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Abstract Following recent studies, the automatic analy-

sis of intracranial pressure (ICP) pulses appears to be a

promising tool for forecasting critical intracranial and

cerebrovascular pathophysiological variations during the

management of many disorders. A pulse analysis frame-

work has been recently developed to automatically extract

morphological features of ICP pulses. The algorithm is able

to enhance the quality of ICP signals, to segment ICP

pulses, and to designate the locations of the three ICP sub-

peaks in a pulse. This paper extends this algorithm by

utilizing machine learning techniques to replace Gaussian

priors used in the peak designation process with more

versatile regression models. The experimental evaluations

are conducted on a database of ICP signals built from 700 h

of recordings from 64 neurosurgical patients. A compara-

tive analysis of different state-of-the-art regression analysis

methods is conducted and the best approach is then com-

pared to the original pulse analysis algorithm. The results

demonstrate a significant improvement in terms of accu-

racy in favor of our regression-based recognition frame-

work. It reaches an average peak designation accuracy of

99% using a kernel spectral regression against 93% for the

original algorithm.

Keywords Intracranial pressure � Brain trauma �
Hydrocephalus � Pulse morphology � Regression analysis �
Peak designation

1 Introduction

The management of many neurological disorders relies on

the continuous measurement of intracranial pressure (ICP).

Dynamics of ICP reflect the brain’s compensatory capa-

bility to intracranial volumetric changes and pathophysio-

logical changes of the cerebral vasculature. Previous works

have shown that variations of the ICP pulse morphology

are linked to the development of intracranial hypertension

[10, 20] and cerebral vasospasm [5], acute changes in the

cerebral blood carbon dioxide (CO2) levels [6, 19], and

changes in the craniospinal compliance [9]. More gener-

ally, several studies [7, 8] have established a link between

the morphology of the ICP pulse and the outcome head

injured patients.Therefore, the automatic and continuous

analysis of ICP morphological features appears to be

promising for a better monitoring of pathophysiological

intracranial and cerebrovascular changes.

An ICP pulse is typically triphasic [6] (i.e. three sub-

peaks in each ICP pulse). Therefore, locating these three

peaks in an ICP pulse would be an essential step to conduct

a thorough analysis of ICP pulse morphological features

because the calculation of the amplitude and timing of each

peak can be readily carried out after knowing the desig-

nation of these peaks. A promising technique [1] was

developed to detect the first peak of ICP pulses. Handcrafted

features were extracted and used by different decision

functions to determine if an incoming peak is a true com-

ponent based on a threshold. However, processing an ICP

signal to extract the three peaks in a continuous and robust
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way is very challenging and beyond most of state-of-the-art

ICP analysis methods [2, 9].

MOCAIP algorithm [16] (Morphological Clustering

and Analysis of ICP Pulse) has recently been developed

for this purpose. In contrast with Morphologram [13] that

analyzes the ICP offline, the framework is capable of

extracting morphological changes of ICP pulse in real time.

The MOCAIP algorithm offers several interesting proper-

ties; it is able to enhance ICP signal quality, to recognize

legitimate ICP pulses and to detect the three sub-peaks in

an ICP pulse. During the peak designation process, MO-

CAIP relies on a Gaussian model to represent the prior

knowledge about the position of each peak in the pulse.

The assignment is chosen such that it maximizes the

probability of observing the peaks given the prior distri-

butions. These priors have been previously learned from a

training set of annotated data. This can be problematic

because the position of the peaks within the pulse presents

a large variation which is translated into large variance

priors. This weakens the effectiveness of the peak desig-

nation step. Moreover, the ICP pulse itself, which contains

potentially informative values, is not exploited directly

during this step.

The current paper addresses these problems in the

original MOCAIP algorithm [16] by utilizing machine

learning techniques. The key idea is to exploit a

regression model instead of using unimodal priors during

the peak designation to improve the accuracy of the peak

designation process. The regression model y = f(x) is

able to predict the most likely position of the three

peaks, y = (p1, p2, p3), given a segmented ICP pulse

discretized as a vector x. Different regression methods to

predict the location of the peaks are compared in our

experiments. The methods considered in this work

include Multi-Linear Regression [12], Support vector

machine (SVM) algorithm [7], recently developed spec-

tral regression (SR) analysis [4], and extremely ran-

domized decision trees (Extra-Trees) [14].

