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Statistical Sea-Borne Duct Estimation Using a
Hybrid Genetic Algorithms – Markov Chain Monte

Carlo Method
Caglar Yardim,Student Member, IEEE, Peter Gerstoft, and William S. Hodgkiss,Member, IEEE

Abstract— (September 4, 2006) This paper addresses the
problem of estimating the lower atmospheric refractivity (M-
profile) under non-standard propagation conditions frequently
encountered in low altitude sea-borne radar applications.This
is done by statistically estimating the duct strength (range and
height-dependent atmospheric index of refraction) from the sea-
surface reflected radar clutter. These environmental statistics can
then be used to predict the radar performance.

In previous work, genetic algorithms (GA) and Markov chain
Monte Carlo (MCMC) samplers were used to calculate the atmo-
spheric refractivity from returned radar clutter. Althoug h GA is
fast and estimates the maximuma posteriori (MAP) solution well,
it poorly calculates the multi-dimensional integrals required to
obtain the means, variances and underlying posterior probability
distribution functions (PPD) of the estimated parameters.More
accurate distributions and integral calculations can be obtained
using MCMC samplers, such as the Metropolis-Hastings (M-H)
and Gibbs sampling (GS) algorithms. Their drawback is that
they require a large number of samples relative to the global
optimization techniques such as GA and become impractical with
increasing number of unknowns.

A hybrid GA-MCMC method based on the nearest neigh-
borhood algorithm (NA) is implemented in this paper. It is
an improved GA method which improves integral calculation
accuracy through hybridization with a MCMC sampler. Since it
is mainly GA, it requires fewer forward model samples than a
MCMC, enabling inversion of atmospheric models with a larger
number of unknowns.

I. I NTRODUCTION

In many maritime regions of the world, such as the Mediter-
ranean, Persian Gulf, East China Sea, and California Coast,
atmospheric ducts are common occurrences. They result in
various anomalies such as significant variations in the maxi-
mum operational radar range and increased sea clutter. Hence,
radar systems operating in these environments would benefit
from knowing the effects of the environment on their system
performance. This requires knowledge of the atmospheric
refractivity, which is usually represented by the modified
refractivity (M-profile) in the radar community [1].

Evaporation and surface-based ducts are associated with
increased sea clutter due to the heavy interaction between the
sea surface and the electromagnetic signal trapped within the
duct. However, this unwanted clutter is a rich source of infor-
mation about the environment and can be used to determine the
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local atmospheric conditions. This can be a valuable addition
to other more conventional techniques such as radiosondes,
rocketsondes, microwave refractometers and meteorological
models such as the Coupled Ocean/Atmospheric Mesoscale
Prediction System (COAMPS) that give M-profile forecasts
[1]–[4]. In a Bayesian framework, the results of one or
several of these techniques and regional duct statistics [5]
can be coupled with the clutter inversion to improve the
overall estimation quality. An attractive feature of inferring
refractivity from sea surface clutter is that it does not use
additional hardware or extra meteorological/electromagnetic
measurements. It extracts the information from the radar
clutter obtained during normal radar operation, which usually
is readily available both as a function of range, direction
and time. For a fast inversion algorithm, a near-real-time M-
profile structure is obtained. The need for a fast algorithm
that updates the environmental estimates at intervals of 30
min. or less is evident from Ref. [6], where the RMS error in
propagation factor exceeds 6 dB after 30 min., due to temporal
decorrelation.

Various techniques that estimate the M-profile using radar
clutter return are proposed in [7]–[13]. Most of these refractiv-
ity from clutter (RFC) techniques use an electromagnetic fast
Fourier transform (FFT) split-step parabolic equation (SSPE)
approximation to the wave equation [14], [15], whereas some
also make use of ray-tracing techniques. While [7] exclusively
deals with evaporation duct estimation, other techniques are
applicable to both evaporation, surface-based and mixed type
of ducts that contain both an evaporation section and an
surface-based type inversion layer. [13] exploits the inherent
Markovian structure of the FFT parabolic equation approxima-
tion and uses a particle filtering approach, whereas [10] uses
rank correlation with ray tracing to estimate the M-profile.

In contrast, [8], [9], [12] use global parameterization within
a Bayesian framework. Since the unknown model parameters
are defined as random variables in a Bayesian framework,
the inversion results will be in terms of the means, variances
and marginal, as well as then-dimensional joint posterior
probability distributions, wheren represents the number of
unknown duct parameters. This gives the user not only the
ability to obtain the maximuma posteriori (MAP) solution,
but also the prospect of performing statistical analysis onthe
inversion results and the means to convert these environmental
statistics into radar performance statistics. These statistical
calculations can be performed by taking multi-dimensional
integrals of the joint PPD. Ref. [8] uses genetic algorithmsto
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Fig. 1. Four-parameter range-independent tri-linear M-profile.

estimate the MAP solution. However, no statistical analysis is
performed since classical GA is not suitable for the necessary
integral calculations. While [9] uses importance sampling, [12]
uses Markov chain Monte Carlo (MCMC) samplers to perform
the MC integration [16], [17]. Although they provide the
means to quantify the impact of uncertainty in the estimated
duct parameters, they require large numbers of forward model
runs and hence they lack the speed to be near-real-time
methods and are not suitable for models with large numbers
of unknowns.

