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ORIGINAL ARTICLE
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Abstract
This study examines the link between peripheral immune changes in perpetuation of the Alzheimer’s disease (AD) neuropathol-
ogy and cognitive deficits. Our research design using human AD patients and rodent model is supported by past evidence from
genomic studies. We observed an active immune response against Aβ as indicated by the increased Aβ specific IgG antibody in
the serum of AD and patients with mild cognitive impairments as compared to healthy controls. A similar increase in IgG and
decrease in IgM antibody against Aβ was also confirmed in the 5xFAD mouse model of AD. More importantly, we observed a
negative correlation between reduced IgM levels and cognitive dysfunction that manifested as impaired memory consolidation.
Strong peripheral immune activation was supported by increased activation of microglia in the brain and macrophages in the
spleen of AD mice compared to wild type control littermates. Furthermore, inflammatory cytokine IL-21 that is involved in
antibody class switching was elevated in the plasma of AD patients and correlated positively with the IgG antibody levels.
Concurrently, an increase in IL-21 and IL-17 was observed in spleen cells from AD mice. Further investigation revealed that
proportions of T follicular helper (Tfh) cells that secrete IL-21 are increased in the spleen of AD mice. In contrast to Tfh, the
frequency of B1 cells that produce IgM antibodies was reduced in AD mice. Altogether, these data indicate that in AD the
immune tolerance to Aβ is compromised leading to chronic immune/inflammatory responses against Aβ that are detrimental and
cause neuropathology.

Keywords Alzheimer’s disease . Inflammation . Aβ . IL-21 . Tfh . Cognition

Introduction

Alzheimer’s disease (AD) has become the most common form
of dementia in the elderly, affecting over 5 million people in

the United States alone. Unfortunately, current therapies are
not very effective. Hence, there is an urgent need to improve
our understanding of the mechanisms that drive the develop-
ment and progression of AD. A growing body of work now
indicates that age-related cognitive decline is caused by age-
related inflammation (Heppner et al. 2015). In fact, it is likely
that inflammation is a key trigger for Mild Cognitive
Impairment (MCI) and its evolution to AD. Recent evidence
from genomic studies has highlighted the role of inflammation
and the immune system in the etiology of AD (Heneka et al.
2015a, b; Heppner et al. 2015).

AD is characterized by the deposition of amyloid beta (Aβ)
protein and formation of neurofibrillary tau tangles. Aβ is a
self-protein that is present in healthy individuals. However, in
AD abnormalities including defective clearance lead to accu-
mulation of Aβ. The excess Aβ aggregates and forms oligo-
mers as well as fibrils that are deposited in the brain as
plaques, leading to neurodegeneration and pathology associ-
ated with AD. The defective clearance of Aβ is believed to
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enhance inflammation though the underlying mechanisms are
not well understood. The immune system plays a major role in
preventing inflammatory responses against self-antigens such
as Aβ (Banchereau and Steinman 1998). Antigen presenting
cells (APCs) such as dendritic cells and macrophages take up
foreign antigens, but this uptake also induces the upregulation
of activation markers and the secretion of pro-inflammatory
cytokines. The APCs then present the antigen to T cells in the
lymph node to initiate adaptive immune T and B lymphocyte
responses. The CD4 T cells proliferate and aid B cells in re-
moving the antigen while CD8 T cells kill infected cells. The
initial encounter of B cells with antigens results in the produc-
tion of IgM class antibodies. Once help arrives in the form of
CD4 Tcells, an isotype switch occurs where the IgM antibody
class switches to IgG or another isotype. Further, the B cell
receptor rearranges, enhancing the affinity of IgG for the an-
tigen and facilitating its clearance. In contrast, the uptake of
self-antigens by APCs does not result in their activation or
inflammatory cytokine secretion. Therefore, there is no down-
stream Tand B cell activation. The tolerance to Aβ appears to
be compromised in AD, as studies indicate that AD patients
display strong Aβ-specific T cell responses (Cao and Zheng
2018; Monsonego et al. 2003). An increase in Aβ antibody-
secreting B cells has also been observed in AD (Gaskin et al.
1993; Sollvander et al. 2015). Our previous studies also indi-
cate that the immune system loses its tolerance to Aβ in AD
patients resulting in chronic ongoing immune/inflammatory
responses against the antigen (Agrawal et al. 2018). In addi-
tion to increased immune activation, emerging evidence sug-
gests that these immune cells can affect neuroinflammation.
Recently, CD4 T cells were demonstrated to enhance the ex-
pression of MHC-II on microglia and affect neuroinflamma-
tion (Mittal et al. 2019).

