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Sparse Signal Recovery (SSR) problem has received a lot of interest in recent

times because of its significant impact on many engineering applications. This thesis

tackles this important problem in a Bayesian framework and discusses a generalized scale

mixture distribution family, Power Exponential Scale Mixture (PESM) and analyzes its

usefulness as a candidate for the sparsity promoting prior distribution. We derive a unified

MAP estimation or Type I framework for SSR by employing an appropriate member of

the PESM family, Generalized t distribution (GT) and show that the unified framework

encompasses several popular regularization based SSR algorithms such as the reweighted
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`1 and reweighted `2 algorithms among others for specific distributional parameters. We

also propose an adaptive framework of learning the distributional parameters of GT over

the iterations based on the measurements, instead of fixing them beforehand. In addition

to that, exploiting the natural hierarchical framework induced by the PESM family, we

utilize these priors in a Type II/ Empirical Bayes framework and develop corresponding

EM based SSR algorithms. Multivariate extension of our proposed PESM family has

also been discussed, which in turn resulted in a unified framework for imposing joint

sparsity in a Multi Task Learning (MTL) framework.

We have also shown three specific applications of SSR in audio signal processing,

which includes problem specific algorithm enhancements but still utilizes the basic

understanding of SSR. For example, by employing a source prior from the M-PESM

family in a joint blind source separation problem, we propose a class of reweighted

algorithms for Independent Vector Analysis (IVA) with the ability to exploit any intra-

source correlation structure. An Empirical bayes based Impulse Response (IR) estimator

has also been proposed, which exploits both sparse early reflections and exponential

decay reverb tail structure in Room Impulse Response/ Relative Impulse Response as

prior information. Sparsity in residual has also been exploited for a speech modeling

application, which uses the prior block sparse structure of glottal excitation to find the all

pole filter coefficients to model speech efficiently.
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Introduction
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Sparse Signal Recovery (SSR), i.e. finding sparse signal representations from

overcomplete dictionaries, has become a very active research area in recent times because

of its wide range of engineering applications and interesting theoretical nature [26, 46,

53, 55, 77, 144]. For example, in several popular computer vision problems, such as face

recognition [171], motion segmentation [56], and activity recognition [173], signals lie

in low-dimensional subspaces of a high dimensional ambient space. An important class

of methods to deal with this depends on exploiting the notion of sparsity. Following

this path, Sparse Representation based Classification (SRC) [171] was proposed, which

produced state of the art results in a face recognition task. Sparse coding, which is

essentially a variant of SSR, has also been widely used as a promising tool in several

image processing based applications with great success [54, 100, 119]. In this thesis,

we discuss the sparse recovery problem from a Bayesian perspective and unifies many

popular recovery algorithms in a general framework and propose novel extensions of the

well established algorithms for different relevant applications specifically in audio signal

processing.

1.1 Problem Formulation

The problem of SSR can be formulated as a problem of finding a sparse solution

to an underdetermined system of equations y = Φx, which is a linear forward generative

model, where Φ = [φ1, ..,φM] is an N×M matrix with N < M, and it is assumed that

Spark(Φ)1 = N + 1 [53]. The columns φi of Φ are often formed from a physically

meaningful model and the elements of the vector x are generally non-zero parameters

of interest which are to be identified and the vector y is the N×1 measurement vector.

The goal is to solve for x, an M×1 vector, with the requirement that the solution vector

1Spark: Given a matrix A we define σ= Spark(A) as the smallest possible number such that there exists
a subgroup of σ columns from A that are linearly dependent. .
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x be sparse, i.e. many of its entries will be zero. Finding a sparse solution involves

determining the number of columns K (the sparsity index), and the set of column vectors

{φki}K
i=1 that best model y. Even though the forward model is linear, the goal of enforcing

sparsity will make the ensuing inverse problem from y to x highly nonlinear. Ideally one

can recover the optimal sparsest solution x0 by solving the following `0 optimization

problem [53],

min
x
||x||0 such that y = Φx, (1.1)

where ‖x‖0 is a measure of the support of x. In practice, measurements are generally

corrupted by noise, which motivates the following modified optimization problem,

min
x
||y−Φx||22 +λ ||x||0, (1.2)

where λ > 0 is related to the measurement noise variance. It can be shown that in the

limit as λ → 0, the above two problems are equivalent [53].

Figure 1.1. Single Measurement Vector (SMV) Model
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This problem is known as Single Measurement Vector (SMV) recovery problem,

since we are dealing with only measurement. Another extension of this model is the

Multiple Measurement Vector (MMV) problem, where multiple measurements are con-

sidered simultaneously for recovery. Details of the MMV problem will be discussed

later.

1.2 Algorithms

Since, the above optimization problem is not convex and is known to be NP-

hard [129], one popular family of algorithms are based on approximating the original

penalty factor ||x||0 by a suitable surrogate g(x) leading to the optimization problem,

min
x
||y−Φx||22 +λg(x). (1.3)

Different choices of the penalty factor g(x), also referred to here as diversity measure, lead

to different SSR algorithms [30, 33, 41, 48]. It has been shown that the choice of a strictly

increasing, concave penalty factor on the positive orthant, leads to an objective function

with local minima being sparse and the sparsest solution is the global minimum under

some conditions [145, 169]. Majorization-Minimization [60] can be employed to solve

this optimization problem for such penalty functions, and this has led to the development

of useful reweighted norm minimization algorithms. Minimizing diversity measures g(x)

to recover the sparse representations has been a popular algorithm exploration avenue.

In this framework, the SSR problem formulation can also be viewed as a regularization

approach to signal reconstruction. A popular approach among this class is the `p norm

minimization based methods. p = 1 leads to a tractable and computationally attractive

convex optimization problem and the very well known approaches such as Basis Pursuit,

LASSO are based on the `1 framework [47, 156]. Other than the convexity property, `1
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based approaches have been supported by theoretical guarantees of exact recovery given

some conditions on the overcomplete dictionary [48], which makes these approaches

attractive options. The recently proposed reweighted `1 and `2 norm minimization

approaches [30, 33, 146] have empirically shown superior recovery performance over

`1 minimization and are considered in this thesis. A generalized framework for `p

regularized unconstrained minimization problems using iterative reweighted algorithms

have also been studied in [115].

Greedy algorithms such as, Matching Pursuit (MP ) [38], Orthogonal Matching

Pursuit (OMP) [139] have also gained lot of interest because of their low computational

complexity. However, their recovery performance is strongly affected by the coherence

among columns of the dictionary, and also do not have satisfactory performance in noisy

scenarios. Recently message passing algorithms [17, 50] have also become very popular

because of some very fast implementations which make them really useful for high

dimensional applications of sparse recovery.

1.2.1 Bayesian Methods

In addition to the regularization framework, another options for SSR algorithm

development is the Bayesian framework [13, 16, 71, 82, 88, 158, 159]. In a Bayesian

framework, the sparsity constraint is incorporated by choosing a suitable sparse prior on

the coefficient vector x. In a Bayesian setting, there are two popular avenues for algorithm

development: a Type I MAP based approach, and a Type II Evidence Maximization

approach involving a Hierarchical model. Most of the approaches discussed above,

based on (1.3), can be interpreted and cast in a suitable Type I framework. A Type

II framework has been considered in [88, 157], where a Relevance Vector Machine is

adapted to the problem at hand. In [164, 166, 172] a Type II optimization problem has

been transformed into a Type I problem by employing a suitable penalty function and
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reweighted norm minimization algorithm is developed to solve the resulting optimization

problem. Following the Type II framework, a Laplacian prior which corresponds to `1

norm minimization can also be represented in a Hierarchy using a Gaussian Scale Mixture

(GSM) representation [13, 59]. In the statistics community, the well known Bayesian

Lasso [137] also makes use of the equivalence of a hierarchical Gaussian-Exponential

prior to the Laplace prior, and conducts a fully Bayesian inference (via Markov chain

Monte Carlo or MCMC sampling algorithms). Demi-Bayesian Lasso [15] solves the

same problem using a Type II approach. It has been shown empirically that a Type II

methods performs consistently better than Type I, i.e the MAP estimation approach, and

theoretical analysis in support for this superiority has recently begun to appear. However,

much remains to be done and this work is an attempt in this direction. In [118], the two

different frameworks are analyzed in a generalized Hierarchical Bayesian setting which

motivates us to analyze these two frameworks for the specific SSR problem to gather

additional insights by exploiting domain knowledge.

1.2.2 Choice of Prior

In a Bayesian framework, the sparsity constraint is incorporated by choosing

a suitable sparsity inducing prior on the coefficient vector x. Most of the approaches

discussed above, based on (1.3), can be formulated in a Bayesian Maximum A Posteriori

(MAP) estimation framework with a specific choice of sparsity inducing prior distribution,

pX(x) ∝ exp(−g(x)) with assumption of Gaussian measurement noise with variance λ .

This leads to the discussion as to what classes of distributions are suitable for sparsity

promoting prior, and is there any specific property they need to satisfy which will make

them suitable to promote sparsity. Since Gaussian density can not be used to represent

sparse priors, we need densities that are more peaked, with heavier tails than Gaussian,

i.e. it is close to zero most of the time, but occasionally takes relatively large values.
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This class of distributions is known as super Gaussian distributions [134]. The most

commonly used definition of sub and super Gaussianity involves the sign of the fourth

cumulant, i.e. the kurtosis relative to a Gaussian of equal variance. If the kurtosis exceeds

that of the Gaussian, then a random variable X , or its density fX(x), is said to be super

Gaussian. Likewise if the excess kurtosis is negative, then X is said to be sub Gaussian.

Recently Gaussian Scale Mixtures (GSM) [14, 101, 113, 132, 157, 165] and Laplacian

Scale Mixtures (LSM) [2, 65] have been proposed as a suitable class of distributions to

promote sparsity. In this thesis, we introduced a more general scale mixture framework,

the Power Exponential Scale Mixture (PESM) family, for SSR algorithm development

and we provide new theoretical insights and enhanced algorithms. In [132], Type I and

Type II frameworks for SSR were introduced using two forms of density representation,

a convex representation and a GSM representation, to provide an unified treatment. We

build on this work and employ a generalized scale mixture representation to establish

connections and develop enhancements to popular SSR algorithms, as well as treat both

`1 and `2 variants in an unified manner.

1.3 Extension: MMV Problem and Joint Sparsity

Though the single measurement problem was in the forefront of the initial research

activities in the sparse recovery/ compressed sensing field, recently Multiple Measurement

Vector (MMV) problem has gained a lot of interest because of its relevance in different

applications [39]. In many engineering applications often multiple measurements are

available to solve the recovery problem. The SMV problem can easily extended for to

the following MMV model,

Y = ΦX+V (1.4)
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where Y = [Y:,1, ,Y:,L] ∈ RN×L is constructed using L measurement vectors, X =

[X:,1, ,X:,L] ∈ RM×L is the desired solution matrix, and V is an unknown noise matrix. A

key assumption in the MMV model is that the sparsity profile of every desired coefficient

vector, i.e., every column in X is same hence they have identical support. Since X has a

large number of rows which are completely zero, the notion of joint sparsity is introduced,

which essentially means that the columns of the desired coefficient matrix X are jointly

sparse. It has been shown that compared to the SMV case, the successful recovery rate of

the support can be greatly improved using multiple measurement vectors [90].

Most of the algorithms discussed for the SMV can be extended in a straight

forward manner to solve the MMV problem. From a Bayesian perspective to enforce

joint sparsity, a multivariate super Gaussian distribution can be employed as the sparsity

promoting prior over each row of X [168,179]. Following this approach, in this thesis we

also introduced the multivariate extension of generalized scale mixture family, namely

Multivariate Power Exponential Scale Mixture (M-PESM) and provided unified inference

framework which encompasses well know MMV recovery algorithms. Since in real

life applications there could be correlation structure present among the entries in each

nonzero row of X, our unified MMV recovery framework also has the ability to exploit

any present correlation structure, which often leads to superior recovery performance.

1.4 Applications

Sparse signal recovery has been successfully deployed in a variety of engineering

applications including,

• Signal Representation [49, 123]

• EEG/MEG source localization [76, 81, 163]

• Bandlimited extrapolations and spectral estimation [25, 51]
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• Array Signal Processing [122, 151]

• Speech Coding [40, 67]

• Sparse Channel Equalization [20, 38]

• Compressive Sampling [28, 29]

• Magnetic Resonance Imaging [62, 116]

• Financial Data analysis [35, 58]

• Audio signal processing [68, 73]

and many more.

In this thesis, we focus on specific applications in audio signal processing/ source

separation. Specifically in Chapter 5 we propose a novel empirical bayes based room/

relative impulse response estimator which exploits the sparsity notion and show the

efficacy of our proposed estimator in an adaptive echo cancellation task and in blocking

matrix construction task for adaptive beamformer Generalized Sidelobe Canceler (GSC).

In Chapter 8 we use the notion of block sparsity in a speech modeling problem, and show

its efficacy over traditional and well known LPC model. Finally in Chapter 6 we show the

application of joint sparsity in Independent Vector Analysis (IVA) framework for joint

blind source separation problem by employing our proposed multivariate generalized

scale mixture: M-PESM as a source prior.

1.5 Contributions and Organization

• In Chapter 2, one of the major contributions of this work, the introduction of a

more general Scale Mixture framework, the Power Exponential Scale Mixture

(PESM) family, for SSR algorithm development has been discussed. The PESM
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representation includes the popular GSM and LSM as special cases and provides a

mechanism to provide a unified view of the popular `1 and `2 frameworks currently

employed. We also establish the conditions under which a distribution which

is symmetric with respect to the origin will have a PESM representation, which

generalizes the result known for GSM. This work will emphasize the generalized t

(GT) distribution family of priors, a member of PESM, since it has a wide range

of tail shapes, and also includes the heavy tailed super gaussian distributions. GT

family of distributions have been mentioned in statistics literatures for design

of robust regressors for several financial modeling tasks, where the heavy tail

nature of GT helps to model the outliers [27, 127]. In this work we show when

a GT distribution will be suitable to promote sparsity, i.e. for what values of

the distributional parameters, member of a GT family will be a super Gaussian

distribution.

• In Chapter 3, we summarize two types of Bayesian frameworks, i.e. Type I and

Type II for SSR in detail, along with providing connections to traditional norm

minimization approaches by suitable choice of sparse prior distributions. Of

particular importance is the treatment of the diversity measure used in connection

with the reweighted `1 algorithm as well as an unified treatment of both `1 and `2

based approaches. We formulate and unify three well known diversity minimization

based SSR algorithms in the PESM framework and derive the Type I and Type II

versions of them. Of particular interest is the Type II counterpart of the reweighted

`1 algorithm [30]. We also analyze the difference between Type I and Type II

inference procedures and our analysis shows the fundamental difference between

these two frameworks and also helps to understand a potential reason for the

empirical superiority of Type II methods over Type I.
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• In Chapter 4, we provide an alternative derivation the unified MAP estimation

framework for SSR, limited only to the GT distribution family, and propose an

adaptive paradigm, where the distributional parameters of a GT member is not

fixed beforehand, and they are adapted over iterations based on the measurements

in a nested gradient descent based algorithm. Our proposed approach shows merit

over the other competing approaches with fixed distributional parameters.

• As an application in audio signal processing, in Chapter 5, we propose an Empirical

Bayes based estimation approach for Room Impulse Response (RIR) and Relative

Impulse Response (ReIR), namely Structured Sparse Bayesian Learning (S-SBL),

where the regularization has been incorporated by exploiting the prior knowledge

of the system. Similarity in the structure of both RIRs and ReIRs enable us to

use our proposed approach for both the Echo cancellation and Blocking Matrix

construction tasks. Specifically, unified treatment of sparse early reflection and

exponentially decaying reverberation tail in a prior distribution using an Empirical

Bayesian framework is the main novelty of our work. Our approach also models

any ambient measurement noise and leads to a much more robust estimator of

the IR. We also study the Mean Squared Error properties of our estimator, and

show that under some conditions our proposed estimator is actually minimizing a

weighted MSE.

• As an application, in Chapter 6, we propose a multivariate extension of PESM,

namely M-PESM as the source prior for IVA in a Joint Blind Source Separation

(JBSS) task. This class of distributions also helps us to exploit both the higher

order (greater than second order) dependencies within a SCV and also any intra-

source correlation (second order dependency), present across the datasets. We

also show that two popular variants of IVA in literature, are special cases of this



12

unified framework. By employing a specific member (Multivariate Generalized t

distribution) of M-PESM as the source prior, our unified framework leads to two

novel Reweighted algorithms for IVA.

• In Chapter 7, we discuss M-PESM in details and show its usefulness in promoting

joint sparsity in a Multi Task Learning framework. Though in [179], authors have

considered incorporating correlation structure in a MMV problem in a Type II

setting, we provide the similar option of exploiting the correlation structure in a

unified Type I framework, by employing M-PESM as joint sparsity inducing prior.

• Finally for another application, in Chapter 8, we use the notion of block sparsity in

residual and show how by modeling the glottal excitation as block sparse, we can

model speech better than the traditional LPC approach.



Chapter 2

Power Exponential Scale Mixtures
(PESM)

13
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2.1 Introduction

Scale mixture distributions namely GSM and LSM have gained a lot of attention

in recent years because of their ability to represent complex heavy tailed super Gaussian

distributions in a simple hierarchical manner [65, 101, 113, 132, 168]. In the statistics

community, robustness has been the major reason for the use of scale mixtures. In

regression analysis, the method of least squares often fails because of the outliers in the

data, which motivates the use of heavy tailed distributions to model the outliers. Their

heavytailed nature also makes them suitable to promote sparsity in recovery problem. As

one of the main contributions in this thesis, we introduce a generalized scale mixture

namely, PESM for Sparse Signal Recovery (SSR). In this section we analyze PESM in

details and identify conditions under which a symmetric distribution can be represented

as a PESM. We also discuss Generalized t (GT) distribution family in details, which is a

member of PESM, and show when a member of GT family is suitable to be a sparsity

inducing prior distribution in Bayesian Sparse Signal Recovery algorithms.

2.2 PESM: When and Why?

Power Exponential (PE) distributions were first introduced by Box and Tiao

(1962) in the context of robust regression to deal with non-normality. PE distribution is

symmetric about the origin and a zero mean PE distribution has the following parameter-

ized form:

fPE(x; p,γ) =
p e−

|x|p
γ

2γ1/pΓ( 1
p)

where, p,γ > 0. (2.1)

Where, p is known as the shape parameter and γ is knows as the scale parameter.

It is evident from the above given form, that p = 2 results in the normal distribution,

whereas p = 1 connects to the well-known double exponential or Laplacian distribution.
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p < 2 leads to distribution with heavier tails than the Gaussian distribution.

PESM family of distributions refers to distributions that can be represented in a

hierarchy using scale mixture of PE distribution.

pX(x) =
∫

fPE(x; p,γ)α(γ)dγ (2.2)

where, α(.) is a density function on R and p is a positive shape parameter. Now, in a

bayesian framework sparsity on coefficient vector is imposed by choosing a sparse i.e,

a supergaussian (heavy tailed) prior on x. Choice of distributional parameter p along

with different suitable mixing densities, i.e. α(γ), will lead to different distributions

including the super Gaussian distributions. Because of the scale mixture representation,

the generation of the random variable X can be viewed in a hierarchy, i.e. generate γ

using α(γ) followed by generating X using fPE(x; p,γ). As special cases, the choice of

p = 2 leads to GSM which has been very popular in the literature, and p = 1 leads to

the LSM. Interestingly, a Laplacian distribution pX(x) = a
2e−a|x| can be represented as a

GSM with exponential mixing density, i.e. α(γ) = a2

2 exp(−a2

2 γ)u(γ), where u(.) is the

unit step function [13]. This means, any LSM can also be represented as a GSM with an

extra layer of hierarchy.

More explicitly,

pX(x) =
∫

∞

0
p(x|γ)α(γ)dγ

=
∫

∞

0

1√
2πγ

exp(− x2

2γ
)× a2

2
exp(−a2

2
γ)dγ

=
a
2

e−a|x|

(2.3)
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Figure 2.1. PESM: Generalized scale mixtures

2.2.1 When PESM?

Here, we will answer the question as to when a distribution can be represented as

a PESM. The derivation uses the result dealing with integral representations, discussed

in [132, 162]. We summarize our main result in the following theorem,

Theorem 2.2.1 A distribution pX(x), which is symmetric around the origin has a PESM

representation with shape parameter p if and only if pX(x1/p) is completely monotonic

on (0,∞).

Proof: Before proceeding with the proof of the theorem, recall the definition of a

completely monotone function [22],

Definition 2.2.2 A function f (x) is completely monotone on (0,∞) if, f is infinitely

differentiable and (−1)n f (n)(x) ≥ 0, n = 0,1, ... for every x ∈ (0,∞) where, f (n)(x)

denotes the nth order derivative of f .
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Now to prove the first part of Theorem 2.2.1, let’s assume that X is a random variable

with a distribution pX(x) which has a PESM representation. Hence,

pX(x) =
∫

∞

0
PE(x; p,γ)dα(γ) =

∫
∞

0

p e−
|x|p

γ

2γ1/pΓ( 1
p)

dα(γ) (2.4)

where, α(γ) could be interpreted as the cumulative distribution function of the scale

mixing density. Let,

g(x) = pX(x1/p) =
∫

∞

0

p e−
x
γ

2γ1/pΓ( 1
p)

dα(γ) for, 0≤ x < ∞. (2.5)

Hence from the definition of completely monotone, it is straightforward to see that g(x)

is completely monotone on (0,∞), since its derivatives have alternating signs.