2 Methods

2.1 MOCAIP algorithm

MOCAIP is a recently developed algorithm to identify the

three peaks that occur in an ICP signal. The recognition of

ICP peaks is achieved through three major tasks. The first

task consists of robustly segmenting a continuous ICP

signal into a sequence of individual ICP pulses (i.e.

heartbeats). This is done by using a pulse detection algo-

rithm, a clustering algorithm, and a filtering process that

identifies valid pulses. The second task is to detect all the

candidate peaks in each ICP pulse. Finally, the third task

relates to the designation of the three peaks among the

detected candidates.

2.1.1 Detection, clustering, and validation

MOCAIP starts by segmenting the continuous ICP into a

sequence of individual ICP pulses. To this end, MOCAIP

combines an ICP pulse extraction technique [15] with the

ECG QRS detection [2] that finds each ECG beat.

ICP recordings collected from the bedside monitors can

be contaminated by several types of noise and artifacts.

Instead of applying ICP morphology analysis using indi-

vidual pulses separately, a representative cleaner pulse is

extracted from a sequence of consecutive ICP pulses. A

hierarchical clustering approach [17] is used, and the the

centroid of the main cluster is extracted. We refer to it as

the dominant pulse, and we denote it as Si.

When the signal is heavily contaminated by artifacts, a

dominant pulse extracted from a signal sequence might not

correspond to a valid pulse. To identify valid ICP pulses

automatically, MOCAIP exploits a reference library con-

taining validated ICP pulses. A pulse is judged to be valid

if it belongs to a cluster whose average pulse correlates

with any of the reference ICP pulses.

2.1.2 Detection of candidate peaks

Once a valid ICP pulse Si has been extracted, MOCAIP

detects a set of peak candidates (or curve inflections). Each

of them is potentially one of the three peaks. The extraction

of these candidates relies on the segmentation of the ICP

pulse into concave and convex regions. This is done using

the second derivative of the pulse. Typically, a peak cor-

responds to the intersection of a convex to a concave region

on a rising edge of ICP pulse or to the intersection of a

concave to a convex region on the descending edge of the

pulse. This detection process produces a pool of N peak

candidates (a1, a2, ..., aN).

2.1.3 Assignment of detected peaks

The last task of the MOCAIP algorithm is to identify the

three ICP peaks (p1, p2, p3) from the set of candidate peaks.

Given Pi(aj), i = 1, 2, 3 to denote the probability density

functions (PDF) of assigning aj to the i-th peak (each PDF

is a Gaussian distribution estimated from peak locations

previously detected on a set of reference ICP pulses). The

peak assignment amounts to searching for the maximum of

the following objective function
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Jði; j; kÞ ¼ P1ðaiÞ þ P2ðajÞ þ P3ðakÞ ð1Þ

In order to deal with missing peaks, an empty designation

a0 is added to the pool of candidates. In addition, to avoid

false designation, MOCAIP uses a threshold q such that

Pi(ak) = 0, i [ {1, 2, 3}, k [ {1, 2,..., N} if the probability

of assigning ak to pi is less than q.

2.2 Regression analysis for peak designation

During the peak assignment, the MOCAIP algorithm

exploits Gaussian priors to infer the position of the

three peaks from a set of peak candidates. Because

there exist large variations in the pulse morphology of

the ICP signals, the actual position of each of the three

peaks is extremely variable. The strategy employed by

MOCAIP limits its ability to cope with the complexity

of data and therefore may lead to wrong or missed

assignments.

This section focuses on this problem and introduces an

extension of the MOCAIP algorithm. The innovative idea

is to consider the position (p1, p2, p3) of the peaks as a

function f of the pulse signal. To this end, a regression

model (previously learned) is exploited instead of the

Gaussian priors during the peak designation to improve the

accuracy of the process. The strength of using this model is

that it exploits the values of the pulse itself during the peak

assignment. Another advantage is the ability of the

framework to exploit powerful machine learning algo-

rithms (Sect. 2.2.3).

