reasonably simulate the seasonal variability, with some bias in the diurnal 

variation at some sites. The results in these site experiments provide very useful information 

for this study (Xue et al., 2006). 

SSiB4 provides estimates of net plant photosynthesis assimilation rate, autotrophic 

respiration, and other surface conditions, such as soil moisture and canopy temperature for 

TRIFFID.  TRIFFID calculates vegetation parameters such as plant height and LAI for 

SSiB4. The SSiB4/TRIFFID model involves a dynamic competition mechanism between 

different PFTs for their growth and dominance. It categorizes global vegetation into six major 

PFTs, i.e., broadleaf trees, needleleaf trees, C3 grasses, C4 plants, shrubs, and tundra dwarf 

shrubs; it also includes bare land.    

2.3. Datasets 

(1) Forcing data 

The Princeton global meteorological dataset for land surface modeling (Sheffield et 

al., 2006) is used as the forcing for this study, which is constructed by combining a suite of 

global observation-based datasets with the NCEP/NCAR reanalysis data starting from 1948. 

The spatial resolution is 1°×1° and the temporal resolution is 3 hours.  The data set includes 

surface air temperature, pressure, specific humidity, wind speed, downward short wave 

radiation flux, downward long wave radiation flux, and precipitation.  We have also 

produced a climate forcing data set with a 3-hour interval by averaging all 3-hour Princeton 

data from 1948 through 2008.  This annual climate data set has diurnal and seasonal 
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variation and will be used for production of initial vegetation conditions. 

(2) Satellite-derived data 

Satellite-derived vegetation products from different sources will be used to evaluate 

the model-generated vegetation classification over NA, including GLC2000 (Latifovic et al, 

2002, Mayaux et al., 2004), which uses satellite data of the year 2000 from Pour 

l'Observation de la Terre (SPOT) at a spatial resolution of about 1000 m, and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Land Cover Type Climate Modeling Grid 

product (MCD12C1) (Loveland et al., 1999; Friedl et al., 2010), which includes International 

Geosphere-Biosphere Programme (IGBP), University of Maryland, College Park (UMD), and 

Science Data Set (SDS)  classification schemes at 0.5-degree (~500 m) spatial resolution.  

Among them, IGBP and UMD are more comprehensive.  After calculating the dominant 

vegetation types at 1-degree resolution from the UMD and the IGBP vegetation coverage, it 

is found that they are quite similar over NA.  Since IGBP data also include land ice, we use 

IGBP for our model validation. 

More relevant to the seasonal, interannual, and decadal variability are the LAI 

products. Two widely used LAI products are used as references for this study. They are the 

Fourier-Adjusted, Sensor and Solar zenith angle corrected, Interpolated, Reconstructed 

(FASIR, Los et al., 2000) data set from 1982 through 1998 and the Global Inventory 

Monitoring and Modeling System (GIMMS, Pinzon et al., 2005, Zhu et al., 2013 ) Boston 

University (GIMMSBU) LAI from 1981 through 2011. These global biophysical land surface 

data sets are at 0.25-degree spatial and monthly temporal resolutions. The FASIR data set 

includes LAI, vegetation coverage, and the fraction of photosynthetically active radiation 
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absorbed by vegetation. 

The FASIR products were generated from the Pathfinder data set with added 

corrections to account for the surface bi-directional reflectance distribution function, some 

atmospheric effects, and stratospheric aerosols. The GIMMS Normalized Difference 

Vegetation Index (NDVI) product uses the original raw AVHRR rather than the Pathfinder 

corrected bands.  Due to the different algorithms used to convert NDVI to LAI, the 

individual unique characteristics of each NDVI data set carry through to the LAI.  After 

subtracting the values from seasonal mean, these two data sets show different variability.  

The long-term trend is more significant and variances are larger in FASIR than in GIMMSBU 

LAI (Kang et al., 2007).  Since these two data sets provide invaluable surface vegetation 

information and provide a measure of the uncertainty in the satellite products, we will use 

both to evaluate model products. 

The GLC-2000 and MODIS IGBP and SSiB4/TRIFFID have different classification 

schemes.  The SSiB4/TRIFFID consists of only primary land cover types while both 

GLC-2000 and MODIS IGBP have more sub-level classes.  For easy comparison of the 

distribution of dominant vegetation types with different products, we hierarchically combined 

the GLC-2000 and the MODIS IGBP classifications to SSiB4/TRIFFID PFTs (Table 1). 

3 Vegetation Initial Conditions  

3.1. Experimental design for initial vegetation condition 

Since the ecosystem model takes a long time to spin up, it is necessary to obtain an 

equilibrium/quasi-equilibrium solution first for a specific DVM as its initial conditions for 

long term simulations.  Under a specified climate forcing, it normally takes 50-1000 years’ 
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simulation to reach equilibrium conditions (e.g., Bonan and Levis, 2006; Zeng et al., 2008).  

Since our goal is only to create initial conditions for the SSiB4/TRIFFID decadal simulations, 

rather than requiring hundreds to thousands of years of simulation to obtain an equilibrium 

solution, we find that a quasi-equilibrium solution, which only needs a 100-year simulation, 

is suitable for the SSiB4/TRIFFID decadal simulation without severe spin up; and the 

solution is also consistent to the current vegetation distribution. 

To start the run for the quasi-equilibrium solution, a preliminary initial condition is 

also needed. There are different ways to set initial conditions for each PFT, i.e., its fractional 

coverage and LAI, for the quasi-equilibrium run.  In some DVG models, the fraction of each 

PFT is set to zero in initialization for equilibrium runs; and in some other models, equal 

fractional coverage for each PFT is assigned initially.  After several tests, we found that 

using a SSiB vegetation table and a SSiB vegetation map, which are based on ground survey 

and satellite-derived information (Dorman and Sellers, 1989; Xue et al., 1991, 1996, 2004), is 

proper for the initial vegetation conditions for the quasi-equilibrium runs.  Because of the 

uncertainty in a high-resolution satellite-derived vegetation map (~5 km), a dominant 

vegetation type is selected first for every 1° model grid box; i.e., in each grid point, only one 

vegetation type is initially selected--the fractions for other vegetation types are set to zero.  

The climate forcing as described in Section 2.3 (1) is used to drive SSiB4/TRIFFID for the 

quasi-equilibrium run.  The quasi-equilibrium run then produces the vegetation fractions for 

several PFTs, their LAIs, and other vegetation conditions in every grid point.  In the 

quasi-equilibrium run, the 1948 atmospheric CO2 concentration is used in the simulation. 

Otherwise, if we apply the initial vegetation conditions from the quasi-equilibrium run for the 
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run with realistic meteorological forcing starting in 1948, which will be discussed in next 

section, a dramatic LAI adjustment will occur because our model is a carbon balance model.   

