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Exploratory Bi-factor Analysis:

The Oblique Case

Robert I. Jennrich and Peter M. Bentler

University of California at Los Angeles

July 12, 2011

Bi-factor analysis is a form of confirmatory factor analysis originally introduced

by Holzinger and Swineford (1937). The bi-factor model has a general factor, a

number of group factors, and an explicit bi-factor structure. Jennrich and Bentler

(2011) introduced an exploratory form of bi-factor analysis that does not require

one to provide an explicit bi-factor structure a priori. They use exploratory factor

analysis and a bi-factor rotation criterion designed to produce a rotated loading

matrix that has an approximate bi-factor structure. Among other things this can

be used as an aid in finding an explicit bi-factor structure for use in a confirmatory

bi-factor analysis. They considered only orthogonal rotation. The purpose of this

paper is to consider oblique rotation and to compare it to orthogonal rotation.

Because there are many more oblique rotations of an initial loading matrix than

orthogonal rotations, one expects the oblique results to approximate a bi-factor

structure better than orthogonal rotations and this is indeed the case. A surprising
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result arises when oblique bi-factor rotation methods are applied to ideal data.

Key words: Bi-factor rotation, general factor, group factor, gradient projection

algorithms, oblique rotation, orthogonal rotation.
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1. Introduction

Bi-factor analysis is confirmatory factor analysis using a factor loading

matrix with a structure of the form

Λ =



∗ ∗ 0

∗ ∗ 0

∗ ∗ 0

∗ 0 ∗

∗ 0 ∗

∗ 0 ∗


More precisely the loadings in the first column are free parameters and after

the first column the loading matrix has at most one free parameter in each

row. In bi-factor analysis the first factor is called a general factor and the

remaining factors are called group factors.

As noted by Jennrich and Bentler (2011) bi-factor analysis is an exten-

sively used form of confirmatory factor analysis. To use bi-factor analysis one

must specify a specific bi-factor structure. An appropriate structure, how-

ever, may be difficult to find. Model building in bi-factor analysis consists

of separating items into groups. This is usually done using prior knowledge

from the field under investigation. But this knowledge is not always available

or perhaps is not complete. In these cases exploratory methods such as the

two-stage Schmid-Leiman (1957) method have been used to aid in defining

the required groups.

More recently Jennrich and Bentler (2011) introduced an exploratory

form of bi-factor analysis. This does not require the specification of a specific
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structure, but is designed to give a rotated loading matrix with an approxi-

mate bi-factor structure that may be used to suggest a specific structure.

Their approach uses exploratory factor analysis with a rotation criterion

that allows arbitrary loadings on the first factor and encourages perfect clus-

ter structure for the loadings on the remaining factors. Their exploratory

bi-factor analysis (EBFA) is simply exploratory factor analysis using a bi-

factor rotation criterion.

As noted by Jennrich and Bentler (2011) the bi-factor model is more gen-

eral than the two stage model on which the Schmid-Leiman method is based.

Because of this one might expect there are examples where exploratory bi-

factor analysis produces a loading matrix that approximates bi-factor struc-

ture much better than the approximation produced by the Schmid-Leiman

method. Jennrich and Bentler show this is indeed the case.

The Jennrich and Bentler paper considered only orthogonal rotation meth-

ods. Here we consider the use of oblique methods. Since the family of oblique

rotations of an initial loading matrix is considerably larger than the family

of orthogonal rotations, the use of oblique rotations should produce loading

matrices that approximate bi-factor structure better than loading matrices

produced by orthogonal rotations and in examples this seems to be the case.

In the oblique case the group factors are correlated among themselves, but

except for very special cases they are uncorrelated with the general factor.
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2. Bi-factor rotation

For an introduction to bi-factor rotation see Jennrich and Bentler (2011).

Bi-factor rotation uses bi-factor rotation criteria. These are criteria that mea-

sure departure from bi-factor structure. More precisely let Λ be an arbitrary

p × k loading matrix. Then B is a bi-factor rotation criterion if B(Λ) ≥ 0

for all Λ and B(Λ) = 0 whenever Λ has bi-factor structure.

