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ABSTRACT OF THE THESIS 

Impact of Mycobiome on Dysregulation of Inflammasome-related Genes in Head and 

Neck Squamous Cell Carcinomas and Lung Squamous Cell Carcinomas 

by 

Neil Vivek Shende 

Master of Science in Biology 

University of California San Diego, 2022 

Professor Weg Ongkeko, Chair 

Professor Lifan Lu, Co-chair 

Cancer continues to be a lethal challenge to human health. While research has 

uncovered many causes and effects of cancer, the role of the microbiome has been 

uncovered more recently. Fungi are an integral part of the human mycobiome, yet they 

have been studied far less than the bacterial microbiome in cancer. Studying the immune 

response to fungal pathogens is an important endeavor as it can shed light on the fungal 

landscape in healthy and cancerous tissue. Fungal pathogenesis involves the activation of 



 ix 

inflammasomes and is an important aspect of the immune response to fungi. In this study 

I sought to characterize the fungal mycobiome in head and neck squamous cell carcinoma 

(HNSC) and lung squamous cell carcinoma (LUSC), and to elucidate dysregulations of 

inflammasome-related genes in the two cancers. I used RNA-seq data from TCGA from 

cancer tissue and adjacent normal tissue, extracted fungal abundance counts, and 

correlated these with survival, clinical variables, and infiltration of multiple types of 

immune cells. I also identified correlations between fungal abundance and 

inflammasome-related genes, and inflammasome-related pathways. I found multiple 

fungal species to be differentially abundant and correlated with inflammasome-related 

genes in both HNSC and LUSC including Saccharomyces cerevisiae, Saccharomyces 

cerevisiae N85, and Kappamyces sp. PL-117. I also found species that were uniquely 

associated with HNSC or LUSC. These findings characterize the fungal mycobiome and 

elucidate the correlation between fungal species and inflammasome-related genes in 

HSNC and LUSC. 
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Chapter 1 Introduction 

Cancers are a group of diseases that involve rapid, uncontrolled cell division. 

According to the World Health Organization (WHO), there were 10 million cancer deaths 

worldwide in 2020. Cancer can develop in a variety of different organs and tissue types, but 

the majority arise from epithelial tissue. Epithelial tissues consist of sheets of cells that cover 

surfaces and cavities. Cancers originating from epithelial tissues are called carcinomas and are 

responsible for 80% of cancer-related deaths (https://seer.cancer.gov). Squamous cell 

carcinomas are cancers arising from epithelial cells that form protective layers. This study 

focuses on head and neck squamous cell carcinoma and lung squamous cell carcinoma. 

Around the globe, there are an estimated 850,000 new cases of head and neck squamous cell 

carcinoma (HNSC) a year, and about half million deaths from the disease [1]. Like HNSCC, 

lung squamous cell carcinoma (LUSC), is a cancer that arises in the squamous cells lining the 

airways of the lungs. According to the Centers for Disease Control (CDC), 218,520 new cases 

of lung cancer were newly diagnosed in the United States in 2018, the last year for which 

numbers are available, and 142,080 deaths resulted from the disease [2]. Studying the risk 

factors associated with these cancers will be vital to developing new treatments and studying 

these cancers in tandem can provide further insights into their similarities and differences. 

Several major risk factors of HNSC are well-documented, including alcohol 

consumption [3], smoking [4], and chewing betel leaves [5]. However, others are still under 

investigation. Recently, there has been growing interest in studying how the oral microbiome 

affects cancer initiation, progression, and outcomes. In a recent study from Brazil, Maria 

Arbelaez and colleagues found that when epithelial cells in the oral cavity were stimulated 
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with the fungus Candida albicans, the oral microbiome was altered in a manner that affected 

the expression of several protooncogenes and cell cycle genes resulting in a tumor-conducive 

environment in the oral cavity [6]. Studying the role of other fungal species in cancers of the 

head and neck can provide insights into not just the causes of the disease, but also therapies 

and outcomes.  

As is true for HNSC, several risk factors of LUSC have also been identified. Among 

them, smoking has been long recognized as a major risk factor for lung cancer, with 80-90% 

of cases being related to smoking or second-hand tobacco smoke exposure [1]. However, 

uncovering other causes of the disease as well as understanding how the lung environment 

and lifestyle and other behaviors affect the disease are still being investigated. The lungs are a 

site of constant exposure to microbes, and many lung diseases are caused by viruses, bacteria, 

and other microbes. Elucidating the role of the microbiome in lung cancer is critical to 

creating a better understanding of the disease. Research has also shown that the host’s 

microbiome is a critical part of regulating and activating tumorigenesis [7]. When responding 

to bacterial, viral, and fungal infections, the balance of oxygen levels, temperature and pH in 

the lungs alters leading to dynamic changes in the lungs [8]. Immune responses, including 

inflammation, resulting from pathogen associated molecular patterns (PAMPs) can lead to 

chronic inflammation and a lung environment susceptible to further damage and diseases 

including lung cancer [8]. 

The immune system is a complex defense system that protects organisms from 

disease. In humans, it can target and kill a variety of microbes, including bacteria, fungi, 

parasites, viruses, and cancer cells. The innate immune system includes anatomical barriers 
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such as the skin, gastrointestinal tract, lungs, and blood-brain barrier as well as defensive 

substances like tears, saliva, mucus, and gastric acid that keep microbes from freely accessing 

the inside of the body. If microbes are detected inside the body, the innate immune system can 

employ general responses such as the complement system response [9, 10] and the 

inflammation response [11, 12]. 

 
In the event of infection, irritation, or injury, one of the first responses of the innate 

immune system is inflammation. The inflammatory response involves redness, heat, swelling, 

and loss of function. One of the purposes of swelling is to produce a physical barrier against 

infection, and the heat produces an environment that is not conducive to the growth of 

microbes. Inflammation is an extremely important early response that attempts to limit the 

damage tissue caused by the initial stimulus. An innate immune response can occur as a 

response to tumors when dying cancer cells release substances recognized as danger-

associated molecular patterns (DAMPs) [13]. However, abnormal inflammatory responses can 

lead to several disorders, including allergic reactions, pneumonia, autoimmune diseases, 

asthma, colitis, inflammatory bowel disease, and rheumatoid arthritis. Chronic inflammation 

is also associated with the development of cancer [14]. Inflammation induces the production 

of reactive oxygen species (ROS) [15] and reactive nitrogen species (RNS) [16] in order to 

fight infection. However, reactive oxygen species and reactive nitrogen species can cause 

DNA damage, which can lead to mutations and epigenetic alterations. Mutations acquired 

during periods of chronic inflammation can lead to the development of cancer. 

Inflammasomes are multiprotein complexes that are responsible for the activation of 

the inflammatory response. They activate and assemble in response to pathogen-associated 
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molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). When the 

pattern recognition receptor (PRR) of the inflammasome detects a PAMP or DAMP, a 

caspase activation and recruitment domain (CARD) will bind pro-caspase-1 [17]. The CARD 

can be of the inflammasome itself or of the adaptor protein ASC. When the inflammasome is 

fully assembled, it will bring together many pro-caspase-1 molecules. These molecules will 

then catalyze their own cleavage and assemble into active caspase-1. Caspase-1 induces 

maturation of interleukin 18 (IL-18) and interleukin 1β (IL-1β) by cleaving pro IL-18 and pro 

IL-1β. IL-18 and IL-1β are cytokines that promote the inflammatory response [18]. 

