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Abstract The optimal operation of hydropower reser-
voirs is essential for the planning and efficient manage-
ment of water resources and the production of hydro-
electric energy. Various techniques such as the genetic
algorithm (GA), artificial neural networks (ANN), sup-
port vector machine (SVM), and dynamic programming
(DP) have been employed to calculate reservoir opera-
tion rules. This paper implements the data mining tech-
niques SVM and ANN to calculate the optimal release
rule of hydropower reservoirs under Bforecasting^ and
Bnon-forecasting^ scenarios. The employment of data
mining techniques accounting for data uncertainty to
calculate optimal hydropower reservoir operation is
novel in the field of water resource systems analysis.
The optimal operation of the Karoon 3 reservoir, Iran,

serves as a test of the proposed methodology. The up-
stream streamflow, storage records, and several lagged
variables are model inputs. Data obtained from solving
the reservoir optimization problem with nonlinear pro-
gramming (NLP) are applied to train (calibrate) the
SVM, and ANN, SVM, and ANN are executed in the
Bnon-forecasting^ scenario based on all inputs along
with their time-lagged variables. In contrast, current
parameters are removed from the set of inputs in the
Bforecasting^ scenario. The results of the SVM model
are compared with those of the ANN model with the
correlation coefficient (R), the mean error (ME), and the
root mean square error (RMSE). This paper’s results
indicate performance of the SVM is better than that of
the ANN model by 1.5%, 400%, and 10% with respect
to the R, ME, and RMSE diagnostic statistics, respec-
tively. In addition, SVM and ANN overcome data un-
certainty (Bforecasting^ scenario) to produce optimal
reservoir operation.

Keywords Real-timereservoiroperation .Hydropower .

Rule curve . Support vectormachine . Artificial neural
network

Introduction

Planning and optimal operation ofwater resource systems
plays a crucial role in today’s world (Ahmadi et al. 2015a,
b; Akbari-Alashti et al. 2014; Beygi et al. 2014; Bozorg-
Haddad et al. 2013, 2015a, b; Farhangi et al. 2012;
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Fallah-Mehdipour et al. 2013a, b, 2014; Jahandideh-
Tehrani et al. 2015; Orouji et al. 2013, 2014a, b). This
role is accentuated by the widespread scarcity of ground-
water, surface water, and other water resources (Loáiciga
2015). Reservoir operation rules dictate the amount of
water that must be stored or released according to variable
operating conditions. Reservoir operators specify the rate
of water release based on the reservoir storage, inflow to
the reservoir, and downstream water requirement using
rule curves. The rule curve is a function between a
reservoir’s state and the decision (operational) variables.
The state variables are reservoir storage and inflow to the
reservoir, and the decision variable is the rate of reservoir
release.

Many optimized reservoir operation rules can be
found in studies by Bower et al. (1962), Loucks et al.
(1981), Yeh (1985), Oliveria and Loucks (Oliveira and
Loucks 1997), and Bolouri-Yazdeli et al. (2014), to cite
a few examples. Cai et al. (2001) described strategies for
solving large nonlinear water resource model manage-
ment, which combined genetic algorithms (GAs) with
linear programming (LP). Tung et al. (2003) proposed a
procedure to use genetic algorithm to optimize operation
rules for the Liyutan Reservoir in Taiwan. Chen (2003)
applied a real coded genetic algorithm (RGA) to obtain
the 10-day operating rule curves for a reservoir system
in Taiwan. Mousavi et al. (2007) compared the methods
of ordinary least-squares regression (OLSR), fuzzy re-
gression (FR), and adaptive network-based fuzzy infer-
ence system (ANFIS) in inferring operating rules for a
reservoir operation optimization problem. Bozorg-
Haddad et al. (2008a) evaluated the performance of the
honey-bee mating optimization (HBMO) algorithm in
highly non-convex hydropower system design and
operation.

Bozorg-Haddad et al. (2008b) applied the HBMO
algorithm to extract the linear monthly operation rules
of reservoirs for irrigation and hydropower purposes.
The release rules for each month were considered as a
linear function of the reservoir storage as well as the
current monthly inflow to the reservoir. Pinthong et al.
(2009) developed a hybrid genetic and neuro-fuzzy com-
puting algorithm to enhance efficiency of water manage-
ment for a multi-purpose reservoir system. The genetic
algorithm was applied to search for the optimal input
combination of a neuro-fuzzy system. Garousi-Nejad
and Bozorg-Haddad (2015) and Garousi-Nejad et al.
(2016a, 2016b) reported the application of a modified
firefly algorithm to the operational reservoir problem.

Data mining is the application of automated search
knowledge to find new and valuable information in
large data sets. In other words, data mining is the inter-
action between humans and computers in the quest to
discover information hidden within large data volumes.
The primary goals of data mining are discovery, classi-
fication, and prediction. ANN and SVM are the most
important tools in data mining (Babovic 2004).