To better evaluate the temporal evolution of PFT fractions during the 

quasi-equilibrium runs, we divide the NA continent into 8 regions as shown in Figure 1.  

Region 8 represents the entire North American continent.  As shown in the figure, during the 

early time period of model integration, most vegetation fractions experience dramatic 

adjustments and then gradually approach quasi-equilibrium with time.  We define that the 

quasi-equilibrium status occurs when the yearly changing ratio of vegetation fraction is less 

than 2% for the last ten years of the equilibrium simulation.  Our study indicates that for our 

model, a 100-year simulation is sufficient to reach quasi-equilibrium conditions if a few key 

parameters are properly selected.  It should be pointed out that vegetation quasi-equilibrium 

state depends on spatial scales.  When the averaged PFT fractions reach quasi-equilibrium 

over a region, some individual grid points within the region may still not reach 

quasi-equilibrium conditions.  In this paper, the eight large regions are our main focus.  

Among the four northern regions, shrubs and tundra shrubs are dominant in Alaska; boreal 

forest dominates in Regions 2 and 4; and tundra shrubs, shrubs, and boreal forest are of 

mixed dominance in northern Canada.  In the southeastern U.S., broadleaf trees and 

needleleaf trees are of mixed dominance and coexistent with C3 grasses.  In the Midwest 

U.S., shrubs and C3 grasses are dominant, and in the Western U.S. shrubs are the dominant 

type and are mixed with grasses and needle leaf trees.  Such distribution is generally 

consistent with the published vegetation distribution (e.g., DeFries and Townshend, 1994; 

Fennessy and Xue, 1997; MacDonald, 2002; Woodward et al., 2004). 
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3.2. Important factors affecting quasi-equilibrium status 

Since the quasi-equilibrium run uses climatological forcing and simulation with real 

1948-2008 climate forcing will not dramatically change the PFT spatial distributions from the 

quasi-equilibrium run (see next section), it should be expected that the general distribution 

with the climate forcing should be close to current vegetation distribution.  In this section on 

the quasi-equilibrium run, we only discuss very obvious deficiencies in vegetation spatial 

patterns, such as whether there are grasslands in central U.S.  For those features, the current 

knowledge of NA biogeography and vegetation mapping products provides a reasonable 

reference (e.g., Fennessy and Xue, 1997; Ramankutty and Foley, 1999; MacDonald, 2002).  

The more detailed quantitative comparison with satellite derived products will be presented in 

Section 4, which presents the results using 1949-2008 meteorological forcing. 

It should be pointed out that the quasi-equilibrium runs produce potential vegetation 

distributions, which sometimes are different from the current real situations over some areas 

as observed in satellite-derived products due to anthropogenic effects, such as the large areas 

in parts of NA with crops (Ramankutty and Foley, 1999).  There are no crops in TRIFFID. 

Abiotic factors (e.g., soil texture), or climate-induced factors, as well as biotic factors 

affect PFT distribution and should be included in the DVM (Pimentel et al., 2005).  The 

uncertainties induced by climate and model parameters can greatly influence the 

DVM-produced vegetation distribution. Using the Lund-Potsdam-Jena (LPJ) DVM, Jiang et 

al. (2012) found that parameters that control plant carbon uptake and light-use efficiency 

have predominant influence on the vegetation distribution of both woody and herbaceous 

PFTs; the relative importance of different parameters depends on the temporal and spatial 



 

©2015 American Geophysical Union. All rights reserved. 

scales under consideration and is also influenced by climate inputs.  We have conducted a 

large number of experiments to test the effects of some important 

parameterizations/parameters that enable us to obtain quasi-equilibrium vegetation condition, 

and produce a reasonable vegetation distribution, which should be generally consistent with 

the current dominant vegetation distribution.  A few important factors play crucial roles in 

obtaining proper quasi-equilibrium conditions and are reported here.  The results shown in 

Figure 1 were obtained after the improvement in the parameterizations/parameter setting. 

(1) Vegetation competition coefficients 

Due to the difficulty in distinction between grasses and shrubs, some DVMs simply 

do not include shrubs in their models (Zeng et al., 2008).  In order to properly produce 

shrub-dominated vegetation, a shrub-submodule was designed in the Community Land 

Model (CLM); it includes appropriate parameters for shrubs and allows shrub growth only 

over areas that are not occupied by trees or grasses (Zeng et al., 2008). 

The PFT competition in TRIFFID is based on Lotka-Volterra (LV) equations, which 

describes the population dynamics of species competing for some common resource 

(Silvertown, 1987; Cox et al., 2001; Hughes et al., 2004).  The LV equations, however, 

sometimes lead to unrealistic outcomes. For instance, their equilibrium solutions prohibit the 

coexistence of PFTs in the absence of appreciable disturbance and temporal environmental 

variability (Arora and Boer, 2006).  In the SSiB4/TRIFFID, we allow the coexistence of 

different PFTs (Figure 1).  However, these results are obtained after some adjustments to the 

environmental constraints in the model, such as wilting points and optimal photosynthetic 

canopy temperature.  For example, it was found that with the original LV equation 
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coefficients (Table 2A), shrubs completely took over grasses in some areas as shown in 

Figures 2(A).  The C3 grassland in the central U.S. was taken over by shrubs and almost 

disappeared completely.  Based on current vegetation mapping and climate-vegetation 

biomes (e.g., Ramankutty and Foley, 1999; MacDonald, 2002), we understand such 

distributions are unrealistic.   In the original TRIFFID, a (tree-shrub-grass) hierarchy was 

introduced for the PFT competition (i.e., shrubs dominate grasses, and trees dominate both 

grasses and shrubs) as shown in Table 2A, in which dominant types ―i" limit the expansion of 

other types ―j" (cji = 1) but not vice-versa (cij = 0).  However, this simplistic competitive 

hierarchy ignores factors such as importance of grass aleopathy on tree seedlings, root 

competition by established grasses precluding tree or shrub seedlings in arid grassland sites, 

or competitive advantages provided to grasses by sprouting or rapid maturation and seed set 

in fire-prone sites or heavily grazed systems (e.g. Fales and Wakefield, 1981; Kolb, 1988; 

Higgins et al., 2000; Fuhlendorf et al., 2008).  To overcome the problem of shrubs or trees 

simply overtaking grasses in all cases, we modified the order of competition as shown in 

Table 2B, which shows tree-grass-shrub dominance hierarchy.  The C3 Grasses and C4 are 

moved to i=3 and i=4, respectively.  Meanwhile, we still allow shrubs and grasses to 

co-compete with competition coefficients dependent on their relative heights (See Table 2b).  

