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Abstract

Enhancing the capability of constrained random test
program generators via learning and test program filtering

Vinayak Kamath Kasargod

Functional verification of RTL is one of the primary and most time consuming

tasks of microprocessor design. However, designs cannot be completely verified

due to their large size and strict time-to-market restrictions. Formal verification

and simulation-based verification both sacrifice completeness for utility. While

formal verification is relegated to the verification of a part or an abstraction of

the design, dynamic verification reduces complexity by restricting possible input

sequences. Being more scalable, simulation-based verification has been the main-

stay of functional verification.

A majority of simulated tests are created from separate, automatic, random

stimuli generators based on user templates. The generated stimuli, usually in the

form of assembly programs, trigger architectural and microarchitectural events.

The quality of applied tests is periodically evaluated based on coverage points

defined in a verification plan. On one hand, the use of randomization inevitably

leaves some redundancy in the generated tests. On the other hand, the effec-

tiveness of a generator depends on the fact that test templates are user defined.

Because of these limitations, it is challenging to develop a new generator that

out-performs an existing generator in every aspect. As a result, over the years

multiple test generators are developed and retained, incurring tremendous over-

head in maintaining the software infrastructure.

x



In this thesis we propose a novel methodology to improve the effectiveness of

one test generator with respect to another. First, we evaluate the effectiveness

of using a legacy test generator used at AMD and quantify its verification per-

formance. We explore the differences in the design and capabilities between the

legacy test generator and AMD’s latest in-house x86 ISA-based test generator.

We then proceed to gather experimental evidence to support our understanding.

Functional coverage measurements based on an existing verification plan confirm

our findings. With the exception of two cases, we find the latest test generator

to have a far superior capability for verifying the features tested. The two excep-

tions are due to its design limitations. We propose to utilize external test filters

to overcome these limitations.

We develop a test filtration approach that is independent of the test generator,

to filter out ineffective tests prior to RTL simulation. We achieve this by using ISA

simulation traces. We find that using a combination of ISA simulation traces and

microarchitectural models is necessary to cover a wider range of coverpoints. Our

work shows that by using implementation specific details for extrapolating test

behavior information present in simulation traces, we can compensate for microar-

chitecture agnostic test generation and consequently improve the effectiveness of

a test generator without modifying its design. The proposed approach expedites

coverage closure by providing precise control over random test behavior. Experi-

mental results based on the latest AMD multi-core processor design are presented

to demonstrate the feasibility of our proposed approach.
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Chapter 1

Functional verification of digital
integrated circuits

1.1 Introduction

Functional verification of an integrated circuit is demonstrating that the de-

sign implementation is the same as the specification by checking the functional

equivalence of two versions of the design. The two versions may be representations

of the design at a different level of abstraction, such as behavioral and structural

RTL. It can also be different versions of the design at the same level of abstraction;

for example, one may be a retimed version of the other. Non-conformance of fea-

ture sets, protocols or performance parameters to the specification are regarded as

functional defects or bugs. Some bugs can be fixed by software workarounds, while

others may require expensive silicon revisions. A robust verification methodology

is necessary at the unit, chip and system level to ensure a defect free silicon on

1



Chapter 1. Functional verification of digital integrated circuits

the very first revision. Overall, functional verification takes up 30% to 50% of the

development time and resources in chip design[22]. Some estimates even put it as

high as 70%[21].

Despite advances in verification methodologies, tools and the availability of

faster and larger compute clouds, verification is only barely keeping up with Sys-

tem on a Chip (SOC) design. Transistor count in SoCs is roughly doubling every

two years, as projected by Moore’s Law(see Fig. 1.1). The complexity of designs

is increasing as more and more IPs are being integrated onto SoCs. Advances

in Computer Aided Design (CAD) have enabled logic to grow at an exponential

rate. A net result of all this is an increase in the size and complexity of verification

space[8].

The cost of detecting and fixing bugs increases as we move down the design

cycle. Post-silicon debugging is notoriously tedious and the cost of design re-

spins is prohibitive. While the chips are expected to meet the prescribed quality

standards, they are bound by cost and aggressive time-to-market constraints.

They have to communicate with other chips and memories on a board and comply

with myriad standards. Consumer products such as mobile and gaming console

processors are designed under very tight schedules with approximately 18 to 24

months from design to mass production of multi-billion gate designs, even with

logic reuse. Product release windows are very narrow and missing it can severely

2



Chapter 1. Functional verification of digital integrated circuits

affect product sales. All these factors force verification teams to make the most

efficient use of available resources to deliver a high quality design.

Figure 1.1: Plot of microprocessor transistor count over the years since 1971
Source: ”Transistor Count and Moore’s Law - 2011” by Wgsimon[13]

Verification is a process that is never really complete. The goal of verification is

to ensure that the design is error-free. This however cannot be proved. Verification

can only detect the presence of errors, but not its absence. Given enough time,
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verification can always find errors. For a robust verification environment, the

returns on spending more time and resources are diminishing. The ability and

confidence to declare verification as complete can only come with experience.

1.2 Functional verification methodology

Functional verification begins with writing a verification plan, followed by im-

plementing the verification environment, device bring-up and device regression[36].

Fig 1.2 illustrates the components of the functional verification plan. It consists

of four parts:

1. Stimulus generation

2. Design simulation environment

3. Response checking

4. Coverage measurement

The verification plan enumerates what must be verified and how. It describes the

scope of the verification problem and serves as the functional specification for the

verification environment. What must be verified is captured in the functional,

code and assertion coverage requirements of the coverage measurement section

of the verification plan. How the device is to be verified is captured in the top

4
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Stimulus 
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Design 
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Figure 1.2: Functional verification process

and detailed-design section of each of the three aspects of the verification plan:

coverage measurement, stimulus generation and response checking. The stimu-

lus generation defines the setup needed to generate the stimuli required by the

coverage section. The response checking describes the mechanisms to be used to

compare the response of the design to the expected, specified response.

Once the design under test (DUT) is integrated into the verification environ-

ment, simple directed tests are run to eliminate all trivial and show-stopper bugs

to bring the setup to a stable state. At this stage, bugs are easy to find; so there is

no reasons to bombard the design with elaborate tests. The initial simulations ex-

ercise an extremely narrow path through the behavioral space of the device. The
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Figure 1.3: Representative plot of bug discovery rate (left) and design functional
coverage (right) over the lifetime of a project

tests are commonly handwritten as they are functionally restricted in order to

make it easy to diagnose a failure. By the end of design bring-up, both, the DUT

and the verification environment can be subjected to a steady stream of stimuli to

identify functional bugs. This is followed by extensive regressions where the de-

sign is thoroughly exercised to detect the (re-)introduction of bugs into the design

implementation. This process is interleaved with means of coverage measurement.

This serves as a feedback mechanism for further testing and provides a sense of

verification completion. This is an extended phase that continues all the way to

design tape-out.

Fig. 1.3 illustrates a typical bug discovery and coverage chart. The number

of bugs discovered in a week progressively increases during device bring-up as

the quality of the stimulus is improved through better test generator constraints.

After the design has been rigorously tested for an extended period, the rate be-

gins to drop. This indicates improving design health. Bugs become increasingly
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hard to find towards the end of a project cycle. Much like bug discovery, design

coverage growth is significantly higher during bring-up. Once all of architectural

and elementary design features have been tested, coverage growth begins slowing

down. Coverage closure is a combination of waiving unnecessary coverage from

the verification plan and creating directed tests to cover known design corners.

