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Statistical Sea-Borne Duct Estimation Using a
Hybrid Genetic Algorithms — Markov Chain Monte
Carlo Method

Caglar Yardim,Student Member, IEEE, Peter Gerstoft, and William S. Hodgkidglember, IEEE

Abstract— (September 4, 2006) This paper addresses thelocal atmospheric conditions. This can be a valuable aafditi

problem of estimating the lower atmospheric refractivity (M-
profile) under non-standard propagation conditions frequently
encountered in low altitude sea-borne radar applications.This
is done by statistically estimating the duct strength (rang and
height-dependent atmospheric index of refraction) from tre sea-
surface reflected radar clutter. These environmental stastics can
then be used to predict the radar performance.

In previous work, genetic algorithms (GA) and Markov chain
Monte Carlo (MCMC) samplers were used to calculate the atmo-
spheric refractivity from returned radar clutter. Althoug h GA is
fast and estimates the maximuna posteriori (MAP) solution well,
it poorly calculates the multi-dimensional integrals requred to
obtain the means, variances and underlying posterior probhility
distribution functions (PPD) of the estimated parameters.More
accurate distributions and integral calculations can be obained
using MCMC samplers, such as the Metropolis-Hastings (M-H)
and Gibbs sampling (GS) algorithms. Their drawback is that
they require a large number of samples relative to the global
optimization techniques such as GA and become impractical ith
increasing number of unknowns.

A hybrid GA-MCMC method based on the nearest neigh-
borhood algorithm (NA) is implemented in this paper. It is
an improved GA method which improves integral calculation
accuracy through hybridization with a MCMC sampler. Since it
is mainly GA, it requires fewer forward model samples than a
MCMC, enabling inversion of atmospheric models with a large
number of unknowns.

I. INTRODUCTION

In many maritime regions of the world, such as the Medite
ranean, Persian Gulf, East China Sea, and California Coa

to other more conventional techniques such as radiosondes,
rocketsondes, microwave refractometers and meteorabgic
models such as the Coupled Ocean/Atmospheric Mesoscale
Prediction System (COAMPS) that give M-profile forecasts
[1]-[4]. In a Bayesian framework, the results of one or
several of these techniques and regional duct statistits [5
can be coupled with the clutter inversion to improve the
overall estimation quality. An attractive feature of infag
refractivity from sea surface clutter is that it does not use
additional hardware or extra meteorological/electronedign
measurements. It extracts the information from the radar
clutter obtained during normal radar operation, which Ugua
is readily available both as a function of range, direction
and time. For a fast inversion algorithm, a near-real-time M
profile structure is obtained. The need for a fast algorithm
that updates the environmental estimates at intervals of 30
min. or less is evident from Ref. [6], where the RMS error in
propagation factor exceeds 6 dB after 30 min., due to tenhpora
decorrelation.

Various techniques that estimate the M-profile using radar
clutter return are proposed in [7]-[13]. Most of these retika
ity from clutter (RFC) techniques use an electromagnest fa
Fourier transform (FFT) split-step parabolic equationREp
approximation to the wave equation [14], [15], whereas some
also make use of ray-tracing techniques. While [7] exckigiv
(rJI_eaIs with evaporation duct estimation, other techniques a
applicable to both evaporation, surface-based and mixeel ty
of 'ducts that contain both an evaporation section and an

atmospheric ducts are common occurrences. They result_in

various anomalies such as significant variations in the ma
mum operational radar range and increased sea clutterete
radar systems operating in these environments would ben
from knowing the effects of the environment on their syste
performance. This requires knowledge of the atmospheri
refractivity, which is usually represented by the modifie

refractivity (M-profile) in the radar community [1].
Evaporation and surface-based ducts are associated

increased sea clutter due to the heavy interaction betvween
sea surface and the electromagnetic signal trapped witlein
duct. However, this unwanted clutter is a rich source ofrinfo
mation about the environment and can be used to determine

Manuscript received 2005.This work was supported by thec®ffif Naval
Research under grant N00014-03-1-0393.

C. Yardim, P. Gerstoft, and W. S. Hodgkiss are with the Mafgysical
Laboratory, University of California at San Diego, San @ieGA 92037-0238
USA (email: cyardim@ucsd.edu, gerstoft@ucsd.edu, whisd@ucsd.edu).

ne

W

surface-based type inversion layer. [13] exploits the iaht
arkovian structure of the FFT parabolic equation appr@<im
té n and uses a particle filtering approach, whereas [10§ use
rank correlation with ray tracing to estimate the M-profile.