Yu et al. (2004) presented a new tool combining
chaos theory and SVM and applied it to the analysis of
time series in a large database. Asefa et al. (2006)
employed SVM to forecast hourly and seasonal flow.
Behzad et al. (2009) evaluated the performance of SVM
and ANN in forecasting streamflow of the Bakhtiyari
River (in Iran). The results were compared with those of
ANN and of ANN integrated with genetic algorithm
(ANN-GA) models. Yoon et al. (2011) predicted
groundwater level (GWL) fluctuations in a coastal aqui-
fer in Korea with ANN and SVM. Singh et al. (2011)
applied support vector classification (SVC) and regres-
sion (SVR) models to optimize a water-quality monitor-
ing program. Wei (2012) presented wavelet SVMs for
forecasting the hourly water levels at gauging stations
using classical Gaussian and wavelet SVMs.Wang et al.
(2013) linked the PSO algorithm to SVM to improve
rainfall-runoff prediction. Li et al. (2014) predicted real-
time floods in real time combining SVM and a data-
assimilation method. Ahmadi et al. (2015a, b) imple-
mented an input selection technique for forecasting
long-lead precipitation. Yang et al. (2016) presented a
robust method incorporating the Classification and Re-
gression Tree (CART) to simulate the outflow of nine
major reservoirs in California. Their results revealed the
enhanced CART could provide a better performance
over random forest for peak flow simulation. Yang
et al. (2017) compared the performance of SVM,
ANN, and random forest (RF) techniques to predict
1 month-ahead reservoir inflow. They found RF per-
formed better than SVM and ANN, with climatic indi-
ces improving the forecasting of monthly and seasonal
reservoir inflows. Other applications of SVM to water
resources management are found in reviews by
Aboutalebi and Bozorg-Haddad (2015) and Aboutalebi
et al. (2015, 2016a, b, c).

Observational data are required for model calibration
when applying data mining tools such as SVM and
ANN. The NLP technique is applied in this study to
generate observed data for calibration purposes. In other
words, an optimization model of hydropower reservoir
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operation is solved with NLP. The optimized solution
set obtained with NLP is applied as the target data to
calibrate the SVM and ANN model. Subsequently, an
optimized reservoir-operation rule is calculated for each
operating period with the calibrated SVM based on the
dependency between variables, such as that between
reservoir storage and reservoir inflow (these are the
input data), and then applying the rate of release obtain-
ed with NLP (these are the target data). This paper
evaluates the sensitivity of SVM and ANN to the lack
of information for simulating optimized reservoir oper-
ation. The sensitivity evaluation relies on two ap-
proaches to cope with reservoir inflow uncertainty.
The first approach (the forecasting approach) is depen-
dent on inflow forecasting, and the second approach
(non-forecasting approach) is independent of inflow
forecasting. Input variables in the forecasting approach
include inflow forecasts made in the current period. The
non-forecasting approach does not include inflow fore-
casts. The reason for considering forecasting and non-
forecasting approaches is to compare the effect that
inflow forecasting has on the computation of optimal
rules for reservoir operation. NLP cannot be executed
without the knowledge of current storage and inflow.
Therefore, if SVM and ANN can achieve a reservoir
operation rule similar to that from NLP optimization,
this constitutes a significant advantage of data mining
techniques versus the gradient-based NLP. Moreover,
The SVM and ANNmodels are assessed at monthly and
annual time scales. To accomplish these goals, the ob-
served data were classified as types 1 and 2 in the
application of SVM and ANN. Type 1 data are long-
term monthly time series. Type 2 data are average
monthly values. Therefore, for each approach, there is
one time series of type 1 and there are 12 time series of
type 2. The reservoir-operation rule results of the SVM
model are compared those calculated with the ANN
model.

Methodology

This paper’s methodology consists of three steps. The
first is modeling a hydropower system and calculating a
reservoir operation rule with the NLP method. The
second involves SVM and ANN models’ calibrations,
testing, and specification of model parameters. The last
is implementing and comparing the SVM and ANN
models and their results.

Optimal reservoir operation

A reservoir operation rule curve for hydropower pro-
duction is calculated using NLP. The objective function
of the reservoir operation model minimizes the normal-
ized power production deficit:

MinimizeDef ¼ ∑
T

t¼1
1−

Pt

PPC

� �2

ð1Þ

in which Def = objective function, Pt = power generated
in period t, PPC = power plant capacity (106 watt), and
T = number of operation periods.

The generated power in each month (period t) is
calculated with Eq. (2):

Pt ¼ g � E � Rpt
PF⋅Mt

�
Ht−TW
� �
1; 000

ð2Þ

in which g = acceleration of gravity (9.81 m/s2), E =
efficiency of the power plant, Rpt = inflow to power
plant in period t (106 m3), PF = power plant factor,Mt =
conversion coefficient from 106 m3 to cubic meter per

second in period t, Ht = average water level (m) in
reservoir at the beginning of period t (meters above
mean sea level), and TW = average elevation of the
tailwater (m) in period t (meters above mean sea level).

The constraints of the model are:
Conservation of volume (continuity equation):

Stþ1 ¼ St þ Qt−Spt−Rt−Lt St
� �

ð3Þ

Constraints on reservoir storage:

Smin≤St ≤Smax ð4Þ
Constraints on reservoir releases:

Rmin≤Rt ≤Rmax ð5Þ
Constraints on hydropower production:

0≤Pt ≤PPC ð6Þ
Specification of reservoir releases:

Spt ¼ Smax−Stþ1 if Stþ1≥Smax

0 if Stþ1 < Smax

�
ð7Þ

in which St and St + 1 = reservoir storage volume at the
beginning of period t and t + 1, respectively (106 m3),Qt

= inflow to reservoir during period t (106 m3), Spt =
spillage from reservoir in period t (106 m3), Rt =
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reservoir release in period t (106 m3), Lt St
� �

= evapora-
tion in period t that it calculated with a set of implicit
nonlinear equations (106 m3), Smax = maximum volume
of the reservoir storage (106 m3), Smin = dead volume of
reservoir storage (106 m3), and Rmax and Rmin = maxi-
mum and minimum release from the power plant
(106 m3), respectively.