During the learning phase, a regression model yi = f(xi)

is estimated from a set S = { Si=1 ...n } of training pulses

(i.e. inputs) labelled with the locations of the peaks yi =

(p1, p2, p3) (i.e. outputs) within the pulse. For simplicity,

each pulse Si is resized to a vector xi 2 R
s of length s

following the procedure described in Sect. 2.2.1 and

illustrated in Fig. 1.

For recognition on a previously unseen pulse xj, the

regression model yj = f(xj) predicts the most likely position

of the three peaks yj = (p1, p2, p3). In parallel, a set of

candidate peaks a1, a2, ..., aN is extracted at curve inflec-

tions. Then a matching algorithm Sect. 2.2.2 is used to

assign the closest peak candidates to the predictions of the

regression model.

2.2.1 ICP pulse pre-processing

In order to be processed by the regression analysis, each

ICP pulse Si (sampled at 400 Hz) has to be represented as a

vector xi 2 R
s: Because the length of the pulse may vary, it

is resized to a vector of fixed length s 2 N
þ; such that it is

set proportional to the average pulse length on the training

data,

s ¼ a

Pn
i lengthðSiÞ

n
ð2Þ

where a was empirically set to 1.7 during our

experiments. The feature vector xi corresponds to the

normalized pulse Si if it has a length of s. If the length of

the pulse Si is larger than s, the extra-values at the end of

the pulse are discarded. If the pulse is smaller than s, the

last value Si(last) is repeated to fill the vector, as written

formally

xiðj ¼ 1. . .sÞ ¼ SiðjÞ if ðj� lengthðSiÞÞ
SiðlastÞ otherwise

�

ð3Þ

In addition, each pulse vector xi is then normalized such

that the minimum and maximum values of the vector are

respectively 0 and 1.

2.2.2 Prediction assignment algorithm

As a final step, the locations (p1, p2, p3) predicted by the

regression model are used to identify the peaks in the set

of candidates (a1, a2, ..., aN). As summarized in the

Algorithm 2, the closest candidate peaks to any prediction

is assigned to the peak label corresponding to the matched

prediction. After the assignment, the candidate peak is

removed from the set. Therefore, each candidate peak is

assigned to maximum one label. This is repeated three

times. A threshold k is used to avoid the assignment of

candidate peaks whose distance to its closet prediction is

too large.

0 50 100 150 200 250 300 350
0
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Fig. 1 A regression model f(x) is used to predict the positions a, b
and c, of the three peaks. The pulse is discretized and normalized into

a vector x
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2.2.3 Regression analysis

Regression analysis is a statistical technique used for the

numerical analysis between an input variable xi [ X and an

output variable yi [ Y. This section provides an overview

on different regression analysis methods that will be used

within our framework; these includes Multi-Linear

Regression [8], support vector machine (SVM) algorithm

[7], Spectral regression (SR) analysis [4], and extremely

randomized decision trees (Extra-Trees) [14].

2.2.4 Multiple linear regression

A common way to obtain a regression model is to perform

a multiple linear regression (MLR) analysis [8]. The intu-

ition behind this technique is to fit a model such that the

sum-of-squares error (SSE) between the observed and the

predicted values is minimized.

Let X be a set of n input variables xi 2 R
s (i.e. nor-

malized pulse values), Y of set of observations yi 2 R
3 (i.e.

peak positions) and b a s 9 3 matrix of parameters, the

multiple linear regression model is expressed as follow:

Y ¼ bX þ � ð4Þ
, yi ¼ b1xið1Þ þ b2xið2Þ þ � � � þ bsxiðsÞ þ �i ð5Þ

where i = 1...n and ei = N(0, r2) denotes a set of noise

variables.