With this change, the model is able to produce the grasslands in the central U.S. as shown in 

Figures 2(B). Although this change still seems unable to reproduce the full scope of 

grasslands, particularly in the western central plains, it is nevertheless a large improvement 

compared with Figures 2(A). 
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(2) Photosynthesis optimum temperature (POT) 

Although grasslands in the central U.S. are present in Figures 2(B), the figures also 

show a high proportion of grasses in the southeast U.S., which seems inconsistent with 

current conditions. According to the GLC2000 satellite data (Latifovic et al., 2002), 

needleleaf and other trees cover a large percentage of the land in this area. However, the 

GLC2000 product also indicates a small swath of C3 grassland in the same area of the 

southeastern coastal region. We address this through scrutiny of photosynthesis. 

Temperature is one of the principle factor having large effects on physiological 

activity at all spatial and temporal scales, and is prominent among the major ecological 

variables that control plant distribution and productivity.  Photosynthesis for all plants is 

strongly affected by temperature and shows an optimum temperature that roughly 

corresponds to the middle of the non-harmful (for photosynthesis) temperature range (e.g., 

Berry and Bjorkman, 1980; Sage and Kubien, 2007; Taiz and Zeiger, 2010).  The values for 

photosynthetic processes, including POT, in SSiB4/TRIFFID are based on the SSiB 

vegetation parameter tables (see Section 3.1), in which the C3 grasses’ POT is closer to the 

annual mean temperature (290°K) in this area than that of needleaf trees, which is relatively 

low.  Although this SSiB POT parameter setting does not cause an obvious problem in 

simulation with specified PFTs, under fully coupled mode, it generates an unrealistic PFT 

distribution, indicating the two-way coupling imposes a stricter constraint on model 

parameter settings.  After several sensitivity tests and analyses, we determined this was the 

cause for the C3 grasses taking over needleaf trees in that area.  By trial and error, we raised 



 

©2015 American Geophysical Union. All rights reserved. 

the needleaf POT to 290°K, which is the annual mean surface temperature over that area (it 

was 288°K in the original SSiB Table).  Figure 2(C) shows that this approach solved the 

problem in the southeastern U.S. coastal areas and meanwhile had no large impact on other 

areas’ grassland distribution.  Compared with the original setting, the needleaf trees also 

extend to the south a little bit in the central U.S.  This is crop area in today’s 

satellite-derived map.  Most crop area in the central U.S. could potentially grow as prairie 

and the needleleaf trees that existed there some 200 hundred years ago (Carroll, et al., 2002; 

Middleton, 2008). 

(3) Leaf Drop threshold Temperatures (TOFF) 

In addition to the two above factors, the setting of TOFF is very critical for vegetation 

phenology and affects the PFT spatial distribution.  In TRIFFID, leaf mortality rates are 

assumed to be a function of temperature as the leaf temperature drops below a threshold 

value, TOFF.  When the environmental temperature is higher than TOFF, the leaf mortality 

rate in TRIFFID is set to minimum value.  The original TOFF in TRIFFID was quite low 

(Table 3) such that there was no significant seasonal variation because the environmental 

temperature was most likely higher than TOFF (Murray-Tortarolo et al., 2013).  To produce 

proper seasonal and interannual variability, we have adjusted TOFF for each PFT (Table 3) 

enlightened by the SSiB4/TRIFFID tests in several sites with different PFTs over the globe 

(Xue et al., 2006). .  Following that approach, the TOFFs were adjusted for this study.  To 

demonstrate the TOFF effect, we made a quasi-equilibrium run with the original TRIFFID 

TOFF (see Table 3).  Since there was no tundra shrub in the original TRIFFID, we use the 

same TOFF of the shrubs for tundra.  With the original TOFF setting, which is much lower 
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than the SSiB4/TRIFFID setting, shrubs and tundra shrubs grow more at high latitudes and 

extend further to the south.  The model is unable to produce a reasonable spatial distribution 

of C3 grasslands (Figures 2(D)) because the shrubs and tundra extend much too far to the 

south and displace C3 grasslands. 

The settings of TOFF not only affect the vegetation distribution pattern, but also affect 

the simulation of vegetation equilibrium status for some plant taxa. For example, as shown in 

Figure 3, for Region 5 the needleleaf trees accelerate their growth with time and gradually 

overtake other vegetation types. The vegetation does not reach equilibrium status even after 

100 years’ simulation. 

4. Simulation Results using the 1948-2008 Meteorological Forcing 

4.1. Simulated and satellite-derived vegetation distribution 

We used the quasi-equilibrium outputs as discussed in section 3..1 as initial vegetation 

conditions, which include each PFT’s fraction, LAI etc. at every grid point to integrate the 

model using the meteorological forcing from 1948 through 2008 (Section 2.3 (1)). Anav et al. 

(2013) have shown that adequate vegetation fraction is more important in ―controlling the 

distribution and value of LAI than the climatic variables.‖  They also found that because of 

this, in their model intercomparison study, the models with prescribed vegetation distribution 

performed better than those DVMs which dynamically simulate the vegetation fraction 

distribution but with unrealistic distribution.  Therefore, we assess the model vegetation 

fraction products first by comparing the simulated dominant vegetation type distribution 

based on the averaged vegetation fractional coverage from 1998 through 2008 (Figure 4c) 

with satellite analyses, which only provide comparable products during this time period.  
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The distribution of vegetation types from the land cover database of GLC2000 (Latifovic et 

al., 2002) is shown in Figure 4a, and the dominant vegetation type based on the MODIS 

IGBP vegetation fraction from 2001 through 2010 is shown in Figure 4b (Friedl et al., 2010).  

Please note that their vegetation types have been converted to the SSiB4/TRIFFID types 

(Table 1). 

.  For both the simulated and satellite-observed vegetation distributions, needleleaf 

trees dominate in the northern mid-latitudes of the NA continent.   The spatial distribution 

of boreal forest band there shows a slight northwest-southeast direction. However, the 

MODIS IGBP product shows a much narrower boreal forest band in the mid-latitudes 

compared with the other two products and presents larger mixed forest and shrub bands there.  

Meanwhile, GLC2000 and SSiB4/TRIFFID have needleleaf trees dominant in the southeast 

U.S. but almost negligible in the MODIS IGBP map, which identifies the area as mixed 

forests.  Table 4 shows the PFT fractional coverage for each region. For Region 5 (the 

southeast U.S), SSiB4/TRIFFID produces 35.5% broadleaf trees and 36.2% needleaf trees, 

which actually are mixed forests.  In central NA, west of the Great Lakes, the model 

produces a larger area of needleleaf trees, but the area is currently covered by crops in 

satellite products, indicating the effects of human activities. The MODIS IGBP products do 

not distinguish shrubs and tundra.  The shrubs and tundra shrubs in GLC2000 and 

SSiB4/TRIFFD are quite consistent.  Between tundra and boreal forest, SSiB4/TRIFFID 

shows a transition zone of shrubs, consistent with MODIS in that area but different from the 

GLC2000 map in Canada, which shows a sharper needleaf trees/tundra transition.  The 

MODIS and SSiB4/TRIFFD portrayal appears more consistent with current ecological 
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conditions in terms of a gradual transition from forest to tundra (Ecological Stratification 

Working Group, 1996). Over Alaska, the SSiB4/TRIFFID-simulated distribution and 

GLC2000 map have very similar spatial patterns of tundra shrubs, shrubs, and needleaf trees.  