The reservoir’s water surface in each time periods is a
third-degree power function of the storage volume at the
beginning of each time period according to Eq. (8). The
amount of evaporation losses is calculated as the prod-
uct of the evaporation depth and average water surface
as written in Eqs. (9) and (10):

At ¼ a0 � S3t þ a1 � S2t þ a2 � St þ a3 ð8Þ

Lt St; Stþ1ð Þ ¼ Evt � At ð9Þ

At ¼ At þ Atþ1

2
ð10Þ

in which At, At + 1 = water surface area of reservoir at the
beginning of periods t and t + 1, respectively (106 m2);
At = average of water surface area (106 m2); Evt =
evaporation depth in period t (m); and a0, a1, a2, and
a3 = coefficients of the surface-storage Eq. (8).

The reservoir water level is calculated as a third-
degree polynomial of the of reservoir storage:

Ht ¼ b0 � S3t þ b1 � S2t þ b2 � St þ b3 ð11Þ
in which Ht = water level of reservoir in period t (m);
and b0, b1, b2, and b3 = coefficients of the water level-
storage.

The reservoir model embodied by Eqs. (1)–(11) is
nonlinear. It was solved with the LINGO 11.0 NLP
software.

ANN

An ANN is an information processing system that at-
tempts to replicate the activity of the human brain
employing interconnected data structures that emulate
the function of the neurons. Data structures are called
nodes. Nodes in a neural network can be active (ON or
1) or disabled (Off or 0). Each edge (synapses or con-
nections between nodes) has a specified weight. Edges

with positive weight stimulate or activate the next active
node, while edges with negative weight idle or block (if
it is active) the next connected node.

The multi-layer perceptron (MLP) network is one of
the most common arrangements of a neural network. In
this network, each neuron in each layer is connected to
all neurons of the previous layer and the output of each
layer constitutes input vectors of the next layer. Sigmoid
functions or hyperbolic tangents are common in MLP
and the law of error backpropagation (BP) is employed
to train (that is, calibrate) them. Neural network training
is a process whereby the weights of connections are
optimized in a continuous process to consolidate the
network. Assessments of the learning and network per-
formance with trained and untrained inputs are carried
out for validation purposes. The standard assessment
procedure is to use part of the existing data for training
(calibration) and the remainder of the data for testing of
the network.

Support vector machine

Support vector machine (SVM) is a learning process
that employs a hypothesis space called the feature space
that features multi-dimensional linear functions. The
SVM theory was introduced by Vapnik (1995) as a
method for data classification and regression.

The linear SVM

This section introduces SVM theory and its use for
regression and forecasting in the linear form
introduced byVapnik (1995) relying on the ε-insensitive
error function to create the sparseness property of sup-
port vector regression (SVR), as follows:

jy− f xð Þj ¼ 0 if jy− f xð Þj≤ε
jy− f xð Þj−ε ¼ ξ otherwise

�
ð12Þ

in which y = observed data, f(x) = data estimated with
SVR, x = input data, ε = sensitivity function, and ξ =
error value considered for estimates outside the range
(−ε to +ε).

The function f(x) in Eq. (12) is defined by Eq. (13):

f xð Þ ¼ wT :xþ b ð13Þ
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in which w = weighting vector applied to vector of
variables x, b = deviation, and T = the transpose symbol
applied to vectors or matrices.

SVR minimizes the ε-insensitive error function and
weight vector w. Therefore, the objective function and
constraints of SVR are defined as follows:

Min :
1

2
⋅ wk k2 þ C⋅ ∑

m

i¼1
ξi þ ξ*i
� �

ð14Þ

Subjectto : wT ⋅xþ b
� �

−yi≤εþ ξi
yi− wT ⋅xþ b
� �

≤εþ ξ*i
ξi; ξ

*
i ≥0

ð15Þ

in which ‖‖ = symbol for vector length, C = penalty
factor, m = number of training data, and ξ and ξ∗ =
penalties considered for estimated outside the range
(−ε to +ε), respectively.

The penalties applied to estimates are shown in Fig.
1, where it is seen that the estimates in the range (−ε to
+ε) are not penalized, and estimates outside that range
are penalized. The input variables to SVR are x (x ∈ Rn),
and its output variables are y (y ∈ R).

A Lagrangian objective function (L) is implemented
to solve the optimization problem expressed by Eqs.
(14)–(15):

L≡
1

2
wk k2 þ C⋅ ∑

m

i¼1
ξi þ ξ*i
� �

− ∑
m

i¼1
ηiξi þ η*i ξ

*
i

� �
−

∑
m

i¼1
αi⋅ εþ ξi þ yi− wT ⋅xþ b

� �	 

− ∑

m

i¼1
α*
i ⋅ εþ ξ*i −yi þ wT ⋅xþ b

� �	 

ð16Þ

Subject to

α*
i ; η

*
i ≥0 ð17Þ

in which α*
i (α∗ ∈ Rn), αi, η*i , and ηi = Lagrange

multipliers.
The partial derivatives of the Lagrangian function

with respect to ξ*i , ξi, b, and w must be zero:

∂L=∂b ¼ ∑
m

i¼1
αi−α*

i

� � ¼ 0 ð18Þ

∂L=∂w ¼ w− ∑
m

i¼1
αi−α*

i

� �
⋅xi ¼ 0 ð19Þ

∂L= ∂ξi; ∂ξ
*
i

� � ¼ C−α*
i −η

*
i ¼ 0 ð20Þ

in which ∂L/∂b = partial derivative of function L with
respect to variable b, ∂L/∂w = partial derivative of
function L with respect to variable w, and ∂L=
∂ξi; ∂ξ