The goal of the multiple linear regression (MLR) anal-

ysis is to find estimates b̂ to the coefficients b such that

they minimize the sum-of-squares error (SSE),

b̂ ¼ argminb

Xn

i¼1

ðbxi � yiÞ2 ð6Þ

The optimal b̂ can be expressed as

b̂ ¼ ðXXTÞ�1XT Y ð7Þ

We used a QR factorization to obtain b̂: The estimated

regression coefficients b̂ can then be used to predict the

output values ŷ0i 2 Ŷ 0 from a set of previously unseen data

x0i [ X0,

Ŷ 0 ¼ b̂T X0 ð8Þ

2.2.5 Spectral regression analysis

The spectral regression analysis (SR) [4] is a recent method

which combines spectral graph analysis and standard linear

regression. The goal consists of finding a regression model

which has similar predictions ŷi 2 Ŷ for data samples xi [ X

that are close (i.e. that are nearest neighbors in a graph rep-

resentation), such that the following measure / is minimized:

/ ¼
Xn

i;j¼1

ðŷi � ŷjÞ2Wi;j ð9Þ

where W 2 R
n�n is the affinity (i.e. item-item similarity)

matrix that associates a positive value to Wi,j if the samples

xi, xj belong to the same class.

More precisely, this is done by first using the eigen-

vectors of the affinity matrix W,

We ¼ kDe ð10Þ

where D is a diagonal matrix whose entries are column

sums of W, Di,i =
P

j Wj,i, and e0, e1, ..., ed denote the

d ? 1 eigenvectors with respect to the d ? 1 largest

eigenvalues k0 C k1C_Ckd.

Then Spectral Regression finds d vectors

fb̂0; b̂1; . . .; b̂dg that minimize the residual sum of square

error (SSE),

b̂j ¼ argminb

Xn

i¼1

ðbT xi � y j
i Þ

2 ð11Þ

where yi
j is the i-th element of ej.

Spectral Regression is a linear regression algorithm.

However, it can easily be extended to nonlinear problems

by using a kernel projection (i.e. ‘‘kernel trick’’). This

technique allows to use a linear regression analysis to solve

a nonlinear problem by mapping the observations into a

higher-dimensional space, where the linear regression is

subsequently used. In our framework, a radial basis func-

tion (RBF) kernel is used as a projection matrix,

Kðxi; xjÞ ¼ eð�ckxi�xjk2Þ; c[ 0 ð12Þ

970 Med Biol Eng Comput (2009) 47:967–977
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We further refer to this technique as the Kernel spectral

regression (KSR).

2.2.6 Support vector machine regression

A support vector machine (SVM) [7] is a supervised

learning technique that has been used extensively in a wide

range of pattern recognition applications.

When used in a regression framework, SVM aims at

finding a function f that maps any input xi to its output label

yi. This is done using the optimization presented in Eq. 13.

Intuitively, it allows errors as long as they are less than e,
while trying to make f as ‘‘flat’’ as possible.

argminw;b;nþ;�
1

2
hw;wi þ C

XN

i¼1

n�i þ nþi

subject toðhw;/ðxiÞi þ bÞ � yi� �þ nþi
yi � ðhw;/ðxiÞi þ bÞ� �þ n�i
n�i ; n

þ
i [ 0

ð13Þ

where /(xi) corresponds to the projection of xi into a higher

dimensional feature space, \ .,. [ denotes the inner prod-

uct between two vectors. Vectors ni
- and ni

? correspond to

the lower and upper parameters in which the estimated

function g(xi) = \ w,/(xi) [ ? b is allowed to vary for a

given error e and cost C.

In practice, this optimization is solved using the dual

maximization problem (more details can be found in the

reference paper [7]):

argminaþ;a�
1

2

Xn

i;j¼1

ðaþi � a�i Þðaþj � a�j ÞKðxi; xjÞ

þ �
Xn

i¼1

ðaþi þ a�i Þ þ
Xn

i¼1

yiðaþi � a�i Þ

subject to
Xn

i¼0

ðaþi � a�i Þ ¼ 0 and 0� aþ;�i �C

ð14Þ

which has the following objective function,

gðxÞ ¼
Xn

i¼1

ðaþi � a�i ÞKðx; xiÞ þ b ð15Þ

where x is a new input vector, and a?, a- correspond to the

upper and lower error boundaries.

In our framework, K(xi, xj) is a RBF kernel function

(Eq. 12) that maps input features into another space in

which the samples are hopefully linearly separable.

2.2.7 Extremely randomized decision trees

Extremely randomized decision trees (Extra-Trees) [14] is

a machine learning method that extends classical decision

trees by introducing stochasticness during the induction

process. Extra-Trees consists of an ensemble of random-

ized binary decision trees.

