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...the manner in which [auto insurance] premiums are computed and paid fails miserably
to bring home to the automobile user the costs he imposes in a manner that will appropriately
influence his decisions.

— William Vickrey

Americans drive 2,360,000,000,000 miles each year, and the cost of auto accidents is

commensurately large:1 roughly $100 billion in accident insurance,2 and according to the

Urban Institute [1991] an additional $250 billion in uninsured accident costs per year.

Every time a driver takes to the road, and with each mile she drives, she exposes herself

and others to the risk of accident. (The degree of risk depends, of course, upon a wide variety

of factors such as a driver’s skill or age, and the territory she drives in.) Yet, most auto

insurance premiums have largely lump-sum characteristics and are only weakly linked to

mileage. Mileage classifications are coarse, and low-mileage discounts are extremely modest

and based on self-reported estimates of future mileage that have no implicit or explicit

commitment.3 (Two noteworthy exceptions are premiums on some commercial policies4

and a few recent pilot programs.)5 Few drivers therefore pay or perceive a significant
1See table No. 1030, Statistical Abstract of the United States, 1997, U.S. Department of Commerce.

Figure for 1994.
2After subtracting comprehensive insurance coverage, which covers fire, theft, vandalism and other in-

cidents unrelated to the amount of driving, the remaining premiums for private passenger vehicles totaled
$84 billion in 1995. State Average Expenditures and Premiums for Personal Automobile Insurance in 1995,
National Association of Insurance Commissioners, Jan. 1997. In additon, commercial premiums are approx-
imately 15 percent of premiums for private passenger vehicles. The Insurance Information Institute 1998
Fact Book, p. 22.

3For example, State Farm distinguishes drivers based upon whether they report an estimated annual
mileage of under or over 7500 miles. Drivers who estimate annual mileages of under 7500 miles receive 15%
discounts (5% in Massachusetts). The 15% discount is modest given that those who drive less than 7500
miles per year drive an average of 3600 miles compared to 13,000 miles for those who drive over 7500 per
year, according to the 1994 Residential Transportation Energy Consumption Survey of the Department of
Energy. The implied elasticity of accident costs with respect to miles is .05, an order of magnitude below
what the evidence suggests is the private or social elasticity of accident costs. The link between driving and
premiums may be attenuated in part because there is significant noise in self-reported estimates of future
mileage, estimates whose accuracy does not affect insurance pay-outs.
Insurance companies also classify based upon the distance of a commute to work. These categories are also

coarse, however. State Farm, for example, classifies cars based upon whether they are used for commuting
less than 20 miles per week, in between 20 and 100 miles per week, or over 100 miles per week.

4For private and public livery, taxicabs, and buses, because “rates are high and because there is no risk
when the car is not in operation, a system of rating has been devised on an earnings basis per $100 of gross
receipts or on a mileage basis.” Bickelhaupt [1983, p. 613]. For details on per-mile commercial insurance, see
“Commercial Automobile Supplementary Rating Procedures,” Insurance Services Office, on file with author.

5One experiment is in Texas and another in the UK. See “Insurance by the Mile, ” Wall Street Jour-
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insurance cost from driving an extra mile, despite the substantial accident costs involved.

An ideal tort and insurance system would charge each driver the full social cost of her

particular risk exposure on the marginal mile of driving. Otherwise, people will drive too

much and cause too many accidents (from the vantage of economic efficiency).

In principle, insurance companies could levy a substantial charge for driving an extra

mile, as new car leases do; however, this would require them to incur the cost of verifying

mileage (through periodic odometer checks or by installing a monitoring and broadcasting

device in vehicles).6 A central point of this paper is that externalities make their incentives

to do so considerably less than the social incentives. If insurance company C is able to reduce

the driving of its insureds, although it will save on accident payouts, substantial “external”

savings will be realized by other insurance carriers and their insureds who will get into

fewer accidents with C’s insureds. These externalities follow from Vickrey’s observation

that if two drivers get into an accident, even the safer driver is typically a “but for” cause

of the accident in the sense that had she opted for the metro, the accident would not

have occurred.7 Externalities help explain why we are only just now seeing pilot per-mile

premiums programs.

Accident externalities suggest a valuable role for policy, and this paper investigates the

nal (1999), http://news.bbc.co.uk/hi/english business/newsid-1831000/1831181.stm, http://www.norwich-
union.co.uk. Progressive Corporation has a pilot program in Texas in which miles (and locations) are
monitored by a device using cellular-phone and satellite technology. Since January 2002 it is now legal
for auto insurance policies in Texas to have the unit of exposure be the vehicle-mile rather than the more
traditional vehicle-year.

6 In practice there may be a regulatory constraint that has discouraged firms from per-mile pricing. The
traditional unit of risk insurance that insurance companies price is the vehicle-year. Just recently after
a lobbying campaign by the National Organization for Women, Texas adopted legislation allowing firms
to adopt the vehicle-mile as the unit of exposure. (http://www.centspermilenow.org). Long before this,
however, firms charged slight surcharges based upon unaudited reports of high usage. Obviously, there is a
fuzzy line here because as such charges become more refined and audits of usage are performed, the vehicle-
year exposure unit slips into a vehicle-mile unit. Firms have not generally pushed that direction, however,
so it is unclear whether there has been a meaningful regulatory constraint.

7Sometimes, of course, only one driver is the cause of an accident, even when the accident involves
multiple cars such as when a driver plows into a long line of cars. If one car wasn’t there to absorb the
impact, another would have, so the cars that are hit do not cause the accident in any respect. Such accident
substitution is not accounted for by the theoretical model we present, and reduces the externalities from
driving. This substitution effect is, however, accounted for by our regression results.
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potential benefits of two proposals that would increase the marginal charge for driving,

and consequently reduce driving and accidents. The first proposal is per-mile premiums,

advocated by Litman [1997], Butler [1990], and the National Organization for Women [1998].

Under a per-mile premium system, the basic unit of exposure would shift from the car-

year to the car-mile, either by requirement or by subtler policy tools, so that the total

premiums of driver i would be mipi, where mi is the miles i travels and pi is the per-mile

rate. An individual’s per-mile rate, pi, would vary among drivers to reflect the per-mile

risk of a given driver and could depend upon territory, driver age, safety records or other

relevant characteristics used today for per-year rates. (In fact, the technology now used

experimentally by Progressive in Texas also allows prices to vary by time of the day and

by location.)8 The second proposal is to couple per-mile premiums with a Pigouvian tax

in order to account for the “Vickrey” accident externality. Both these proposals differ

fundamentally from the uniform per-gallon gas tax proposals of Vickrey [1968],9 Sugarman

[1993], and Tobias [1993], because under gas tax proposals, unlike per-mile premiums, the

additional cost of driving would be independent of driver age, driver safety records, or in

some cases of territory (all highly important indicia of risk), yet would depend upon fuel

efficiency ( a relatively poor risk measure).

This paper makes several contributions. We begin by developing a simple model from

primitives that relates miles driven to accidents, formalizing Vickrey’s insights about the

externalities of driving — this contribution is mainly pedagogical. Our second contribution is

to provide evidence that these externalities are substantial. Our third is to provide the first

estimates of the potential benefits of per-mile premiums that take into account Vickrey’s

externalities as well as the resulting fact that as driving falls, so too will accident rates and
8See Wall Street Journal [1999].
9Actually, Vickrey’s first suggestion was that auto insurance be bundled with tires hoping that the wear

on a tire would be roughly proportional to the amount it is driven. He worried about moral hazard (using
a tire until it was threadbare), but concluded that this problem would be limited if refunds were issued in
proportion to the amount of tread remaining.
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per-mile premiums. 10 Our fourth contribution is to estimate the benefits of a per-mile

premium policy coupled with a Pigouvian tax. (It’s natural to consider taxing per-mile

premiums to account for accident externalities once one incorporates externalities.) Finally

our estimates incorporate lower bound estimates of congestion cost reductions. These

estimates are a rough first cut and should be viewed as lower bounds for reasons we will

elaborate.

Our evidence that accident externalities are significant in practice is that states with

more traffic density have considerably higher insurance costs per mile driven. This suggests

that the more people drive on the same roads, the more dangerous driving becomes. (A

little introspection will probably convince most readers that crowded roadways are more

dangerous than open ones. In heavy traffic, most us feel compelled to a constant vigilance to

avoid the numerous moving hazards.)11 Nationally, the insured cost of accidents is roughly

4 cents per-mile driven, but we estimate that the marginal cost — the cost if an extra mile is

driven — is much higher, roughly 7 and a half cents, because of these accident externalities.

In high traffic-density states like New Jersey, Hawaii, or Rhode Island, we estimate that the

marginal cost is roughly 15 cents. For comparison, gasoline costs roughly 6 cents per mile,

so an efficient Pigouvian charge for accidents at the margin would dramatically increase the

marginal cost of driving, and would presumably reduce driving substantially.