The objective of the present study is to use the 5xFAD
mouse model of AD to determine possible mechanisms re-
sponsible for the increased inflammatory/immune responses
and to determine whether these changes correlate with cogni-
tive impairments. A clearer understanding of the link between
peripheral immune changes and cognitive dysfunction has the
potential for development of novel circulatory biomarkers for
AD.

Materials and Method

Human Serum Samples

De-identified serum samples from AD (Alzheimer’s disease)
and MCI (mild cognitive impaired) patients as well as age-
and sex-matched healthy controls (HC) were obtained from
the Alzheimer’s disease research center (ADRC) core at UCI.
Participants enrolled in the UCI ADRC cohorts undergo, at
minimum, a comprehensive annual evaluation that includes a

neurological and physical examination, neuropsychological
assessment, brain imaging, lumbar puncture, blood and diag-
nostic tests, and an interview with a study partner. Table 1
provides the description of the samples.

Mice

All animal experimentation procedures were performed in ac-
cordance with the guidelines provided by NIH and approved
by the University of California Irvine Institutional Animal
Care and Use Committee. Animals were maintained in stan-
dard housing conditions (20 °C ± 1 °C; 70% ± 10% humidity;
12 h:12 h light and dark cycle) and provided ad libitum access
to standard rodent chow (Envigo Teklad 2020x) and water.
Early and late stage male and female AD mice and their wild
type littermate controls were evaluated at approximately 3–4
and 8–9 months of age, respectively and described henceforth
as 4 mo and 8 mo ages. In both cases the animals were strat-
ified by age to maintain equivalent age distributions between
experimental groups.

Behavioral Testing

For one week prior to behavior, testing the lead investigator,
blinded to the animal groupings, handled all mice for habitu-
ation for 2–3 min per mouse each day. Independent investiga-
tors, blinded to the experimental groups, scored all behavior
files. Male mice were tested separately from female mice.

For the FE test two contexts (A and B) were used to deter-
mine whether mice could learn and then extinguish condi-
tioned fear responses over the course of 5 days (Acharya
et al. 2019; Chang et al. 2009). The conditioning testing cham-
ber (context A; 17.5 × 17.5 × 18 cm; Coulbourn Instruments)
had a steel grid floor and the scent of 10% acetic acid in water,
while the extinction chamber (context B) had a smooth
Plexiglas floor, additional stimulus lighting and the scent of

