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Abstract.—Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic 
surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic analyses 
of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic inference, in which all data are collected 
before any analysis is performed and the phylogeny is inferred once from scratch. SARS-CoV-2 data sets do not fit this 
mold. There are currently over 14 million sequenced SARS-CoV-2 genomes in online databases, with tens of thousands of 
new genomes added every day. Continuous data collection, combined with the public health relevance of SARS-CoV-2, 
invites an “online” approach to phylogenetics, in which new samples are added to existing phylogenetic trees every day. 
The extremely dense sampling of SARS-CoV-2 genomes also invites a comparison between likelihood and parsimony 
approaches to phylogenetic inference. Maximum likelihood (ML) and pseudo-ML methods may be more accurate when 
there are multiple changes at a single site on a single branch, but this accuracy comes at a large computational cost, and 
the dense sampling of SARS-CoV-2 genomes means that these instances will be extremely rare because each internal 
branch is expected to be extremely short. Therefore, it may be that approaches based on maximum parsimony (MP) are 
sufficiently accurate for reconstructing phylogenies of SARS-CoV-2, and their simplicity means that they can be applied 
to much larger data sets. Here, we evaluate the performance of de novo and online phylogenetic approaches, as well 
as ML, pseudo-ML, and MP frameworks for inferring large and dense SARS-CoV-2 phylogenies. Overall, we find that 
online phylogenetics produces similar phylogenetic trees to de novo analyses for SARS-CoV-2, and that MP optimization 
with UShER and matOptimize produces equivalent SARS-CoV-2 phylogenies to some of the most popular ML and 
pseudo-ML inference tools. MP optimization with UShER and matOptimize is thousands of times faster than presently 
available implementations of ML and online phylogenetics is faster than de novo inference. Our results therefore suggest 
that parsimony-based methods like UShER and matOptimize represent an accurate and more practical alternative to 
established ML implementations for large SARS-CoV-2 phylogenies and could be successfully applied to other similar 
data sets with particularly dense sampling and short branch lengths. [SARS-CoV-2, phylogenetics, parsimony, maximum 
likelihood, optimization.]

The widespread availability and extreme abundance 
of pathogen genome sequencing has made phyloge-
netics central to combatting the COVID-19 pandemic. 
Communities worldwide have implemented genomic 
surveillance by systematically sequencing the genomes 
of a percentage of local cases (Deng et al. 2020; Lu et 
al. 2020a; Meredith et al. 2020; Park et al. 2021). This 
has been important in tracing local transmission chains 
(Bluhm et al. 2020; Lam 2020), understanding the 
genetic makeup of viral populations within local com-
munities (Gonzalez-Reiche et al. 2020; Franceschi et 
al. 2021; Thornlow et al. 2021a), uncovering the means 
by which viral lineages have been introduced to new 
areas (Castillo et al. 2020), and measuring the rela-
tive spread of specific variants (Skidmore et al. 2021; 
Umair et al. 2021). Phylogenetic approaches for better 

understanding the proximate evolutionary origins of 
the virus (Li et al. 2020), as well as to identify recom-
bination events (Jackson et al. 2021; Turakhia et al. 
2021b) and instances of convergent evolution (Kalantar 
et al. 2020; Peng et al. 2021) have greatly informed our 
understanding of the virus. Phylogenetic visualization 
software including Auspice (Hadfield et al. 2018) and 
Taxonium (Sanderson 2022) have also become widely 
used for public health purposes. All of these applica-
tions require a phylogeny.

A comprehensive, up-to-date phylogenetic tree 
of SARS-CoV-2 is important for public health offi-
cials and researchers. A tree containing all available 
sequences can sometimes facilitate identification of 
epidemiological links between samples that might oth-
erwise be lost in subsampled phylogenies. Conversely, 
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these approaches can often rule out otherwise plausi-
ble transmission histories. Such information can also 
help to identify the likely sources of new viral strains 
in a given area (Moreno et al. 2020; Tang et al. 2021). 
Additionally, using up-to-date information enables us 
to find and track novel variants of concern and clades 
which are growing quickly (Annavajhala et al. 2021; 
Tegally et al. 2021), and to measure the spread of known 
variants at both local and global scales. Furthermore, 
comprehensive phylogenies can improve the ability 
of computational methods to find recombinant viral 
genomes (Turakhia et al. 2021b), natural selection at 
homoplasious positions (van Dorp et al. 2020), varia-
tion in mutation rates (De Maio et al. 2021), and sys-
tematic recurrent errors (Turakhia et al. 2020). This also 
facilitates naming lineages of interest, which has been 
particularly important in tracking variants of concern 
throughout the pandemic (e.g., B.1.1.7 or “Alpha” and 
B.1.617.2 or “Delta”) (Rambaut et al. 2020).

SARS-CoV-2 presents a unique set of challenges for 
phylogenetic analyses. The unprecedented pace and 
scale of whole-genome sequence data has forced the 
phylogenetics community to place runtime and scal-
ability at the center of every inference strategy. More 
than 14 million SARS-CoV-2 genome sequences are 
currently available, with tens of thousands being added 
each day. Prior to the pandemic, de novo phylogenetics, 
that is, inferring a phylogeny from scratch, has been 
the standard, as there has rarely been a need to re-infer 
or improve pre-existing phylogenies on a daily basis. 
Daily inference of a tree of millions of samples from 
scratch, however, is extremely costly, and has brought a 
renewed focus on methods for adding new samples to 
existing phylogenetic trees (Matsen et al. 2010; Berger 
et al. 2011; Izquierdo-Carrasco et al. 2014; Fourment et 
al. 2018; Barbera et al. 2019). This approach has been 
called “online phylogenetics” (Gill et al. 2020), and has 
important advantages in the context of the pandemic 
and beyond. Online phylogenetics is appealing for the 
genomic surveillance of pathogens, because iterative 
optimization should decrease computational expense, 
allowing good estimates of phylogenies to be made 
readily available. It may be particularly effective in 
a pandemic setting, where new samples are closely 
related to existing samples in the tree, and existing 
samples are often identical to inferred ancestral states. 
That is, the ancestor of a newly sequenced genome has 
often effectively already been observed. The methods 
described here may be less useful for reconstructing 
deeper evolutionary histories of other large genomic 
data sets, for example organisms like insects or certain 
pathogens like HIV-1.