1.3 Optimizing functional test content

Ideally, in order to maximize the utilization of simulation cycles, we have to

eliminate all stimuli which do not excite any new design behavior. To be useful,

every simulated test should trigger a previously unseen design behavior. Esti-

mating test quality without running a detailed (RTL) simulation, however, is a

challenging task. Architectural coverage, for example, provides a coarse estimate

of micro-architectural behavior. Since architectural simulation lacks timing infor-

mation and microarchitecture information, two tests with identical architectural

coverage can behave differently on RTL.

In practice, tests are generated using constrained test program generators

which attempt to provide a desirable spread of stimulus across the test space.

More often than not, there is no filtering mechanism to evaluate test behavior be-

fore simulation. A significant fraction of generated tests do not provide any new

7
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coverage. Since tests provide coverage beyond what is measured by the verification

plan, this is considered a cost of random verification.

1.3.1 Avoiding duplication of test generation effort

It is a common practice to have multiple sources of random tests. When work-

ing on the same instruction-set architecture (ISA) for decades, newer and better

random test program generators are developed from time to time. While the older

test generators are trusted and proven, the newer ones offer better coverage and

control. As opposed to substituting an existing tool, older tools are used as a sup-

plement. Even though this intuitively gives a sense of better verification quality,

the benefits of this verification overhead are seldom evaluated. In this disserta-

tion, we tackle this issue by analyzing two in-house test generators (exercisers)

to understand their strengths and weaknesses. We substantiate our findings with

RTL simulation data from a recent x86 ISA based microprocessor core.

1.3.2 Generating targeted tests for coverage closure

Parts of the verification plan that remain untested are targeted during the

coverage closure phase. This is the last leg of design verification. Exercisers

are rerun with iteratively improved test templates until the required coverage is

achieved. Because the probability of occurrence of these tests, which we regard

8
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as novel tests, is very low (less than 1%), large batches of tests are simulated. In

cases where this fails, verification engineers resort to writing tests manually.

We suggest two methodologies to filter novel tests, independent of the test

generator. The filters are specific to the targeted behavior. In the first approach,

we use ISA simulation trace values directly to estimate test behavior. This al-

lows us to filter only simple behaviors that are architecturally defined. In the

second approach, we extrapolate trace data using a microarchitectural model for

a closer estimation of test simulation behavior. We demonstrate the ability of our

methodology to increase the density of rare tests by several orders of magnitude.

1.4 Related Work

Relevant related work has been discussed at the beginning of each chapter,

wherever necessary.

1.5 Thesis Organization

We first analyze the constraint random test generation problem. In Chapter

2, we take a look at two of AMD’s in-house x86 tests generators - Random Test

Generator (RPG) and AMD Exerciser (Amex). We identify key differences in

their capabilities based on their design principle.
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In Chapter 3, we make a comparative analysis of the two exercisers to confirm

our findings. We propose a flow to compare two exercisers based on functional

coverage. We use coverage data from core-level simulations to verify Secure Virtual

Machine (SVM) nested-paging features of the x86 ISA. We identify the limitations

of Amex and propose to utilize external test filters to overcome them.

In Chapter 4, we develop an ISA simulation trace based filtering approach

for novel test selection, which is independent of the test generator. We test the

effectiveness of this methodology to identify novel tests from past regressions and

generate new novel tests for x86 microprocessor verification. We gather exper-

imental data from instruction cache, branch prediction and TLB operation to

understand the practical limitations of this approach.

In Chapter 5.1, we develop a solution based on microarchitectural models to

bridge the gap between RTL behavior and machine learning based test filtering.

We demonstrate how microarchitectural models can give a more accurate descrip-

tion of test behavior. Experimental results based on the latest AMD multi-core

processor design are presented to demonstrate the feasibility of our proposed ap-

proach.

Chapter 6 concludes the dissertation and discusses future line of work.
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Chapter 2

Random test program generation

2.1 Introduction

The equivalence of a design and its functional specification can be proved by

exhaustive simulation or a formal proof of correctness. An exhaustive simulation,

in which all valid states of the design are exercised, can be done only for very

small designs. This holds true for formal verification as well. As it is more scal-

able, simulation based verification is the mainstay of functional verification. In

industrial designs, a relatively small subset of tests is simulated. The challenge,

therefore, lies in developing a test suite that provides high confidence in the cor-

rectness of the design. Since the test-space is prohibitively big, this process has

to be performed semi-automatically via software, which is aware of the design

architecture and the verification plan. These are referred to as Constrained Ran-

dom Test Generators, Random Test Program Generators (RTPG) or exercisers.
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Constraint-based test generation is a well-studied behavioral level functional test

generation paradigm, where a given design is converted into a set of constraints

and constraint solvers are employed to generate tests.

2.1.1 Related work

Random test program generators were introduced to functional verification in

the early 80s by IBM[40]. It owes its origin to software testing[10]. The basic idea,

as shown in Fig. 2.1, remains the same to date. Random self-checking tests that

are architecturally valid are generated to comprehensively verify the functional

correctness of a DUT. The nature of the test cases ensure that they execute to

completion and the results of the execution are predicted at the time of generation.

So wherever possible, the tests are self-checking.

Genesys[22], Genesys-Pro[1] are two widely known random functional test gen-

erators developed by IBM. They follow the model-based test generation approach

suggested by Aharon, Goodman, Levinger et.al.[43] and Malka, Lichtenstein and

Aharon[6]. They use an architectural model and a constraint solver (in the

case of Genesys-Pro) to generate random tests based on user defined template.

Piparazzi[2] includes a microarchitectural model for higher precision and control

over test behavior.
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Figure 2.1: Dynamic process for the generation of biased pseudo-random test pat-
terns for the functional verification of hardware designs proposed by Aharon, A.,
Bar-David, A., Gewirtzman, R. et.al. from IBM in 1990[5]

In this chapter, we examine the test generation problem and its practical

challenges. We discuss the methodologies used by two AMD exercisers and identify

differences in their working.

2.2 Constraint based verification

Constraint based verification automates the verification process. Instead of us-

ing manually generated tests to verify the design space, constrained random sim-

ulation relies on a constraint-based testbench. The constraints define the bound-

aries of legal design space as a function of design inputs and states. Constraints are
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executable through constraint solving. Randomizations during constraint solving

enable the simulation to explore a much wider section of the verification space.

2.2.1 Reactive testbench

It would appear that having a reactive testbench that actively generates tests

based on the processor state is an obvious solution to the test generation prob-

lem. As shown in Fig. 2.2, the testbench at any time is aware of the Design

Under Test(DUT)’s state. It can synchronously generate constraints based on the

machine state. These constraints can then be solved to generate relevant stimu-

lus. This would allow it to precisely target any design behavior by executing the

most appropriate instruction from a known RTL state, based on coverage goal

requirements. In reality, however, this is not a viable solution for large designs.

For example, in the case of a microprocessor, this is possible only if the memory,

caches and instruction fetch mechanisms are bypassed and the instructions are

directly injected to the pipeline for decode and execution. When instructions are

inserted into the memory, it is impossible to predict the exact processor state

at the time of execution, given the deep pipelining, super scalar execution and

non-core components interacting with the processor core. These elements insert

variable delays and indeterminism that make calculating the micro-architectural

14



Chapter 2. Random test program generation

Simulation of 
DUT 

Constraint 
modeling 

Verification testbench 

Constraint 
expressions 

State signals 

Constraint 
solver 

Constraint 
solver Bias 

State signals 

Stimulus 

Figure 2.2: Testbench based stimulus generation

state at execution time impossible. Bypassing instruction fetch logic leaves a

significant portion of logic untested.