In this paper, a hybrid GA-MCMC technique is imple-
mented. The method reduces the number of forward model
runs required to perform the RFC inversion, while still being
able to perform MC integration. It is first tested on the
synthetic data used in [12] with a four-parameter, range-
independent, tri-linear M-profile model (Fig. 1). Then data
collected during the 1998 Wallops island experiment (Wal-
lops’98) [8] is analyzed using a sixteen-parameter range-
dependent atmospheric model to show the capabilities and
limitations of the method. An evaporative duct structure is
not appended in this work but it can be done by introduc-
ing a Jeske-Paulus (JP) [18], [19] or Liu-Katsaros-Businger
(LKB) [20] profile using one or more extra evaporation duct
parameters, depending on the conditions.

II. M ODEL FORMULATION

To formulate the problem, a classical Bayesian framework
is adopted, where the M-profile model and the radar measured
sea-surface clutter data are denoted by the vectorsm and
d, respectively. An electromagnetic FFT-SSPE is used to
propagate the field in an environment given bym and obtain
synthetic clutter returnsf (m). Since the unknown environ-
mental parametersm are assumed to be random variables,
the solution to the inversion is given by their joint posterior
probability distribution function (PPD or p(m|d)). Bayes’
formula can be used to write the PPD as

p(m|d) =
L(m)p(m)∫

m
′ L(m′)p(m′)dm′

, (1)

where p(m) is the prior probability distribution function
(pdf) of the parameters. Any information obtained from other
methods and regional duct statistics can be incorporated inthis

step as a prior belief. Since this paper investigates the ability to
infer M-profiles using RFC, a uniform prior is used. However,
it is possible to include statistical meteorological priors from
studies such as [5], for some of the parameters (e.g. the duct
height).

Assuming a zero-mean Gaussian error between the mea-
sured and modeled clutter, the likelihood function is givenby

L(m) = (2π)−NR/2|Cd|
−1/2 (2)

× exp

[
−

(d − f(m))TC
−1
d (d − f(m))

2

]
,

where Cd is the data error covariance matrix, (·)T is the
transpose andNR is the number of range points used (length
of the data vector,d). Further simplification can be achieved
by assuming that the errors are spatially uncorrelated with
identical distribution for each data point forming the vector
d. For this case,Cd = νI, whereν is the variance andI the
identity matrix. Then the equation can be simplified to

L(m) = (2πν)−NR/2 exp

[
−

φ(m)

2ν

]
, where (3)

φ(m) = (d − f(m))
T

(d − f(m)) . (4)

The maximum likelihood (ML) estimate for the error variance
can be found by solving∂L/∂ν = 0, which results in

ν̂ML =
φ(m)

NR
. (5)

After inserting it back into the likelihood function,L(m)
finally can be reduced to

L(m) =

[
NR

2πeφ(m)

]NR/2

, and (6)

p(m|d) ∝ p(m)

[
NR

2πeφ(m)

]NR/2

. (7)

Having defined the posterior density, any statistical informa-
tion about the unknown environmental and radar parameters
can now be calculated by taking these multi-dimensional
integrals:

µi =

∫
. . .

∫
m

′

ip(m
′

|d)dm
′

(8)

σ2
i =

∫
. . .

∫
(m

′

i − µi)
2p(m

′

|d)dm
′

(9)

p(mi|d) =

∫
. . .

∫
δ(m

′

i − mi)p(m
′

|d)dm
′

(10)

where µi, σ2
i , p(mi|d) are posterior means (Bayesian min-

imum mean square error (MMSE) estimate), variances, and
marginal PPD’s of M-profile parameters.

Probability distributions of parameters of interest to a radar
operator are calculated in a similar fashion. Assume thatu is
such a parameter-of-interest (e.g. propagation factor), which
naturally is some functionu = g(m) of the radar environment
m. A statistical analysis ofu can be carried out by transforma-
tion of random variables. The classical transformation formula

p(u|d) =
p(m|d)

|J(m)|
, (11)
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whereJ(m) represents the Jacobian of the transformation, can
be written in integral form [21]

p(u|d) =

∫
. . .