Caspase 1 also cleaves gasdermin D, which induces swelling and cell lysis [19]. This 

inflammatory programmed cell death is called pyroptosis. Pyroptosis is used to stop the 

replication of intracellular pathogens and can also release inflammatory cytokines from the 

cell [20]. Studies have shown that the NLRP3 inflammasome activation is associated with 

oncogenesis in head and neck cancer [21], and that the AIM2 inflammasome is upregulated in 

non-small cell lung cancer [22]. Further, capsase-1, IL-1β, and IL-18 are overexpressed in 

lung cancer tissue [23]. Due to the importance of inflammasomes to inflammation and 

programmed cell death, the dysregulation of inflammasome genes is frequently observed in 

cancer. 

In both HNSCC and LUSC, the environment surrounding a tumor, or tumor 

microenvironment, can have a substantial impact on cancer outcomes. An important aspect of 

the tumor microenvironment is the presence of immune system signaling molecules and 

tumor-infiltrating immune cells. The presence of many types of tumor-infiltrating immune 

cells have been shown to be predictive of better cancer outcomes [24]. Signaling molecules 

can induce immune responses such as inflammation, and influence regulation of 
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inflammasome genes [25, 26]. Tumors can influence the immune response by sending signals 

and inducing immune tolerance. [27, 28]. The microbiome can also have a substantial impact 

on the tumor microenvironment. Studying the microbial landscape of cancers is therefore 

imperative to understanding the mechanisms that drive them. 

The human microbiome is a collection of microorganisms that inhabit human tissues. 

These microorganisms include bacteria, archaea, viruses, fungi, and other eukaryotes. Fungi 

are unicellular or multi-cellular eukaryotic organisms that are organized in their own kingdom 

and include microorganism such as yeasts and molds. The fungal microbiome, or mycobiome, 

consists of fungal species that inhabit the oral cavity, gut, and other body sites. There have 

been fewer studies documenting the species of fungi present in the mycobiome compared with 

bacterial species in the bacterial microbiome. However, recent studies have shown multiple 

fungal species present in the oral microbiome including Candida, Fusarium, Mycosphaerella 

and Saccharomyces [29]. Compared to the oral mycobiome, the lung mycobiome has been 

shown to have greater diversity of species. Variety of species including Cladosporium, 

Eurotium, Penicillium, Aspergillus, Candida, Malassezia, and Pneumocystis have been found 

in the lung and respiratory tract [30]. Similar species of fungi have been found in both the oral 

cavity and during bronchoalveolar lavage in healthy individuals [31]. This suggests that there 

may be overlaps in fungal species in the oral cavity, upper and lower respiratory tracts. 

Studying the composition of the fungal microbiome in the head, neck, oral, respiratory and 

lung cavities will provide a fuller picture of the microbes and their role in health and disease. 

Few studies have investigated the connection between fungi and cancer. However, in a 

study in 2019, researchers found that the fungal species Malassezi found more abundantly in 
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the patients with pancreatic cancer was responsible for tumor growth. They found this by 

injecting mice with four different types of fungi, and observing that mice injected with 

Malassezi had accelerated growth of their malignancies [32]. Studies have also linked 

Candida albicans and Malassezi with cervical cancer [33]. Further studies investigating the 

correlation between the mycobiome, and cancer can provide valuable insights for prevention, 

diagnosis, and treatment of the disease. Fungi have also been associated with the immune 

response and gene expression. Candida albicans, for instance, sometimes acts as a commensal 

species, and at other times switches to a pathogenic form. In a 2019 study, Wang et. al. found 

that Candida albicans upregulated the protein Sel1 which in turn activates the NF-kB and 

MAPK pathways [34]. Fungal species, including Candida albicans, have been shown to 

promote inflammation [35] and induce a Th17 response [36, 37]. While we are beginning to 

investigate the pathogenic fungi, few studies have investigated the full landscape of fungal 

pathogens, their role in diseases such as cancer or their correlations to inflammasome-related 

genes. 

Recently, there has been growing interest in studying how the oral microbiome affects 

cancer initiation, progression, and outcomes. In a recent study from Brazil, Maria Arbelaez 

and colleagues found that when epithelial cells in the oral cavity were stimulated with the 

fungus Candida albicans, the oral microbiome was altered in a manner that affected the 

expression of several protooncogenes and cell cycle genes resulting in a tumor-conducive 

environment in the oral cavity [6]. Studying the role of other fungal species in cancers of the 

head and neck can provide insights into not just the causes of the disease, but also therapies 

and outcomes. The lungs are a site of constant exposure to microbes, and many lung diseases 

are caused by viruses, bacteria, and other microbes. Elucidating the role of the microbiome in 
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lung cancer is critical to creating a better understanding of the disease. Research has also 

shown that the host’s microbiome is a critical part of regulating and activating tumorigenesis 

[7]. When responding to bacterial, viral, and fungal infections, the balance of oxygen levels, 

temperature and pH in the lungs alters leading to dynamic changes in the lungs [8]. Immune 

responses, including inflammation, resulting from pathogen associated molecular patterns 

(PAMPs) can lead to chronic inflammation and a lung environment susceptible to further 

damage and diseases including lung cancer [8]. 

In this study, I investigated the fungal microbiome in head and neck squamous cell 

carcinoma and lung squamous cell carcinoma to characterize the fungal landscape in these 

cancers. Due to the importance of inflammasome genes to the innate immune response to 

microbes, and to the development of and response to cancer, I hypothesized that the fungal 

microbiome would influence cancer outcomes by dysregulating inflammasome-related genes. 

I found fungi that were differentially abundant in cancer tissue compared to normal tissue. 

Next, I investigated the associations between fungal abundances and patient survival and 

clinical variables. This allowed me to focus on fungi that I suspected could be influencing 

cancer outcomes. Finally, to characterize the relationship between the fungal microbiome and 

the inflammation response, I investigated the correlations between fungal abundance and the 

expression of inflammasome-associated genes. I further studied the association between the 

fungal microbiome and the immune system by examining the relationship between fungal 

abundances and immune infiltration and the enrichment of immune-associated gene sets. 
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Chapter 2 Materials and Methods 

Data acquisition from The Cancer Genome Atlas (TCGA) 

TCGA is a database of multi-omics data including gene expression, miRNA 

expression and DNA methylation data for multiple cancer types. In addition to gene 

expression data, corresponding clinical data is also available. This makes it possible to 

study gene expression and the microbial species landscape in the context of patient 

clinical variables. For this reason, RNA-sequencing data from TCGA was used in this 

study. Raw whole-transcriptome RNA-sequencing data was downloaded for head and 

neck squamous cell carcinoma (HNSC) and lung squamous cell carcinoma (LUSC) 

cancers. Primary tumor data was obtained for 513 HNSC patients and 448 LUSC 

patients. Additionally, 41 samples of adjacent normal tissue data was downloaded from 

HNSC patients, and 51 samples of adjacent normal tissue data was downloaded from 

LUSC patients from the TCGA legacy archive (https://portal.gdc.cancer.gov/). HNSC 

data was downloaded on 30 June 2021 while LUSC data was downloaded on 20 

September 2021. Clinical information for all patients were downloaded from the Broad 

GDAC FireBrowse (http://firebrowse.org/, Date accessed: 20 October 2021) site. All data 

was downloaded to San Diego Supercomputer Center’s (SDSC) Expanse computer 

cluster for extraction of gene expression data as well as fungal species abundance data. 