Out-of-order execution is yet another roadblock to this approach. Let us sup-

pose that we want to perform two back to back additions with a register depen-

dency. We generate two add instructions where the second instruction uses the

result of the first. The first instruction serves to set up the event, while the second

triggers it. Consider the following piece of code:
mov ebx, 0xAEDC0987
mov rax, [ebx]
sub rdx, rax
add rcx, 0x8898
add rbx, rcx...

There are three randomly generated instructions preceding the two add in-

structions. Since the second mov and the subsequent sub depend on a read from
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memory, there will be a pipeline stall if the instructions are executed in-order. To

avoid this, the processor will fill the void by executing the first add instruction

(and any subsequent instructions) that do not have a dependency on this load.

This implies that the temporal relation of the two additions cannot be guaranteed.

They will retire after the mov and sub, but their dispatch depends on the pipeline.

Thus, the insertion of random instructions has disrupted the register-dependency

event that was set up. This can also happen because of random code inserted after

the add instructions. Test generation, therefore, is not as simple as knowing the

architecture state based on the last retired instruction. It requires us to generate

instructions beforehand to fill the prefetch pipeline. This has to be done in a way

that does not disrupt an event being set up.

2.2.2 Constraints and biases

Constraints are formal specifications of design architecture and behaviors. In

the context of constrained random simulation, there are basically two types of

constraints: architecture constraints and constraints used as test directives. Ar-

chitecture constraints define the design behavior. They play the role of describing

the legal test space. Test directives determine the randomization and distribution

of inputs within the test space. Biases guide tests towards coverage goals. Test

directives are typically presented in the form of user generated templates.
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2.2.3 Constraint representation

There are several ways to represent constraints depending on the domains be-

ing continuous or discrete, and finite or infinite, and the constraints being linear

or non-linear. Boolean constraints, for example, can be represented as Binary

Decision Diagrams (BDDs). Constraints required to generate a test can be rep-

resented as a single BDD, which is the combination of all behavioral constraints.

The legal input space defined by this constraint is captured by the set of paths

in the corresponding BDD that lead to the leaf node which evaluate to TRUE.

Each of these paths can be viewed as an assignment to the variables on that path.

The assignment to state variables represents a set of states, whereas the input

assignment represents a set of input vectors that are legal under each of these

states.

Depending on the constraint, the legal input space can be empty under certain

states. These states are referred to as illegal states since the simulation cannot

proceed upon entering those states. Consider the constraint (x1+x2+s1+s2 ≤ 1),

where xi represents an input and si represents a state variable. For the state

(s1 = 0, s2 = 0), all values of x1 and x2 satisfying the constraint (x1 + x2 ≤ 1) are

valid inputs. So all inputs other than (x1 = 1, x2 = 1) are legal input vectors. The

state (s1 = 1, s2 = 1) is an illegal state, since no input assignments can satisfy the

constraint.
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2.2.4 Input biasing and vector distribution

Solutions to test constraints are distributed using input biases. An input

probability can be given either as a constant, or as a function of state. Input

probabilities can only bias the solution, since the constraints assume higher prior-

ity. In extreme cases, the constraints can prohibit an input variable from taking a

specific value at all times, even if the input variable is assigned a high probability

for doing so.

Suppose, the input probability of x = 1 is a function of the state with a range

in (0,1), denoted by px(Y ); the input probability of x = 0 is the function 1−px(Y ),

denoted by px̄(Y ). X stands for input variables and Y stands for state variables.

Let α = α1α2α3 . . . αn be a vector of input variables. The weight of α is defined

as

π(α, Y ) =
n∏

i=1
[αi.p

xi(Y ) + (1− αi).px̄i(Y )] (2.1)

Constraints and input probabilities can be conceptually unified by the constrained

probability of input vectors. The constrained probability of an input vector is the

weight of the vector divided by the sum of the weights of all vectors that satisfy

the constraint[45]. The constrained probability is defined to be zero if the given
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state is illegal. For a constraint f , if we denote the legal input space for a state s

by fs, the constrained probability of an input vector α for a state s is given by

ps(α) = π(α, s)∑
β∈fs

π(β, s) if α ∈ fs (2.2)

0 if α /∈ fs (2.3)

Consider a design with three inputs in1, in2 and in3 with input probabilities 1/3,

1/6 and 1/2 respectively. If we begin with no constraints, all eight vectors are

valid inputs. The distribution of inputs is shown in Table. 2.1.

Table 2.1: Input vector distribution for a 3-input system with no constraints

in1 in2 in3 Vector probability
0 0 0 2/3 * 5/6 * 1/2 = 5/18
0 0 1 2/3 * 5/6 * 1/2 = 5/18
0 1 0 2/3 * 1/6 * 1/2 = 1/18
0 1 1 2/3 * 1/6 * 1/2 = 1/18
1 0 0 1/3 * 5/6 * 1/2 = 5/36
1 0 1 1/3 * 5/6 * 1/2 = 5/36
1 1 0 1/3 * 1/6 * 1/2 = 1/36
1 1 1 1/3 * 1/6 * 1/2 = 1/36

Total = 1

The design space is limited by applying constraints on what constitutes a legal

input vector. For example, if we apply a constraint that (in1 + in2 + in3 ≤ 1),
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inputs (0,1,1), (1,0,1), (1,1,0) and (1,1,1) are no longer legal inputs. The remaining

vector with their constrained probabilities are shown in table 2.2

Table 2.2: Input vector distribution for a 3-input system with the constraint (in1
+ in2 + in3 ≤ 1)

in1 in2 in3 Original probability Normalized Probability
0 0 0 5/18 5/18 * 4/3 = 10/27
0 0 1 5/18 5/18 * 4/3 = 10/27
0 1 0 1/18 1/18 * 4/3 = 2/27
1 0 0 5/36 5/36 * 4/3 = 5/27

Total = 3/4 Total = 1

As shown in the last column, the probabilities of the input vectors are normal-

ized to account for the reduction in the size of the test-set. Similar biasing can

be used to get a desired distribution of random instruction sequences.

2.3 Challenges of test generation

There are two main challenges to constraint based test generation:

1. Converting the design to a set of constraints

2. Solving the constraints

Both of these are problems that current techniques and processing power are in-

capable of solving. Firstly, translating design specification into constraints is not
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practical, both manually and automatically. While smaller units can be repre-

sented declaratively as a set of constraints, it is impractical for something as big

as a processor core. Even if we did manage to develop a representative set of

constraints, we cannot verify its completeness or correctness. Since the design

space is exceptionally large, solving a set of constraints this big is computation-

ally intractable. As a result, test generation methods are, at best, semi-automated

where a reduced set of constraints and biases guide the test generation process.

The biases are provided by the user based on coverage goals.

When there is a large number of constraints, forming the conjunction BDD is

expensive as the computation blows up because of large intermediate BDDs. They

are harder to solve and the conjunction BDD slows down vector generation. This

is true irrespective of how the constraints are represented. Exercisers therefore

resort to a form of sequential constraint solving. Instead of generating one massive

combined constraint, they solve a series of smaller low-complexity constraints[15].