In contrast, [8], [9], [12] use global parameterizationhirit
8CBayesian framework. Since the unknown model parameters
are defined as random variables in a Bayesian framework,

tt&% inversion results will be in terms of the means, variance

m

f{md marginal, as well as the-dimensional joint posterior
Probability distributions, where: represents the number of
unknown duct parameters. This gives the user not only the
?ﬁ)ility to obtain the maximuna posteriori (MAP) solution,

bt also the prospect of performing statistical analysighan
inversion results and the means to convert these envirotainen
statistics into radar performance statistics. These szl
calculations can be performed by taking multi-dimensional
integrals of the joint PPD. Ref. [8] uses genetic algorithms



A Height (m)

step as a prior belief. Since this paper investigates tHiyatoi
m=[m m,m,...m]

n infer M-profiles using RFC, a uniform prior is used. However,
it is possible to include statistical meteorological psidrom
top layer slope studies such as [5], for some of the parameters (e.g. the duct
0.118 M-units/m helght)

Assuming a zero-mean Gaussian error between the mea-
sured and modeled clutter, the likelihood function is gibgn

inversion

slope. ey SNl L(m) = (21) Nr/2|Cy|71/2 )
. d-— Tcilid -
base base height, b, % exp | (4= f(m)) d (d - fm))]
‘ > M-Profile
(M units) where C4 is the data error covariance matrix){ is the

transpose andVg is the number of range points used (length
of the data vectord). Further simplification can be achieved
by assuming that the errors are spatially uncorrelated with

estimate the MAP solution. However, no statistical analysi identical distribution for each data point forming the \act
performed since classical GA is not suitable for the neagssal- For this caseCq = v1, wherew is the variance and the

Fig. 1. Four-parameter range-independent tri-linear bfifar.

uses Markov chain Monte Carlo (MCMC) samplers to perform $(m)

i i i L = (2mv)~Nr/2 h 3
the MC integration [16], [17]. Although they provide the (m) = (27mv) exp | ——~|, where (3)
means to quantify the impact of uncertainty in the estimated T
duct parameters, they require large numbers of forward inode ~ ¢(M) = (d = f(m))" (d — f(m)). )

runs and hence they lack the speed to be near-real-tifi§e maximum likelihood (ML) estimate for the error variance
methods and are not suitable for models with large nuUMbeign be found by solving£/dv = 0, which results in

of unknowns.

In this paper, a hybrid GA-MCMC technique is imple- Py = ¢(m). (5)
mented. The method reduces the number of forward model Nr
runs required to perform the RFC inversion, while still lipinAfter inserting it back into the likelihood functionf(m)
able to perform MC integration. It is first tested on théinally can be reduced to
synthetic data used in [12] with a four-parameter, range-

independent, tri-linear M-profile model (Fig. 1). Then data L(im) — [ Nr ]NR/Q and ©)
collected during the 1998 Wallops island experiment (Wal- 2mwe¢(m) ’

lops’98) [8] is analyzed using a sixteen-parameter range- Ni Nr/2
dependent atmospheric model to show the capabilities and p(m|d) oc p(m) [m] (7)

limitations of the method. An evaporative duct structure is _ _ _ . S
not appended in this work but it can be done by introduc- Having defined the posterior density, any statistical imfar

ing a Jeske-Paulus (JP) [18], [19] or Liu-Katsaros-Busingdon about the unknown environmental and radar parameters
(LKB) [20] profile using one or more extra evaporation ducgan now be calculated by taking these multi-dimensional

parameters, depending on the conditions. integrals:
Il. MODEL FORMULATION Bi = /---/mip(m |d)dm (8)
To formulate the problem, a classical Bayesian framework 2

’ _ ) 2 ’ ’
is adopted, where the M-profile model and the radar measured % /"'/(mi #i)"p(m |d)dm ©)
sea-surface clutter data are denoted by the veatorand / / /
d, respectively. An electromagnetic FFT-SSPE is used to p(mild) = /"'/Mmi_mi)p(m [d)dm  (10)
te the field i i t givenroyand obtai . . .
propagate the Tield In an environmen: giventiyand outain where p;, o2, p(m;|d) are posterior means (Bayesian min-

synthetic clutter returng’(m). Since the unknown environ- . .
mental parametersn are assumed to be random variabled"tUMm mean square error (MMSE) estimate), variances, and

the solution to the inversion is given by their joint posberi marginal I_D_PD,‘?' Of M-_proflle parameters. .
probability distribution function (PPD or (m|d)). Bayes’ Probability distributions of parameters of interest to dara
formula can be used to write the PPD as operator are calculated in a similar fashion. Assume thist

such a parameter-of-interest (e.g. propagation factonjchw
)= ‘C(n})p(m? . (1) naturally is some function = g(m) of the radar environment
S £(m")p(m”)dm m. A statistical analysis of, can be carried out by transforma-
where @gm) is the prior probability distribution function tion of random variables. The classical transformatiomiola

(pdf) of the parameters. Any information obtained from othe p(mld)

methods and regional duct statistics can be incorporattidsn p(uld) = |J(m)|’ (11)

p(m|d



whereJ(m) represents the Jacobian of the transformation, canMC integration. Such an approach requires a technigue tha
be written in integral form [21] estimates the integrals (8)—(10) and (12) using an enseafible