∫
δ(u − g(m

′

))p(m
′

|d)dm
′

, (12)

in the same form as (8)–(10). This form is preferred since it
enables the evaluation of desired quantities with MC integra-
tion.

III. T HE HYBRID GA-MCMC METHOD

To improve the lack of accuracy in GA and lack of speed in
MCMC, a hybrid method based on the nearest neighborhood
(NA) algorithm [22]–[25] is adopted here. This method effec-
tively converts the samples gathered during a typical global
optimization run (e.g. GA) into a form that can be used in
MC integration. Then it uses a fast MCMC to compute these
integrals.

A. Monte Carlo Integration and Genetic Algorithms

Notice that all of the integrals in (8)–(10) and (12) are of
the form

I =

∫
g(x)p(x)dx, (13)

where x is a random variable with a pdf of p(x), and
g(x) is some function ofx. These multi-dimensional inte-
grals can be estimated numerically using the Monte Carlo
integration technique [16]. Assuming a large number of ran-
dom x values are drawn from a sampling distribution ps(x),
{x1, x2, x3, . . . , xNs}, the integralI can be estimated as

I ⋍

∑Ns

i=1
p(xi)g(xi)

ps(xi)
∑Ns

i=1
p(xi)
ps(xi)

. (14)

By introducing a weight function the integral can be approx-
imated as

w(xi) ,
p(xi)

ps(xi)
, (15)

I ⋍

∑Ns

i=1 w(xi)g(xi)
∑Ns

i=1 w(xi)
. (16)

This is the well known importance sampling formula, where
ps(x) is usually selected to be a uniform or Gaussian density.
The main drawback of this approach is the slow convergence
and relatively low accuracy resulting from the difference
between the parameter pdf p(x) and the sampling pdf ps(x).
The best result is obtained if ps(x) = p(x), which is used
by MCMC techniques such as Metropolis-Hastings [26], [27]
and Gibbs samplers [28].

Importance sampling is used for RFC inversion in [9], where
the prior p(m) is used as the sampling density. However,
the results depend on how close p(m) is to p(m|d). Both
Metropolis and Gibbs samplers are used in [12] with ps(m) =
p(m|d). A drawback of these techniques is the necessity to run
many forward modeling runs. Many global optimizers such as
the classical GA do not have a ps(x). Every run will result in
a different distribution concentrated around the higher density
regions. However, due to its speed, it is desirable to use GA

in MC integration. Such an approach requires a technique that
estimates the integrals (8)–(10) and (12) using an ensembleof
GA samples without a ps(x).

B. Voronoi Decomposition

A sampling density ps(x) that is an approximation to
p(m|d), is created using the information gathered from the
ensemble of GA samples. Then this approximate PPDp̂(m|d)
is used to calculate the Bayesian integrals by replacing (15)–
(16) with

w(mi) =
p(mi|d)

p̂(mi|d)
⋍ 1 (17)

I ⋍
1

NS

Ns∑

i=1

g(mi). (18)

p̂(m|d) is obtained by using Voronoi decomposition (or
Dirichlet tessellation) of then-dimensional model space [29],
[30]. It creates a convexn-dimensional polytope (a polygon
if n = 2, a polyhedron ifn = 3) called a Voronoi cell (or
Dirichlet domain) around the nearest neighborhood of each
GA point. For a given set of GA samples there exists a unique
set of corresponding Voronoi cells that tessellates the model
space. This structure is adaptable and if points are changed,
removed or added, the cells rearrange themselves, shrink and
enlarge to reflect the changes. Therefore, even if the ensemble
of GA samples change with every independent simulation,
Voronoi lattice will adjust and likely provide accurate Bayesian
integral calculations.

For nearest neighborhood calculations a weightedL2-norm
is used to compute the distances. The weight removes the units
of the parameters, specifically between the M-layer slopes
(M-units/m) and layer thicknesses (m). If available, the prior
model covariance matrix can be used as the norm weight.
Since noa priori information is used, the weight is only used
to scale each parameter so that all parameters lie within [0,1]
range, contributing equally to norm calculations. Therefore,
with an initial set of GA samples{m1,m2,m3, . . . ,mNGA}
without a ps(m),

‖m − m
i‖

2

W = (m − m
i)TW(m − m

i), (19)

Vi =
{
m : i = argmin

i′
‖m − m

i′‖W

}
, (20)

p̂(m ∈ Vi|d) = p(mi|d), (21)

whereW is the weight and Vi is theith Voronoi cell centered
at theith GA samplemi. p̂(m|d) is constant inside the cell,
effectively discretizing the original PPD intoNGA possible
levels. Similar to an A/D converter, it will convert the true
“analog” PPD into a “digitized” approximation. The only
difference is that, this A/D converter isn-dimensional, and
hence, discrete levels aren-dimensional polytopes.