*
i

� �
= partial derivative of function L with respect

to variables of ξ*i and ξi.
The value of w is calculated with Eq. (21):

w ¼ ∑
m

i¼1
α*
i −αi

� �
⋅xi ð21Þ

Substituting Eqs. (18)–(20) into Eq. (16) produces
the following optimization problem in terms of the
coefficients αi and α*

i :

Max : −
1

2
⋅ ∑

m

i; j¼1
α*
i −αi

� �
⋅ α*

j−α j

� �
⋅ xTi −x j
� �

−ε⋅ ∑
m

i¼1
α*
i −αi

� �þ ∑
m

i¼1
yi⋅ α

*
i −αi

� � ð22Þ

Subjectto : ∑
m

i¼1
αi−α*

i

� � ¼ 0 and αi;α
*
i ∈ 0;C½ �

ð23Þ
The estimation function of the observed variable of y

is given by Eq. (24) once the coefficients αi and α*
i are

solved for:

f xð Þ ¼ ∑
m

i¼1
α*
i −αi

� �
⋅ xTi ⋅x
� �þ b ð24Þ

Cristianini and Shawe-Taylor (2000) demonstrated
that Eq. (24) is a convex constrained quadratic program-
ming problem, and thus it guarantees a unique solution.Fig. 1 Penalized and non-penalized data
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The Kuhn-Tucker (KT) conditions are used to calcu-
late b in Eq. (24). These conditions state that the product
of Lagrange multipliers and constraints must equal zero
at the solution point:

αi⋅ εþ ξi þ yi− wT ⋅xi þ b
� �	 
 ¼ 0 ð25Þ

α*
i ⋅ εþ ξ*i þ yi− wT ⋅xi þ b

� �	 
 ¼ 0 ð26Þ

C−αið Þ⋅ξi ¼ 0 ð27Þ

C−α*
i

� �
⋅ξ*i ¼ 0 ð28Þ

The following results follow from the KTconditions:

(1) The coefficient α*
i is equal to C when differences

between the variables (xi, yi) are outside the range
(−ε to +ε), so that ξi; ξ

*
i > 0

� �
,

(2) Lagrange multipliers are never simultaneously
nonzero, αi, αi

* ≠ 0
(3) The coefficients αi and α*

i equal zero for estimates
within the range (−ε to +ε).

(4) The penalties ξi and ξ*i are equal to zero when
αi;α*

i ∈ 0;Cð Þ, and thus the factors within brackets
in Eqs. (25) and (26) must equal to zero. Therefore,
the value of b is calculated with Eqs. (29) and (30):

b ¼ yi− wT ⋅xi þ b
� �þ ε ; αi∈ 0;Cð Þ ð29Þ

b ¼ yi− wT ⋅xi þ b
� �þ ε ; α*

i ∈ 0;Cð Þ ð30Þ
Only one of the Lagrange multipliers within (0, C) is

selected and inserted in either of Eq. (29) or (30) to
calculate the value of b.

With regard to result (2) of the KT conditions written
above, all samples located within the range of (−ε to +ε)
have Lagrange multipliers αi;α*

i

� �
equal to zero. Thus,

it is not necessary to calculate all the values ofw in SVR.
The estimates that have nonzero Lagrange multipliers
are called support vectors (SVs). Estimates in the range
(−ε to +ε) do not contribute to the solution of an opti-
mization problem. Thus, they are removed from further
analysis.

Nonlinear SVM

Transfer functions are employed to fit linear functions to
data when it is not possible to fit linear functions to
training data. Transfer functions in SVM are called
Kernel functions. Thus, the estimation function in
SVM replaces Eq. (24) with Eq. (31):

f xð Þ ¼ ∑
m

i¼1
α*
i −αi

� �
⋅K xi; xð Þ þ b ð31Þ

in which K = Kernel function.
Dibike et al. (2001) applied Kernel functions in the

SVR model for modeling of rainfall-runoff process.
They concluded that radial basis functions (RBF) have
better performance than other Kernel functions. Han and
Cluckie (2004) deduced that the RBF’s centralized
property enables it to perform regressions effectively.
Other studies, such as those of Asefa et al. (2005), Lin
et al. (2006), Yu et al. (2006), and Khalil et al. (2005)
relevant to hydrologic modeling and forecasting with
SVR established the good performance of the RBFs.
Equation (32) is exemplary of an RBF:

K x; xið Þ ¼ exp −
x−xij j2
2γ2

 !
ð32Þ

in which γ = RBF parameter.
A flow diagram of SVR is shown in Fig. 2. The

figure depicts the various stages of regression performed
by SVR. Input vectors are input to the Kernel functions.
Next, the inner product of the support vectors is per-
formed by the Kernel function. Lastly, the total inner
products are calculated with weighting values (La-
grange multipliers) and the estimated output is calculat-
ed by adding b to those values. This process is very
similar to that of a neural network with the difference
that there is only one hidden layer in SVR.

Determination of the SVM parameters

The SVM parameters include C, ε (SVM model
parameters), and parameters related to the Kernel
function used (such as the parameter γ of the RBF
Kernel function). The optimal choice of the SVM
parameters is essential for its adequate performance.
The choice of C and ε usually is left to the user and
it is based on prior information or experience with
the workings of evolutionary algorithms. However,
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in this paper, we implemented a trial and error
method to find the best values of SVM and ANN
parameters. Moreover, the kernel functions are cho-
sen based on prior experience document in the spe-
cialized SVM and ANN literature.