, , . GA samples without a gz).
puld) = [ [ o(u= g pim' @), (12)

in the same form as (8)—(10). This form is preferred since
enables the evaluation of desired quantities with MC irgegr
tion. A sampling density p(x) that is an approximation to
p(m|d), is created using the information gathered from the
I1l. THE HYBRID GA-MCMC METHOD ensemble of GA samples. Then this approximate PRk |d)
To improve the lack of accuracy in GA and lack of speed if$ Used to calculate the Bayesian integrals by replacing~(15
MCMC, a hybrid method based on the nearest neighborhod) With
(NA) algorithm [22]-[25] is adopted here. This method effec

ét. \Voronoi Decomposition

tively converts the samples gathered during a typical dloba w(m') = E(mz|d) w1 a7)
optimization run (e.g. GA) into a form that can be used in p(m’|d)
MC integration. Then it uses a fast MCMC to compute these 1 & ;
integrals. I = Ns 2= g(m’). (18)
A. Monte Carlo Integration and Genetic Algorithms p(m|d) is obtained by using Voronoi decomposition (or

Notice that all of the integrals in (8)-(10) and (12) are dPirichlet tessellation) of the:-dimensional model space [29],
the form [30]. It creates a convex-dimensional polytope (a polygon

= /g(x)p(:v)dx (13) if n = 2, a polyhedron ifn = 3) called a Voronoi cell (or
’ Dirichlet domain) around the nearest neighborhood of each

where z is a random variable with a pdf of (p), and GA point. For a given set of GA samples there exists a unique
g(z) is some function ofz. These multi-dimensional inte- S€t of corresponding Voronoi cells that tessellates theahod

grals can be estimated numerically using the Monte Carf§ace. This structure is adaptable and if points are changed
integration technique [16]. Assuming a large number of rafemoved or added, the cells rearrange themselves, shrohk an
dom z values are drawn from a sampling distributiof(:p), enlarge to reflect the changes. Therefore, even if the erleemb

{z1,22,2%,..., 2"}, the integrall can be estimated as ~ Of GA samples change with every independent simulation,
o Voronoi lattice will adjust and likely provide accurate Besjan
SN % integral calculations.
I= ZNS p(zi) 14) For nearest neighborhood calculations a weighitgehorm
=1 ps(e?) is used to compute the distances. The weight removes the unit
By introducing a weight function the integral can be approxef the parameters, specifically between the M-layer slopes
imated as (M-units/m) and layer thicknesses (m). If available, thepr
. i model covariance matrix can be used as the norm weight.
w(z') = pe(@)’ (15)  Since noa priori information is used, the weight is only used
° N, ; ; to scale each parameter so that all parameters lie withif [0,
I - Yimiw(@)g(@ ). (16) range, contributing equally to norm calculations. Therefo
vagl w(z?) with an initial set of GA sample$m®, m?, m?,..., m~¢4}

This is the well known importance sampling formula, wher®ithout a p(m),

ps(x) is usually selected to be a uniform or Gaussian density.

The main drawback of this approach is the slow convergence  [[m — mly = (m-m)TWm-m), (19)
and relatively low accuracy resulting from the difference V, = {m - argmin||m—m’||w}, (20)
between the parameter pdfap and the sampling pdfiz). S

The best result is obtained if,fr) = p(z), which is used p(meVid) = p(m’ld), (21)
by MCMC techniques such as Metropolis-Hastings [26], [27]

and Gibbs samplers [28]. whereW is the weight and Yis theith Voronoi cell centered

Importance sampling is used for RFC inversion in [9], wherat theith GA samplem’. p(m|d) is constant inside the cell,
the prior fm) is used as the sampling density. Howevegffectively discretizing the original PPD intd/c4 possible
the results depend on how clos¢np) is to p(m|d). Both levels. Similar to an A/D converter, it will convert the true
Metropolis and Gibbs samplers are used in [12] witfwp) = “analog” PPD into a “digitized” approximation. The only
p(m|d). A drawback of these techniques is the necessity to rdifference is that, this A/D converter is-dimensional, and
many forward modeling runs. Many global optimizers such d¥nce, discrete levels aredimensional polytopes.
the classical GA do not have a(@). Every run will result in ~ With this assumptionp(m|d) is known at any point any-
a different distribution concentrated around the highersitg where in the entire search space and there is no need for any
regions. However, due to its speed, it is desirable to use Guérther forward model runs.