Conversely, suppose g(x) is completely monotone on (0,∞). From Bernstein’s

theorem [22, 162], we can write,

g(x) =
∫

∞

0
e−

x
γ dα(γ) (2.6)

for some non decreasing α(γ) on (0,∞). Hence, we get a PESM representation,

pX(x) = g(xp) =
∫

∞

0
e−

xp
γ dα(γ). (2.7)

This completes our proof. �

It is interesting to note that this result is also consistent with the result established

for GSM, i.e. with shape parameter of PE, p = 2 in [92, 132, 135]. It also provides a new

relevant result, that is under what condition a distribution can be represented as an LSM,

i.e. PESM with p = 1.
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2.2.2 Why PESM?

Among Scale Mixtures, GSM in particular has gained a lot of interest over the

years in the literature and the proposed PESM framework is an interesting generalization

for SSR purposes. It has been shown in [135], that GSM representations always lead to a

heavytailed supergaussian distribution and the following lemma was established.

Lemma 2.2.3 A symmetric pdf p(x) is strongly super-gaussian if − log(p(
√

x)) is con-

cave on (0,∞) and strongly sub-gaussian if − log(p(
√

x)) is convex on (0,∞).

Unlike GSM, PESM representation can also be used for subgaussian densities

along with supergaussian densities. For example consider a density p(x) ∝ exp(−x3)

(ignoring the normalization constant). It is evident that, this is a subgaussian distribution

with negative kurtosis and does not have a GSM representation since it does not satisfy

Theorem 2.2.1 for shape parameter p = 2. We can still represent p(x) as a PESM with

the shape parameter p = 6. To verify this following the previous theorem we just need to

show that p(x1/6) = exp(−g(x)) is completely monotonic on (0,∞), where g(x) =
√

x.

Now,

p′(x1/6) =−g′(x)exp(−g(x)) (2.8)

Where, g′(x) = 1
2
√

x > 0. Hence p′(x1/6)< 0. Following the same route,

p′′(x1/6) = exp(−g(x))(g′(x)2−g′′(x)) (2.9)

Where, g′′(x) =− 1
4x
√

x < 0. Hence p′′(x1/6)> 0.

It is evident that p(x1/6) has derivatives of alternating signs and satisfies Definition

2.2.2. This proves that p(x) can be represented as a PESM but not as a GSM.
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Moreover, for the purposes of the SSR work, the general PESM allows one to

treat both the LSM (p=1) and GSM (p=2) in a unified manner thereby enabling treatment

of `1 and `2 based algorithms in a unified manner.

2.2.3 Example of PESM: Generalized t-distribution

In [72], we have shown that the Inverse Gamma (IG) distribution as the scale

mixing density α(γ) in the scale mixture representation (2.2) for the PESM family leads

to a GT distribution, which is a superset of many of the super Gaussian distributions

that have been used in practice in several recent works, e.g. Generalized Double Pareto

(GDP) [10], Laplacian and Student’s t-distribution, among others.

The GT Distribution has the form:

GT (x; p,q) =
η

(1+ |x|
p

q )q+ 1
p

(2.10)

where η is the normalization constant, p and q are the positive distributional parameters.

Distributional parameters, p and q can be used to represent different tail behavior using

GT distribution. Larger values of p and q correspond to thin tailed distributions whereas

smaller values of p and q are associated with heavy tailed distributions [127], suitable for

sparse recovery task.

As mentioned above, the GT distribution family can be represented in PESM

framework using α(γ) = IG(γ;q,q) where,

IG(x;α,β ) =
β α

Γ(α)
x−α−1 exp

(
− β

x

)
u(x). (2.11)

Interesting special case of note is p = 2, which leads to a student’s t-distribution, a

prior that has been used in the popular Sparse Bayesian Learning /Relevance Vector

Machine [157] work and can be decomposed as a GSM with Inverse Gamma as the mixing



20

Figure 2.2. Tail behavior of GT distribution for different values of p and q

density. Employing p = 1 leads to GDP discussed in [10] which can be represented as a

scale mixture of Laplacian following Equation (2.2).

Table 2.1. Variants of Generalized t Distribution

q p Distribution

q→ ∞ 2 Normal
q→ ∞ 1 Laplacian (Double Exponential)
q≥ 0 (degrees of freedom) 2 Student t distribution
q≥ 0 (shape parameter) 1 Generalized Double Pareto (GDP)

In this work we will study how the tail nature of GT distributions are controlled

by their respective distributional parameters. Kurtosis has been a popular choice of

statisticians to analyze the tail behavior of a distribution, which is a function of the fourth
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moment [147]. The even moments of the GT family can be computed following [93],

EGT [xr] =
q

r
p B( r+1

p ,q− r
p)

B( 1
p ,q)

(2.12)

where, B(.) denotes the beta function. From the above moment equation one can deduce

that the product of the distributional parameters of GT has to be greater than 4 for its

kurtosis to be defined, i.e. pq > 4. This often becomes a limiting condition as for most

of the heavytailed super Gaussian distributions, kurtosis is not defined. In that case

Lemma 2.2.3 provides a feasible option to check the tail nature of a distribution. Here

we are interested in knowing for what choice of distributional parameters GT family will

represent heavy tailed distributions, i.e. super Gaussian densities. Verifying Lemma 2.2.3

for GT family reveals the following result.

Theorem 2.2.4 pX(x), a member of GT family will be a strongly super Gaussian density

when its distributional parameters q is bounded and p≤ 2.

Proof: To show that for which values of distributional parameters p and q, a GT

distribution will be a strongly super Gaussian distribution, i.e. suitable to represent

sparsity inducing prior, we will verify the Lemma 2.2.3 on super Gaussianity.

Lets assume, X is a random variable with distribution pX(x) from GT family, i.e.

pX(x) = GT (x; p,q) =
η

(1+ |x|
p

q )q+ 1
p
. (2.13)

To verify Lemma 2.2.3, we need to check for what values of p and q, f (x)=− log pX(
√

x)

will be strictly concave on (0,∞). We will verify the second order condition for concavity
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of f (x),

f ′′(x) =
pq+1

2(q+ xp/2)2
xp/2−2(

pq
2
−q− xp/2). (2.14)

For strict concavity on (0,∞), we need to satisfy f ′′(x)< 0, which leads to, ( p
2 −1)q≤ 0

when q is bounded. Hence, pX(x), a distribution of GT family, is strongly super Gaussian

when, p≤ 2 and bounded q. This completes our proof. �

As discussed above, many of the super Gaussian distributions that have been

employed to promote sparsity in literatures fall under the above discussed GT family.

In Table 2.1, we summarize some special cases that have been used for SSR that arise

by different choices of the shape parameters of GT, i.e. p and q along with the resultant

popular SSR algorithms. Interestingly when p = 2, GT distribution represents a well-

known student’s t-distribution and q could be interpreted as the degrees of freedom.

With the choice of distributional parameters, p = 2 and q→ ∞, student’s t-distribution

becomes a Gaussian distribution. This observation is also intuitive from the previous

result, Theorem 2.2.4. Kurtosis of a student’s t-distribution is defined only when q > 2

and it decreases as q increases. As q goes to zero, GT becomes an improper distribution,

Jeffreys prior, which has infinite probability mass at the origin. For visualization purposes,

in Figure 2.3 we show the nature of the tail of a GT distribution for different values of

distributional parameters, i.e. p and q.
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3.1 Bayesian SSR (B-SSR): Type I

Type I inference corresponds to standard MAP estimation technique in B-SSR. In

this section we review the Type I framework and derive a Type I algorithm using PESM

as the sparse prior. Then we specialize the result using the Generalized t distribution as

the sparse prior and also show that the generalized algorithm reduces to well known SSR

algorithms.

3.1.1 Background on MAP Estimation (Type I methods)

Having chosen a sparsity enforcing distribution p(x), thereby allowing one to

narrow the space of candidate solutions in a manner consistent with application-specific

assumptions, a maximum a posteriori (MAP) estimator of x is then obtained as (Type I

estimation)

x̂ = argmax
x

p(x|y) = argmax
x

p(y|x)p(x)

= argmax
x

[log p(y|x)+ log p(x)]
(3.1)

Using the Gaussian noise assumption, and a separable prior distribution p(x) = ∏i p(xi),

the MAP estimate is obtained by minimizing

J(x) = ‖Φx−y‖2
2 +λ ∑

i
g(xi), (3.2)

where g(x) is determined by log p(x). Incorporating sparsity by enforcing a sparse

(supergaussian) distribution as the prior, p(x), reduces to choosing g(.). It has been

shown that g(.) which is symmetric, concave and nondecreasing functions on [0,∞) are

useful choices in this context [134]. Now, as discussed above, many of these sparse priors

can be represented in a hierarchy and belong to the PESM family.
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Table 3.1. Variants of GT distribution and their connection to Type I Algorithms

q p Prior Distribution Penalty Function SSR Algorithm

q→ ∞ 2 Normal ||x||2 Ridge Regression
q→ ∞ 1 Laplacian ||x||1 LASSO
q≥ 0 2 Student t distribution log(ε + x2) Reweighted `2 (Chartrand’s)
q≥ 0 1 Generalized Double Pareto log(ε + |x|) Reweighted `1(Candes’s)

In order to contrast with the Type II formulation to follow, with the PESM

representation one can revisit the equation (3.1) and note that Type I involves integrating

out the hyperparameter γγγ .

x̂ = argmax
x

p(x|y)

= argmax
x

p(y|x)
∫

p(x|γγγ)p(γγγ)dγγγ

(3.3)

3.1.2 Unified Type I Inference Procedure

In this section we derive the EM inference procedure for the PESM family in the

Type I framework, i.e, we find the MAP estimate of x where a PESM has been employed

for the sparsity inducing prior p(x). Because of the separable prior, the p(xi) have an

independent scale mixture representation,

p(xi) =
∫

∞

0
p(xi|γi)p(γi)dγi (3.4)

For MAP estimation of x, we treat the γi’s as hidden variables and employ an EM

algorithm. The complete data log-likelihood can be written as,

log p(y,x,γγγ) = log p(y|x)+ log p(x|γγγ)+ log p(γγγ) (3.5)
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To formulate the Q function, we need to find the conditional expectation of the

complete data log-likelihood with respect to posterior of the hidden variables p(γγγ|x,y)

which reduces to p(γγγ|x) by virtue of the Markovian property induced by the hierarchy,

i.e. γγγ → x→ y. Since in the M step we need to maximize the Q function with respect to

x, we are only concerned with the first two terms in (3.5) and only the second term has

dependencies on γi. This is the only term we need to be concerned with during the E-step.

Now from the scale mixture decomposition and considering the ith component of x,

log p(xi|γi) = logPE(xi; p,γi) =−
|xi|p

γi
+ constants (3.6)

Hence, for determining the Q function we need the following conditional expectation,

Eγi|xi

[ 1
γi

]
.

To compute the concerned expectation we will use the following trick. Differenti-

ating inside the integral of the marginal p(xi),

p′(xi) =
d

dxi

∫
∞

0
p(xi|γi)p(γi)dγi

=−p×|xi|p−1sign(xi)
∫

∞

0

1
γi

p(xi,γi)dγi

=−p×|xi|p−1sign(xi)p(xi)
∫

∞

0

1
γi

p(γi|xi)dγi

=−p×|xi|p−1sign(xi)p(xi)Eγi|xi

[ 1
γi

]
(3.7)

Hence,

Eγi|xi

[ 1
γi

]
=− p′(xi)

p×|xi|p−1sign(xi)p(xi)
(3.8)

and enables determining the Q function. Then the M step reduces to,

x̂(k+1) = argmin
x

1
2σ2 ||y−Φx||2 +∑

i
w(k)

i |xi|p (3.9)
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Where σ2 is the variance of the measurement noise and w(k)
i = E

γi|x
(k)
i

[ 1
γi

]
.

Following the traditional path of EM, the algorithm is an iterative one, i.e, in the

E step the weights are computed and in the M step a weighted norm minimization is

solved. This alternate procedure is carried out iteratively till convergence.

3.1.3 Special cases of Type I using Generalized t distribution

In this section we specialize the derived unified Type I EM algorithm with the

generalized t distribution as p(xi). We can write p(xi)∼ exp(− f (xi)) where,

f (xi) = (q+1/p) log(1+
|xi|p

q
) (3.10)

Thus,

Eγi|xi

[ 1
γi

]
=

f ′(xi)

p×|xi|p−1sign(xi)
(3.11)

Substituting the value of f ′(xi) we get,

Eγi|xi

[ 1
γi

]
=

q+1/p
q+ |xi|p

(3.12)

So the M step will become,

x̂(k+1) = argmin
x

1
2σ2 ||y−Φx||2 +∑

i
w(k)

i |xi|p (3.13)

Where σ2 is the variance of the measurement noise and w(k)
i = E

γi|x
(k)
i

[ 1
γi

]
= q+1/p

q+|x(k)i |p
.

In following subsections we will show how with specific choices of the distribu-

tion parameters of the generalized t, we can derive well known Type I (MAP estimation)

based SSR algorithms.
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LASSO (`1-minimization) [156]

Interestingly we see from Table 3.1 that for specific values of the shape parameters

(q → ∞ and p = 1), a generalized t distribution can be used to represent a double

exponential or Laplacian distribution. Now to relate with the unified Type I MAP

estimation inference procedure, taking the limit as q→∞ in (3.12), we get wi = 1. Hence

in the M step we are just solving a `1 penalized regression once as the weights are not

changing over iterations, which is essentially the LASSO algorithm.

Reweighted `1-minimization (Candes et al [30])

The popular reweighted `1-minimization (Candes et al [30]) is a special case of

the MAP estimation approach using a generalized t distribution as sparse prior.

Selecting the parameters of the generalized t as follows; q = ε, p = 1, one obtains,

p(xi|ε) = GT (1,ε) =
η(

1+ |xi|
ε

)(ε+1)
(3.14)

which when substituted in equation (3.2), results in the following cost function,

min
x
||y−Φx||22 +λ ∑

i
log(|xi|+ ε) (3.15)

In [30], the above mentioned cost function is optimized using a MM approach.

Now substituting the distribution parameters in equation (3.12), the weights reduce to

wi =
1+ε

ε+|xi| . These are the same weights obtained in [30] via a MM method and p = 1 in

Equation (3.13) results in a weighted `1 minimization problem with the weights being

a function of the previous estimate. This special case of GT has been also called the

Generalized Double Pareto (GDP) distribution in the literature [10].
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Following the scale mixture decomposition of the GT distribution, since p = 1

we can represent the prior as a Laplacian Scale Mixture.

p(x) =
∫

p(x|γ)p(γ)dγ =
∫ 1

2γ
e−
|x|
γ p(γ)dγ, (3.16)

where p(γ) = IG(γ;ε,ε). This observation is summarized in the following lemma.

Lemma 3.1.1 Let x∼ Laplacian(0,γ), γ ∼ IG(γ;ε,ε), then the resulting marginal den-

sity for x is GT (1,ε).

Reweighted `2-minimization ( [33, 146])

Another popular SSR algorithm, the reweighted `2 minimization can also be

represented in a Bayesian Type I setting by employing a Student t distribution. This

heavytailed sparse prior p(x) is again a special case of the generalized t distribution as

shown in the table.

p(xi|ε) = GT (2,ε) =
η(

1+ |xi|2
ε

)(ε+1/2)
(3.17)

The nature of the tail of the student t distribution is controlled by degrees of freedom

parameter ε and smaller values of ε correspond to heavier tails. The associated diversity

penalty factor is given by g(xi) = log(x2
i + ε). For a Type I inference procedure, we can

utilize the unified approach discussed above in Section 3.1.3 and substitute the shape

and scale parameters p = 2,q = ε of the generalized t distribution in Equation (3.12) to

obtain, wi =
ε+1/2
ε+|xi|2

. Since p = 2, Equation (3.13) leads to the reweighted `2 minimization

algorithm as discussed in [33].
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3.2 B-SSR: Type II (Evidence Maximization)

The success of Type II approaches like SBL for SSR problems motivate the Type

II approach for the general PESM family. As special cases, the three Type I algorithms

discussed in Section 3.1.3 are explored in the Type II setting. We also analyze the

difference between a Type I algorithm and its Type II counterpart which provides insights

into the reasons for superior recovery performance of Type II methods.

In a Type II procedure, instead of integrating out the hypeparameters γγγ , we

estimate them using an evidence maximization method, i.e.

γ̂γγ = argmax
γγγ

p(γγγ|y) = argmax
γγγ

p(γγγ)p(y|γγγ)

= argmax
γγγ

p(γγγ)
∫

p(y|x)p(x|γγγ)dx
(3.18)

The evidence framework integrates over the coefficient vector x to obtain the evidence

p(y|γγγ). This evidence is weighted by the hyperprior p(γγγ) and maximized over γγγ . Once

γγγ is obtained, the relevant posterior p(x|y) is approximated, often as p(x|y; γ̂γγ), and the

mean of the approximated posterior is used as a point estimate. Sparsity is achieved by

many of the γi being zero [157, 164, 166].

3.2.1 Unified Type II EM algorithm

To solve the above mentioned optimization problem, we again employ the EM

algorithm this time by treating x as the hidden variable. As in previous section, we assume

a sparse prior p(x) from the PESM family has been utilized and that the measurement

noise is Gaussian with variance σ2.
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Hence the Q function has the form,

Q(γγγ) = Ex|y;γγγ,σ2[log p(y|x)+ log p(x|γγγ)+ log p(γγγ)]

≈ Ex|y;γγγ,σ2[∑
i
−1

p
logγi−

|xi|p

γi
+ log p(γi)]

(3.19)

Since in the M step we are only concerned with the terms involving γγγ , examining them

reveals that the E-step requires the computation of the following conditional expectation

Ex|y;γγγt ,σ2 [|xi|p] =< |xi|p > (3.20)

In the M step we will maximize the Q function with respect to γi to find the update rules.

To illustrate, if we consider a non informative hyperprior, i.e, p(γi) = 1,

Q(γγγ) = ∑
i
−1

p
logγi−

< |xi|p >
γi

(3.21)

Taking the derivative of the Q function w.r.t γi and setting it to zero results in,

γ̂i = p < |xi|p > (3.22)

Since the E step requires the computation of the conditional expectation given by Equation

(3.20), we can either look for a closed form solution or revert to the MCMC technique

[137]. We will examine this further for some special cases later.

3.2.2 Difference between Type I and Type II inference methods

Type I and Type II provide two different approaches to solving the SSR problem.

Hence it is important to understand the theoretical differences between the two inference

procedures to identify their suitability for SSR. In [165], the authors provide evidence for
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SBL, using a variational approximation to the prior p(x), that Type II methods attempt

to approximate the true posterior p(x|y). Similar discussion of Type II desirability is

provided in [118] in the context of general Bayesian inferencing. We revisit the issue and

attempt to corroborate this by exploiting specific attributes of the SSR problem. We first

manipulate the Type II objective as shown below.

p(γγγ|y) =
∫

p(γγγ,x|y)dx

=
∫

p(γγγ|x,y)p(x|y)dx

=
∫

p(γγγ|x)p(x|y)dx

= p(γγγ)
∫ p(x|γγγ)

p(x)
p(x|y)dx

(3.23)

Lets assume that γ̂γγ is the solution of Equation (3.18). It will be sparse for specific choice

of p(γγγ) as shown in [164, 166].

Now, let S be the index of non zero entries and S be the index of zero entries. So,

we can say γ̂γγS = 0.

p(γ̂γγ|y) = lim
ε→0

p(γ̂γγ + ε|y)

= p(γ̂γγ) lim
ε→0

∫
S

∫
S

p(xS|γ̂γγS + εS)p(xS|εS)

p(xS)p(xS)
p(x|y)dx

(3.24)

p(xS|εS) is a normal distribution with mean zero and variance εS. Hence when εS→ 0,

p(xS|εS) becomes a dirac delta function, i.e. δ (xS).

Using the properties of dirac delta functions inside the integration, we obtain

p(γ̂γγ|y) =
∫

S

p(xS|γ̂γγS)

p(xS)

p(γ̂γγ)
p(xS = 0)

p(xS,xS = 0|y)dxS (3.25)

Hence from this analysis, we see that we are evaluating a weighted integral of the true
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posterior p(x|y) over the subspaces spanned by the non zero indexes. This shows that

in the evidence maximization framework instead of looking for the mode of the true

posterior p(x|y), we approximate the true posterior by p(x|y; γ̂γγ) where γ̂γγ is obtained by

maximizing the true posterior mass over the subspaces spanned by the non zero indexes.

This is in contrast to Type I methods that seek the mode of the true posterior and use that

as the point estimate of the desired coefficients. Hence, if the true posterior distribution

has a skewed peak, then the Type I estimate (Mode) is not a good representative of the

whole posterior, where as by going after the true posterior mass, Type II methods will

give us a better estimate.

In [166] authors have pointed out another key advantage of Type II framework

for the case of ARD (Automatic Relevance Determination) prior which has been used

in Sparse Bayesian Learning (SBL) [157], that the dictionary dependency of the Type

II priors lead to scale invariant (with respect to the dictionary atoms) recovery of the

desired sparse coefficient vector.

Another favorable aspect of the Type II framework is that it inherits the robustness

property of a Hierarchical Bayesian modeling framework. It has been shown extensively

in the statistics literature [75, 78, 105], that the posterior of a hyperparameter, i.e, γγγ, is

less affected by the wrong choices of prior than the posterior of the parameter x. In

other words, parameters that are deeper in the hierarchy have less effect on the inference

procedure, which allows us to be less concerned about the choice of p(γγγ). Another

virtue is that the hierarchical framework allows for parameter tying and this can greatly

reduce the search space for Type II methods by leading to an optimization problem with

fewer parameters. This is more evident for problems like the MMV and block sparsity

problem [168, 178, 179].
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3.2.3 Special case of Unified Type II with different choices of p

As discussed above for the unified Type II approach our concerned posterior

is p(x|y;γγγ,σ2). For a point estimate of x we will use the mean of the posterior, x̂ =∫
xp(x|y;γγγ,σ2)dx. Now the posterior could be computed as,

p(x|y;γγγ,σ2)≈ p(y|x)p(x|γγγ)

≈ exp{− 1
2σ2 ||y−Φx||22−∑

i

|xi|p

γi
}

(3.26)

The challenge is proper normalization and tractability of the computation of the mean.

