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1.  Introduction
Light reflected from the Earth's surface provides information on the chemical processes and their constituents 
in land, aquatic and oceanic systems. Vegetation both absorbs and reflects light as a function of photosynthesis, 
water and nutrient status, mineral surfaces reflect light based on their composition of various elements, and 
aquatic systems reflect water-leaving radiances that are linked to surface and column-water features. Combined, 
reflectances and their derived properties have informed the study of the Earth's biogeochemistry, biodiver-
sity, climate system and how it is changing due to human activities. Satellite missions, launched since the late 
1970s, provide a now continuous time series of global change, with information on vegetation greennees, distur-
bance,  algal blooms, landslides, informing a wide-array of science and applications. Presently, an emergence of 
new instruments to observe reflectance using imaging spectroscopy will further broaden and deepen the insights 
retrieved on the Earth system and functioning.

Global imaging spectroscopy from NASA's Surface Biology and Geology (SBG) designated observable will 
improve understanding of five focal areas of biogeoscience: marine and terrestrial ecosystems, seasonal to 

Abstract  The retrieval algorithms used for optical remote sensing satellite data to estimate Earth's 
geophysical properties have specific requirements for spatial resolution, temporal revisit, spectral range 
and resolution, and instrument signal-to-noise ratio (SNR) performance to meet biogeoscience objectives. 
Studies to estimate surface properties from hyperspectral data use a range of algorithms sensitive to various 
sources of spectroscopic uncertainty, which are in turn influenced by mission architecture choices. Retrieval 
algorithms vary across scientific fields and may be more or less sensitive to mission architecture choices 
that affect spectral, spatial, or temporal resolutions and spectrometer SNR. We used representative remote 
sensing  algorithms across terrestrial and aquatic study domains to inform aspects of mission design that are 
most important for impacting accuracy in each scientific area. We simulated the propagation of uncertainties 
in the retrieval process including the effects of different instrument configuration choices. We found that 
retrieval accuracy and information content degrade consistently at >10 nm spectral resolution, >30 m spatial 
resolution, and >8-day revisit. In these studies, the noise reduction associated with lower spatial resolution 
improved  accuracy vis à vis high spatial resolution measurements. The interplay between spatial resolution, 
temporal revisit, and SNR can be quantitatively assessed for imaging spectroscopy missions and used to 
identify key components of algorithm performance and mission observing criteria.

Plain Language Summary  Detailed observations of Earth's visible to shortwave infrared spectra, 
known as hyperspectral imagery or imaging spectroscopy, will provide novel insights across scientific 
disciplines. Vegetation, aquatic, mineral, and snow scientists have independently developed techniques for using 
hyperspectral imagery to measure different features of their targets. But developing measurement objectives 
that will work well for every kind of measurement target is difficult. Here, we test several representative image 
analysis techniques to inform the planning process of future hyperspectral missions. Specifically, we investigate 
the effect that changing the number of spectral bands, the size of image pixels, and the frequency of repeat 
observations has on each technique's accuracy.
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Key Points:
•	 �High spectral resolution (∼10 nm), 

high spatial resolution (∼30 m), and 
high revisit (less than 16 days) is 
needed to estimate Earth's geophysical 
properties with imaging spectroscopy 
and corresponding retrieval algorithms

•	 �We simulate the effects of instrument 
signal-to-noise ratios on retrieval 
accuracy using a codebase called 
Hypertrace

•	 �Our approach provides a framework 
for current and future mission design 
planning to improve geophysical 
property estimation accuracy across 
biogeoscience
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centennial climate variability, weather and air quality, hydrology and water resources, and dynamics and hazards 
associated with Earth's surface and interior (National Academies of Sciences, Engineering, and Medicine, 2018; 
Schimel et al., 2020). SBG will provide visible through shortwave-infrared reflectance (∼380–2,500 nm wave-
lengths) and thermal (4.5–12 μm) emissivity observations from space with global coverage, frequent revisit, and 
high spectral fidelity (Stavros et al., 2023). Designing a successful mission that meets diverse scientific objectives 
requires evaluating alternative mission architectures (Stavaros et al., 2023; Thompson et al., 2021). In SGB's case, 
each science focal area depends on a different aspect of mission architecture for accuracy (Cawse-Nicholson 
et al., 2021). To characterize the scientific impact of trade-offs associated with different mission architectures, 
we illustrate the driving examples behind each focal area (Table 1) and assess the effects of measurement trades 
on a target retrieval.