C. MCMC (Gibbs) Resampling 1

conditional pdf p(m, Im,) [AAT-cut

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Now that a sampling density;pm) = p(m|d) is defined, 08
the next step is drawing samples from this PPD to compute,,
(18) for any desired functiog(-). Unlike classical MCMC,

this MCMC sampler will not suffer from the high number of

H °
1

forward model runs required for MCMC because it operates
on the approximate PPD, requiring no forward modeling. 09
The perfect MCMC sampler for this task is the Gibbs sam-
pler (GS) [12], [16], [28] and is also used in the neighborthoo
algorithm [23]. Therefore, the term GS will be used instead *
of the MCMC henceforth. GS gets samples by updating oneos
parameter at a time in a circulatory fashion and it uses thé.:
local conditional 1-D PPD to update each parameter. After
all of the parameters are updated once, the result will form

8

the next Gibbs sample. This is a particularly fast algorithm °*\«

since the Metropolis acceptance/rejection criterion used ..
MCMC samplers is always met and every proposed point is
accepted. The difficulty is that, it requires the knowledde o

!
*
t.\ |
*
0.6
0.5
"% Gibbs 7777“ 04
sample
0.3
i
¥
'
'

next Gibbs
sample

no-[ag] ("wlfw)d jpd feuonipuoo

X

conditional 1-D PPD’s, which often are not available for man
inversion problems. However, here the conditional is aad
via Voronoi cells.

A simple example in Fig. 2 illustrates the approach Witﬁﬁ

0.1 0.2

¥
*
)
d 0
06 0.7 ﬂ 09 ol o5 1

0.3 0.4 0.5
m1

Fig. 2. Voronoi cells and a single GS step for a simple 2 patamgearch
ace. Conditional PPD’s used in the Gibbs step for the gieewlitional cut
es (AA and BB’) are shown on the top and to the right of therdhoi

only two unknown parameters. Voronoi cells are construct@@gram. GA and Gibbs samples are representedpgr(d @) , respectively.

around each GA sample (stars) to create the approximate PPD
wherep(m|d) is constant in each polygon. To obtain the next

Gibbs sample (diamonds) first the local 1-D conditional probpoints) to the current conditional line, subscripts show th

bility density is calculated along the line intersecting thrig-
inal Gibbs sample. The local conditional densityrg(m, d)

current axis components of thedimensional vectors, super-
scripts show the Voronoi cell index (or GA point index), and

for the first Gibbs sample (PPD along AAs plotted above the 47 is the kth component of the boundary poibt/, defined
Voronoi diagram. Since the conditional PPD only changes gy the intersection of )/ V;, and the local conditional line.
the cell boundaries, computation of the intersection gowvith  The method is summarized by the following steps:

AA’ is sufficient to extract the local PPD. This lets us use the
Voronoi decomposition without actually having to estimtite
Voronoi cell structures or calculate their vertices. Aftards,

a sample is drawn from this simple 1-D PPD and the parameter
my is updated accordingly. To complete the cyclic updating 2)
of each parameter, parameter, is also updated using the
local conditional PPD pf2|m1,d) (PPD along BB), plotted
on the right-hand side of the Voronoi diagram.

The intersection between Voronoi cells and the conditional )
line is calculated using the procedure given in [22]. Two
neighboring Voronoi cells Y and V; intersecting the con- )
ditional line are given in Fig. 3. They are created around
their corresponding cell centers (GA sampiesandm’) and
Gibbs sampler is updating along th#h-axis by sampling from
p(my|Vm; | # k,d). The boundary can be calculated using
the fact that the distances from both cell centefsand m’
to the boundary poinb” must be same by the definition of
nearest neighborhood. Hence, usWg= I,

1)

Im’ —b)* = m? - b7, (22)
. R L 2 N\ 2 . L\ 2
(@) + (mi—07)" = (@h) +(mi-07) ", @3
1 ()" - (d'i)z
b =g |mh i+ ——— ] (24)

/L_
mk m

GA: Run a classical GA, minimizing the misfi(m),
save all the populations (sampled model vectors) and
their likelihood values. MAP solution is obtained as the
best fit model vector.

Voronoi Decomposition and Approximate PPD: Using

the GA samplegm‘} and their corresponding(m?|d)
construct the Voronoi cell structure and create the ap-
proximate PPDp(m|d).

Gibbs Resampling: Run a fast GS on the approximate
PPD. No forward modeling is needed.

MC Integral Calculations: Calculate the Bayesian mini-
mum mean square estimate (MMSE), variance and pos-
terior distributions of desired environmental parameters
statistics for the end-user parameters, such as propaga-
tion loss L, propagation factor F, coverage diagrams,
statistical radar performance prediction, such as the
probability of detection and false alarm using (8) — (10),
and (12) in the form of (18) as a MC integration.