If A is an initial loading matrix and Λ̂ is a loading matrix that minimizes

B(Λ) over all rotations Λ of A, then Λ̂ is called a bi-factor rotation of A.

One can use either orthogonal or oblique rotation. In this paper we will

concentrate on the oblique case. In the oblique case the rotation algorithm

produces both a loading matrix Λ̂ and a factor correlation matrix Φ̂.

An analysis using a deviance function to extract an initial loading matrix

A from a sample covariance matrix S followed by a bi-factor rotation of A

is called an exploratory bi-factor analysis (EBFA) of S. In what follows

the deviance function will be the normal deviance function. The gradient

projection algorithms of Jennrich (2001, 2002) are used for orthogonal and

oblique rotation respectively. To deal with local minima each rotation is

the best obtained from 10 random starts, random orthogonal starts in the

orthogonal case and random oblique starts in the oblique case.

We will use a specific bi-factor rotation criterion in most of our examples.

This criterion is based on the quartimin criterion

qmin(Λ) =
1

4

∑
i

∑∑
r 6=s

λirλis
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Let

B(Λ) = qmin(Λ2)

where Λ2 is the sub-matrix of Λ containing all but its first column.

To see that this is a bi-factor rotation criterion note that because

qmin(Λ2) ≥ 0 for all Λ2, B(Λ) ≥ 0 for all Λ. Moreover if Λ has bi-factor

structure Λ2 has perfect cluster structure. When this is the case

qmin(Λ2) = 0 and B(Λ) = 0. It follows from the definition above that B is

a bi-factor rotation criterion.

This criterion is called the bi-quartimin criterion. Note that when the

bi-quartimin criterion is used to rotate a initial loading matrix A it is all of

A and not just a subset of its columns that are rotated just as would be the

case using any other rotation criterion.
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3. Real Data Examples

3.1 Bullying data

The National Council for Drug Control at the Ministry of the Interior in

Chile provides a public use data set on a variety of variables related to drug

use. Among these are 17 variables on bullying and victimization for 1046

school children (CONACE, 2007). 1

A six factor orthogonal EBFA of thse data gave

Λ̂orth =



0.38 0.25 0.04 −0.07 −0.12 −0.01
0.38 0.82 0.09 −0.07 −0.05 0.03
0.57 0.29 −0.06 −0.20 −0.27 −0.17
0.54 0.13 0.07 −0.27 −0.32 −0.17
0.16 0.12 0.45 −0.03 −0.08 −0.07
0.25 0.16 0.63 −0.07 −0.01 −0.03
0.44 0.04 0.29 −0.12 −0.20 −0.13
0.46 −0.03 0.32 −0.17 −0.30 −0.14
0.60 −0.11 −0.08 0.61 0.04 0.03
0.50 −0.03 −0.04 0.51 0.10 0.07
0.65 −0.08 −0.02 0.50 0.15 0.04
0.70 −0.07 −0.09 0.17 0.49 0.10
0.75 −0.06 −0.01 0.03 0.65 0.01
0.62 0.01 0.03 0.15 0.38 0.04
0.57 −0.03 −0.05 0.07 −0.01 0.68
0.57 0.01 −0.03 −0.02 0.04 0.76
0.54 0.06 0.02 0.03 0.05 0.67


To help identify a bi-factor structure corresponding to this all loadings with

1We would like to thank Dr. David Huepe for facilitating use of these data.
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absolute values less than 0.2 were set to zero. This gives

Λ̂orth r =



0.38 0.25 0 0 0 0
0.38 0.82 0 0 0 0
0.57 0.29 0 0 −0.27 0
0.54 0 0 −0.27 −0.32 0

0 0 0.45 0 0 0
0.25 0 0.63 0 0 0
0.44 0 0.29 0 0 0
0.46 0 0.32 0 −0.30 0
0.60 0 0 0.61 0 0
0.50 0 0 0.51 0 0
0.65 0 0 0.50 0 0
0.70 0 0 0 0.49 0
0.75 0 0 0 0.65 0
0.62 0 0 0 0.38 0
0.57 0 0 0 0 0.68
0.57 0 0 0 0 0.76
0.54 0 0 0 0 0.67