This makes the process more manageable. However, without good heuristics and

backtracking, constraints can appear unsolvable. That is to say, if there exists a

solution for a constraint set, since they are solved sequentially and independently,

finding the solution is not guaranteed.
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2.3.1 Practical difficulties

In addition to the issues discussed so far, there are a number of practical

difficulties that engineers face when designing an exerciser. Here is a list of some

of the most prominent challenges:

1. Constrained randomization The foremost challenge of random test gen-

eration is striking the right balance between constraining generated tests

and randomizing them. While on one hand, we want an even distribution of

tests across the verification space, on the other hand, we want high coverage

on all the less likely to reach ”corners”. In other words, besides giving the

correct inputs, giving âĂĲgoodâĂİ inputs that are more likely to exercise

interesting scenarios is a top priority for a constrained random generator.

Constraint solving and randomization have to be done simultaneously to

achieve the desired distribution or weighting.

2. ISA complexity The sheer complexity of ISAs make them hard to verify; in

this case the x86 ISA. x86 is a dated architecture. Even though the x86 ISA

has evolved significantly several times, the hardware is required to maintain

backwards compatibility. Several memory-addressing models have to be in

place to allow older code to interoperate on the same processor without mod-

ification. Instruction codes, addressing modes, memory addressing etc are
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much more complicated than the ones for most RISC or MIPS CPUs. The

complexity of the ISA makes it difficult to randomly generate meaningful

tests.

3. Size of verification space Because the architecture is complex, the test

space to be verified is ginormous. Even for a sequence of 4 instructions,

there are thousands of possible input combinations. Some of the variables

for an instruction sequence are:

• Opcodes

• Addressing modes

• Privilege levels

• Paging modes

• Memory addressing and memory type

• Self modifying code (SMC) / Cross Modifying code (CMC)

• Faults and exceptions

• External interrupts

• Machine check errors

• Virtualization
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This makes generating long sequences of tests that are functionally useful

challenging. To appreciate the vastness of the verification space, consider the

following fact. The total number of particles in the universe that have ever

existed is estimated to be around 1080[39]. Twenty 64-bit general purpose

registers in an x86 processor can be initialized to roughly 10385 different

states. And this is just an insignificant fraction of a processor’s verification

space.

4. Memory management Similar to generating interesting test sequences,

managing data and memory is a formidable task. Memory management

includes defining data and code segments, descriptor tables, page tables,

stack and data structures such as Virtual Machine Control Blocks (VMCB).

While all this data has to be randomized, it should not lead to a failed

processor state on execution. The constraints on randomization are applied

not only by the architecture, but by the user and the test. There are more

input constraints on data when trying to target specific behavior. In addition

to solving all these constraints, tests have to be relevant and interesting.

For example, since the smallest supported page size on x86 is 4Kbyte, the

lower 12 bits of a linear address (LA[11 : 0]) server as the offset for accessing

data. So these bits are the same for a linear address and its corresponding
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x x 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

15             11                          7   3                                     0              
  

Index = FC   

x x 1 0 1 1 1 1 0 0 0 0 0 0 0 0 

15             11                          7   3                                     0              
  

Index = BC   

x x 0 1 1 1 1 1 0 0 0 0 0 0 0 0 

15             11                          7   3                                     0              
  

Index = 7C   

x x 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

15             11                          7   3                                     0              
  

Index = 3C   

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

15             11                          7   3                                     0              
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Figure 2.3: Index aliasing for a 2-bit overlap. Linear addresses that map to a
single physical address can have one of fours indices.

physical address. Consider an instruction cache with 256 64-byte entries.

Its index is given by LA[13 : 6]. For a 32-bit physical address space, PA[31 :

12] serve as the tag bits. Each physical address can map to 4 different

indices because of the aliasing of bits 13 and 12. For example, suppose the

physical address is 0xFF00, as shown in Fig. 2.3. Its linear address could

have an index of 0xFC, 0xBC, 0x7C or 0x3C. For all fetch requests from

the L1 instruction cache, the L2 cache back-probes the IC to ensure that
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there is no aliasing. That is to say, it has to check all the four possible

indices to ensure that the requested physical is not already present in the

IC. To verify the back-probing mechanism, the exerciser has to generate

multiple random linear addresses which map to the same physical address

and generate appropriately timed fetch requests.

Another example of generating interesting scenarios through intelligent mem-

ory allocation is having the code and data within the same cacheline. The

Load-Store Unit (LSU) ensures that it has exclusive access to a location

before modifying it. This is required to maintain data coherency. It does

this by sending an invalidating probe to other units within the core, and

other processor cores in the case of a multi-core processor. One likely bug is

the IC not invalidating a cacheline because it was in the process of fetching

it from the L2 cache. Because the data is not present in IC when the in-

validating probe from LSU arrives, it could escape the probe. The data can

arrive shortly after IC does a look-up and remain as a valid entry. Unless

the fetch request from IC and the probe are perfectly timed, this bug cannot

be exposed.

Creating and managing page tables also requires thought. An operating

system switches between several page tables every second. This is hard

to model in a test because of the demands on system memory required to
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generate such a test. In a test, the memory is divided into pages anywhere

from 4Kbytes to 1Gbyte in size. The address translation is maintained using

one or more page tables. Every single page table entry has its own set of

attributes (like Read/Write, User/Supervisor, Present, Dirty, Accessed etc).

Hierarchical page tables increase the size and complexity of tracking page

tables. The virtual address space that has to be tracked is also huge; a 52-bit

physical address space is addressed by 64 bits of virtual memory space. To

add to the complexity, some operating systems use sophisticated schemes

for memory management. For example, they let page tables loop back on

themselves instead of having different tables for each level of the hierarchy,

to save page table space.

5. Performance features Since memory operations are expensive, processors

device ingenious methods to avoid keeping the core idle between memory

accesses. For example, consider the stack engine. The purpose of the stack

engine is to reduce the number of stack operations dispatched and executed

and to eliminate serial stack pointer (RSP) register dependencies. Pushes,

pops, near-call and near-return instructions are optimized to avoid too many

updates to the stack pointer by keeping a copy of an offset and updating

this. When this offset is about to overflow, the processor inserts a âĂĲfixâĂİ

operation to adjust the actual stack pointer once and reset the offset. This
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offset is not architecturally visible to the program âĂŞ it only perceives the

stack pointer itself.

What makes the stack engine hard to verify is that it is a performance fea-

ture. For example, x86 does not provide an instruction to read the current

instruction pointer (RIP). Commonly, software gets around this issue by do-

ing a call and then reading the value of the calling instruction from the stack

pointer. In reality, transparent to software, when the stack engine recognizes

this, instead of doing real writes and reads from memory (stack push and

pop), the hardware just forwards register values from the current instruction

pointer (RIP) without doing a push or a pop. Bugs in performance features

are hard to catch. To verify the stack engine, the stack pointer has to be

used extensively, exercising all possible scenarios, however unusual they may

be. In addition to this, for simulation to catch a bug, it must be triggered

such that it manifests as a change in an architectural value.

6. Valid tests All generated tests have to be architecturally valid. They should

execute to completion when simulated and not run into infinite loops. Since

ISA simulations do not model the micro-architecture, the peripherals or the

data fabric, it is impossible to guarantee test validity before simulation. For

example, tests should be able to handle randomly injected machine check
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errors and external interrupts. Much like DUTs themselves, unless a test is

robust enough to handle all kinds of RTL behavior, it can end prematurely.