Second, SARS-CoV-2 genomes are much more closely 
related than sequences in most other phylogenetic anal-
yses. Because the relative advantages of maximum 
likelihood (ML) methods decrease for closely related 
samples and long branches are relatively rare in the 
densely sampled SARS-CoV-2 phylogeny (Felsenstein 
1978; Hendy and Penny 1989; Philippe et al. 2005), 
this suggests that phylogenetic inferences based on 

maximum parsimony, a much faster and simpler phy-
logenetic inference method, could be better suited for 
online phylogenetic analyses of SARS-CoV-2 genomes 
(Wertheim et al. 2022). The principle of maximum parsi-
mony is that the tree with the fewest mutations should 
be favored, and it is sometimes described as a non-para-
metric phylogenetic inference method (Sullivan and 
Swofford 2001; Kolaczkowski and Thornton 2004). 
Additionally, because parsimony-based tree optimi-
zation does not require estimation of ancestral charac-
ter state uncertainty at all positions in the phylogeny 
like ML optimization does, parsimony uses much less 
memory.

Here, we evaluate approaches that would enable 
one to maintain a fully up-to-date and comprehensive 
global phylogeny of SARS-CoV-2 genome sequences 
(McBroome et al. 2021). Specifically, we investigate 
tradeoffs between online and de novo phylogenetics 
and between maximum parsimony, ML, and pseu-
do-ML approaches when the aim is for an analysis to 
scale to millions of sequences, with tens of thousands 
of new sequences being added daily. We chose to com-
pare maximum parsimony, ML, and pseudo-ML (and 
omit other approaches like neighbor-joining) because 
they were the most effective methods at inferring large 
SARS-CoV-2 phylogenies based on previous analyses 
(Lanfear and Mansfield 2020), and because most dis-
tance-based methods are quadratic in memory usage so 
cannot scale to estimating trees from data sets of more 
than a few hundred thousand sequences (Wang et al. 
2022). We mimic the time-course of the pandemic by 
introducing increasingly large numbers of SARS-CoV-2 
genome sequences proportionately to their reported 
sampling dates.

We evaluate potential online phylogenetics 
approaches by iteratively adding samples to existing 
trees and optimizing the augmented phylogeny with 
different tools that have been proposed for this pur-
pose during the pandemic. In particular, we compare 
online matOptimize, IQ-TREE 2, RAxML-NG, and 
FastTree 2. Between each optimization step, we use 
UShER (Turakhia et al. 2021a) to add samples to trees 
by maximum parsimony. matOptimize is a parsimony 
optimization approach that uses subtree pruning and 
regrafting (SPR) moves to minimize the total mutations 
in the final tree topology (Ye et al. 2022). IQ-TREE 2 
uses nearest neighbor interchange (NNI) and optionally 
stochastic tree moves to find the tree with the highest 
likelihood given an input multiple sequence alignment 
(Minh et al. 2020). RAxML-NG is a ML approach that 
uses SPR moves to search tree-space for higher likeli-
hood phylogenies (Kozlov et al. 2019). FastTree 2 uses 
a pseudo-likelihood approach that employs mini-
mum-evolution SPR and/or NNI moves and ML NNI 
moves while using several heuristics to reduce the 
search space (Price et al. 2010). The likelihood-based 
approaches evaluated here report branch lengths in 
substitutions per site. Parsimony-based matOptimize 
reports branch lengths in total substitutions, which can 
be converted to the latter by dividing by the alignment 
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length. Reporting unambiguous branch lengths in 
this way is possible because UShER and matOptimize 
resolve potential ambiguities in ancestral sequences by 
parsimony. When there are ambiguous ancestral states, 
both matOptimize and UShER will prefer to assign new 
mutations at the node farthest from the root. This is sim-
ilar to DELTRAN (Agnarsson and Miller 2008; Swofford 
and Maddison 1987). Additionally, when UShER places 
new samples with ambiguous nucleotides in the con-
sensus sequence, it resolves each to the most parsimoni-
ous state given the guide tree. If there is more than one 
equally parsimonious nucleotide, UShER will select the 
reference nucleotide if it is one of the possibilities. This 
decision is motivated by the observation that infrequent 
ambiguous states arise for a variety of technical reasons 
and typically the reference nucleotide will be correct 
(De Maio et al. 2020; Turakhia et al. 2020).The branch 
lengths reported by UShER and matOptimize may be 
interpreted as is or used as an initial estimate for other 
distance measures, for example in the construction of 
time trees (Sanderson 2021).

Results from our comparisons demonstrate that for 
the purposes of SARS-CoV-2 phylogenetics, in which 
samples are numerous and closely related and inference 
speed is of high significance, parsimony-based online 
phylogenetics applications are clearly most favorable 
and are also the only immediately available methods 
capable of producing daily phylogenetic estimates 
of all available SARS-CoV-2 genomes (Turakhia et al. 
2021a). We note that matOptimize is used to maintain 
such a phylogeny comprising over 14 million genomes 
as of February 2023 (McBroome et al. 2021). As global 
genomic data collection accelerates further, we expect 
parsimony-based online approaches to become increas-
ingly central to phylogenetic inference for data sets 
with similar properties to SARS-CoV-2, for example 
Mpox, RSV, and Mycobacterium tuberculosis.

Methods

UShER and matOptimize are available through 
Anaconda at https://anaconda.org/bioconda/usher 
and on Github at https://github.com/yatisht/usher. 
Our analyses use Github commit 66ca5ff which corre-
sponds to the nearest conda version of 0.5.0.