Even without a Pigouvian charge to account for accident externalities, a system of

per-mile premiums that shifted a fixed insurance charge to the margin would be roughly

equivalent to a 70% hike in the gasoline price and could be expected to reduce driving
10Externalities turn out to increase the benefit estimates by 85-140%, over what one would calculate in a

linear model of accidents (i.e. a model without externalities) as studied by Litman [1987)] and Rea [1992].
Note that a linear model is appropriate to estimate the gains to a given insurance carrier with small market
share and its customers from switching to per-mile premiums as Rea does.
11This vigilance no doubt works to offset the dangers we perceive but seems unlikely to completely counter

balance them. Note also that the cost of stress and tension that we experience in traffic are partly accident
avoidance costs and should properly be included in a full measure of accident externality costs.
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nationally by 9.2% - 9.5%, and insured accident costs by $14 - $17 billion. After subtracting

the lost driving benefits of $4.3 - $4.4 billion, the net accident reductions would be $9.8 -

$12.7 billion or $58 - $75 per insured vehicle. The net savings would be $10.7 - $15.3 billion

if per-mile premiums were taxed to account for the external effect of one person’s driving

on raising others’ insurance premiums .12

These estimates are probably a lower bound on what savings would actually be under a

per-mile system. The reason is that these estimates use state level data and assume that

drivers and territories are homogeneous within a state. Currently intrastate heterogeneity

in accident risks and costs is reflected in yearly insurance premiums. In a per-mile system,

this heterogeneity would likewise be reflected in per-mile rates that vary substantially by

territory, driver age, and driver accident record. Since the most dangerous drivers in the

most dangerous territories would face the steepest rise in marginal driving cost and therefore

reduce driving the most, actual benefits could be considerably larger than our estimates. If

state heterogeneity is a useful guide, territory heterogeneity alone would raise the benefits of

per-mile premiums by 10%. Other types of heterogeneity (such as age) could raise benefits

substantially more.

The main reason insurance companies have not switched to per-mile premiums is prob-

ably that monitoring actual mileage with yearly odometer checks seems too costly given

their potential gains, as suggested by Rea [1992] and Williamson et al. [1967, p. 247].13

However, our analysis suggests that the gains a given insurance company could realize by

switching to per-mile premiums are considerably less than the social gains. A single com-

pany and its customers might stand to gain only $31 per vehicle per year from the switch,

far less than the potential social gains of $58 per insured vehicle that we estimate when we
12These ranges represent point estimates obtained with the regression and calibration methods described

in section 4.
13Monitoring costs are cited as the principal reason by actuaries I have interviewed (see also Nelson [1990]

and Cardoso [1993]).
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include the Vickrey externality (i.e., the reduction in others’ insurance costs.) Moreover,

the $31 in private gains would be temporary from an insurer’s vantage, and would all go

to consumers once other firms match its new policies. 14 This discrepancy implies that the

social gains from per-mile premiums might justify the monitoring costs (and the fixed costs

of transition), even if no single insurance company could profit from the change itself.

Other external benefits could make the discrepancy between the private gains from per-

mile premiums and the social gains even larger. A great deal of accident costs are uninsured

or underinsured (more than half according to the Urban Institute) and the driving reductions

caused by per-mile premiums should reduce these costs just as they reduce insured accident

costs.15 Policy intervention looks more attractive still when nonaccident benefits such as

congestion are taken into account. Congestion reductions raise our estimates of the benefits

from per-mile premiums by $5.5-$5.7 billion. This brings our estimates of total national

benefits from per-mile premiums to $15.5-$18.2 billion ($18.7-24.7 billion with a Pigouvian

tax), or $91.5-107.5 per insured vehicle ($110.8-146.2 with a Pigouvian tax). Benefits would

be higher still, if pollution costs, road maintenance costs, and other externality costs are

higher than we assume here.16 The fact that accident and congestion externalities could

make up more than two thirds of the benefits from per-mile premiums suggests that even

if monitoring costs are so large that it is rational for insurance companies to maintain the

current premium structure, it is likely that per-mile premiums could still enhance efficiency

in many states. Likewise, it suggests that as mileage monitoring technology becomes cheaper

(e.g., cellular phone and global positioning system technology), insurance companies may

be slower at adopting these technologies than is socially efficient.
14 In a competitive industry, insurance companies cannot profit from a coordinated change, because the

efficiency gains would be competed away in lower prices.
15See e.g. Dewees, Duff and Trebilcock [1996] for evidence of substantial undercompensation. See also

the estimates of the Urban Institute [1991].
16We assume in this article that existing gasoline taxes of 20-40 cents per gallon account for these costs.

Many estimates, however, suggest that these costs may be much higher. Delucci [1997] estimates that the
pollution costs of motor vehicles in terms of extra mortality and morbidity are $26.5-$461.9 billion per year
in the U.S.
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Some caution is required, of course, in relying upon this paper’s estimates. This paper

offers only a first-cut estimate of the accident externality effect, and the benefit estimates

rely upon highly uncertain estimates of the price sensitivity of driving. Nonetheless, the es-

timates are large enough to strongly recommend further research, and provide some support

for policy reform.

Section 1 presents a simple model of accidents that formalizes Vickrey’s insights about

accident externalities and incorporates congestion. Section 2 describes the data. Section 3

estimates the marginal accident cost of driving. Section 4 simulates driving and accident re-

ductions under per-mile premiums. Section 5 concludes and explores the policy implications

of this research.

1 A Simple Model of Accidents and Congestion.

We now develop a model relating driving to accidents and use it to simulate the conse-

quences of various pricing scenarios. For simplicity, we construct an entirely symmetric

model in which drivers, territory, and roads are undifferentiated and identical. The central

insights continue to hold in a world where some drivers, roads, and territories are more

dangerous than others, with some provisos. The relationship between aggregate accidents

and aggregate miles will only hold exactly if the demand elasticity is the same across types

of driving and drivers. Otherwise, accidents will be either more or less responsive to driving

according to whether extra miles are driven by more or less dangerous drivers under more

or less dangerous conditions.

We also limit attention to one and two vehicle accidents, ignoring the fact that many

accidents only occur because of the coincidence of three or more cars.17 We treat accidents

involving two or more cars as if they all involve only two cars because multi-vehicle accidents

are not separated in our accident data. Refined data would increase our estimates of the
17For example, one car may stop suddenly causing the car behind to switch lanes to avoid a collision–

the accident occurs only if another car is unluckily in the adjacent lane.
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benefits from the driving reductions associated with per-mile premiums because the size of

accident externalities increase with the number of cars involved in collisions.

Let

mi = miles traveled by driver i per year

M = aggregate vehicle miles traveled per year by all drivers

l = total lane miles

D = traffic density, or traffic volume = M/ l

fi =probability that i is driving at any given time

δ1 = damages from one-vehicle accident

δ2 = damages to each car in a two-vehicle accident

Holding speed constant, the fraction of the time that i is driving, fi, will be proportional

to the miles she drives, mi; hence fi = ρmi, for some ρ. For convenience, imagine that the

l lane miles are divided into L “locations” of equal length. An accident occurs between

driver i and j if they are in the same location and neither brakes or takes other successful

evasive action . The chance that i is driving and j is in the same location is fi (fj/L). Let

q be the probability of accident conditional upon being in the same location. The expected

rate of damages to i from two-car accidents with j 6= i will then be

a2i,j = δ2fi
fj
L
q.

Summing over j 6= i and substituting ρmj for fj and ρmi for fj yields expected damages

to i from two-car accidents:

a2i = δ2ρ
2mi

qΣj 6=imj

L
.

Letting c2 ≡ δ2ρ
2l/L, we have

a2i = c2mi
(M −mi)

l
,
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or, assuming mi is small relative to M ,

a2i ≈ c2mi
M

l
= c2miD.

Ignoring multiple-car accidents, the total expected accident damages suffered by driver i

are then

ai = c1mi + c2 miD.

The first term in the equation reflects the fact that a driver may be involved in an

accident even if he is driving alone (e.g., falling asleep at night and driving into a tree),

with c1 representing the expected accident costs from driving a mile alone. The second term

reflects the fact that the chance of getting into an accident with other vehicles in that mile

increases as the traffic density D increases. The linearity of this model in mi ignores the

possibility that practice and experience could bring down the per-mile risk, as well as the

offsetting possibility that driving experience (which is generally a safe experience) could lead

to complacency and conceit. Empirical estimates of the elasticity of an individual’s accidents

with respect to that individual’s mileage, as surveyed in Edlin [1999], range from .35 to .92,

but as Edlin [1999] discusses, this work has been limited by the scarcity of reliable micro-

level data pairing mileage and accidents, and probably yields downward biased estimates

because of noisy mileage data and the difficulty of controlling for the factors that cause any

given driver to drive very little (which are likely related to accident propensity).18

Summing over each driver i yields the total accident costs:

A = c1M + c2MD = c1M + c2M
2/l. (1)

Observe that the cost of two-car accidents c2M2/l increases with the square of total
18For an example of such a downward bias, consider Hu et al. [1998] who study an elderly population.

Omitted bad health variables seem likely to be positively correlated with worse driving and probably with
less driving as well. Mileage data in that study also come from survey and seem highly susceptible to
measurement error.
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miles. Aggregate accident costs are quadratic in aggregate vehicle miles traveled, and this

non-linearity is the source of the externality effect.

The marginal total accident cost from driving an extra mile is

dA

dM
= c1 + 2c2D. (2)

In contrast, the marginal cost of accidents to driver i is only

dai
dmi

= c1 + c2D. (3)

The difference between these two costs, c2D, is the externality effect. It represents the

fact that when driver i gets in an accident with another driver he is typically the “ but

for” cause of both drivers’ damages in the sense that, “but for” him having been driving,

the accident would not have happened. (Strangely enough, it is entirely possible that both

drivers are the “but for” cause of all damages). This model could overstate the externality

effect because of accident substitution: i.e., because if driver A and B collide, it is possible

that driver A would have hit driver C if driver B weren’t there.19 Such a substitution effect

would be captured in our regression estimates by a lower coefficient on traffic density, and

hence a lower estimate of the externality effect.

A different view of the accident externality of driving is found by observing that the

average cost of accidents per mile driven is:

A

M
= c1 + c2D. (4)

A given driver who drives the typical mile expects to experience the average damages A
M .

Yet, this driver also increases D, which means that he also causes the accident rate for
19On the other hand, it understates the externality effect to the extent that some collisions require more

than two vehicles.



11

others to rise at a rate of
d A
M
dM = c2

dD
dM = c2

l . Multiplying this figure by the M vehicle miles

of driving affected again yields an externality c2D.