Over the Eastern U.S. states, the simulated broadleaf trees well reproduced the satellite 

derived distribution.  By and large, over these areas, simulated results are relatively close to 

GLC2000. 

In the southwestern and central U.S., short plants are dominant. Despite the general 

agreement on the distribution patterns (i.e., grassland in the central U.S. and shrubs over the 

lower elevation southwestern U.S.), there are appreciable differences between GLC2000, 

MODIS IGBP, and simulation, indicating the difficulty in identifying short plant land cover 

(grasslands versus shrubs) or bare ground portions over those regions. The MODIS IGAP and 

SSiB4/TRIFFD map have larger grassland coverage in the Great Basin region than the 

GLC2000 product.  Meanwhile, the SSiB4/TRIFFD model simulates bare ground desert in 

large parts of the southern southwestern U.S., where shrubs are identified as dominant in 

satellite products. The difficulty in reproducing the dominant types over southwestern to 

central NA may suggest the existence of other mechanisms unaccounted for in the simulation. 

D’Odorico et al. (2007) suggest that based on their data, ―the tendency of the system to 

exhibit two (alternative) stable states becomes stronger in the more arid regions. Thus, at the 

desert margins, vegetation is more likely to be prone to discontinuous and abrupt state 

changes.‖  Although the general distribution of lower elevation short vegetation/bare ground 

is captured well in the southwestern U.S., adequate simulation of the specific arid lands 

groundcover conditions there (grassland, shrub, bare ground) remains a great challenge.  
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The SSiB4/ TRIFFID has difficulty simulating C4 plants over North America when we 

compare the SSiB4/TRIFFID-simulated C4 plants with the MODIS Savanna lands (Figure 4) 

and the C4 plan distribution discussed in Still et al. (2003).  GLC2000 has no C4 plants for 

comparison.  The model seems to be capable of producing C4 in other parts of the world 

(not shown) but not in NA.  Our approach on initial vegetation condition may also 

contribute to this deficiency.  Savannas are known to depend on climatic variability, and our 

forcing for the equilibrium run for the initial vegetation is a climate forcing without 

interannual variability, which may underestimate the C4 distribution.  The cause for this 

deficiency over NA is still under investigation.   

The statistics of the fractional coverage over the eight regions averaged from 1998-2008 are 

summarized in Table 4.  For comparison, the results from the quasi-equilibrium runs are also 

listed in parentheses.  In most areas, the fractional coverage is still very close to the 

quasi-equilibrium run, indicating our quasi-equilibrium run’s results are generally stable.  

The MODIS data provide the fractional coverage for a few PFTs, but it is normally always 

close to either 1 or 0.  Better satellite products for fractional vegetation coverage are 

necessary for further model validation.  For a reference, we list FASIR’s total vegetation 

coverage percentage for these regions for comparison.  Except for Regions 3 and 6, the total 

vegetation covers with FASIR and with SSiB4/TRIFFID are quite close. 

4.2 Spatiotemporal Variability of vegetation LAI 

(1) Spatial distributions of the simulated and satellite-derived LAIs 

In SSiB4/TRIFFID, LAI is calculated based on parameters describing the minimum 

and maximum LAIs for a given PFT specified in TRIFFID, carbon balance, and phenological 



 

©2015 American Geophysical Union. All rights reserved. 

processes, which depend on leaf temperature and soil moisture.  Figure 5 shows the 

simulated and satellite-derived LAI spatial distributions in winter (DJF, December, January, 

February), spring (MAM, March, April, May), summer (JJA, June, July, August), and fall 

(SON, September, October, November) averaged from 1982 through 1998, a time period 

when both FASIR and GIMMS data exist.  We have received the latest GIMMS LAI data 

(Zhu et al., 2013), which extends to 2010.  However, since this new LAI data set show no 

relationship at all with climate variables but the old one shows a clear relationship, consistent 

with the GIMMS NDVI products (Zeng et al., 2013), in this paper we still use the old 

GIMMS data set, which ends in 2002. 

The FASIR and GIMMS satellite data products show similar spatial patterns: large 

LAI over boreal forest area, the Eastern U.S., Central America, coastal areas in the northwest 

U.S., and southeast Canada with large seasonal variations (except tropical rainforests).  

FASIR JJA LAIs over boreal forests and over the Eastern U.S. are larger than GIMMS’.  In 

addition, despite the general agreements over Alaska and the Western U.S, differences in 

some detailed structures in spatial distributions between these two data sets are apparent.  

For instance, GIMMS shows lower JJA LAI over the Sierra Nevada but higher JJA LAI over 

Alaska compared to FASIR.  The SSiB4/TRIFFID simulation generally reproduces the 

major LAI spatial distribution patterns and temporal variation shown in the two satellite 

products.  Table 5 shows the spatial correlations between SSiB4/TRIFFID and satellite 

products. Murray-Tortarolo et al. (2013) report the DVM comparison results for northern 

high latitudes and the correlations/bias are much lower/higher than listed in Table 5.  For 

instance, the correlation coefficients are around 0.6 to 0.7 in Table 5 and 0.21 for TRIFFID, 
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which was the original version and was not coupled with SSiB, in Murray-Totarolo (2013); 

the bias is about 1 over boreal forest in this study, much lower than 3-4 as reported in 

Murray-Totarolo (2013).  Murray-Tortarolo et al. (2013) speculate that the lesser number of 

PFTs in TRIFFID may cause the low correlation, but they are also concerned that more PFT 

numbers could lead to an increased uncertainty due to their parameterizations, while an 

insufficient number results in a misrepresentation of vegetation dynamics.  This study shows 

that proper presentation of phenological processes and photosynthesis processes plays a 

crucial role in producing NA LAI seasonal spatial distribution.  Whether increasing PFTs 

will further help the SSiB4/TRIFFID simulation needs further investigation. 

It should be pointed out that although the SSiB4/TRIFFID shows that bare ground is 

dominant over part of the Western U.S, which is different from satellite products (Figure 4), 

its LAI value and its seasonal variation are actually slightly higher than the satellite products.  