For the EM algorithm to be successfully implemented, one must also be able to carry

out the E-step, Equation (3.20). We now explore this for some specific PESM family

members.

Choice of p = 2

Choice of p = 2 corresponds to Gaussian Scale Mixture, and is very tractable.

The GSM based Type II methods have been extensively studied [88, 157, 165] and so we

keep the discussion brief. This choice (in Equation (3.26)) leads to a Gaussian posterior

given by

p(x|y;γγγ,σ2) = N(µ,Σ) (3.27)

where

µ = ΓΦ
T (σ2I +ΦΓΦ

T )−1y (3.28)

Σ = Γ−ΓΦ
T (σ2I +ΦΓΦ

T )−1
ΦΓ (3.29)

and Γ = diag(γγγ). The EM algorithm can also be readily carried out because the E-step

requires the second moment which can be readily obtained using Equation (3.29). The
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estimate of γγγ in the M step and the updates of γγγ depend on the mixing density p(γγγ) as

shown in Equation (3.19) and can be readily carried out for the non-informative prior

and for a reasonable large class of priors [132]. The true posterior can be approxi-

mated by a Gaussian distribution whose mean and covariance depend on the estimated

hyperparameters. Now, for a point estimate of the coefficient vector, we will choose,

x̂ = µ. (3.30)

From Equation (3.28), one can see that µ is sparse if γγγ is sparse. To complete the

discussion, we discuss the most popular of the Type II methods. In Relevance Vector

Machine (Type II) [157], Tipping has shown that the ’true’ coefficient prior used in

SBL actually follows a student t distribution (GSM with Gamma distribution as mixing

density), and discusses in detail how the hierarchical formulation of this prior helps

to realize the supergaussian nature. Hence we can see that the corresponding Type II

formulation of Reweighted `2 is SBL with a slight difference. In SBL ε is set to zero

which gives us an improper prior p(x)∼ 1/|x| which is sharply peaked at zero. But as

discussed in previous literatures, ε = 0 in Type I version, i.e, in Reweighted `2 increases

the number of local minima and convergence to a sub optimal solution becomes more

likely. Now to solve the M step for this case we will use the following PESM (p = 2)

formulation,

Lemma 3.2.1 Let x∼ N(0,γ), γ ∼ IG(ε,ε) Then the resulting marginal density for x is

GT (2,ε)' Student− t(2ε).

Details of this inference procedure can also be found in [88, 157], and update

rules have been shown in Table 3.2.
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Choice of p = 1

With p = 1, PESM reduces to a Laplacian Scale Mixture. To successfully carry

out the EM algorithm, the E-step requires the computation of E(|xi|;y,γ(k)). A closed

form expression does not appear feasible and a more numerical approach may be required.

Also, the concerned posterior (Equation 3.26) does not appear to have a simple closed

form expression making final inferencing a challenge along with the computation of the

mean for the point estimate. An efficient numerical approach needs to be developed and

is left for future work.

In this work, we follow an alternate strategy and take advantage of the fact that

the LSM family is contained within the GSM family. Since a Laplacian distribution can

be written as a member of the GSM family (Equation 2.3) [13, 59], it will be possible to

get a closed form posterior using a three layer hierarchy. We will illustrate this for the

prior associated with Type I Reweighted `1-minimization approach and develop a Type

II variant. The closed form posterior will be Gaussian and have the same form for the

case of p = 2 as shown in Equation (3.27). The only difference between p = 2 and p = 1

lies in the estimation of the hyperparameters.

Type II `1 variant can also be derived and has been dealt with in previous work [13]

and for sake of completeness the update rule is summarized in Table 3.2 along with other

Type II algorithms. We will now derive the M step for the case of Type II Reweighted

`1-minimization which can be followed in a straightforward manner for other cases

including the `1 variant.

We have shown in the discussion of Type I Reweighted `1 that the concerned

prior GT (1,ε) in a Bayesian setting is a Laplacian Scale mixture. This prior can be

represented in a 3 layer hierarchy involving a GSM representation for the Laplacian

density as summarized below.
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Figure 3.1. Comparison of tail behavior of two distributions: Generalized Double Pareto
(GDP) and Laplacian

Lemma 3.2.2 Let x∼ N(0,γ), γ ∼ Exp(λ 2

2 ) and λ ∼ Gamma(ε,ε) where ε > 0. Then

the resulting marginal density for x is GT (1,ε).

Fig. 3.1 compares two corresponding densities, GT (1,1) and Laplace distribution

with λ = 1. It is evident from this figure that the Laplace prior has relatively light tails

which contributes to the problem of over-shrinking of the large coefficients. On the other

hand, the generalized t distribution has relatively heavier tails and a peak at zero which

promotes zero coefficients. This is another reason of the superior recovery performance

of Reweighted `1-minimization over the LASSO, i.e. `1-minimization, approach.

Table 3.2. Updating Hyperparameters of Type II Algorithms

Type II algorithm Mixing Density Update Rules

Type II `1 p(γi|λ ) = Exp(λ/2) γ̂i =
−1+
√

1+4λ (µ2
i +Σi,i)

2λ
, λ̂ = 2M

∑i γi

Type II Re-`1 p(γi|λ ) = Exp(λ 2/2), p(λ ) = Gamma(ε,ε) γ̂i =
−1+
√

1+4λ 2(µ2
i +Σi,i)

2λ 2 , λ̂ =
−ε+
√

ε2+4(2M+ε−1)∑γi
2∑γi

Type II Re-`2 p(γi|ε) = Inv−Gamma(ε,ε) γ̂i =
µ2

i +Σi,i+2ε

2ε+1
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Now, for estimation of hyperparameters γγγ and λ in the three layer hierarchy, an

EM algorithm will be developed. As in Section 3.2.1, using (y,x) as the complete data,

maximizing the conditional expectation of the complete data log likelihood involves

maximizing,

Q(γγγ,λ ,σ2) = Ex|y;γγγ,λ ,σ2[log p(y,x;γγγ,λ ,σ2)] (3.31)

In the E step, for iteration t, we only need to compute the second moment which

is straightforward because of the GSM representation of the Laplacian, i.e.

Ex|y;γt ,λ ,σ2 [x2
i ] = Σ(i,i)+µ

2
i (3.32)

In the M step, the Q function is maximized with respect to the hyperparameters,

γγγ and λ .

Q(γγγ,λ ) = Ex|y;γγγ,λ ,σ2[log p(y|x)+ log p(x|γγγ)

+ log p(γγγ|λ )+ log p(λ |ε)]
(3.33)

Now using the E step and only retaining the terms that involve γγγ and λ we obtain,

Q(γγγ,λ ) =−1
2 ∑

i
logγi−

1
2 ∑

i

Σ(i,i)+µ2
i

γi

+∑
i
(2logλ − λ 2

2
γi)+(ε−1) logλ − ελ

(3.34)

In the M step, taking the derivative of the Q function w.r.t γi and λ and setting to
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zero results in.

∂Q
∂γi

=− 1
2γi

+
Σ(i,i)+µ2

i

2γ2
i

− λ 2

2
= 0 (3.35)

Solving this quadratic equation we obtain,

γ̂i =
−1+

√
1+4λ 2(µ2

i +Σi,i)

2λ 2 (3.36)

Similarly,

∂Q
∂λ

=
2M+ ε−1

λ
−λ ∑

i
γi− ε = 0 (3.37)

Hence,

λ̂ =
−ε +

√
ε2 +4(2M+ ε−1)∑i γi

2∑i γi
(3.38)

We can also estimate the measurement noise variance σ2 by maximizing the above Q

function as shown in [157]. In this work, for simplicity, we will assume that the SNR

of the environment is known to us before hand. We can also employ a fixed point

optimization technique as shown in [157] to estimate the hyperparameters.

After convergence, one finds that most of the γi, i.e. the variance of the normal

distribution are driven to zero, which makes the associated coefficient zero and prunes it

out from the model.

3.3 Numerical Experiments

In this section we present a set of experiments to evaluate and compare the Type

II/Hierarchical framework based methods with those based on regularization framework,

i.e. Type I methods (MAP estimation), for the task of sparse signal recovery. The
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experimental setup used is quite standard and has been used widely in the SSR literatures.

3.3.1 Problem Specification

The measurement vector y is generated using a N×M = 50× 250 dictionary

Φ, whose elements are generated from a i.i.d normal distribution with mean=0 and

variance=1. A sparse signal xgen of length 250 is generated such that ||xgen||0 = k. The

support, i.e. the location of the k nonzero elements, is chosen randomly, and the values

are chosen from three different distributions:

(I) Uniform ±1 random spikes. (Sub-Gaussian)

(II) Zero mean unit variance Gaussian.

(III) Student t distribution with degrees of freedom ν = 3. (Super-Gaussian)

The synthetic measurements are generated using y = Φxgen. The generated

measurements and the dictionary are then provided as input to the algorithms. The

estimated coefficients are compared with the original xgen that has been used to generate

the measurement. For a single instance, the method is credited with a successful recovery

if the estimate x̂ satisfies,

||xgen− x̂||∞ ≤ 10−3 (3.39)

500 trials are conducted for various fixed combinations of k, i.e. the number of non zero

coefficients, and the probability of successful recovery is plotted with respect to k. As

expected, the probability of successful recovery decreases as k, i.e. the cardinality of

support, increases.
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Figure 3.2. Recovery performance for Type I and Type II Reweighted `1 minimization
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Figure 3.3. Reconstruction of uniform spikes where k = 13 using (a) Original Signal,
(b) `1 norm minimization (Type I), (c) Type II `1 minimization, (d) Candes et al (Type I)
Reweighted `1 minimization
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3.3.2 Recovery Performance

Competing Algorithms

Since the main goal of our work is to compare the Type II algorithms with

their Type I counterparts, we designed the Type II versions of three well known norm

minimization based Type I algorithms and compare their performance. The algorithms in

the study are:

• `1 minimization based SSR. (Basis Pursuit)

• Type II `1 minimization based SSR. (Fixed λ = 5)

• Type I Reweighted `1 minimization. (ε = 0.1 [30])

• Type II Reweighted `1 minimization (Fixed ε = 100)

• Type I Reweighted `2 minimization. (ε regularized, optimal update from [33])

• Type II Reweighted `2 minimization (Fixed ε = 0: SBL)

Performance Comparison

In Figure 3.4, the probability of successful recovery with increasing support

cardinality is plotted for the case where the non zero coefficients are from a zero mean,

unit variance, Gaussian distribution. It is evident from this plot that for all the algorithms,

Type II versions outperform their Type I counterparts. This performance difference is

significant in case of `1 norm minimization. Type I Reweighted `2 minimization approach

works much better compared to other two Type I methods, and the reason being the

heuristic update of ε , which helps it to get away from local minima. Hence, ε update

in Reweighted `2 (Type I) is absolutely necessary as we have found out for fixed ε this
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Figure 3.4. Recovery performance with Gaussian distributed non zero coefficients

Figure 3.5. Recovery performance with Super Gaussian (Student t) distributed non zero
coefficients
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Figure 3.6. Recovery performance with Sub Gaussian distributed non zero coefficients

algorithm’s performance decreases significantly. Figure 3.2 shows this comparison for

the Reweighted `1 minimization (Candes et al) in detail. The figure indicates trials when

both Type I and Type II method have been successful and when only one of them has

been successful and it is evident that for high values of k, Type II outperforms Type I by

a significant margin.

In Figure 3.5, the probability of successful recovery with increasing support

cardinality is plotted where the non zero coefficients are generated from a student’s t

distribution with degrees of freedom 3. Again, the empirical superiority of the Type II

versions over their Type I counterparts is evident from Figure 3.5. Interesting point to

note here, is the performance improvement of Type I and Type II version of Reweighted

`2 algorithm over the others is significant and the reason could be that assumed prior for

the non zero coefficients and the true prior have the same tail behavior (student’s t) and

are better matched.
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Finally, we repeat the same set of experiments where the non zero coefficients

follow a sub-gaussian distribution, i.e. Uniform ±1 random spikes, and the plot of the

probability of successful recovery with increasing support cardinality is shown in Figure

3.6. Though Type II methods still outperform their Type I counterparts, the performance

improvement is less significant compared to the previous two cases. The reason could be

that, since the assumed priors are supergaussian, i.e. heavy tails, it is difficult to model

the true prior, i.e. sub gaussian density, for the nonzero coefficients. In Figure 3.3, an

instance of reconstruction is shown using k = 13 along with the original signal. It is

evident that both `1 minimization (Type I) and Candes’s Reweighted `1 minimization

(Type I) fail, whereas Type II version of `1 minimization recovers the original signal. For

this instance, the other three SSR algorithms have also been successful in recovering the

original signal.

3.4 Conclusion and Discussion

In this chapter, we formulated the SSR problem from a Bayesian perspective

and presented two different Bayesian frameworks which encompass all the well known

recovery algorithms in practice. We presented a generalized scale mixture family :

PESM, which is of prime importance for the design of Hierarchical Bayesian Recovery

algorithms, i.e, Type II algorithms. The unified treatment of both `1 and `2 norm

minimization based algorithms along with the design of Type II version of the Reweighted

`1 minimization algorithm are the main contributions of this work.

We also showed that, in a hierarchical Bayes framework instead of looking for a

mode of the true posterior Type II methods actually try to find an approximate posterior

such that the mass of the true posterior over the subspace spanned by non zero indexes

is maximized. This leads to a better approximation of the true posterior, which is the

reason behind the superior empirical results obtained using the Type II framework. Type
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II framework also enjoys the robustness property inherited because of its connection with

Hierarchical Bayes which allows one to be less concerned about the choice of prior on

the hyperparameters.

3.5 Acknowledgment

The material in this chapter is, in part, a reprint of material published in two

articles: ”Type I and Type II Bayesian Methods for Sparse Signal Recovery using

Scale Mixtures”, IEEE Trans. Signal Processing (2016) and, ”Hierarchical Bayesian

Formulation of Sparse Signal Recovery Algorithms using Scale Mixture Priors”, Asilomar

Conference on Signals, Systems and Computers, 2015. In all cases the dissertation author

was the primary researcher and B.D. Rao supervised the research.



Chapter 4

Learning Distributional Parameters

49



50

4.1 Introduction

In the previous chapter we have shown how by employing a sparsity promoting

distribution from the GT family, we can derive a unified MAP estimation framework

which includes many of the popular SSR algorithms. In this chapter, first we provide an

alternative derivation of the MAP estimation framework, albeit limited only to GT family

instead of PESM family. In addition, we propose an adaptive framework of learning the

distributional parameters of GT over the iterations based on the measurements, instead of

fixing them beforehand.

4.2 MAP Estimation with GT prior (Fixed distribu-
tional parameters)

In this section we derive the Expectation Maximization (EM) [43] based infer-

ence procedure, which is a popular iterative method for finding an MAP estimate in

statistical models, i.e. we find the MAP estimate of x where a GT distribution with

fixed distributional parameters p and q, has been employed as the sparsity inducing prior

p(x). In contrast to the derivation in our previous work [72], a more direct and simpler

derivation is provided, albeit limited to the GT family. For the derivation we utilize the

fact that a GT distribution can be decomposed as a PESM. Because of the separable prior,

each p(xi) has an independent scale mixture representation,

p(xi) =
∫

∞

0
p(xi|γi)p(γi)dγi. (4.1)

For MAP estimation of x, we treat the γi’s as hidden variables and employ an EM

algorithm. The complete data log-likelihood can be written as,

log p(y,x,γγγ) = log p(y|x)+ log p(x|γγγ)+ log p(γγγ). (4.2)
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Now we formulate the Q function, i.e. the conditional expectation of the complete

data log-likelihood with respect to posterior of the hidden variables p(γγγ|x,y), which

reduces to p(γγγ|x), by virtue of the Markovian property induced by the hierarchy, i.e.

γγγ → x→ y. This leads to

Q(x, p,q) = Eγ|x
[

log p(y|x)+ log p(x|γγγ)+ log p(γγγ)
]
. (4.3)

Since power exponential (p(xi|γi)) and inverse gamma distribution (p(γi)) are conjugate

[45], we can find a closed form for the concerned posterior,

p(γi|xi)∼ IG(q+
1
p
, |xi|p +q). (4.4)

Since in the M step we need to maximize the Q function with respect to x, we only

consider the terms that have dependencies on x, i.e. the first two terms in (4.3). But

only the second term has dependencies on γi, hence this is the only term we need to

be concerned with during the E step. Now from the scale mixture decomposition and

considering the ith component of x,

log p(xi|γi) = logPE(xi; p,γi) =−
|xi|p

γi
+ constants. (4.5)

Hence, for determining the Q function we need the following conditional expectation,

Eγi|xi

[ 1
γi

]
which can be computed using Equation (4.4) as,

Eγi|xi

[ 1
γi

]
=

q+ 1
p

|xi|p +q
. (4.6)
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Then the M step reduces to,

x̂(k+1) = argmin
x

1
2λ
||y−Φx||2 +∑

i
w(k)

i |xi|p (4.7)

where λ is the variance of the measurement noise and w(k)
i = E

γi|x
(k)
i

[ 1
γi

]
.

Following the traditional path of EM, the algorithm is an iterative one, i.e. in the E

step the weights are computed and in the M step a weighted norm minimization is solved.

This alternate procedure is carried out iteratively till convergence. As discussed in [72],

following Table 3.1 if we substitute the distributional parameters p and q in the weight

computation stage, Equation (4.7) leads to several popular weighted norm minimization

based SSR algorithms such as LASSO [156], Reweighted `1 norm minimization [30] and

Reweighted `2 norm minimization [33].

4.3 Learning Distributional Parameters

In the previous section we have shown how by choosing specific distributional

parameters of GT, we can derive different popular SSR algorithms. From a Bayesian

perspective it can be interpreted such as, for each algorithm a fixed prior distribution

has been employed. But in real life that assumed prior distribution may be significantly

different from the true prior distribution of the data. In this work we propose to learn the

distributional parameters from the data allowing to adapt our algorithm to the true prior.

As shown before, p and q are distributional parameters of GT and control the tail nature

of the prior. Learning them over iterations will help us to model the true tail nature.

Again EM algorithm will be employed and the only difference from the previous

section will come in the M step, where we need to optimize the cost function with respect

to both the distributional parameters, p and q along with the desired coefficient vector

x. For this we revisit the Q function of EM given by (4.3). Unlike the previous case,



53

all the dimensions of the desired coefficient vector x will not share same distributional

parameters, i.e., p(xi|γi) = PE(xi; pi,γi) and p(γi) = IG(γi;qi,qi). Now collecting the

terms from Q function involving pi we get,

Q1(pi) = Eγi|xi

[
log p(xi|γi)

]
= log pi−E

[ 1
γi

]
|xi|pi− 1

pi
E[logγi]− logΓ(

1
pi
)

(4.8)

Thus in M step we need to minimize,

L1(pi) =−Q1(pi) =− log pi +E
[ 1

γi

]
|xi|pi +

1
pi

E[logγi]+ logΓ(
1
pi
) (4.9)

Taking the derivative at both sides with respect to pi we get,

∂L1

∂ pi
=− 1

pi
+E

[ 1
γi

]
|xi|pi log |xi|−

1
p2

i
E[logγi]−

1
p2

i
Ψ(

1
pi
) (4.10)

Where, Ψ(x) = ∂ logΓ(x)
∂x is the digamma function.

Similarly collecting terms involving qi we get,

Q2(qi) = Eγi|xi

[
log p(γi)

]
(4.11)

Thus in M step we need to minimize,

L2(qi) =−Q2(qi) =−qi logqi + logΓ(qi)+(qi +1)E[logγi]+E
[ 1

γi

]
qi (4.12)
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Taking the derivative at both sides with respect to qi we get,

∂L2

∂qi
=− logqi−1+Ψ(qi)+E[logγi]+E

[ 1
γi

]
(4.13)

Using the conjugacy property we have already computed, p(γi|xi) ∼ IG(qi +

1
pi
, |xi|pi +qi). This allows us to compute the required conditional expectations,

wi = Eγi|xi

[ 1
γi

]
=

qi +
1
pi

|xi|pi +qi
(4.14)

ci = Eγi|xi[logγi] = log(|xi|pi +qi)−Ψ(qi +
1
pi
) (4.15)

Finally we will take the gradient of the cost function (negative log likelihood)

w.r.t the desired coefficient vector x i.e., ∂L3
∂x where,

L3(x) =−E
[

log p(y|x)+ log p(x|γγγ)
]

=−E
[
− 1

2λ
||y−Φx||22−∑

i

|xi|pi

γi

]
=

1
2λ
||y−Φx||22 +∑

i
wi|xi|pi

(4.16)

Hence,
∂L3

∂x
=

1
λ
(ΦT

Φx−Φ
T y)+θθθ (4.17)

Where θθθ is a M dimensional vector and θ(i) = wi pi|xi|pi−1sign(xi).

We will employ a gradient descent method to optimize with respect to x, pi and

qi using Equation (4.17), (4.10) and (4.13). Since updating distributional parameters

essentially means changing the prior distribution, instead of being aggressive we propose

to take a small step at the right direction, and the gradient descent method allows that.
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Also in noisy conditions updating distributional parameters could be affected because

of erroneous estimates of x during initial iterations. Hence we employ a nested gradient

descent approach, where we update x for few iterations keeping distributional parameters

fixed, which actually optimizes (4.7) for fixed distributional parameters and then updates

pi and qi using the recent estimate of x. Again we update x for few iterations with

new distributional parameters and keep continuing this till convergence. The proposed

algorithm has been summarized below.