The basic intuition behind the accident externality is simple. If a person decides to go

out driving instead of staying at home or using public transportation, she may end up in

an accident, and some of the cost of the accident will not be borne by either her or her

insurance company; some of the accident cost is borne by the other party to the accident or

that party’s insurance company (although the average mile is not subsidized, the marginal

mile is!).20

1.1 Gains from Per-mile Premiums.

We now compare the current insurance system, which we characterize (somewhat unfairly

as footnote 3 concedes) as involving lump sum premiums, with two alternative systems:

competitive per-mile premiums and Pigouvian per-mile premiums. As derived above, the

break-even condition for insurance companies charging per-mile premiums is

p =
A

M
= c1 + c2M/l (5)

This equation can be viewed as the supply curve for insurance as a function of the number

of vehicle miles travelled requiring insurance. Again, in a more sophisticated model, and

in practice, rates would vary by risk class i, and break-even competitive prices would be

pi =
Ai
Mi
= c1i + c2iM/l, where subscript i’s have the natural meaning.

Let the utility of each of the n drivers be quasi-linear in the consumption of non-driving

goods y and quadratic in miles m:

V (y,m) = y + am− n
b
m2. (6)

20Another way to derive our formula for accidents, in which two-vehicle accidents are proportional to the
square of miles driven, is to begin with the premise that the marginal cost of a mile of driving is the expected
cost of accidents to both parties that will occur during that mile. Then the marginal cost of accidents will
be twice the average: i.e., dA2−car

dM
= 2

A2−car
M

. The unique solution to this differential equation, in which
the elasticity of accidents with respect to miles is 2, is A2−car = c2M2.
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Then, the aggregate demand will be linear:

M =M0 − bp (7)

The equilibrium miles, M∗, and per-mile price, p∗, are found by solving equations (5)

and (7):

M∗ =
M0 − bc1
1 + bc2/l

p∗ =
c1 + c2M0/l

1 + bc2/l
.

If drivers continued to drive as much under per-mile premiums as they do under per-year,

i.e., if b=0 so that demand were completely inelastic, then insurance companies would

break-even by charging

p = c1 + c2M0/l.

however, for b > 0, as driving falls in reaction to this charge, the accident rate per-mile

will also fall (because there will be fewer cars on the road with whom to collide). As the

per-mile accident rate falls, premiums will fall in a competitive insurance industry, as we

move down the average cost curve given by Equation (5).

Figure 1 depicts the situation. Let c0 be the non-accident costs of driving (gas, main-

tenance, etc.) and assume that drivers pay these costs in addition to per-mile insurance

premiums p. If drivers pay per year premiums so that p = 0, then they demandM0 miles of

driving. The social gain from charging per-mile accident premiums p∗ in this model equals

the reduction in accident costs less the lost benefits from foregone driving, the shaded region

in Figure 1. This surplus S is given by

S =
1

2

Ã
dA

dM

¯̄̄̄
M0

+
dA

dM

¯̄̄̄
M∗

!
(M0 −M∗)− 1

2
p∗ (M0 −M∗) . (8)

The first term is the reduction in accident costs that results from a fall in driving from M0

to M∗. The second is the driving benefits lost from this reduction net of the non-accident

cost savings c0 (M0 −M∗).
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The marginal accident cost dAdM is given by equation (2). Note that because the marginal

accident cost dA
dM lies above the average cost A

M , the competitive per-mile premium p
∗is less

than the socially optimal accident charge which would lead to M∗∗miles driven. Socially

optimal accident charges will not result from competition because of the accident externality.

Government would need to impose a Pigouvian tax of
µ

dA
dM

|M∗∗
A

M∗∗
− 1
¶
×100% on insurance

premiums A
M∗∗ . We call this sum Pigouvian per-mile premiums. By assuming quasi-linear

utility, we are ignoring income effects. As a per-year premium is shifted to a per-mile

charge, under other utility specifications, driving would not fall by as much as it would

under a pure price change, because people would no longer have to pay a yearly premium

and could use some of that money to purchase more driving than they would under a

pure price change. The liklihood of such income effects are, however, overshadowed by our

uncertainty about the price responsiveness of driving, so it does not seem worthwhile to

consider them explicitly. We ultimately run policy simulations with elasticities of demand

chosen conservatively (i.e., on the low side), so our estimates are similar to what they

would be if we had a different utility assumption that allowed income effects, but chose a

less conservative elasticity.

Our benefit calculation assumes that the number of drivers would remain unchanged

in a switch to per-mile premiums. In fact, the number of drivers would probably increase

under a per-mile system because the total price of a small amount of driving (say 2,000

miles per year) would fall. Although the extra drivers, who drive relatively little, will

limit driving reductions and hence accident reductions somewhat, they would probably

increase the accident savings net of lost driving benefits, and would surely do so in the case

of Pigouvian per-mile premiums. The reason is that these extra drivers gain substantial

driving benefits, as evidenced by their willingness to pay insurance premiums. In the case

of Pigouvian per-mile premiums, the entry of these extra drivers necessarily increases the

benefits from accident cost reductions net of lost driving benefits.
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Pigouvian per-mile premiums could be implemented with a uniform percentage tax on

competitive per-mile premiums in either a fault-based tort system or a no-fault tort system,

as long as every driver stands an equal chance of being at fault. If drivers differ in fault

propensity, then taxing premiums will work better in a no-fault system than in a tort system,

because the optimal tax will be invariant to a driver’s ability (i.e., invariant to expected

share of total damages from relative negligence). To the extent that a no-fault sytem limits

recovery to economic damages, as it commonly does in practice, the tax would need to be

raised to account for the full externality.

1.2 Congestion

Congestion will fall if driving is reduced. In a fundamental respect, congestion is the

counterpart to accidents. In the simplest model of congestion, congestion occurs when

driver i and j would be in the same location at the same time except that one or both

breaks to avoid an accident. The resulting delay is, of course, costly. A rudimentary model

of congestion would therefore have congestion costs rising with the square of miles, holding

lane miles fixed, so that

congestion cost C = a
M2

l
.

As with accident costs, then, the average cost of congestion per-mile would equal one-half

the marginal cost:

C

M
=
aM

l
=
1

2

µ
dC

dM

¶
. (9)

Equation (9) relates the average cost of delay to the marginal cost, so that we can

use Schrank, Turner and Lomax’s [1995] estimates of the average cost of delay in order to

estimate the marginal cost of delay, and in particular the external marginal cost of delay.

This formulation undoubtedly understates the marginal cost (and hence the external

cost) of congestion substantially, because as two vehicles slow down they generally force
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others to slow down as well. A cascade of such effects becomes a traffic jam. Looking

at measured flow rates of traffic as a function of the number of cars travelling suggests

that during periods of congestion the marginal congestion cost of driving is often many

times, up to and exceeding 10 times, the average congestion experienced — at least during

highly congested periods.21 To be conservative, however, we assume that the marginal cost

of congestion is twice the average cost, so that the portion of the marginal cost that is

external to the driving decision equals the average cost.

Congestion cost savings that are external to the driving decision should also be added to

the benefits from per-mile premiums. Assuming, that the mile foregone is a representative

mile and not a mile drawn from a particularly congested or uncongested time, the person

foregoing the mile will escape the average cost of delay, C
M . This savings should not be

counted though among our benefits from driving reductions, because it is internalized.

Viewed differently, each person derives no net benefit from her marginal mile of driving,

because she chooses to drive more miles until driving benefits net of congestion cost just

equal operating costs. Yet, as there is less traffic on the road, other drivers will experience

reduced delays and this external effect should be added to our calculations. The external

effect, as with accidents, equals the difference between the marginal and average cost of

delay, so a conservative estimate of the external cost of dM extra miles driven is

C

M
dM.

2 Data.

As a proxy for auto accident costs, we use state-level data on total private passenger auto

insurance premiums from the National Association of Auto Insurance Commissioners (1998,

Table 7). We subtract premiums paid for comprehensive coverage, so that we are left only
21Author’s calculation based upon traffic flow tables. GAO, “Traffic Congestion: Trends, Measures, and

Effects” GAO/PEMD-90-1, November 1989, p. 39.
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with accident coverage. If the insurance industry is competitive, these figures represent the

true economic measure of insured accident costs, which includes the administrative cost

of the insurance industry and an ordinary return on the capital of that industry. These

premium data are for private passenger vehicles, so we adjust these figures to account

for commercial premiums by multiplying by 1.14, the national ratio of total premiums to

noncommercial premiums.22

Insured accident costs do not come close to comprising all accident costs. The pain and

suffering of at fault drivers is not insured, and auto insurance frequently does not cover their

lost wages. (In no-fault states, pain and suffering is also not compensated below certain

thresholds). These omitted damages are substantial and their inclusion would raise our

estimates of the cost of driving and the benefit of driving reduction significantly. Pain and

suffering is often taken to be three times the economic losses from bodily injury.

Other data come from a variety of sources. Data on the miles of lanes by state come from

Table HM-60, 1996 Highway Statistics, FHWA. Annual vehicle miles by state come from

Table VM-2, 1996 Highway Statistics, FHWA. Data on the distribution of fuel efficiency

among vehicles in the current U.S. fleet, and the distribution of miles by fuel efficiency of

car come from the 1994 Residential Transportation Energy Consumption Survey. We get

gasoline prices by state from the Petroleum Marketing Monthly, EIA, Table 31 (”all grades,

sales to end users through retail outlets excluding taxes”) and Table EN-1 (federal and state

motor gasoline taxes).

3 The traffic density-accident relationship.

The social elasticity of accidents with respect to miles of driving should substantially exceed

an individual’s elasticity because of the externality effect explained in the previous section.