However, the SSiB4/TRIFFID simulated LAI values are lower than satellite products over the 

Eastern U.S. in summer and over the boreal forest area in winter, but higher in the southern 

U.S. in spring.  The lower LAI in the Northeastern U.S. is caused by the setting for OPT for 

the broadleaf trees.  In TRIFFFID, the parameters for evergreen and deciduous trees are not 

separated.  While the setting is good for the broadleaf trees over Amazon and Central Africa, 

it is not adequate for the deciduous broadleaf trees in the Northeastern U.S.  Some other 

differences between the simulation and satellite products may be caused by human impact on 

land cover which is captured in the satellite products but not simulated by SSiB4/TRIFFID.  

For instance, many crops grow in the central U.S. (the thin solid line in Figure 5).  The 

simulated LAI, based on SSiB4/TRIFFID simulated potential vegetation, i.e., needleaf trees, 
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is greater than that of observation. 

(2) Temporal changes of the simulated and satellite-derived LAIs 

Figure 6 shows comparisons of the anomalies of annual mean LAI between the 

simulation and satellite products for the eight regions from 1958 to 2008.  We take out the 

first ten years’ simulation and only show the results from 1960 to 2008 because we are not 

sure whether any trends during the first ten years are still affected by the spin up.  The 

FASIR data show relatively large variances compared with GIMMS, which has been 

discussed in Kang et al. (2007).  The FASIR and GIMMS are derived from the same satellite 

products.  The differences are mainly caused by different retrieval algorithms and 

atmospheric correction methods.  The correlation coefficients of the simulated LAI with 

GIMMS LAI and FASIR LAI over these regions are listed in Table 6.  The numbers of 

degrees of freedom in calculating the statistical significances in Tables 6 and 7 have been 

adjusted to take into account the autocorrelation in the time series data using the Dawdy and 

Matalas (1964) method.  The correlation coefficients for the interannual variability from 

1982 through 1998 (for FASIR) and 2002 (for GIMMS) ranged from 0.37 to 0.57 for FASIR 

and from 0.29 to 0.58 for GIMMS.  The correlation coefficients with statistical significance 

at the α=0.01 level of t-test values are listed in bold and italics in the table. Only in Regions 2 

and 7 does the simulated LAI have no statistically significant relationship with either of the 

satellite products.  It is interesting to notice that over the entire domain, the model results 

and satellite products have no significant relationship. We will discuss this issue in the next 

section. 

Although there are no clear trends in PFT fractions, which confirm our initial 
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conditions are generally adequate, a few regions show clear LAI trends in past decades.  It 

was reported that California and adjacent regions experienced one of the most severe 

droughts during 1987-1992 (Brumbaugh et al., 1994) and during the last decade (MacDonald, 

2010). The drought effects on vegetation can be clearly seen in Region 7.  There was also a 

rapid increase in LAI approximately from 1960 to 1980, when no satellite data are available 

for comparison. However, 1960 to 1980 was a period of generally increasing precipitation 

and decreasing aridity as measured by the regional Palmer Severity Index (MacDonald, 2010).  

This increase in moisture was coupled with warming (MacDonald, 2010), and this likely 

would have promoted enhanced vegetation growth and LAI. Furthermore, both the simulation 

and satellite observations identify LAI increase in Region 5, i.e., the southeastern U.S. 

starting from the 1980s. For the entire NA continent, the simulated LAI and the satellite 

observations all show an increasing trend approximately since 1970 (for simulation) and 1982 

(for satellite) until the end of our simulation. This increasing trend likely results from the 

impacts of increasing CO2 enrichment and climate change-related warming and regional 

increases in precipitation on plant growth and LAI (Piao et al., 2006).  The discussion of 

detailed causes and mechanisms of these trends and large variations are beyond the scope of 

this paper. 

5.  Relationships between Vegetation and Climate/Surface Condition 

The discussion in Section 4 shows that the SSiB4/TRIFFID-produced vegetation 

properties are generally consistent with the satellite products.  These results were driven by 

meteorological forcing.  Based on eighty five (85) in situ worldwide measurements, 

Hawkins et al. (2003) found that measures of energy, water, or water-energy balance explain 
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the geographic pattern in species richness better than other climatic and non-climatic 

variables.  In this section, we assess the relationship between observed and simulated spatial 

and temporal variability of vegetation with climate and surface conditions.  This paper has 

demonstrated the importance of climate on the model-simulated vegetation distribution.  

Therefore, it is important to evaluate whether this model produced a valid climate/vegetation 

relationship. 

The statistical calculation for our analysis is conducted for every 1° grid box from 

1948-2008 for SSiB4/TRIFFID and from 1982 to 1998 for the GIMMS and FASIR satellite 

products, a time when both sets of satellite data are available.  The seasonal mean data were 

used in the statistical analyses.  After investigating the correlations of the simulated LAI, 

GIMMS and FASIR LAIs with simulated soil wetness at the rooting zone, and observed 

precipitation and air temperature as presented in Section 2.3 for different seasons, it is found 

that only MAM and JJA conditions show a significant relationship between LAI and 

environmental variables over large areas, consistent with the results for the NA region from a 

general circulation model study (Xue et al., 2010). 

The satellite products have a high positive correlation between LAI and spring air 

temperature (Figures 8T2 and 8T3) over northern middle to high latitudes of NA, except near 

the Arctic region, consistent with Zeng et al.’s results (2013), which used the NDVI as the 

proxy for vegetation.  High temperatures during the spring affect vegetation phenology and 

length of the growing season, which should contribute to this positive correlation.  It is not 

surprising to see that the southern boundary of the high correlation area approximately 

follows the line with seasonal mean temperature at 5°C (Figure 7a1), which is coincident 
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with the low temperature stress factor of photosynthesis of the needleaf trees, the dominant 

PFT at that location. The satellite products show many small discrete spots within these areas 

with zero correlation, reflecting a quality issue in these pixels.  In general, the model 

simulation also produces a positive anomaly similar to the satellite products but with higher 

correlations than the satellite products.  Meanwhile, the areas with positive correlation 

extend much to the north, close to the Arctic area, compared to the satellite products. 

We conducted statistical analysis for LAI and spring precipitation, but that did not 

yield statistically significant correlations, which is consistent with Zeng et al.’s (2013) results.  

However, Zeng et al. (2013) found that positive correlations were the strongest and most 

spatially extensive at a lead of 1 month, and locally significant positive correlations could last 

up to a lead of 6 months.  Since the hydrological variable that affects the vegetation growth 

most is soil moisture, and precipitation via soil moisture affects plants, we conducted 

statistical analysis using model-simulated rooting zone soil wetness and LAI. 