Constructing an Initial Global SARS-CoV-2 Phylogeny and 
a “Ground Truth” Tree

We first developed a global phylogeny, hereafter 
the “starting tree,” which we used in subsequent 
analyses. We began by downloading VCF and FASTA 
files corresponding to 18 March 2021 from our own 
daily updated database (McBroome et al. 2021). The 
VCF file contains pairwise alignments of each of the 
434,063 samples to the SARS-CoV-2 reference genome. 
We then implemented filters, retaining only sequences 
containing at least 28,000 non-N nucleotides, and 

fewer than 2 non-[ACGTN-] characters. We used 
UShER to create a phylogeny from scratch using only 
the remaining 366,492 samples. To remove potentially 
erroneous sequences, we iteratively pruned this tree 
of highly divergent internal branches with branch par-
simony scores greater than 30, then terminal branches 
with branch parsimony scores greater than 6, until 
convergence, resulting in a final global phylogeny 
containing 364,427 samples. The branch parsimony 
score indicates the total number of substitutions along 
a branch. Similar filters based on sequence divergence 
are used by existing SARS-CoV-2 phylogenetic infer-
ence methods. For full reproducibility, files used for 
creating the global phylogeny can be found in subre-
pository 1 on the project GitHub page (Thornlow et 
al. 2021b).

Following this, we created a “ground truth” tree by 
optimizing the starting tree to compare against the 
results of inference methods on simulated data. We used 
matOptimize, FastTree 2, and maximum parsimony 
(MP) IQ-TREE 2. MP IQ-TREE 2 uses parsimony as the 
optimality criterion in contrast to the ML mode used in 
other experiments, which was infeasible on a data set 
of this size. In these optimization experiments, we used 
experimental versions of MP IQ-TREE 2 that allow finer 
control of parsimony parameters (specific versions are 
listed in the supplemental Github repository). In one 
of our Ground Truth Optimization Experiments, we 
used the starting tree and its corresponding alignment 
and ran 5 iterations of MP IQ-TREE 2, varying the SPR 
radius from 20 to 100 in increments of 20. Experiments 
on a small data set indicated that there is little or no 
improvement in parsimony score beyond a radius of 
100. Separately, we tested another strategy that applied 
2 iterations of MP IQ-TREE 2 to the starting tree, the 1st 
iteration using an SPR radius of 20 and the 2nd using a 
radius of 100. Finally, we tested a strategy of 6 iterations 
of pseudo-likelihood optimization with FastTree 2 fol-
lowed by 2 iterations of parsimony optimization with 
matOptimize. The tree produced by this strategy, here-
after the “ground truth” tree, had the highest likelihood 
of all the strategies we tested. This tree (after_usher_
optimized_fasttree_iter6.tree) and files for these opti-
mization experiments can be found in subrepository 2.

In the multifurcating ground truth tree of 364,427 
samples, there are 265,289 unique (in FASTA sequence) 
samples. There are 447,643 nodes in the tree. For refer-
ence, a full binary tree with the same number of leaves 
has 728,853 nodes. 23,437 of the 29,903 sites in the align-
ment are polymorphic (they display at least 2 non-am-
biguous nucleotides). Out of 83,216 inferred ancestral 
nodes, 68,261 (82%) have as a child a sampled node with 
identical genotype (branch length zero). Homoplasies 
are common in these data. In the starting tree, 19,090 
sites display a mutation occurring on at least 2 different 
branches, and 4976 sites display a mutation occurring 
more than 10 times in the tree. Approximately half of 
the internal nodes are resolved, having exactly 2 nodes 
as immediate descendants (Supplementary Fig. S3).

https://anaconda.org/bioconda/usher
https://github.com/yatisht/usher
https://doi.org/10.7291/D13Q2J


SYSTEMATIC BIOLOGY1042

Analyses Using Simulated SARS-CoV-2 Data Under 
Pandemic Time Constraints

To generate our simulated data, we used the SARS-
CoV-2 reference genome (GISAID ID: EPI_ISL_402125; 
GenBank ID: MN908947.3) (Shu and McCauley 2017; 
Sayers et al. 2021) as the root sequence and used phast-
Sim (De Maio et al. 2022) to simulate according to the 
ground truth phylogeny described above. Intergenic 
regions were evolved using phastSim using the default 
neutral mutation rates estimated in ref. (De Maio et al. 
2021), with position-specific mean mutation rates sam-
pled from a gamma distribution with alpha = beta = 4, 
and with 1% of the genome having a 10-fold increase 
mutation rate for one specific mutation type (SARS-
CoV-2 hypermutability model described in ref. [De 
Maio et al. 2022]). Evolution of coding regions was sim-
ulated with the same neutral mutational distribution, 
with a mean nonsynonymous/synonymous rate ratio 
of omega = 0.48 as estimated in (Turakhia et al. 2021a), 
with codon-specific omega values sampled from a 
gamma distribution with alpha = 0.96 and beta = 2. 
Rates for each intergenic and coding region were not 
normalized in order to have the same baseline neutral 
mutation rate distribution across the genome.

We then tested de novo and online matOptimize, ML 
IQ-TREE 2, and FastTree2 on this simulated alignment. 
The Simulated Online Experiments began by using 
UShER to infer a small tree de novo from the 1st batch of 
samples, followed by alternating steps of optimization 
using 1 of the 3 evaluated methods and placement of 
additional samples with UShER. For our Simulated De 
Novo Experiments, we supplied each software package 
with an alignment corresponding to all samples in that 
batch and its predecessors (or VCF for matOptimize) 
without a guide tree. For both cases, each tree is larger 
than its predecessor by ~5000 samples, and each tree 
necessarily contains all samples in the immediately 
preceding tree. We terminated experiments that took 
longer than 24 h to complete to mimic the time con-
straints of continual inference during a pandemic. For 
FastTree 2, we used 2 rounds of minimum-evolution 
subtree-prune-regraft (SPR) moves (-spr 2), maximum 
SPR length of 1000 (-sprlength 1000), zero rounds of 
minimum-evolution NNIs (-nni 0), default settings for 
ML nearest neighbor interchanges, and the Generalised 
Time Reversible+Gamma (GTR+G) substitution model 
(-gtr -gamma). Previous analyses with FastTree 2 on 
large SARS-CoV-2 data sets show that an SPR radius 
of 1000 has negligible effect on execution time but can 
produce more optimal phylogenies than the default set-
ting of 10 (Lanfear and Mansfield 2020). For IQ-TREE 
2, we used a branch length minimum of 0.000000001 
(-blmin 1e-9), zero rounds of stochastic tree search (-n 
1), and the GTR+G substitution model (-m GTR+G). 
With these parameters, IQ-TREE 2 constructs a starting 
parsimony tree and then performs hill-climbing NNI 
steps to optimize likelihood, avoiding the significant 
time overhead of stochastic search. We ran matOpti-
mize and UShER with default parameters. For each 