In addition to being valid, tests must simulate meaningful behavior. In

case of the stack engine, for example, its not sufficient to have increased

stack pointer related operations. Exercisers must verify the values read

from the stack. Discarding data read off the stack allows issues in the stack

implementation to escape. Instead, they must be validated by reusing them

to modify the processor configuration.

7. Exerciser verification Exercisers are not verified for accuracy; primarily

because there is no efficient way to do it. The legality of generated tests

is verified by the architectural simulator. The quality of tests, though, is

hard to assess. This is largely determined by the quality of constraints,

the constraint solver and biases used. Both over-constraining and under-

constraining reduce test quality. These issues can only be identified after

prolonged use of an exerciser. If a high quality verification plan is used,

exerciser issues show up as coverage holes. Otherwise, coverage loss due to

poor exerciser design or poor user directives go unnoticed.
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2.4 Exerciser I: Random Program Generator (RPG)

2.4.1 Overview

RPG is a simple, light-weight, legacy test generator. It takes a minimalistic

approach to test generation by having only the most essential test constraints.

These constraints merely ensure the legality of tests. RPG does not follow a strict

model based approach, of keeping the test generator separate from the processor

model. Constraint solving is done on a ad-hoc basis, merely to ensure that each

instruction inserted into the test sequence is architecturally valid. It functions

largely like a randomizer, than a constraint solver.

This approach provides RPG with a lot of flexibility. For example, for a

memory access that causes a page fault, it will not try to fetch the page from

disk to memory. It does not use a fixed exception handler code either. Instead,

it resumes execution from a random location. This not just allows it to keep the

exerciser design simple, but also makes its behavior more unpredictable. RPG

tests are of fixed length. Their behavior can be controlled through:

a) Feature disabling/enabling

b) Input biases

c) Custom procedures (macros)
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Constraints are applied by enabling or disabling features. For example, we can

choose to disable instruction prefixes. Custom procedures, called macros, allow

inserting specific instruction sequences. To test more complex design behavior

that require tight sequencing of instruction, it allows the use of custom procedures

called macros.

2.4.2 Test generation

RPG first breaks up memory into code and data segments. The number and

size of code and data segments can be specified by the user as an integer or a range

of numbers. Following this, page tables are created based on user specified count,

paging modes and paging attributes. GlobalPagePct,NotPresentPagePct,

SupervisorPagePct,CodeCross4kBndPct and DataCross4kBndPct are some ex-

amples of paging attributes.

The code space is populated with randomly generated instructions selected

based on user defined weights. The description of every instruction and macro

(instruction block) available for use by RPG is described in the form of a 3-level

hierarchical structure, as shown in Fig. 2.3.

1. Table: Each entry is a general type of instruction. For example, all arith-

metic and logic instructions are organized into one table.
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2. Group: Each entry is (usually) a different mnemonic. For example, all

versions of the ADD instruction are in the same group.

3. Instruction: Each entry is an instruction or macro. For example, the

register-memory version of ADD

Table 2.3: Illustration of the 3-level hierarchical table describing the instruction-
set, which is used by RPG to generate random instructions

#Table ArithLogic 
//=================================================================================== 
#Group Aaa 
"AAA",    OP_NA,  OP_NA,  OP_NA,  NA,    0x37,    C_GEN | INV64,    Create<cInstGen> 
#Group Aad 
"AAD",    IMM8,   OP_NA,  OP_NA,  NA,    0xd5,     C_GEN | INV64,    Create<cInstGen> 
#Group Aam 
"AAM",    IMM8,   OP_NA,  OP_NA,  NA,    0xd4,     C_GEN | INV64,    Create<cInstGen> 
#Group Aas 
"AAS",    OP_NA,  OP_NA,  OP_NA,  NA,    0x3f,    C_GEN | INV64,    Create<cInstGen> 
#Group Add 
"ADD",    R_AL,   IMMS8,  OP_NA,   NA,     0x04,   C_GEN,     Create<cInstGen> 
"ADD",    R_XAX,  IMMX,   OP_NA,  NA,     0x05,     C_GEN,     Create<cInstGen> 
"ADD",    REG8,   IMM8,   OP_NA,   NA,     0x80,     C_GEN,     Create<cInstGen> 
.. 
.. 
.. 
#Table LoadStore 
//=================================================================================== 
#Group Mov 
"MOV",    R_AL,     DISP8,  OP_NA,   NA,   0xa0,   C_GEN,    Create<cInstGen> 
"MOV",    R_XAX,  DISPX,  OP_NA,   NA,   0xa1,   C_GEN,    Create<cInstGen> 
"MOV",    DISP8,   R_AL,    OP_NA,   NA,   0xa2,   C_GEN,    Create<cInstGen> 
.. 
.. 

At the beginning of code generation, the weights corresponding to each of these are

read from the user input. In cases where they are not specified, random weights

are assigned. Each instruction is defined using several attributes in a tabular

32



Chapter 2. Random test program generation

format. All the information required to legally use an instruction is contained in

this definition. The following is a description of some of the fields used to define

an instruction (this list is not exhaustive):

1. Mnemonic String Mnemonic description of the instruction.

2. Operand 0 This specifies what type of first operand the instruction takes

(or OP NA if none).

3. Operand 1 This specifies what type of second operand the instruction takes

(or OP NA if none).

4. Operand 2 This specifies what type of third operand the instruction takes

(or OP NA if none).

5. Prefix This is only needed for instructions that depend on a certain prefix

for their functionality.

6. Opcode Byte Opcode of the instruction

7. Info Specifies various instruction information. For example:

• Instruction Class: C GEN (general purpose),C FPU (floating point),

C SVM (secure virtual machine) etc

• Instruction Attributes: XFER (branch), SP (can modify stack pointer),

SW * (can switch modes) etc

33



Chapter 2. Random test program generation

8. Pointer to instruction class generation function: The default class for in-

structions that do not require setup code is Create<cInstGen>. Each differ-

ent type of instruction needing special setup code is a different class derived

from the parent class cInstGen. This field includes a pointer to a function

that returns the correct type of object required to generate an instruction

or sequence.

RPG does not track conditional branches. It uses valid addresses as operands

when inserting branch instructions. For indirect branches, the register used as

operand is pre-loaded with a valid memory pointer. RPG does not force the

condition flags prior to conditional branch to regulate code flow. In fact, RPG

makes no attempt to guide the flow of control in a test.

Instruction generation is concluded once 5000 instructions are generated. Any

pending sequences are completed before the test is concluded. On rare occur-

rences, tests run into infinite loops. They are identified by running an architecture

simulation. Simulations that do not complete before a preset time are discarded.

RPG has a dedicated working mode for producing higher address collisions in

TLB and cache. In this mode, linear addresses generation is restricted to a few

indices to cause higher than normal address collisions in TLB and cache.
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2.4.3 Macros

Similar to the table containing instruction groups, RPG has a table for macros.

Macros are a way to generate specific instruction sequences. Macros describe the

sequences using operators provided by RPG. For example, consider the following

macro created to cause TLB reloads. This macro was targeted at a specific bug

that caused the TLB to stall during a reload (inserting new entry) under some

(unknown) configurations. Since sufficient debug information was not available,

verification engineers tried to trigger the bug using tests that caused increased

TLB activity.