Extraction of fungal reads and computation of fungal abundance 

Pathoscope 2.0 [38] is a bioinformatics pipeline capable of identifying reads from 

fungal strains present in RNA-sequencing data. The tool is capable of extracting the 
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reference genome library, performing read alignment and quality control, strain 

identification, and annotation of results. Thus, Pathoscope 2.0 was used to filter the 

RNA-sequencing data for fungal reads via direct alignment through a wrapper for 

Bowtie2. Fungal sequences available through the NCBI (National Center for 

Biotechnology Information) nucleotide database 

(https://www.ncbi.nlm.nih.gov/nucleotide/) were used as a reference genome. Pathoscope 

provides results in the form of two measures to quantify the amount of fungal species in a 

sample. The Best Hit measure denotes the absolute integer count of each species in the 

sequencing data, while the Best Guess measure denotes the relative abundance of each 

species as a percentage. In the study, the Best Hit measure was used to quantify the 

fungal abundance in each sample. A combined matrix of Best Hit data from all fungal 

species present in all samples was compiled.  

To address the concerns of heterogeneity and irregularity of TCGA data, 

normalization was performed on the combined matrices. First, the quality of the metadata 

was assessed to remove samples with missing values for metadata variables including 

age, race and FFPR status. Next, the Voom algorithm was used to logarithmically 

transform the raw fungal read counts into log counts per million (CPM) data. Weighted 

trimmed mean of M-values (TMM) normalization was used for all data by the Voom 

algorithm [39].  

Contamination correction 

External and internal contamination are the two main categories of contamination 

of RNA-sequencing data. Patient tissue samples handled in the most stringent protocols 
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can still have microbial species not arising from the patient sample itself. This remains a 

major challenge in studying the microbiome and microbial landscape in tissue and blood 

samples. Contamination may arise from multiple sources and identifying and removing 

contaminants is vital to reducing errors in characterizing the true microbial landscape. 

External contamination usually arises from outside sources such as technicians’ bodies, 

laboratory work surfaces, and devices and instruments used to collect and process 

samples. Internal contamination normally results from the samples themselves being 

mixed with each other during laboratory procedures. In order to minimize the impact of 

such contamination on the results, a multi-pronged approach was used. The goal of this 

approach was to identify and remove external contaminants, characterize internal 

contaminants, and estimate the impact on the data. First, a literature search was 

performed to identify common laboratory fungal contaminants. I then proceeded to 

remove these contaminant species from the data of microbial abundance. Following this, 

the decontam package in R [40] was used to identify and remove potential contaminants 

in the tissue data. 

Differential fungal abundance between cancer and normal samples 

In order to compare fungal abundance in cancer versus normal samples, 

differential abundance analysis was performed. Fungal species present in fewer than 10 

samples, per cancer, were removed from the analysis. Further, samples of sample_type 

metastatic were also removed from consideration, leaving samples that were either 

classified as primary tumor or solid tissue normal for further analysis. The Kruskal-

Wallis test, a one-way ANOVA analysis of variance, was performed separately on HNSC 
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and LUSC patient data to determine differential abundance. The R function kruskal.test 

was used to perform the test, with results considered significant if p < 0.05.  

Microbial abundance correlation to patient survival 

Survival analysis was undertaken by establishing the relationship between 

differentially abundant fungal species and patient survival using the Kaplan-Meir test. 

The main goal of this analysis was to determine whether there was a difference in the 

survival of patients based on the differences in fungal abundance. Fungal abundance was 

represented as a binary variable for each fungal species. The two possible values were 

high abundance, or values above the median, and low abundance, which were values 

below the median abundance value. Cox regression analysis was used to determine which 

differentially abundant fungal species are significantly correlated with HNSC and LUSC 

patient survival based on a cutoff of p < 0.05. 

Correlation of fungal abundance to clinical variables 

In order to investigate the differences in fungal abundance across clinical 

variables in cancer samples, the Kruskal-Wallis test was used. Relevant variables 

including age, gender, neoplasm histologic grade, pathologic state, HPV status, and 

smoking and alcohol history were examined. For pathologic stage T, N, and M, samples 

that were assigned intermediate stages such as t1a, t1b or t1 c, were grouped into the 

stage t1. Similar consolidation was carried out for all three pathologic stage variables. 

Indeterminate pathologic stage samples were removed from consideration for this clinical 

variable analysis. For the clinical variable frequency of alcohol consumption, data was 

grouped into quartiles producing four categories for comparison. The clinical data for 

these comparisons was downloaded from the FireBrowse database (http://firebrowse.org/, 
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Date accessed: 20 October 2021). Associations between fungal abundance and clinical 

variables were deemed significant if p < 0.05. 

Differential expression analysis to determine dysregulated immune-associated and 

inflammasome-related genes 

In order to perform differential expression analysis, DESeq2 [41] was used. 

mRNA read counts were filtered, and lowly expressed mRNAs (counts per million < 1 

when comparing larger groups to smaller groups in a cohort) were removed. A counts per 

million matrix was produced, and mRNAs were considered to be significantly 

dysregulated if they had a fold change > |2| and a false discovery rate (FDR) < 0.05. After 

the analysis significant genes that were deemed to be immune associated and 

inflammasome related, were retained. Both immune associated and inflammasome 

associated genes were further considered to better understand the entire immune 

landscape of fungal abundance and gene correlations. A list of inflammasome-related 

genes was compiled from reviewing literature as well as from the MSigDB collections’ 

[42, 43] C7 immunologic signatures gene set database. The list of inflammasome-related 

genes used in the analyses is provided in Table S3. 

Using results from gene expression data and fungal abundance values, 

correlations were sought using the Spearman’s Rank Correlation. A gene was considered 

to be significantly correlated to fungal abundance of a species if p < 0.05.  

Correlation of Fungal Abundance to Immune Infiltration 

 The CIBERSORTx [44] tool was used to calculate the estimated relative immune 

cell infiltration levels for 22 cell types. CIBERSORTx is a digital cytometry tool that 

allows calculation of cell type abundance in bulk tissue data. It uses a reference matrix to 
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make an estimation of cell abundance in given samples. The “Impute Cell Fractions” 

feature was used to determine relative cell levels. Fungal abundance was then correlated 

with immune cell infiltration levels for each fungal species. Fungal abundance was set as 

a high (above median) and low (below median). Naïve B-cells, memory B-cells, plasma 

cells, CD8 T=cells, CD4 naïve T-cells, CD4 memory resting T-cells, CD4 memory 

activated T-cells, follicular helper T-cells, regulatory T-cells, gamma-delta T-cells, 

resting NK cells, activated NK cells, monocytes, M0-M2 macrophages, resting dendritic 

cells, activated dendritic cells, resting mast cells, activated mast cells, eosinophils, and 

neutrophils were examined. 