With this assumption,̂p(m|d) is known at any point any-
where in the entire search space and there is no need for any
further forward model runs.
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C. MCMC (Gibbs) Resampling

Now that a sampling density ps(m) = p̂(m|d) is defined,
the next step is drawing samples from this PPD to compute
(18) for any desired functiong(·). Unlike classical MCMC,
this MCMC sampler will not suffer from the high number of
forward model runs required for MCMC because it operates
on the approximate PPD, requiring no forward modeling.

The perfect MCMC sampler for this task is the Gibbs sam-
pler (GS) [12], [16], [28] and is also used in the neighborhood
algorithm [23]. Therefore, the term GS will be used instead
of the MCMC henceforth. GS gets samples by updating one
parameter at a time in a circulatory fashion and it uses the
local conditional 1-D PPD to update each parameter. After
all of the parameters are updated once, the result will form
the next Gibbs sample. This is a particularly fast algorithm
since the Metropolis acceptance/rejection criterion usedin
MCMC samplers is always met and every proposed point is
accepted. The difficulty is that, it requires the knowledge of
conditional 1-D PPD’s, which often are not available for many
inversion problems. However, here the conditional is available
via Voronoi cells.

A simple example in Fig. 2 illustrates the approach with
only two unknown parameters. Voronoi cells are constructed
around each GA sample (stars) to create the approximate PPD
wherep̂(m|d) is constant in each polygon. To obtain the next
Gibbs sample (diamonds) first the local 1-D conditional proba-
bility density is calculated along the line intersecting the orig-
inal Gibbs sample. The local conditional density p(m1|m2,d)
for the first Gibbs sample (PPD along AA′) is plotted above the
Voronoi diagram. Since the conditional PPD only changes at
the cell boundaries, computation of the intersection points with
AA ′ is sufficient to extract the local PPD. This lets us use the
Voronoi decomposition without actually having to estimatethe
Voronoi cell structures or calculate their vertices. Afterwards,
a sample is drawn from this simple 1-D PPD and the parameter
m1 is updated accordingly. To complete the cyclic updating
of each parameter, parameterm2 is also updated using the
local conditional PPD p(m2|m1,d) (PPD along BB′), plotted
on the right-hand side of the Voronoi diagram.

The intersection between Voronoi cells and the conditional
line is calculated using the procedure given in [22]. Two
neighboring Voronoi cells Vi and Vj intersecting the con-
ditional line are given in Fig. 3. They are created around
their corresponding cell centers (GA samplesmi andmj) and
Gibbs sampler is updating along thekth-axis by sampling from
p̂(mk|∀ml l 6= k,d). The boundary can be calculated using
the fact that the distances from both cell centersmi and mj

to the boundary pointbij must be same by the definition of
nearest neighborhood. Hence, usingW = I,

‖mi − b
ij‖

2
= ‖mj − b

ij‖
2
, (22)

(
di
⊥

)2
+

(
mi

k − bij
k

)2

=
(
dj
⊥

)2

+
(
mj

k − bij
k

)2

, (23)

bij
k =

1

2



mi
k + mj

k +

(
di
⊥

)2
−

(
dj
⊥

)2

mi
k − mj

k



 , (24)

where d⊥’s represent the distances of the cell centers (GA

Fig. 2. Voronoi cells and a single GS step for a simple 2 parameter search
space. Conditional PPD’s used in the Gibbs step for the givenconditional cut
lines (AA’ and BB’) are shown on the top and to the right of the Voronoi
diagram. GA and Gibbs samples are represented by (∗) and (�) , respectively.

points) to the current conditional line, subscripts show the
current axis components of then-dimensional vectors, super-
scripts show the Voronoi cell index (or GA point index), and
bij
k is the kth component of the boundary pointbij , defined

by the intersection of Vi, Vj , and the local conditional line.
The method is summarized by the following steps:

1) GA: Run a classical GA, minimizing the misfitφ(m),
save all the populations (sampled model vectors) and
their likelihood values. MAP solution is obtained as the
best fit model vector.

2) Voronoi Decomposition and Approximate PPD: Using
the GA samples{mi} and their correspondingp(mi|d)
construct the Voronoi cell structure and create the ap-
proximate PPD,̂p(m|d).

3) Gibbs Resampling: Run a fast GS on the approximate
PPD. No forward modeling is needed.

4) MC Integral Calculations: Calculate the Bayesian mini-
mum mean square estimate (MMSE), variance and pos-
terior distributions of desired environmental parameters,
statistics for the end-user parameters, such as propaga-
tion loss L, propagation factor F, coverage diagrams,
statistical radar performance prediction, such as the
probability of detection and false alarm using (8) – (10),
and (12) in the form of (18) as a MC integration.