Table 1 Description of AD, MCI cohort

AD MCI HC

Number of subjects 26 26 26

Age Range (Years) 75–87 74–86 75–85

Age Mean (Years) 79.6 79.6 79.3

Gender

Male 13 13 13

Female 13 13 13

MMSE scores 6 to 25 21–30 27–30

Mean+/-S.D. MMSE 17.93+/−5.5 27.5+/−2.4 29.6± 0.8

CDR (sum) 4.5 to 13 0.5–4.5 0–0.5

Mean+/-S.D. CDR 8± 3.1 1.97± 1.3 0.07+/−2.1

MMSE- The Mini–Mental State Examination

CDR- The Clinical Dementia Rating



10% almond extract in water. Each test chamber was
disinfected in between testing trials. Digital cameras were
mounted in the ceiling of each chamber and connected via a
quad processor for automated scoring of freezing
(FreezeFrame, Coulbourn Instruments). For each mouse, the
fear conditioning protocol for day 1 used context A and started
with a 120 s pre-fear conditioning habituation followed by 3
pairings of a 120 s, 80 dB, 16 kHz white noise conditioned
stimulus (CS) co-terminating with a 1 s, 0.6 mA foot shock
(US) presented at 2 min intervals (day 1, T1-T3). For extinc-
tion training, starting on day 2, each mouse was placed in
context B and allowed to acclimate for 2 min followed by
extinction training that was comprised of 15 non-reinforced
120 s CS presentations at 5 s intervals. Fear extinction data is
presented as the average of 5 tones. Extinction training was
repeated daily for 2 additional days. Subsequently, retention
testing was performed on day 5 where each mouse was
returned to context B and following a 2 min acclimation peri-
od freezing was assessed during three non-US reinforced CS
tones (16 kHz, 80 dB, lasting 120 s) at 2 min intervals.
Extinction memory was calculated as the percentage of time
spent freezing during the test. After behavior studies were
completed, immunohistochemical and immunological analy-
ses were performed on subsets of the same mice that had been
used in the behavior studies.

Aβ Antibody Assay

Previously collected plasma samples from aged and young
human subjects and serum samples from AD, MCI and age-
matched HC were assayed for the presence of Aβ42 specific
antibodies using an in-house ELISA as described (Agrawal
et al. 2018; Qu et al. 2014). Plasma from mice was assayed
in a similar manner to human plasma except that the second-
ary IgG and IgM antibodies used for detection were anti-
mouse.

Flow Cytometry and Cytokine in Mouse Spleen

Spleen was collected from 5xFAD mice and their littermate
controls at 4 months and 8 months of age. Single cell spleen
suspensions were stained with antibodies specific to T follic-
ular helper cells (Tfh) (CD4+CXCR5+PD-1+), B1 cells
(CD19+CD5+CD43+), or macrophages (CD11c−, CD11b+,
MHC-II+). The antibodies were obtained from Biolegend
(San Diego, CA). Analysis was done using Flow Jo software
(Treestar, Ashland, OR).

For cytokine analysis, spleen cells (1×106/ml) were stimu-
lated with phorbol 12-myristate 13-acetate (PMA; 50 ng/ml;
Sigma) and ionomycin (1 μg/ml; Sigma) in RPMI medium
containing 10% FBS. Supernatants collected after overnight
stimulation were assayed for 15 analytes including, IL-6,
TNF-α, IFN-γ, IL-17, IL-22, IL-10, IL-1β, IFN-α, CCL-2,

CXCL-10, CCL-5, GMCSF, IL-1α, IL-33, IL-21 using mag-
netic bead based kit (Thermo Fisher Scientific).

Immunohistochemistry of Brain Samples

Mice were deeply anesthetized using isoflurane and eutha-
nized via intracardiac perfusion using 4% paraformaldehyde
(ACROS Organics; NJ) in 100 mM phosphate buffered saline
(PBS; pH 7.4, Thermo Fisher Scientific)(Acharya et al. 2016).
Brains were cryoprotected (10–30% sucrose gradient over 2–
3 days) and sectioned coronally into 30 μm using a cryostat
(Leica Microsystems, Germany). For each endpoint, 4 repre-
sentative coronal brain sections of the amygdala and medial
prefrontal cortex (mPFC) regions from each of the 4 animals
per experimental group were selected at approximately 15
section intervals and stored in PBS. For the immunofluores-
cence labeling of microglial activation marker CD68, rat anti-
mouse CD68 (1:500; AbD Serotec) primary antibody was
used with Alexa Fluor 594 secondary antibody (1:500).
Tissues were then DAPI nuclear counterstained and sealed
in slow fade/gold antifade mounting medium (Life
Technologies).

Thioflavin S Staining

Sections were rehydrated in an ethanol series (100%, 95%,
70%, 50%) and then incubated in a 0.5% thioflavin S solution
in 50% ethanol for 10 min. Tissues were rinsed twice in 50%
ethanol and then rinsed twice in PBS. Sections were mounted
and sealed with slow fade/gold antifade mounting medium
(Life Technologies).