The study area

The Karoon 3 dam is Iran’s largest dam, located on
the Karoon River in southwestern Iran. The Karoon
3 dam meets hydropower production and flood con-
trol functions. The Karoon 3’s power plant has an
installed capacity equal to 2000 MW and generates
an average annual energy equal to 4137 gigawatt
hour for peak-time electricity supply. Energy short-
ages, particularly during peak-use times, have been
mostly resolved since the dam’s construction in
2005. Reservoir inflow data for 44 years (1957–
2000) were used to calculate an optimal reservoir
operation rule. The 40-year average monthly inflow
and evaporation in to the Karoon 3 dam are listed in

Table 1. It is seen in Table 1 that April and October
have the largest and smallest inflows, respectively.
Also, the largest and smallest evaporation in the
reservoir occur in July and January, respectively.
The Karoon 3’s power plant has an efficiency equal
to 92%, a plant factor equal to 0.25, and a down-
stream water level (tailwater elevation) equal to
665 m above mean sea level.

Methodology

The optimization model is first solved with the Lingo
software. Subsequently, the data or output obtained from
the software is normalized in the range − 1 to + 1. The
Box-Cox transformation function written in Eq. (33) is
applied in this study for data normalization (Box and
Cox 1964):

x
0 ¼ f x;λð Þ ¼ xλ−1

x
ð33Þ

in which x′ = normalized data, x = output variables of the
optimization model, and λ = transformation function
parameter.

The MATLAB software 2012b was implemented in
this work for data normalization. This software esti-
mates the optimal value of the transformation function
parameter.

After normalizing the data, they must be standard-
ized. For this purpose, Eq. (34) is used:

x″ ¼ x
0−μ
σ

ð34Þ

in which μ = average value of the data being standard-
ized, σ = standard deviation of the data, and x″ = stan-
dardized data.

Percentages equal to 70% and 30% of the total data
values were chosen for data training and testing, respec-
tively. The data for training and testing are chosen

Fig. 2 Schematic structure of SVR

Table 1 40-year average monthly reservoir inflow and reservoir evaporation data

Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Average inflow (106 m3) 333.2 407.2 577.8 589.9 805.7 1225.3 1795.0 1550.8 1022.6 674.9 481.6 367.3

Average evaporation (mm) 204.6 99.5 68.3 56.2 59.2 76.6 111 169.9 251 311.6 293.9 277
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randomly. The type 1 forecasting approach predicts
reservoir release based on values of storage and reser-
voir inflow in periods t, t-1, t-2, and t-3:

Rt ¼ f St; St−1; St−2; St−3;Qt;Qt−1;Qt−2;Qt−3ð Þ
t ¼ 1; 2; 3;…; 524

ð35Þ

The type 1 non-forecasting approach predicts release
based on values of storage in periods t, t-1, t-2, and t-3,
and values of reservoir inflow in periods t-1, t-2, and t-3
(notice the current-period inflowQt does not enter in this
approach):

Rt ¼ f St; St−1; St−2; St−3;Qt−1;Qt−2;Qt−3ð Þ
t ¼ 1; 2; 3;…; 524

ð36Þ
The type 2 forecasting approach calculates the

release based on average monthly reservoir storage
and average monthly reservoir inflow in intervals m,
m-1, m-2, and m-3:

Rm ¼ f Sm; Sm−1; Sm−2; Sm−3;Qm;Qm−1;Qm−2;Qm−3ð Þ
m ¼ 1; 2; 3;…; 44

ð37Þ
The type 2 non-forecasting approach calculates the

reservoir release based on average monthly storage in
intervals m, m-1, m-2, and m-3 and on average monthly
reservoir inflow in intervals m-1, m-2, and m-3 (notice
the current-period average inflow Qm does not enter in
this approach):

Rm ¼ f Sm; Sm−1; Sm−2; Sm−3;Qm−1;Qm−2;Qm−3ð Þ
m ¼ 1; 2; 3;…; 44

ð38Þ
in which t and m = indices of the long-term time series
(type 1 data) and of the average monthly time series
(type 2 data), respectively.

The SVM and ANN were implemented in Tanagra
1.4.2 (Rakotomalala 2005) and MATLAB, respectively.
The sigmoid function was chosen as the ANN transfer
function. The RBFwas applied as the Kernel function of
the SVM. The number of hidden nodes and layers, and
other parameters related to the transfer and Kernel func-
tions were determined by trial and error leading to the
parameters listed in Tables 2 and 3.

The forecasting and non-forecasting approaches were
implemented with the SVMmodel and ANN. The SVM

model was run with the forecasting and non-forecasting
approaches [Eqs. (35) and (36)] based on type 1 data,
and with Eqs. (37) and (38) based on type 2 data. The
same procedure was employed to run the forecasting
and non-forecasting approaches with ANN. The perfor-
mance of the ANN and SVM models was evaluated
with the R, ME, and RMSE diagnostic statistics defined
by Eqs. (39)–(41):

R ¼
∑
n

t¼1
R0 tð Þ−R0

� �
⋅ Rm tð Þ−Rm

� �

∑
n

t¼1
R0 tð Þ−R0

� �2
⋅ ∑

n

t¼1
Rm tð Þ−Rm

� �2� �0:5 ð39Þ

ME ¼ ∑
n

t¼1

R0 tð Þ−Rm tð Þ
� �2

R0 tð Þ
ð40Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

t¼1
R0 tð Þ−Rm tð Þ
� �2

n

vuut
ð41Þ

in which n = number of data values, R0(t) and R0 =
release in period t and average release during operation-
al period obtained with the NLP method, respectively,
and Rm(t) and Rm = release in period t and average
release during operational period obtained from the
SVM model, respectively.