The accuracy of the results depends mostly on the quality
of the approximate PPD, which means that, GA should gather
enough samples from the entiredimensional search space
to allow the hybrid algorithm to construct an adequate
dimensional mesh. Due to the approximation of the PPD,
the method can not guarantee convergence unlike MCMC

samplers which are guaranteed to converge as more samples
whered s represent the distances of the cell centers (Gére collected.



p(m,m, 1#k) TABLE Il
SYNTHETIC DATA CASE: MODEL PARAMETERS

Model Lower | Upper
m Parameter Units True Value | Bound | Bound
I . c1 M-units/m 0.13 0 0.25
co M-units/m -2.5 -3.5 -1
h1 m 40 0 50
ho m 20 0 50
mk
c, c, h ] h2
(@) 5 5 5 . 50—

=
3

S =)
e
N
o
N
)
N
o
N
IS)

0 0
Fig. 3. Two adjacent Voronoi cells Mand V; intersecting a conditional line (b) 50‘1 015 02 -26 -24 -22

in the kth dimension.m* and m’ are the corresponding GA samples. The

conditional approximate PPD which is constant except ferdall boundary
intersection is given above the Voronoi cell structure. ‘ ‘ L
0 0

0 0
01 015 02 -26 -24 -22 38 40 20 40

N
N

TABLE | ©)
SYSTEM PARAMETERS 10 10 10 10
5 |i 5 5 5 i
. . 0 0 0 0
Simulation Parameter Value 01 015 02 -26 -24 -22 38 40 42 20 40
Frequency 2840 MHz (d) 5 5 5 5
3dB beamwidth 04
Source height 30.78 m
Polarization Y, 0 0 _L 0 0 _h
Duct type SBD only 01 015 02 -26 -24 -22 38 40 42 20 40
Top layer slope 0.118 M-units/m M-units/m M-units/m m m
Range bin width 600 m
) ) Fig. 4. Marginal posterior probability distributions fdre synthetic test case.
Environmental Model: Synthetic data Vertical lines show the true values of the parameters. (d)aHstive search,
Number of parameters 4 (b) Metropolis sampler (MCMC), (c) GA, and (d) hybrid GA-MQMusing
M-profile model type Range independent 15k GA and 40k Gibbs samples.
Inversion range interval 10-60 km
Clutter standard deviation 10 dB

Environmental Model: Wallops'98 data
Number of parameters 16

sampler results are close to the true distribution but regui

M-profile model type Range dependent 70x10 (70k) samples to converge. The GA uses 15k samples
Inversion range interval 10-70 km (5k is enough to get the MAP solution). The distributions are
M-profile defined at 0, 20, 40, 60 km

clearly not accurate, however, as a global optimizer it does
its job of minimizing ¢(m) and obtaining MAP very fast.
The GA sample histograms presented here are not unique.
IV. EXAMPLES Every GA run will result in a different set of curves, without
) any specific sampling density; fm|d). The hybrid method
A. Synthetic Data actually uses the 15k GA samples obtained in (c) to perform
The method is first tested on the synthetic data given in [12he Voronoi decomposition. When a fast Gibbs resampling is
In that paper, the PPD was estimated using exhaustive seapgrformed on the approximate PPD, results comparable to the
GA only, and MCMC only. Radar system and environmentabnventional MCMC solution is obtained. A Gibbs resampling
parameters are given in Table I. A typical four-parametef just 20k samples is sufficient to calculate the MC integral
range-independent tri-linear profile (Fig. 1) is used witle t accurately (40k is used in (d)). It should be noted that (d) is
unknown environment parameters and the selected upper arttacted using the forward model samples obtained in (c).
lower limits given in Table II. The unknown model parameterall information about the search space comes from the GA
are the slope and height of the base laygrandh,) and the samples and the hybrid method makes the information hidden
slope and thickness of the inversion layes &nd hs). Since in the GA set available for MC integration through Voronoi
the RFC is insensitive to the M-profile parameters above thdecomposition.
duct, the top layer slope corresponds to standard atmaspher Figs. 5 provides further comparison between the benchmark
1-D marginal model parameter PPD’s are given in Fig. 4 faxhaustive search and the hybrid method results. The off-
(a) exhaustive search, (b) Metropolis-Hastings samplen-c diagonal plots are the 2-D marginal posterior densitieslevh
ventional MCMC), (c) pure GA, and (d) hybrid GA-MCMC 1-D parameter PPD’s are given in diagonal plots. The results
method, respectively. Exhaustive search results are asburare given in terms of highest posterior density (HPD) region
to have a dense enough grid to give the true distributiofi¥l]. Full Bayesian solutions in terms of posterior demsiti
and will be used as the benchmark. As expected, the Gibbay be important in many cases and give information about




@ o k. M k; 02 2) Convergence in GS The set of Gibbs samples obtained

asp(m|d) is a good Voronoi approximation to the real PPD.
2 The convergence plots for the hybrid method are given on
20 40 Fig. 8. Fig. 8(a) is obtained by performing multiple inverss
using GA sample sizes varying from 10 to 25k. For each GA
Fig. 5. Both 1-D marginal (diagonal) and 2-D marginal (updégonal) = gjze the inversion is repeated 40 times and the meamlue
PPD’s for the synthetic test case obtained by (a) exhausteech and (b) . . L.
hybrid GA-MCMC. Vertical lines (in 1-D plots) and crosses @-D plots) IS Used. Note howD improves as GA sample size is increased.
show the true values of the parameters. Since an adequate number of Gibbs samples are used in the
resampling phase, most of the error comes from the differenc
between the true and the approximate PPD’s. Fig. 8(b) shows
the inversion quality. These marginal distributions and thithe convergence in GS with different Gibbs sample sizes
inter-parameter correlations shown in 2-D plots may aldp hevarying from 10 to 200k. Again each simulation is repeated
in understanding the underlying physics. For example tH® times and the meab is used. Given enough samples, the
last parameter, inversion layer thickness, shows a higbhy n Gibbs sampling converges to the Voronoi-approximated PPD.
Gaussian behavior with a high posterior probability from 1Bue to the inherent residual between the Voronoi approxémat
m to 50 m. The physical explanation is that, since the sedectand the real PPD, increasing the GS sample size (here past
inversion layer is very strong it will trap all of the EM signa about 20k) will not improve convergence.
provided that the layer has at least a certain thickness (25
m in these plots). Therefore, having an environment with @& wallops 98 Data