The induction algorithm of a tree takes the form a top-

down process that successively splits the leaves where the

output varies. Each internal node is annotated with a

threshold kj that is defined on an input attribute j [ [1, 2,...,

m] randomly selected. The algorithm sets the value kj to a

pseudo-random value depending on a Gaussian distribution

Nðlj; rjÞ (estimated from the training samples), where lj,

rj are the mean and standard deviation of this attribute j.

The construction stops at a given node when its output

values are constant for all the training samples.

To obtain output predictions ŷi from a new, previously

unseen input vector xi, the vector is independently pro-

cessed by each of the k [ K trees (K = 50 in our imple-

mentation). The predicted values ŷi
k ¼ fkðxiÞ originating

from the trees are collected, and the final prediction is

computed as a weighted average,

ŷi ¼
XK

k¼1

wkŷi
k ð16Þ

such that ŷi
k ¼ fkðxiÞ and

P
kwk = 1. The weights wk are set

proportional to the accuracy obtained by the tree fk on the

training set.

3 Results

The dataset used in our experiments originates from the

UCLA ADULT HYDROCEPHALUS CENTER and has previously

been used to evaluate MOCAIP [16]. The usage of this

archived dataset in the present work was approved by the

UCLA Internal Review Board.

The ICP and ECG data were collected from 64 inpa-

tients treated for various intracranial pressure related con-

ditions. Data belonging to two patients, which were

included in the original MOCAIP study had to be removed

in the present study because a closer scrutiny revealed that

no valid ICP recordings were obtained for these patients

because of device malfunctions. ICP was monitored con-

tinuously using Codman intraparenchymal microsensors

(Codman and Schurtleff, Raynaud, MA) placed in the right

frontal lobe. ICP signals were recorded from bedside

monitors using corporate data acquisition systems.

The sampling rate during the recordings was either 240

or 400 Hz. A total of 153 signal segments of approximately

5-h long were extracted every 12 h. These ICP and ECG

signal segments were subsequently processed by MOCAIP

to produce a set of 14230 raw dominant pulses. Among

these, 13,611 were considered as valid pulses and consti-

tutes the dataset H = {X, Y} that will be used in our

experiments. Each pulse was labelled manually by expe-

rienced researchers with the position of the three peaks.

Med Biol Eng Comput (2009) 47:967–977 971
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Whenever a peak was missing (i.e. no curve inflection), it

was labelled with the empty set. The dataset is particularly

challenging because there exists a large variability in the

ICP signals that may arise from the individual condition of

each patient. Moreover, among the set of pulses, 1717 have

missing p1, 265 have missing p2 and 34 have missing p3.

3.1 Comparative analysis of regression methods

The different regression techniques that have been descri-

bed in Sect. 2.2.3 are now compared. Their strength is

quantified on an ICP peak detection task by measuring their

precision, generalization power on new patients, cost in

complexity, and sensitivity to the number of training

samples. The technique that performs the best across these

different evaluations will be chosen to be included in the

extension of the MOCAIP extension framework Sect. (2.2.

The following acronyms LIN, SVM, SR, KSR, and

EXTRA-Trees will be used in this section to refer to

Multiple Linear, Support Vector Machine, Spectral

Regression, Kernel Spectral Regression, Extremely Ran-

domized Decision trees methods respectively.

3.1.1 Prediction accuracy

This experiment evaluates the accuracy of each regression

method to detect the three peaks within ICP pulses. The

error e is measured in terms of average prediction error, in

milliseconds (ms), between the actual position of the peaks

yi = (p1, p2, p3) and the prediction ŷi ¼ ðp̂1; p̂2; p̂3Þ of the

regression method,

fep1
; ep2

; ep3
g ¼ 1

n

Xn

i¼1

jŷi � yij ð17Þ

and e ¼ ðep1
þ ep2

þ ep3
Þ=3; where epi

denotes the predic-

tion error for the i-th peak.

A five-fold crossvalidation is performed on a dataset H0

, H consisting of 11080 ICP pulses. These pulses were

randomly selected from the dataset H and they were

required to contain three peaks. For each fold, 8,864 pulses

are used for training and 2,216 are used as a test set. The

partitioning was made randomly such that each pulse

appeared at least once in the test set. The results obtained

by each method are reported in Fig. 2 as light blue bars.