Even if the typical individual has an elasticity of .5, the elasticity of total accident costs
22See, p.22, the Insurance Information Institute 1998 Fact Book.
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with respect to total miles driven would be close to 1 because any individual driver will

cause others to have extra accidents when he drives more. One piece of evidence on the

social elasticity comes from a study of California freeways from 1960-1962 (Lundy, 1964

cited in Vickrey, 1968). A group of 32 segments of four lane freeways with low average

traffic had a per-mile accident rate of 1.18 per million miles compared with 1.45 per million

miles on twenty segments with more traffic. The implied incremental accident rate was

1.98 accidents per million vehicle miles, suggesting an elasticity of accidents with respect to

miles of 1.7=1.98/1.18. Because of the externality associated with driving pointed out in

Section 1, we expect the elasticity of total accidents with respect to total miles to exceed the

elasticity of an individual’s accidents with respect to her driving. In fact, if an individual

has an elasticity of 1 as the model assumes, the ”aggregate” elasticity would be 2 if all

accidents involved 2 cars. The California highway data accords roughly with what one

would predict given that roughly 30% of accidents involve only one vehicle.23

It is worth comparing accident costs in pairs of states that have similar numbers of lane

miles but very different numbers of vehicle miles traveled. For example, New Jersey and

Wyoming both have approximately 75,000 lane miles. New Jersey has eight and a half times

as much driving, however, and has an average insured accident cost of 7.7 cents per mile

traveled instead of the 1.8 cents per mile of Wyoming. Comparing Ohio and Oklahoma we

see a similar pattern. Ohio has approximately two and a half times as much driving on a

similar number of lane miles and has higher average accident cost (3.6 vs. 2.6 cents per

mile). Likewise, if we compare Hawaii and Delaware, which have similar numbers of vehicle

miles traveled, we find that Hawaii, which has fewer lane miles and so substantially higher

traffic density, has substantially higher accident costs per-mile. In general, average accident

costs are much higher in states that have a lot more driving, holding lane miles fixed. This

feature, which drives the high insurance rates in dense areas, is just another view of the
23See table 27, U.S. Department of Transportation [1997].
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externality effect. The fact that marginal accident costs are higher than average accident

costs is what drives up average accident costs as miles increase.

Many other idiosyncratic factors are involved, however, in a state’s insurance costs.

Maryland and Massachusetts, for example, have an almost identical number of lane miles

and fairly similar vehicle miles traveled. However, although Massachusetts drivers only

drive about 7 percent more miles per year in aggregate than Maryland drivers their average

costs per-mile is 40 percent higher (6.7 cents vs. 4.8 cents), so that total insured accident

costs are 45 percent higher. Whether this difference is attributable to differences between

Massachusetts and Maryland drivers or differences between the roads or weather in the

states is unknown. Cars may also be more expensive to repair in Massachusetts.

Here, we fit the model presented in Section 1 in order to form estimates of the marginal

accident cost from driving an extra mile in each of the 50 states. As explained in Section 3,

we use total auto accident insurance premiums paid in a state as a proxy for the total cost of

automobile accidents. We estimate the effects of traffic density on accidents in two ways–

by a calibration method and a regression method– as described below. The regression

method utilizes the cross-state variation in traffic density to estimate its effect, while the

calibration method relies upon the structure of the model and data on the percentage of

accidents involving multiple vehicles. Each method has weaknesses, and after discussing

the likely biases in each of these methods, we conclude that the true effect of density lies

somewhere between the two estimates. The traffic density effect allows us to estimate

the social marginal accident cost of driving and the extent to which this cost exceeds the

average, or internalized marginal, cost of driving.

We modify the model of Section 1, assuming that each state’s idiosyncratic errors εs

enter multiplicatively as follows:
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As
Ms

= (c1 + c2Ds)(1 + εs). (10)

= c1s + c2sDs, (11)

where

c1s = c1(1 + εs)

c2s = c2(1 + εs)

and where s indexes states.

Once c1 and c2 are estimated, we can find the idiosyncratic component εs for each state

from the above equation using the observed values of accident costs, miles traveled and lane

miles in the state. We estimate the coefficients c1 and c2 in two ways – a calibration model

and a regression model.

In our calibration model, we utilize national data on the percentage of accidents involving

multiple cars. Assume that national accident costs are given by

A = c1M + c2MD,

where the costs of one- and two-car accidents are, respectively,

A1 = c1M

and

A2 = c2MD.

Let a be the average damage per insured vehicle from an accident, so that two-vehicle

accidents have total damages of 2a and one-vehicle accidents have damages a. Let r denote
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the proportion of accidents that involve two vehicles. (Nationally, 71% of crashes were

multiple-vehicle crashes in 1996, and we assume that multi-car accidents involve only two

cars, since we don’t have data on the number of cars in multi-car accidents and since this

assumption makes our benefit estimate conservative.)24

If N is the total number of accidents in a state we have:

A = N (1− r) a+ 2Nra,

so that

Na = A
1+r .

This implies that the total cost of one-car accidents is

A1 =
(1−r)
1+r A,

and similarly for two-car accidents

A2 =
2r
1+rA.

The one and two-car accident coefficients can then be determined from the formulas:

ĉ1 =
A1
M = (1−r)A

1+r
1
M

and

ĉ2 =
A2
M2 l =

2r
1+rA

l
M2 ,

Using the observed national data on accident costs (A), miles traveled (M), and lane

miles (l), we estimate that the one-vehicle coefficient ĉ1 is roughly .007 dollars per-mile,
24The statistic 71% is found by taking the ratio of the number of multiple vehicle crashes to total crashes

in table 27, U.S. Department of Transportation [1997]. This figure understates the number of accidents that
involve multiple vehicles because if a single vehicle crashes into a fixed object, for example, that is a single
vehicle crash even if the vehicle swerved to avoid another car.
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while ĉ2 is 1.1 x 10−7 dollars per-mile squared per lane mile. This means that roughly 18%

of costs are attributed to one-car accidents.

In our regression model, we estimate the coefficients c1 and c2 with a cross-sectional

regression. Assuming that the idiosyncratic components εs are i.i.d. mean zero random

variables that are independent of Ds, OLS estimates ĉ1 and ĉ2 are consistent under standard

regularity conditions. Table 1 gives the results of the cross-sectional OLS regression in

column 2 and the calibration method in column 1.

The estimate of the one-vehicle coefficient ĉ1 suggests a cost of 2.2 cents per-mile. The

other coefficient, ĉ2, is 5.4 x10−6 cents per squared mile per lane mile. The regression model

suggests that 55% of costs are attributable to one-car accidents, i.e., to the linear term.

In both models, the marginal accident cost is found by differentiating equation (10)

which yields:

dAs
dMs

= c1s + 2c2sDs.

We find the state-specific coefficients for one and two vehicle accidents as follows:

ĉ1s = ĉ1(1 + ε̂s)

ĉ2s = ĉ2(1 + ε̂s)

ε̂s =
As

ĉ1Ms+ĉ2MsDs
− 1.

Table 2 gives the marginal accident costs estimated by the calibration and regression

methods. Table 2 allows us to compare these costs with the average accident cost per-mile

driven, which appears in column 3. The last row models the U.S. as a whole, treating it as a

single state. As we see, accounting for the Vickrey externality appears significant regardless

of which method we use, in that the marginal cost of accidents significantly exceeds the

average cost. The reason is that both estimation methods put significant positive weight

on the quadratic term. The elasticity of accidents with respect to miles (i.e. the ratio of
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marginal to average cost) is higher under the calibration model because that model puts

more weight on the quadratic term. Below, we discuss several reasons why the regression

estimates probably understate the density effect (and hence the marginal cost of driving),

and why the calibration estimates may overstate this effect.

The calibration method might overstate accident externalities because the theoretical

model does not account for accident substitution– i.e., the possibility that if one of the

drivers in a two-car accident stayed home, another accident might have substituted for the

one that happened. 25 (This bias could be offset, though, by the fact that many accidents

require the coincidence of more than two cars at the same place at the same time). A

second upward bias results because in the calibration method, c1and c2 are held constant,

which does does not account for the fact that as driving becomes more dangerous, drivers

and states both take precautionary measures. States react to higher accident rates with

higher expenditures on safety by widening roads and lengthening freeway on-ramps. Drivers

also make financial expenditures, buying air bags or anti-lock brakes, and nonfinancial

expenditures, by paying more attention and slowing down to avoid accidents when driving

in heavy traffic. All these precautionary measures mitigate the impact of extra traffic density

on accidents. At the margin, if precautions are chosen optimally so that the marginal cost

of precautions equals their marginal benefit, then the envelope theorem guarantees that the

calibration method would still be properly capturing the sum of accident and prevention

costs (i.e., we can treat prevention as being fixed). However, to the extent that people

take too little precaution at the moment, the calibration results will overstate the accident

externalities. Even if precautions are currently optimal, the calibration results will overstate

accident externalities for large changes in behavior, because the marginal analysis of the

envelope theorem will not be applicable.
25For example if vehicle A plows into a line of cars stopped at a light, removing vehicle B from the line

might not affect the damage.
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The regression method picks up both of the effects above, but unfortunately has several

biases of its own that tend to make it understate the effects of density (accident externali-

ties). Two reasons revolve around the fact that we use insurance premiums as our measure

of accident costs. As mentioned at the paper’s outset, a substantial portion of accident costs

are not insured. If this fraction were constant across states, it would bias our calibration

and regression estimates down equally. However, states with more miles driven per lane

mile and higher accident costs have higher insurance premiums, and according to Smith

and Wright (1992), states with higher premiums will have substantially more uninsured

motorists.26 With fewer drivers insured, a smaller share of total accident costs would be

insured. This effect could bias our regression estimates of marginal cost downward signifi-

cantly. Another potential downward bias for the regression results is that as accident rates

and insurance costs rise, states tend to adopt no-fault insurance reform limiting coverage

of noneconomic losses so that again the percentage of costs that are insured would be lower

in high-cost states.