The accuracy of the results depends mostly on the quality
of the approximate PPD, which means that, GA should gather
enough samples from the entiren-dimensional search space
to allow the hybrid algorithm to construct an adequaten-
dimensional mesh. Due to the approximation of the PPD,
the method can not guarantee convergence unlike MCMC
samplers which are guaranteed to converge as more samples
are collected.
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Fig. 3. Two adjacent Voronoi cells Vi and Vj intersecting a conditional line
in the kth dimension.mi and m

j are the corresponding GA samples. The
conditional approximate PPD which is constant except for the cell boundary
intersection is given above the Voronoi cell structure.

TABLE I

SYSTEM PARAMETERS

Simulation Parameter Value
Frequency 2840 MHz

3dB beamwidth 0.4o

Source height 30.78 m
Polarization VV
Duct type SBD only

Top layer slope 0.118 M-units/m
Range bin width 600 m

Environmental Model: Synthetic data
Number of parameters 4
M-profile model type Range independent

Inversion range interval 10–60 km
Clutter standard deviation 10 dB

Environmental Model: Wallops’98 data
Number of parameters 16
M-profile model type Range dependent

Inversion range interval 10–70 km
M-profile defined at 0, 20, 40, 60 km

IV. EXAMPLES

A. Synthetic Data

The method is first tested on the synthetic data given in [12].
In that paper, the PPD was estimated using exhaustive search,
GA only, and MCMC only. Radar system and environmental
parameters are given in Table I. A typical four-parameter
range-independent tri-linear profile (Fig. 1) is used with the
unknown environment parameters and the selected upper and
lower limits given in Table II. The unknown model parameters
are the slope and height of the base layer (c1 andh1) and the
slope and thickness of the inversion layer (c2 andh2). Since
the RFC is insensitive to the M-profile parameters above the
duct, the top layer slope corresponds to standard atmosphere.

1-D marginal model parameter PPD’s are given in Fig. 4 for
(a) exhaustive search, (b) Metropolis-Hastings sampler (con-
ventional MCMC), (c) pure GA, and (d) hybrid GA-MCMC
method, respectively. Exhaustive search results are assumed
to have a dense enough grid to give the true distributions
and will be used as the benchmark. As expected, the Gibbs

TABLE II

SYNTHETIC DATA CASE: MODEL PARAMETERS

Model Lower Upper
Parameter Units True Value Bound Bound

c1 M-units/m 0.13 0 0.25
c2 M-units/m −2.5 −3.5 −1
h1 m 40 0 50
h2 m 20 0 50
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Fig. 4. Marginal posterior probability distributions for the synthetic test case.
Vertical lines show the true values of the parameters. (a) Exhaustive search,
(b) Metropolis sampler (MCMC), (c) GA, and (d) hybrid GA-MCMC using
15k GA and 40k Gibbs samples.

sampler results are close to the true distribution but requires
70x103 (70k) samples to converge. The GA uses 15k samples
(5k is enough to get the MAP solution). The distributions are
clearly not accurate, however, as a global optimizer it does
its job of minimizing φ(m) and obtaining MAP very fast.
The GA sample histograms presented here are not unique.
Every GA run will result in a different set of curves, without
any specific sampling density ps(m|d). The hybrid method
actually uses the 15k GA samples obtained in (c) to perform
the Voronoi decomposition. When a fast Gibbs resampling is
performed on the approximate PPD, results comparable to the
conventional MCMC solution is obtained. A Gibbs resampling
of just 20k samples is sufficient to calculate the MC integral
accurately (40k is used in (d)). It should be noted that (d) is
extracted using the forward model samples obtained in (c).
All information about the search space comes from the GA
samples and the hybrid method makes the information hidden
in the GA set available for MC integration through Voronoi
decomposition.

Figs. 5 provides further comparison between the benchmark
exhaustive search and the hybrid method results. The off-
diagonal plots are the 2-D marginal posterior densities, while
1-D parameter PPD’s are given in diagonal plots. The results
are given in terms of highest posterior density (HPD) regions
[31]. Full Bayesian solutions in terms of posterior densities
may be important in many cases and give information about
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Fig. 5. Both 1-D marginal (diagonal) and 2-D marginal (upperdiagonal)
PPD’s for the synthetic test case obtained by (a) exhaustivesearch and (b)
hybrid GA-MCMC. Vertical lines (in 1-D plots) and crosses (in 2-D plots)
show the true values of the parameters.

the inversion quality. These marginal distributions and the
inter-parameter correlations shown in 2-D plots may also help
in understanding the underlying physics. For example the
last parameter, inversion layer thickness, shows a highly non-
Gaussian behavior with a high posterior probability from 15
m to 50 m. The physical explanation is that, since the selected
inversion layer is very strong it will trap all of the EM signal
provided that the layer has at least a certain thickness (25
m in these plots). Therefore, having an environment with a
thicker inversion layer will not affect the sea clutter, so any
model with h2 > 25 m appears as equally likely in the plot.
Hence, just using the mean (MMSE) or MAP solutions may
be misleading and can have significant errors. Also notice how
some parameters are strongly correlated, such as the inversion
layer slopec2 and the base layer heighth1.