Confocal Microscopy, Image Processing and 3D
Quantification

The stained coronal brain sections were scanned using a con-
focal microscope (Nikon Eclipse Ti C2) equipped with a 40×
PlanApo oil-immersion lens (1.3 NA, Nikon) and an NIS-
Elements AR interface (v4.30, Nikon). 30 z stacks (1024 bit
depth) at 0.5 μm from three different fields (318 × 318 ×
24 μm) were imaged in each section in the areas of interest.
The digitized z stacks were deconvoluted using the
AutoQuant software (version X3.0.4, Media Cybernetics,
Rockville, MD). An adaptive, 3D blinded method was used
to create deconvoluted images for direct import into the Imaris
module (version 8.1.2, Bitplane, Inc., Zurich, Switzerland).
The 3D algorithm-based surface rendering and quantification
of fluorescence intensity for each marker was carried out in
Imaris at 100% rendering quality. In the case of CD68, each
channel was analyzed separately where 3D surface rendering
detects immunostained puncta or nuclear staining (DAPI) sat-
isfying pre-defined criteria, for the puncta size (0.5 to 1 μm)
verified visually for accuracy. Using deconvoluted confocal z



stack volume from the control group (WT) as a baseline for
the minimum thresholding, a channel mean intensity filter was
applied and used for all the experimental groups for each batch
of molecular markers. The pre-set parameters were kept con-
stant throughout the subsequent analysis of immunoreactivity
for each antigen. To maintain uniformity among the varying
number of puncta for each individual time point and/or anti-
gen analyzed, the number of puncta per 318 × 318 × 24 μm
was normalized to WT control and data was expressed as
mean immunoreactivity (percentage) relative to WT controls.

Cytokine Assay

Plasma samples from AD, MCI and healthy controls were
assayed for IL-6, TNF-α, IFN-γ, IL-17, IL-22, IL-10, IL-
1β, IFN-α and Granzyme B using a Magpix multiplex kit
(Thermo Fisher) following the manufacturer’s instructions.
IL-21 was assayed by specific ELISA (RnD Systems).

Statistical Analysis

Graph Pad Prism software was used for statistical analysis.
Unpaired Student’s t test was used for measuring significance
within groups. For comparisons between three or more
groups, one-way ANOVA followed by Tukey’s test was used.
Spearman’s test was used for correlation. Values of p < 0.05
were considered significant. All tests were two tailed with
95% confidence interval.

Results

Aβ (1–42) Peptide Specific Antibodies of IgM Isotype
Are Decreased in 5xFAD Mice Compared to Littermate
Controls

We have previously reported (Agrawal et al. 2018) an
increase in Aβ (1–42) peptide specific antibodies of
IgG isotype in AD subjects as compared to HC displayed
here as (Fig. 1A). The ratio of IgM to IgG is significant-
ly decreased in AD patients compared to both MCI and
healthy controls. Increased IgG against an antigen is an
indication of an immune/inflammatory response against
that antigen. We also analyzed the data to determine
differences between males and females. However, there
was no significant difference in the levels of IgM and
IgG antibodies in AD, MCI and controls. To confirm that
AD mice display similar changes in Aβ specific IgM and
IgG antibodies as humans, serum from 5xFAD mice and
littermate controls of 4 and 8 months of age was collect-
ed and ELISA was performed as for human samples. Aβ
specific IgM antibodies were significantly decreased in

the serum of early and late AD mice compared to con-
trols (Fig. 1B; p < 0.05). Concomitantly an increase in
IgG antibodies in early and late AD mice was also ob-
served, but the difference was significant only at the late
AD stage (Fig. 1B; p < 0.05). Here also, we did not ob-
serve a significant difference between males and females
at both early and late time points. The 5xFAD model
displays a fast AD pathology therefore changes including
Aβ plaques are apparent as early as 4 months of age
(Supplementary Fig. 1). These data also suggest that
5xFAD is serve as a good pre-clinical model, as they
display similar immunological changes as those observed
in humans. Elevated IgG antibodies also indicate an on-
going immune/inflammatory response against Aβ in the
AD mice.