Updating the distributional parameter q has been considered before in [33, 41]

using a heuristic approach, whereas in this work we provide a more systematic approach

of learning both p and q. Now we will analyze how our proposed updating scheme of q

affects for the case when pi = 1 ∀i, i.e., Reweighted `1 norm minimization approach [30].

We revisit the computed gradient w.r.t qi in Equation (4.13) and try to analyze the behavior

of the gradient as function of xi in Figure 4.1. This shows that if magnitude of xi is close

to origin, gradient value increases with decreasing |xi|, which means to model small

magnitude of |xi| (Close to zero) our approach will learn small qi. Revisiting the weight

computation step suggested in [30], w(t+1)
i = 1

|x(t)i |+qi
, we see that our proposed algorithm

exploits different distributional parameters qi for different dimensions, which enables to

capture the relative difference between dimensions and downweights the influence of the

high non zero values of xi by also increasing its corresponding distributional parameter

qi and viceversa for small values/close to zero of xi.

4.4 Numerical Experiments

In this section we present a set of experiments to evaluate and compare our

proposed adaptive algorithm with other MAP estimation based methods with fixed

distributional parameters for the task of sparse signal recovery. The experimental setup

used is quite standard and has been used widely in the SSR literatures.
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Data: Dictionary, Measurement, and Regularization factor: Φ, y, λ

Output: x̂
Initialization: Initialize p,q,x
for Iterout = 1 to max-iter do

while Iterin < block-iter do
1 Update x using gradient computed in Equation (4.17).
2 Iterin = Iterin +1
3 if ‖xIterin−xIterin−1‖2 < 10−6 then

break;
end

end
4 Update pi using gradient computed in Equation (4.10) ∀i.
5 Update qi using gradient computed in Equation (4.13) ∀i.

end
Algorithm 1: Adaptive Bayesian Sparse Recovery Algorithm

Figure 4.1. Gradient w.r.t q as a function of x
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4.4.1 Problem Specification

The measurement vector y is generated using an N×M = 128×256 dictionary

Φ, whose elements are generated from an i.i.d. normal distribution with mean = 0 and

variance = 1. A sparse signal x of length 256 is generated such that ||x||0 = k. The

support, i.e. the location of the k nonzero elements, is chosen randomly, and the values

are chosen from three different distributions:

(I) Uniform ±1 random spikes. (Sub Gaussian)

(II) Zero mean unit variance Gaussian.

(III) Laplace distribution with unit variance, i.e. scale parameter = 1√
2

(Super Gaussian)

The synthetic measurements are generated using y = Φx+ n, where n is the

Gaussian measurement noise, whose standard deviation can be controlled for specific

SNR. For all our experiments we have used SNR = 10 dB. The generated measurements

and the dictionary are then provided as input to the algorithms. The estimated coeffi-

cients are compared with the original x that has been used to generate the measurement.

Normalized Mean Square Error (NMSE) has been used as the performance metric which

can be computed following,

NMSE =
||x− x̂||22
||x||22

. (4.18)

500 trials are conducted for various fixed combinations of k, i.e. the number of non-zero

coefficients, and the NMSE is plotted with respect to k. As expected, the reconstruction

error (NMSE) increases as k, i.e. the cardinality of support, increases.
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Figure 4.2. Recovery performance with Gaussian distributed non-zero coefficients

Figure 4.3. Recovery performance with super Gaussian (Laplace) distributed non-zero
coefficients
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4.4.2 Recovery Performance

Competing Algorithms

The main goal of this work is to show that learning the distributional parameters

of the prior distribution will result in better recovery performance than the recovery

algorithms with fixed priors. The algorithms in the study are:

• `1 minimization based SSR. (LASSO)

• Reweighted `1 minimization. (ε = 0.1 [30])

• Reweighted `2 minimization. (ε regularized, optimal update from [33])

• Adaptive reweighted `p minimization based SSR. (Proposed)

Implementation Details

All the competing algorithms including our proposed approach require an esti-

mate of λ , which has been chosen using standard cross validation technique for all the

algorithms independently. In our proposed algorithm, we have used block− iter = 50

and max− iter = 5 for all the cases. Since our goal is to capture the true prior of the

non-zero elements we update pi and qi when |xi|> δ . In our experiments we have used

δ = 0.01 for all the cases.

Performance Comparison

In Figure 4.2, the average reconstruction error (NMSE) with increasing support

cardinality is plotted for the case where the non-zero coefficients are from a zero mean,

unit variance, Gaussian distribution. It is evident that our proposed adaptive approach

gives the best performance in this case with Reweighted `2 minimization approach being a

very close competitor. It is worth noting that Reweighted `2 works much better compared
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Figure 4.4. Recovery performance with Sub Gaussian distributed non-zero coefficients

to the other two methods with fixed distributional parameters, and the reason being the

heuristic update of ε , which helps it to get away from local minima. Hence, ε update in

Reweighted `2 is absolutely necessary as we have found out for fixed ε this algorithm’s

performance decreases significantly. This heuristic update of ε falls into the adaptive

paradigm but our proposed approach provides a systematic approach to adapt both the

distributional parameters.

In Figure 4.3, the average reconstruction error (NMSE) with increasing support

cardinality is plotted where the non-zero coefficients are generated from a Laplace

distribution with variance 1. Again, the empirical superiority of our proposed adaptive

approach over other algorithms is evident from Figure 4.3. An interesting point to note

here, is that Reweighted `1 with fixed ε matches the performance of Reweighted `2 with

ε update and the reason could be that true distribution of the non-zero coefficients and

the assumed prior for Reweighted `1 have the similar tail behavior.

Finally, we repeat the same set of experiments where the non-zero coefficients
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Figure 4.5. Adapted distributional parameters after convergence
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follow a sub Gaussian distribution, i.e. Uniform ±1 random spikes, and the plot of

the average reconstruction error (NMSE) with increasing support cardinality is shown

in Figure 4.4. The performance improvement of the proposed approach over other

reweighted algorithms is significant compared to the previous two cases.

In Figure 4.5 we visualize the adaptation of the distributional parameters step.

We consider a case where k = 30 and the non-zero entries have been randomly drawn

from zero mean and unit variance Gaussian distribution. On top, the absolute value of

the true non-zero coefficients have been plotted. Next two figures represent the learned

values of q and p after learning them using our proposed algorithm. We see how the

adaptation step helps us to learn the corresponding distributional parameters which plays

a key role in modeling the tail nature of the sparsity inducing prior distributions.

4.5 Conclusion and Discussion

In this paper, we formulated the SSR problem from a Bayesian perspective and

discussed a generalized scale mixture family: PESM in detail. We analyzed the tail

behavior of the GT class of distributions, which is a member of PESM family, and

discussed when a GT distribution will be suitable to model sparsity. We also showed, how

by choosing specific distributional parameters our unified MAP estimation framework

leads to several popular SSR algorithms, specifically reweighted algorithms available

in the literature. Based on this result, we proposed an adaptive framework where the

distributional parameters of GT have not been fixed beforehand, and adapted based on

the measurement over iterations. Our extensive empirical results also show the efficacy

of this adaptive approach over other MAP estimation based SSR algorithms.
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5.1 Introduction

The System Identification [114, 141] problem has been very well studied because

of its usage in a wide spectrum of engineering applications, which include audio signal

processing. Classic and well known system identification approaches are based on a

parametric model assumption which can be explained using a small number of parameters

[34,140]. Then, a relevant cost function related to the system prediction error is minimized

to estimate the model parameters of the concerned system. Bayesian methods for system

identification [12,18,24,32] have also been considered and have gained significant interest

in recent years. This class of methods is useful because of its ability to incorporate any

prior information of the system, i.e. the unknown Impulse Response (IR) which depends

on few unknown hyperparameters. These hyperparameters can be estimated from the

system measurements using an Evidence maximization approach, which is also known

as Empirical Bayes (EB) method [7, 32]. Estimated hyperparameters can then be used in

the Bayesian estimator to obtain an estimate of the unknown IR.

In this work, we assume that our unknown system is linear and can be modeled

by an FIR, i.e. a finite number of parameters are needed to describe the system. This

assumption is very much relevant for the audio signal processing applications that have

been considered in this chapter.

Estimation of Room Impulse Responses (RIR’s) is a very important problem in

the audio community because of its huge number of applications, such as in acoustic

echo cancellation (AEC) [175, 177], sound source localization [136, 154], spatial audio

rendering [21, 37], and many more [85, 155]. Since modeling the room impulse response

between two points in a room is extremely difficult, RIR’s are directly measured in a

real room environment [95]. A known sound source is played through a speaker and

recorded at the desired location using a microphone. The recorded signal and source
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recordings are used to estimate the desired RIR, which essentially becomes solving a

deconvolution problem. Traditional cross correlation based methods have been popular

for the estimation of RIR [98]. It has been shown in [74] that the least square solution

without any constraints for the discrete time signals is equivalent to the conventional

linear deconvolution. Since standard deconvolution methods do not exploit any any prior

information, i.e. the characteristics of the RIR’s, they are very sensitive to measurement

noise and also suffer from poor temporal resolution [111].

These shortcomings motivate the recent line of works, where some prior informa-

tion of the RIR’s have been incorporated in the estimation framework to make it more

robust in noisy scenarios. In [111], authors propose to make the LS solution regular-

ized by incorporating a non negativity and sparsity constraint on the RIR’s, whereas

in [61], authors propose a Maximum a Posteriori (MAP) estimator for the RIR which

incorporates a simple model for ambient noise and also an exponential decaying model

for reverberation. In [19], authors have proposed a simultaneous estimation of RIR’s

using convex regularization that promotes both sparsity and an exponential amplitude

envelope.

Relative Impulse Responses (ReIR’s) or their frequency-domain counterparts, the

Relative Transfer Functions (RTF’s) [63] are also important tools in several multichannel

audio processing tasks, such as speaker extraction, noise reduction, speech enhancement,

and source localization etc [64, 102]. For instance, RTF information can be naturally

incorporated in beamforming algorithms, where the RTF is used to design the blocking

matrix of an adaptive Generalized Sidelobe Canceler (GSC) [64, 99] to cancel the target

signal and produce a noise reference signal. This noise reference signal is then used

later for adaptive interference cancellation and post filtering to improve the speech

enhancement performance. In this work, we will focus on a two-microphone setup, and

aim to estimate the ReIR between these two microphones.
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In a realistic acoustic environment, reverberation has to be taken into account

in GSC to achieve satisfactory signal cancellation in the output of the blocking matrix.

Following this idea, Gannot et al proposed a variant of GSC named as Transfer Function-

GSC (TF-GSC) [63] which relies on estimated RTFs. The performance of TF-GSC

depends strongly on the quality of the RTF estimate, which is dynamic and changes with

the movements of target and of microphones etc. If the RTF estimate is not updated fast

enough, or if it is inaccurate, the target signal leaks through the blocking matrix and is

canceled by the adaptive filtering stage, which can cause severe signal distortion at the

output of GSC.

Like RIR’s, ReIR’s can also be easily computed in a noiseless environment using

a traditional Least Squares (LS) method, as shown in [99], but the LS estimate becomes

unstable in the presence of noise. There have been many recent attempts to estimate

ReIR’s accurately in a noisy environment [96, 125, 150, 153], but most of these solutions

require a sufficiently long recording for a good estimate of ReIR (i.e., significantly

more than 100− 200 ms). In [63], the authors have proposed a method that exploits

the non-stationarity of the target speech signal. This method assumes that the noise

and the RTF are stationary, or at least much less dynamic, when compared to the target

signal. However, this assumption does not hold when there is a speech interferer or if the

RTF is highly non stationary. In [121], the authors propose a novel assumption that the

ReIRs can be replaced by sparse filters, which regularizes the LS solution. However, in

reverberant environments, ReIR’s will also exhibit a non-sparse decaying tail [96], which

makes this approach detrimental in highly reverberant conditions. Moreover, they do not

consider noisy cases. In [96], a novel approach for sparsely reconstructing time domain

ReIRs from incomplete RTF measurements is proposed, where the estimation occurs

only using high Signal-to-Noise Ratio (SNR) frequency bins.

Since RTF’s are highly non stationary, only very short recordings can be used for
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the estimation procedure. Hence, existing frequency domain approaches give a biased

estimate because of the inaccuracy of the power spectral density estimate, which must be

approximated by a finite average [36]. This is the main motivation of focusing on a time

domain solution.

In this chapter, we propose an Empirical Bayes based estimation approach: Struc-

tured Sparse Bayesian Learning (S-SBL), where the regularization has been incorporated

by exploiting the prior knowledge of the system. Similarity in the structure of both

RIR’s and ReIR’s enable us to use our proposed approach for both the echo cancellation

and blocking matrix construction tasks. Specifically, unified treatment of sparse early

reflection and exponentially decaying reverberation tail in a prior distribution within

an Empirical Bayesian framework is the main novelty of our work. Our approach also

models ambient measurement noise and leads to a much more robust estimator of the IR.

It is also important to note that, though in [19] authors have considered incorporating both

the sparse early reflection and exponentially decaying tail in their estimation framework,

they require prior information of the reverberation time and the regularization parameter

(related to the ambient noise level), which may not be feasible in real life and crossvali-

dation or some other heuristic approaches are needed to choose these hyperparameters.

In contrast to [19], our EB framework estimates the decaying rate and the variance of the

ambient noise from the measurement using evidence maximization and eliminates the

gruesome task of heuristically choosing these parameters.

The rest of the chapter is organized as follows: In Section 5.2 we introduce the

problem and Section 5.3 and Section 5.4 presents the popular existing solutions to that

problem in Time Domain and in Frequency Domain respectively, which will be used

as our baseline. We present our proposed model along with the inference procedure in

Section 5.5. In Section 5.6 we study the MSE properties of proposed estimator. Extensive

experimental results over real world recordings are presented in Section 5.7 and in Section



69

5.8 for echo cancellation and blocking matrix construction tasks respectively. Finally

Section 5.9 concludes the chapter and discusses some future directions of this work.

5.2 Problem Formulation

In this section, we will present the Impulse Response (IR) estimation problem

in a more generalized setting, following a standard system identification problem. Let’s

consider a time invariant system, characterized by the IR h[n], where n denotes the

discrete time index. A measured signal x[n] can be modeled as a convolution between the

source signal s[n] and the IR h[n] with a measurement (additive) noise component ε[n],

x[n] = (h? s)[n]+ ε[n] (5.1)

We can rewrite this system model as a matrix vector product,

x = Sh+ εεε (5.2)

Where, x ∈ RN×1 denotes the stacked measurement vector of size N, S is the

convolution matrix of size N×L which is constructed using time shifted versions of

s[n], h is the IR of the systems of size L×1 and εεε denotes the measurement noise vector

of size N× 1. For the RIR estimation case, x can be interpreted as the measurement

recording, h as the true RIR, and S is the convolution matrix, constructed using the time

shifted source signal (probe signal).

For the ReIR estimation case, we will essentially use the same model but with

a slightly different convolution matrix. For this case, consider a two channel noisy

recording of a target (probe signal) in a diffuse noise environment, whose position is
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fixed for a certain time interval. This situation can be represented as:

xL[n] = (hL ? s)[n]+ εL[n] (5.3)

xR[n] = (hR ? s)[n]+ εR[n]≈ (hrel ? xL)[n]+ εR[n] (5.4)

where hL and hR denote the impulse response between the target and the two microphones,

s[n] denotes the target speech, and εL[n] and εR[n] denote the noise components. The main

problem is to estimate hrel , which denotes the ReIR between the left and right microphone.

The oracle solution of this problem in the time domain is, hrel = hR ?h−1
L . To ensure that

the solution is causal, a fixed delay of a few milliseconds can be introduced [97,110], i.e.,

hrel = hR ?h−1
L ?δ (n−D) where D is the delay in samples. The oracle RTF, denoted as

HRT F , which is the Fourier Transform of hrel , can also be written as, HRT F(θ) =
HR(θ)
HL(θ)

.

We can also write the model for ReIR (5.4) as a matrix vector product,

xR = XLh+ εεεRRR. (5.5)

It is evident that from a modeling point of view the only difference is that, the

convolution matrix XL has been constructed using the left microphone recording xL[n].

Because of this similarity, in the following sections of this chapter we will use

the notations shown in Equation (5.2), and h will denote both RIR and ReIR, depending

on the context.

5.3 Time Domain Based Estimators

In this section, we summarize some recent popular time domain based IR estima-

tors.
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5.3.1 Traditional Least Square Solution

In a noise-free condition the size-L IR vector h can be estimated using a Least

Square approach, i.e:

ĥLS = argmin
h
‖x−Sh‖2

2 (5.6)

The solution of Equation (5.6) can be easily found by taking the pseudo-inverse:

ĥLS = (ST S)−1ST x (5.7)

The Least Square (LS) solution without any constraint on the IR is equivalent to

the conventional linear deconvolution. This LS solution can also be approximated in an

online fashion using an adaptive algorithm such as the Normalized Least-Mean-Square

(NLMS).

It is important to note that the above mentioned approach does not employ

any constraints on the IR. For band-width limited signals the temporal resolution of

linear deconvolution algorithms is limited by the near degeneracy of the columns of

the convolution matrix S. The ill-conditioning of the matrix ST S proves to be very

detrimental for LS solution and amplifies any noise present in the system, which leads to

wildly fluctuating IR estimates [111].

5.3.2 Regularizing Least Square Solution

A workaround to the ill-conditioning problem above is to use diagonal loading to

make the matrix ST S well conditioned. The solution then becomes:

ĥRLS = (ST S+αI)−1ST x (5.8)

We can show that ĥRLS is actually the solution of the following optimization
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problem:

ĥRLS = argmin
h
‖x−Sh‖2

2 +α‖h‖2
2 (5.9)

Subscript RLS denotes Regularized Least Square, which is essentially a ridge regression

problem [126]. We will use the RLS method as one of our baseline methods with

α = 0.1
L × trace(ST S). (Heuristic Choice)

Another option is to use the prior knowledge of the IR structure based on the

statistical theory of room acoustics, to regularize the solution and make it more robust

to any present noise. Specifically, sparsity constraint has been imposed on IR in several

recent works [110, 121] which leads to the following optimization problem,

ĥ`1 = argmin
h
‖x−Sh‖2 +λ‖h‖1 (5.10)

where, λ > 0 controls the amount of sparsity in the IR h.

Whereas in [19, 96] authors try to impose an exponentially decaying structure on

IR to model the reverberation tail. To model the exponential tail, a weighted LASSO

problem is solved,

ĥW`1 = argmin
h
‖x−Sh‖2 +λ‖w�h‖1 (5.11)

where, w = [w1, ....wL]
T is a vector of non negative weights and � denotes the

element wise product.

Note that, in a weighted LASSO problem, elements of ĥW`1 with higher weights

tend to be closer to zero. Hence, to model the expected exponential decay shape of the

true IR, the weights are chosen as,

wi = k1ek2|i−D|k3
, i = 1, ...,L (5.12)
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where, k1,k2, and k3 are positive constants, chosen heuristically and D is the integer

delay. It is evident that the weights are small near the i = D where the direct path peak is

expected. As i increases the weights increase and forces the corresponding elements of

ĥW`1 to be small.

5.4 Frequency Domain Based Estimators

There have many recent works which focus on a frequency domain based estima-

tor for Relative Transfer Function. In this section we summarize two popular approaches

for RTF estimation.

5.4.1 Traditional Frequency Domain Estimation (FD)

In the Short-Time Fourier Transform (STFT) domain, assuming noiseless record-

ings we can rewrite Equation (5.1), assuming noiseless condition, as:

X(θ ,k) = H(θ)S(θ ,k) (5.13)

Where θ denotes the frequency bin and k denotes the frame index. A straightforward

estimate of the Transfer Function (TF) can be found using:

Ĥ(θ) =
∑k S?(θ ,k)X(θ ,k)

∑k |S(θ ,k)|2
(5.14)

The numerator is a sample estimate of the cross Power-Spectral Density (PSD), and the

denominator is a sample estimate of the auto PSD. As discussed in [63] this method

produces a biased estimate. In future discussions we will refer to this method by FD and

include it in our experiments as another baseline method.
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5.4.2 Non-Stationarity Based FD Estimation (NSFD) [63]

This method depends on the assumption that the noise signals are stationary, or

at least ”less dynamic” when compared to the target speech signal. Again in the STFT

domain we can represent the model as:

X(θ ,k) = H(θ)S(θ ,k)+E(θ ,k) (5.15)

Where E denotes the environmental noise. If we consider that H is static for a specific

interval and divide that interval into P frames, then for the pth frame:

Φ
p
XS(θ) = H(θ)Φp

SS(θ)+Φ
p
ES(θ) (5.16)

Where, Φ
p
AB(θ) denotes the (cross) power spectral density between A and B

during the pth frame. Since the noise is stationary, we can write Φ
p
ES = ΦES and solve

the overdetermined set of equations for p = 1...P, to estimate H. As in the FD case,

in practice the PSDs in the above set of equations are replaced by their sample based

estimates.

5.5 Empirical Bayes Estimator with Prior Structure

In this section we present our proposed Empirical Bayes based method to estimate

the concerned impulse response in time domain by exploiting the prior structure of

Room/ Relative Impulse Response. The main difference of our work from [121] is

that we consider both the sparse early reflections and the reverberation tail in a unified

Bayesian framework. Unlike [19, 96] we do not need any heuristic choices to control

the reverb decay rate, instead our proposed algorithm treats the unknown quantities as

hyperparameters and estimates them from the data. Moreover, we do not need any a



75

priori knowledge of SNR since the noise variance is also estimated within the proposed

framework.