thicker |pverS|on layer will not affect the sga clu_tter, W3 14 further demonstrate the capabilities and limitationthef
model with hy > 25 m appears as equally likely in the plot.h

. . ) brid method, a range-dependent environmental model com-
Henc_e, JUSF using the mean (.MM.SE) or MAP solut|on_s ma rising of sixteen parameters is employed during the inwars
be misleading and can have significant errors. Also notiee h f

" ¢ | lated h as theii the 1998 Wallops island experiment data collected by the
Some parameters are strongly corre’ated, such as INCINEIR 5, o) surface Warfare Center, Dahlgren Division. The radar

layer slopec, and the base Ia_yer height ' ) clutter was gathered by the Space Range Radar (SPANDAR).
One drawback OT the hybrid methqd is a lack of rigorougyar and environmental model parameters are both provided

convergence criterion. Because of its MCMC nature, the tapie | Range dependent M-profiles were measured by a

resampling converges to the sampling density. However, pjtjicqnter provided by the Johns-Hopkins University, Aggl

is sampling the approximate densifym|d), not the real pyygjes | ahoratory (JHU-APL). Data used in the inversion
p_(m|d)' Therefore, wo separate conditions WUSt be M@k taken during a surface-based ducting event on April 2,
simultaneously for the convergence of the hybrid method: ;ggg 71, [8l.

‘ ‘ dms ¢, during the resampling phase converges if the sample
. o1 histograms obtained by this set is closepian|d).
Moo 22 Hence, a poor Gibbs resampling after a perfect Voronoi de-
\ ~-2.4 c, composition or a perfect Gibbs resampling on a poor Voronoi
. 26 lattice may both end up with poor estimates.
RV " Fig. 6 shows how the estimated 1-D marginal PPD’s evolve
HPD Regi:)n d‘m h to their true distributions with increasing GA samples for a
=§g ” . / N ! fixed number of Gibbs samples (40k). The metii?) (used to
I 70 % 38 ;‘r? 42 check the quality of the inversion result is calculated facke
A parameter as:
AN 2
®) e, ¢ h, 0 /20 m Dj = max |[P(m;|d) — Prrys(m;|d)], (25)
5 0.2
E’ ‘ ‘ “ms c where Rm;|d) and Prrur(m;|d) represent the cumulative
0 0.1 marginal distribution functions of thgth model parameter
Mot 5— 22 for the hybrid method and the exhaustive search result, re-
’ \ ~.z.4 c, spectively. This metric is similar to the Kolmogorov-Snorn
o 26 test statistic [32]. Similarly, Fig. 7 explores the effedtthe
_ At ? " number of Gibbs samples in the resampling phase for a fixed
Hﬁzg';? : !40 h, Voronoi decomposition obtained from 15k GA points. Note
I 50 % ‘ i how quickly the 1-D marginals obtained by GS converge to
I 70 % A . the approximate marginal PPD (about 5k is enough) as long

1) Convergence in GA: The set of GA samples converges A range dependent inversion is achieved by defining verti-
whenp(m|d) obtained from the Voronoi decompositioncal, four-parameter tri-linear M-profiles at certain rand®,
of the GA sample set is close enough to the real PPID, 40, and 60 km) and linearly interpolating the parameters
to yield sufficiently accurate MC integral calculationsin between, see Fig. 9. Slopes for both the first and the second
assuming a perfect Gibbs resampling. layers can be negative and positive to give more flexibility i
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(@)
the modeling. Hence, they are only referred to by their layer 05
numbers. Layer slopes at different ranges can vary indepgnd 04}
of each other. On the contrary, a Markovian structure is used 03
for the layer heights with a maximum of 30 m variation relativ o
to the height value at the previous range. 0.2f
It has been shown in [33] that for ranges larger than 30 km, ¢ 4]
the lateral homogeneity assumption can result in significan
errors. They suggest using multiple profiles for long range 9, 0 e o
applications. In [34], it is suggested that a range indepahd GA samples
assumption for long ranges leads to significant errors
propagation factor 40% of the time and the results in [33] are
optimistic. Hence, in this work a range-dependent approach 04k
with multiple profiles, each 20 km apart, is adopted. The 4|
parameters and their bounds are given in Table Il along witkn

the MAP solution obtained by GA. Lower and upper bounds %[
are selected in consistency with [6], [35]. 01}