Results

The objective function calculated with NLP equaled
44.8. Three diagnostic statistics R, ME, and RMSE de-
fined in Eqs. (39)–(41) for the non-forecasting and
forecasting approaches are listed in Tables 4 and 5,
respectively. It is seen in Table 4 the ANN and SVM
non-forecasting models exhibited optimal performance
in the training phase as measured by the three diagnostic
statistics. In the training phase, the SVM model had R
equal to 1 in October, February, June, August, and
September, whereas the ANN model had R equal to 1
in January, February, July, and September. The ANN
model had R larger than 0.9, except in February, March,
May, and July. The SVM model had R larger than 0.9
except in March. The SVM model exhibited better
performance than the ANN model in March.
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Concerning the testing phase, it is seen in Table 4 that
the difference between the values of the diagnostic
statistics obtained with SVM and with the ANN non-
forecasting models is considerable in July, December,
February, October, January, andMarch. Specifically, the
July R, ME, and RMSE values for the SVM model

differed by 10, 170, and 60% from those obtained with
the ANN model. The overall performance of the ANN
and SVMmodels in the training and testing phases with
the non-forecasting approaches is acceptable. Also, with
regard to the type 1 data (long-term series) and type 2
data (monthly time series), it is seen in Table 4 that use
of the monthly data produced an improved performance
in the training and total (total = training and testing)
phases, whereas there was no perceived improvement in
the testing phase.

The results in Table 5 show the forecasting SVM
model had R equal to 1 in December, January, Febru-
ary, June, and September, and the forecasting ANN
model had R equal to 1 in October, November, Janu-
ary, March, April, May, August, and September in the
training phase. This good performance is attributed to
the use of the inflow variable in the current period as
input variable in the forecasting approach [see Eq.
(35)]. Concerning the testing phase, the ANN and
SVM models had R larger than 0.9 in all months but
May. In this same phase, there was a significant dif-
ference between the values of the diagnostic statistics
of the SVM and ANNmodels in May, April, June, and
January. Specifically, the R,ME, and RMSE of the SVM
model differed by 8.5, 13, and 13% from those of the
ANN model. It was determined that implementing
monthly data improves performance. It is noted that this
improvement is more pronounced with the ANNmodel,

Table 2 Model parameters of the non-forecasting approach

Model type SVM ANN

Non-forecasting Number of support vectors ɛ γ C Number of neurons

Oct 30 0.0010 0.03 7 10

Nov 30 0.0010 0.10 4 15

Dec 30 0.0010 0.04 20 14

Jan 31 0.0010 0.60 10 17

Feb 31 0.0010 0.06 7 12

Mar 32 0.0100 0.29 8 17

Apr 15 0.0001 0.05 6 15

May 32 0.0010 0.11 8 19

Jun 32 0.0100 0.04 10 11

Jul 32 0.1500 0.30 9 16

Aug 26 0.0100 0.06 1 17

Sep 29 0.0100 0.10 8 14

Long-term time series 338 0.0100 0.16 7 19

Table 3 Model parameters of the forecasting approach

Model type SVM ANN

Forecasting Number of
support vectors

ɛ γ C Number of
neurons

Oct 30 0.0010 0.028 9 11

Nov 30 0.0010 0.120 6 13

Dec 30 0.0010 0.100 15 15

Jan 31 0.0010 0.650 10 14

Feb 31 0.0010 0.100 9 18

Mar 32 0.0020 0.200 8 15

Apr 20 0.2000 0.070 7 16

May 32 0.0010 0.130 6 14

Jun 32 0.0010 0.070 10 15

Jul 32 0.0100 0.250 8 12

Aug 26 0.1500 0.090 2 16

Sep 29 0.0100 0.120 8 14

Long-term
time series

338 0.0100 0.200 11 18
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which had a reduction in R of about 2% and other
statistics were reduced by about one half.

The forecasting and non-forecasting approaches ex-
hibited the minimal and maximal values of the RMSE
for both the SVM and ANN models, respectively. The
non-forecasting approach applied with the SVM model
performed better than the forecasting approach applied
with the ANN model, in most cases. The results obtain-
ed with monthly data (type 2 data) exhibited smaller
RMSEs in the training and testing phases, in general,
than those obtained with the long-term time series (type
1 data). The largest values of the RMSE were obtained

with the non-forecasting ANN model in the testing
phase in July and February. The training and testing
phases exhibited minimal and maximal of RMSEs,
respectively.

Average values of the diagnostic statistics R,ME, and
RMSE calculated with the forecasting and non-
forecasting approaches are listed in Table 6. According
to Table 6, the non-forecasting approach estimates opti-
mal release with acceptable precision compared to the
forecasting approach, despite the lack of use of inflow
variable in the current period as input variable [see Eq.
(38)]. The use or lack of use of the inflow variable in the

Table 4 Values of R, ME, and RMSE for implementation of the non-forecasting approach

Time series Model Train Test Total

R
(%)

ME
(106 m3)

RMSE
(106 m3)

R
(%)

ME
(106 m3)

RMSE
(106 m3)

R
(%)

ME
(106 m3)

RMSE
(106 m3)