5.5.1 Model

Consider the model, x = Sh+ ε , along with the Gaussian Likelihood assumption

i.e, p(x|h)∼ N(Sh,σ2).

We assume the following prior distribution over h :

p(h|γi,c1,c2)∼ N(0,Γ) (5.17)

With:

Γ = diag
[
γ1, ...,γP,c1e−c2, ...,c1e−c2m, ...,c1e−c2M] (5.18)

Where:

• γp corresponds to pth early reflection

• c1e−c2m corresponds to mth tap out of the M exponentially decaying reverberation

tail components

Note that the proposed approach follows a Relevance Vector Machine /Sparse

Bayesian Learning (SBL) [157] framework to incorporate the sparse regularization.

How is Sparsity promoted?

It is not straightforward to see from the above mentioned prior distribution

p(hi|γi) = N(hi;0,γi) for, i = 1...P, how the sparsity is enforced on the initial few taps of

the IR, because the hierarchical nature of the prior disguises its character. To expand on

this, let’s assume that an Inverse Gamma (IG) distribution has been used as the prior over

hyperparameters. To find the ”true” nature of the prior p(hi), we integrate out the γi and
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the marginal is obtained as,

p(hi) =
∫

p(hi|γi)p(γi)dγi

=
∫

N(hi,0,γi)IG(γi;α,β )dγi

=
β αΓ(α +0.5)
(2π)0.5Γ(α)

(
β +

h2
i

2
)−(α+0.5)

(5.19)

This marginal distributions, ”true” representation of the behavior of the prior

of initial P taps of the IR corresponds to a Student’s t-distribution, which is a super

Gaussian density (has heavier tails than Gaussian) and has been very popular in sparse

recovery literatures because of its ability to promote sparsity. In Figure 5.1 we present the

probability density functions (pdf’s) of a Student’s t distribution with degrees of freedom

(ν) = 0.1, and a Gaussian distribution to show why a Student’s distribution is suited to

promote sparsity. Moreover for our case where a uniform hyperprior p(γi) has been used

(i.e. α = β = 0), p(hi) ∝
1
|hi| becomes an improper Jeffrey’s prior, which has infinite

probability mass at origin.

In the proposed variant of SBL we have also incorporated the reverberation tail

regularization by tying the last M diagonal elements of Γ in an exponentially decaying

tail. This motivates the name, Structured Sparse Bayesian Learning (S-SBL).

5.5.2 Bayesian Inference

We will follow a Type II likelihood/Evidence maximization [72, 167] procedure

to estimate the Impulse Response, h.

As shown in the previous subsection the proposed model has the following

hyperparameters, γi where, i = 1..P, c1, and c2, which can be estimated from the data

by maximizing the marginal likelihood, i.e., p(x|γi,c1,c2). The marginal likelihood is
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Figure 5.1. Tail Behavior: Student’s t vs Gaussian

also referred to as the ”evidence for the hyperparameters” by MacKay in [118], and its

maximization is known as the evidence maximization or Type II method.

After estimating the hyperparameters, the estimate of the Impulse Response can

be computed by,

ĥ = E[h|x, γ̂i, ĉ1, ĉ2] (5.20)

Because of the Gaussian nature of the chosen prior, p(h;γi,c1,c2) the concerned

posterior of h can be easily computed as,

p(h|x;γ,c1,c2) = N(h; µ,Σ) (5.21)



78

Where

µ = σ
−2

ΣST x (5.22)

Σ = (σ−2ST S+Γ
−1)−1 (5.23)

Hence, we approximate the true posterior p(h|x) by p(h|x;γ,c1,c2), which follows a

Gaussian distribution whose mean and covariance depends on the estimated hyperparam-

eters. Following Equation (5.20), we can use ĥ = µ as the point estimate of the impulse

response.

As discussed above, for the estimation of the hyperparameters we will use an

evidence maximization approach, i.e:

γ̂, ĉ1, ĉ2 = arg max
γ,c1,c2

p(x|γi,c1,c2)

= arg min
γ,c1,c2

−2log p(x|γi,c1,c2)

= arg min
γ,c1,c2

logdetΣx +xT
Σ
−1
x x+ constants

= arg min
γ,c1,c2

J(γ,c1,c2)

(5.24)

Where, J(γ,c1,c2) = logdetΣx +xT Σ−1
x x and Σx = SΓST +σ2IN .

We employ the Expectation-Maximization (EM) algorithm to solve the above

optimization because of its monotonic convergence property. To estimate the previously

discussed hyperparameters we treat h as a hidden variable.

In the E step, we compute the Q function:

Q(γ,c1,c2,σ
2)

= Eh|x;γt ,ct
1,c

t
2,σ

2[log(p(x|h;σ
2)p(h|γ,c1,c2))]

(5.25)
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Ignoring the terms that dont involve the concerned hyperparameters,

Q(γ,c1,c2,σ
2) = Eh|x;γt ,ct

1,c
t
2,σ

2[p(h|γ,c1,c2))] =−
1
2
E [logdet(Γ)+ tr(Γ−1hhT )]

=−1
2

[ P

∑
i=1

[logγi +
1
γi
< h2

i >]+
M

∑
k=1

[
ec2k

c1
< h2

k+P >−c2k]+M logc1

]
(5.26)

For iteration t we only need to compute the following conditional expectation for

all taps i ∈ {1, . . . ,P+M}:

< h2
i >= Eh|x;γt ,ct

1,c
t
2,σ

2[h2
i ] = Σ(i,i)+µ

2
i (5.27)

where Σ(i,i) is the ith diagonal element of Σ.

In the M step, maximizing this Q-function with respect to the hyperparameters

i.e, γ , c1, c2 and σ2, we get:

γp = Σ(p,p)+µ
2
p for p = 1 . . .P (5.28)

c1 =
1
M

M

∑
m=1

ec2m < h2
m+P > (5.29)

M

∑
m=1

mec2m < h2
m+P >−c1

M(M+1)
2

= 0 (5.30)

(σ2)new =
‖x−Sh‖2 +(σ2)old

∑
M+P
i=1 (1−Σ(i,i)/Γi)

N
(5.31)

In Equation 5.29 we will use the estimate of c2 from the previous iteration. We

also need to solve Equation 5.30 to get the closed form update rule of c2. Representing
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it as a polynomial of v = ec2 , we can show using Descartes’ sign rule that there is only

one positive root v̂ of 5.30. Therefore we can update c2 using c2 = log v̂. Hence, every

iteration we will update all the hyperparameters using the update rules shown above,

and we can compute the point estimate ĥ substituting the updated hyperparameters in

Equation (5.22). In the following iteration we will start with the updated µ and Σ,

and recompute all the hyperparameters. In practice, few iterations of the above S-SBL

procedure yields a converged impulse response estimate h.

Before moving on to experimental validation, in the next subsection we show the

connection between S-SBL and the RLS methodology.

5.5.3 Connection between S-SBL and RLS

Simplifying Equation (5.22) we get,

µ = (ST S+σ
2
Γ
−1)−1ST x (5.32)

Comparing this with Solution (5.8) we see that S-SBL can be viewed as an

iterative reweighted ridge regression/reweighted `2 norm minimization algorithm, where

the penalty weight factor α is not the same for all taps, and where the penalty weights

are estimated every iteration through γi, c1, c2 and σ2 which enforces the desired IR

structure through regularization.

5.6 Mean Squared Error Properties of S-SBL

In this section we evaluate our proposed Empirical Bayes based S-SBL estimator

of impulse response in terms of its Mean Squared Error properties. Let h is the true

impulse response. Then the Mean Squared Error (MSE), i.e., the expected quadratic loss
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for an estimator ĥ will be,

MSE = tr
[
E[(ĥ−h)(ĥ−h)T |γi,c1,c2,h = h]

]
(5.33)

Now we compute the MSE of the Bayes estimator given in Equation 5.20 with

fixed value of hyperparameters γis, c1 and c2, and true impulse response h,

MSE(γi,c1,c2) = tr
[
E[(ĥ−h)(ĥ−h)T |γi,c1,c2,h = h]

]
= tr

[
σ

2 f−1
1 (γi,c1,c2) f0(γi,c1,c2) f−1

1 (γi,c1,c2)

] (5.34)

Where,

f1(γi,c1,c2) = ST S+σ
2
Γ
−1 (5.35)

and,

f0(γi,c1,c2) = ST S+σ
2
Γ
−1hhT

Γ
−1 (5.36)

The details of the derivation of the MSE expression can be found in [8].

Our goal is to now minimize the given MSE expression with respect to the

hyperparameters, i.e., γi, c1 and c2. For sake of simplicity we will assume that, ST S = I.

It is interesting to note that for a room impulse response estimation problem, if the

training signal i.e, the source is white then we will get the L lag autocorrelation matrix of

the source, RSS = E[ST S] = I. If the length of the training sequence increases the finite

signal covariance matrix ST S will get closer to an identity matrix.

With the assumption of ST S = I and substituting Γ from Equation (5.18) in the

expression of MSE we get,

MSE(γi,c1,c2) = MSEγ(γi)+MSEc1,c2(c1,c2) (5.37)
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Where,

MSEγ = σ
2

P

∑
i=1

γ2
i +σ2h

2
i

(γi +σ2)2 (5.38)

and,

MSEc1,c2 = σ
2

M

∑
i=1

c2
1e−2c2i +σ2h

2
P+i

(c1e−c2i +σ2)2 (5.39)

If we minimize the MSE w.r.t γi, it must satisfy the following optimality condition,

γi = γ
MSE
i = h

2
i for, i = 1, ....,P (5.40)

Now minimizing MSEc1,c2 w.r.t c1 and c2 by setting partial to zero,

∂

∂c1
MSEc1,c2 = 0

∂

∂c2
MSEc1,c2 = 0 (5.41)

After some manipulations we get the following optimality condition for c1,

M

∑
i=1

e−c2i(c1e−c2i−h
2
P+i)

(c1e−c2i +σ2)3 = 0 (5.42)

Similarly for c2 we get,

M

∑
i=1

ie−c2i(c1e−c2i−h
2
P+i)

(c1e−c2i +σ2)3 = 0 (5.43)

Now considering the no noise assumption and letting σ2→ 0, we get,

M

∑
i=1

1
e−c2i

(
1−

h
2
P+i

c1e−c2i

)
= 0 (5.44)

and,
M

∑
i=1

i
e−c2i

(
1−

h
2
P+i

c1e−c2i

)
= 0 (5.45)
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Hence the MSE estimates cMSE
1 and cMSE

2 will satisfy the above derived optimality

conditions given in Equation (5.44) and (5.45).

Now as shown before, in our proposed S-SBL algorithm we are using a Type II

inference technique/ evidence inference procedure where the following cost function is

being minimized,

J(γ,c1,c2) = logdetΣx +xT
Σ
−1
x x (5.46)

According to our measurement model if the true impulse response is h, then

x = Sh+ ε (5.47)

Substituting Equation (5.47) in (5.46) we get,

J(γ,c1,c2) = logdetΣx +hT ST
Σ
−1
x Sh

+ ε
T

Σ
−1
x ε +2ε

T
Σ
−1
x Sh

(5.48)

It can be shown that [114], for a long training sequence where the length N→ ∞, the

minimum of the scaled function J(γ,c1,c2)/N will be the minimium of its expected value

E
[

J(γ,c1,c2)/N
]

.

E
[

J(γ,c1,c2)/N
]
=

1
N

logdetΣx +
1
N

hT ST
Σ
−1
x Sh

+
1
N

tr [σ2
Σ
−1
x ]

(5.49)
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To simplify this cost function we will use the Sylvester’s determinant identity,

|Σx|= |SΓST +σ
2IN |= (σ2)N | 1

σ2 ST SΓ+ IL|

= (σ2)N−L|ST SΓ+σ
2IL|

(5.50)

Using this and the assumption ST S = I,

logdetΣx = (N−L) logσ
2 + logdet(Γ+σ

2IL) (5.51)

We will also use the following Woodbury inverse identity,

Σ
−1
x = (SΓST +σ

2IN)
−1

=
1

σ2 I− 1
σ2 S(Γ−1 +

1
σ2 ST S)−1ST 1

σ2

(5.52)

Using these two identities and the orthonormal assumption in Equation 5.49 and

collecting the terms involving γ , c1 and c2 we get,

Cost =
1
N

L

∑
k=1

[
log(σ2 +Γkk)−

Γkk(σ
2 +h

2
k)

σ2(σ2 +Γkk)

]
(5.53)

Using the definition of Γ shown in (5.18) we split up the cost function in two

parts: Costγ (function of γi for i = 1...P) and Costc1,c2 (function of c1 and c2).

Costγ =
1
N

P

∑
k=1

[
log(σ2 + γk)−

γk(σ
2 +h

2
k)

σ2(σ2 + γk)

]
(5.54)

γ̂ that minimizes the above cost function must satisfy,

γ̂i = h
2
i for, i = 1, ....,P (5.55)
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Now,

Costc1,c2 =
1
N

M

∑
k=1

[
log(σ2 + c1e−c2k)−

c1e−c2k(σ2 +h
2
k+P)

σ2(σ2 + c1e−c2k)

]
(5.56)

The optimal c1 and c2 must satisfy the following conditions (first order),

M

∑
k=1

e−c2k(c1e−c2k−h
2
k+P)

(σ2 + c1e−c2k)2 = 0 (5.57)

and,
M

∑
k=1

c1ke−c2k(c1e−c2k−h
2
k+P)

(σ2 + c1e−c2k)2 = 0 (5.58)

Now taking the limit of σ2→ 0 we get the following optimality conditions,

M

∑
k=1

(1−
h

2
k+P

c1e−c2k ) = 0 (5.59)

M

∑
k=1

k(1−
h

2
k+P

c1e−c2k ) = 0 (5.60)

We observe that under the orthonormal assumption and with σ2 → 0, S-SBL

estimates of γi converges to an optimal estimator in terms of its MSE. Also we can

see the strong resemblance of Equation (5.59) and (5.60) to Equation (5.44) and (5.45).

This resemblance suggests that the hyperparameters γ , c1 and c2 that will maximize the

asymptotic (N→ ∞) evidence (marginal likelihood) in a Type II inference framework

(S-SBL), will also minimize a weighted version of Mean Squared Error,

MSEW = σ
2

L

∑
i=1

wi
Γ2

ii +σ2h
2
i

(Γii +σ2)2 (5.61)

with suitable choice of weights wi for, i = 1..L. This observation has been

summarized in the following Theorem.
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Theorem 5.6.1 Hyperparameters γ̂, ĉ1 and ĉ2 that maximizes the asymptotic evidence

(N→ ∞) in proposed empirical bayes framework when σ2→ 0, i.e., satisfies Equation

(5.55), (5.59) and (5.60) will also minimize a weighted MSE (MSEw), shown in Equation

(5.61) where the weights are wi = 1, for i = 1, ..,P and wi+P = e−ĉ2i, for i = 1, ..,M.

A similar result on MSE properties of EB estimator can be found in [32], where

only an exponentially decaying kernel has been considered. Whereas our work extends

that result for a unified framework that incorporates both the sparse early reflections and

the exponential decaying tail.

5.7 S-SBL for Echo Cancellation

In this section we present the experimental results in an Echo Cancellation (EC)

task where S-SBL is used to estimate the impulse response between a speaker and a

microphone present in a room. EC is usually done by adaptive systems in an online

fashion to capture any changes of the concerned Room Impulse Response (RIR). But in

this section, we will assume that the environment along with the positions of the speaker

and microphone are not changing over time, hence we can estimate the RIR offline. This

is a feasible assumption in several systems, such as in gaming consoles, where after

deployment the acoustic environment is not changing over time. As pointed out in [61],

in these scenarios a calibration phase could be used to estimate the RIR by playing a

disguised calibration sound. Even in Adaptive Echo Cancellation (AEC) systems, an

initial estimate of the channel/ RIR is required and our proposed method could be used

for a better starting point.
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Figure 5.2. Room Impulse Response generated from Image model

5.7.1 Experimental Settings

For this echo cancellation experiment, we will use white training sequence of

length 2048 samples as the source. An acoustic room impulse response (htrue) was calcu-

lated using the theoretical image model of a room with the parameters shown in Table

5.1. Training signal is then convolved with the true RIR to generate the measurement

recording. The measurement is then corrupted using additive Gaussian noise and pre-

sented along with the source signal, to the competing algorithms to produce an estimate

of the RIR (ĥ). Variance of the additive noise is controlled to present two SNR cases.

Performances of the algorithms have been measure using the normalized misalignment

measure, given by:

MSE = 10log10
||htrue− ĥ||2

||htrue||2
(5.62)
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Table 5.1. Experimental Settings

Parameters Values

Sampling Frequency 8 kHz

Room Dimension (m) (5, 4, 6)

Source Position (m) (2, 3.5, 2)

Receiver Position (m) (2, 1.5, 2)

Reverberation Time (Sec) 0.3

Number of samples 1024

Table 5.2. Misalignment Measure in Echo Cancellation

Algorithms SNR= 0 dB SNR= 10 dB

MSE (dB) MSE (dB)

RLS +1.41 -8.16

`1 (λ = 0.01) -2.75 -10.89

`1 (λ = 0.05) -3.67 -5.95

`1 (λ = 0.1) -1.74 -2.83

Weighted `1 (λ = 0.01) +0.25 -9.16

Weighted `1 (λ = 0.05) -2.84 -10.92

Weighted `1 (λ = 0.1) -4.71 -10.65

S-SBL (proposed) -4.87 -11.03

5.7.2 Competing Algorithms

• `2 regularized Least Square (RLS)

• `1 regularized Least Square (with different λ )

• Weighted `1 regularized Least Square (with different λ )

• Empirical bayes based estimator: S-SBL (Proposed)
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5.7.3 Results

In Table 5.2 we tabulate the performance of all the competing algorithms for Echo

Cancellation task with experimental setting discussed above with two SNR conditions at

0 dB and 10 dB. It is evident that performance of both the `1 regularization based methods

depend heavily on the choice of the regularization parameter λ . Choice of λ depends on

the additive noise energy. As we find out for 0 dB case `1(λ = 0.05) performs the best

among other choices of λ , but for 10 dB case λ = 0.01 choice produces the lowest MSE.

Similar behavior can be observed for Weighted `1 based estimator. Hence some prior

knowledge on the input SNR condition is needed to choose optimal λ to achieve the best

performance of `1 based methods. Whereas, for our proposed Empirical Bayes based

estimator, S-SBL does not need any prior knowledge regarding the input SNR and still

produces the lowest misalignment measure for both the cases, which makes our proposed

estimator a robust choice compared to other competing algorithms.

5.8 S-SBL for Blocking Matrix Construction

In this section we present the detailed experimental results to evaluate several

competing algorithms for relative impulse response estimation task, in terms of their

target signal blocking ability.

5.8.1 Experimental Settings

We follow the experimental setting described in [96] and use the publicly available

database of measured impulse responses [79] to generate the reverberant recordings. The

signal for the target source, a female utterance, has been taken from the task of the online

Signal Separation Campaign (SISEC) 2013 [131]. All other details are summarized

below in Table 5.3.

The testing utterance (female talker) is 10 s long, which we divide into intervals
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Table 5.3. Experimental Settings

Parameters Values

Sampling Frequency 8 kHz

SNRin 0 dB

Target Angle 0◦

Directional Noise Angle −60◦

Microphone Pair [3 4] (3 cm)

Distance between source and mic 2 m

T60 360 ms

of 1024 samples, i.e., 128 ms at 8 kHz . Experiments are conducted on each interval

independently. The average Attenuation Rate (described in the next subsection) is been

reported over the intervals where speech is present. For all our experiments we use

P = 30 for S-SBL, although we have found out that our algorithm is not very sensitive to

different choices for P. We use L = 512 for the length of the concerned Relative Impulse

Response (ReIR). Least square method was used to estimate the true ReIR using long

noise free recording following [96] and the true ReIR is shown in Figure 5.3.

5.8.2 Performance Metric

To quantitatively evaluate the competing algorithms, we use a well-known and

widely used performance metric called the Attenuation Rate [96].

The Attenuation Rate (ATR) can be evaluated as the ratio between SNRout and

SNRin in dB scale, where:

SNRin =
∑i=L,R ∑n[(hi ? s)(n)]2

∑i=L,R ∑n[εi(n)]2
(5.63)
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and,

SNRout =
∑n[(ĥrel ? sL)(n)− sR(n)]2

∑n[(ĥrel ? εL)(n)− εR(n)]2
(5.64)

The numerator of SNRout measures the leakage of the target signal whereas the denomi-

nator measures the attenuation of the noise signal. Overall, the more negative the value

of ATR is, the better is the blocking performance. A low ATR indicates a good noise

reference signal for further processing (such as single-channel postfiltering).

Figure 5.3. True Relative Impulse Response (ReIR)

5.8.3 Results

In this section, we present results for the diffuse noise case (white and babble)

and directional noise case (white and interfering talker).

Diffuse noise

In Table 5.4 we show the average ATR obtained using all competing algorithms

for two diffuse noise cases. In first case the target speech is contaminated by stationary
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Gaussian noise which has been generated independently for each channel and in the

second case we have used omnidirectional babble noise to contaminate the target signal.

As expected, all the algorithms perform better in presence of white noise compared to

the babble noise case. Next, the proposed S-SBL approach achieves the best attenuation

rate for both cases, most significantly so in the babble noise case. Informal subjective

listening exercises to the output of the blocking matrix also consistently show noticeable

differences. Also note that the performance of the `1 based methods is very sensitive to

the choice of the regularization parameter λ . We only report the ATR of the best case, i.e.

using the optimum choice of λ .