One drawback of the hybrid method is a lack of rigorous
convergence criterion. Because of its MCMC nature, the
resampling converges to the sampling density. However, it
is sampling the approximate densitŷp(m|d), not the real
p(m|d). Therefore, two separate conditions must be met
simultaneously for the convergence of the hybrid method:

1) Convergence in GA: The set of GA samples converges
whenp̂(m|d) obtained from the Voronoi decomposition
of the GA sample set is close enough to the real PPD
to yield sufficiently accurate MC integral calculations,
assuming a perfect Gibbs resampling.

2) Convergence in GS: The set of Gibbs samples obtained
during the resampling phase converges if the sample
histograms obtained by this set is close top̂(m|d).

Hence, a poor Gibbs resampling after a perfect Voronoi de-
composition or a perfect Gibbs resampling on a poor Voronoi
lattice may both end up with poor estimates.

Fig. 6 shows how the estimated 1-D marginal PPD’s evolve
to their true distributions with increasing GA samples for a
fixed number of Gibbs samples (40k). The metric (D) used to
check the quality of the inversion result is calculated for each
parameter as:

Dj = max
mj

∣∣P(mj |d) − PTRUE(mj |d)
∣∣, (25)

where P(mj |d) and PTRUE(mj |d) represent the cumulative
marginal distribution functions of thejth model parameter
for the hybrid method and the exhaustive search result, re-
spectively. This metric is similar to the Kolmogorov-Smirnov
test statistic [32]. Similarly, Fig. 7 explores the effect of the
number of Gibbs samples in the resampling phase for a fixed
Voronoi decomposition obtained from 15k GA points. Note
how quickly the 1-D marginals obtained by GS converge to
the approximate marginal PPD (about 5k is enough) as long
as p̂(m|d) is a good Voronoi approximation to the real PPD.

The convergence plots for the hybrid method are given on
Fig. 8. Fig. 8(a) is obtained by performing multiple inversions
using GA sample sizes varying from 10 to 25k. For each GA
size the inversion is repeated 40 times and the meanD value
is used. Note howD improves as GA sample size is increased.
Since an adequate number of Gibbs samples are used in the
resampling phase, most of the error comes from the difference
between the true and the approximate PPD’s. Fig. 8(b) shows
the convergence in GS with different Gibbs sample sizes
varying from 10 to 200k. Again each simulation is repeated
40 times and the meanD is used. Given enough samples, the
Gibbs sampling converges to the Voronoi-approximated PPD.
Due to the inherent residual between the Voronoi approximate
and the real PPD, increasing the GS sample size (here past
about 20k) will not improve convergence.

B. Wallops’98 Data

To further demonstrate the capabilities and limitations ofthe
hybrid method, a range-dependent environmental model com-
prising of sixteen parameters is employed during the inversion
of the 1998 Wallops island experiment data collected by the
Naval Surface Warfare Center, Dahlgren Division. The radar
clutter was gathered by the Space Range Radar (SPANDAR).
Radar and environmental model parameters are both provided
in Table I. Range dependent M-profiles were measured by a
helicopter provided by the Johns-Hopkins University, Applied
Physics Laboratory (JHU–APL). Data used in the inversion
was taken during a surface-based ducting event on April 2,
1998 [7], [8].

A range dependent inversion is achieved by defining verti-
cal, four-parameter tri-linear M-profiles at certain ranges (0,
20, 40, and 60 km) and linearly interpolating the parameters
in between, see Fig. 9. Slopes for both the first and the second
layers can be negative and positive to give more flexibility in
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the modeling. Hence, they are only referred to by their layer
numbers. Layer slopes at different ranges can vary independent
of each other. On the contrary, a Markovian structure is used
for the layer heights with a maximum of 30 m variation relative
to the height value at the previous range.

It has been shown in [33] that for ranges larger than 30 km,
the lateral homogeneity assumption can result in significant
errors. They suggest using multiple profiles for long range
applications. In [34], it is suggested that a range independent
assumption for long ranges leads to significant errors in
propagation factor 40% of the time and the results in [33] are
optimistic. Hence, in this work a range-dependent approach
with multiple profiles, each 20 km apart, is adopted. The
parameters and their bounds are given in Table III along with
the MAP solution obtained by GA. Lower and upper bounds
are selected in consistency with [6], [35].