The area of high positive correlation with soil moisture (Figures 8w2 and 8w3) is 

mostly located in the semi-arid southwestern U.S. and Mexico, where the soil wetness is 

lower than 0.3 (Figure 7b1) and covers grasslands, shrublands, and savannas. The positive 

correlation between soil wetness and satellite-derived NDVI in arid and semi-arid landscapes 

has been detected in some studies (e.g., Nemani et al, 2003; Zribi et al., 2010).  The 

SSiB4/TRIFFID simulation also shows high positive correlations with soil moisture over 

shrubs and tundra areas near the Arctic Ocean and North Atlantic. But this correlation is not 

as strong in satellite products.  Moreover, there are discrepancies between the simulated and 

satellite-derived relationship over southwestern Canada: the SSiB4/TRIFFID results show a 
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correlation with soil wetness, but it is not apparent in the satellite products.  The 

temperatures over those areas are generally lower than zero degrees during this time period.  

Although liquid soil moisture still exists under frozen conditions (Li et al., 2010) and shows 

some positive correlation (Figures 8W2, and 8W3), the model simulated relationship between 

LAI and soil moisture may be exaggerated because in the SSiB version for this study, the 

frozen soil sub-module is not included. 

The strong coupling between vegetation and climate in spring over NA has been 

reported in other modeling and diagnostic studies.  For example, Xue et al. (2010) have 

conducted a global and seasonal assessment of regions of the earth with strong climate–BGP 

interactions. They identify that in the Eastern and Western U.S. and the Canadian boreal area 

the spring season exhibits a very strong interaction with vegetation conditions.  A positive 

relationship between LAI and spring air temperature has also been reported based on 

observed climate data and NDVI, especially across the northern U.S. (e.g., Notaro et al., 2006; 

Wang et al., 2011). 

During the summer (JJA), the areas with high correlation coefficients between LAI 

(Figure 5) and temperature (Figure 7a2) become smaller and move to the north in the satellite 

products and model simulation (Figure 9), consistent with temperature change.  Meanwhile, 

the semiarid area over the southwest U.S. shows negative correlation; i.e. higher temperature 

in these dry lands (Figure 7a2) may have a negative effect on vegetation growth through its 

direct adverse impact on photosynthetic processes and growth, as well as through its 

interactions with soil moisture.  The correlation between the JJA surface temperature and 

soil moisture in the southwest U.S. is around negative 0.5 (not shown).  The correlation 
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between LAI and soil wetness increases substantially, especially over the dry lands of the 

Western U.S. (Figure 9).  Some of these areas have correlations between LAI and soil 

wetness of more than 0.5, indicating vegetation’s high demand for water during the summer 

season.  It is very interesting to see that the spatial patterns of correlation between LAI and 

soil moisture are very similar to the ones for LAI and 1-3 month lead precipitation in both 

spring and summer, which suggest that precipitation seems to affect the vegetation through 

soil moisture memory, which is also influenced by temperatures and resulting evaporation 

rates.  This relationship is also consistent with other modeling studies (e.g., Asharaf and 

Ahrens, 2013).  

In recent studies on summer vegetation browning in NA, some speculated that it was 

due to increased drought stress, driven by rising summer temperature (Angert et al., 2005), 

decreasing precipitation (Zhang et al., 2010), or other climate drivers (Wang et al., 2011).  

These studies confirm the intuition that soil moisture availability does have strong effects on 

vegetation, with the strongest effects under the condition that the soil is very dry during a hot 

summer.  All these results are consistent with the relationships discussed in this study. 

Table 7 lists the correlation coefficients over the eight study regions to more clearly 

summarize the relationships that we discussed above.  The correlation coefficients between 

simulated LAI and air temperature for Regions 1-5 and the entire continent are statistically 

significant at α=0.05 level (t-test), while the correlations between simulated LAI and soil 

wetness are statistically significant over Regions 6 and 7, which cover dry lands.  The 

relationship between satellite-derived LAI and climate seems not as strong as shown in the 

simulation.  Only LAI in Regions 2, 3, and 5 shows statistically significant correlations with 
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temperature and only LAI in Region 7 shows a significant relationship with soil moisture.  

The surface temperature has a warming trend after 1970 (Figure 10a).  The LAI follows this 

trend very well (Figures 6 and 10a).  The correlation coefficient, 0.70, is quite high for 

simulated LAI over NA but <0.5 for satellite derived products, which may be a partial reason 

why the simulated and satellite LAIs have low correlation over NA (Table 6).  The reasons 

for the discrepancies between the strength of correlations in the simulation compared to the 

satellite products are unclear.  Whether this is because the model results are too dependent 

on the selected climatic drivers, which obscures relations with other factors, and/or satellite 

products having shortcomings in their data collection and preprocessing needs to be further 

investigated with more observational data.  Figure 10b shows the temporal variation of 

simulated LAI and soil moisture over the southwestern U.S.  Their variability is very 

consistent and the correlation coefficient is 0.78.  However, over all of NA, the correlation 

between LAI and soil moisture is low and not significant because during the 1970s and the 

early 1980s, the relationship seems very weak (not shown), leading to the overall low 

correlations.  Because the soil moisture in this study is a model product, more realistic soil 

moisture data are desired to investigate this issue further. 

6. Conclusions 

In this study, we apply the 2-D SSiB4/TRIFFID model that is driven by 

meteorological forcing and compare the model results with satellite-derived datasets to 

investigate the dominant factors affecting quasi-equilibrium vegetation status, to assess the 

biophysical and dynamic vegetation model’s ability to simulate vegetation spatial distribution 

and temporal variability over NA for the past 60 years using observational data, and to 
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identify the most important relationships between NA vegetation and climate. 

The photosynthesis optimum temperature (POT), leaf drop threshold temperatures 

(TOFF), and completion coefficients in the LV equation have been identifying having major 

impact on the vegetation spatial distribution and the attainment of quasi-equilibrium status in 

SSiB4/TRIFFID.  TOFF will affect how large the area of PFT migration will be under 

global warming scenarios; the uncertainties in climate forcing and model parameters can 

greatly influence the simulation of vegetation distribution under climate change conditions. 

Meanwhile, the fact that vegetation competition coefficients affect quasi-equilibrium 

conditions suggests the importance of including biotic effects in dynamical vegetation 

modeling.  Despite the high correlation between LAI and soil moisture in the Western U.S., 

we still have difficulty in accurately reproducing the dominant types over the southwestern 

and central U.S., which may suggest that the model has weakness in producing the existing 

mechanism of soil moisture-vegetation feedback and handling two possible stable states in 

arid regions as suggested by D’Odorico et al. (2007). 

SSiB4/TRIFFID can reproduce the features of NA distributions of dominant 

vegetation types, the vegetation fraction, and LAI, including its seasonal, interannual, and 

decadal variability, well when compared with satellite-derived products.  The NA LAI 

shows an increasing trend after the 1960s likely responding to increased CO2, overall 

warming, and regional precipitation changes as suggested by Piao et al (2006) for northern 

hemisphere greening. 