iteration of our Simulated De Novo Experiment with 
UShER+matOptimize, we started with an empty tree, 
added all samples with UShER, then optimized with 
matOptimize. We ran all matOptimize analyses using 
an instance with 15 CPUs and 117.2 GB of RAM, and 
we ran all IQ-TREE 2 and FastTree 2 analyses on an 
instance with 31 CPUs and 244.1 GB of RAM, but we 
limited each command to 15 threads for equivalence 
with matOptimize.

To assess the effectiveness of each method, we com-
puted the Robinson–Foulds (RF) distance (Robinson 
and Foulds 1981) and quartet similarity of each opti-
mization to the ground truth tree, pruned to contain 
only the samples belonging to that batch. To calculate 
each RF distance, we used the -O (collapse tree) argu-
ment in matUtils extract (McBroome et al. 2021) and 
then used the dist.topo command in the ape package in 
R (Paradis and Schliep 2019), comparing the collapsed 
optimized tree and the pruned, collapsed ground 
truth tree at each iteration. We computed normalized 
RF distances by dividing each distance by the expres-
sion I (Ti) + Ni − 3. The value I (Ti) is the number 
of internal edges in the pruned ground truth tree for 
iteration i, and Ni is the number of taxa, with Ni − 3 
representing the maximum possible number of inter-
nal edges in the inferred tree (Steel and Penny 1993). 
We computed normalized quartet similarities to the 
ground truth tree using the metric described in (Asher 
and Smith 2022) which does not penalize excess reso-
lution in the inferred tree. Files for all simulated data 
experiments can be found in subrepository 4.

Analyses Using Real SARS-CoV-2 Data Under Pandemic 
Time Constraints

To mimic pandemic-style phylogenetics, we sepa-
rated a total of 233,326 real SARS-CoV-2 samples from 
the starting tree of 364,427 samples into 50 batches of 
~5000 by sorting according to the date of sample collec-
tion. We then set up 2 experiments for each of the 3 soft-
ware packages (matOptimize [conda version 0.5.0], ML 
IQ-TREE 2 [multicore version 2.1.3 COVID-edition], 
and FastTree 2 [Double Precision version 2.1.10]). We 
repeated our iterative experiments using online and de 
novo matOptimize, IQ-TREE 2 and FastTree 2 on real 
data, using the same strategies as with simulated data, 
terminating experiments that took more than 24 h. In 
these Real Online and De Novo Experiments, we mea-
sured the Jukes-Cantor (JC) likelihood of each tree, as 
well as the runtime and peak memory usage of each 
program. Files for all real data experiments can be 
found in subrepository 3.

Analyses Without Pandemic Time Constraints

Eliminating the 24-h runtime restriction, we also per-
formed 3 de novo iterative experiments on both real and 
simulated data. In these Real and Simulated Unrestricted 
Experiments, we tested UShER + matOptimize, ML 
IQ-TREE 2 with stochastic search, and RAxML-NG on 
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iterations of ~4.5k, ~8.9k, and ~13.2k samples, allow-
ing each to run for up to 14 days. For runs that did not 
terminate within this time (the 2nd and 3rd iterations 
of RAxML-NG), we used the best tree inferred during 
the run for comparisons. We ran IQ-TREE 2 without the 
“-n 1” parameter as in previous experiments, enabling 
stochastic search. We ran IQ-TREE 2 and RAxML-NG 
under the GTR+G model with the smallest minimum 
branch length parameter that did not cause numerical 
errors. To compare the trees in the Real Unrestricted 
Experiments, we computed log-likelihoods under the 
GTR+G model for all trees, fixing the model parame-
ters to those estimated by IQ-TREE 2 during tree infer-
ence. We also compared the log-likelihoods of the trees 
under the parameters estimated by RAxML-NG for the 
1st iteration, but could not do so for the 2nd and 3rd 
iterations which did not terminate in under 2 weeks. 
We allowed optimization of branch lengths during like-
lihood calculation. For the UShER+matOptimize trees, 
before computing likelihoods, we converted the branch 
lengths into units of substitutions per site by dividing 
each branch length by the alignment length (29,903). To 
compare the trees inferred in the Simulated Unrestricted 
Experiments, we computed the RF distance and quar-
tet similarity of each tree to the corresponding ground 
truth tree described above.

Correlation of Parsimony and Likelihood on Large SARS-
CoV-2 Phylogenies

We also performed an experiment on the starting 
tree of 364,427 samples to measure the correlation 
between the 2 optimality metrics used in our main 
experiments, parsimony and JC likelihood. In our 
Correlation Optimization Experiment, we performed 
6 rounds of FastTree 2, measured the parsimony score 
and JC likelihood of the resulting trees, and computed 
the Pearson correlation coefficient between parsimony 
and likelihood.

Results and Discussion

Online Phylogenetics is an Alternative to de novo 
Phylogenetics for Ongoing Studies

The vast majority of phylogenetics during the pan-
demic has consisted of de novo phylogenetics approaches 
(Hadfield et al. 2018; Li et al. 2020; Lu et al. 2020a, 
2020b; Meredith et al. 2020), in which each phylogeny 
is inferred using only genetic variation data, and with-
out a guide tree (Fig. 1). This strategy for phylogenetic 
inference has long been the default, as in most instances 
in the past, data are collected just once for a project, and 
more relevant data are rarely going to be made available 
in the near future. This process is well characterized and 
has been foundational for many phylogenetics studies 
(Hug et al. 2016; Parks et al. 2018; Lu et al. 2020b), and 
most phylogenetics software is developed with de novo 
phylogenetics as the primary intended usage.