Correlation of IgM and IgG Responses with Cognitive
Function

To link AD neuropathology and the peripheral immune
response, mice were evaluated for cognitive function.
Fear extinction (FE) memory refers to the active process
of memory consolidation including dissociating a learned
response to a prior adverse event. In this test, mice are first
taught to expect a foot-shock after a tone is played, causing
them to freeze in fear of the anticipated averse event.
During the following three days, the mice undergo extinc-
tion training where they repeatedly hear the tone, but re-
ceive no foot-shock. Cognitively intact animals are able to
abolish that fear memory and continue moving about in-
stead of freezing, indicating minimal stress and anxiety.
However, the AD mice showed severely impaired memory
consolidation as indicated by an increased percent of test
time spent freezing compared to the aged-match WT mice
(Fig. 2A; p = 0.01). The WT mice exhibited a gradual de-
crease in freezing behavior (data not shown) over the ex-
tinction training whereas AD mice maintained higher
freezing levels. These behavior data clearly link the neuro-
pathological hallmarks of AD with cognitive dysfunction.
Importantly, the cognitive function of AD mice (impaired
fear memory consolidation) showed a strong negative cor-
relation with reduced IgM levels (Fig. 2B; r = −0.74014,
p = 0.04). On the contrary, the correlation between the IgG
levels and freezing behavior was not significant (r = −0.48,
p = 0.23). Together, these data demonstrate a correlation
between immune/inflammatory responses in periphery
and neuro-pathological changes in the AD brain.

Macrophages/Microglia Display Increased Activation
in 5xFAD Mice Compared to Littermate Controls

To confirm that the immune system is activated in AD
mice compared to WT controls, innate immune cell



Fig. 1 Aβ (1–42) peptide specific antibodies of IgM isotype are
decreased in AD patients and in 5xFAD mice compared to littermate
controls. The levels of Aβ peptide (1–42) specific antibodies, as well as
Aβ scrambled peptide, were measured in the plasma samples of AD,MCI
and age matched healthy controls (HC). (A) Dot plots depict the Aβ
specific IgM to IgG antibodies. Mean± S.D. of 26 AD patients, 26 MCI
patients and 26 HC. Equal number of males and females in each group.

(B) The levels of Aβ peptide (1–42) specific antibodies as well as Aβ
scrambled peptide were also measured in the plasma samples of 5xFAD
mice compared to WT littermate controls at 4 and 8 months of age. Dot
plots depict the ratio of Aβ specific IgG and IgM antibodies to scrambled
peptide antibodies. Mean ± S.D. For 4 mo: N = 7M, 2F mice per group; 8
mo: N = 7M, 7F mice per group. P values are derived from one way
ANOVA in A and Student’s t test in B

Fig. 2 Correlation of IgM and IgG response with cognitive function. (A)
The cognitive testing of 6–8 month old WT and AD mice using the Fear
Extinction (FE) memory test, showed significant cognitive impairments
as indicated by elevated freezing during the extinction test. (B) The AD-

related memory deficits correlated with the reduced IgM levels. AD mice
showing higher freezing display higher IgM levels. Mean ± SE (N = 14
mice per group, A; N = 8, mice per group B). P values are derived from
Student’s t test (A) and Pearson’s test (B)



activation was also evaluated. It is well established that
microglia in the brain are over activated in AD, and as
expected the brains of AD mice showed a significant
elevation in activated microglia (the resident immune-
cell) at both the early and the late stages of disease
progression compared to controls in the amygdala
(Fig. 3A-D; p = 0.01) and mPFC (data not shown). To
explore whether this activation of macrophages is also
observed in the periphery, flow cytometry was used to
determine the level of activation of macrophages in the
spleen. The level of expression of MHC-class II on mac-
rophages was found to be significantly higher on splenic
macrophages from AD mice at both at 4 months and
8 months as compared to controls (Fig. 3E; p = 0 <
0.05). This increased level of MHC-II is indicative of
activation, as the upregulation of MHC-II is associated
with antigen presentation (Steinman 2012) and priming
of T and B cell responses. These data indicate that pe-
riphery and brain reflect similar AD-related changes.