Both simulated and satellite-derived LAIs have the strongest correlations with air 

temperature at northern middle to high latitudes in spring through their effect on 
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photosynthesis and phenological processes.  During the summer, the areas with positive 

correlations retreat northward.  Meanwhile, in southwestern dry lands, negative correlations 

between LAI and temperature appear due to the heat stress and moisture stress there during 

the summer.  Furthermore, there are also positive correlations between soil wetness and LAI, 

which increases from spring to summer. The effects of increasing moisture from 1960 to 1980 

and the subsequent effect of the severe drought during 1987-1992 and the last decade in the 

southwestern U.S. on vegetation are evident from the simulated and satellite-derived LAIs. 

The dynamic vegetation models that were originally developed from paleoclimate 

studies for very long time scale have recently been introduced to decadal to century scale 

studies.  The recent published papers with multi-dynamic vegetation models (Anav et al., 

2013; Murray-Tortarolo et al., 2013; Bao et al., 2015) have consistently shown that current 

dynamic vegetation models have serious weaknesses in reproducing the observed vegetation 

conditions and have contributed to a large bias in decadal climate simulations.  The model 

evaluations/calibrations using observational data, such as was done in PILPS, have greatly 

propelled biophysical model development and related climate research in past decades.  

Considering the dynamic vegetation models have been and will be used for the future 

projection, it is imperative to develop better ecological and biophysical understanding of  

the vegetation dynamics and their interaction with climate at interannual and decadal scales.  

Recently available observational data from both satellite observations and field measurements 

provide great opportunity to conduct such research.  This paper is a proto-type research on 

this direction and more studies with different models and focusing on different regions are 

necessary to achieve a comprehensive understanding on this subject.     
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Figure1. Temporal evolution of PFTs’ fractional cover in the quasi-equilibrium simulation. 

The region areas are defined in the bottom right panel.  The results are obtained after 

model improvements as discussed in Section 3.2.  
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Figure 2. Five PFTs’ fraction for the last ten year (1998-2008) mean under equilibrium 

conditions: (A1-A5) Based on original TRIFFID setting;  (B1-B5) Changing the LV 

Equation coefficients; (C1-C5) Changing optimum temperature of photosynthesis of 

needleleaf trees; (D1-D5) Effect of leaf drop temperatures 
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Figure 3. PFT fraction evolution for Region 5 after changing TOFF 
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Figure 4. Comparison of simulated and satellite-derived dominant PFTs . (a) GLC2000; (b) 

MODIS IGB vegetation types based on averaged vegetation coverage for 2001-2010; 

(c) SSiB4 simulation based on averaged vegetation coverage for 1998-2008. 
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Figure 5.Comparison of simulated and satellite-derived LAIs( the solid enclosed crop curve 

in simulated LAI figures is based on initial satellite crop) 
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Figure 6. Simulated & Satellite LAI temporal evolutions from 1958-2008 
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Figure 7.  Averaged MAM and JJA from 1998-2008 (a) Observed air temperature (℃) and 

(b) Simulated soil wetness 
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Figure 8. Correlation of simulated and satellite-derived MAM LAIs with simulated soil 

wetness and air temperature. 
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Figure 9. Correlation of simulated and satellite-derived JJA LAIs with simulated soil wetness 

and air temperature 
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Figure 10.  Time evolution of simulated LAI and (a) surface temperature  (ºC) over North 

America; (b) soil wetness over Region 7 
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Table 1 Comparisons for different land cover type classifications 

No. 
SSiB4/ 

TRIIFID  
GLC2000 MODIS IGBP 

1 
Broadleaf 

Tree 

Class Description Class Description 

1 
Tropical or Subtropical Broadleaved Evergreen 

Forest - Closed Canopy 
2 

Evergreen Broadleaf 

Forest 

 

2 

Tropical or Subtropical Broadleaved Deciduous 

Forest - Closed Canopy 
4 

Deciduous Broadleaf 

Forest 

 

3 

Temperate or Subpolar Broadleaved Deciduous 

Forest - Closed Canopy 
  

29 
Tropical or Subtropical Broadleaved Evergreen 

Forest - Open Canopy 
  

2 
Needleleaf 

Tree 

4 
 Temperate or Subpolar Needleleaved Evergreen 

Forest - Closed Canopy 
1 

Evergreen 

Needleleaf Forest 

5 
Temperate or Subpolar Needleleaved Evergreen 

Forest - Open Canopy 
3 

Deciduous Needle- 

leaf Forest 

20 
Subpolar Needleleaved Evergreen Forest Open 

Canopy -  lichen understory 
  

3 C3 Grass 

13 Temperate or Subpolar Grassland 10 Grasslands 

27 Wetlands 11 Permanent Wetlands 

28 Herbaceous Wetlands   

4 C4 Plants  

14 
Temperate or Subpolar Grassland with a Sparse 

Tree Layer (latitude < 40°N) 
8 

Woody Savannas 

(latitude < 40°N) 

15 
Temperate or Subpolar Grassland with a Sparse 

Shrub Layer (latitude < 40°N) 
9 

Savannas 

(latitude < 40°N) 

5 Shrubs  

9 
Temperate or Subpolar Broadleaved Evergreen 

Shrubland - Closed Canopy 
6 Closed Shrubland 

10 
Temperate or Subpolar Broadleaved Evergreen 

Shrubland - Closed Canopy 
7 Open Shrubland 

11 
Temperate or Subpolar Needleleaved Evergreen 

Shrubland - Open Canopy 
8 

Woody Savannas 

(latitude ≥ 40°N) 

12 
Temperate or Subpolar Mixed Broadleaved and  

Needleleaved Dwarf Shrubland - Open Canopy 
9 

Savannas 

(latitude ≥ 40°N) 

14 
Temperate or Subpolar Grassland with a Sparse 

Tree Layer (latitude ≥ 40°N) 
  

15 
Temperate or Subpolar Grassland with a Sparse 

Shrub Layer (latitude ≥ 40°N) 
  

6 
Tundra 

shrubs 

16 Polar Grassland with a Sparse Shrub Layer   

17 Polar Grassland with a Sparse Shrub Layer   

7 Barelands 

21 
Unconsolidated Material Sparse Vegetation (old 

burnt or other disturbance) 
13 Urban and Built-Up 

22 Urban and Built-up 16 
Barren or Sparsely 

Vegetated 
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23 Consolidated Rock Sparse Vegetation   

25 Burnt area (resent burnt area)   

8 Crop 

18 Cropland 12 Croplands 

19 Cropland and Shrubland/woodland 14 
Crop/Natural 

Vegetation Mosaic 

9 
Mixed 

forest 

6 

 

Temperate or Subpolar Needleleaved Mixed Forest 

- Closed Canopy 
5 Mixed Forest 

7 
Temperate or Subpolar Mixed Broadleaved or 

Needleleaved Forest - Closed Canopy 
  

8 
Temperate or Subpolar Mixed Broadleaved or  

Needleleaved Forest - Open Canopy 
  

10 
Snow and 

Ice 
26 Snow and Ice 15 Snow and Ice 

11 Water 24 Water 
17 

 
Water 
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Table 2 (a) Original Intra- species competition relationships 

 

 

 

Note: (1) Numbers i = 1- 6 represent PFTs: Broadleaf tree, Needleleaf tree, Shrub, Tundra 

shrubs, C3 type grass, and C4 type grass, respectively. (2) A value of 0 implies that PFT i 

dominates PFT j. ( 3 )  A value of 1 implies PFT j dominates PFT i.  (3). Entry ’*’ 

indicates that two PFTs could co-exist. 