Trade-offs are a fundamental component of mission design. Fundamental trade-offs associated with different 
mission architectures occur between spectral, spatial, and temporal resolutions and the radiometric precision of 
the instrument. Radiometric precision (i.e., signal-to-noise ratio or SNR) is a function of the number of photons 
an instrument receives. When integrating over a smaller spectral (i.e., higher spectral resolution) or spatial area 
(i.e., higher spatial resolution) at the fixed orbital speed of a spacecraft, fewer photons will reach the instrument, 
degrading SNR with downstream consequences for retrievals of geophysical variables. On the other hand, some 
features of interest require fine spectral and spatial resolution to be accurately retrieved. Mission architecture 
design must address how optimizing for high instrument SNR impacts spectral, spatial, and temporal resolution. 
For a mission like SBG, which covers a range of scientific disciplines, the trades between each of the three types 
of resolutions and SNR must be thoroughly evaluated using a consistent traceability framework.

Imaging spectroscopy (i.e., 100–1,000s of contiguous wavelength channels) allows for more precise discrimi-
nation of Earth surface properties than multispectral imagery (i.e., 3–20 wavelength channels) because of the 
higher information content in these hyperspectral measurements (Cawse-Nicholson et  al.,  2019; Thompson, 
Boardman, et al., 2017). The spectral resolution of a hyperspectral image has been shown to greatly affect mineral 
(Swayze, 2003) and vegetation (Shiklomanov et al., 2016) retrieval accuracy because these algorithms require 
fine spectrally resolved information. Here, we define “algorithm” similarly to Cawse-Nicholson et al. (2021) as a 
method used to derive an Earth surface property of interest from remotely sensed data. In both these cases, high 
spectral resolution may compensate for lower SNR by contributing more information content. Requirements also 
vary considerably by algorithm type. For example, snow retrieval algorithms are like common mineral retrieval 
algorithms that consider the spectral signature around known absorption wavelengths (Nolin & Dozier, 1993). As 
such, a stronger focus on fine spectral resolution is needed to discriminate and identify key mineral absorption 
features associated with specific mineral species or to identify or discriminate dust versus snow grain particles, as 
well as determine water content and age of snowpack (Swayze, 2003). On the other hand, vegetation algorithms 
are typically based on statistical models (e.g., Partial Least Squares Regression, PLSR; Burnett et al., 2021) or 
physically based models (e.g., radiative transfer model inversion) that relate plant properties at leaf or canopy 
level to more broad absorption features (e.g., Curran, 1989) and spectral information (Serbin & Townsend, 2020; 
Verrelst et  al.,  2019) As such, vegetation algorithms tend to require relatively higher SNR or spatial resolu-
tion over very fine spectral resolution (i.e., <10 nm) compared to the other science areas for reliable vegeta-
tion retrievals. Aquatic algorithms are especially sensitive to atmospheric noise in the spectral signal, and their 
retrieval accuracy may be particularly susceptible to degrading spectral resolution and the effects of low SNR 
because of how aquatic properties such as glint (Hu, 2011), bubbles (Dierssen, 2021), and optical variability in 
the water column (Garcia et al., 2020) interact with water-leaving radiances. In our analyses, we demonstrate how 
retrieval algorithms that depend on hyperspectral imagery respond to the effects of degrading spectral resolution 
and radiometric precision on retrieval accuracy.

Holding SNR constant, finer spatial resolution or increased number of pixels per image will typically lead to 
higher information content in an image (Cawse-Nicholson et  al.,  2019). However, instrument SNR decreases 
with finer spatial resolution because smaller pixels result in fewer photons received by each focal plane array 
detector element. A driving case for spatial resolution is the ecological focal area where different ecosystems have 
different dominanting spatial scale processes (Turner et al., 1989; Wang et al., 2018). For instance, a homogenous 
scene (e.g., dense deciduous forest) may not require fine spatial detail to understand plant functional traits while 
a heterogeneous scene (e.g., sparse lower montane ecosystem) with a variety of landscape classifications and 
vegetation community types may require fine spatial detail.
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Frequent temporal revisit is another fundamental aspect of mission architecture and provides a basis for quan-
tifying the effects of natural disasters and seasonal phenomena (Schimel et al., 2020). The ability to detect a 
short-duration event (e.g., a volcanic eruption or mudslide) or frequent changes during a season (e.g., snow 
albedo) may be hindered by longer revisit time intervals, areas where cloud cover is common, or by overpass time. 
However, increasing revisit frequency can be obtained at the cost of spatial resolution and must be quantitatively 
justified.