An oblique EBFA of the bullying data gave the rounded loading matrix

Λ̂oblq r =



0.41 0.22 0 0 0 0
0.43 0.80 0 0 0 0
0.65 0.24 0 0 0 0
0.64 0 0 −0.25 0 0
0.21 0 0.44 0 0 0
0.30 0 0.63 0 0 0
0.50 0 0.26 0 0 0
0.55 0 0.29 0 0 0
0.54 0 0 0.70 0 0
0.43 0 0 0.57 0 0
0.57 0 0 0.57 0 0
0.54 0 0 0 0.60 0
0.57 0 0 0 0.85 0
0.51 0 0 0 0.47 0
0.48 0 0 0 0 0.75
0.46 0 0 0 0 0.84
0.45 0 0 0 0 0.72


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In the orthogonal case 3 lines fail to approximate bi-factor structure while

in the oblique case all lines approximate bi-factor structure. In the orthogonal

case the value of the bi-quartamin criterion is .2837 which is larger than its

value .0937 in the oblique case. As expected oblique rotation produces a

loading matrix that is closer to bi-factor structure.

The factor correlation matrix in the oblique case was

Φ =



1.00 0.00 0.00 −0.00 −0.00 −0.00

0.00 1.00 0.26 −0.19 −0.05 0.06

0.00 0.26 1.00 −0.23 −0.07 −0.10

−0.00 −0.19 −0.23 1.00 0.47 0.28

−0.00 −0.05 −0.07 0.47 1.00 0.32

−0.00 0.06 −0.10 0.28 0.32 1.00


As expected a number of correlations differ significantly from zero. Note that the

general factor, however, is uncorrelated with the group factors.
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3.2 The OAS Data

The Observer Alexithymia Scale (OAS) is a 33-item 4-point scale (e.g., Hav-

iland, Warren, & Riggs, 2000) recently studied in detail by Reise, Moore and

Haviland (2010).2 A six factor orthogonal EBFA of these data gave the rounded

loading matrix.

Λ̂orth r =



0.64 0.56 0 0 0 0
0.58 0 0.53 0 0 0
0.42 0 0 0.67 0 0
0.69 0 0 0 0.54 0
0.46 0 0 0 0 0.56
0.54 0.68 0 0 0 0
0.71 0.34 0 0 0 0
0.47 0 0.54 0.24 0 0
0.41 0 0 0.69 0 0
0.56 0 0 0 0.70 0
0.29 0 0 0 0 0.58
0.45 0.70 0 0 0 0
0.54 0 0.45 0.23 0 0
0.31 0 0 0.64 0 0
0.70 0 −0.21 0 0.41 0
0.68 0 0 0 0 0.45
0.62 0.23 −0.37 0 0 0
0.45 0.20 0 −0.27 0 0
0.47 0 0.35 0 0 0
0.57 0 0 0 0.29 0
0.54 0 0.23 0 0 −0.21
0.51 0 0 0.59 0 0
0.62 0 0 0 0.24 0.26
0.71 0 0 0 0 0
0.63 0 −0.34 0 0 0
0.71 0 0 0 0 −0.28
0.44 −0.20 0 0.48 0 0
0.64 0 0 0 0 0.29
0.54 0 −0.29 0 0 0
0.42 0 0.25 0 0 0
0.50 0 0 0 0 0.34
0.67 0 0 −0.21 0 −0.28
0.46 0 0 0 0 0.34


2We would like to thank Mark Haviland for making this data available for analysis.
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An oblique EBFA of the OAS data gave the rounded loading matrix