Inversion results are given in Figs. 10 – 13. Estimated range-
dependent M-profile (MAP solution) is given in Fig. 10(a).
This solution is similar to the ones obtained in [8], [13] and
agrees well with the helicopter measured profile (Fig. 10(a)).
Although the helicopter profiles give a good approximation
to the environment, they might not represent ground truth at
the time the clutter is measured. These profiles are collected
while the helicopter flies in and out radially along 150o

azimuth with a saw-tooth up-and-down motion to measure the
range-height dependent refractivity. Each measurement takes
about 25 min., comparable to the 30 min.-limit in [6]. For
the analyzed case the helicopter fly-time is between 13:19–
13:49pm EST and the clutter return is measured at 13:40pm
EST. The sharp gradient around 60 km range disappears at the
next helicopter measurement taken between 13:51–14:14pm
EST; see Fig. 3 in [8]. So there are discrepancies between
helicopter-measured and clutter-inferred profiles. In fact, the
absolute mean error at 0–70 km between the helicopter and
SPANDAR clutter is quite large (11.9 dB). This error value
drops to 6.8 and 2.6 dB, respectively between the SPANDAR
and the range-independent profile and between the SPANDAR
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and the range-dependent profile clutter returns. As expected,
the range-dependent profile matches the relative clutter power
of the SPANDAR radar (Fig. 10(b)) better than the range
independent inversion (from [12]) due to the increased degrees
of freedom.

The environmental posterior density is given in Fig. 11(a).
Since the full PPD is 16-D, only 1-D (diagonal plots) and 2-
D (upper diagonal) marginal densities calculated using (10)
are given. Some of the parameters such asm10, m13, and
m14 have a highly non-Gaussian marginals, while others such
as m2, m3, and m9 have Gaussian-like features. The highly
skewed 1-D marginals given form10 andm14 are encountered
frequently with the refractivity slope pdf’s. The reason is
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Fig. 9. An example of range-dependent sixteen parameter M-profile with
four parameters per 20 km. Vertical profile at any given rangeis calculated
by linear interpolation of both the slopes and the layer thicknesses.

Fig. 10. Inversion results for the Wallops island experiment. (a) estimated
(dashed lines) and helicopter measured (solid lines) profiles at various
ranges and (b) clutter measured by SPANDAR together with theclutter that
would have been obtained from the estimated range-dependent and range-
independent environments.

that the slope very rarely exceeds values such as 0.3–0.4 M-
units/m and usually is concentrated around values such as
0.118 M-units/m (standard atmosphere) and 0.13 M-units/m.
This creates a sharp peak for the positive end of the spectrum
since the negative slope values can be in excess of the−2
M-units/m, usually with a quickly decreasing probability.The
result is a pdf structure similar to the ones obtained here. In
fact [9] uses such a pdf as prior density to do importance
sampling.

Only 13 out of 16 parameters are given in Fig. 11(a). The
height parameters of the second layersm8, m12, andm16 are
omitted, as they are not important (see discussion about Fig.4.
Since clutter is mostly due to the EM signal trapped inside
the duct, it mostly contains information about the parameters
inside the duct, making the second layer heights poorly
determined except for very close ranges. To demonstrate
this, normalized error functionφ(m)/φ(mMAP ) for various
conditional planes are given in Fig. 11(b). These curves are
obtained by fixing other parameters to their MAP values and
calculating φ(m) while varying only two parameters at a

TABLE III

WALLOPS’98 EXPERIMENT: MODEL PARAMETERS

Model MAP Lower Upper
Parameter Units Estimate Bound Bound
m1: c1 at 0 km M-units/m −0.404 −2 0.4
m2: c2 at 0 km M-units/m −0.721 −2 0.4
m3: h1 at 0 km m 29.98 0 100
m4: h2 at 0 km m 21.94 0 100
m5: c1 at 20 km M-units/m −0.185 −2 0.4
m6: c2 at 20 km M-units/m −0.895 −2 0.4
m7: ∆h1 at 20 km m −5.03 −30 30
m8: ∆h2 at 20 km m 3.02 −30 30
m9: c1 at 40 km M-units/m −0.391 −2 0.4
m10: c2 at 40 km M-units/m 0.060 −2 0.4
m11: ∆h1 at 40 km m 13.18 −30 30
m12: ∆h2 at 40 km m 9.94 −30 30
m13: c1 at 60 km M-units/m −0.373 −2 0.4
m14: c2 at 60 km M-units/m −0.098 −2 0.4
m15: ∆h1 at 60 km m −14.25 −30 30
m16: ∆h2 at 60 km m −14.27 −30 30

time. Except for the bottom plots all the plots show quickly
varying complex patterns whereas the last ones are flat since
the horizontal axis for these is eitherm8, m12, or m16 (second
layer heights). Some plots such asm1 vs. m12 have zero
likelihood regions since the height parameters which are∆h
at 20, 40, and 60 km cannot be less than values that would
make the actual layer thickness negative.