Inversion results are given in Figs. 10 — 13. Estimated range o ) - . -
dependent M-profile (MAP solution) is given in Fig. 10(a). 102 10° 10° 10°
This solution is similar to the ones obtained in [8], [13] and Gibbs samples

agrees well with the helicopter measured pmﬁle (Fig. Do(a}:i 8. Convergence of the hybrid methof). for each parameter as a

Although t.he helicopter prqfiles give a good approximatioginciion of (a) GA sample size for a 40k Gibbs sample size &)d3ibbs
to the environment, they might not represent ground truth sitmple size for a 15k GA sample size .

the time the clutter is measured. These profiles are cotlecte

while the helicopter flies in and out radially along 250

azimuth with a saw-tooth up-and-down motion to measure thed the range-dependent profile clutter returns. As exgecte
range-height dependent refractivity. Each measuremé&estathe range-dependent profile matches the relative clutteepo
about 25 min., comparable to the 30 min.-limit in [6]. Foof the SPANDAR radar (Fig. 10(b)) better than the range
the analyzed case the helicopter fly-time is between 13:1@dependent inversion (from [12]) due to the increased elegr
13:49pm EST and the clutter return is measured at 13:40@ffreedom.

EST. The sharp gradient around 60 km range disappears at th€he environmental posterior density is given in Fig. 11(a).
next helicopter measurement taken between 13:51-14:148mce the full PPD is 16-D, only 1-D (diagonal plots) and 2-
EST,; see Fig. 3 in [8]. So there are discrepancies between(upper diagonal) marginal densities calculated using (10
helicopter-measured and clutter-inferred profiles. Irt,féze are given. Some of the parameters suchnag, mi3, and
absolute mean error at 0—70 km between the helicopter and, have a highly non-Gaussian marginals, while others such
SPANDAR clutter is quite large (11.9 dB). This error valuasms, ms, and mg have Gaussian-like features. The highly
drops to 6.8 and 2.6 dB, respectively between the SPANDAgRewed 1-D marginals given fen,o, andm4 are encountered
and the range-independent profile and between the SPANDARquently with the refractivity slope pdf's. The reason is
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TABLE Il

100t WALLOPS'98 EXPERIMENT: MODEL PARAMETERS

z 80r Model MAP Lower | Upper

= sol Parameter Units Estimate | Bound | Bound
> my: c; at 0 km M-units/m | —0.404 -2 0.4
< 40f mao: co at 0 km M-units/m | —0.721 -2 0.4
mg: h1 at 0 km m 29.98 0 100
201 maq: ho at 0 km m 21.94 0 100
ms: c1 at 20 km M-units/m | —0.185 -2 0.4
0 20 20 me: co at 20 km M-units/m | —0.895 | —2 0.4
range (km) m7: Ahq at 20 km m —5.03 -30 30
mg: Aho at 20 km m 3.02 —-30 30
Fig. 9. An example of range-dependent sixteen parameterdfilep with my: c1 at 40 km M-units/m | —0.391 -2 0.4
four parameters per 20 km. Vertical profile at any given raisgealculated mio: ce at 40 km M-units/m 0.060 -2 0.4
by linear interpolation of both the slopes and the layerkimésses. mi1: Ahj at 40 km m 13.18 -30 30
mi2: Ahg at 40 km m 9.94 —30 30
(a) ma13: c¢1 at 60 km M-units/m | —0.373 -2 0.4
200+ mi4. co at 60 km M-units/m | —0.098 -2 0.4
mis. Ahy at 60 km m —14.25 -30 30
mig: Ahg at 60 km m —14.27 -30 30

1501

501 time. Except for the bottom plots all the plots show quickly
varying complex patterns whereas the last ones are flat since

the horizontal axis for these is eithess, m12, or m1g (second

40

(b) range (km) layer heights). Some plots such as; vs. mi» have zero
& 60 , , , , likelihood regions since the height parameters which &fe
< —SPANDARclutter at 20, 40, and 60 km cannot be less than values that would
o 40 : - - - Range-dependent inversion H . .
H Range-independent inversion make the actual layer thickness negative.
% ] Therefore, only 13 parameters are used in the resampling
3 phase. This decreases computation time and reduces mis-
2. leading results. For a uniformly distributed parameter the
§ 40 - . . . . . hybrid method will require much larger numbers of initial GA
o 20 30 40 50 60 70 samples. This can be explained using the conditional plot of
range (km) my VS.mig in Fig. 11(b). Assume we have only two samples
Fig. 10. Inversion results for the Wallops island experitnéa) estimated ©N the plane withm{, mig] = [~1.5 —20] and[m3, mis] =