Correlation of Fungal Abundance to Inflammasome-Related Pathways 

 Gene Set Enrichment Analysis (GSEA) software [43] was used to identify fungi 

associated with dysregulation of inflammasome-related pathways. Microbes with less 

than half non-zero values were eliminated, while those with more than half non-zero 

values were inputted as a continuous variable for the phenotype file. The log counts per 

million (CPM) file with gene expression values was used for the expression file. Next, 

microbe abundance was correlated to gene expression using Pearson correlations for the 

continuous phenotype data. Four inflammasome related pathways were studied to 

specifically find gene sets of significance. These pathways were downloaded from the 

Molecular Signatures Database [42], and included REACTOME_INFLAMMASOMES 

[45] and REACTOME_THE_NLRP3_INFLAMMASOME [46]. A p < 0.05 threshold 

was used to define significant pathways. 
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Chapter 3 Results 

Data acquisition and extraction of fungal reads 

 TCGA mRNA sequencing data was processed through Pathoscope 2.0 to align 

and quantify fungal species reads for head and neck squamous cell carcinoma (HNSC) 

and lung squamous cell carcinoma (LUSC) patient tissue samples (Figure 1). All samples 

were collected during surgery with no prior treatment such as chemotherapy, radiation, or 

immunotherapy. A total of 555 HNSC and 539 LUSC samples were downloaded. Of 

these, 513 primary tumor samples and 41 solid tissue normal samples of HNSC were 

included for further analysis, while 1 metastatic tumor sample was not included. In 

addition, 488 primary tumor samples and 51 solid tissue normal samples of LUSC were 

also included. A reference file was created from the NCBI database for all fungal species 

available. After performing Pathoscope alignment and quantification, a combined matrix 

of the Best Hit values was compiled consisting of microbe abundance for 9,360 fungal 

species for HNSC, and 9,738 fungal species for LUSC. The Best Hit data was normalized 

using the Voom function in R to create a log transformed file with counts. 
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Figure 1 Schematic of the project’s workflow. Data were obtained from The Cancer 
Genome Atlas (TCGA) for head and neck squamous cell carcinoma (HNSC) and lung 
squamous cell carcinoma (LUSC) tumor and adjacent solid tissue normal samples. 
Fungal species information was downloaded from the National Center for Biotechnology 
Information’s (NCBI) taxonomy database and used to extract data through Pathoscope 
software.  
 
Contamination Correction 

 Contamination in TCGA RNA-seq data can arise from internal or external 

contaminants. Contamination corrections methods used to remove contamination bias 

included multiple steps. First, a literature search was performed to classify and remove 

known fungal contaminants in laboratory settings. Using this information, fungal 

contaminant species including Rhizopus, Fusarium, and Cladosporium [47, 48] were 

removed from further analysis [47, 48]. In addition, seven species of the genus were also 

removed (Table S1). Next, the R package decontam [49] was used to identify and remove 

contaminants from the data with a threshold of 0.1. A total of 35 species (Table S2) were 

identified as potential contaminants through this process and removed from the data. By 
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meticulously identifying and removing potential contaminants, the overall bias of these 

fungal species on the results was reduced.  

Differential fungal abundance between cancer and normal samples 

Fungi that are associated with cancer progression may have different abundances 

in cancer tissue than they do in normal tissue. I used the Kruskal-Wallis test to analyze 

the relationship between the distribution of fungal abundances and the presence or 

absence of cancer. Fungi were considered significantly differentially abundant if p < 

0.05. In all, 33 fungi were found to be significantly differentially abundant in HNSC 

tumor samples compared with adjacent normal tissue. Of these, only two fungi had 

higher abundances in normal tissue compared with cancer tissue, and 31 had higher 

abundances in cancer tissue compared with normal tissue. Fifty-one fungi were found to 

be significantly differentially abundant in LUSC tumor samples compared with adjacent 

normal tissue. Of these, 18 fungi had higher abundances in normal tissue compared with 

cancer tissue, and 33 had higher abundances in cancer tissue compared with normal 

tissue.  

Four fungi were significantly differentially abundant in both HNSC and LUSC: 

Saccharomyces cerevisiae, Kappamyces sp. PL-117, Saccharomyces cerevisiae N85, and 

Microallomyces dendroideus (Figure 2). Microallomyces dendroideus, Saccharomyces 

cerevisiae N85, and Kappamyces sp. PL-117 all have lower abundance in normal tissue 

compared to cancer tissue in both LUSC and HNSC. Saccharomyces cerevisiae has lower 

abundance in cancer tissue compared with normal tissue. Thus, of the four fungi 

significantly differentially abundant in both HNSC and LUSC, all are differentially 

abundant in a direction that is consistent between the two cancers. 
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Figure 2 Correlation of differentially abundant fungal species to sample type. (A) Box 
plots showing correlation of fungal abundance to sample type primary tumor and solid 
tissue normal for HNSC patients. (B) Box plots showing correlation of fungal abundance 
to sample type primary tumor and solid tissue normal for LUSC patients. Outliers are 
represented by °. Box plots were created using Kruskal-Wallis Test with p < 0.05 
considered to be significant. 
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Regression to determine the relationship between fungal abundance and patient survival. 

Fungal abundance was considered to be significantly associated with survival if p < 0.05. 

In HNSC, 38 fungi were found to be significantly associated with patient survival. Of 

these, 36 fungi tended to be present in lower abundances in patients with higher survival, 

and two fungi tended to be present in higher abundances in patients with higher survival. 

Four of the fungi that were significantly associated with patient survival were also 

significantly differentially abundant. These were Schizosaccharomyces pombe, Cotylidia 

undulata, an uncultured Penicillium, and Pneumocystis carinii. All four of these fungi 

tended to have higher abundances in patients with lower survival and had higher 

abundances in cancer tissue than normal tissue (Figure 3A). 

In LUSC, 15 fungi were found to be significantly associated with patient survival. 

Of these, six fungi tended to be present in lower abundances in patients with higher 

survival, and nine fungi were present in higher abundances in patients with higher 

survival (Figure 3B). Three fungi, Saccharomyces cerevisiae N85, Zygosaccharomyces 

bailii CLIB 213, and Inosperma maculatum were significantly differentially abundant 

and associated with survival in LUSC. All three fungi had higher abundances in patients 

with lower survival and had higher abundances in cancer tissue compared with normal 

tissue. 

There were fungi associated with patient survival in both cancers. However, a 

greater variety of fungi were associated with survival of HNSC patients than that of 

LUSC patients. Almost all fungi associated with survival of HNSC patients had higher 

abundances in patients with lower survival rates. In contrast, there were substantial 

portions of fungi associated with survival of LUSC patients with higher abundances and 
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lower abundances in patients with lower survival rates. This indicates that beneficial 

fungi may play a larger role in LUSC survival than HNSC survival. 

 

 

Figure 3 Correlation of fungal abundance in HNSC and LUSC cohorts to patient 
survival. (A) Kaplan–Meier plots of fungal abundance in HNSC samples to patient 
survival. (B) Kaplan–Meier plots of fungal abundance in LUSC samples to patient 
survival. The Cox proportional hazards regression model (p < 0.05) was used to 
determine fungi correlated with survival. 
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Correlation of fungal abundance to clinical variables 

There are many aspects of cancer outcomes other than patient survival. Clinical 

variables can describe aspects of the cancer such as tumor size, metastasis, and spread to 

lymph nodes. I then used the Kruskal-Wallis test to examine the association between 

fungal abundances and nine clinical variables. Fungal abundances were considered 

significantly associated with a clinical variable if p < 0.05. The clinical variables 

examined were pathologic T, pathologic N, pathologic M, neoplasm status, race, gender, 

tobacco/smoking history, alcohol consumption, and HPV status. Fungal abundances in 

HNSC samples were tested against all nine variables. LUSC samples did not have data 

available on alcohol consumption and HPV status, so fungal abundances were only tested 

against the other seven variables. 

In HNSC samples, alcohol consumption data was separated into four categories 

by dividing into quartiles. The quartiles for the dataset were 1, 6 and 7 for the first, 

second and third quartiles. For HNSC, the greatest number of fungi had significant 

associations with alcohol consumption at 53. Forty-one fungi were significantly 

associated with tobacco/smoking history, 40 with HPV status, 30 with pathologic N, 21 

with race, and 20 with neoplasm status. No fungi were found to be significantly 

associated with pathologic M, pathologic M, or gender (Figure 4A). Saccharomyces 

cerevisiae N85, a differentially abundant fungi, was correlated with HPV status. 