%macro TlbRldStallSqnce
%info CM32 CM16 PM32 PM16 RM32 RM16 SMM

%assign @addr1 @RandDataAddr
%assign @addr2 @RandDataAddr
%assign @reg1 @RandGpReg
%assign @instr @RandMemRegInstr
@instr [@addr1], @reg1
%rep (0,2)

*
%endrep
prefetch byte [@addr2]
%rep (0,2)

*
%endrep
clflush byte [@addr2]

%endmacro
.

The first two lines indicate the name of the macro and its supported operated

modes. The next four lines randomly pick addresses (addr1 and addr2), a register

(reg1) and a register-based memory instruction (instr). It then uses them to
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create a sequence that is likely to trigger the bug. First, the randomly selected

instruction is used to generate a memory write using the chosen register as the

source and one of the random addresses as a memory pointer. This is followed by 2

random instructions (that are unconstrained). This is followed by a PREFETCH,

two more random instructions and a CFLUSH. PREFETCH loads the entire 64-

byte aligned memory sequence containing the specified memory address into the

L1 data cache. CFLUSH flushes the cache line specified by the linear-address.

The instruction checks all levels of the cache hierarchy and invalidates the cache

line in every cache in which it is found. Because this sequence causes back-to-back

writes and reads from memory for random addresses, it will generates high TLB

traffic.

Macros are processed sequentially. Once a macro is completed, the next in-

struction or macro is processed. RPG does not support interleaving of multiple

macros.

2.5 Exerciser II: AMD Exerciser(Amex)

2.5.1 Overview

AMD Exerciser(Amex) is a newer exerciser compared to RPG. Amex is more

structured and constrained and that gives it better control over most test behavior.

36



Chapter 2. Random test program generation

What sets Amex really apart from other exercisers is that it does not gener-

ate tests using pre-determined random data. Model-based exercisers like Genesys

Pro use a single value for each processor resource[1]. They use a boolean value

to track whether a given value is actually known. If the value is known, succes-

sive instruction sequences are tailored to that value. Amex was developed with a

strong emphasis on generating tests with multiple arbitrary paths to test aggres-

sive branch prediction and cache coherency of multi-core processor systems[15].

Amex tests can therefore be rerun from the beginning and a different path through

the program can be exercised within the same simulation run. This introduces

indeterminism and reduces resource reloading, thereby improving test quality[3].

This also allows random resets from the test bench to be handled properly. Amex

was developed as an improvement over RPG.

2.5.2 Amex test structure

Fig. 2.4 is structure of a typical Amex test. The control flow through a

program at the highest level is fixed before test generation commences. Amex

tests have multiple paths through a test and the path taken depends on the

initializing data. Constructing a code flow graph ensures code convergence for all

tests.
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Tests are generated based on a control flow graph made up of basic blocks

containing randomly generated code. Blocks are regions of physical memory that

are reserved for a particular purpose and they can contain one or more pages

of instruction or data. The random code is encapsulated within a framework

containing initialization, termination and support code to handle interrupts. Since

tests are self checking, the termination code compares the results of the execution

on successful completion of the test case and reports a pass or fail. The control

flow graph is a directed acyclic graph with a single node having no parents. In

Fig. 2.4, the parent (root) node is n1.

n4 

n3 

n2 

n7 n5 

n6 

Test framework 

n1 

Random code 

Start 

  End 

Figure 2.4: Structure of an Amex generated test. Each node, n1 through n7, is a
basic block.
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Each basic block has an exit point that connects it to another basic block

or test framework. Conditional jumps create multiple exit points in a block.

There are 5 possible paths through this graph; for example, one path is n1 →

n3 → n6. Because of the possibility of having multiple execution paths in a test

case, resource values depend on the path taken. Amex therefore represents values

as the union of the values of all the processor states. In cases where there is

indeterminism, such as a conditional branch, it uses this union to predict what is

possible over subsequent instructions.

Fig. 2.5 shows a snippet of code with a re-converging control flow. After

diverging from Block A, the control flow reconverges at label2 in Block C. The

diverging behavior is caused by the conditional jump at line 5. If the jump is taken,

then Block B overwrites the address stored in ecx. Register ecx can therefore

take two possible values: 0x3342b0a2 and 0x219. While the first value is a known

pointer value, the second one is just a random data value. If the conditional branch

at line 5 is taken, the load at line 11 could page fault. The load at line 12, however,

will not page fault as the value of edx was not modified by Block B. Amex gets

around this ambiguity by representing the value of processor states using classes

that can represent a set of values. These classes support basic arithmetic and set

operations.
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1:   mov eax, 0xffff3421    ; pointer 
2:   mov ebx, 0x200     ; not a pointer 
3:   mov ecx, 0x3342b0a2    ; pointer 
4:   mov edx, 0xff00ff00    ; pointer 
5:   jz label1 
6:   jmp label2 

7:  label1: add eax, ebx  
8:    mov ecx, 0x219 
9:    jmp label2 

10:  label2:    sub ebx, 0x100 
11:        mov edx, [ecx]         ; may page fault 
12:         mov eax, [edx]          ; will not page fault 

Block A 

Block B 

Block C 

Figure 2.5: Snippet of Amex code

2.5.3 Test generation algorithm

The test generation mechanism of Amex can be described at a high level using

the following algorithm:

1. Memory is allocated to code and data blocks and page tables are set up to

map effective addresses to linear addresses.

2. Basic blocks are grouped into directed acyclic graphs with a root node having

no parents. Separate graphs are created for each processor thread.
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3. One graph is selected for processing.

4. For the graph being processed, a block is selected that has no unprocessed

parents (or no parents in case of the root block).

5. The starting state for the block is calculated. The initial state of the root

block depends on the processor state configured by the testbench. This

randomization is known to Amex. For all other blocks, the state is based

on the union of the states of the block’s parents’ final state. The size of the

union is limited to a compile-time limit. When this limit is breached, the

state is marked GENERAL.

6. If there are blocks left unprocessed, go to step 4; else, go to step 7.

7. Select the next graph. If all graphs have been processed, test case is com-

plete.

2.5.4 Test generation

Blocks are regions reserved in memory for specific purposes. The four main

types of block are shared, non shared, guest and guest end. These block types

contain randomly generated instructions. There are other types of blocks, such

For performance reasons, a state is marked as GENERAL if the number of possible values
is higher than a preset limit. In effect, it means that the possible outcomes for the state are so
high, that it can be treated as unknown. This conversion happens rarely in reality.
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as blocks to hold data and blocks that are used to hold static code that makes

up the test case framework. These other blocks are not dependent on the flow of

code and are therefore not included in the acyclic graph used to generate tests.

All blocks of the same type are the same size. The size and count of each type of

block is controlled by user defined parameters. The static code fragments used in

creating the test framework(refer to Fig. 2.4) are generated based on user defined

constraints.

Blocks contain links that connect them to other blocks in the graph. The code

blocks are filled with random instructions based on the constraint and biases sup-

plied by the user. These inputs affect both, the choice of generators that produce

random instructions and the type and format of instruction picked up a selected

generator. The choice of instructions is biased by a weight tree constructed from

user defined biases. The implementation is very similar to that of RPG (described

in Sec. 2.4). Higher weights increase the likelihood of an instruction being picked.