To optimize for retrieval accuracy across five scientific areas, mission architecture design must consider tradeoffs 
between spectral, spatial, and temporal resolutions. In this study, we look at specific driving case studies to quan-
tify the performance impacts of these design choices on the range of SBG science objectives. Specifically, we 
perform a simulation experiment in which we synthesize artificial imaging spectroscopy data and apply state of 
practice retrieval algorithms with varying sensor noise and resolution. Currently, high resolution hyperspectral 
time series data are uncommon, so our strategy is to show the probability of detecting an event depending on 
event duration and revisit time interval using simulated data. Our approach compares algorithm accuracy with 
and without instrument noise along gradients of coarsening resolutions to determine optimal resolutions for 
imaging spectroscopy architecture design.

2.  Materials and Methods
Radiance measurements from hyperspectral missions will be converted into surface reflectance values through 
atmospheric correction, which isolates and removes the contribution of absorption and scattering from atmos-
pheric aerosols, water vapor, and other components on the overall radiance signal, and provides estimates of 
incoming and outgoing radiation for each pixel at the Earth surface (Vermote & Kotchenova, 2008). In this study, 
we use an atmospheric correction approach that employs a physically based atmospheric radiative transfer model 
inversion. We use the Imaging Spectrometer Optimal FITting codebase (i.e., ISOFIT; Thompson et al., 2018), 
whereby atmospheric and surface reflectance can be estimated jointly using optimal estimation (OE; Thompson 
et al., 2018). Estimated surface reflectance from the OE procedure then provides the information for algorithms 
that retrieve geophysical properties. These algorithms can take many forms. The retrieval algorithms listed in 
Table 1 were chosen to span each of the five core scientific areas chosen in the decadal survey and were made 
available through collaborations with the algorithms working group.

2.1.  Hypertrace and Instrument Modeling

We developed the Hypertrace simulation workflow to trace the hyperspectral data uncertainty pipeline from top 
of atmosphere radiance to bio- and geophysical retrievals (https://github.com/isofit/isofit/tree/master/examples/
py-hypertrace). Operationally, Hypertrace starts from known surface reflectance and atmospheric conditions 
based on a specific spectral resolution, and then simulates top-of-atmosphere radiance and instrument radiances 
based on the proposed instrument design, and then performs atmospheric correction via optimal estimation to 

Table 1 
Experiment List

Resolution Core science area (scene) Algorithm L3 retrieval (units)

Spectral Mineral (Cuprite, Nevada, USA; AVIRIS-C; Swayze et al., 2014) Absorption feature matching Mineral mass fraction (unitless; 
i.e., spectral abundance)

Aquatic (Arlington, Great Barrier Reef, Australia; DESIS; German 
Aerospace Center, 2019)

Benthic cover classifier Benthic cover type (unitless)

Vegetation (Western Ghats, South India; Zheng et al., 2023) Partial least squares regression Leaf nitrogen mass fraction (g/mg)

Snow (Southern Rocky Mountains, USA; Skiles & Painter, 2017) Least squares Snow grain size (μm)

Spatial Vegetation (Western Ghats, South India; Zheng et al., 2023) Partial least squares regression Leaf nitrogen mass fraction (g/mg)

Vegetation (Crested Butte, Colorado, USA; Chadwick et al., 2020) Partial least squares regression Leaf nitrogen mass fraction (g/mg)

Temporal Event detection (Simulation) NA Event (no units)

Note. Each row describes the components of an experiment in our study grouped by the trade study resolution of interest. If citations are applicable, they are found in 
parentheses.
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estimate surface reflectance. Pragmatically, Hypertrace is a wrapper around the ISOFIT codebase (see Isofit 
et al., 2021) which provides both forward and inverse reflectance modeling for translation between reflectance 
and radiance. Our ISOFIT configuration files can be found in the supplemental materials. Hypertrace manages 
this simulation process at runtime, and applies geophysical retrieval algorithms to the estimated surface reflec-
tance. Hypertrace is written in Python and can be configured with a simple JSON interface.

Hypertrace allows for the inclusion of different imaging spectrometer detector configurations that provide vari-
ous SNR profiles (Figure 1). An imaging spectrometer includes the optical system and the detector. The optics 
include the telescope, a dispersive element such as a prism or diffraction grating, and the slit, the entrance width 
that determines photon throughput. In our experiments, we used configurations for two Chroma instruments 
(i.e., focal plane array) Instrument-A and Instrument-B detectors and also Hyperion, where Instrument-A has a 
detector pixel pitch of 0.0030 cm and a slit width of 30 microns while Instrument-B has a detector pixel pitch 
of 0.0018 cm and a slit width of 18 microns. We selected these Chroma spectrometers as examples because 
they have been used in the Earth Surface Mineral Dust Source Investigation (EMIT) mission, a similar imaging 
spectroscopy mission to SBG (Connelly et al., 2021). We compare against Hyperion to show the abilities of our 
workflow to include SNR from both future and past instruments. These spectrometer settings as well as desired 
instrument spatial resolution alter the SNR along the visible to shortwave infrared (Figure 1).