Schizosaccharomyces pombe, another differentially abundant fungi, was also found to be 

correlated to HPV status and smoking/tobacco use. This fungus was also found to be 

significantly associated with patient survival. Pseudogymnoascus destructans 20631-21, 

which was previously found to be associated with patient survival, was also found to be 
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associated with HPV status and alcohol consumption. Kappamyces sp. PL-117 and 

Teratosphaeria gauchensis, both differentially abundant fungi, were found to be 

associated with pathologic N. Teratosphaeria gauchensis was also significantly 

correlated with alcohol consumption. Lachanea thermotolerans, previously correlated 

with survival, was also found to be correlated with pathologic N (Figure 4B). 

In LUSC samples, the greatest number of fungi had significant associations with 

race at 141. Ninety-eight fungi were significantly associated with tobacco/smoking 

history, 59 with pathologic N, 41 with neoplasm status, and 13 with pathologic T. The 

fewest fungi were significantly associated with pathologic M and gender at 11 each 

(Figure 4A). Uncultured Cryptomycota and Zygosaccharomyces bailii CLIB-213 were 

differentially significantly abundant fungi associated with pathologic N. In addition, 

Uncultured Cryptomycota was also correlated to patient smoking/tobacco use, whereas 

Zygosaccharomyces bailii CLIB-213 was also correlated with patient race. It was also 

correlated with patient survival. Neurospora discreta, previously found to be 

differentially significantly abundant was also correlated with survival and pathologic N. 

Naganishia albida was found to be associated with survival, and with race, while 

Saccharomyces cerevisiae N85 was not only differentially significantly abundant, but 

also correlated to patient survival and race. Zygosaccharomyces rouxii was differentially 

significantly abundant fungi correlated with pathologic M (Figure 4C). 

Race, gender, and tobacco/smoking history tended to play a larger role in the 

fungal microbiome of tumors in LUSC patients than in HNSC patients. In contrast, 

alcohol consumption and HPV status tended to play a larger role in the fungal 

microbiome of tumors in HNSC than in LUSC. 
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Figure 4 Correlation of differentially abundant fungi to clinical variables. (A) Bar plot of 
the number of fungi correlated to clinical data including pathologic T, pathologic N, 
pathologic M, neoplasm status, race, gender, smoking/tobacco history, and frequency of 
alcohol consumption. (B) Box plots showing correlation of fungi to pathologic N and 
HPV status for HNSC cancer samples. (C). Box plots showing correlation of fungi to 
Pathologic N, race, and Pathologic M for LUSC cancer samples. Outliers are represented 
by °. Box plots were created using Kruskal-Wallis Test with p < 0.05 considered to be 
significant. 
 
  



 23 

 

 

 

 

 

 

 

Pathologic
T

Pathologic
N

Pathologic
M

Neoplasm
Status Race Gender

Tobacco/S
moking
History

Alcohol
Consumpti

on
HPV

HNSC 0 30 0 20 21 0 41 53 40
LUSC 13 59 11 41 141 11 98 0 0

0

20

40

60

80

100

120

140

160

N
um

be
r o

f F
un

gi
Number of Fungi Correlated to Clinical Variables

negative positive

4
6

8
10

12
14

16

hpv_status

Sa
cc

ha
rom

yc
es 

ce
rev

isi
ae

 N
85

negative positive

12
13

14
15

16
17

hpv_status

Sc
hiz

os
ac

ch
aro

my
ce

s p
om

be

negative positive

0
5

10
15

hpv_status

3V
HX
GR
J\
PQ
RD
VFX
V�G
HVW
UX
FWD
QV
���
��
�ï
��

n0 n1 n2 n3

2
4

6
8

10

pathologic_n

.D
SS
DP
\F
HV�
VS
��3
/ï
��
�

n0 n1 n2 n3

6
8

10
12

pathologic_n

Te
ra

tos
ph

ae
ria

 ga
uc

he
ns

is

n0 n1 n2 n3

2
4

6
8

10
12

14

pathologic_n

La
ch

an
ce

a t
he

rm
oto

ler
an

s

Negative                        Positive Negative                        PositiveNegative                        Positive
HPV Status HPV Status HPV Status

n0               n1               n2               n3 n0               n1               n2               n3 n0               n1               n2               n3
Pathologic N Pathologic N Pathologic N

Sa
cc

ha
ro

m
yc

es
 c

er
ev

is
ia

e 
N

85

Sc
hi

zo
sa

cc
ha

ro
m

yc
es

 p
om

be

P.
 d

es
cr

uc
ta

ns
 2

06
31

-2
1

K
ap

pa
m

yc
es

 sp
. P

L-
11

7

Te
ra

to
sp

ha
er

ia
 g

au
ch

en
si

s

La
ch

an
ce

a 
th

er
m

ot
ol

er
an

s

B
p = 0.0114 p = 0.0030 p = 5.5069e-05

p = 0.0301 p = 0.0086

p = 0.0114

2 
   

   
4 

   
   

6 
   

   
8 

   
   

10
   

  1
2 

   
14

2 
   

   
   

 4
   

   
   

  6
   

   
   

  8
   

   
   

  1
0

12
   

   
13

   
   

14
   

   
15

   
   

 1
6 

   
  1

7

5 
   

   
   

   
 1

0 
   

   
   

   
  1

5

2 
   

   
   

   
4 

   
   

   
   

6 
   

   
   

   
8

2 
   

   
4 

   
   

6 
   

   
8 

   
  1

0 
   

 1
2 

   
 1

4

A 



 24 

Figure 4 continued 

 

Correlation of Fungal Abundance to Significant Genes 

Inflammasome-associated genes are very commonly dysregulated in cancer. 

Having found fungi significantly associated with different types of cancer outcomes, I 

wanted to investigate if the dysregulation of inflammasome genes could explain these 

associations. I used Spearman’s rank correlation to find monotonic relationships between 

fungal abundances and the expressions of inflammasome-associated genes (Table S3). 

There were 26 inflammasome-associated genes correlated with the abundances of at least 

20 fungi between both cancers. These genes are AIM2, APP, CASP, CASP4, CASP7, 

CIITA, HSP90AB1, IFI16, IL18, IL1RL1, IL33, MEFV, NAIP, NLRC4, NLRC5, 

NLRP1, NLRP12, NLRP2, NLRP3, NLRP6, NLRP7, PSTPIP1, TLR7, TNF, TOLLIP, 

and TXN (Figure 5A). 
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The five genes correlated with the greatest number of fungi in HNSC samples 

were APP with 179 fungi, TXN with 155 fungi, CASP with 93 fungi, NAIP with 70 

fungi, and NLRP6 with 66 fungi. APP expression was positively correlated with 

abundance of both Saccharomyces cerevisiae and Saccharomyces cerevisiae N85. TXN 

was positively correlated with the abundance of Kappamyces sp. PL-117. 

Schizosaccharomyces pombe was a fungal species found to be correlated with the 

expression of several genes. It was negatively correlated with the expression of CASP4 

and NLRP1, and positively correlated with the expression of NLRP6 (Figure 5B). 

The five genes correlated with the greatest number of fungi in LUSC samples 

were IL1RL1 with 166 fungi, IL33 with 86 fungi, NLRC4 with 79 fungi, NLRP2 with 74 

fungi, and CIITA with 57 fungi (Figure 5A). IL33 expression was positively correlated 

with abundance of Hyaloraphidium curvatum. The same fungus was also negatively 

correlated with expression of TXN. NLRC4 was positively correlated with abundance of 

Ogateae ramenticola. TXN expression was also positively correlated with abundance of 

Kappamyces sp. PL-117 (Figure 5C). 