A challenging aspect of pandemic phylogenetics is 
the need to keep up with the pace of data generation 
as genome sequences continuously become available. 
To evaluate phylogenetics applications in the pan-
demic (Fig. 1), we split 233,326 samples dated from 23 
December 2019 through 11 January 2021 into 50 batches 
according to their date of collection. Each batch con-
tains roughly 5000 samples. Samples in each batch were 
collected within a few days of each other, except in the 
1st months of the pandemic when sample collection 
was more sparse. We also constructed a data set of oth-
erwise similar data simulated from a known phylogeny 
(see Methods). The intent of this scheme is to roughly 
approximate the data generation and deposition that 
occurred during the pandemic. All data sets are avail-
able from the repository associated with this project 
(Thornlow et al. 2021b), for reproducibility and so that 
future methods developers can directly compare their 
outputs to our results. We performed online and de novo 
phylogenetics using a range of inference and optimi-
zation approaches. Since thousands of new sequences 
are added to public sequence repositories each day, we 
terminated any phylogenetic inference approaches that 
took more than 24 h, because such phylogenies would 
be obsolete for some public health applications by the 
time they were inferred.

Analyses Using Simulated Data Suggest that Online 
Phylogenetics is More Accurate for SARS-CoV-2

We first compared matOptimize (conda version 0.5.0) 
(Ye et al. 2022), ML IQ-TREE 2 (Minh et al. 2020), and 
FastTree 2 (Price et al. 2010) using both online and de 
novo phylogenetics strategies using simulated data that 

Figure 1. Phylogenies may be optimized from scratch using de 
novo phylogenetics or iteratively using online phylogenetics. In de 
novo phylogenetics (top), trees are repeatedly re-inferred from scratch. 
Conversely, online phylogenetics (bottom) involves placement of new 
samples as they are collected. Online methods may be particularly well 
suited to pathogen datasets like SARS-CoV-2 where close relatives 
of ancestral samples already exist in the phylogeny. Intermittent 
optimization steps (not depicted) after new samples are placed can 
help overcome errors from previous iterations. Online phylogenetics 
is expected to be much faster and require less memory than de novo 
phylogenetics.
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we designed to closely mimic real SARS-CoV-2 data 
sets. All Simulated Online Experiments used UShER 
(Turakhia et al. 2021a) to add new sequences to the pre-
vious tree (see Methods) as to the best of our knowledge 
it is the only software package that is fast enough to per-
form under real-time constraints. We chose these 3 tools 
to cover several different approaches and based on their 
widespread usage among SARS-CoV-2 phylogenetics 
applications. For example, matOptimize is part of the 
UShER suite (Turakhia et al. 2021a), IQ-TREE 2 is used 
by (COVID-19 Genomics UK (COG-UK) Consortium 
2020Lanfear and Mansfield 2020) and FastTree 2 is used 
by (Hadfield et al. 2018).

Simulating an alignment based on a known tree 
ensures that there is a ground truth for comparison to 
definitively assess each optimization method. We used 
an inferred global phylogeny as a template to simulate 
a complete multiple sequence alignment using phast-
Sim (De Maio et al. 2022). We subsampled this simu-
lated alignment into 50 progressively larger sets of 
samples, ranging in number of samples from 4676 to 
233,326, to examine each of the 3 optimization meth-
ods in both online and de novo phylogenetics. For each 
iteration, we condensed identical samples, collapsed 
very short branches, and computed the RF distance to 
the condensed, collapsed ground truth global tree on 
which the simulation was based (see Methods). We also 
computed a quartet similarity metric (Asher and Smith 
2022) to the ground truth tree. The ground truth tree 
was pruned to contain only the relevant samples for 
each iteration.

All Simulated Online Experiments noticeably out-
performed their de novo counterparts in the majority 
of iterations. Overall, online matOptimize produced 

phylogenies with the lowest normalized RF distance to 
the ground truth for the majority of iterations (Fig. 2a). 
Online IQ-TREE 2 performed similarly in RF distance 
but was able to complete only 24 of the 50 iterations due 
to its extreme computational resource requirements. 
When measured by quartet similarity, FastTree 2 pro-
duced trees closest to ground truth for the majority of 
the 14 iterations it completed (Fig. 2b). De novo IQ-TREE 
2 performs relatively worse when measured by quartet 
similarity, perhaps due to errors early in tree inference 
that significantly affect the quartet similarity. For exam-
ple, for the 9th phylogeny of 39,621 sequences, which 
was the last phylogeny produced using under 200 GB 
of RAM in under 24 h by all 6 methods, we found nor-
malized RF distances of 0.0232, 0.0376, and 0.0297 for de 
novo UShER+matOptimize, FastTree 2, and IQ-TREE 2, 
respectively, and distances of 0.0220, 0.0296, and 0.0225 
for online matOptimize, FastTree 2, and IQ-TREE 2, 
respectively. The distance of all methods to the ground 
truth tree are exceptionally small, possibly due to the 
“near perfect” phylogenetic properties of SARS-CoV-2 
data (Wertheim et al. 2022).