A third source of bias, which is probably substantial, is that our measure of traffic

density for a given state is a noisy measure of the traffic density where the typical mile

is driven in that state because of within-state heterogeneity. In particular, adding a lot

of miles of empty rural roads would not reduce the traffic density where people drive, nor

the number of accidents, but would reduce the predicted number of accidents from our

regression because the average traffic density would fall. This observation may explain

the large positive residuals in New York, for example. Noise in our measure of traffic

density would tend to lower our estimates of the accident cost of density. A final source of

downward bias is that the precautionary expenditures discussed above, which are induced

by high traffic density, are not included in our measure of insured accident costs.
26 In fact, they argue that there is a feedback loop so that high premiums cause more uninsured motorists

and therefore still higher premiums.
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To summarize, there are several reasons that the regression estimates underestimate the

effect of density (and hence the marginal cost of accidents), while the calibration results

overestimate the effect. The truth probably lies between these estimates, so we will treat

them as framing the reasonable range of estimates.

4 Policy simulations.

4.1 Methodology.

This section estimates and compares the potential benefits of charging per-mile premiums

with and without a Pigouvian tax. Competitive per-mile premiums are fixed in the simu-

lations at rates just sufficient to allow insurance companies to break even, exactly covering

accident costs. The Pigouvian per-mile premiums simulations assume a tax on premiums to

account for the externalities of accidents. Both sets of simulations assume that an individual

pays premiums in proportion to the miles she drives. As the introduction discussed, such

policies would most likely be implemented so that per-mile rates varied among drivers or

vehicles based upon the same territory, driving record, and other factors that are currently

used to vary per-year rates. Since our estimates are based on statewide aggregates, they

ignore substantial heterogeneity among regions and drivers within each state. Our estimates

therefore considerably understate the potential benefits of both these policies, because if

high risk drivers pay the highest per-mile rates, then driving reductions will be concentrated

among these drivers, where they are most effective at reducing accidents.

Our calculations also ignore the costs and difficulty of verifying the number of miles

traveled, two issues discussed in the final section. However, they do account for the cost

of foregone driving benefits caused by the voluntary reduction in mileage that would result

from insurance being charged by the mile, as opposed to the current system of by the year.

For each policy option we estimate the consequences under three models of accident

determination–linear, calibration, and regression. The linear model assumes that accidents
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are proportional to miles driven, i.e. that As = c1sMs. This model takes no account of the

externalities from driving, nor the related fact that as people reduce their driving, accident

rates per mile should fall because there are fewer drivers on the road with whom to have an

accident. The regression and calibration models include a term that is quadratic in miles to

account for the externality effect. The one and two-car accident coefficients are determined

for these two models as described in the previous section.

We estimate a linear model for two reasons. First, the efficiency savings under a linear

model are the straightforward gains from more efficient contracting that a single company

(with a small market share) and its customers could together expect to receive if they

alone switched to per-mile pricing. (Once other firms followed suit all these gains would

go to customers). Comparing the linear model with the calibration and regression models,

therefore allows us to see how much of the accident savings are external to a given driver

and his insurance company. The second reason to be interested in the linear model results

is the possibility of substantial learning-by-doing in driving that is not exhausted after the

first couple of years. If driving more lowers an individual’s accident rate so that the typical

individual has an accident elasticity with respect to miles of 1/2,27 then after accounting

for the externality effect, the aggregate elasticity of accidents with respect to miles should

be approximately 1 as assumed in the linear model.

Our estimates of the results of these policies naturally depend upon the price responsive-

ness of driving. Estimates of the price responsiveness of driving are plentiful and generally

come from observed changes in the price of gasoline.

Our benchmark case assumes that the aggregate elasticity of gasoline demand with

respect to the price of gasoline is .15. This figure is 25% lower than the short-run elasticity

of .2 that the two comprehensive surveys by Dahl and Sterner [1991 a,b] conclude is the

most plausible estimate, and also substantially lower than the miles elasticities estimated
27See, for example, the estimates in Hu et al. [1998] that were discussed in Edlin [1999].
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by Gallini [1983]. Goldberg [1998, p. 15] has recently made an estimate of miles elasticity

near zero, though she argues that for large price changes such as those we consider here, a

figure of .2 is more reasonable.28 Goldberg’s standard errors are sufficiently large that her

estimate is also not statistically different from .2 at the five percent level.

>From the perspective of social policy, we should be interested in long run elasticities.

Long run elasticities appear to be considerably larger than short run. Goodwin’s [1992]

survey suggests that time series studies give long run elasticities for petrol of .71 compared

with .27 for the short run; cross section studies give .84 compared with .28 for the short

run. Interpreting these long run elasticities in our context is problematic because in the long

run, there is substantial substitution among vehicles to more fuel-efficient vehicles which

will be driven more miles. Still, Johansson and Schipper [1997] estimate that the long run

elasticity of miles per car with respect to fuel price is .2. Given vehicle substitution, this

figure suggests that the benefits of per-mile premiums would, in the long run, be much

larger than we estimate.

>From our assumed fleet gas price elasticity of .15, we compute the mile-price elasticity

(which we assume is constant across vehicles) as follows. Let

µi = miles traveled by cars of fuel efficiency i miles per gallon.

e = the point elasticity of a given vehicle’s miles with respect to marginal price per mile

(assumed constant across vehicles).

gi = gas price per mile.

ti = total marginal price per mile = 4.2 cents (maintenance) + 5 cents (depreciation) +

gi(gas price) + pi(insurance price)29

ε = .15 = aggregate point elasticity of gasoline demand with respect to price of gasoline.
28Miles elasticity and gas elasticity differ by the elasticity of fuel efficiency with respect to fuel price. In

the short run, this elasticity is probably relatively small, though in the long run it could be substantial.
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Note that since e is the miles elasticity for each vehicle with respect to marginal price

per mile, it is also the gasoline demand elasticity for that vehicle with respect to marginal

price per mile. Then egiti is both the mile elasticity and gasoline elasticity with respect to

the price of gasoline for a vehicle with fuel efficiency i mpg. Since the proportion of gasoline

bought by vehicles of fuel efficiency i is
³

µi/iP
j µj/j

´
, we can solve for e using the following

relationship:

.15 = ε =
X
i

Ã
µi/iP
j µj/j

!
e
gi
ti
. (12)

Assuming that driving demand is linear, and each car of fuel efficiency i is charged the

same per-mile premium pi = p, driving demand becomes M = M0 −
P
µi0e

p
ti0

(where the

subscript 0 denotes the value variables take on under current practice, with zero marginal

insurance charges).33

Solving this driving demand equation simultaneously with the per-mile premium zero

profit condition (equation (5)) yields the equilibrium miles M∗ and per-mile premiums p∗.

We first compute this equilibrium for each state. We then model the U.S. in two ways:

first, in a disaggregated model where the national mile reduction is the sum of state mile

reductions and second, treating the nation in an aggregated fashion as if it itself were a

state. We use the equilibrium values p∗s,M∗
s to compute surplus in each state s according

to equation (8).

Finally, to simulate Pigouvian per-mile premiums, we replace the zero profit condition

with the requirement that premiums equal the marginal social accident cost of driving.

Thus, the “supply” equation for insured miles under Pigouvian per-mile premiums is

p = c1 + 2c2M/l

33For a linear demand curve D(t) with a point elasticity of e at price t0, the reduction in demand from a
price increase ∆t is exactly D(t0)e∆tt0 .
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We solve this equation simultaneously with the per-mile demand equation M = M0 −P
µi0e

p
ti0
for each state to compute the equilibrium under per-mile premiums with a Pigou-

vian tax.

4.2 Results.

4.2.1 Per-Mile Premiums

Table 3 presents our estimates of the consequences of switching to per-mile premiums. The

zero profit condition for insurance companies is that per-mile premiums equal the average

insurance cost of accidents per mile driven. These premium figures are quite high and

exceed the cost of gasoline in many states as Table 2 shows. Even with the modest price

elasticity of .15 assumed here, the resulting driving reduction is substantial. The national

reduction in vehicle miles traveled, M0 −M∗, , is approximately 10% in all three models,

and reaches 15% in high-traffic states. The reduction is somewhat less in the nonlinear

models than it is in the linear ones, because in the nonlinear models, as driving is reduced,

the risk of accidents also falls and with it, per-mile premiums. Since equilibrium per-mile

premiums are lower in these models, the total driving reduction is lower. This effect is

much more pronounced in the calibration model, because of the larger traffic density effect

from two-car accidents in this model. Under the calibration models in Massachusetts, the

per-mile charge falls from 6.7 cents per-mile to 5.8 cents per-mile as driving is reduced.

Even with this fall, per-mile charges remain roughly comparable to the cost of gasoline,

making the expected driving reduction roughly 15%.

Reductions in driving would naturally be much larger in states that currently have high

insurance costs and would thus face high per-mile premiums. For example, if we compare

New Jersey with Wyoming (two states with similar lane miles but very different vehicle

miles traveled (VMT), we find that implementing competitive per-mile premiums would

reduce New Jersey’s VMT by 16.4 percent under our calibration model versus 4.4 percent
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in Wyoming. The reduction is much larger in New Jersey because the higher traffic density

there leads to higher accident rates: the per-mile premium in New Jersey would be 6.5 cents

per-mile as compared to 1.8 in Wyoming.

None of the per-mile premiums have been adjusted for uninsured drivers, because data

on the percentage of uninsured drivers is poor. Estimates of the percentage of uninsured

drivers are often in the neighborhood of 25% (see Khazzoom [1997], Sugarman [1993],

and Smith and Wright [1992]). Our estimates of the per-mile premium are calculated by

dividing estimated insured accident costs by total miles driven rather than by insured miles

driven. This could substantially understate the actual per-mile premiums if total miles

substantially exceed insured miles. However, it wouldn’t change our estimates of aggregate

driving reductions significantly because even though the per-mile premium would be higher

for insured miles, it would be zero for uninsured miles.34

These driving reductions lead us to predict lower insurance (and accident) costs of $14

billion according to the regression model and $17 billion according to the calibration model.