KSR, eG
KSR = 1.32 ms ± 0.053, and Extra-Trees eG

XT

= 2.64 ms ± 0.21 offer the lowest prediction error. They

are closely followed by SVM eG
SVM = 3.77 ms ± 0.06.

Linear regression approaches eG
SR = 7.98 ms ± 0.13 and

eG
LIN = 8.01 ms ± 0.14 does not perform as well. This

suggests that the relation between the pulse x and the

position y of the peaks is non-linear and cannot be captured

precisely by linear approaches.

3.1.2 Prediction accuracy on new patients

The regression models used in the previous experiment

were trained globally. Such an approach does not take into

account that the data from the same patients probably

appear both in the training and test set. In order to measure

the generalization ability of the model, it is more realistic

to perform the evaluation on previously unseen patients

only. This is referred to as the individual approach.

The protocol in this experiment is to train a regression

model separately for each patient such that its data are not

included in the training set, but used as a test set. This can

be seen as a 64-fold crossvalidation (one fold for each of

the 64 patients) such that the training set of each fold

consists of 4,000 randomly selected pulses from all the

patients excluding one. Each test set is made of ICP pulses

of the patient data that were excluded of the training set.

The prediction error (Eq. 17) averaged over the 64 test sets

is shown in Fig. 2 as dark blue bars. The error of these

individual models is compared, for each regression tech-

nique, to the results of the global model trained in the

previous paragraph. The prediction on new patients is

obviously more challenging. For KSR the error changes

from eG
KSR = 1.32 ms for the global model to eI

KSR = 3.63

ms for the individual models, SVM from eG
SVM = 3.77 ms

to eI
SVM = 5.32 ms, SR from eG

SR = 7.98 ms to eI
SR

= 10.60 ms and linear from eG
LIN = 8.01 ms to eI

LIN

= 10.62 ms. Similarly to the previous experiment, KSR and

Extra-Trees perform the best. They offer the best

KSR SR Linear SVM Extra−Trees
0

2

4

6

8

10

12

Regression Method
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Fig. 2 Average error between the predicted and the actual position of

each peak (Eq. 17). Results are reported for different regression

models (KSR, SR, Linear, SVM, Extra-Trees). For each technique,

the results are compared between globally (light blue) and individ-

ually (dark blue) trained models. For global models, a standard five-

fold cross-validation is used to evaluate the models on the all dataset.

In contrast, Individual models are evaluated on each patient by

excluding the data of that particular patient from the training set
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generalization on new patients and obtain the lowest

average prediction error.

3.1.3 Number of training samples

The estimation of the regression models relies on a set of

training ICP pulses. The number of these training samples

has generally two conspicuous impacts. On the one hand,

the accuracy is expected to be better as the number of

labelled examples increases. On the other hand, it tends to

make the learning process more costly in terms of memory

uses and running time. The current experiment focuses on

these two aspects.

The experimental protocol is similar to the one used

for the global evaluation. The average prediction error of

the peak position (Eq. 17) is measured using a five-fold

cross-validation that is performed on the 11080 ICP

pulses. The number of training samples varies from 500

to 6,000. The average prediction error of the peaks is

shown against the number of training samples in Fig. 3.

It can be seen that, for KSR and SR, the error quickly

decreases from 2.67 to 1.99 ms between n = 500 and

n = 1,050. Then it decreases much slower, to finally

reach an average error of 1.24 ms.

The great performances of KSR, SVM and especially

Extra-Trees, come with a greater cost in computational

complexity. Using the same protocol, but this time the

number of training samples varies from n = 500 to

n = 4,000. Figure 4 shows to what extent this is true. It can

be noticed that the training time is about the same for a

small number of samples (n = 500), KSR = 0.19;

SR = 0.12; LIN = 0.41; SVM = 0.25, however some

methods become prohibitive in terms of time consumption

for a larger number of samples (n = 4,000) [KSR = 8.69;

SR = 0.89; LIN:5.13; SVM:10.07] sec.

3.2 Peak recognition

In the following, we evaluate the proposed extension of

MOCAIP based on the Kernel spectral regression (KSR).