There are many possible explanations for the 
improved performance of online phylogenetics on 
simulated data relative to de novo approaches. One pos-
sibility is that smaller trees are easier to optimize, so 
online phylogenetics will tend to estimate accurate ini-
tial trees to which later samples are added (this occurs 
because the radius for SPR moves when optimizing a 
large tree is too small to find improvements that are 
more readily applied when the tree contains fewer 
samples). In online phylogenetics, these improvements 
carry over to subsequent trees, while in de novo phy-
logenetics, they do not. The radius is defined as the 

b)a)

Figure 2. Online matOptimize produces highly similar phylogenies to ground truth on simulated data. For each batch of samples in 
our Simulated Online and De Novo Experiments, we calculated the normalized Robinson–Foulds (RF) distance between the tree produced 
by a given optimization software and the ground truth tree pruned to contain only the relevant samples, first collapsing near-zero branch 
lengths into multifurcations in both trees. To normalize RF distances, we divided each distance by I(Ti) + Ni − 3, where I(Ti) is the number 
of internal edges in the pruned ground truth tree for iteration i, and Ni is the number of taxa (see Supplementary Fig. S1). We computed a 
quartet similarity metric to the ground truth tree for ten iterations of each method, normalizing by the maximum possible score of the metric 
as described in (Asher and Smith 2022). We terminated FastTree and IQ-TREE 2 after the first phylogeny that took more than 24 h to optimize.
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phylogenetic distance of the search space when mov-
ing a node to a more optimal position. As the phylog-
eny increases in size, the distance from a node to its 
optimal position is likely to also increase, necessitating 
a larger SPR move radius to make equivalent improve-
ments in larger trees. Additionally, the temporal nature 
of sample placement likely aids the performance of 
online approaches, with newer samples added to the 
tree after older samples.

Analyses Using Real Data Suggest that Online 
Phylogenetics is More Efficient than de novo and Produces 

Similarly Optimal Phylogenies

While analyses using simulated data offer the abil-
ity to compare to a known ground truth, assessing 
the performance of each method on real SARS-CoV-2 
data may more accurately reflect practical use of 
each method. Therefore, we also tested each optimi-
zation strategy on 50 progressively larger sets of real 
SARS-CoV-2 samples in our Real Online and De Novo 
Experiments and calculated the parsimony score and 
likelihood of each optimized tree, as well as the run-
time and peak RAM usage of each software package 
used (Fig. 3). To accomplish this, we subsampled our 
global phylogeny, which was produced using strin-
gent quality control steps (see Methods), as before, to 
mimic the continuous accumulation of samples over 
the course of the pandemic.

Online optimizations are generally much faster 
than de novo phylogenetic inference. For example, 
IQ-TREE 2 achieves a roughly 7-fold faster run-time 
for online optimizations compared to inferring the 
tree de novo (Fig. 3c). The 5th iteration, which has 
22,012 sequences and was the last to be completed by 
both online and de novo IQ-TREE 2, took 13 h 53 min 
for de novo IQ-TREE 2 but only 1 h 50 min for online 
IQ-TREE 2. De novo UShER+matOptimize was the 
only de novo method to finish all trees in fewer than 
24 h, but its speed for each daily update pales in com-
parison to online matOptimize. Online matOptimize 
is several orders of magnitude faster than its de novo 
counterpart, and its optimizations for the largest phy-
logenies take roughly 30 s, while de novo tree inference 
with UShER can take several hours for trees consist-
ing of more than 100,000 samples (Fig. 3c). However, 
whether a software package is used for online or de 
novo phylogenetics does not strongly affect its peak 
memory usage.

We also found that online phylogenetics strategies 
produce trees very similar in both parsimony score and 
likelihood to their de novo counterparts, with differences 
of less than 1% in all cases (Fig. 3a and b). For example, 
in the 5th iteration containing 22,012 sequences, online 
IQ-TREE 2 produces a tree with a parsimony score of 
13,393, whereas de novo IQ-TREE 2 produces a tree with 
parsimony score of 13,387. Our results suggest that in 
addition to the computational savings that allow online 
phylogenetics approaches to continuously stay up-to-
date, online phylogenetics approaches also produce 

trees with similar parsimony scores and likelihoods to 
their de novo counterparts.

Under Pandemic Time Constraints, matOptimize has 
Equivalent or More Favorable Metrics Compared to ML and 

Pseudo-ML Methods for SARS-CoV-2 Phylogenies

In the case of both de novo and online phylogenetics, 
the parsimony-based matOptimize outperforms both 
FastTree 2 and IQ-TREE 2 in runtime and peak mem-
ory usage. For the 6th iteration (26,486 samples) of our 
Real Online and De Novo Experiments, which was the 
largest phylogeny inferred by all online methods in 
under 24 h and using under 200 GB of RAM, online 
FastTree 2 required nearly 24 h and 30.3 GB of RAM, 
and online IQ-TREE 2 required 3 h 29 min and 72 GB of 
RAM. By contrast, matOptimize required only 6 s and 
0.15 GB of RAM. This iteration contained roughly 10% 
as many samples as the 50th and final iteration (233,326 
total samples), which online matOptimize completed 
in 32 s using 1.41 GB of RAM at peak usage. Even this 
largest tree represents only a very small fraction of the 
more than 14 million currently available SARS-CoV-2 
genomes, indicating that, among the approaches we 
evaluated, matOptimize is the only viable option for 
maintaining a comprehensive SARS-CoV-2 phylogeny 
via online phylogenetics.

In addition to its scalability, matOptimize outper-
formed ML and pseudo-ML optimization methods 
under 24-h time constraints in both the parsimony 
and likelihood scores of the trees that it inferred. For 
the 6th iteration (26,486 samples) of our Real Online 
Experiments, we found parsimony scores of 16,130, 
16,195, and 16,290 for matOptimize, IQ-TREE 2, and 
FastTree 2, respectively. While all methods produced 
phylogenies with parsimony scores within 1% of 
each other, matOptimize was consistently the low-
est. However, matOptimize was developed to opti-
mize by parsimony, while the other methods optimize 
for likelihood. Unexpectedly, we found that the trees 
from matOptimize had better log-likelihood than 
those from likelihood-based software implementa-
tions. For the 6th iteration (26,486 samples) of our 
Real Online Experiments, we found log-likelihood 
scores of –233,414.277, –234,130.859, and –235,177.396 
for matOptimize, IQ-TREE 2, and FastTree 2, respec-
tively. IQ-TREE 2 and FastTree 2 inferred trees using 
a Generalized Time Reversible (GTR) model, but due 
to time constraints in calculation we used a JC model 
to compare likelihoods across methods. However, 
a GTR model with specified rate parameters pro-
duced strongly correlated likelihoods (Supplementary 
Table S1, Dryad: https://doi.org/10.7291/D13Q2J) 
(Thornlow et al. 2022). Indeed, we were able to cal-
culate likelihoods under the GTR model for the first 
5 iterations of the Real De Novo Experiments (from 
4676 to 22,012 samples) for both the matOptimize and 
IQ-TREE 2 trees. In every case, the tree from matOpti-
mize had a slightly better likelihood score than the tree 
from IQ-TREE 2.