Even after subtracting lost driving benefits (the second term in equation (8) , the benefits

we estimate for accident savings net of lost driving benefits remain substantial in all three

models. Nationally, these net accident savings range from $5.3 billion to $12.7 billion, as

Table 3 reports. The difference between our $5.3 billion estimate under the linear model

and our $12.7 billion under the calibration model is dramatic: Accounting for accident

externalities raises our estimate of benefits by 150 percent. Such a large difference makes

sense. If a price change for driver A causes her to drive less, much of her reduction in

accident losses is offset by her lost driving benefits. In contrast, every driver with whom

she might have had an accident, gains outright from the reduced probability of having an
34Let u be the fraction of uninsured drivers and p̂ be our estimate of true per-mile premiums. If premium
p̂

1−u is charged on (1−u) percent of miles, then the aggregate mile reduction is identical to our estimate given
linear demand. Some revenue shortfall could be expected because priced miles fall by a larger percentage
than in our estimate. However, this is approximately offset by the fact that insured accident losses could be
expected to fall by more than we estimate, because driving reductions would be concentrated in the insured
population.
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accident with A who is driving less. Taking this externality effect into account, nationally,

the net gain is $75 per insured vehicle under the calibration model, as reported in Table 3.

However, since insurance companies and their customers don’t take the externality benefits

into account, their view of the gain from per-mile premiums is probably closer to the $31 of

our linear model.35 In high traffic density states, the gain per insured vehicle is quite high

— approximately $150 in Massachusetts and New York and nearly $200 in Hawaii and New

Jersey under the calibration model.

Compare the net accident reductions in the last two rows of Table 3. Accident reductions

are about 10 percent higher when the U.S. is modeled in a disaggregated way. In the

National Aggregated Model, heterogeneity is ignored and the U.S. is modeled as if it were a

state and a uniform per-mile premium were charged in every state. This estimate therefore

does not pick up one of the important benefits of allowing competition to determine the

level of per-mile premiums. In a competitive insurance market, there are no cross-subsidies

among territories, so high prices are charged in areas that have high accident rates, where

the benefits from driving reduction will be highest. Each of our state estimates suffers

from the same problem. Our benefit estimates from per-mile premiums are lower than they

would be in competitive insurance markets, because there is substantial variation within

a state in traffic density and accident rates. As we pointed out earlier, areas with high

accident rates will be charged higher per-mile premiums and therefore experience larger

driving reductions. If within-state heterogeneity is similar to across-state heterogeneity, we

could expect that our estimates of net accident gains are 10 percent lower than actual gains

would be. Taking into account heterogeneity among drivers, as would happen naturally

under a competitive system of per-mile premiums, would increase benefits still further.

All of our benefit estimates depend critically of course on driving elasticities. Driving
35State Farm, the largest auto insurance carrier in the U.S., has a 20-25% market share and so captures up

to a quarter of these “external” benefits — and therefore has a larger incentive to adopt premium schedules
that reduce driving than does an insurance carrier with a very small market share.
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reductions and net accident savings are both higher (respectively lower) if the aggregate gas

demand elasticity is higher (respectively lower) than .15. The relationship between elasticity

and accident savings is somewhat sub-linear, however, because the externality effect means

that gains are smaller when there is less driving. Nationally, net accident benefits go from

$9 billion for an elasticity of .1 to $16 billion for an elasticity of .2, using the calibration

model.

In general, the estimates of net accident cost savings under the regression model are

significantly smaller than under the calibration model. This difference results from the

regression model putting little weight on the externality effect. As we have argued, this

very small weight is probably due to several likely biases resulting from state errors being

negatively correlated with traffic density. We therefore concentrate our attention on the

calibration results.

Our calculation of net accident cost savings under the calibration model does not account

for the possibility that reduced traffic density causes drivers to drive less carefully, or causes

states to spend less money making roads safe. It is likely that as traffic diminishes, people

will exercise less care, and so actual accident costs will not fall as much as we estimate.

However, this effect is not necessarily a criticism of the calibration model estimates. At the

margin, this observation simply implies that some of our estimated accident cost reductions

will actually materialize as reductions in the cost of accident prevention. Assuming that the

tort system is currently ensuring an optimal level of care, our calculation will be accurate for

small reductions in driving. Some inaccuracy due to infra-marginal effects are possible, but

these are probably small given that we are only considering driving reductions of 10-15%.

These calculations also ignore the fact that more drivers will choose to become insured

once they have the option of economizing on insurance premiums by only driving a few

miles. Today, some of these low-mileage drivers are driving uninsured while others are not

driving at all. To the extent that per-mile premiums attract new drivers, the reduction in
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vehicle miles traveled will not be as large as our simulations predict. Surprisingly, though

this observation does not mean that the social benefits are lower than we predict. In fact,

they are probably higher. The per-year insurance system is inefficient to the extent that

low-mileage drivers who would be willing to pay the true accident cost of their driving

choose not to drive, because they must currently pay the accident cost of those driving

many more miles. Giving them an opportunity to drive and pay by the mile creates surplus

if their driving benefits exceed the social cost (their benefits would always exceed the social

cost under Pigouvian per-mile premiums since they are choosing to pay the social cost, and

benefits probably exceed costs under per-mile premiums since they pay most of the social

cost).

4.2.2 Pigouvian Per-Mile Premiums.

Finally, consider Table 4, which presents our results for Pigouvian per-mile premiums.

Pigouvian per-mile premiums would involve a tax on premiums sufficiently large that a

driver pays the full accident cost of his driving accounting for accident externalities. We

calculate the Pigouvian tax here under the assumption that auto insurance premiums reflect

all accident costs. As we discussed in the introduction, the bulk of accident costs are not

covered by auto insurance. In particular, auto insurance covers a small fraction of the value

of statistical lives lost, and also doesn’t cover the pain and suffering of at fault drivers. The

reader should therefore keep in mind that truly optimal Pigouvian taxes would account for

these costs and would be substantially higher than those we use for our estimates.36

For the linear model, the average cost of accidents (A/M) equals the marginal cost¡
dA
dM

¢
, so the Pigouvian tax is 0. In our calibration and regression models, however, which

take account of the accident externalities, the marginal cost of accidents exceeds the average

cost. In consequence, the Pigouvian tax is substantial. Under the calibration model, an
36The fact that life insurance or other insurance serves in part to fill the compensation gap between auto

insurance and full compensation does not take away from this point.



33

appropriate Pigouvian tax would be about 90% in high traffic density states such as New

Jersey and about 40% in low density states like North Dakota. On average across the U.S.,

the Pigouvian tax would be 83% under the calibration model compared with 19% under

the regression model. For the calibration model, the Pigouvian tax makes national driving

reductions 15.7% instead of 9.2%. National net accident savings grow to $15.3 billion from

$12.7 billion, as seen in Table 4.

4.3 Delay Costs from Congestion

The cost of traffic delays are a large concern,37 and one ancillary benefit of per-mile premi-

ums and of the Pigouvian tax would be to reduce congestion related delays as driving falls.

As discussed in Section 1.2, not all of the resulting time savings should be added to the

social gain calculated above, however. Some of congestion costs are already internalized by

drivers and reflected in the driving demand curve. This subsection provides rough estimates

of the external portion of these cost savings. As section 1.2 explained, our methodology

should result in a lower bound.

A detailed study by Schrank, Turner and Lomax [1995] estimates that the cost of conges-

tion in the form of delay and increased fuel consumption in the U.S. exceeded $49 billion in

1992 and $31 billion in 1987.38 This study valued time at $8.50/hr. in 1987 and $10.50/hr.

in 1992, which will seem a considerable undercounting to those who would far prefer to be

at work than stuck in a traffic jam. If we project this figure to $60 billion in 1995, this

amounts to 2.5 cents for every mile driven. As discussed in presenting our model, although

the marginal cost of congestion is many times the average cost of congestion during con-

gested periods, we conservatively assume that the marginal cost of congestion is twice the
37A recent poll by Mark Baldarassare shows that voters in California are “most satisfied with their jobs”

and “most negative about traffic.” New York Times 6/2/98, A1, “Economy Fades As Big Issue in Newly
Surging California.”
38My summation for the 50 urban areas they studied. See Table A-9, p. 13, and Table A-15, p. 19, in

Shrank, Turner and Lomax [1995]. See also Delucci [1997], who estimates congestion costs at $22.5-99.3
billion.
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average cost, so that the external marginal cost of congestion equals the average. Table

5 gives our estimates of the national portion of congestion reduction that is external and

should be added to net accident benefits. In all models, estimated externalized gains from

congestion reductions are large, ranging from $5.5 billion to $9.4 billion as seen in Table

5. Under per-mile premiums, congestion reductions are largest in the regression and linear

models because in those models, accident rates (and hence per-mile premiums) don’t fall

much or at all as driving falls. In contrast, the congestion reductions for per-mile premiums

with a Pigouvian tax are largest ($9.4 billion) under the calibration model, because of the

substantial driving reductions caused by the large Pigouvian tax that accounts for accident

externalities from driving.

These calculations are based upon the average cost of delay. Congestion delays, of

course, are concentrated during certain peak time periods and at certain locations. This

fact simply means that the congestion reductions from per-mile pricing are concentrated

during these time periods and these locations. Our calculations are robust provided that the

elasticities of demand for congested miles and non-congested miles are comparable, and that

the externalized marginal cost is a constant multiple of average cost.39 The concentration

of congestion costs simply suggest that we would be even better off if driving were priced

particularly high during congested periods and somewhat lower otherwise.