The recognition results are compared to the original

MOCAIP.

In these experiments, a predicted position ŷi is consid-

ered as correct if it does not differ by more than 30 ms from

the actual position yi. Based on this definition, it is possible

to say if a prediction is a true positive (TP), false positive

(FP), true negative (TN), or false negative (FN),

A prediticion ŷi of yi is a

TP; if ðjŷi� yij�30^ ŷi 6¼ ;Þ
FP; if ðjŷi� yij[30^ ŷi 6¼ ;Þ
TN; if ðŷi ¼ ;^ yi ¼ ;Þ
FN; if ðŷi ¼ ;^ yi 6¼ ;Þ

8
>><

>>:

ð18Þ

Table 1 summarizes these results (TP, FP, TN, FN) for

each peak (p1, p2, and p3) using the individual approach

presented earlier.
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Fig. 3 Effect of the number of training samples on the average

prediction error (Eq. 17) and standard deviation for different regres-

sion models (KSR, SR, Linear, SVM, Extra-Trees) using a fivefold

crossvalidation
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training time and standard deviation for different regression models

(KSR, SR, Linear, SVM, Extra-Trees). Extra-Trees seem to be the

most costly technique in terms of computational complexity
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Based on these results and the ones obtained by globally

trained models, we report the accuracy in Table 2, which is

defined as:

ACC ¼ ðTPþ TNÞ=ðTPþ FPþ TNþ FNÞ ð19Þ
Figure 5 shows the Receiver operating characteristic

(ROC) for MOCAIP, individual Kernel Spectral Regres-

sion (KSR) models. The plots show the true positive rate

(TPR) (sensitivity) against the false positive rate (FPR),

TPR ¼ TP=ðTPþ FNÞ ð20Þ
FPR ¼ FP=ðFPþ TNÞ ð21Þ

We can observe that our MOCAIP extension (based on

KSR) achieves a very high true positive rate for correctly

designating the three peaks. The significant improvement

in terms of True Positive and False Positive rate is con-

firmed by the combined accuracy. Whereas MOCAIP

obtains 97.26, 92.84, and 90.83% for each peak, the results

of the proposed extension are 99.15, 99.09 and 98.95% on

new patients only.

These results are comparable to those obtained by the

global regression model: 99.37, 99.42 and 99.59%

(Table 2). This indicates that our regression model has a

good generalization power and it does not seem to be

subject by over-fitting problems. These results were

obtained after an optimization of the optimal parameters

such that the threshold t = 44 and the temperature param-

eter c of the RBF kernel is equal to 2.

Figure 6 illustrates successful detection results on four

different pulses. We can observe that the detection is robust

given the large shape variability of the ICP signal.

4 Discussion

MOCAIP is a recent paradigm for analyzing intracranial

pressure pulses in terms of their morphological character-

istics. The main contribution of the present work is to

significantly improve the performance of the peak desig-

nation component of MOCAIP. Peak designation is a

challenging and important task that MOCAIP needs to

solve because correct morphological feature extraction

cannot be achieved without properly designating each

peak. The improvement was achieved by using nonlinear

regression techniques, particularly, the Kernel Spectral

Regression (KSR). The improved MOCAIP algorithm will

facilitate towards automatic and robust characterization of

ICP pulse morphological changes.

A comparative analysis of different regression methods

was described in Sect. 3.1. kernel spectral regression

(KSR) and extremely randomized decision Trees (Extra-

Trees) yielded the lowest error rates in predicting the

position of the peaks. The main drawback of Extra-Trees is

the high computational cost during the learning phase. It

becomes prohibitive as the number of training samples

increases. For these reasons, we decided to select KSR as

the regression method employed in the MOCAIP

extension.

Furthermore, experimental results presented in Sect. 3.2

validate the method by showing a significant increase of

the peak designation accuracy in comparison with the

original MOCAIP. The first possible reason for the better

performance using a regression approach is that the

amplitude information of ICP pulse is incorporated into the

peak designation process while such information was not

exploited in the original framework. The second possible

reason is that the peak designation process in the original

MOCAIP algorithm makes an assumption of independence

between the positions of the ICP sub-peaks while the

regression based approach does not depend on this

assumption.