Table 5.4. ATR measure in diffuse noise scenario

Algorithms White Noise Omni Babble Noise

ATR (dB) ATR (dB)

FD -6.18 -3.68

NSFD -11.24 -5.18

RLS -7.36 -4.35

`1 (λ = 0.05) -8.30 -5.59

Weighted `1 (λ = 0.1) -11.01 -6.35

S-SBL (proposed) -12.05 -7.49

Directional Noise

In Table 5.5 we present the average ATR obtained using all competing algorithms

in directional noise. Specifically, in the first case the target speech is contaminated by

directional Gaussian noise generated following the experimental setting discussed above,

and in the second case we have used a male speaking interferer. This situation is more

challenging compared to diffuse noise, even more so when the directional noise is a

speech interferer. The performance of all the algorithms is reduced in directional white

noise when compared with diffuse white noise. In Figure 5.4, 5.5 and 5.6 we show the
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Figure 5.4. Spectrogram of clean utterance recorded at left mic

spectrograms of the clean speech and the noise reference signal obtained using S-SBL and

NSFD, respectively, in the case of directional white noise. It is evident from Figure 5.6

that dominant low-frequency speech harmonic structure is still present in the NSFD noise

reference estimate. For a speech interferer, when there is no Voice Activity Detection

(VAD) all algorithms struggle and often produces positive ATR. The main reason behind

this result is that the RTF estimate could be that of the speech interferer, since there is

no way to distinguish who is the desired target. Hence, we present results assuming that

an Oracle VAD is available for both target and the interferer. Hence, the ReIR is only

computed when the target is present but not the interferer. In real life scenarios, an oracle

VAD can be substituted by a VAD operating on a close talk microphone recording, or a

phone microphone recording. We have conducted such experiments using the database

presented in [170] and the results are encouraging. It iss evident from Table 5.5 that
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Figure 5.5. Spectrogram of the noise reference signal obtained using S-SBL
(Directional white noise)

even in presence of directional noise sources, S-SBL cancels out the target efficiently

compared to other competing algorithms.

Table 5.5. ATR measure in presence of directional noise

Algorithms White Talker (with VAD)

ATR (dB) ATR (dB)

FD -3.98 -0.86

NSFD -10.37 -9.63

RLS -7.25 -11.40

`1 (λ = 0.05) -8.66 -6.76

Weighted `1 (λ = 0.1) -10.39 -11.22

S-SBL (proposed) -10.79 -15.72
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Figure 5.6. Spectrogram of the noise reference signal obtained using NSFD (Directional
white noise)

5.8.4 Effect of Recording Length

In Figure 5.7 we present how the increase of recording length affects the per-

formance of all the competing algorithms for a diffused noise case (omni babble). As

expected performance of all the algorithms slightly improves with a growing record-

ing length. Same experiment is repeated for directional white noise case with varying

recording lengths, and the results are presented in Figure 5.8. Similar behavior, i.e. better

performance with growing length of the recording is noticed in this case too.

Though the longer recordings improve the ReIR estimation performance, in real

life the dynamic nature of ReIR may prove to be a hindrance. Because the surrounding

acoustic environment along with the positions of the target and the microphones may not

remain same during the recording length and may change, which results in change in
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ReIR. Hence the ability of our proposed approach, S-SBL, to estimate ReIR using very

short and noisy recordings makes it a useful choice.

Figure 5.7. Attenuation Rate vs Length of the recording in presence of omnidirectional
babble noise

5.9 Conclusion

We proposed a novel Bayesian approach of estimating room/ relative impulse

response using short, noisy, reverberant recordings. Our proposed time domain solution

benefits from exploiting the prior IR structure by employing both sparsity inducing

prior for early reflection and exponentially decaying kernel for reverberation tail, during

estimation. We also analyze the MSE properties of our estimator and show that the evi-

dence maximization procedure can also be interpreted as a weighted MSE minimization

problem. Detailed experimental results also show consistent improvement of our pro-
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Figure 5.8. Attenuation Rate vs Length of the recording in presence of directional white
noise

posed approach over competing algorithms. Incorporating this relative impulse response

estimation technique in a generalized sidelobe canceller structure to improve the binaural

noise suppression performance will be considered in our future works.
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6.1 Introduction

Blind Source Separation (BSS) addresses the problem of recovering original

sources from the mixture with the assumption that the mixing process is linear [86,

104, 152] . A generalization of this problem, Joint Blind Source Separation (JBSS)

has gained lot of interest in recent times because of its wide range of engineering

applications in different fields [94, 103, 107]. For example JBSS has proven to be

useful in speech separation [80, 94], functional magnetic resonance (fMRI) [103, 107]

and electroencephalograph (EEG) data analysis [106, 117] etc. In these problems, the

key assumption is that, each latent source has dependencies across the datasets but

independent of all other sources within a dataset [1]. JBSS solutions exploit this higher

order dependencies of sources across the datasets to achieve reliable source separation and

also solves the permutation ambiguity that arises from using BSS algorithms individually

[94, 103].

One particular formulation of JBSS is known as Independent Vector Analysis

(IVA) [94], which is an extension of the well studied BSS algorithm, Independent

Component Analysis (ICA). IVA exploits the higher order dependencies of a SCV across

datasets by employing a dependent multivariate source prior distribution instead of

independent univariate distributions, which is the case for ICA [5]. By this modeling

approach, it imposes inter-vector source independence and also preserves the higher

order intra-vector source dependencies across datasets. It also removes any permutation

ambiguity during the learning process and does not need any pre or post processing

step [5, 103].

IVA was originally introduced for the speech separation task in [94], where it

assumed a multivariate Laplace distribution as the Source Component Vector (SCV)

distribution and no correlation within the SCVs. We will denote this implementation of
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IVA as IVA-L. In some applications the assumption of no second order dependencies

within the SCVs can seriously degrade the source separation ability. For example in group

fMRI studies, SCVs are expected to have significant correlation as shown in [107, 148].

This acted as a motivation behind employing a Multivariate Gaussian distribution instead

of an isotropic uncorrelated multivariate Laplace distribution as source prior and source

separation performance improvement was noticed for the correlated SCV case [3,6]. This

implementation of IVA will be denoted as IVA-G. But this approach is not robust enough

as it fails to separate sources if the source correlation is not significant, because of the

nonidentifiability condition discussed in [3].

Recently, selecting the appropriate multivariate source prior to improve the sepa-

ration performance has become a research focus. In [109, 143] authors have proposed to

use a multivariate student’s t distribution as a source prior and have shown performance

improvement in a speech separation task over the original IVA implementation (IVA-L).

Whereas, in [4, 108] authors have proposed a new variant of IVA using a multivariate

generalized Gaussian distribution as source prior with a specific value for the shape

parameter. In [133] authors have employed a Complex Gaussian Scale mixture as the

source prior for this task.

In this work we propose a generalized scale mixture distribution, Multivariate

Power Exponential Scale Mixture (M-PESM) as the source prior for IVA. Recently

both Multivariate and univariate Gaussian scale mixtures (GSM) [14, 101, 132, 157] and

Laplacian scale mixtures (LSM) [65] have gained lot of interest because of their ability

to represent heavytailed distributions. The M-PESM representation includes the popular

M-GSM and M-LSM as special cases and provides a mechanism to present a unified

view. This class of distributions also helps us to exploit both the higher order (greater

than second order) dependencies within a SCV (unlike IVA-G) and also any intra-source

correlation (second order dependency), present across the datasets (unlike IVA-L). We
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also show that both IVA-L and IVA-G are special cases of the unified framework. By

employing a specific member (Multivariate Generalized t distribution) of M-PESM as

the source prior, our unified framework leads to two Reweighted algorithms for IVA.

The rest of the chapter is organized as follows. In Section 6.2, we review the

IVA framework formulation for JBSS. In Section 6.3, a generalized scale mixture rep-

resentation, the Multivariate Power Exponential Scale Mixtures (M-PESM) family, is

presented. In Section 6.4, we derive a unified Maximum Likelihood based inference

framework for IVA by employing a multivariate source prior from the family of M-PESM.

We also discuss some special cases of the unified framework and establish connections

with current algorithms in the literature. We present experimental results of the proposed

algorithms in Section 6.5, in different settings and finally conclusions and some future

directions of this work are presented in Section 6.6.

6.2 Independent Vector Analysis (IVA): Problem For-
mulation

In this section we formulate the Joint Blind Source Separation (JBSS) framework

of interest, i.e., Independent Vector Analysis. Let there be K datasets, with each having

been formed from a distinct linear mixture of N independent sources. Mixing model for

the tth observation x[k]t among T iid observations is given by,

x[k]t = A[k]s[k]t 1≤ k ≤ K, 1≤ t ≤ T (6.1)

Where, s[k]t =
[
s[k]1,t , ...,s

[k]
N,t
]T is a zero mean source vector, and A[k] ∈ RN×N is the invert-

ible mixing matrix. IVA assumes that the sources are mutually independent and the nth

Source Component Vector (SCV) can be written as, sn,t =
[
s[1]n,t , ...,s

[K]
n,t
]T . Due to the

independent assumption, the joint distribution of all the sources reduces to the product
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of the N (number of sources) SCV distributions, i.e, p(s1,t , ...,sN,t) = ∏
N
n=1 p(sn,t). IVA

solves the blind source separation problem by finding the K demixing matrices W[k] and

the source vector estimates for each datasets,

y[k]t = W[k]x[k]t 1≤ k ≤ K, 1≤ t ≤ T (6.2)

and the nth SCV estimate can be written as, yn,t =
[
y[1]n,t , ...,y

[K]
n,t
]T . It is important to note

that the mixing matrixes, A[k] for each dataset (each k) are distinct and not related to each

other. Another key assumption of IVA is that a source within one dataset is dependent on

at most one source in another dataset which enables to solve the permutation ambiguity

of BSS. But the scaling ambiguity still remains, which can be removed by assuming that

the sources have unit variance and scaling the demixing vectors, w[k]
n , to estimate unit

variance sources. Assumption of higher order dependencies can be realized by modeling

each SCV with a multivariate dependent probability distribution, also known as source

prior distribution. In the seminal work of IVA [94], a multivariate Laplace distribution

was used as the source prior to capture the dependencies within a SCV and across datasets.

In this article we propose a class of multivariate generalized scale mixture distribution

family as source prior which significantly enriches the type of sources that can be dealt

with as well as leads to the development of a rich and general classs of algorithms for

source separation.

6.3 Source Prior: Multivariate Scale Mixtures

Scale mixture distributions namely Gaussian Scale mixtures (GSM) and Laplacian

Scale mixtures (LSM) have gained lot of attention in recent years because of their ability

to represent complex heavy tailed super gaussian distributions in a simple hierarchical

manner [65, 101, 132]. In recent works of compressed sensing and sparse recovery, scale
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mixtures have been used as prior distribution to model sparsity. In [14] Multivariate

GSM (M-GSM) has been used to model group sparsity in a sparse recovery problem.

For JBSS, in [94] authors have shown that Multivariate Laplace distribution is a special

case of M-GSM. In this work, a more general scale mixture family, Multivariate Power

Exponential Scale Mixture (M-PESM), which is a generalization of M-GSM and M-LSM,

is presented and has been used as a source prior for JBSS.

6.3.1 Multivariate Power Exponential (M-PE)

Power exponential (PE) distributions were first introduced by Box and Tiao

(1962) in the context of robust regression to deal with non-normality. In this work

we are concerned with the Multivariate PE (M-PE) distribution, which is also known

as Generalized Gaussian Distribution (GGD) and has received lot of attention in the

literature. The probability density function of a multivariate PE (M-PE) is defined

by [138],

p(x|M,β ,z) =
1

|M|1/2 hβ ,z(xT M−1x) (6.3)

for any x∈RL×1, where M is a L×L symmetric real correlation matrix, and h() is known

as the density generator defined by,

hβ ,z(y) =
βΓ(L

2 )

π
L
2 Γ( L

2β
)z

L
2β

exp
(
− yβ

z

)
(6.4)

Where, z > 0 is the scale parameter and β > 0 is the shape parameter of the Multivariate

PE.

It is evident from the above given form, that β = 1 results in the Multivariate

Gaussian distribution, whereas β = 1/2 connects to the well known Multivariate Double

exponential or Laplace distribution. β < 1 leads to distribution with heavier tails than

the Gaussian distribution (super Gaussian density). It is interesting to note that, when the
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correlation matrix, M = I, M-PE (joint pdf) becomes a function of the `2 norm of the

multidimensional random variable, hence a spherically symmetric distribution.

6.3.2 Multivariate PESM (M-PESM)

Multivariate PESM family of distributions refer to distributions that can be

represented as follows:

pX(x) =
∫

pX|z(x|z)pz(z)dz =
∫

M-PE(x;M,β ,z)pz(z)dz (6.5)

Choice of distributional parameter β along with different suitable mixing densities, i.e.,

pz(z), will lead to different marginalized prior distributions including the super Gaussian

distributions.

Some special cases of M-PESM includes Multivariate Gaussian Scale Mixtures

(M-GSM) when shape parameter β = 1, Multivariate Laplace Scale Mixtures (M-LSM)

when shape parameter β = 1/2, Multivariate Uniform Scale Mixtures (M-USM) when

β → ∞.

6.3.3 When M-PESM?

Here we will try to address the question as to when a multivariate spherically

symmetric distribution can be represented as M-PESM. We use the result dealing with

integral representations, discussed in [162] to answer this question. This result can also

be viewed as an extension of the result provided for M-GSM in [101] to the general

M-PESM case.

Theorem 6.3.1 A distribution pX(x) = f (||x||2), which is spherically symmetric about

the origin has a Multivariate Power Exponential Scale Mixture (M-PESM) representation

with shape parameter β and scatter matrix M= I, if and only if g(r) = f (r
1

2β ), where r =
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||x||2, is completely monotone.

Proof:

To prove our result we will use the following definition of completely monotone

[23],

Lemma 6.3.2 A function f (x) is completely monotonic on (0,∞) if, (−1)n f (n)(x) ≥

0, n = 0,1, .. for every x ∈ (0,∞).

Using this definition the following result on monotonicity, also known as Bern-

stein’s theorem, was established in [162],

Theorem 6.3.3 A necessary and sufficient condition that f (x) should be completely

monotonic on (0,∞) is that, f (x) =
∫

∞

0 e−zxdα(z), where α(z) is non-decreasing on

(0,∞).

Now to prove the first part of Theorem 6.3.1, lets assume that X is a spherically symmetric

random vector of dimension L with a distribution pX(x) = f (||x||2) which has a M-PESM

representation. Hence,

f (||x||2) =
∫

∞

0
M-PE(x; I,β ,z)dα(z)

=
∫

∞

0

βΓ(L
2 )

π
L
2 Γ( L

2β
)z

L
2β

exp
(
− r2β

z

)
dα(z)

(6.6)

Where, r = ||x||2 and α(z) could be interpreted as the cumulative distribution function

(CDF) of the scale mixing density. Let,

g(r) = f (r1/2β ) =
∫

∞

0

βΓ(L
2 )

π
L
2 Γ( L

2β
)z

L
2β

exp
(
− r

z

)
dα(z) (6.7)

Hence from the definition of completely monotone, its straightforward to see that g(r) is

completely monotonic on (0,∞).
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Conversely, suppose g(r) is completely monotone on (0,∞). Hence from Bern-

stein’s theorem,

g(r) =
∫

∞

0
exp
(
− zr)dα(z) (6.8)

for some non decreasing α(z) on (0,∞). Hence, we get a M-PESM representation,

pX(x) = f (||x||2) = g(r2β ) =
∫

∞

0
exp(−zr2β )dα(z) (6.9)

This completes the proof.

6.3.4 Example of M-PESM: Multivariate Generalized t Distribu-
tion (M-GT)

In this example, we will consider an inverse gamma (IG) distribution as our mix-

ing density pz(z) = IG(q,q), where IG(x;a,b) = ba

Γ(a)x
−a−1 exp

(
− b

x

)
in the hierarchical

representation (6.5) for the M-PESM family. It leads to a multivariate generalized t

distribution [11] which is a superset of all the multivariate source priors that have been

used in practice in several recent works, e.g. Multivariate Gaussian, Multivariate Laplace

and Multivariate Student’s t distributions, among others.

The Multivariate Generalized t Distribution has the form:

pM-GT(x;q,β ,M) =
η

(q+ sβ )
q+ L

2β

(6.10)

Where s = xT M−1x, η is the normalization constant. Interestingly, β and q provide the

flexibility to represent different tail behavior using this distribution. Larger values of

β and q correspond to thin tailed distributions whereas smaller values of β and q are

associated with heavy tailed distributions.

Some special case of note is β = 1, which leads to a Multivariate student’s t
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Table 6.1. Variants of Multivariate GT distribution

q β Source Prior IVA Algorithm

q→ ∞ 1 M-Gaussian IVA-G [3, 6]
q→ ∞ 1/2 M-Laplace IVA-L [94]
q≥ 0 (degrees of freedom) 1 M-Student’s t distribution IVA-Reweighted `2
q≥ 0 (shape parameter) 1/2 M-Generalized Double Pareto IVA-Reweighted `1

distribution, a prior that has been used in MMV version of the popular Sparse Bayesian

Learning (SBL)/Relevance Vector Machine (RVM) work [157] and can be decomposed

as a Multivariate Gaussian Scale mixture with inverse Gamma as the mixing density.

Employing β = 1/2 leads to a Multivariate Generalized Double Pareto distribution (GDP)

which can be represented as a scale mixture of Multivariate Laplace following equation

(6.5). Univariate version of GDP has been discussed in [10] in details. In Table 6.1, we

summarize some special cases of Multivariate GT that have been used in literature as

multivariate source prior for IVA that arise by different choices of the shape parameters

of M-GT, i.e. β and q (With M = I).

Among Scale Mixtures, both univariate and multivariate GSM in particular have

gained a lot of interest over the years in the literature and the proposed M-PESM

framework is an interesting generalization as, M-GSM, M-LSM and M-USM are subsets

of the proposed M-PESM. As shown in [132], M-GSM can only be used to represent

supergaussian densities, i.e. distributions with positive kurtosis whereas M-PESM

representation can also be used for subgaussian densities along with supergaussian

densities. One example is the previously discussed M-GT distribution, which becomes a

thin tailed subgaussian distribution for β > 1 and q = 1.
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6.4 Maximum Likelihood: IVA inference using EM

In this section, we derive the inference procedure by maximizing the likelihood of

the observations using an EM algorithm, where a member of M-PESM family has been

employed as the multivariate source prior, p(sn,t) =
∫

M-PE(sn,t ;Mn,β ,zn,t)p(zn,t)dzn,t

is a M-PESM.

A well known result regarding the density of linear transformation will be used in

the derivation which says, if s is a random vector and has probability distribution pS(s),

then the density of x = As is,

pX(x) = |det(W)|pS(Wx) (6.11)

Where W = A−1.

We will employ an EM algorithm while treating zn,t as the hidden variable.

Considering T i.i.d observations, the complete data log likelihood becomes,

L(W) =
T

∑
t=1

log p(x[1]t , ...,x[K]
t ,zt), Where, zt = [z1,t , ....,zN,t ]

= ∑
t
[

K

∑
k=1

log |det(W[k])|+
N

∑
n=1

(log psn,t |zn,t (yn,t |zn,t)

+ log p(zn,t))]

(6.12)

To compute the Q function we need the conditional expectation of the log likelihood with

respect to the posterior of the hidden variables. Since in the M step we will maximize the

Q function w.r.t W[k], we can ignore the last term log p(zn,t). Only the second term has

dependencies on the hidden variable, hence in E step we are only concerned with this
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term, i.e.,

N

∑
n=1

log psn,t |zn,t (yn,t |zn,t) =−
N

∑
n=1

(yT
n,tM−1

n yn,t)
β

zn,t
+Constants (6.13)

E step essentially becomes computation of Ezn,t |sn,t

[ 1
zn,t

]
. The derivation of the concerned

conditional expectation where a M-GT (a member of M-PESM) has been employed as

the source prior uses a similar trick that has been used in [132]. Details of the derivation

are given in the Appendix (Supplemental material). The weights are found as,

wn,t = Ezn,t |sn,t

[ 1
zn,t

]
sn,t=yn,t

=
q+ K

2β

q+Eβ

n,t

(6.14)

Where, En,t = yT
n,tM−1

n yn,t .

In the M step we will employ a gradient based method to maximize the Q function.

After E step we have the following normalized (by T) cost function,

CIVA =−
K

∑
k=1

log |det(W[k])|

− 1
T ∑

t
∑
n
Ezn,t |sn,t

[
log psn,t |zn,t (yn,t)

] (6.15)

The derivative of the cost function with respect to each demixing matrix gives,

∂CIVA

∂W[k]
=−(W[k])−T − 1

T ∑
t

∑
n
Ezn,t |sn,t

[∂ log p(yn,t)

∂y[k]n,t

] ∂y[k]n,t

∂W[k]
(6.16)

Following the derivation shown in [3] and using the notation of score function of multi-

variate random vector, φ [k](yn,t) we get,

∂CIVA

∂W[k]
=−(W[k])−T +

1
T ∑

t
φ
[k](y:,t)(x

[k]
t )T (6.17)
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Where,φ [k](y:,t) =
[
φ [k](y1,t), ...,φ

[k](yN,t)
]T is formed by selecting the kth entries from

each of the N multivariate score functions for sample t,

φ(yn,t) =−Ezn,t |sn,t

[∂ log p(yn,t)

∂yn,t

]
= Ezn,t |sn,t

[ 1
zn,t

]∂ (yT
n,tM−1

n yn,t)
β

∂yn,t

= 2wn,tβEβ−1
n,t M−1

n yn,t

(6.18)

Each of the K demixing matrices is updated sequentially using gradient descent method,

W[k]←W[k]−µ
∂CIVA

∂W[k]
(6.19)

Where, µ is positive scalar step size. According to recent works in IVA, it is suggested to

use natural gradient for a faster convergence, which can be obtained by postmultiplying

(6.17) by (W[k])T W[k]. Hence, the natural gradient update rule of the demixing matrix

becomes,

W[k]←W[k]−µ
( 1

T ∑
t

φ
[k](y:,t)(y

[k]
t )T − I

)
W[k] (6.20)

It is interesting to note that the weights (wn,t) in the expression of the multivariate score

function (6.18) is a function of the SCV estimates of the previous iteration, which leads

to this realm of reweighted algorithms for IVA.