Both HNSC and LUSC samples had positive and negative correlations between 

fungal abundances and expression of inflammasome genes, which is consistent with the 

hypothesis that fungi influence cancer outcomes by dysregulating inflammasome genes. 
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Figure 5 Correlation of differentially expressed inflammasome-related genes to fungal 
abundance. (A)  Bar plot of the number of fungi correlated with inflammasome-related 
genes. Inflammasome-related genes with a minimum of 20 correlated fungi included in 
the plot. (B) Scatter plots showing correlation of inflammasome-related genes to fungal 
abundance for HNSC cancer samples. (C) Scatter plots showing correlation of 
inflammasome-related genes to fungal abundance for LUSC cancer samples. Each ° 
represents a tissue sample. Lines on the plot are lines of best fit. Significant correlations 
determined by p < 0.05. 
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Figure 5 continued 
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Figure 5 continued 

 

 
Correlation of Fungal Abundance to Immune Infiltration 

Infiltration of immune cells into a tumor is often predictive of cancer outcomes. I 

therefore wanted to determine the association between fungal abundances and immune 

infiltration. I used CIBERSORTx software to determine the immune cell populations 

from tissue samples, and I used the Kruskal-Wallis test to examine the association 

between fungal abundances and the infiltration of 22 immune cell types. Of these 22 cell 
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types, 20 were associated with fungal abundances. In HNSC samples, the infiltration of 

resting CD4 T cells was associated with the greatest variety of fungi at 139. The immune 

cell types with infiltration values associated with the next greatest variety of fungal 

abundances were M2 macrophages with 77, activated mast cells with 57, neutrophils with 

49, and activated NK cells with 43. In LUSC samples, the infiltration of B cells was 

associated with the greatest variety of fungal species at 125, followed by M0 

macrophages at 93, resting NK cells at 72, mast cells at 59, and eosinophils at 47 (Figure 

6A). 

In HNSC samples, M2 macrophages tended to have higher tumor infiltration in 

samples with higher Teratosphaeria gauchensis abundance. Teratosphaeria gauchensis 

also had higher abundances in samples with greater infiltration of resting CD4 memory T 

cells. Pneumocystis carinii tended to have lower abundances in samples with lower 

infiltration of both M0 macrophages and resting CD4 memory T cells. Saccharomyces 

cerevisiae N85 had higher abundances in samples with greater infiltration of monocytes, 

M0 macrophages, and M2 macrophages. Saccharomyces cerevisiae had lower 

abundances in samples with greater infiltration of T follicular helper cells (Figure 6B). 

In LUSC samples, resting NK cells tended to have lower tumor infiltration in 

samples with higher abundances of Ogataea ramenticola and Hyaloraphidium curvatum. 

M0 macrophages tended to have lower tumor infiltration in samples with higher 

abundances of Z. bailii CLIB 213 and Hyaloraphidium curvatum. T. versicolor FP-

101664 SS1 had higher abundances in samples with greater infiltration of CD8 T cells. 

Piromyces sp. E2 had lower abundances in patients with greater infiltration of M1 

macrophages (Figure 6C). 
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Both HNSC and LUSC samples had fungi with increased abundance associated 

with increased and decreased infiltration of different immune cell types. This indicates 

that influencing immune cell infiltration is a plausible mechanism by which fungal 

abundances could influence the cancer immune response and cancer outcomes.  
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Figure 6 Correlation of fungal abundance to immune cell populations. (A) Bar plot of the 
number of fungi correlated to immune cell types. (B) Box plots showing correlation of 
fungal abundance to immune cell types in HNSC. (C) Box plots showing correlation of 
fungal abundance to immune cell types in LUSC. The outliers have been represented by 
°. Cibersortx was used to estimate immune cell populations in patient samples, and 
thereafter, Kruskal-Wallis test was used to find associations between immune cell types 
and fungal abundance. Significant correlations determined by p < 0.05. 
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Figure 6 continued 
 

 
 
 
Correlation of Fungal Abundance to Inflammasome-Related Pathways 

Many inflammasome genes are part of gene pathways. Looking at the overall 

enrichment of a pathway may elucidate relationships that would not be made clear by 

focusing on a single gene. I used gene set enrichment analysis (GSEA) to determine the 

association between fungal abundances and the enrichment of inflammasome-associated 

gene sets. In HNSC samples, seven fungi were significantly associated with the 

enrichment of inflammasome gene sets. In LUSC, 17 fungi were significantly associated 

with enrichment of inflammasome gene sets. In both HNSC and LUSC, only two gene 

sets were found to be significantly associated with fungi. These were 

REACTOME_INFLAMMASOMES [45] and 

REACTOME_THE_NLRP3_INFLAMMASOME [46]. 

In HNSC patients, abundance of Renispora flavissima tended to be higher when 

REACTOME_INFLAMMASOMES was enriched. Abundance of Monascus pilosus 

tended to be higher when REACTOME_THE_NLRP3_INFLAMMASOME was 
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enriched (Figure 7A). In LUSC patients, abundance of Arthrobotrys iridis tended to be 

lower when REACTOME_THE_NLRP3_INFLAMMASOME was enriched. Abundance 

of Syncephalastrum monosporum var. pluriproliferum tended to be higher when 

REACTOME_THE_NLRP3_INFLAMMASOME was enriched (Figure 7B). 

 

Figure 7 The association of fungal abundance to inflammasome-related pathways using 
GSEA (p < 0.05). (A) Enrichment plots showing upregulated pathways in HNSC. (B) 
Enrichment plots showing downregulated (first plot) and upregulated pathways in LUSC. 
  

p = 0.029

Renispora flavissima Monascus pilosus T. blattae CBS 6284 T. blattae CBS 6284

A

B

p = 0.027 p = 0.012 p = 0.027

p = 0.019 p = 0.004 p = 0.026 p = 0.015

Arthrobotrys iridis            Syncephalastrum monosporum 
                      var. pluriproliferum

            Syncephalastrum monosporum 
                      var. pluriproliferum

Pneumocystis carinii
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Chapter 4: Discussion 

Cancers are a group of diseases that involve rapid, uncontrolled cell 

division.  While we have learned much about the role of gene dysregulation in 

tumorigenesis, and major signaling pathways associated with cancer, many aspects of the 

disease are only now being considered. The role of the microbiome in cancer, for 

instance, has been studied in the last two decades and our understanding of the bacterial 

microbiome, and that of virus-associated cancers has also improved. The fungal 

mycobiome deserves our attention both in terms of identifying direct drivers of cancers as 

well as fungi that might be potential biomarkers of cancer and those that might be 

opportunistic in cancer patients. 

Since fungal pathogen associated molecular patterns or PAMPs trigger the 

activation of inflammasomes, this is one area that deserves a closer look. If fungi were 

influencing cancer outcomes by dysregulating inflammasome genes, one would expect to 

find fungi that were differentially abundant in cancer tissue compared to normal tissue. 

One would also expect to find fungi with abundances associated with important cancer 

outcomes such as survival, pathologic T, pathologic M, and pathologic N. In addition, 

one would expect to find fungal abundances correlated with dysregulation of 

inflammasome genes and pathways. Identifying gene dysregulation of inflammasome-

related genes and their correlations to fungal abundance can help elucidate important 

fungi and inflammasome-related genes in cancer. In this study, I investigated the 

mycobiome and the dysregulation of inflammasome-related genes in cancer. I found 

many fungi to be differentially significantly abundant in both HNSC and LUSC samples. 