For the Chroma instruments, we derived instrument SNR using the following approach. The SNR describes the 
ratio of the signal to noise for the given spatial resolution element, where the signal is defined as the total number 
of collected electrons per unit area (i.e., pixel) over the total noise for the same area. The signal is proportional 
to the following equation:

Signal = 𝐿𝐿 ∗ 𝛿𝛿𝛿𝛿 ∗ 𝐴𝐴𝑜𝑜 ∗ Ω𝑑𝑑 ∗ 𝑡𝑡int ∗ 𝑇𝑇 ∗ 𝜂𝜂� (1)

where L is spectral radiance at sensor, δλ is the detector element's spectral response, Ao is the instrument telescope 
aperture, Ωd is the solid angle of the instrument, tint is the integration time per spatial sample, T is transmission of 
the instrument, combining all lenses, filters, mirrors and gratings in the primary optical path, and η is the detector 
quantum efficiency.

For a given spatial sample, the noise comes from multiple contributing factors, including the shot noise, dark 
noise, read noise, electronics noise, and quantum noise.

Noise =

√

𝑁𝑁2

shot
+𝑁𝑁2

dark
+𝑁𝑁2

read
+𝑁𝑁2

electronics
� (2)

The shot noise is usually the largest contributor to the noise and is a Poissonian effect that is an inherent prop-
erty of the photon collection phenomenon in optical devices. The dark noise is the product of the dark current 

Figure 1.  Instrument SNR over the visible and near-infrared (VNIR; 400–1,000 nm) and short wave infrared (SWIR; 
1,000–2,500 nm) for Instrument-A (left) and Instrument-B (right) spectrometers colored by spectral resolution (nm) range 
considered in this study. The vertical line in each panel represents the split between the VNIR and the SWIR.
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of the focal plane array and the integration times we work with. The read 
noise is associated with every frame read. For digital focal plane array like 
Instrument-B the electronics noise is zero while it is a non-zero value for 
the analog version Instrument-A. Usually the focal plane array gets char-
acterized in a laboratory thermal-vacuum chamber that allows the read 
noise, dark current, well capacity, linearity, and crosstalk to be measured 
and characterized. The results of these characterizations are critical to the 
design and performance predictions of imaging spectrometers using the focal 
plane  array.

For the Hyperion instrument, we used a parametric approach for calcu-
lating instrument SNR. First, we collected invariant scenes from early 
in the Hyperion campaign. We then used the radiance from the invariant 
scenes and the parameter noise estimation process from Bioucas-Dias and 
Nascimento (2005) to derive SNR for Hyperion.

2.2.  Spectral and Spatial Sensitivity

Our simulation experiments have two parts: In “direct” experiments, we apply 
retrieval algorithms to degraded reflectance data, and compare the outcome 
to a similar retrieval at native resolution (Figure 2, black). In “instrument” 
experiments, we degrade the radiance at sensor in Hypertrace using an 
instrument model, perform an atmospheric correction, and then apply the 
retrieval algorithm to the estimated surface reflectance. Therefore, only the 
instrument experiments include the effect of imperfect instrument radiometry 
(“noise”). We illustrate the concept behind our simulations in Figure 2. In the 
“instrument” experiments, we consider two instrument models, representing 
state-of-the-art detectors due to launch in the near future (EMIT, Connelly 
et al., 2021). We use Hypertrace to simulate the contributions of imperfect 
radiometry in Instrument-A, Instrument-B, or Hyperion spectrometer to 
biases and uncertainties in the geophysical variable of interest (Figure 2, red). 
We repeat the direct and instrument application steps along the resolution 
degradation range of interest. We then compare both the direct retrievals and 

the Hypertrace retrievals to the direct retrieval at the native resolution using a variety of standard validation statis-
tics, for example, root mean square error (RMSE) and kappa score (for categorical data) to illustrate the effects of 
degrading resolution on retrieval accuracy.

We chose spectral and spatial resolution experiments to demonstrate accuracy degradation across the full range 
of current mission design choices and corresponding trades with SNR. In our spectral resolution experiments, 
we varied the bandwidth from 5 to 30 nm in 5 nm increments, resulting in 6 experiments with a minimum of 70 
bands and a maximum of 421 bands. Similarly, we varied spatial resolution from 20 to 60 m by 10 m increments. 
We also included 100 m spatial resolution experiments to demonstrate algorithm accuracy at very low spatial 
resolutions. The scenes were resampled to coarser resolutions using Gaussian convolution aggregation for spec-
tral resolution and bilinear averaging for spatial resolution (ignoring potential autocorrelation between spectral 
bands). We then repeated these experiments including the corresponding effects of SNR shown in Figure 1 (See 
Figure 2, black vs. red). All experiments were conducted with 1,000 randomly drawn points from each scene.