Undefined weights are assigned default values. After a code block is filled, the

next block is chosen by selecting randomly from a list of blocks in which all the

parents have been processed. Amex does not track the actual values of data read

from or written to memory. Information about data values read into registers is

picked from the block type it comes from. There are many different block types

in Amex that can supply data for instructions. Some block types provide control
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data specific to x86. These value types are tracked symbolically and can be moved

from register to register. They can be written to a control register or machine-

specific register(MSR) as long as no arithmetic operations have been performed

and the symbolic type is compatible with the target register.

Since blocks are chosen for processing only if all of its parents are processed,

the blocks get processed in a ’breadth first’ manner. The initial state of each block

is derived from the union of its parents’ final state. After the first pass, Amex

does a SaveState at the end of an architecture simulation to dump processor

state to memory. In then includes a comparison with the saved state at the end

of the test to make the test self-checking.

2.6 Differences between Amex and RPG

1. The most important difference is the flow of control. While RPG does not

control the program flow in any way, Amex has a structured approach to the

control of program flow. This allows us to customize aspects such as program

size, number of guests and the distribution and placement of branches.

2. Amex offers more randomized setup code. Instructions have requirements

such as operating modes, operand values and priority levels, to be legally

executed. In RPG, the setup code is inserted just before each instruction
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and it does not intersperse setup code with random instructions. The data

used by the setup code is randomized, but other than that, there is not much

of a variation. In Amex, this is implemented through generators. There is

no fixed constraint between the setup and the trigger instruction because

Amex can lock resources. So the trigger can be spatially separated from the

setup code. This gives it flexibility in placing the trigger event.

3. RPG has a data-restrict mode where the choice of addresses is constrained.

For example, it can generate more address collisions in the TLB and causes

higher cache evictions. In this mode, it picks up linear addresses that map

to s restricted set of TLB or cache indices. RPG has therefore been tradi-

tionally more successful at using all the ways of set-associatively mapped

TLBs and caches.

4. Amex is better suited for generating focused tests since it offers more test

constraints. Amex includes thousands of pre-built constraints that the user

merely has to enable. For example, there are multiple weights controlling

the choice of a memory pointer:

• Address size

• Block to pick an address from (eg: shared, guest, stack)

• Address representation (base only/base + displacement/RIP-relative)
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• Minimum distance to a previously chosen address

• Reuse a previously used address

RPG does not offer this kind of a flexibility. These behaviors have to be

induced implicitly by defining custom macros such as the TlbRldStallSqnce

sequence discussed in Sec. 2.4. Since macros operate at the instruction and

operand level, the constraints are less precise.

The flexibility of Amex, however, comes at a price. A lot of these constraints

are also overlapping. For example, we have seen how code is generated us-

ing blocks in Amex. Generators are picked at random to insert instruction

sequences into code blocks. Amex requires generator to complete code in-

sertion within a block. If it does not complete generating a sequence within

that block, the generator fails. So even if a heavily weighted generator is

picked repeatedly, the required sequence will not be inserted if there is an

opposing constraint or resource paucity. The price of having higher control

is the difficulty in understanding how the different constraints interact and

resolving any conflicts.

5. RPG creates page tables by itself whereas Amex delegates this to an external

program. This gives RPG full control over the paging structure. For exam-

ple, it can assign as many linear addresses to a single physical addresses as
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desired. So for operations such as a string copy, that require a large number

of memory pointers, RPG can easily generate tests without a large memory

overhead. Amex attempts to generate the setup code by doing a large num-

ber of moves to registers. Sometimes, this fails due to resources (pointers or

free registers) not being available. In other instances, the setup code (string

of move operations) disturbs the existing pipeline state. Another example is

Amex’s limitation in generating page-faults. Amex can request page faults

only at leaf-level entries of the hierarchical page table. Since PML4 (the

highest possible level) is never at the leaf-level, Amex cannot trigger page

faults at this level.

2.7 Summary

This chapter gives an overview of the constrained test program generation

paradigm. It describes the challenges of constrained pseudo-random test gener-

ation. It also discusses the practical difficulties of designing an exerciser for x86

microprocessor verification.

The main focus of this chapter are two of AMD’s exercisers: RPG and Amex.

RPG takes a direct and simplistic approach to the test generation problem by

keeping test constraints to a minimum. RPG generates fixed-length tests without
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any control over the program flow or structure. It merely attempts to generate

valid tests by picking instructions randomly. This keeps its tests truly random

and unpredictable. Amex, being modern, takes a more structured approach to

test generation. The control flow at the highest level is pre-calculated for each

test. Tests are constructed with multiple arbitrary paths. To account for this

ambiguity, values of resources such as registers are stored as a union of possible

values. Amex provides pre-defined constraints in the form of generators to induce

specific behaviors. Amex also contains abundant constraints and biases to modify

test behavior, giving it a contained, yet robust test generation capability.
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Evaluating effectiveness of
exercisers

The use of legacy test generator can be justified if we can demonstrate that

its scope of test generation is not a subset of a newer test generator. There are

no existing flows to compare exercisers and evaluate their relative benefits and

drawbacks. In this chapter, we propose a flow to compare Amex and RPG based

on their functional coverage of SVM nested-paging. We identify tests that are

unique to RPG.

3.1 Exerciser performance metrics

As is the case with design coverage, there is no single metric to fully qual-

ify exerciser performance[31]. An exerciser can be assessed on several different

parameters. In this section, we will focus our attention on comparing the two
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exerciser that have been previously discussed, RPG and Amex. The driving fac-

tor behind this comparative study is the need to reduce test redundancy arising

from the use of multiple exercisers. To begin with, let us take a look at the most

important exerciser qualities.

1. Completeness of verification: Bug discovery rate is among the most

important sign-off criteria for design verification. As seen in Fig 1.3, it

provides a general sense of verification completeness. Bug discovery rate

begins to drop after extensive verification. This makes bug data a great

resource for understanding exerciser differences. But the descriptive nature

of bug reports is a limiting factor. It lacks a well defined structure. Since the

design and verification environment change continuously, recreating bugs is

tedious. Besides, bug reports in themselves are subjective and the contents

vary depending on the stage of the design cycle at which it is filed at and

the person filing it.

On the other hand, coverage data is a more rigorous metric to define ver-

ification effectiveness. It gives a sense of how much of the design space

has been covered. Coverage information is collected by creating and imple-

menting test plans, generating stimulus, running simulations and measuring

response. Unlike bug data, we have the ability to generate as much data
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as necessary. Coverage information can be functional or code coverage (in-

cludes micro-code coverage and toggle coverage).

2. Test distribution: In addition to the total coverage provided, the rate at

which a design is covered is indicative of an exerciser’s efficiency. Greater

diversity of test behavior accelerates design space exploration and reduces

wastage of simulation cycles. Coverage goals are met faster with better test

randomization.

3. Usability: An exerciser’s usability is a measure of how well it can be con-

strained to achieve desired coverage. Ideally, an exerciser has to be com-

pletely controllable to target any design behavior, and be completely random

over all unconstrained parameters. But in the interest of generating valid

tests, some user imposed constraints may be overridden during test gener-

ation. When constraints do not produce desired results, sufficient exerciser

debug information should be available to explain the deviation from con-

strained behavior. This reduces the turn-around time required to eliminate

dependencies and contentions between constraints.
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3.1.1 Exposing differences in exerciser performances

To expose the differences between any two exercisers, we have to choose the

right design feature to observe differences. For example, comparing the coverage of

fundamental design properties such as memory writes, integer ALU operations or

architectural properties cannot reveal any differences. By making a comparison

based on using all general-purpose registers for multiplication, we cannot draw

any useful conclusion. All exercisers are guaranteed to deliver 100% functional

coverage.