4.4 Total Benefits.

Table 5 gives total estimated annual national benefits from competitive per-mile premiums

and Pigouvian per-mile premiums. The total benefits are expressed both in aggregate
39To understand why, consider a model with two types of miles: A,B. Let the initial quantities of driving

these miles be a, b, and let Ca, Cb be the total cost of delay during driving of types A,B respectively. Then,
the average cost of delay is c = Ca+Cb

a+b , and the average cost of delay during driving of the two types is
ca = Ca/a, cb = Cb/b. The externalized marginal congestion costs are likewise ca, cb. Observe that if a
uniform per mile price p is charged for both types of miles, the congestion savings will be pε

g
[aca + bcb] =

pε
g
(Ca +Cb), where g is the initial gas cost per mile of driving, and ε is the elasticity of miles with respect

to the price of gasoline. This is equivalent to what we would calculate if we treated the two types of miles
equivalently, with c as the externalized marginal cost of miles. Then we would estimate the congestion
reduction as: pε

g
[a+ b]c = pε

g
(Ca + Cb) .
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and per insured vehicle. These annual benefits are quite high and using the regression

estimates as our lower bound and the calibration estimates as our upper bound suggests

that charging by the mile on a national basis would be socially beneficial if verifying miles

could be achieved for less than $91.5—$107.5 per car each year. In some high traffic density

states, per-mile premiums could be socially beneficial even if the cost of verifying miles

approached $200 per vehicle. External benefits made up $20-$24 billion of our estimated

benefits since net accident savings were only $5 billion under the linear model, as reported in

Table 5. The gains with a Pigouvian tax were higher still at $111-$146 per insured vehicle.

These estimates neglect environmental gains that would result if the current price of gasoline

does not adequately account for emissions, noise pollution and road maintenance. Likewise,

they would overstate gains if current gasoline taxes exceed those nonaccident noncongestion

costs. Our estimates also did not account for underinsured and uninsured accident costs.

Including these latter figures into our estimates of eliminated accident externalities would

raise the estimated benefits by several billion dollars more.

The total benefits are quite large even for the linear model where accidents are propor-

tional to mileage. Under the linear model, the total benefits of per-mile premiums are $67

per insured vehicle. As mentioned early, this model would be roughly accurate if individual

elasticities of accidents with respect to miles were .5, because then the externality effect

would make the social elasticity roughly one, as in a linear model. Estimates under the

regression model lie roughly halfway in between the linear model and the calibration model.

5 Conclusions and Policy Implications

In all three models, the aggregate benefits of per-mile premiums are quite large. They are

concentrated in states with high traffic density where accident costs and the externality

effect appear particularly large. Aggregate benefits reach $11 billion nationally, or over $67

per insured vehicle even under the linear model, and are substantially larger ($15-18 billion)



36

under our preferred regression or calibration models. In high traffic density states like New

Jersey, the benefits from reduced accident costs, net of lost driving benefits could be as high

as $198 per insured vehicle, as indicated in Table 3.

Why then are most premiums so weakly linked to actual mileage and closer to per-year

than per-mile premiums? Standard contracting analysis predicts that an insurance company

and its customers would not strike a deal with a lump-sum premium if an individual’s

accidents increase with his driving, and if vehicle miles is freely observable. In that case,

by reducing or eliminating the lump-sum portion and charging the marginal claim cost for

each mile of driving, the contract can be made more profitable for the insurance company

and also more attractive to its customers: as individuals reduce their driving, the insurance

carrier saves more in claims than the lost driving benefits to its customers. Hence the

“mystery.”

The primary reason we don’t see per-mile premiums is probably monitoring costs, the

reason suggested by Rea [1992] and by some insurance executives. Traditionally the only

reliable means of verifying mileage was thought to be bringing a vehicle to an odometer-

checking station. The twin sister of these monitoring costs is that a firm charging per-mile

premiums would suffer abnormally high claims from those who committed odometer fraud.

The significance of monitoring costs/fraud costs as an explanation is supported by the fact

that commercial policies (where the stakes are larger) are sometimes per-mile, and now

that cheap technologies exist that allow mileage verification “at a distance,” at least one

firm is now experimenting with per-mile premiums.40 Adverse selection provides another

explanation that tends to close the per-mile premiums market.41

40See Wall Street Journal [1999].
41Adverse selection is another reason that a given insurance company may not want to switch to per-mile

premiums on its own. Even if the insurance company knows the average miles driven per year by drivers in
a given risk pool, it does not (currently) know the miles that given individuals drive. If it charges a per-mile
premium equal to the current yearly premium for the pool divided by the average number of miles driven
by drivers in the pool, it will lose money. Those who drive more miles than the average will leave the pool
for a firm charging per-year rates and those who drive less miles will stay with this insurance company. The
remaining drivers or adversely selected, because low mileage drivers in any given per-year risk class with
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If monitoring costs are what limit the use of per-mile premiums policies, then to en-

courage their use would seem unwise because lack of use may be a good signal that the

policies’ benefits do not justify their costs. The theory and empirical work here highlights

another reason, though, why such policies are not common, a reason that suggests policy

intervention could be valuable. In particular, the social gains from accident reduction as

a driver reduces her driving could substantially exceed the private gains (realized by the

driver and her insurance carrier), at least in high-traffic density states. In New Jersey, for

example, we estimate that the private gains as captured by the linear model are $86 per in-

sured vehicle as compared with social gains of $189-236 once external gains are included (see

Table 3). Hence, most of the benefits from switching to per-mile premiums or some other

premiums schedule that reduces driving are external. The accident externality is surely one

big reason that insurance companies have not made such a switch. If monitoring costs and

other transaction costs lie in the gap between $86 and $189-236, then per-mile premiums

would be efficient in New Jersey, but might not materialize in a free market. Congestion

reductions make the external benefits from per-mile premiums even larger, increasing the

chance of market failure.

Mandating per-mile premiums might be unwise though, even if per-mile premiums are

efficient on average, because monitoring costs are substantial and vary with an individual’s

cost of time. (Heterogeneity across individuals favors policy options that would allow more

individual flexibility.) Even if mandates are not justified, if driving does cause substantial

external accident costs as the theory and the empirical work here suggest, then some policy

a given accident experience level will tend to be worse drivers than high mileage drivers in the same risk
class. (Long-run historical accident costs divided by miles driven would be a sensible measure of per-mile
risk.) This adverse selection means that the insurance company will have to charge a relatively high per-mile
price to break even given the selection problem and the possibility that high-mileage drivers can choose to
pay fixed annual premiums with other insurance companies. In principle, the insurance company could
probably find a sufficiently high per-mile price that would increase profits. However, one could understand
the hesitancy of a marketing director to propose to his CEO that the insurance company change its pricing
structure in a way that would make its prices less attractive than other insurance companies’ to a large
percentage (probably more than half) of its current customers.
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action could be justified.

The simplest policy option in states such as Massachusetts that already have regular

checks of automobiles for safety or emissions, would be to record odometer readings at

these checks and transfer this information together with vehicle identification numbers to

insurance companies. This would remove the need for special stations for odometer checking,

or for installing special monitoring devices in vehicles. Private monitoring costs would also

be reduced if the government increased sanctions for odometer fraud. Legislation such

as the new Texas Law that legalizes or otherwise fascilitates switching the insurance risk

exposure unit from the vehicle-year to the vehicle-mile can only help.

A second policy option is to impose a tax on premiums sufficient to account for the

accident externality of an additional driver. If insurance companies continued to have

a weak mileage-premiums link, people would at least, then, still face efficient incentives

at the margin of whether to become drivers. Moreover, insurance companies would then

have increased incentives to create a strong mileage-premiums link, and drivers would face

second-best incentives at the margin of deciding how many miles to drive. By making

insurers pay the total social accident costs imposed by each of their drivers, a tax would

give insurers the incentive to take all cost-effective measures to reduce this total cost. An

externality tax would align the private incentives to incur monitoring costs and to charge

per-mile premiums with the social incentives, so that insurance companies would switch

premium structures to per-mile or to a schedule that better reflects accident cost whenever

monitoring costs and transition costs become low enough to justify the switch. Such a tax

would also make per-mile premiums higher to reflect both per-mile claim costs and the tax.

The consequent driving, accident, and delay reductions would likewise be larger, as shown

in the Pigouvian tax portion of Table 5. An alternative to a tax that would be more difficult

to administer, but perhaps easier to legislate, would be a subsidy to insurance companies

that reduce their customers’ driving equal to the resulting external accident cost reductions.
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Another possible policy option is to require insurance companies to offer a choice of per-

mile or per-year premiums (at reasonable rates) as proposed in March 1998 by the National

Organization for Women. A fourth option is to facilitate the formation of an insurance

clearinghouse that allowed individual per-mile premiums to be paid or billed “at the pump"

when gasoline is purchased — again an attempt to lower monitoring costs.