Therefore, only 13 parameters are used in the resampling
phase. This decreases computation time and reduces mis-
leading results. For a uniformly distributed parameter the
hybrid method will require much larger numbers of initial GA
samples. This can be explained using the conditional plot of
m1 vs. m16 in Fig. 11(b). Assume we have only two samples
on the plane with[m1

1, m1
16] = [−1.5 −20] and [m2

1, m2
16] =

[−0.5 20]. The first samplem1 has a low likelihood whereas
m2 has a much higher value, entirely due to the difference
in m1. Hence, resampling after Voronoi decomposition of this
sparsely sampled space will result in a non-uniform marginal
for m16. An interesting observation is that the other parameter
m1 is affected much less severely and indeed increasing
the number of samples slightly will be enough to obtain
an accurate PPD form1, whereasm16 will require much
denser Voronoi cell structures. This can be problematic as the
dimension size is increased. A sparse mesh will result in poor
results for the uniformly distributed parameters with minimal
effect on the results for other parameters. However in RFC,
due to the physics of the inversion problem, we knowa priori
the uniformly distributed parameters and do not include them.

The environmental statistics can be projected into statistics
for user parameters (see Section II). One typical parameterof
interest to an end-user is the propagation factor F. The results
in Fig. 12 are obtained from the parameter PPD in Fig. 11. It
shows the PPD for F at ranges (a) 18, (b) 40, and (c) 60 km.
Contour plots show the PPD of F for height values between
0–200 m, with the MAP solution (dashed white). Horizontal
lines represent the three altitudes analyzed in detail in the small
plots shown next to the color plots. Comparison of plots at
the same range and different altitudes reveals some important
aspects of RFC.
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Fig. 11. Marginal and conditional distributions. (a)1-D (diagonal) and 2-D (upper diagonal) posterior probability distributions in terms of percent HPD, for
the range-dependent SPANDAR data inversion. 13 parameters(m1−7, m9−11, m13−15) out of 16 are given . Vertical lines in the 1-D plots show the GA
MAP solution. (b) Normalized error function for various conditional planes. Each 2-D plot is obtained by fixing the other14 parameters to their MAP values.

First, the propagation factor PPDs inside the duct (at 20
m) are sharper than those outside the duct (100 and 180
m). This is expected since we used the sea clutter which is
usually affected only by the lower portions of the atmosphere
to infer the environment. The PPDs do also become flatter
with increasing range. Note how the error made by using
the standard atmospheric assumption (black dashed lines)
increases with range, especially inside the duct. At [H, R] =
[20 m, 18 km] all three curves (MAP, helicopter profile, and
standard atmosphere) are almost identical whereas standard
atmospheric assumption leads to more than 40 dB error for [H,
R] = [20 m, 60 km] while MAP and helicopter profile comply
with the underlying PPD. Finally, the difference between the
helicopter profile and MAP tends to be larger outside the duct.

Similar results are obtained for F at two altitudes in Fig. 13
at (a) 20 m and (b) 100 m, inside and outside the duct,
respectively. Color plots again show the PPD of F for ranges

between 0 km and 90 km in terms of percent HPD, with the
dashed white line showing the MAP solution. The increase in
the variance of F as a function of range can clearly be seen
for both inside and outside the duct cases. The variance of
100 m case is also larger than the 20 m case as also witnessed
in Fig. 12. It should be noted that the helicopter and MAP
solution results almost always conform with the underlying
density even when they are not same. Plots such as these can
be used by the radar operator to update radar performance or
even be included in detection algorithms as a fluctuation in the
returned signal due to the atmosphere, similar to the Swerling
models [1].

V. CONCLUSION

A hybrid genetic algorithm – Markov chain Monte Carlo
(GA-MCMC) method has been used for statistical sea-borne
radar performance estimation under non-standard propagation
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conditions. Statistical refractivity-from-clutter (RFC) inversion
is used to gather information about the environment, such as
the range-dependent vertical structure of the atmosphericindex
of refraction, and then these environmental uncertaintiesare
used to estimate parameters-of-interest to be used by the radar
operator.

As a forward model, a fast Fourier transform split-step
parabolic equation (FFT-SSPE) approximation to the wave
equation was used to propagate the electromagnetic signal in
complex environments. The hybrid method uses fewer forward
model calculations than a classical MCMC while obtaining
more accurate distributions than GA. This enables inclusion of
more unknown parameters and range-dependent atmospheric
models. The capabilities of the technique were illustratedfor
a sixteen dimensional range-dependent inversion.
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