 

 
i = 1 

Broadleaf 

trees 

i =2 

Needlelea

f trees 

  i =3  
Shrubs 

i  =4  
Tundra 

shrubs 

i =5  
C3 type 

grass 

i =6  
C4  type 

plants 
j=1 

Broadleaf 

trees 
 * 1 1 1 1 

j =2 

Needleleaf 

trees 
*  1 1 1 1 

j =3  
Shrubs 0 0  * 1 1 

j =4  
Tundra 

shrubs 
0 0 *  1 1 

j =5  
C3 type 

grass 
0 0 0 0  * 

j =6  
C4 type 

plants 
0 0 0 0 *  



 

©2015 American Geophysical Union. All rights reserved. 

Table 2b Modif ied  Intra- species competition relationships 

 

Note:  Numbers i = 1- 6 represent PFTs: Broad leaf trees, Needleleaf trees, C3 type grass, C4 

type plants, Shrub, and Tundra shrubs, respectively.  

 

 
i =1 

Broadleaf 

trees 

i =2 

Needleleaf 

trees 

i =3  
C3 type 

grass 

i =4  
C4 type 

plants 

i =5  
Shrubs 

i =6  
Tundra 

shrubs 
j =1 

Broadleaf 

trees 
 * 1 1 1 1 

j =2 

Needleleaf 

trees 
*  1 1 1 1 

j =3  
C3 type 

grass 
0 0  * * * 

j =4  
C4 type 

plants 
0 0 *  * * 

j =5  
Shrubs 0 0 * *  * 

j =6  
Tundra 

shrubs 
0 0 * * *  
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Table 3 Settings of temperatures below which leaves are dropped (K) 

 

Exps. Broadleaf 

Trees 

Needleleaf 

Trees 

C3 type 

grass 

C4 type 

plants 

Shrubs Tundra shrubs  

Equilibrium run 284.15 265.15 268.15 268.15 273.15 268.15 

Original TOFF 

run 

273.15 243.15 258.15 258.15 243.15 N/A 
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Table 4 PFT Fractional coverage (%) averaged from 1998-2008 and from the equilibriums 

runs 

 

Note:  (1) Equilibrium run values are listed in parentheses; (2) FASIR only provides the 

total vegetation coverage. (3)  The values for dominant types are bold. 

PFTs/ 

Area No. 

Broadleaf 

trees 

Needleleaf 

trees 
C3 Grass 

C4 

Plants 
Shrubs 

Tundra 

shrubs 

Total 

coverage 
FASIR 

1  13.4(11.9) 1.6(1.9)  47.3(46.0) 27.0(31.1) 89.3(90.9) 87.4 

2  67.7(67.4) 5.7(5.5)  9.8(9.6) 10.9(12.8) 94.2(95.4) 92.7 

3  31.5(31.1) 5.1(4.8)  24.2(20.5) 31.9(38.1) 92.7(94.5) 74.2 

4 3.0(3.7) 69.9(69.3) 7.9(8.0)  10.0(10.1) 2.8(3.8) 96.6(94.9) 96.6 

5 35.5(33.6) 36.2(35.1) 13.2(15.7) 2.1(3.2) 8.1(8.4)  95.2(96.0) 97.3 

6 0.5(0.6) 11.0(11.3) 19.8(22.6) 1.6(1.7) 40.4(48.1) 0.2(0.8) 73.4(85.0) 54.0 

7 0.5(0.6) 12.5(11.7) 16.6(11.3) 0.2(0.2) 22.5(30.2) 0.8(2.3) 53.0(56.4) 44.7 

8 6.8(7.0) 34.0(32.9) 10.9(11.2) 0.7(0.8) 21.1(21.6) 13.3(15.7) 86.7(89.1) 77.8 
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Table 5   Spatial LAI correlation between TRIFFID and Satellites (165W-55W, 25N-70N) 

(1982-1998 average) 

 

 

 

 

 

 

Names Calculation DJF MAM JJA SON YEAR 

TRIFFID&

GIMMS 
Correlation 0.61 0.67 0.58 0.66 0.59 

TRIFFID& 

FASIR 
Correlation 0.67 0.71 0.59 0.65 0.67 

GIMMS& 

FASIR 
Correlation 0.84 0.87 0.90 0.92 0.91 

TRIFFID 

Averages 

1.12 1.07 2.66 2.89 1.94 

GIMMS 0.66 0.71 2.21 2.04 1.44 

FASIR 0.79 0.72 2.27 2.39 1.55 
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Table 6 Temporal correlations of simulated and satellite-derived LAI 

 

 

 

 

 

 

 

 

 

 

 

 

 

**, ***results are statistical significant at 0.12, 0.10, and 0.05 significance level, respectively 

Area No. 
Longitude 

(Degree) 

Latitude 

(Degree) 

1982-1998 

GIMMS LAI FASIR LAI 

1 165W-135W 60N-70N 0.577*** 0.567*** 

2 134W-115W 48N-65N 0.342 0.414** 

3 112W-80W 55N-65N 0.524*** 0.370 

4 88W-55W 44N-53N 0.381 0.538*** 

5 95W-75W 25N-40N 0.474* 0.380 

6 109W-100W 30N-42N 0.598*** 0.459* 

7 125W-110W 30N-40N 0.295 0.425* 

8 165W-55W 25N-70N 0.344 0.406* 
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Table 7 Temporal correlations of simulated LAI with surface temperature and soil moisture 

Note: Only values with 0.05 or 0.1 statistical significance level are listed. 

 

 

Area No. 

1948-2008 (α=0.05) 
1982-2002 (GIMMS) 

(α=0.1) 

1982-1998 (FASIR) 

(α=0.1) 

Temperature Soil Wetness Temperature 
Soil 

Wetness 
Temperature 

Soil 

Wetness 

1 0.66      

2 0.67  0.49    

3 0.64  0.50    

4 0.71    0.51  

5 0.75      

6  0.57     

7  0.78  0.39  0.45 

8 0.70  0.45  0.48  
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