Oct ANN 0.988 37.720 25.848 0.927 84.524 57.339 0.973 122.243 38.211

SVM 1.000 0.584 3.450 0.994 4.671 15.179 0.999 5.256 8.829

Nov ANN 0.999 5.570 9.294 0.998 14.850 31.922 0.997 20.421 19.192

SVM 0.991 37.885 23.984 0.996 14.595 30.275 0.991 52.480 26.047

Dec ANN 0.994 32.743 26.021 0.907 91.283 81.836 0.971 124.026 49.971

SVM 0.997 13.483 16.462 0.994 16.637 24.680 0.996 30.120 19.319

Jan ANN 1.000 0.052 1.050 0.934 47.896 56.968 0.985 47.947 31.336

SVM 0.997 11.106 16.380 0.990 7.767 23.360 0.995 18.873 18.766

Feb ANN 1.000 4.031 8.549 0.858 134.785 93.892 0.959 138.536 51.538

SVM 1.000 0.140 1.781 0.927 67.825 60.977 0.982 67.956 33.178

Mar ANN 0.989 54.724 38.715 0.827 111.400 88.063 0.940 165.001 57.856

SVM 0.992 10.281 17.329 0.869 69.790 70.544 0.954 80.067 41.011

Apr ANN 0.999 1.375 6.166 0.951 45.207 53.625 0.973 46.536 29.604

SVM 0.961 25.493 25.231 0.956 43.929 46.586 0.965 69.419 33.011

May ANN 0.944 38.595 31.635 0.891 36.794 48.460 0.926 75.369 37.402

SVM 0.998 1.089 5.191 0.908 13.713 29.463 0.979 14.801 16.597

Jun ANN 0.995 3.189 9.174 0.946 101.732 68.489 0.975 104.786 38.016

SVM 1.000 6.309 9.828 0.950 24.407 33.415 0.982 24.457 19.949

Jul ANN 1.000 0.000 0.002 0.872 208.798 105.470 0.940 208.798 57.329

SVM 0.989 27.397 22.766 0.973 39.848 46.085 0.982 67.240 31.506

Aug ANN 1.000 0.000 0.000 0.924 92.790 63.480 0.978 92.790 34.505

SVM 1.000 0.151 1.550 0.946 54.034 51.141 0.986 54.181 27.828

Sep ANN 1.000 0.046 0.819 0.959 41.692 48.526 0.982 41.736 26.385

SVM 1.000 0.775 4.109 0.993 10.301 23.538 0.997 11.075 13.251

Type 1 ANN 0.974 1100.717 45.315 0.950 600.882 53.936 0.968 1701.599 48.043

SVM 0.994 232.734 20.938 0.979 249.524 35.184 0.990 482.258 26.008

Type 2 ANN 0.996 176.001 18.562 0.943 706.018 57.226 0.983 882.019 34.884

SVM 0.997 124.876 13.891 0.974 313.941 38.652 0.992 438.817 24.089
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current period as input variable has only a negligible
effect on the results of the SVM model. In other words,
the non-forecasting SVM model has higher accuracy
than its forecasting model.

Reservoir releases calculated with the forecasting and
non-forecasting approach in type 1 and type 2 data using
ANN, SVM, and NLP in the months of October through
September are shown in Figs. 3, 4, 5, 6, 7, 8, 9, and 10,
in which the reservoir releases calculated with NLP are
named BRelease Lingo.^ It is obvious that in all months
except October, the maximum release is achieved in
some years. The forecasting approach with type 2 data
exhibited the best performance in all months. The ANN

model with type 1 and type 2 data displayed the largest
deviations from the NLP solutions. Overall, type 2 data

Table 5 Values of R, ME, and RMSE for implementing the forecasting approach

Time series Model Train Test Total

R
(%)

ME
(106 m3)

RMSE
(106 m3)

R
(%)

ME
(106 m3)

RMSE
(106 m3)

R
(%)

ME
(106 m3)

RMSE
(106 m3)

Oct ANN 1.000 0.000 0.000 0.981 16.239 27.140 0.996 16.239 14.923

SVM 0.999 1.659 6.036 0.991 8.039 19.367 0.998 9.699 11.782

Nov ANN 1.000 0.088 1.105 0.992 9.859 25.060 0.997 9.947 13.810

SVM 0.999 1.519 5.907 0.998 4.376 16.489 0.999 5.895 10.322

Dec ANN 0.999 5.546 11.266 0.987 13.126 29.161 0.996 18.672 18.591

SVM 1.000 1.486 5.310 0.996 5.581 17.910 0.999 7.067 10.800

Jan ANN 1.000 0.122 1.642 0.958 27.209 42.839 0.991 27.332 23.595

SVM 1.000 0.265 2.497 0.992 5.453 20.200 0.998 5.717 11.301

Feb ANN 0.994 12.746 18.127 0.911 87.638 76.617 0.968 99.861 44.338

SVM 1.000 0.002 0.194 0.938 58.815 56.751 0.984 58.817 30.848

Mar ANN 1.000 0.775 4.137 0.900 82.512 65.843 0.969 83.251 35.957

SVM 0.993 8.544 15.800 0.920 86.432 65.742 0.970 94.958 38.116

Apr ANN 1.000 0.073 1.418 0.910 54.068 53.239 0.969 54.141 28.963

SVM 0.995 2.640 9.171 0.957 26.030 37.591 0.981 28.670 21.835

May ANN 1.000 0.000 0.000 0.845 23.190 38.442 0.967 23.190 20.896

SVM 0.999 0.702 4.026 0.929 10.622 25.992 0.984 11.324 14.527

Jun ANN 0.993 9.733 13.941 0.935 31.964 40.607 0.971 37.802 24.982

SVM 1.000 0.001 0.132 0.975 12.623 27.322 0.991 12.624 14.851

Jul ANN 0.994 17.670 17.879 0.974 42.065 49.212 0.984 59.668 30.672

SVM 0.993 19.374 18.773 0.985 20.648 33.186 0.990 39.332 23.952

Aug ANN 1.000 0.000 0.066 0.948 55.084 48.487 0.987 55.085 26.356

SVM 0.985 38.333 25.935 0.976 49.746 48.254 0.981 88.079 34.086

Sep ANN 1.000 0.025 0.569 0.980 26.107 37.144 0.991 26.130 20.196

SVM 1.000 0.112 1.294 0.993 12.638 25.675 0.996 12.749 13.998

Type 1 ANN 0.985 1066.577 39.605 0.955 610.823 52.156 0.977 1677.400 43.720

SVM 0.997 129.846 15.667 0.981 224.700 33.107 0.993 354.546 22.332

Type 2 ANN 0.983 493.066 33.022 0.974 324.422 37.400 0.983 817.487 34.384

SVM 0.992 275.120 22.959 0.988 156.918 25.691 0.993 432.038 23.805

Table 6 Average statistics of R, ME, and RMSE for the forecast-
ing and non-forecasting approaches