Further analysis showed correlations between fungi and survival and clinically significant 
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factors. I also found multiple fungal species correlated to inflammasome-related genes, 

infiltration of immune cell types, and fungi that were correlated to inflammasome-related 

pathways.  

Differential abundance analysis of HNSC and LUSC samples yielded 33 and 51 

significant correlations respectively. Multiple fungi were found to be not only 

differentially significantly abundant, but also associated with patient survival, clinical 

variables, inflammasome-related genes, and the infiltration of immune cells. These fungi 

are of particular interest in the context of the mycobiome and immune response in HNSC 

and LUSC. 

Saccharomyces cerevisiae was differentially abundant in both HNSC and LUSC, 

indicating that it could play a role in cancer. It had lower median abundance in cancer 

tissue than in adjacent normal tissue. This relationship was true in both HNSC patients 

and LUSC patients. This suggests that greater S. cerevisiae abundances are associated 

with decreased HNSC and LUSC cancer progression. However, in HNSC samples, S. 

cerevisiae abundance was correlated with expression of the APP gene, which is 

associated with cell growth and proliferation. Furthermore, HNSC patients with greater S. 

cerevisiae abundances had lower median tumor infiltration of T follicular helper cells 

than did HNSC patients with higher S. cerevisiae abundances. Infiltration of T follicular 

helper cells has been associated with better cancer outcomes and survival [50, 51]. If 

increased S. cerevisiae abundance did indeed decrease cancer progression, these results 

would be unexpected. Thus, the relationship between S. cerevisiae abundance and cancer 

progression is unclear. However, several strains of S. cerevisiae were also identified as 

being associated with cancer. 
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Saccharomyces cerevisiae N85 was also differentially abundant in both HNSC 

and LUSC cancer samples compared with adjacent normal tissue. This means that it 

could play a role in cancer and is a good candidate for further exploration. S. cerevisiae 

N85 had lower median abundances in normal tissue than cancer tissue. The fact that the 

direction of the association was the same in both HNSC and LUSC supports the case that 

S. cerevisiae N85 is associated with cancer progression. Furthermore, higher abundances 

of S. cerevisiae N85 were found to be associated with decreased survival in LUSC 

patients. This also supports the case that S. cerevisiae N85 is associated with cancer 

progression and shows that this fungus is associated with worse cancer outcomes. S. 

cerevisiae N85 was also positively correlated with expression of APP in HNSC patients. 

The APP gene is part of the NLRP3 inflammasome pathway, and it has been shown to be 

positively associated with increased cell growth and proliferation.  Furthermore, higher 

abundances of S. cerevisiae N85 was associated with higher infiltration of monocytes, 

M0 macrophages, and M2 macrophages in HNSC. M2 macrophages are 

immunosuppressive and could therefore contribute to decreasing the immune response to 

the tumor. Together, these data suggest that higher S. cerevisiae N85 abundances 

contribute to progression of HNSC and lower survival of HNSC patients by upregulating 

APP and increasing tumor infiltration of M2 macrophages. 

Another fungus that was differentially abundant in both HNSC and LUSC cancer 

tissue compared with normal tissue was Kappamyces sp. PL-117. Like S. cerevisiae N85, 

Kappamyces sp. PL-117 had lower median abundances in normal tissue than cancer 

tissue. Once again, the direction of the association was the same between the two cancers, 

supporting the conclusion that an association exists between increased Kappamyces sp. 
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PL-117 abundance and cancer progression. Kappamyces sp. PL-117 abundance was also 

found to be associated with pathologic N in HNSC patients. Pathologic N is a measure of 

the spread of cancer to lymph nodes. HNSC patients in the group with the greatest spread 

of cancer to lymph nodes had the highest median Kappamyces sp. PL-117 abundance. 

Kappamyces sp. PL-117 abundance was positively correlated with TOLLIP expression in 

HNSC. TOLLIP is a gene that regulates inflammatory signaling. Increased TOLLIP 

expression has been found to promote inflammation-associated colorectal cancer [52]. 

Kappamyces sp. PL-117 abundance was also positively correlated with TXN expression. 

This positive correlation is present in both HNSC and LUSC. TXN is important for 

activation of the NLRP3 inflammasome and NF-κB binding of DNA [53]. Increased 

TXN expression is also associated with worse prognosis in clear cell renal cell carcinoma 

[54]. Therefore, increased Kappamyces sp. PL-117 abundance may lead to cancer 

progression and worse cancer outcomes through upregulation of TXN and TOLLIP. 

Pneumocystis carinii (also known as Pneumocystis jirovecii) is a fungus that 

causes Pneumocystis pneumonia or PCP. This is a dangerous infection especially in 

people with HIV/AIDS and other immunocompromised individuals. This fungus was 

differentially abundant in HNSC. P. carinii had a higher median abundance in HNSC 

cancer samples than in adjacent normal tissue. This suggests that increased P. carinii 

abundances contribute to cancer progression. This is supported by the fact that HNSC 

patients with high abundances of P. carinii tended to have lower survival than those with 

low P. carinii abundances. P. carinii abundance in HNSC patients was also correlated 

with expression of TXN. HNSC patients with higher P. carinii abundances also had 

lower median tumor infiltration of both M0 macrophages and resting CD4 memory cells. 
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Together, these findings suggest that increased P. carinii abundances in HNSC decrease 

patient survival and contribute to cancer progression by upregulating TXN and 

decreasing infiltration of M0 macrophages and resting CD4 memory cells. Additionally, 

the REACTOME_INFLAMMASOMES pathway tended to be enriched in LUSC patients 

with higher P. carinii abundances. 

Schizosaccharomyces pombe was another fungus found to be differentially 

abundant in HNSC patients. It had higher median abundance in cancer tissue compared to 

adjacent normal tissue, indicating that increased abundance is associated with cancer 

progression. HNSC patients with higher S. pombe abundances also tended to have lower 

survival than those with lower S. pombe abundances, so increased S. pombe abundance is 

associated with worse cancer outcomes. S. pombe abundance was negatively correlated 

with CASP4 expression. CASP4 is important to the activation of the NLRP3 [55] and 

NLRP6 [56] inflammasome. Additionally, activation of CASP4 can induce pyroptosis 

[57] and apoptosis [58]. S. pombe abundance was also negatively correlated with 

expression of NLRP1 and positively correlated with expression of NLRP6. NLRP1 is 

important for the inflammation and pyroptosis responses. Decreased expression of 

NLRP1 has been found to be associated with poor cancer prognosis, but NLRP1 has also 

been shown to promote tumor growth and suppress apoptosis [59]. Together, these results 

suggest that increased S. pombe abundance could lead to worse cancer outcomes in 

HNSC patients by downregulating expression of CASP4 and possibly NLRP1. However, 

S. pombe was also associated with HPV status and smoking status. Patients who were 

HPV positive tended to have higher S. pombe abundances than those who were HPV 

negative. Smoking patients also tended to have higher S. pombe abundances than 
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nonsmoking patients. Thus, the decreased patient survival and gene dysregulations may 

simply be linked to HPV infection or smoking rather than S. pombe abundance. 