6.4.1 Learning Intra-source Second order Dependencies

In the seminal work of IVA a Multivariate Laplace distribution along with the

assumption that there is no correlation within the SCV, has been used as the source

prior. Because of this strong assumption it may limit the performance of this IVA

implementation in tasks where the degree of second order dependencies are expected

to be significant. Our proposed unified framework enables us to capture any present
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correlation structure by learning the Intra-source correlation matrix Mn.

Revisiting the M step from previous subsection and collecting the terms with Mn,

we get,

CostMn = ∑
t

[
wn,t(yT

n,tM
−1
n yn,t)

β +
1
2

log |Mn|
]

(6.21)

Taking derivative w.r.t Mn and equating it to zero, we get the Maximum Likelihood

estimate [138] as,

Mn =
2β

T ∑
t

wn,t(yT
n,tM

−1
n yn,t)

β−1yn,tyT
n,t (6.22)

We will also add a regularization term to the update of Mn to make it robust to the

estimation error of yn,t over the iterations. Hence,

Mn←
2β

T ∑
t

wn,t(yT
n,tM

−1
n yn,t)

β−1yn,tyT
n,t +αI (6.23)

Where, α is a positive scalar to maintain the positive definite property of Mn. We will

also normalize Mn after every iteration, i.e., Mn←Mn/||Mn||F .

6.4.2 Special Cases of Source Prior

In Table 6.1 we have listed how by choosing distributional parameters of a

M-GT distribution we can represent several multivariate source priors that have been

used in previous works for IVA. Here we will show how by choosing the specific

distributional parameters in the unified inference framework, it leads to well known IVA

implementations.
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Multivariate Laplace Distribution : IVA-L

From Table 6.1 we see for specific values of distributional parameters (q→

∞,β = 1/2), M-GT can be used to represent M-Laplace source prior. Now to relate with

the unified IVA framework taking the limit as q→ ∞ in Equation (6.14) we get, wn,t = 1

for all the sources. Hence the score function in Equation (6.18) becomes same as shown

in [94] (with the choice of scatter matrix Mn = I).

Multivariate Gaussian Distribution : IVA-G

Similarly with q→ ∞,β = 1, M-GT can be used to represent M-Gaussian source

prior. Again the weights, wn,t = 1 for all the sources. M-Gaussian has been used as a

source prior for IVA in [6] with the choice of exploiting second order dependencies by

learning the correlation matrix of each SCV (Mn). By choosing aforementioned specific

distributional parameters, score function (6.18) becomes same as in [6] and we can also

exploit the correlation structure by using (6.23). We will denote this implementation as

IVA-G.

Multivariate Generalized Double Pareto Distribution : IVA-Re `1

With the choice of q = ε,β = 1/2 we get our first proposed reweighted algorithm:

IVA-Re `1. Its evident that with this choice of distributional parameters, weights given in

(6.14) capture the relative energy differences between sources and reweights the score

function (6.18) based on the SCV estimates of the previous iteration. Similar reweighted

approach, iterative reweighted `1 norm minimization [30], has been explored for sparse

recovery task in past. Also to note that, our proposed reweighted approach can also

capture any correlation present within SCV by learning Mn (6.23). In our simulations we

will use q = ε = 0.1.
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Multivariate Student’s t Distribution : IVA-Re `2

By choosing q = ε,β = 1 we get second of our proposed reweighted algorithms:

IVA-Re `2. Weights, which are computed in (6.14), becomes function of 2 norm of

the estimated SCV from previous iteration and are used to reweight the score function

(6.18) . Hence we name this algorithm as IVA-Re `2. ε can be interpreted as the degrees

of freedom of the Student’s t distribution and it controls the tail nature of the source

prior. Lower values of ε increases kurtosis or in other words makes the prior more

heavytailed, whereas by increasing ε the tail nature approaches Gaussian and for ε → ∞,

Student’s t distribution becomes a M-Gaussian distribution. In our simulations we will

use q = ε = 0.1.

6.5 Simulations

Performance of the proposed reweighted algorithms in a source separation task

has been shown in this section via simulations, following the standard set up, widely

used in IVA literatures [3,4,6,108]. In our experiments we generate, N = 3 SCVs from a

multivariate Laplace distribution. The kth entry of each SCV is used a latent source for

the kth dataset. We also generate random mixing matrices, whose entries are generated

from a normal distribution with mean 0 and variance 1. T = 1000 observations are

generated following the mixing model given in (6.1) and presented to all the competing

algorithms to estimate the SCVs, i.e. y[k]t and the demixing matrices, i.e. W[k]. The

performance of the JBSS algorithms are evaluated using an extension of the normalized

inter-symbol-interference (ISI), known as joint ISI which has been used in recent IVA

literatures [4, 108]. Joint ISI penalizes SCV estimates that are not consistently aligned

across datasets and is also normalized such that, 0≤ Joint ISI≤ 1, where 0 means ideal

separation performance.
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6.5.1 Uncorrelated Sources

During the first set of experiments we consider that, there is no correlation within

an SCV across datasets. SCVs are generated randomly from a multivariate Laplace

distribution with correlation matrix Γn = I. In Figure 6.1 we present the separation

performances in terms of mean Joint ISI over 100 trials for all the competing algorithms

for K = 6,9 and,12 (number of datasets). As expected in this case the performance of

IVA-G is the worst among all the competing algorithms, and the reason being the true

SCVs posses no correlation, hence its impossible to achieve JBSS with only second order

statistics in this case. Its also evident that both the Reweighted algorithms do better than

IVA-L, even though there is a model mismatch (since sources are multivariate Laplace).

As expected when the number of datasets increases, source separation performance also

improves for both the reweighted algorithms and also IVA-L.

6.5.2 Correlated Sources

As discussed before, in many applications sources have second order (linear)

dependencies across the datasets. Hence, here we consider the SCVs generated from

a multivariate Laplace distribution following [57], with a randomly generated positive

definite correlation matrix ΓΓΓnnn for nth source. In Fig. 6.2 we present the mean Joint ISI

over 100 trials for all the competing algorithms for K = 6,9 and,12 (number of datasets).

Presence of correlation improves the performance of IVA-G and comparable with IVA-L.

Even in this case Reweighted algorithms perform better than both IVA-L and IVA-G

and the reason could be the flexibility of exploiting both higher order and second order

statistics.
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Figure 6.1. Joint ISI measure for Uncorrelated Sources using different competing
algorithms

6.5.3 Convergence Issues

As discussed in [5] for non-Gaussian sources the cost function has local minimas

at permutation ambiguities, which could be detrimental for these iterative algorithms,

specially when the number of datasets (K) is less than the number of sources (N).

Whereas, IVA-G has very desirable convergence properties as shown in [3] even for

K < N case. This acts as a motivation to a popular practice of using the IVA-G solution

for initialization for other implementations of IVA. Exploration of this approach also for

reweighted algorithms for the case of K < N will be done in future.

6.6 Conclusion

In this article we have introduced a new class of generalized scale mixture

distribution family: M-PESM as the multivariate source prior for IVA. Following a

maximum likelihood inference procedure, choice of a specific member (M-GT) of M-
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Figure 6.2. Joint ISI measure for Correlated Sources using different competing algo-
rithms

PESM leads to two novel reweighted algorithms for IVA with the ability to exploit both

second order and higher order dependencies within a SCV. This unified framework also

includes two popular IVA implementations (IVA-L and IVA-G), that have been used

in the literature. Simulation results show the superior performance of the reweighted

algorithms over both IVA implementations (IVA-L and IVA-G).

As a future direction of this work, we intend to improve the convergence speed of

our proposed reweighted algorithms by developing Newton’s method based optimization

technique with M-GT as the source prior.
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6.7 Appendix

6.7.1 Derivation of Equation (6.14)

To compute the concerned expectation we will employ the following trick. Dif-

ferentiating inside the integral of the marginalized p(sn,t) we get,

p′(sn,t) =
d

dsn,t

∫
∞

0
p(sn,t |zn,t)p(zn,t)dzn,t

=−2β ×λ
β−1
n,t M−1

n sn,t

∫
∞

0

1
zn,t

p(sn,t ,zn,t)dzn,t

(6.24)

Where, λn,t = sT
n,tM−1

n sn,t .

Now employing the product rule of probability p(sn,t ,zn,t) = p(sn,t)p(zn,t |sn,t)

and taking p(sn,t) outside the integral we get,

p′(sn,t) =−2β ×λ
β−1
n,t M−1

n sn,t p(sn,t)
∫

∞

0

1
zn,t

p(zn,t |sn,t)dzn,t

=−2β ×λ
β−1
n,t M−1

n sn,t p(sn,t)Ezn,t |sn,t

[
1

zn,t

] (6.25)

Now lets consider a special case where a Multivariate GT has been employed as

a prior, p(sn,t). We can write, p(sn,t) = η exp(− f (sn,t)), where,

f (sn,t) = (q+
K
2β

) log
(

q+λ
β

n,t

)
(6.26)

So,

p′(sn,t) =−p(sn,t) f ′(sn,t)

=−2β ×λ
β−1
n,t M−1

n sn,t p(sn,t)
q+ K

2β

q+λ
β

n,t

(6.27)
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Comparing Equation 6.25 and Equation 6.27 we get,

Ezn,t |sn,t

[
1

zn,t

]
sn,t=yn,t

=
q+ K

2β

q+Eβ

n,t

(6.28)

Where, En,t = yT
n,tM−1

n yn,t .
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7.1 Introduction

Consider a linear regression problem, where there are L set of tasks (or measure-

ment vectors) denoted as {yi}1...L where, yi ∈ Rni×1.

yi = Xiwi + εi (7.1)

Where, Xi ∈ Rni×m is the data matrix constructed using training data, wi ∈ Rm×1 is the

coefficient vector and εi ∈ Rni×1 could be interpreted as measurement noise. Assuming

that the measurement noise is zero mean Gaussian with unknown variance λ , the likeli-

hood function for the coefficient vector wi based on the ith task output/target yi can be

expressed as,

p(yi|wi,λ ) = (2πλ )−ni/2 exp
(
−
||yi−Xiwi||22

2λ

)
(7.2)

When the number of features (m) is greater than the number of data points (ni) in model

(7.1) the problem becomes under-determined [53]. That means there could be infinite

number of solutions for the regression coefficients that perfectly explain the data. To

obtain a unique solution of regression coefficients we often employ a sparsity promoting

regularization, which means only few relevant features will be selected [91]. There

has been a lot of interest and work on promoting sparsity using `1 norm regularization

[47, 48, 156]. From a Bayesian perspective supergaussian (i.e. priors with heavier tails

than gaussian) distributions have been employed as prior to promote sparsity in the

coefficient vector with reasonable success [132,134]. For Multitask Learning (MTL) or a

Multiple Measurement Vector (MMV) sparse recovery problem, notion of joint sparsity

has been introduced [9, 168, 174]. Key assumption behind this is that all the tasks will

share the same set of relevant features. Joint sparse regularization approach has been

used, where we seek row sparsity in the regression coefficient matrix by employing a
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multivariate supergaussian prior distributions to model joint sparsity, which encourages

the entire rows of the coefficient matrix to have zero elements [66, 83, 176]. Joint

regularization using `2−1 mixed norm is a straightforward extension of LASSO (single

task/measurement case), which has been used extensively to solve this problem [130].

In real life applications we often see that all the tasks may not always share the same

set of features and some of the tasks could be outliers or could be negatively correlated

with other tasks. To model the outlier tasks, recently a Dirty model for MTL has been

introduced which uses a combined regularization of `1/`∞ to model the joint sparsity

and `1 to model outliers [87]. A probabilistic interpretation of this dirty model has

also been proposed in [84]. It has also been discussed in recent literatures [83, 176]

that if the model is able to capture the task relatedness, i.e. any present correlation

structure, the generalization capability of the model increases significantly. Recently

some works [41,142] have also proposed using Iterative Reweighted Least Square (IRLS)

approaches to model joint sparsity from a MTL point of view. In [161] authors have

extended the reweighted `1 minimization [30] approach to model the joint sparsity for

MMV recovery problem. In Bayesian based approaches, Multivariate Gaussian Scale

mixtures (M-GSM) and Multivariate Laplacian Scale Mixtures (M-LSM) have been used

as prior distributions to promote joint sparsity, because of their supergaussian nature.

In [160] authors have proposed a new sparse Bayesian multitask learning method based

on a GSM prior which also models the correlation structure within tasks.

In the previous chapter, we have introduced a multivariate extension of our re-

cently proposed generalized Scale Mixture framework [72], namely Multivariate Power

Exponential Scale Mixtures (M-PESM) as a source prior for a joint blind source separa-

tion task. In this paper we present the usefulness of M-PESM to model the joint sparsity

and show its application in a multi-task learning framework. This work will primarily

focus on the Multivariate Generalized t distribution (M-GT) family of priors, a member
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of M-PESM, since it has a wide range of tail shapes and includes heavy tailed super

gaussian distributions. We also derive a unified MAP estimation framework using M-GT

as sparsity inducing prior and show that many of the popular regularization based MTL

algorithms falls under our proposed unified framework. Our model also has the flexibility

of learning any correlation structure present between tasks which will help us to model

any outlier task or task with negative correlation.

The rest of the chapter is organized as follows. In Section 7.2, a generalized

scale mixture representation, the Multivariate Power Exponential Scale Mixtures (M-

PESM) family, is presented. In Section 7.3, we derive a unified MAP based inference

procedure by employing a joint sparsity promoting prior distribution from the family

of M-PESM. In Section 7.4, we discuss some special cases of the unified framework

and show connections with current algorithms in the literature. We present experimental

results of the proposed algorithms using both synthetic data and real data in Section 7.5,

in different settings and finally conclusions and some future directions of this work are

presented in Section 7.6.

7.2 Sparsity Inducing Prior: Scale Mixtures

For joint sparse regularization from a MMV or MTL point of view, multivariate

Gaussian scale mixtures and Laplace scale mixtures have been used as sparsity promoting

prior. In this section, we discuss a recently proposed [70], more general Multivariate

Power Exponential Scale Mixture (M-PESM) distribution, which is a generalization of

M-GSM and M-LSM.

7.2.1 Multivariate Power Exponential (M-PE)

In this work we are concerned with the M-PE distribution, which is also known

as Generalized Gaussian Distribution (GGD) and has received lot of attention in the
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literature. The probability density function of a M-PE is defined by [138],

pM-PE(x|M,β ,z) =
1

|M|1/2 hβ ,z(xT M−1x) (7.3)

for any x∈RL×1, where M is a L×L symmetric real correlation matrix, and h() is known

as the density generator defined by,

hβ ,z(y) =
βΓ(L

2 )

π
L
2 Γ( L

2β
)z

L
2β

exp

(
− yβ

z

)
(7.4)

Where, z > 0 is the scale parameter and β > 0 is the shape parameter of the

M-PE. It is evident from the above given form, that β = 1 results in the Multivariate

Gaussian distribution, whereas β = 1/2 connects to the well known Multivariate Double

exponential or Laplace distribution.

7.2.2 Multivariate PESM (M-PESM)

Multivariate PESM family of distributions refer to distributions that can be

represented as follows:

pX(x) =
∫

pM-PE(x;M,β ,z)pz(z)dz (7.5)

Some special cases of M-PESM includes Multivariate Gaussian Scale Mixtures (M-GSM)

when shape parameter β = 1, Multivariate Laplace Scale Mixtures (M-LSM) when shape

parameter β = 1/2, Multivariate Uniform Scale Mixtures (M-USM) when β → ∞. More

theoretical details and the properties of M-PESM can be found in [70].

7.2.3 Multivariate Generalized t Distribution (M-GT)

In this example, we will consider an inverse gamma (IG) distribution as our

mixing density pz(z) = IG(q,q), where IG(x;a,b) = ba

Γ(a)x
−a−1 exp

(
− b

x

)
u(x) in the

hierarchical representation (7.5) for the M-PESM family. It leads to a multivariate

generalized t distribution [11] which also includes well known supergaussian densities,
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Table 7.1. Variants of Multivariate GT distribution

q β Prior Distribution Penalty Function SSR Algorithm

q→ ∞ 1 M-Normal ||W||F M-Ridge Regression
q→ ∞ 1/2 M-Laplacian ||W||2,1 M-LASSO
q≥ 0 (degrees of freedom) 1 M-Student t distribution ∑i log(ε + ||wi,: ||22) Iterative Reweighted Least Squares
q≥ 0 (shape parameter) 1/2 M-Generalized Double Pareto ∑i log(ε + ||wi,: ||2) Reweighted `1

useful to promote joint sparsity e.g. Multivariate Laplace, Multivariate Student’s t

distributions, among others. The Multivariate Generalized t Distribution has the form:

pM-GT(x;q,β ,M) =
η

(q+ sβ )
q+ L

2β

(7.6)

Where s = xT M−1x, η is the normalization constant. Interestingly, β and q provide the

flexibility to represent different tail behavior using this distribution. In Table 7.1, we

summarize some special cases of Multivariate GT that have been used in literature to

promote joint sparsity that arise by different choices of the shape parameters of M-GT,

i.e. β and q (With M = I).

7.3 Bayesian Inference

In this section we derive a unified estimation algorithm using M-PESM as the

sparse prior. Then we specialize the result using the M-GT as the sparse prior and

also show that the generalized algorithm reduces to well known Multi task learning

algorithms.

7.3.1 Unified MAP Estimation

Because of the independence between rows of the coefficient matrix W, every

p(wi,:) has an independent scale mixture representation, i.e,

p(wi,:) =
∫

∞

0
p(wi,:|zi)p(zi)dzi (7.7)
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For EM algorithm we will treat scale parameters zi as hidden variables. Hence the

complete data log-likelihood can be written as,

log p(Y,W,z) = log p(Y|W)+
m

∑
i=1

log p(wi,:|zi)+
m

∑
i=1

log p(zi) (7.8)

To compute the Q function we need the conditional expectation of the complete data log

likelihood with respect to the conditional posterior of the hidden variables, i.e, p(z|W,Y)

which reduces to p(z|W) by virtue of the Markovian property. Now in the M step we

will maximize the Q function with respect to W, so we are only interested in the first

two terms of the Equation (7.8). Since only the second has dependencies on the hidden

variable z, in the E step we are only concerned with this term, i.e,

m

∑
i=1

log p(wi,:|zi) =
m

∑
i=1

log pM-PE(wi,:;Mi,β ,zi)

=−
m

∑
i=1

(wi,:M−1
i wT

i,:)
β

zi
+ constants

(7.9)

Hence, the E step essentially becomes computation of the following conditional

expectation, Ezi|wi,:

[
1
zi

]
.

The derivation of the concerned conditional expectation where a M-GT has been

employed as the sparsity inducing prior, is given in Appendix of the last chapter, which

has been found as,

Ezi|wi,:

[
1
zi

]
=

q+ L
2β

q+Eβ

i

(7.10)
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Where, Ei = wi,:M−1
i wT

i,:. Lets define the weights as,

vi = Ezi|wi,:

[
1
zi

]
=

q+ L
2β

q+Eβ

i

(7.11)

Hence the M step becomes,

W(k+1) = argmin
W

L

∑
i=1

1
2λ
‖yi−Xiwi‖2

2 +
m

∑
i=1

v(k+1)
i (wi,:M−1

i wT
i,:)

β (7.12)

It’s evident from the M step that our proposed unified framework falls under the

reweighted schemes where weights of (k + 1)th iteration, i.e, v(k+1)
i depend on the

coefficients from previous iteration.

7.3.2 Learning Task Correlation

By incorporating a data adaptive correlation matrix Mi in our algorithm, we can

capture any outlier tasks. It will also help to exploit any present correlation structure in

wi,: through learning Mi adaptively. In our algorithm we will constrain all the Mi = M,

to prevent overfitting because of the large number of parameters.

Revisiting the M step and taking derivative with respect to M and equating it to

zero we get,

M(k+1) =
2β

m

m

∑
i=1

v(k+1)
i (wi,:M(k)−1

wT
i,:)

β−1wT
i,:wi,: (7.13)

In real applications we will also add a regularization term to the update of M to make it

robust to the estimation error of W over the iterations.

M(k+1)← 2β

m

m

∑
i=1

v(k+1)
i (wi,:M(k)−1

wT
i,:)

β−1wT
i,:wi,: +αI (7.14)

Where, α is a small positive scalar, to maintain the positive definite property of M. We

will also normalize M after every update, i.e, M̂(k+1)←M(k+1)/‖M(k+1)‖F . This data

adaptive correlation matrix M can also be interpreted as data adaptive kernel which helps
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to exploit any structure present among the tasks which is a significant advantage over

algorithms that are blind to any correlation structure.

7.4 Special Cases of Unified Framework

In this section by choosing specific distributional parameters we will show how

our proposed unified framework leads to well known Multitask Learning algorithms.

7.4.1 `2−1 Minimization: Joint Feature Selection

`2−1 norm minimization based joint feature selection approach [130] is one of

the earliest multitask learning algorithm employing joint sparse regularization. From a

Bayesian point of view employing a M-Laplace distribution as the joint sparsity inducing

prior over the rows of the coefficient matrix and seeking a MAP estimate will lead to

this algorithm. Interestingly we see from Table 7.1 that for specific values of the shape

parameters (q→ ∞,β = 1/2), a Multivariate GT distribution can be used to represent

M-Laplace. Now to relate with the unified MAP estimation framework taking the limit as

q→ ∞ in Equation (7.11) we get vi = 1. Hence in the M step we are solving a `2−1 norm

penalized regression problem where weights are not changing over iteration, showing

that `2−1 Minimization is a special case of our unified framework.