We chose representative hyperspectral scenes listed in Table 1 column 2 based on a set of science areas where 
retrieval algorithms were available and provided by the algorithm developers. These scenes have been bidirec-
tional reflectance distribution function (BRDF) corrected and atmospherically corrected, meaning they provide 
estimates of the hemispherical-directional reflectance factor (HDRF, sensu Schaepman-Strub et al., 2006) for a 
nadir viewing angle. Table 1 lists the supporting citations for each scene.

The algorithms use a variety of methods. Absorption feature matching uses specific features of the reflectance 
spectrum and measures the depth of the feature to approximate the amount of the mineral present (Swayze 
et  al.,  2003). Benthic reflectance inversion (Thompson, Hochberg, et  al.,  2017) and benthic cover classifier 

Figure 2.  Conceptual diagram of one iteration of our analysis. (a) True 
surface reflectance is used to obtain true or direct retrievals that are not 
affected by the noise (black). (b) and (c) True surface reflectance is run 
through hypertrace forward (b) and inverse (c) models to obtain estimated 
surface reflectance including uncertainties from atmospheric correction and 
instrument design signal-to-noise ratio. (d) These estimated reflectances (red) 
are given to the same algorithms and then compared to the directly estimated 
retrievals (e).

 21698961, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

006833 by U
niversity O

f C
alifornia, Santa B

arbara, W
iley O

nline L
ibrary on [20/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Biogeosciences

RAIHO ET AL.

10.1029/2022JG006833

6 of 12

(Hochberg and Atkinson, 2003) which we refer to together as ‘benthic cover 
classifier’ and least squares (Dozier & Painter, 2004) approaches rely on in 
situ data to determine which benthic cover type or snow grain size a particu-
lar reflectance represents. PLSR also uses in situ data to derive coefficients 
that are then applied to the reflectance to retrieve a vegetation property (e.g., 
leaf nitrogen mass fraction).

2.3.  Temporal Revisit

Acquisitions with high temporal revisit for hyperspectral data are rare in 
airborne (i.e., AVIRIS-NG) and spaceborne archives, including PRISMA 
and DESIS. Lack of high revisit hyperspectral data is problematic for assess-
ing algorithm performance and expected event detection efficiency (Schimel 
et al., 2020). To overcome this obstacle here to provide quantitative informa-
tion for mission architecture design in terms of revisit, we use an analytical 
approach where we calculate event detection probability (θ) by dividing event 
duration (γ) by the revisit interval (dt) such that,

𝜃𝜃 =

𝛾𝛾

𝑑𝑑𝑑𝑑
� (3)

We calculated θ across event durations 1–58 days and revisit intervals between 
1 and 70 days and plotted θ as functions over increasing revisit interval. The 
analytical study quantifies the amount of information missed by decreasing 
temporal resolution (dt) for disturbance events with short event durations 
such as fires, volcanic eruptions or landslides, which have been listed as SBG 
designated observables (National Academies of Sciences, Engineering, and 
Medicine, 2018).

Satellite constellations have been proposed to increase revisit time intervals by increasing the number of instru-
ments. We provide a brief analysis of uncertainty in a vegetation retrieval caused by instrument calibration drift. 
Calibration drift is the time between instrument calibration at an invariant site where the longer the time the more 
uncertainty from drift can be expected. For this analysis, we use calibration drift uncertainty estimates derived 
from AVIRIS-NG where we took a random draw from a multivariate normal with mean zero and covariance from 
the AVIRIS-NG estimate. We applied this draw linearly to a single radiance vector to represent how drift may 
increase uncertainty over time. From this set of radiances with increasing drift, we estimated surface reflectance 
using an ISOFIT inversion. Finally, we calculated the canopy nitrogen content in the set of estimated reflectances 
using PLSR and compared the nitrogen estimates over days since calibration by calculating the relative error 
percentage.

3.  Results
3.1.  Spectral Resolution

High spectral resolution (<20 nm) resulted in greater algorithm accuracy across all scientific areas in the direct 
algorithm application (Figure 3). The 10 nm standard proposed by NASA Earth Sciences Decadal Survey (2018) 
provided the algorithm accuracy across experiments (Figure 3, vertical dotted line). On average, vegetation PLSR 
was the most sensitive to spectral resolution degradation, with an average RMSE change of 1.7 between exper-
iments followed by the least squares snow grain size retrieval and the aquatic benthic cover classifier with an 
average of −8.78 and −7.38 change in kappa score respectively. Least squares (i.e., snow) appears to be the least 
sensitive to spectral resolution degradation.