Teratosphaeria gauchensis abundance was associated with pathologic N stage in 

HNSC patients. Patients in the group with the greatest spread of cancer to lymph nodes 

had a higher median T. gauchensis abundance than did other groups. Thus, T. gauchensis 

could contribute to cancer spread. Abundance of T. gauchensis was also positively 

correlated with expression of NLRC4 in HNSC samples. This gene has been found to be 

upregulated in some cancers and downregulated in others [60]. Additionally, HNSC 

patients with higher abundances of T. gauchensis had greater median tumor infiltration of 

M2 macrophages, which could decrease the immune response to the tumor. However, 

patients with higher abundances of T. gauchensis also had greater median tumor 

infiltration of resting CD4 memory cells. Overall, these results suggest that increased T. 

gauchensis abundance could contribute to HNSC progression and spread by upregulating 

NLRC4 and increasing tumor infiltration of M2 macrophages. 

Ogatea ramenticola, a methylotropic yeast, was a fungus found to be 

differentially abundant in LUSC patients. It had higher median abundance in cancer 

samples than adjacent normal samples, so increased O. ramenticola abundance is 

associated with cancer progression. LUSC patients with high O. ramenticola abundances 

had greater resting NK cell infiltration and lower resting CD4 memory cell infiltration 

than patients with lower O. ramenticola abundances. Abundance of O. ramenticola was 

positively correlated with expression of NLRC4. NLRC4 has been found to be 

upregulated in some cancers and downregulated in others [5]. Therefore, increases in O. 

ramenticola abundance could contribute to LUSC by upregulating NLRC4. 
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LUSC patients with high abundances of Zygosaccharomyces bailii CLIB 213 

tended to have lower survival rates than those with lower abundances. Z. bailii CLIB 213 

abundance was also significantly associated with pathologic N stage in LUSC patients. 

Patients in the group with the greatest spread of cancer to lymph nodes had a higher 

median Z. bailii CLIB 213 abundance than did other groups. Patients with higher 

abundances of Z. bailii CLIB 213 also tended to have lower tumor infiltration of M0 

macrophages than those with lower abundances. Together, these results indicate that 

increased Z. bailii CLIB 213 abundance is associated with worse LUSC outcomes and 

survival. Z. bailii CLIB 213 could contribute to cancer progression and decrease patient 

survival by decreasing infiltration of M0 macrophages and increasing spread of cancer to 

lymph nodes. 

Another fungus significantly associated with patient survival was Inosperma 

maculatum. LUSC patients with high abundances of I. maculatum tended to have lower 

survival than those with lower I. maculatum abundances. I. maculatum abundance was 

also positively correlated with NFKB1 expression in LUSC samples. NFKB1 codes for a 

subunit of the NF-κB protein complex, which is involved in regulation of cell survival 

and inflammation and has been found to be upregulated in cancer [61]. NF-κB has also 

been found to promote proliferation, cell survival, and angiogenesis in cancers [62]. 

However, LUSC patients with higher abundances of I. maculatum had lower median 

tumor infiltration of M2 macrophages than patients with lower I. maculatum abundances. 

M2 macrophages tend to be immunosuppressive. Overall, however, the results suggest 

that increased I. maculatum abundances could contribute to lower LUSC survival rates by 

upregulating NFKB1. 
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These results indicate that multiple fungal species are statistically associated with 

HNSC and LUSC cancer landscape. The study found four fungi that were significant to 

both cancers, and several more that were unique to each cancer. In addition, I found these 

differentially abundant fungi to be correlated with inflammasome-related genes, fitting 

the hypothesis that inflammasomes are key factors in the immune response to fungi and 

the development of cancer. However, these results could also be explained by differential 

abundance of fungi arising from changes in the cancer microenvironment. For example, if 

fungal growth is substantially changed in hypoxic or inflamed tissue, then presence of 

cancer can influence fungal growth. This could also explain the correlations between 

cancer outcomes and fungal abundance. Future experiments could therefore focus on 

elucidating the extent to which differential fungal abundances influence cancer outcomes 

and cancer outcomes influence fungal growth. Another question raised by these results is 

whether the dysregulation of inflammasome genes is primarily in tumor cells or in 

infiltrating immune cells. The fungi and inflammasome-related genes found significant in 

this study can thus be used in future mechanistic studies of pathogen-gene interactions. 
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Appendix 

Table S1: List of Asperigillus fungi identified as potential laboratory fungal 
contaminants. 
 

NCBI Taxonomy ID – 

Contaminants 

Fungus Name 

ti.176178 Aspergillus pseudodeflectus 

ti.510516 Aspergillus oryzae RIB40 

ti.341663 Aspergillus terreus FGSC A1156 

ti.344612 Aspergillus clavatus NRRL 1 

ti.331117 Aspergillus fischeri NRRL 181 

ti.330879 Aspergillus fumigatus Af293 

ti.227321 Aspergillus nidulans FGSC A4 
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Table S2: List of fungi identified as potential contaminants by R package decontam. 

Taxonomy ID – List of Contaminants 

Identified by decontam Package 

Fungus Name 
ti.5007 Brettanomyces bruxellensis  

 ti.1280837 Meira miltonrushii 
 ti.40135 Nosema bombi 
 ti.5158 Ceratocystis fimbriata  
 ti.1305999 fungal sp. JF58 
 ti.1294372 Saccharomyces cerevisiae YJM1439 
 ti.28550 Schwanniomyces etchellsii 
 ti.178527 Boletopsis leucomelaena 
 ti.290209 Dacrymyces sp. FPL8953 
 ti.253819 uncultured Agaricomycetes 
 ti.1294317 Saccharomyces cerevisiae YJM627 
 ti.87269 Umbilicaria rossica 

 
 

ti.379019 Sordaria sp. JP63 
 ti.1049725 uncultured Glomeraceae 
 ti.1305977 fungal sp. JF38 
 ti.1305991 fungal sp. JF50 

 
 

ti.1294368 Saccharomyces cerevisiae YJM1418 
 ti.984090 Mallocybe pygmaea 
 ti.747082 uncultured Pichia 
 ti.164538 Tetracladium marchalianum 
 ti.191512 Anaeromyces sp. W-98 
 ti.1434223 Parateratosphaeria bellula 
 ti.310488 Arthroderma melis 

 
 

ti.80646 Boletinellus merulioides 
 ti.86052 Neophaeococcomyces catenatus  
 ti.1636276 Pochonia sp. CBS 634.75 
 ti.1266744 Talaromyces purpureogenus 
 ti.5507 Fusarium oxysporum  
 ti.72558 Sporisorium reilianum 
 ti.1056129 Brachyalara straminea 
 ti.34458 Ganoderma boninense 
 ti.311114 Torpedospora radiata 
 ti.78921 Tieghemiomyces parasiticus 
 ti.530120 Parasola lilatincta 
 ti.5191 Ascobolus immersus 
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Table S3: List of Inflammasome-Related genes included in analyses. 

AIM2 

APP 

ASC 

BLC2 

BLC2L1 

CARD8 

CASP1 

CASP4 

CASP5 

CASP7 

CASP8 

CIITA 

HBR3 

HSP90AB1 

IFI16 

IFNB1 

IL18 

IL1B 

IL1RL1 

IL33 

IPAF 

MEFV 

NACHT 

NAIP 

NEK7 

NFKB1 

NFKB1A 

NFKB2 

NLR1 

NLRA 

NLRB 

NLRC2 

NLRC4 

NLRC5 

NLRP1 

NLRP1-13 

NLRP12 

NLRP2 

NLRP3 

NLRP6 

NLRP7 

NLRX1 

NOD1 

NOD2 

P2RX7 

PANX1 

PSTPIP1 

PYCARD 

PYD 

PYHIN 

RELA 

RIG1 

SUGT1 

TLR1 

TLR7 

TNF 

TNFAIP3 

TOLLIP 

TXN 

TXNIP 

AIM2 
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