https://doi.org/10.7291/D13Q2J
https://doi.org/10.7291/D13Q2J
https://doi.org/10.7291/D13Q2J
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Parsimony Optimization with matOptimize Produces 
Comparable SARS-CoV-2 Trees to the Most Thorough ML 

Methods

We also compared the performance of de novo infer-
ence with UShER+matOptimize to state-of-the-art 
methods without a 24-h limit on runtime in our Real 
and Simulated Unrestricted Experiments. In 3 iter-
ations of increasing size (~4.5k, ~8.9k, and ~13.2k 

samples), we inferred trees from real and simulated 
data using UShER+matOptimize, IQ-TREE 2 with sto-
chastic search enabled, and RAxML-NG. We allowed 
each experiment to run for up to 2 weeks. All pro-
grams completed successfully on the 1st iteration. 
RAxML-NG did not terminate within 2 weeks for the 
2nd and 3rd iterations. On real data, we found that 
UShER+matOptimize produced trees with higher 
log-likelihoods than IQ-TREE 2 and RAxML-NG across 

Figure 3. In practice, optimization by parsimony with matOptimize is more effective for SARS-CoV-2 data than optimization by established 
ML or pseudo-ML methods. For each Real Online and De Novo Experiment, we calculated (A) the parsimony score of each tree using matUtils, 
(B) the log-likelihood of each tree using IQ-TREE 2, (C) runtime and (D) peak memory usage of each optimization. (A) and (B) are normalized 
by the value obtained for the matOptimize online approach such that all other methods are expressed as a ratio. Strategies that surpassed 24 h 
(C) or the allowable RAM usage (D) were terminated prior. In most cases, with the notable exception of FastTree 2, online phylogenetics (solid 
lines) perform better than de novo phylogenetics (dashed lines). We ran all matOptimize analyses using an instance with 15 CPUs and 117.2 GB 
of RAM, and we ran all IQ-TREE 2 and FastTree 2 analyses on an instance with 31 CPUs and 244.1 GB of RAM, but limited each command to 
15 threads for equivalence with matOptimize.
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all 3 iterations (Fig. 4a). Under the substitution model 
parameters estimated by IQ-TREE 2, the log-likelihoods 
for the 1st iteration were –73,780.756, –73,828.271, 
and –73,782.289 for UShER+matOptimize, IQ-TREE 
2, and RAxML-NG, respectively. Under the parame-
ters estimated by RAxML-NG, the log-likelihoods for 
the 1st iteration were –––––73,754.894, –73,801.935, 
and –73,756.246 for UShER+matOptimize, IQ-TREE 
2, and RAxML-NG, respectively. On simulated data, 
UShER+matOptimize produced trees closer to the 
ground truth than the other methods when measured 
by quartet similarity across all 3 iterations (Fig. 4b). 
By RF distance, the UShER+matOptimize trees were 
closest to the ground truth for the 2nd and 3rd itera-
tions, but the RAxML-NG tree was closest to ground 
truth in the 1st iteration (Fig. 4c). On the 1st iteration 
of simulated data, we found normalized RF distances 
of 0.0084, 0.0117, and 0.0071 for UShER+matOptimize, 
IQ-TREE 2, and RAxML-NG, respectively. We found 
normalized quartet similarities of 0.999, 0.997, and 
0.969 for UShER+matOptimize, IQ-TREE 2, and 
RAxML-NG, respectively. We therefore conclude that 
parsimony-based tree inference with matOptimize can 
perform equivalently to state of the art ML approaches 
and can do this in a tiny fraction of the time, making it 
by far the most suitable approach for pandemic-scale 
phylogenetics of SARS-CoV-2.

Parsimony and Likelihood are Strongly Correlated When 
Optimizing Large SARS-CoV-2 Phylogenies

In our Correlation Optimization Experiment on 
the starting tree of 364,427 SARS-CoV-2 genomes, we 
found that after each of 6 iterations of FastTree 2 opti-
mization, the JC likelihood and parsimony improve-
ments are strongly linearly correlated (Fig. 5). This 
suggests that changes achieved by maximizing par-
simony will also optimize likelihood for SARS-CoV-2 
data. That is, for extremely densely sampled phyloge-
nies in which long branches are rare, parsimony and 

likelihood are highly correlated, as are the effects of 
tree moves to optimize either. However, despite the 
strength of this correlation, we find an extreme dis-
parity in practical usage when optimizing by either 
metric. Parsimony-based methods are far more time- 
and data-efficient, and presently available ML and 
pseudo-ML approaches quickly become prohibitively 
computationally expensive. For example, while the 
6 iterations of FastTree did result in large improve-
ments in both likelihood and parsimony score, the 
resulting tree would be out of date long before the 
10.5-day optimization had completed. Moreover, we 
applied matOptimize to the tree output by the 6th 
iteration of FastTree, achieving a parsimony score of 
293,866 (improvement of 288) and a JC log-likelihood 
of -3483329.485 (improvement of 2318.535) in just 16 
min, indicating that even after 10.5 days, additional 
optimization was still possible. This suggests that, 
for the purposes of optimizing even moderately large 
SARS-CoV-2 trees, parsimony-based methods should 
be heavily favored due to their increased efficiency.

Conclusions

The SARS-CoV-2 pandemic has made phylogenetics 
central to efforts to combat the spread of the virus, but 
has posed challenges for many commonly used phylo-
genetics frameworks. A major component of this effort 
relies on a comprehensive, up-to-date, global phylog-
eny of SARS-CoV-2 genomes. However, the scale and 
continuous growth of the data have caused difficulties 
for standard de novo phylogenetic methods. Here, we 
find that online phylogenetics methods are practical, 
pragmatic, and accurate for inferring daily phylo-
genetic trees from a large and densely sample virus 
ountbreak.