Accuracy was not degraded significantly with the inclusion of instrument noise for the mineral or aquatic spectral 
resolution experiments (Figure 4). Both Instrument-A and Instrument-B had increased retrieval accuracy between 
5 and 10 nm because of the tradeoffs between SNR and spectral resolution (Figure 4a). The vegetation retriev-
als were similar across spectral resolutions for Instrument-A and Instrument-B. However, Hyperion performed 
poorly (i.e., RMSE = 23.54 mg/g; Figure 4b). The benthic cover classifier for the aquatic spectral resolution 

Figure 3.  Direct application algorithm accuracy across spectral resolution 
colored by scientific area. These retrievals were calculated using true 
reflectance and each of the retrieval algorithms. Root mean square error was 
calculated for mineral and vegetation spectra while kappa score was calculated 
for aquatic and snow spectra. Vertical lines represent spectral resolution targets 
defined by the National Academies' 2017 Decadal Survey on Earth Science 
and Applications.
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experiment incorrectly classified the majority of pixels at low spectral resolutions, classifying all pixels as algae 
(Figure 4c). This convergence to algae classification caused a dip in the 20 nm spectral resolution experiment). 

For the snow algorithm, SNR degraded algorithm accuracy across spectral 
resolution experiments for both Instrument-A, Instrument-B, and Hyper-
ion (Figure 4d). Approximately 20% of the snow spectra were categorized 
as having the highest snow grain size in each of the instrument application 
experiments.

3.2.  Spatial Resolution

Retrieval accuracy decreased with coarsening spatial resolutions for both the 
Colorado and the South India sites in the direct application of the vegetation 
algorithms. Retrieval accuracy declined more quickly in the heterogeneous 
Colorado scene than the homogeneous South India scene (black vs. green, 
Figure  5). The 30  m standard proposed by NASA Earth Science Decadal 
Survey  (2018) provided the most algorithm accuracy across experiments 
(Figure 5, vertical dotted line). There was a slight increase in retrieval accu-
racy in the state of Colorado scene between the 50 and 60 m spatial resolution 
experiments. We assumed this was caused by spectral mixing between vege-
tated and non-vegetated spectra within a heterogenous scene.

Instrument-A, Instrument-B, and Hyperion applications that included 
the effects of noise both greatly decreased retrieval accuracy compared to 
the direct applications (Figure  6). Increasing SNR over decreasing spatial 
resolution caused accuracy to increase somewhat for both Instrument-A 

Figure 4.  Instrument application algorithm accuracy across spectral resolution colored by scientific area for Instrument-A 
(purple), Instrument-B (red), and Hyperion (black) for mineral (a), vegetation (b), aquatic (c), and snow (d) retrievals. Root 
mean square error was calculated for mineral and vegetation spectra while kappa score was calculated for aquatic and snow 
spectra. Vertical lines represent spectral resolution targets defined by the National Academies' 2018 Decadal Survey on Earth 
Science and Applications.

Figure 5.  Direct application algorithm accuracy calculated by root mean 
square error between the degraded resolution and the native resolution across 
spatial resolution experiments colored by scene. Vertical lines represent 
spectral resolution targets defined by the National Academies' 2018 Decadal 
Survey on Earth Science and Applications.
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and Instrument-B applications, especially between 20 and 30  m spatial resolution experiments. Average 
SNR increased in the SWIR between instruments configured for 20–30 m spatial resolution by 78% SNR for 
Instrument-A and 81% SNR for Instrument-B (Figure 1, dark purple). Hyperion was most sensitive to the PLSR 
algorithm (Figure 4b). In comparison to both Instrument-A and Instrument-B, Hyperion poorly estimated canopy 
nitrogen content.

3.3.  Temporal Resolution (Revisit)

Mission revisit cadence greatly affected the probability of detecting short term events (Figure 7). Revisiting more 
than 20 days for a short-term event (<5 days in duration) resulted in a probability of detection of less than 20%. 
Long duration events (>21 days in duration) had a higher probability of detection even for greater than 60-day 

Figure 6.  Instrument application algorithm accuracy for South India (a) and Colorado (b) scenes. The instrument application 
includes the effects of noise on retrieval accuracy while the direct application (Figure 5) does not. Hyperion noise (black 
diamond) caused large inaccuracy in both vegetation retrievals, but especially in the Colorado scene (b). We have broken the 
vertical axis to include this point. Vertical lines represent spectral resolution targets defined by the National Academies' 2018 
Decadal Survey on Earth Science and Applications.