Although the clinical value of the morphological prop-

erties extracted by MOCAIP needs further study, it could

be argued that these metrics definitely provide more

information than the mean ICP, which is prevalently used

in current clinical practice. ICP pulses originate from blood

pressure along the cerebral vasculature. A particular con-

figuration of sub-peaks in an ICP pulse is influenced by

arterial, capillary, and venous blood pressure pulses, as

well as their interactions with the three major intracranial

compartments, including the cerebral vasculature, the brain

tissue, and the cerebrospinal fluid circulatory system.

Therefore, it is plausible that ICP pulse morphological

changes may provide good indications of changes in any of

these three compartments. These can be caused by a variety

of pathological events such as the narrowing cerebral

Table 1 Confusion matrix for individually trained KSR models: true

positive (TP), false negative (FN) false positive (FP) and true negative

(TN) for the three peaks (P1, P2, and P3)

Actual value Prediction P1 Prediction P2 Prediction P3

Peak No peak Peak No peak Peak No peak

Peak 11,223 23 12,542 109 12,663 129

No peak 86 1,482 8 155 6 16

Table 2 Peak recognition accuracy (Eq. 19) obtained by the original

MOCAIP algorithm (Gaussian priors) and by the kernel spectral

regression (KSR) extension proposed in this paper on a dataset of

13,611 pulses

P1 (%) P2 (%) P3 (%)

KSR (global) 99.37 99.42 99.59

KSR (individual) 99.15 99.09 98.95

Gaussian Priors 97.26 92.84 90.83

The regression models trained globally perform best because they

might contain data from the patient to be predicted
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arteries (vasospasm) after subarachnoid hemorrhage and

development of mass-occupying lesions after a brain

injury. Given these considerations, it seems promising for

future clinical studies to investigate whether tracking ICP

pulse morphological changes in a near real-time fashion

can lead to forecasting intracranial pathological changes.

Finally, it can be pointed out that morphological anal-

ysis of pulsatile signals is a popular technique for

extracting useful information. In addition to intracranial

pressure, the morphology of arterial blood pressure pulses

has been widely used to extract parameters [12] such as the

augmentation index [18] (for characterizing the stiffness of
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Fig. 5 For each of the three peaks, Receiver operating characteristic

(ROC) curves ((a), (b), and (c)) are reported for the original MOCAIP

(Gaussian Priors) and the individual trained regression models. We

can observe that the use of our regression technique offers a

significant improvement in performance for each peak. Circles
correspond to the true positive and false positive rates obtained by

the threshold (t = 44 for the regression model) that minimizes the

combined accuracy (Eq. 19). Their values are reported in Table 2

Med Biol Eng Comput (2009) 47:967–977 975

123



0 50 100 150 200 250 300
2.5

3

3.5

4

4.5

5

5.5

6

6.5

Time (ms)

In
tr

ac
ra

ni
al

 P
re

ss
ur

e 
(m

m
 H

g)

0 50 100 150 200 250
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (ms)

In
tr

ac
ra

ni
al

 P
re

ss
ur

e 
(m

m
 H

g)

0 50 100 150 200 250 300 350 400
−16

−15

−14

−13

−12

−11

−10

−9

−8

Time (ms)

In
tr

ac
ra

ni
al

 P
re

ss
ur

e 
(m

m
 H

g)

0 50 100 150 200 250 300 350 400 450
−6

−4

−2

0

2

4

6

Time (ms)

In
tr

ac
ra

ni
al

 P
re

ss
ur

e 
(m

m
 H

g)

0 50 100 150 200 250 300
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

Time (ms)

In
tr

ac
ra

ni
al

 P
re

ss
ur

e 
(m

m
 H

g)

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

Time (ms)

In
tr

ac
ra

ni
al

 P
re

ss
ur

e 
(m

m
 H

g)

a b

dc

e f

Fig. 6 Detection of peaks on six different ICP pulses (a), (b), (c), (d), (e), and (f). The ground truth is marked as a black cross and the prediction

of the MOCAIP regression algorithm is depicted as a green dot
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large arteries). It is quite possible that the MOCAIP algo-

rithm may be applicable to analyze arterial blood pressure

pulse and other similar pulsatile hemodynamic signals.
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