Inflammatory Cytokines Are Increased in AD Patients
and 5xFAD Mice

Increased inflammation is usually associated with an ongoing
immune response; therefore, we determined the level of in-
flammatory cytokines in the plasma from AD, MCI and HC.
As is evident from Fig. 4A, we observed a significant increase
in IL-21 levels in MCI and AD patients compared to controls.
IL-21 is a highly inflammatory cytokine secreted primarily by
T follicular helper cells (Tfh) cells and/ or Th17 cells (Tangye
2015). It is involved in class switching of antibody isotypes
from IgM to IgG (Recher et al. 2011). For this reason, we
performed correlation analysis between IL-21 and IgG in
AD and MCI groups. There was significant correlation be-
tween IgG levels and IL-21 in both MCI (r = 0.40; p = 0.03)
and AD groups (r = 0.45; p = 0.01). These data indicate that
IL-21 may play a role in the increased IgG response in AD and
MCI patients. None of the other cytokines tested demonstrated
a significant difference between the three groups.

Fig. 3 Macrophages/microglia display increased activation in 5xFAD
mice compared to littermate controls. (A-C) Representative high-
resolution confocal micrographs from the basal lateral amygdala (BLA)
of WT and AD mouse brains (red, CD68; blue, DAPI nuclear counter-
stain; Scale 40 μm). (D) Quantification of CD68 immunohistochemical
staining demonstrated that compared to controls, AD mice had increased
microglial activation at both 4 and 8 months of age as compared to WT

controls where data are Mean ± SE (n = 4 mice per group); *p < 0.01. (E)
Dot plot depict the MFI (Mean fluorescence intensity) of MHC-II on
macrophages in the spleen of AD and WT mice at 4 and 8 months of
age. Histogram is representative ofmacrophage-MHC staining. For 4mo:
n = 7M, 2F mice per group; 8 mo: n = 7M, 7F mice per group. P values
are derived from Student’s t test



Next, T cell cytokine secretion was compared in
spleen cells from AD and control mice to determine the
nature of Th cell bias in AD. The spleen cells were
stimulated overnight with PMA and ionomycin and the
supernatant was assayed for 15 cytokines, chemokines,
and growth factors via multiplex (Elahi et al. 2018). Of
these IL-17 and IL-21 displayed significantly increased
secretion in AD mice (Fig. 4B; p < 0.05). These changes
are similar to what was observed in humans. These
in vivo mouse data once again indicate ongoing
immune/inflammatory responses in AD.

Tfh Cells Are Increased and B1 Cells Are Decreased
in 5xFAD Mice Compared to Littermate Controls

Tfh cells play a crucial role in B cell proliferation and
switching of IgM antibody isotype to IgG and other
isotypes as well as antibody secretion (Crotty 2014).
Furthermore, IL-21 is the signature cytokine of Tfh cells;
therefore, we compared the percentages of Tfh cells in
the spleens of AD and WT mice. The percentage of Tfh
cells was significantly increased in the spleens of AD
mice as compared to controls at both 4 and 8 months
of age (Fig.5A; p < 0.05). The presence of Tfh cells

indicates an active, ongoing immune response. The in-
crease in Tfh cells in AD mice was much more signifi-
cant at the early time point suggesting that the immune
response starts at the early stage of AD. These data in-
dicate potential involvement of Tfh cells in the increased
IL-21 and IgG antibodies observed in AD patients and
mice.

One of the mechanisms of clearance of self-antigens
such as Aβ is via IgM antibody. A special subset of B cells
called B1 cells specializes in producing IgM antibodies,
which are often polyreactive. B1 cells are spontaneous
IgM producers at homeostasis and are crucial for clearance
of self-antigens without overt inflammation (Prieto and
Felippe 2017). For that reason, the proportion of B1 cells
in the spleen of AD and WT mice were compared by flow
cytometry. A significant decrease in the number of B1 cells
was observed in AD mice as compared to WT (Fig. 5B; p <
0.05). In addition, a significant correlation between B1 cells
and IgM was observed between B1 cells and IgM levels in
WT mice while no correlation was apparent in AD mice
(p = 0.001, r = 0.97). These data support our previous ob-
servation of a decrease in IgM antibodies in AD patients
and AD mice and suggest that it could be linked to a de-
crease in B1 cells.