Figure 7.  Detection probability as a function of increasing revisit interval colored by the duration of the event where shorter 
events are more difficult to detect with higher revisit time intervals. The vertical line represents target revisit of 16 days. The 
horizontal line represents the probability of detection of 0.5 equivalent to a coin flip.
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revisits (probability >40%). Lastly, calibration drift decayed retrieval accu-
racy (Figure 8). Percent error reached 60% in 175 days since calibration and 
100% in 300 days since calibration.

4.  Discussion
Accurate retrieval of Earth's geophysical properties from imaging spectros-
copy requires advanced mission planning based on scientific evaluation to 
meet the requirements of multiple scientific areas. This suite of driving cases 
covers three aspects (i.e., spectral, spatial, and revisit) of mission architecture 
interlinked with SNR and four of the five core science areas, showing where 
high-resolution requirements are necessary to preserve algorithm accuracy. 
Our analyses confirm that high spectral (∼10 nm), high spatial (∼30 m), and 
high revisit (less than 16 days) design is needed to effectively quantitatively 
constrain Earth's geophysical property estimation with hyperspectral imagery 
and corresponding retrieval algorithms. These mission design choices are 
currently used in the German spaceborne imaging spectrometer mission 
called the Environmental Mapping and Analysis Program (i.e., EnMap; 
10 nm, 30 m, 4 days; Guanter et al., 2015). We represent these targets (i.e., 
10 nm, 30 m, and <16 days) with Figures 3–7 vertical dotted lines. Specifi-
cally, instruments with a spatial resolution of 30 m and a spectral resolution 
of 10 nm obtain the largest accuracies, across the five scientific foci explored 
here. Furthermore, the probability of detection for short-term events (i.e., 
event duration < 7 days) was less than 0.5 for revisit intervals 16 days and 
longer (Figure 7). This largely corroborates the performance proposed by the 
Decadal Survey in their original description of the SBG mission concept. 
We also highlight the difference between instrument choices Instrument-A 
and Instrument-B and past instrument Hyperion to showcase how the instru-
ment selection process may be informed by simulation experiments using 
hypertrace or similar mission design workflows. Overall, the instruments 
performed similarly and outperformed Hyperion (see Figures 4 and 6). In 
the following paragraphs, we elaborate on our findings for each type of reso-
lution and finally describe our vision for the future of NASA mission archi-
tecture studies.

We build upon previous research on mineral and vegetation retrieval algo-
rithms (Kokaly et al., 2009; Shiklomanov et al., 2016; Swayze et al., 2003) 
showing that high spectral resolution (∼10  nm) improved retrieval esti-
mation across all scientific areas (Figure  3). In our mineral assessment, 
we used Kaolinite absorption feature matching. This retrieval algorithm 
depends on a narrow range of wavelengths (i.e., 2100–2300 nm). As the 
spectral resolution is coarsened, the number of data points within this 
range decreases rapidly and results in an exponential loss of information 
over spectral resolution. Similarly, least squares spectral matching uses a 
spectral library as a reference for determining the amount of snow in a 
pixel (Dozier & Painter,  2004). Aquatic benthic cover classification and 
vegetation PLSR algorithms use coefficients that are empirically estimated 
using in situ and concurrently measured hyperspectral data, and are then 
applied to remotely sensed imaging spectrometer data (Cawse-Nicholson 
et al., 2019; Serbin & Townsend, 2020; Thompson, Hochberg, et al., 2017) 
The in situ data are collected at particular spectral and spatial resolutions at 
specific locations usually during the summer months with both airborne and 
field data, which may ultimately drive the sensitivity of these algorithms 
to degrading spectral resolution (e.g., Hochberg and Atkinson,  2003). 
More work is needed to understand what the optimal sampling scheme is 

Figure 8.  (a) Example radiances with increasing error due to drift or days 
since calibration. (b) Estimated reflectances of the radiances in (a). (c) canopy 
nitrogen percent error as a function of days since calibration. Colors in a, b, 
and c correspond to days since calibration.

 21698961, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

006833 by U
niversity O

f C
alifornia, Santa B

arbara, W
iley O

nline L
ibrary on [20/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Biogeosciences

RAIHO ET AL.

10.1029/2022JG006833

10 of 12

for both in situ and remotely sensed hyperspectral data and how to use these data in tandem for improving 
aquatic classifications and vegetation trait estimation algorithm retrievals. For instance, our work suggests 
that ever-increasing the spectral resolution of an imaging spectrometer may be ill-advised given the tradeoffs 
between SNR and spectral resolution (Figure 1). Similarly, temporal resolution analysis (Figure 7) suggests 
that to capture short-duration events, like phenological changes in vegetation, higher revisit both in the field 
and air may be more important than higher spectral or spatial resolutions. In order to understand the opti-
mal sampling scheme, more collocated studies with longer time series of paired field data and hyperspectral 
imagery must be performed.