Λ̂oblq r =



0.68 0.49 0 0 0 0
0.58 0 0.56 0 0 0
0.41 0 0 0.67 0 0
0.69 0 0 0 0.54 0
0.42 0 0 0 0 0.58
0.60 0.62 0 0 0 0
0.74 0.25 0 0 0 0
0.47 0 0.56 0 0 0
0.40 0 0 0.68 0 0
0.55 0 0 0 0.71 0
0.24 0 0 0 0 0.60
0.51 0.64 0 0 0 0
0.53 0 0.47 0 0 0
0.30 0 0 0.61 0 0
0.70 0 0 0 0.40 0
0.67 0 0 0 0 0.48
0.63 0 −0.41 0 0 0
0.46 0 −0.22 −0.20 0 0
0.46 0 0.35 0 0 0
0.58 0 0 0 0.28 0
0.56 0 0.22 0 0 0
0.50 0 0 0.64 0 0
0.61 0 0 0 0.23 0.27
0.72 0 0 0 0 0
0.64 0 −0.38 0 0 0
0.72 0 0 0 0 −0.24
0.42 0 0 0.42 0 0
0.64 0 0 0 0 0.30
0.55 0 −0.32 0 0 0
0.42 0 0.26 −0.20 0 0
0.50 0 0 0 0 0.37
0.67 0 0 −0.22 0 −0.24
0.43 0 0 0 0 0.36



In the orthogonal case 9 lines fail to approximate bi-factor structure as opposed

to 4 lines in the oblique case. In the orthogonal case the value of the bi-quartamin

criterion is .5484 which is larger than its value .3010 in the oblique case. As

expected oblique rotation produces a loading matrix that is closer to bi-factor

structure.
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The factor correlation matrix in the oblique case was

Φ =



1.00 −0.00 −0.00 −0.00 −0.00 0.00

−0.00 1.00 −0.24 −0.20 −0.03 −0.13

−0.00 −0.24 1.00 0.38 −0.18 −0.03

−0.00 −0.20 0.38 1.00 −0.06 0.12

−0.00 −0.03 −0.18 −0.06 1.00 0.13

0.00 −0.13 −0.03 0.12 0.13 1.00


As expected a number of correlations differ significantly from zero. Note that again

the general factor is uncorrelated with group factors.
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4. General Factor and Group Factor Correlation

In our examples the general factor is uncorrelated with the group factors. This

is often viewed as a desirable property. Why is this the case? To show why this

happens in practice consider the following theorem.

Theorem 1: Let Λ be an oblique bi-quartimin rotation of an initial loading

matrix A. If λir 6= 0 for some r > 1 and the i-th row of Λ2 has complexity greater

than one, then φr,1 = 0.

Proof: Let Mr denote the r-th column of a matrix M and λr denote the

r-th column of Λ. Let B denote the bi-quartimin criterion. It follows from the

stationary condition for oblique rotation (See for example Jennrich, 1973) that

Λ′
dB

dΛ
= ∆Φ (1)

for some diagonal matrix ∆. Extracting the (r, 1) element from both sides

λ′r
∂B

∂λ1
= δrφr1

Because B is a bi-factor criterion ∂B/∂λ1 = 0 and hence

δrφr1 = 0 (2)

The proof is complete if δr 6= 0. Extracting the r-th diagonal element from both

sides of (1) gives

λ′r
∂B

∂λr
= δr (3)

Let Q(Λ2) be the value of the quartimin criterion at Λ2. It is shown in Jennrich

(2002) that
dQ

dΛ2
= Λ2 · (Λ2

2N)
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where “·” denotes an element wise product of two matrices, Λ2
2 is the element-

wise square of Λ2, and N is a square matrix with zeros on the diagonal and ones

elsewhere. Since r > 1

∂B

∂λr
=

∂Q

∂λr
= (Λ2 · (Λ2

2N))r−1 = λr · (Λ2
2N)r−1 = λr ·

k∑
s=2
s 6=r

λ2
s

Using (3) and the assumption that the i-th row of Λ2 has complexity greater than

one

δr = λ′r
∂B

∂λr
=

p∑
i=1

λ2
ir

k∑
s=2
s 6=r

λ2
is > 0 (4)

It follows from (2) that σr1 = 0.