Wisdom demands, however, that enthusiasm for costly policy changes be tempered

until more research is done in this area. Our empirical estimates are only a first-cut. Our

regression estimates suffer from all the potential biases we suggested and some we did

not. Future research should include covariates and panel data. Our simulation estimates

of the benefits from per-mile premiums and of the Pigouvian tax depend upon the size

of the externality effect, the assumed linear accident/mileage profile for individuals,42 the

responsiveness of driving to price, and our use of insured accident costs. Each of these

areas warrants considerably more examination. For example, if the estimates of the Urban

Institute [1991] are correct, and total accident costs are 3.5 times higher than the insured

costs considered here, then the true benefits of premium restructuring could be much larger

than we have estimated. Finally, we note that it would also be quite informative to break

down externalities by vehicle type.
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Table 1
Estimates of Insured Accident Cost Function

(Total State Insurance Premiums)

 Calibration Model Regression Model
 (Standard Error 

in Parentheses)

Miles Coeff. C1 0.007 0.022
(0.002)

Miles*Density Coeff. C2x107 1.1 0.54
(0.06)

R2= 0.59



Table 2
Insured Accident Cost

3/21/2002 0:00

State Vehicle Miles Lane Avg. Cost Estimated Marginal Cost
Traveled Miles per mile
(billions (cents) Calibration Method Regression Method
per year) (cents per mile) (cents per mile)

Alabama 51 193,000 2.4 4.3 3.3
Alaska 4 27,000 5.2 8.9 6.6
Arizona 40 117,000 4.4 8.2 6.4
Arkansas 27 156,000 3.0 5.2 3.9
California 276 381,000 4.1 7.8 6.6
Colorado 35 174,000 4.7 8.3 6.2
Connecticut 28 43,000 6.5 12.4 10.4
Delaware 8 12,000 4.9 9.3 7.8
Florida 128 244,000 4.3 8.2 6.7
Georgia 85 233,000 3.1 5.8 4.6
Hawaii 8 8,000 7.9 15.3 13.3
Idaho 12 121,000 2.4 3.9 2.9
Illinois 94 286,000 4.2 7.7 6.0
Indiana 65 191,000 3.0 5.6 4.4
Iowa 26 230,000 3.0 4.9 3.6
Kansas 25 271,000 3.1 5.0 3.7
Kentucky 41 151,000 3.3 6.1 4.6
Louisiana 39 126,000 4.4 8.2 6.3
Maine 13 46,000 3.0 5.5 4.2
Maryland 45 65,000 4.8 9.2 7.8
Massachusetts 48 65,000 6.7 12.9 11.0
Michigan 86 247,000 4.6 8.5 6.7
Minnesota 44 267,000 4.0 6.9 5.1
Mississippi 30 150,000 2.4 4.2 3.2
Missouri 59 250,000 3.0 5.4 4.1
Montana 9 141,000 2.6 4.0 3.0
Nebraska 16 187,000 3.0 4.8 3.5
Nevada 14 92,000 4.9 8.4 6.2
New Hampshire 11 31,000 4.3 8.0 6.3
New Jersey 61 76,000 7.7 14.8 12.7
New Mexico 21 127,000 2.9 5.0 3.7
New  York 115 237,000 6.4 12.0 9.8
North  Carolina 76 202,000 3.5 6.4 5.1
North  Dakota 7 175,000 2.1 2.9 2.3
Ohio 101 241,000 3.6 6.8 5.4
Oklahoma 38 231,000 2.6 4.6 3.4
Oregon 30 171,000 3.8 6.7 5.0
Pennsylvania 95 247,000 5.2 9.7 7.7
Rhode  Island 7 12,000 7.3 13.8 11.4
South  Carolina 39 134,000 3.5 6.5 5.0
South Dakota 8 168,000 2.5 3.6 2.7
Tennessee 56 178,000 2.8 5.1 4.0
Texas 181 626,000 3.2 5.8 4.5
Utah 19 85,000 3.2 5.8 4.3
Vermont 6 29,000 3.2 5.7 4.3
Virginia 70 149,000 3.5 6.5 5.3
Washington 49 164,000 3.9 7.2 5.6
West  Virginia 17 72,000 4.1 7.4 5.6
Wisconsin 51 228,000 3.0 5.3 4.0
Wyoming 7 73,000 1.8 3.0 2.2
National Aggregated
Model 2423 8,158,000 4.0 7.4 5.7



Table 3
Accident Savings from Per Mile Premiums

(Net of Lost Driving Benefits)
Gas Elasticity 0.15 3/21/2002 0:00

Model A=c1M A=c1M+c2M
2/L A=c1M+c2M

2/L
Linear Model Calibration Model Regression model

total per insured vehicle total per insured vehicle total per insured vehicle
States (dollars in millions) $ (dollars in millions) $ (dollars in millions) $
Alabama 36 14 89 34 63 24
Alaska 13 38 28 83 17 51
Arizona 93 33 223 79 157 56
Arkansas 31 16 70 38 48 26
California 548 34 1391 86 1111 68
Colorado 91 34 207 76 137 50
Connecticut 138 59 328 141 256 109
Delaware 22 43 54 106 44 85
Florida 306 36 752 88 615 72
Georgia 112 21 277 52 224 42
Hawaii 57 81 132 188 105 150
Idaho 8 11 18 23 11 14
Illinois 205 27 491 65 365 48
Indiana 75 18 187 45 142 34
Iowa 29 13 63 29 41 19
Kansas 32 15 66 31 44 21
Kentucky 58 21 140 50 102 37
Louisiana 96 39 227 92 167 68
Maine 14 15 34 37 24 26
Maryland 127 38 314 93 255 76
Massachusetts 263 66 622 155 511 128
Michigan 237 33 562 78 442 61
Minnesota 85 26 191 58 126 38
Mississippi 21 15 50 35 34 24
Missouri 69 19 166 45 121 33
Montana 8 11 15 22 9 13
Nebraska 18 13 36 27 23 17
Nevada 39 39 86 85 54 54
New Hampshire 24 28 59 68 43 50
New Jersey 453 86 1040 198 901 171
New Mexico 21 19 49 44 32 28
New  York 574 60 1339 139 1045 109
North  Carolina 114 19 282 48 211 36
North  Dakota 4 7 6 13 4 8
Ohio 165 21 410 52 314 40
Oklahoma 35 15 80 34 56 24
Oregon 52 22 118 51 74 32
Pennsylvania 317 38 749 90 565 68
Rhode  Island 44 68 101 157 80 124
South  Carolina 63 23 151 56 113 42
South Dakota 6 10 10 18 7 12
Tennessee 55 16 136 39 99 28
Texas 230 24 559 59 409 43
Utah 23 18 55 43 36 28
Vermont 8 17 18 41 13 28
Virginia 105 21 264 54 206 42
Washington 90 27 216 64 148 44
West  Virginia 37 29 86 68 61 48
Wisconsin 56 15 134 37 91 25
Wyoming 3 8 6 16 4 10
U.S. Total 
(disaggregated sum) 5310 31 12686 75 9762 58
National Aggregated
Model 4954 29 11813 70 8476 50



Accident Savings from Per-Mile Premiums with Pigouvian tax
(Net of Lost Driving Benefits)

Gas Elasticity 0.15 3/21/2002 0:00
Model A=c1M A=c1M+c2M

2/L A=c1M+c2M
2/L

Linear Model Calibration Model Regression model
total per insured vehicle total per insured vehicle total per insured vehicle

States (dollars in millions) $ (dollars in millions) $ (dollars in millions) $
Alabama 36 14 109 42 67 26
Alaska 13 38 32 96 19 58
Arizona 93 33 269 95 178 63
Arkansas 31 16 83 45 49 26
California 548 34 1719 106 1305 80
Colorado 91 34 244 90 150 55
Connecticut 138 59 396 170 301 129
Delaware 22 43 66 129 49 96
Florida 306 36 918 108 659 78
Georgia 112 21 338 64 223 42
Hawaii 57 81 159 226 129 183
Idaho 8 11 21 27 12 15
Illinois 205 27 593 79 390 52
Indiana 75 18 228 55 148 36
Iowa 29 13 72 33 42 19
Kansas 32 15 75 35 43 20
Kentucky 58 21 169 61 106 38
Louisiana 96 39 272 110 177 72
Maine 14 15 42 45 26 28
Maryland 127 38 384 114 292 87
Massachusetts 263 66 749 187 585 146
Michigan 237 33 676 94 452 63
Minnesota 85 26 224 68 133 41
Mississippi 21 15 61 42 36 24
Missouri 69 19 199 54 122 33
Montana 8 11 16 25 10 15
Nebraska 18 13 41 30 24 18
Nevada 39 39 100 99 60 59
New Hampshire 24 28 71 82 47 54
New Jersey 453 86 1241 236 991 189
New Mexico 21 19 58 52 34 30
New  York 574 60 1604 167 1162 121
North  Carolina 114 19 344 59 229 39
North  Dakota 4 7 6 14 4 9
Ohio 165 21 501 63 341 43
Oklahoma 35 15 95 40 55 23
Oregon 52 22 139 60 83 36
Pennsylvania 317 38 900 108 616 74
Rhode  Island 44 68 121 188 90 140
South  Carolina 63 23 182 67 116 43
South Dakota 6 10 11 20 7 12
Tennessee 55 16 166 47 106 30
Texas 230 24 678 72 429 45
Utah 23 18 66 52 40 31
Vermont 8 17 22 49 13 29
Virginia 105 21 325 66 226 46
Washington 90 27 261 77 168 50
West  Virginia 37 29 103 81 64 50
Wisconsin 56 15 161 44 97 27
Wyoming 3 8 7 19 4 10
U.S. Total 
(disaggregated sum) 5310 31 15319 91 10707 63
National Aggregated
Model 4936 29 14174 84 9131 54

Table 4



Table 5
U. S. Benefits from Other Premium Schedules

Linear Model Calibration Model Regression Model
Per-Mile Premiums

Net Accident Savings
U.S. Total (billions of dollars) 5.3 12.7 9.8
Per Insured Vehicle (dollars) 31.4 75.0 57.7

Reduced Delay Costs (external)
U.S. Total (billions of dollars) 6.0 5.5 5.7
Per Insured Vehicle (dollars) 35.6 32.5 33.8

Total Benefits
U.S. Total (billions of dollars) 11.3 18.2 15.5
Per Insured Vehicle (dollars) 67.0 107.5 91.5

 with Pigouvian tax
Net Accident Savings

U.S. Total (billions of dollars) 5.3 15.3 10.7
Per Insured Vehicle (dollars) 31.4 90.6 63.3

Reduced Delay Costs (external)
U.S. Total (billions of dollars) 6.0 9.4 8.0
Per Insured Vehicle (dollars) 35.6 55.6 47.5

Total Benefits
U.S. Total (billions of dollars) 11.3 24.7 18.7
Per Insured Vehicle (dollars) 67.0 146.2 110.8