Increased spatial resolution is a particularly important component for vegetation research because plants oper-
ate on individual plant scales and aggregate and interact at the ecosystem scale to drive Earth system level 
phenomena (e.g., an individual spruce tree to the boreal forest). Earth system scientists are increasingly arguing 
for representing cohorts or individual-level plant traits and processes at a large scale to inform Earth system 
models (Fisher et al., 2018). SBG would greatly influence these models by providing a large-scale data set 
at a relevant level of plant organization (i.e., ∼30 m; Turner et al., 2019). We show (Figure 4) a quantitative 
threshold for spatial resolution from the vegetation algorithm perspective. However, both mission and instru-
ment design must be carefully constructed to include high spatial resolution and accommodate physical barri-
ers that may decrease the SNR. For the same instrument and global coverage, narrower swath/field-of-view 
means better spatial resolution and more consistent angular sampling but worse temporal resolution. So, an 
advance in spatial resolution may mean compromising in temporal resolution. Coordinated international 
collaborations with other global imaging spectroscopy missions (e.g., European Space Agency's Copernicus 
Hyperspectral Imaging Mission) might provide a path forward for meeting high revisit science requirements 
while also improving spatial resolution. Future work may focus on understanding how high spatial resolution 
multispectral imagery could inform lower spatial resolution hyperspectral trait estimation to ultimately improve 
global vegetation trait data. Gap-filling approaches have been used to increase spectral and temporal resolu-
tions of multi-spectral imagery (e.g., Moreno-Martnez et al., 2020). Concurrent hyperspectral and multispectral 
imagery will improve the accuracy of gap-filling approaches by providing spectral validation data sets and may 
allow for spectral data imputation of past multi-spectral imagery thus increasing temporal resolution of hyper-
spectral imagery. Similarly, the higher spatial resolution multi-spectral instruments may allow for improved 
analysis of lower spatial resolution hyperspectral images by informing the mixture components of the spectral 
signals in the hyperspectral image which would provide a higher sample size of multi-spectral signatures within 
a hyperspectral pixel.

Altering the orbiting altitude of an instrument with a particular spatial resolution configuration can increase SNR 
by allowing more photons to be received from a particular pixel. But a particular orbiting altitude with longer 
revisit intervals may not be desirable for short duration event detection (Figure 6, dark purple). While our assess-
ment relies on simulated data, increased revisit will increase the probability that events such as volcanic erup-
tions or mudslides are detected by SBG. Extreme events are increasing with frequency as the climate changes 
(NASA ESAS, 2016) and the effects of these types of events may be some of the most important aspects of 
mission design to the public. Furthermore, our analysis is optimistic as it did not include a source of clouds 
where the presence of clouds will lead to missing data and in turn longer revisit. Higher revisit will enable a 
higher probability that any image is taken because it will be more likely that an overpass occurs on a clear or 
semi-clear day. While satellite constellations may help improve the revisit interval, the calibration drift greatly 
affects retrieval accuracy (Figure 8) and would need to be included in the uncertainty propagation of retrievals 
from satellite constellations.

The SBG mission is driven by the ideals of the decadal survey, striving to better understand the changing geophys-
ical properties across the Earth system (National Academies of Sciences, Engineering, and Medicine, 2018). 
We have shown the dominant components that drive retrieval uncertainty across four core scientific areas. Our 
approach utilizes a workflow for simulating the SNR effects of mission instruments and includes many aspects 
of data processing uncertainties. Future work may focus on using this type of setup for mission planning where 
simulations may be run to parse out different dominant contributors of uncertainty. For example, intrinsic dimen-
sionality can provide an algorithm agnostic evaluation approach by focusing simply on information content 
(Cawse-Nicholson et al., 2019). Once the mission design has been finalized our method can be used to inform 
the data pipeline from SBG or future hyperspectral missions by applying realistic uncertainties along the data 
processing steps and ultimately improve biogeoscience with more accurate geophysical property estimation.
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Data Availability Statement
The data used in this work are hyperspectral images collected from past published works (listed in Table 1). 
The software used in this work is ISOFIT (https://doi.org/10.5281/ZENODO.4614338), HYPERTRACE (https://
github.com/isofit/isofit/tree/master/examples/py-hypertrace), and four types of hyperspectral algorithms (see 
Table 1).
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