In our applications no loadings in Λ̂ were exactly zero. Hence all rows of Λ̂2

had complexity greater than one. It follows from Theorem 1 that all correlations

between the general and group factors must be zero and they were. We expect

this to be the case in general for applied applications.
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5. When there is a rotation with bi-factor structure

This section identifies a problem that does not arise in practice. Consider the

case when there is a rotation Λ of an initial loading matrix A that has “exact”

bi-factor structure. Then there are many rotations of A that have “exact” bi-factor

structure. More precisely

Theorem 2: If Λ is an oblique rotation of an initial loading matrix A and Λ

has bi-factor structure, then there is a continuum of such rotations.

Proof: Let Λ = A(T ′)−1 be an oblique rotation of A that has bi-factor struc-

ture. Then A = ΛT ′. Let

T̃ = [t1, t̃2, t3, · · · , tk]

Where tr is the r-th column of T and t̃2 a vector of unit length in the space spanned

by t1 and t2 chosen so T̃ is nonsingular. In factor terminology this corresponds to

rotating the second factor in the space of the first two. There is a continuum of

such t̃2. Let Λ̃ = A(T̃ ′)−1 be the oblique rotation of A corresponding to T̃ . Then

A = ΛT̃ ′. Note that

A = λ1t
′
1 + · · ·+ λkt

′
k

and

A = λ̃1t
′
1 + λ̃2t̃

′
2 + λ̃3t

′
3 + · · ·+ λ̃kt

′
k

Where λr and λ̃r denote the r-th columns of Λ and Λ̃ respectively.

Let v be a vector of unit length that is orthogonal to all tr except ts for s > 2.

Note that

Av′ = λsa and Av′ = λ̃sa

where a = t′sv. Since T has full column rank a 6= 0. Thus λs = λ̃s for all s > 2.

15



Let v be a vector of unit length that is orthogonal to all tr except t2. Note

that

Av′ = λ2a and Av′ = λ̃2b

where a = t′2v and b = t̃2v. Since T and T̃ have full column rank a and b are

nonzero. Thus

λ2a = λ̃2b

It follows that the i-th component of λ2 is zero if and only if the i-th component

of λ̃2 is a zero. This together with the fact that the last k − 2 columns of Λ and

Λ̃ are equal implies Λ and Λ̃ have the same bi-factor structure. Since there is

a continuum of t̃2 there is a continuum of Λ̃ and hence a continuum of oblique

rotations of A that have bi-factor structure.

The proof of Theorem 2 may not identify all oblique rotations of A that have

bi-factor structure. The theorem, however, tells one to expect many of them

whenever there is one of them. Since the value of any bi-factor rotation criterion

at Λ is zero whenever Λ has bi-factor structure, there is a continuum of rotations

of A that minimize the criterion. Thus bi-factor rotation is undefined when A has

a rotation that has bi-factor structure.
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The following example shows computationally that the behavior predicted by

Theorem 2 in fact occurs. Consider

A =



1 1 .25

2 1 .25

1 1 .25

2 .25 1

1 .25 1

2 .25 1


An oblique rotation of the last two columns of A produces a matrix with per-

fect cluster structure and hence there is an oblique rotation of A with bi-factor

structure.

Ten oblique bi-quartimin rotations of A using random starts gave ten different

rotations Λ of A all with bi-factor structure.

The first random start gave

Λ =



1.06 1.03 0.00

2.06 1.03 −0.00

1.06 1.03 0.00

1.99 −0.00 1.03

0.99 0.00 1.03

1.99 −0.00 1.03


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and the tenth random start gave

Λ =



1.38 0.59 0.00

2.08 0.00 0.60

1.38 0.59 0.00

2.11 −0.59 0.00

1.41 −0.00 −0.60

2.11 −0.59 0.00


The others had structures the same as one of these and hence ten random starts

produced ten different rotated loading matrices and identified two different bi-

factor structures. The 0.00’s in these displays are rounded forms of computed

values that are zero to over six decimal places.