Implementation R
(%)

ME
(106 m3)

RMSE
(106 m3)

Non-forecasting with SVM 0.986 55.33 20.70

Non-forecasting with ANN 0.975 143.26 27.32

Forecasting with SVM 0.980 67.63 25.03

Forecasting with ANN 0.960 179.65 40.11
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Fig. 3 Reservoir releases calculated with the non-forecasting approach in (a) October through (l) September for SVM type 1 data and NLP
models
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Fig. 4 Reservoir releases calculated with the non-forecasting approach in (a) October through (l) September for ANN type 1 data and NLP
models
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Fig. 5 Reservoir releases calculated with the non-forecasting approach in (a) October through (l) September for SVM type 2 data and NLP
models
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Fig. 6 Reservoir releases calculated with the non-forecasting approach in (a) October through (l) September for ANN type 2 data and NLP
models
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Fig. 7 Reservoir releases calculated with the forecasting approach in (a) October through (l) September for SVM type 1 data and NLP
models
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Fig. 8 Reservoir releases calculated with the forecasting approach in (a) October through (l) September for ANN type 1 data and NLP
models
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Fig. 9 Reservoir releases calculated with the forecasting approach in (a) October through (l) September for SVM type 2 data and NLP
models
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Fig. 10 Reservoir releases calculated with the forecasting approach in (a) October through (l) September for ANN type 2 data and NLP
models
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performed better than type 1 data of the latter finding is
accentuated in January, February, and March with the
ANN model. It is seen that the calculated releases devi-
ate most from the NLP-calculated releases in April and
July. The calculated releases with ANN and type 1 data
deviate most from the NLP values in all months, except
in July, when ANN with type 2 data exhibited the
release with the largest deviation from NLP. Except for
July, the reservoir release did not achieve maximum in
the months April through September. This is explained
by the drier seasons comprised within April through
September. The testing phase results were poorer than
those of the training phase, with the deviation between
model-calculated releases and NLP releases being more
pronounced in July and August. In general, performance
of the type 2 data was better than that of the type 1 data
with the ANN and SVM models.

Moreover, Figs. 3, 4, 5, 6, 7, 8, 9, and 10 demonstrate
the prediction error in this case is smaller than that
observed with the non-forecasting approach. The best
and worst predictions compared with NLP occurred in
January and March, respectively. The SVM model per-
formed better than ANN in March. There is an obvious
deviation between the ANN with type 1 data-calculated
releases from those calculated with NLP when the non-
forecasting approach is implemented, something that
does not occur with the releases calculated with ANN
and type 1 data when implementing the forecasting
approach.

The forecasting approach in April through September
reveals that the calculated releases exhibit smaller errors
than those observed with the non-forecasting approach.
The best and worst performances are observed in June
and July, respectively, when compared with the NLP-
calculated releases. Despite the large deviation in July,
the SVM forecasting model performed better than
ANN. Also, the ANN forecasting model with type 1
and type 2 data exhibited larger deviations from theNLP
results than the SVM model.

Concluding remarks

The SVM and ANN models were applied to determine
optimal releases from the Karoon 3 reservoir using as
inputs the results obtained with NLP. The training and
testing data were selected for both models with percent-
ages equal to 70% and 30%, respectively, randomly.
Forecasting and non-forecasting scenarios were

considered to assess the accuracy of SVM and ANN
without requiring the information necessary to apply
NLP. Input variables to the forecasting approach were
the reservoir storage and inflow volume in the current
period and the three previous periods. Input variables to
the non-forecasting approach were the reservoir storage
in the current period and the three previous time periods
and reservoir inflow in the three periods prior to the
current period. The reservoir release was considered as
the output variable. The impact of data integration on
the models’ performances was assessed with multiple
runs involving type 1 data (long-term time series data),
type 2 data (monthly data), two modeling approaches
(forecasting and non-forecasting approaches), and im-
plemented with the ANN and the SVM models. Three
diagnostic statistics (R,ME, and RMSE) were calculated
to evaluate the models’ results. The results showed that
(1) the SVM and ANNmodels calculate optimal release
of hydropower reservoirs with accuracy, (2) the SVM
model has better performance than the ANN model, (3)
the use of monthly data (type 2 data) improves the
performance of the SVM and ANN models, and (4)
the non-forecasting approach performs very well com-
pared with the forecasting approach, despite the lack of
use in the former approach of reservoir inflow in the
current period as an input variable to calculate reservoir
release. These results reveal the superiority of SVM and
ANN over NLP for the given application. The data
mining techniques require NLP output for training pro-
cedure; yet, they reach suitable results without the in-
formation that NLP requires. It is worthy of mention that
the use or lack of use of reservoir inflow in the current
period as input variable had less effect on the results of
the SVM model than it did on those of the ANN model.
In other words, the non-forecasting approach with SVM
had better accuracy than the non-forecasting and fore-
casting approaches applied with ANN.
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