Fig. 4 Inflammatory cytokines are increased in AD patients and 5xFAD
mice. (A) Dot plots depict the levels of cytokines in the plasma of human
AD, MCI and HC samples. Mean ± S.D. of 26 AD patients, 26 MCI
patients and 26 HC. (B) Dot plots display the levels of cytokines

secreted by PMA, ionomycin stimulated spleen cells from 5xFAD mice
and WT littermate controls at 4 and 8 months of age. For 4 mo: 7M, 2F
mice per group; 8 mo: 7M, 7F mice per group. P values are derived from
Student’s t test



Discussion

The present study demonstrates that the proportions and/or
activation of peripheral immune system cells is significantly
increased in AD patients andmice compared to controls. More
importantly, this immune activation is linked to cognitive
dysfunction.

We have previously demonstrated (Agrawal et al. 2018)
and shown here (Fig. 1A) that AD patients display increased
IgG response against Aβ compared to healthy controls indic-
ative of an inflammatory immune response. We observe a
similar increase in IgG in the mouse model (Fig. 1B) indicat-
ing that human and mice parameters are alike. A probable
scenario for the increase in IgG is that the continuous exposure
of the immune system to high levels of Aβ, possibly due to
impaired clearance, leads to breaking of immune tolerance
and immune reactivity to Aβ. The chronic activation due to
Aβ enhances inflammation and increases neuropathology.
This is supported by our data (Fig. 2A-C) where an inverse
correlation between low IgM and cognitive dysfunction tests
was observed. In addition, the activation of macrophages in

the spleen and their counterpart microglia in the brain was also
increased in AD mice compared to controls, indicative of an
inflammatory response in the brain and in the periphery (Fig.
3A-E). The concomitant changes in the brain and in the pe-
riphery suggest the possibility of developing a blood-based
biomarker for diagnosis of AD.

The level of inflammatory cytokine, IL-21 was increased in
the circulation of AD and MCI patients compared to HC as
demonstrated previously (Agrawal et al. 2018) and here in
Fig. 4A. Furthermore, it correlated positively with IgG levels
in both MCI and AD subjects. IL-21 belongs to γC family of
cytokines along with IL-2, IL-15 etc. It is produced primarily
by CD4 T cells particularly the Tfh subset in the germinal
centers where it acts on B cells to mediate class switching
and sustain production of antibodies via differentiation of B
cells to plasma cells (Kishida et al. 2007; Recher et al. 2011;
Tangye 2015). IL-21 also acts in an autocrine manner and
promotes the development of Tfh cells that may be reason that
increased proportions of Tfh cells are observed in the spleen of
ADmice compared to controls (Fig. 5A). In addition, IL-21 is
a highly inflammatory cytokine that can enhance the

Fig. 5 Tfh cells are increased and B1 cells are decreased in 5xFAD mice
compared to littermate controls. (A) Spleen cells were stained for Tfh
cells (CD4+, CXCR5+, PD-1+) and analyzed by flow cytometry.
Contour plots depict the percentage of Tfh cells in AD and WT mice.
Dot plots depict the % of CD4+, CXCR5+, PD-1+ Tfh cells at 4 and
8 months of age. (B) Spleen cells were stained for B1 cells (CD19 +

CD5 + CD43+) and analyzed by flow cytometry. Contour plot depicts
the percentage of B1 cells in AD and WT mice. Dot plot depicts the
percentage of B1 cells at 4 and 8 months of age. Mean +/-S.E. For 4
mo: 7M, 2F mice per group; 8 mo: 7M, 7F mice per group. P values
are derived from Student’s t test



differentiation of IL-17, producing Th17 cells (Spolski and
Leonard 2014). We do find increased secretion of IL-17 and
IL-21 in spleen cells from AD mice (Fig. 4B) indicating in-
creased differentiation towards Th17 cells. Th17 cytokines
including IL-17, IL-21 and IL22 are reported to be increased
in AD patients (Zhang et al. 2013). Furthermore, both IL-21
and IL-17 have been implicated in numerous autoimmune
inflammatory diseases (Sarra et al. 2010; Spolski and
Leonard 2014; Ueno et al. 2015; Zhang et al. 2013) including
multiple sclerosis (Okada and Khoury 2012). More recently,
IL-21 was found to be highly elevated in the mouse brain after
cerebral ischemia (Clarkson et al. 2014). Thus IL-21 may not
only be promoting antibody class switching, but also enhanc-
ing inflammation in AD subjects.