The ten random starts gave ten distinct correlation matrices. The correlation

matrix produced by the first random start was

Φ =


1.00 0.02 −0.06

0.02 1.00 0.47

−0.06 0.47 1.00


Note that the general factor is correlated with the group factors. This was true

for all ten random starts.

All this is quite different from what was encountered in our real data examples.

In these we never encountered an initial loading matrix that could be rotated to

bi-factor structure and never encountered a correlation matrix in which the general

factor was correlated with a group factor. Moreover, when more than one random

start produced the same value of the bi-quartimin criterion they also produced the

same loading and correlation matrices. This is what happened in our real data

examples and what we expect to see in practice.
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6. Another bi-factor rotation criterion

Until now only one specific bi-factor rotation criterion, the bi-quartimin crite-

rion, has been identified. Here we introduce another.

A rotation criterion that can produce better approximate perfect cluster struc-

ture then the quartimin criterion is Yates (1987) geomin criterion. One might

consider using this to construct a bi-factor rotation criterion. Yates’ criterion has

the form

geomin(Λ) =
p∑

i=1

(
k∏

r=1

λ2
ir

)1/k

This function is not differentiable when one or more λir are zero. To deal with

this Browne (2001, eq. 8) has suggested a modified form

geomin(Λ) =
p∑

i=1

(
k∏

r=1

(λ2
ir + ε)

)1/k

where ε is a small positive value. We will use Browne’s modified form with his

suggested ε = .01. Let Λ be a p× k loading matrix and let

B(Λ) = Q(Λ2)

where Λ2 contains the last k − 1 columns of Λ and Q is the modified geomin

criterion. If ε were zero this would be a bi-factor rotation criterion because Q(Λ) ≥

0 for all Λ and is zero whenever Λ has perfect cluster structure. With ε = .01 it

is almost a bi-factor rotation criterion which we will assume is good enough. We

will call B the bi-geomin criterion.
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Applying oblique bi-geomin rotation using the bullying data gave

Λ̂r =



0.43 0 0 0 0 0
0.57 0.71 0 0 0 0
0.66 0 −0.33 0 0 0
0.67 0 −0.25 0 0 0
0.38 0 0.32 0 0 0
0.51 0 0.48 0 0 0
0.58 0 0 0 0 0
0.63 −0.23 0 0 0 0
0.26 0 0 0.84 0 0
0.22 0 0 0.67 0 0
0.31 0 0 0.68 0 0
0.29 0 0 0 0.69 0
0.35 0 0 0 0.97 0
0.34 0 0 0 0.54 0
0.29 0 0 0 0 0.82
0.30 0 0 0 0 0.91
0.32 0 0 0 0 0.78


As before loadings with absolute value less than 0.02 have been set to zero to

help identify a bi-factor structure. The last 9 variables define the same groups as

in the oblique bi-quartimin case. Those identified by the first 8 variables clearly

differ. One wonders if there is something about these variables that may suggest

a reason for this.

Different exploratory bi-factor methods may lead to different interpretations

of one’s data. But this also happens with different exploratory factor analysis

methods. Such differences might be resolved by fitting the confirmatory models

suggested by the exploratory methods and comparing the fits.
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The factor correlation matrix was

Φ =



1.00 0.00 0.00 −0.00 −0.00 −0.00

0.00 1.00 −0.04 −0.04 0.05 0.12

0.00 −0.04 1.00 −0.09 −0.02 −0.08

−0.00 −0.04 −0.09 1.00 0.59 0.42

−0.00 0.05 −0.02 0.59 1.00 0.45

−0.00 0.12 −0.08 0.42 0.45 1.00


Note that as in the bi-quartimin case the general factor is uncorrelated with the

group factors.

21



7. Discussion

EBFA is simply exploratory factor analysis using a bi-factor rotation crite-

rion. Since it produces loading matrices that have approximate bi-factor structure

an important application is to identify a specific bi-factor structure for use in a

confirmatory bi-factor analysis.