(dashed lines) and helicopter measured (solid lines) peofit various [—0.5 20]. The first samplen® has a low likelihood whereas
ranges and (b) clutter r_neasured by SPA_NDAR together withchinger that m2 has a much higher value, entirely due to the difference
would have been obtained from the estimated range-deperasiehrange- . . . L. .
independent environments. in m4. Hence, resampling after Voronoi decomposition of this

sparsely sampled space will result in a hon-uniform maitgina

for m16. An interesting observation is that the other parameter
that the slope very rarely exceeds values such as 0.3-0.4n: is affected much less severely and indeed increasing
units/m and usually is concentrated around values suchthg number of samples slightly will be enough to obtain
0.118 M-units/m (standard atmosphere) and 0.13 M-units/an accurate PPD fom,, whereasm,¢ will require much
This creates a sharp peak for the positive end of the spectrdanser Voronoi cell structures. This can be problematihas t
since the negative slope values can be in excess of-the dimension size is increased. A sparse mesh will result irr poo
M-units/m, usually with a quickly decreasing probabiliihe results for the uniformly distributed parameters with miai
result is a pdf structure similar to the ones obtained here. ¢ffect on the results for other parameters. However in RFC,
fact [9] uses such a pdf as prior density to do importancie to the physics of the inversion problem, we kreopriori
sampling. the uniformly distributed parameters and do not includerthe

Only 13 out of 16 parameters are given in Fig. 11(a). The The environmental statistics can be projected into stedist

height parameters of the second layers mi2, andmyg are for user parameters (see Section Il). One typical paranoéter
omitted, as they are not important (see discussion about.Fignterest to an end-user is the propagation factor F. Thdtsesu
Since clutter is mostly due to the EM signal trapped insida Fig. 12 are obtained from the parameter PPD in Fig. 11. It
the duct, it mostly contains information about the paramseteshows the PPD for F at ranges (a) 18, (b) 40, and (c) 60 km.
inside the duct, making the second layer heights poorGontour plots show the PPD of F for height values between
determined except for very close ranges. To demonstr&e200 m, with the MAP solution (dashed white). Horizontal
this, normalized error functiop(m)/¢(my;4p) for various lines represent the three altitudes analyzed in detailarsthall
conditional planes are given in Fig. 11(b). These curves guts shown next to the color plots. Comparison of plots at
obtained by fixing other parameters to their MAP values aride same range and different altitudes reveals some importa
calculating ¢(m) while varying only two parameters at aaspects of RFC.
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MAP solution. (b) Normalized error function for various ditional planes. Each 2-D plot is obtained by fixing the othérparameters to their MAP values.

First, the propagation factor PPDs inside the duct (at 2@tween 0 km and 90 km in terms of percent HPD, with the
m) are sharper than those outside the duct (100 and I1&shed white line showing the MAP solution. The increase in
m). This is expected since we used the sea clutter whichtlige variance of F as a function of range can clearly be seen
usually affected only by the lower portions of the atmosphefor both inside and outside the duct cases. The variance of
to infer the environment. The PPDs do also become flatté®0 m case is also larger than the 20 m case as also witnessed
with increasing range. Note how the error made by using Fig. 12. It should be noted that the helicopter and MAP
the standard atmospheric assumption (black dashed linsglution results almost always conform with the underlying
increases with range, especially inside the duct. At [H, R] density even when they are not same. Plots such as these can
[20 m, 18 km] all three curves (MAP, helicopter profile, andbe used by the radar operator to update radar performance or
standard atmosphere) are almost identical whereas sthndaren be included in detection algorithms as a fluctuatiohén t
atmospheric assumption leads to more than 40 dB error for [téturned signal due to the atmosphere, similar to the Suegerli
R] = [20 m, 60 km] while MAP and helicopter profile complymodels [1].
with the underlying PPD. Finally, the difference betweea th
helicopter profile and MAP tends to be larger outside the.duct V. CONCLUSION

Similar results are obtained for F at two altitudes in Fig. 13 A hybrid genetic algorithm — Markov chain Monte Carlo
at (&) 20 m and (b) 100 m, inside and outside the du¢GA-MCMC) method has been used for statistical sea-borne
respectively. Color plots again show the PPD of F for rangeadar performance estimation under non-standard projpagat
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atmospheric assumption (black).

conditions. Statistical refractivity-from-clutter (R@wversion 20
is used to gather information about the environment, such ¢
the range-dependent vertical structure of the atmospmetéx

of refraction, and then these environmental uncertairdres
used to estimate parameters-of-interest to be used by dae ra
operator.

As a forward model, a fast Fourier transform split-steg
parabolic equation (FFT-SSPE) approximation to the wav &
equation was used to propagate the electromagnetic signal 40— 5 8 o
complex environments. The hybrid method uses fewer forwar range (km)
model calculations than a classical MCMC while obtaining %
more accurate distributions than GA. This enables inctusio
more unknown parameters and range-dependent atmosphe
models. The capabilities of the technique were illustrdted
a sixteen dimensional range-dependent inversion.
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