One counterintuitive result is that parsimony-based 
optimization outperformed sufficiently efficient ML 
and pseudo-ML approaches in the majority of our 

Figure 4. De novo matOptimize produces comparable trees to the most thorough ML inference programs. We ran these methods for up to 
2 weeks each to infer trees de novo from the 3 smallest iterations of real and simulated data. For real data (A), log-likelihoods were computed 
under the model parameters estimated by IQ-TREE 2 at each iteration. Values are normalized by the value of the matOptimize approach such 
that all other methods are expressed as a ratio. For simulated data (B, C), the reported quartet similarities are normalized by the maximum 
value of the metric described in (Asher and Smith 2022). RF distances (C) are normalized by dividing by I (Ti) + Ni − 3, where I (Ti) is the 
number of internal edges in the pruned ground truth tree for iteration i, and Ni is the number of taxa. For all panels, the 2nd and 3rd iterations 
of RAxML-NG (which did not terminate within 2 weeks) are omitted.
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experiments regardless of whether phylogenies were 
evaluated using parsimony or likelihood. This might 
be a consequence of the fact that parsimony scores and 
likelihoods are strongly correlated across phylogenies 
inferred via a range of phylogenetic approaches. The 
extremely short branches (Supplementary Fig. S2) on 
SARS-CoV-2 phylogenies mean that the probability 
of multiple mutations occurring at the same site on a 
single branch is negligible. Stated another way, SARS-
CoV-2 is approaching a “limit” where parsimony and 
likelihood are nearly equivalent. Similar observations 
have been made in other fields that, in certain cases, 
nonparametric methods based on parsimonious solu-
tions perform similarly to statistical methods that 
assume an underlying model (Huelsenbeck et al. 2000; 
Ree et al. 2005; Nylander et al. 2008). In turn, because 
of its relative efficiency, matOptimize is able to search 
more of the possible tree space in the same amount of 
time, thereby resulting in trees with better likelihoods 
and lower parsimony scores than trees optimized using 
currently available ML software packages. We empha-
size that this does not bear on the relative merits of 
the underlying principles of ML and MP, but instead 
reflects the utility of methods that have been applied 
during the pandemic. Nevertheless, this observation 
does suggest that in some cases, MP optimization may 
provide a fast and accurate starting point for ML opti-
mization methods. Indeed, many popular phyloge-
netic software packages such as RAxML (Stamatakis 
2014) and IQ-TREE (Minh et al. 2020) already use step-
wise-addition parsimony trees as initial trees for their 
optimization or in conjunction with likelihood during 
inference as in PhyML 3.0 (Guindon et al. 2010). Our 
results suggest that further optimization of initial trees 

using MP may provide benefits in speed and accuracy 
for some data sets, even when the target is an estimate 
of the ML tree.

As sequencing technologies progress, sample sizes for 
phylogenetic analyses of major pathogens and highly 
studied organisms will necessarily continue to increase. 
Today, SARS-CoV-2 represents an extreme with respect 
to the total number of samples relative to the very short 
branch lengths on the phylogeny. However, the global 
sequencing effort during the pandemic suggests that 
the public health sphere has a strong interest in the 
increased application of whole-genome sequencing to 
study the genomic contents, evolution, and transmis-
sion history of major and emerging human pathogens. 
In addition to our global tree of SARS-CoV-2 with ~14 
million samples, we use online phylogenetics with 
UShER and matOptimize to maintain 3 other publicly 
available viral phylogenies, with a web server for sam-
ple placement hosted at https://genome.ucsc.edu/cgi-
bin/hgPhyloPlace. As of February 2023, our Mpox tree 
contains 3751 genomes, our RSV-A tree contains 2592 
genomes, and our RSV-B tree contains 1915 genomes. 
In addition, we have applied UShER and matOptimize 
to the bacterial pathogen Mycobacterium tuberculosis, 
constructing a de novo tree with 10,248 genomes (Ye et 
al. 2022). All of these pathogen trees share relatively 
dense sampling and short average branch lengths, so 
the results of this paper suggest they are well-suited to 
inference using online parsimony methods. We expect 
that million-sample data sets will become commonplace 
in the near future, and that parsimony-based methods 
like matOptimize show promise for many pathogens 
beyond SARS-CoV-2. Recently developed parsimo-
ny-based likelihood approximations may ultimately 
be similarly scalable and accurate (De Maio et al. 2023). 
Online phylogenetics using both of these methods will 
be a fruitful avenue for future development and appli-
cation to accommodate these data sets.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository: 
https://doi.org/10.7291/D13Q2J.
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Figure 5. Improvement in likelihood and parsimony have a 
linear relationship for our optimized global tree. We optimized our 
initial global tree using 6 iterations of FastTree and measured the total 
parsimony and the likelihood after each, finding a linear relationship 
(Pearson correlation, rho = –1.0, P < 2.9 × 10–7).
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be accessed at the following file identifiers: pub-
licMsa/publicMsa.2021-03-18.masked.pb, publicMsa/
publicMsa.2021-03-18.masked.vcf.xz, publicMsa/
publicMsa.2021-03-18.masked.fa.xz, publicMsa/
publicMsa.2021-03-18.nwk, and UShER_SARS-
CoV-2/2021/03/18/public-2021-03-18.metadata.tsv.gz. 
The UShER web server is hosted at https://genome.
ucsc.edu/cgi-bin/hgPhyloPlace. UShER and matOp-
timize are available to download via Anaconda at 
https://anaconda.org/bioconda/usher and on Github 
at https://github.com/yatisht/usher. All data analysis 
scripts and additional data are available on Github at 
https://github.com/bpt26/parsimony and the Dryad 
Digital Repository: https://doi.org/10.7291/D13Q2J. 
Supplemental figures are available on Dryad.
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