It would be reasonable to add bi-factor rotation criteria to libraries of rotation

criteria and to add bi-factor rotation as an option in general purpose exploratory

factor analysis programs such as those found in SAS, SPSS and STATA. This

would make exploratory bi-factor analysis immediately available to data analysts.

Oblique bi-quartimin analysis requires only a small modification of an orthog-

onal bi-quartimin analysis. Since the bi-quartimin rotation criterion has already

been defined in Jennrich and Bentler (2011) the only change required to move from

orthogonal to oblique rotation is to use an oblique rotation algorithm rather than

an orthogonal rotation algorithm. For the authors this meant changing one line of

computer code. The primary reason for this paper is to compare the orthogonal

and oblique EBFA both empirically and theoretically.

Empirically we found what we expected. Oblique methods give rotated loading

matrices that better approximated bi-factor structure than those using orthogonal

methods.

On the theoretical side there were surprises. Oblique bi-factor rotation fails

completely in the ideal case. That is when there is an oblique rotation of an

initial loading matrix A that has “perfect” bi-factor structure. In this case there

is an entire continuum of oblique bi-factor rotations that have “perfect” bi-factor

structure. This means oblique bi-factor rotation is not uniquely defined in the

ideal case. Our Theorem 2 proves this. As our applications show, however, this is
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not a problem when oblique bi-quartimin rotation is applied to real data because

with the real data there was no oblique rotation of the initial loading matrix A

that had “perfect” bi-factor structure.

Another surprise was that the general factor and the group factors are uncor-

related when oblique bi-quartimin rotation was applied to our real data problems.

This is a desirable property, but at first there seems no reason to expect this. Our

Theorem 1, however, shows this should happen.

Until now the only specific bi-factor rotation criterion identified has been the

bi-quartmin criterion. We have introduced another based on the geomin criterion

rather than on the quartimin criterion and compared its performance with that of

the bi-quartimin criterion.

We have used only maximum likelihood for initial factor loading extraction.

One might also consider least squares and generalized least squares.

The Appendix shows how to use computer code found at

http://www.stat.ucla.edu/research/gpa to perform oblique and orthogonal bi-factor

rotation. This URL contains general purpose orthogonal and oblique rotation

algorithms written in Matlab, R, SAS PROC IML, and SPSS matrix. All that

these require is a subroutine that defines the rotation criterion and its gradient.
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Appendix

We will show how to use the Matlab code in the URL reference above to

perform oblique bi-factor rotation of an initial loading matrix A. The procedure

is similar when using the R, S, SAS PROC IML, and SPSS matrix code also given

in the URL.

The first step is to write a program to compute the value and gradient of the

bi-factor criterion desired. For the bi-quartimin criterion this is

function [v,G]=vgQ(L)

[p,k]=size(L);

Lt=L(:,[2:k]);

Lt2=Lt.^2;

N=ones(k-1,k-1)-eye(k-1);

v=sum(sum(Lt2.*(Lt2*N)));

Gt=4*Lt.*(Lt2*N);

G=[zeros(p,1) Gt];

Because orthogonal and oblique bi-quartimin rotation use the same rotation crite-

rion this code is identical to that given in Jennrich and Bentler (2011).

The next step is to download the Matlab code for the general purpose oblique

rotation program GPFoblq.

The final step is to compute an oblique bi-quartimin rotation Λ of A using

L=GPFoblq(A,T)

where T is a nonsingular matrix with columns of unit length used to start the

rotation algorithm. It must have the same number of columns as A. A common

choice for T is an identity matrix. An oblique random start can be generated using
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X=randn(k,k);

d=sum(X.^2);

T=X*diag(1./sqrt(d));

where k is the number of columns of A and the function randn(k,k) generates a

k×k matrix of independent standard normal values. The authors have found that

it is a good idea to use the best of several random starts particularly for important

applications. As noted above they used 10.

Jennrich and Bentler (2011) show how to perform orthogonal bi-factor rotation.

The only difference is downloading GPForth rather than GPFoblq, changing the

rotation command to

L=GPForth(A,T)

and using

X=randn(k,k);

[T,R]=qr(X)

to generate random orthogonal starts.
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