7.4.2 Iterative Reweighted `1 minimization (IRL-1)

In [112,161] an iterative reweighted `1 minimization algorithm has been discussed

to promote joint sparsity. From a Bayesian point of view, MAP estimation of the

coefficient matrix with a M-Generalized double pareto distribution as a prior will lead to

the same cost function. Now, substituting the distributional parameters (q = ε,β = 1/2)

from Table 7.1 in Equation (7.11) we get weights as, vi =
ε+L

ε+
√

wi,:wT
i,:

= ε+L
ε+||wi,:||2 , same as

shown in [112] using MM algorithm. It’s evident that this algorithm also falls under our
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proposed unified framework. On the other hand our framework also allows learning the

correlation structure between tasks and leads to correlation aware regularization penalty

unlike the algorithm discussed in [112]. We will refer to the context aware version of

this algorithm as C-IRL-1 which involves computing the weights vi following Equation

(7.11) with q = ε,β = 1/2, updating the correlation matrix M using Equation (7.14) with

β = 1/2 and then solving a weighted `2−1 mixed norm minimization problem shown in

Equation (7.12).

7.4.3 Iterative Reweighted Least Squares (IRLS)

Iterative Reweighted Least Square (IRLS) was first proposed from a single mea-

surement sparse recovery perspective. In recent works [41, 142] it has been extended for

joint sparse regularization both from a MMV recovery and Multitask learning point of

view. As shown in Table 7.1, employing a M-student t distribution as a prior and follow-

ing the MAP estimation route will lead to the same cost function as discussed in [41].

By choosing the specific distributional parameters (from Table 7.1) and substituting in

Equation (7.11) we get, vi =
ε+L/2

ε+wi,:wT
i,:
= ε+L/2

ε+||wi,:||22
, which is a straightforward extension of

Reweighted `2 minimization algorithm [33] for MMV case. Since our unified framework

allows us to learn the correlation structure, in our proposed correlation aware IRLS

(C-IRLS) the weights will be computed as, vi =
ε+L/2

ε+wi,:M−1wT
i,:

We will also learn the

correlation matrix using Equation (7.14) and then we just need to solve a weighted least

squares problem following Equation (7.12) with β = 1.

Updating the shape parameter ε

In our proposed C-IRLS we will also employ a useful update strategy of the shape

parameter ε of multivariate GT distribution. Choice of ε controls the kurtosis of the prior

distribution, where a low value of ε corresponds to a higher kurtosis. Starting with a very
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low value of ε may hurt the performance of the algorithm as it can get stuck to a local

optima since the regularization term is concave. Whereas starting with a comparatively

higher value of ε and slowly decreasing it will help our proposed C-IRLS to converge

to the global optima. This can be also viewed as adapting the tail nature of the prior

distribution over the iterations as it approaches global optima. Similar discussion can

also be found in [33] where the motivation is that higher value of ε will result in the

undesirable local minimas being ”filled in”.

The ε update rule that has been used in this work is as follows: If the relative

Frobenius norm of the coefficient matrix W, from previous iteration is less than
√

ε/100

we decrease the value of ε by a factor of 10. The algorithm is run till ε < 1e−6 or the

maximum number of iterations which is 100 in all our experiments.

7.5 Experiments

In this section we carry out experiments using both synthetic data and real data to

evaluate the empirical performances of the above discussed models.

7.5.1 Competing Algorithms

All the competing algorithms have been summarized below with a brief summary.

1. `2−1 mixed norm minimization based MTL. [130]

2. M-FOCUSS: MMV based FOCal Underdetermined System Solver (M-FOCUSS)

with p = 0.8. [39]

3. IRL-1: Iterative Reweighted `1 minimization for joint sparsity. [161]

4. C-IRL-1: Correlation aware Reweighted `1 minimization. (proposed)

5. TMSBL: Temporal MMV Sparse Bayesian Learning. [160]
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6. IRLS: Iterative Reweighted Least Squares. [41]

6. C-IRLS: Correlation aware Iterative Reweighted Least Squares. (proposed)

7. DM: Dirty model with combined regularization of `1 and `1/`∞ to model outliers.

[87]

7.5.2 Experiments with Synthetic Data

In this case we will assume that same data matrix X ∈Rn×m (where, n = 50,m =

100) has been used for all the tasks. The entries of the data matrix X have been sampled

from a standard Gaussian distribution with mean zero and standard deviation 1. Lets

assume that there are L = 10 tasks and all the task share the same set of K = 22 relevant

features. We will also assume that the first two tasks and the last eight tasks are positively

correlated but the two groups are negatively correlated. Thus the nonzero rows of the

coefficient matrix Wgen have been sampled from a multivariate Gaussian with mean zero

vector and covariance matrix with 1’s on the diagonals and either +β or −β on the off

diagonal elements, depending on the locations. Now the target matrix Y is obtained

following Y = XWgen + ε. Where the additive noise is gaussian and the variance is

chosen such that SNR is 10 dB. The target matrix Y and data matrix X are shown

to all the competing algorithms and the reconstruction error of model coefficients are

measured as: Error = ‖Ŵ−Wgen‖F
‖Wgen‖F

. The same experiment has been repeated 50 times and

the averaged error has been reported in Table 7.2. We run the experiments for two values

of β = 0.9 and, 0. In the first case there is a significant correlation structure between

tasks, so we hope to see a significant improvement for our proposed correlation aware

algorithms. Whereas in the second case there is no correlation structure so we expect to

see similar performance of both Correlation aware and correlation unaware algorithms.

In Table 7.2 for β = 0.9 we see that C-IRLS performs significantly better compared to
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IRLS whereas C-IRL-1 also shows little improvement over IRL-1.

Table 7.2. Averaged Reconstruction Error using Synthetic Data

Methods Error

β = 0.9 β = 0
`2−1 0.6007 0.4800

M-FOCUSS 0.6321 0.4559

IRL-1 0.3768 0.2712

C-IRL-1 (Proposed) 0.3679 0.2710
TMSBL 0.4325 0.3168

IRLS 0.4795 0.3056

C-IRLS (Proposed) 0.3633 0.3030

DM 0.6489 0.5629

7.5.3 Experiments with Real Data

In this section we consider the reconstruction of images of hand written digits

taken from the popular MNIST dataset. Since for these handwritten digits the background

pixels are always zero and most of them share same locations across all the images, joint

sparsity could be used here. We downsample the images to 14×14 pixels and vectorize

them, where each image is represented using a 196 dimensional vector. We randomly

choose 8 images of digit ’0’ and two randomly chosen images of digit ’1’ and digit ’9’.

Last two digits i.e, ’1’ and ’9’ can be interpreted as outlier tasks. Now in MTL setup,

model coefficients wl are the vectorized pixel values. Again we will choose the same data

matrix X ∈ R120×196 for all the tasks and the entries of X are sampled from a standard

Gaussian distribution with mean zero and standard deviation 1. Following the previous

section we will generate the target matrix Y with some additive noise where the SNR is

20 dB. We compare the reconstruction error by several competing algorithms in Table 7.3.

We again see the improvement of performance by correlation aware algorithms, where
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Figure 7.1. (Top) True Images, (Bottom) Recon. images using C-IRLS

C-IRLS produces the best reconstruction error.

Table 7.3. Averaged Reconstruction Error using MNIST

Methods Error

`2−1 0.3879

M-FOCUSS 0.3218

IRL-1 0.2965

C-IRL-1 (Proposed) 0.2834

TMSBL 0.3039

IRLS 0.3056

C-IRLS (Proposed) 0.2426
DM 0.4212

In Figure 7.2(a) we show true images of two ’0’s (7th and 8th task) and the

outliers ’1’ and ’9’ (9th and 10th task) and also the corresponding reconstructed images

using C-IRLS. In Figure 7.2(b) we show the correlation matrix that has been learned by

C-IRLS (White corresponds to 1 and black corresponds to 0). Interestingly we find out

that our model has been able to learn high correlation between the first 8 tasks (images

of ’0’) and also a very low correlation between a true task and last two outlier tasks.

Another interesting observation is the correlation learned between 7th and 8th task in

Figure 7.2(b) (Red circled), which is also low, though they belong to the same digit. For

sanity check, we can verify from Figure 7.2(a) that the 7th task and 8th task, i.e., two
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Figure 7.2. Correlation between tasks learned by C-IRLS for MNIST

true images of handwritten ’0’ are significantly different which leads to a low correlation

value captured by C-IRLS.

7.6 Conclusion

In this chapter we have introduced a new class of multivariate scale mixture

prior distribution to model joint sparsity and derived a unified inference framework

which covers many of the popular Multitask learning algorithms. Our proposed cor-

relation aware algorithms provide the flexibility of exploiting any present correlation

structure between tasks. Our experimental results over both synthetic data and real data

shows improvements of the proposed correlation aware approaches over other competing

algorithms.
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8.1 Introduction

In speech modeling, an all pole model is most commonly used to model the vocal

tract. Depending on the nature of the utterance, voiced, unvoiced or mixed, the input to

the all-pole filter is either a glottal pulse train, white noise, or a combination of glottal

pulses and white noise respectively. Estimation of the model parameters has a long history

and a popular approach is the linear prediction (LP) based all pole model parameters

estimation which involves minimizing the 2-norm of the residual, the difference between

the observed signal and the predicted signal. The residual signal in all pole modeling

is the input excitation sequence. Because of the 2-norm minimization approach, such

estimation methods work well for unvoiced speech where the input to the filter is white

noise. The 2-norm minimization based linear prediction approach suffers from some well

known problems [120] in the case of voiced speech. The spectrum of the resulting model

tends to overestimate the spectral powers at the formant frequencies, providing a sharper

contour than the original vocal tract response. Several different methods have been

proposed to alleviate these effects. Some of the proposed techniques involve a general

rethinking of the spectral modeling problem [52, 128] while some others are based on

changing the statistical assumptions made on the prediction error in the minimization

process [44, 149]. Recently, instead of minimizing the 2-norm of the residual, methods

based on minimizing the one norm of the residual, to accommodate the spike train nature

of the input sequence, have been suggested with some success for voiced speech [69].

Interesting algorithms [31, 69] based on reweighted `1 approaches have been employed

to exploit the sparsity assumption on the input process.

In case of voiced speech, the excitation can be considered to be a sparse excitation

of a quasi-periodic nature [42]. The excitation component of the voiced speech production

model is known as the glottal excitation. The structure of this glottal excitation has been
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an interesting topic of research for several years. From Figure 8.1 the temporal extent

of the glottal pulses show that a block sparse structure is more appropriate. Thus to

make the voiced speech modeling task more robust and efficient we propose a framework

where the excitation has a prior block sparse quasi-periodic structure. It is useful to

note that block sparsity has been studied before in the context of sparse signal recovery,

but they are usually for under-determined problems and the block sparsity is imposed

on the solution vector [180], not on the residual as discussed here. The model is then

generalized to deal with the broad spectrum of speech signals. In our proposed model the

residual is modeled as being a linear combination of two components: a block sparse

component and a Gaussian i.i.d white noise component. By appropriately weighting

the components, this model for the input can deal with all speech utterances; voiced,

unvoiced speech and mixed excitation speech.

Figure 8.1. Shape of Glottal Excitation

The rest of the chapter is organized in the following way. Section 8.2 presents the

model and discusses its advantages and disadvantages and Section 8.3 provides a detailed

description of the estimation procedure of the parameters. Section 8.4 summarizes the

performance of the proposed model over synthetic data, and Section 8.5 presents the

results of the speech modeling problem over the Vowel dataset and finally Section 8.6

concludes the chapter.
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8.2 Proposed Model

Since we are modeling the vocal tract using all-pole models, we will consider

the signal to have been generated by an all-pole filter excited by an appropriate input,

either block sparse, white noise or a combination. The all-pole model parameters and the

nature of excitation input sequence are not known before hand. For instance, in speech

this depends on the utterance. This production model can be described by the following

difference equation,

x(n) =
M

∑
k=1

akx(n− k)+w(n)+ e(n) (8.1)

Thus x(n) is written as a linear combination of past M samples. Here ak are the model

parameters and w(n) is the block sparse excitation sequence, whereas e(n) is the non

sparse white noise component. Now considering this production model for a segment of

sample length N, for n=1 to N, we can represent this model in matrix form as,

Y = Xa+w+ e (8.2)

Where, Y = [x(M + 1),x(M + 2) · · ·x(N)]T , X is the known data matrix which is con-

structed from the known time series data. A pictorial representation of this model is

shown in Figure 8.2. The main idea behind this model is that w will capture the (block)

sparse excitation and e will capture the standard non-sparse Gaussian excitation and

provide a richer class of excitation sequences and richer class of models. In the context

of speech, by appropriate weighting of these components we have the ingredients to deal

with all types of speech signals. For voiced speech, w will dominate the residual. For

unvoiced speech, e will dominate the residual. For mixed speech both components would

be present at appropriate levels. For the block sparse structure of w, we assume that the
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all the block sizes are equal and equal to d, and that the blocks are non-overlapping and

contiguous, i.e. block boundaries known. Though a more general block structure can be

imposed, our experiments indicate that the methods developed work reasonably with a

properly chosen block size d.

Figure 8.2. Pictorial Representation of the proposed model

8.3 Parameter Estimation

To estimate the parameters of our model, we can proceed in two ways. First is a

deterministic setting where an extension of the `1 norm is considered such as a mixed

norm `1/`2 norm, i.e. minimizing the `1 norm of the `2 norm of the blocks. In our work,

we have chosen a probabilistic setting by adopting the empirical Bayes approach because

of its flexibility and it also readily allows this type of two component noise modeling

technique [89]. In particular, we utilize the Sparse Bayesian learning (SBL) [157]

methodology. Detailed analysis of the original SBL for sparse signal recovery have been

extensively discussed in several literatures [165] [167]. Interested readers are referred to

these references for more details. We will use a standard EM algorithm to estimate the
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parameters of our model. It is assumes that

p(e) = N(0,σ2I) (8.3)

Thus,

p(Y−Xa|w,σ2) = (2πσ
2)−

N
2 exp−|Y−Xa−w|2

2σ2 (8.4)

For this model framework we will assume that the error w has a normal distribution

with mean zero and a block structure of block size d. Under the SBL formulation, the

covariance matrix of these error blocks is modeled as γiI, i= 1, ..,L. Hence the covariance

matrix of the complete error sequence is

Γ = diag(γ1I, ......,γLI) (8.5)

Here γi is the hyperparameter which controls the variance of the ith block and have to be

learnt. If γi = 0, it means that the corresponding block will also be zero.

To estimate the values of the parameters a,σ2 and γis we will use the EM al-

gorithm and will consider w as the latent variable. The complete loglikelihood can be

written as,

L =−N
2

log2πσ
2− 1

2σ2 |Y−Xa−w|2− N
2

log2π− 1
2

log(det(Γ))− 1
2

wᵀΓ−1w (8.6)

The Q function is defined as,

Q = Ew|Y−Xat−1,σ
2
t−1,γt−1

[L] (8.7)

Thus we need to know, Ew|Y−Xat−1,σ
2
t−1,γt−1

[w] and Ew|Y−Xat−1,σ
2
t−1,γt−1

[wᵀw]
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After some simple manipulations we obtain,

Ŵ1 = Ew|Y−Xat−1,σ
2
t−1,γt−1

[w] = (I +σ
2
t−1Γ

−1
t−1)

−1(Y−Xat−1) (8.8)

and,

Ŵ2 = Ew|Y−Xat−1,σ
2
t−1,γt−1

[wᵀw]

= (I +σ
2
t−1Γ

−1
t−1)

−1(Y−Xat−1)(Y−Xat−1)
ᵀ(I +σ

2
t−1Γ

−1
t−1)

−1 +(σ−2
t−1I +Γ

−1
t−1)

−1

(8.9)

In the M-step we will maximize the Q function with respect to our model param-

eters. So after taking derivative with respect to the parameters and setting them to zero

we get,

γi =
1
d

id

∑
j=(i−1)d+1

ŵ2
j where, ŵ2

j = [Ŵ2] j, j (8.10)

σ
2 =

1
N
[|Y−Xa|2−2(Y−Xa)ᵀŴ1 + tr(Ŵ2)] (8.11)

a = (XᵀX)−1Xᵀ(Y−Ŵ1) (8.12)

Hence by using these update rules the parameters of the model can be estimated in each

iteration.

8.4 Experiments on Synthetic data

In this section we will discuss the experiments over the synthetic data to validate

our above mentioned models. Here, we will use an all pole model that has been obtained
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after modeling a speech segment using LPC technique, to produce the synthetic speech

signal by passing three different types of excitations through it. As we are dealing with

block sparse excitations, the period of these block excitation becomes an important factor

and this can be viewed as the pitch period. Thus, in the language of speech domain all the

experiments have been performed using two pitch frequencies, 100 Hz and 200 Hz. Now

as this pitch frequency changes with time in case of speech signals, a little randomization

has also been introduced when using this pitch frequency. We did the experiments for

two cases where case 1 is f1 = 100+N(0,9) and case 2 is f2 = 200+N(0,9) where

N(0,9) is normal random variable with mean 0 and variance 9. For all these experiments

we have used block size= 6 (empirically chosen).

The performance of a spectral envelope estimation method can be measured in

many ways. An often used criterion for measuring quality is the spectral distortion

between estimated all pole model S′(ω,a) and the true all pole model S(ω) which is the

ground truth where, S(ω) = 1
|A(e jω )|2 and A(e jω) is defined by the filter coefficient vector

(a0.....aM).

This Spectral Distortion measure is defined as,

SD =

√√√√√ 1
2π

π∫
−π

[10log10 S(ω)−10log10 S′(ω,a)]2dω (8.13)

For a pair of spectra S(ω) and S′(ω,a), by applying Parseval’s Theorem we

can relate the l2 cepstral distance of the spectra to the previously defined log spectral

distortion,

SD2 =
∞

∑
n=−∞

(cn− c′n)
2 (8.14)

For these experiments over synthetic data, cepstral coefficients are determined



144

from the all pole model coefficients using the recursive relation [124] and the spectral

distortion is measured using the above mentioned cepstral distance of the spectra. For

three different types of input signals these experiments are performed. (Input 1: Block

sparse signal, Input 2: Block sparse signal plus additive white Gaussian noise, Input 3:

white Gaussian noise)

In Table 8.1 the spectral distortion measures are tabulated, using the mean of 200

frames of these three input signals.

Table 8.1. Spectral Distortion Measure over synthetic data

Inputs Frequency Std of noise Spectral Distortion

Proposed Model LPC

Input1
100 Hz 1.0484 1.0651
200 Hz 1.0279 1.0660

Input2

100 Hz
0.1 0.6155 0.7010
0.4 0.2814 0.3541
0.6 0.2776 0.2989

200 Hz
0.1 0.6562 0.8363
0.4 0.3639 0.4320
0.6 0.3019 0.3069

Input3 0.2 0.2683 0.2432

From the results shown in Table 8.1 it is evident that our proposed modeling

method is very effective for voiced and mixed excitation signals.

8.5 Experiments over Vowel dataset

As discussed before, our proposed model can deal with all the aspects of speech:

voiced, unvoiced and also the mixed excitations. The experiments in the previous section

using synthetic data also endorses our claim. So in this section we will continue our

experiments over the vowel dataset using the proposed model and we will compare the

performance of our model with widely used LPC speech modeling technique. This
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dataset has audio recording of 12 Vowels i.e /i/, /I/, /ε/, /æ/, /2/, /a/, /O/, /U/, /u/, /3/, /e/,

/o/ spoken by a male speaker. The sampling frequency is 16 Khz.

Table 8.2. Spectral Distortion Measure over Vowel data

Vowels Models

Proposed Model LPC

/i/ 4.1492 4.6053

/I/ 4.0753 4.0511
/ε/ 4.0985 3.8473
/æ/ 3.7462 3.8677

/2/ 4.4092 4.4179

/a/ 3.2895 3.4036

/O/ 5.2601 5.2598
/U/ 4.6470 4.8754

/u/ 5.7985 5.6795
/3/ 4.8576 5.0481

/e/ 3.6325 3.6431

/o/ 5.0795 5.1003

Speech signals are quasi-stationary, so they are divided into segments within

which the signal can be regarded as stationary. We will use a 20 ms window as each

segment, hence it will consist of 320 samples. All pole model of order (M)=20 has been

used to model each of these segments. The spectral distortion measure for each vowel is

computed as the mean over all the speech segments of that vowel. For both the models,

the spectral distortion measure for each vowel is tabulated in Table 8.2. For 8 cases out

of 12 vowels, our model performs better than well known LPC technique in terms of

spectral distortion measure. Figure 8.3 shows the estimated envelopes using both the

models along with the periodogram of a speech segment of vowel /a/. One can observe

that the modeling technique results in formants that do not have the peaky behavior, LPC

techniques are known to suffer from.
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Figure 8.3. Spectrum of a segment of vowel /a/

8.6 Conclusion

In this chapter, we have proposed a novel model to reconstruct block sparse

excitation from the output of an all pole filter. We have used our model for the speech

modeling task and the spectral distortion measure of the estimated envelope establishes

our claim, that this is a more generalized and efficient modeling approach than linear

prediction. As this problem is closely related to a more general deconvolution problem,

applying these models in several other applications along with theoretically establishing

the optimality of this model will be the direction of the future works.
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lonetto. Outlier robust system identification: a bayesian kernel-based approach.
IFAC Proceedings Volumes, 47(3):1073–1078, 2014.
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