Interesting changes in the proportions of both Tfh and B1
cells in AD mice were also observed in this study (Fig. 5A, B).
Tfh cells are foundwith in the germinal centers and an increase in
their percentages is indicative of an ongoing immune response
(King et al. 2008). Tfh cells are essential for generation of opti-
mal antibody responses; however, an excessive Tfh cell response
can result in breakdown of tolerance. For example, increased
numbers and activity of Tfh cells have been reported in lupus
(Blanco et al. 2016; Yang et al. 2016). Similarly, increased fre-
quencies of Tfh cells and B cell plasmablasts have been found in
peripheral blood and cerebrospinal fluid (CSF) from multiple
sclerosis patients with relapsing–remitting or secondary progres-
sive forms of the disease (Fan et al. 2015; Puthenparampil et al.
2019). Furthermore, elevated levels of IL-21 in plasma and CSF
were observed to correlate with disease severity. An increase in
activated Tfh cell frequencies in circulation is also found in an-
other neurological autoimmune disorder, Neuromyelitis Optica
Spectrum Disorders (NMOSD) (Li et al. 2015). These patients
also displayed increased IL-21 levels in both CSF and plasma. It
is therefore plausible that the increased proportions of Tfh cells as
observed in ADmice are not only a source of IL-21 but may also
be playing a role in breakdown of tolerance against Aβ. Future
studies with human subjects will explore whether the frequencies
of Tfh cells and IL-21 levels in circulation can be used as poten-
tial biomarkers for AD.

Another immune cell that displayed significant changes in
AD mice compared to littermate controls was the B1 subset.
Antibodies are secreted by B lymphocytes that can be divided
into two major subsets, B1 and B2 (Montecino-Rodriguez and
Dorshkind 2012; Rothstein et al. 2013; Silverman et al. 2000).
B1 and B2 subsets display different phenotypic markers, on-
togeny and functions. B2 are the conventional B lymphocytes
that are capable of producing various subtypes (IgG, IgE) of
high affinity antibodies via class switching. In contrast, the
principal function unique to B1 cells is spontaneous, constitu-
tive secretion of antibody, termed natural antibody that ap-
pears in the absence of infection or immunization. B1 cells
plays a critical role in housekeeping removal of cellular debris
and self-proteins (Rothstein et al. 2013). Natural antibody is

predominantly IgM, and it is estimated that 80–90% of resting
serum IgM is derived from B1 cells (Rothstein et al. 2013).
More importantly, serum IgM is preferentially produced by
B1 cells in the spleen. Natural antibody tends to be
polyreactive, autoreactive, and anti-microbial at relatively
modest affinity (Montecino-Rodriguez and Dorshkind 2012;
Rothstein et al. 2013; Silverman et al. 2000). The effective-
ness of B1 cell natural antibody may depend, in part, on that
polyreactivity that provides the means for a single antibody to
heteroligate different and possibly widely spaced, surface an-
tigens, thereby increasing effective avidity. Further, IgM ef-
fectively binds the complement component C1q that also
helps in clearance (Chen et al. 2009). One of the major ho-
meostatic functions of the natural antibodies is to help in the
removal of autoantigens such as Aβ (Gronwall et al. 2012). In
this regard, natural autoantibodies against Aβ have also been
demonstrated to play a protective role against AD (Puli et al.
2014; Qu et al. 2014). Autoantibodies against varying Aβ
epitopes have been detected at higher levels in the blood of
control subjects as compared to AD patients (Qu et al. 2014).
Thus, reduced proportions or function of B1 cells may con-
tribute to the decreased IgM in antibodies observed in AD
patients and mice.

Conclusions

In summary, our data indicate immune tolerance to Aβ is
compromised and a strong immune /inflammatory response
against Aβ is generated in AD. This may be a compensatory
mechanism to clear Aβ but the increased inflammation leads
to neuropathology in the brain. Furthermore, we also report
that the peripheral immune changes are linked to cognitive
dysfunction and some of those peripheral immune changes,
such as IL-21 and Tfh, may be developed as biomarkers for
AD.
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