We can choose features with a reasonable level of complexity by analyzing

data from past regressions. The domain knowledge of design and verification

engineers is helpful in this regard. For our analysis, we will be testing the nested

paging functionality of Secure Virtual Machines (SVM) on an x86 processor. This

specific feature has been chosen for comparison because load-store unit (LSU)

verification is challenging. Since SVM adds an additional layer of complexity to

LSU verification, testing all nested paging functionalities requires considerable

manual effort. Besides, functional coverage data from past regressions showed a

significant difference in the coverage from the two exercisers.

We use the existing verification plan as a reference for comparing exerciser

capabilities. We will not attempt to assess or improve the quality of the test plan.

Our objective is to ensure that all the functionality to be verified is done optimally.
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The focus of this work is on reducing the coverage closure time by providing test

engineers with tools that help identify novel tests.

3.2 Secure Virtual Machine (SVM)

The Secure Virtual Machine (SVM) feature is also known as virtualization

technology. This is because SVM provides hardware which allows a single proces-

sor to run multiple operating systems in a secure and efficient manner. It consists

of a Virtual Machine Monitor (VMM, also called the hypervisor), which is soft-

ware that controls the execution of multiple guest operating systems (OSs) on a

single processor core[4]. It gives each guest OS a false appearance of full control

over a complete computer system (memory, CPU, and peripheral devices). The

use of the term ”host” hence refers to the execution context of the hypervisor.

A context switch refers to the operation of switching between the host and guest

operating systems.

3.2.1 Running a virtual machine

On a SVM enabled core, a virtual machine (guest) can be run using the VM-

RUN instruction. VMRUN takes the physical address of a 4KB-aligned page as a

single argument. This is a pointer to the virtual machine control block (VMCB),
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which describes a virtual machine (guest) to be executed[4]. The VMRUN in-

struction saves some host processor state information in the host state-save area

in main memory; it then loads corresponding guest state from the VMCB state-

save area. As the name suggests, the VMCB is a block of memory that describes

the virtual machine to be executed. Specifically, a VMCB contains:

• Guest processor state (such as control registers)

• Various control bits that specify the execution environment of the guest or

that indicate special actions to be taken before running guest code

• A list of instructions or events in the guest (e.g., write to CR3) to intercept

The TLB CONTROL field in the VMCB, for example, tells the host if the TLB

should be flushed when the virtual machine is started. The encoding of this field

is as follows:

• 00h - Do nothing

• 01h - Flush entire TLB (all entries, all ASIDs)

• 03h - Flush this guest’s TLB entries

• 07h - Flush this guest’s non-global entries

The CR3 control register points to the base address of the highest-level page-translation
table. A change in the CR3 value induces a TLB flush, as the translations are no longer valid.
Only those entries marked as global are retained across context switches.
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3.2.2 Page translation

The x86 page-translation mechanism enables system software to create sep-

arate address spaces for each process or application. These address spaces are

known as virtual address spaces. System software uses the paging mechanism

to selectively map individual pages of physical memory into the virtual-address

space using a set of hierarchical address-translation tables called page tables. The

paging mechanism and page tables are used to provide each process with its own

private region of physical memory for storing its code and data.

Processes can be protected from each other by isolating them within the

virtual-address space. A process cannot access physical memory that is not

mapped into its virtual-address space by system software. System software can

also use the paging mechanism to selectively map physical-memory pages into

multiple virtual-address spaces. Mapping physical pages in this manner allows

them to be shared by multiple processes and applications. The physical pages can

be configured by the page tables to allow read-only access. This prevents applica-

tions from altering the pages and ensures their integrity for use by all applications.

The system-software portion of the address space necessarily includes system-

only data areas that must be protected from accesses by applications. System
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Figure 5-1. Virtual to Physical Address Translation—Long Mode
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Figure 3.1: 64-bit virtual address translation mechanism using page tables in x86
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software uses the page tables to protect this memory by designating the pages as

supervisor pages. Such pages are only accessible by system software.

x86 supports 4 KB, 2 MB, 4 MB and 1 GB pages[4]. As show in Fig. 3.1,

page translation can use upto four hierarchical levels for virtual address transla-

tion. The illustration shows how Long Mode page translation from 64-bit virtual

addresses to 52-bit physical addresses is performed. Address translation is per-

formed by dividing the virtual address into six fields. Four of these fields are used

as offsets or indices into the level page tables. The CR3 control register always

points to the highest level page table (PML4 in the case of Long Mode). The en-

tries read from the page table (using the virtual address offset) point to the base

of the next lower level page table. For example, the Page Map Level-4 (PML4)

entry points to the base of the page-directory pointer (PDP) table. In addition to

the physical address of the next page table, each entry also contains the following

page table control and management fields:

1. Present (P) bit

2. Read/Write (R/W) bit

3. User/Supervisor (U/S) bit

4. Page-Level Writethrough (PWT) bit

5. Page-Level Cache Disable (PCD) bit
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6. Accessed (A) bit

7. Dirty (D) bit

8. Page Size (PS) bit

9. Global Page (G) bit

10. Page-Attribute Table (PAT) bit

11. No Execute (NX) bit

The page size (PS) bit is present in page-directory entries (PDE) and Long

Mode page-directory pointer entries (PDPE). When the PS bit is cleared to 0 in

all levels, the lowest level of the page-translation hierarchy is the page-table entry

(PTE), and the physical-page size is 4 Kbytes. When the PS bit is set in the

PDPE or PDE, that entry is the lowest level (leaf level) of the page-translation

hierarchy. If the PS bit is set in the PDE, then the page size is 2M and if it is set

in the PDPE, the page size is 1G. The remaining portion of the virtual address

then becomes the physical page offset. The PS bit is absent in PML4 entries.

3.2.3 Nested Paging

Fig. 3.2 shows how a page in the linear address space is mapped to a page in

the physical address space in traditional (single-level) address translation. Control
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Figure 3.2: Traditional address translation from linear address to physical address
by paging

register CR3 contains the physical address of the base of the page tables (PT,

represented by the shaded box in the figure).

The SVM nested paging feature provides for two levels of address translation

as shown in Fig. 3.3. All physical addresses generated in the guest OS are

guest-only physical addresses. They have to be converted by the host OS to host

physical addresses before memory read/write operations. The main differences

that distinguish it from conventional linear address translation are summarized

below.

• Both guest and host levels have their own copy of CR3, referred to as gCR3

and nCR3, respectively.

58



Chapter 3. Evaluating effectiveness of exercisers

• Guest page tables (gPT) map guest linear addresses to guest physical ad-

dresses. The guest page tables are in guest physical memory, and are pointed

to by gCR3.

• Nested page tables (nPT) map guest physical addresses to system physical

addresses. The nested page tables are in system physical memory, and are

pointed to by nCR3.

• The most-recently used translations from guest linear to system physical

address are cached in the TLB and used on subsequent guest accesses.

Figure 3.3: Linear address translation by nested paging

All virtual addresses of an OS (guest or host) share a common address space

ID(ASID) which helps distinguish them from the address space of other guests
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and the host. ASID 0 is reserved for the host OS. The guests take values between

1 and 7. When nested paging is enabled, all (guest) references to the state of

the paging registers by x86 code (MOV to/from CRn, etc.) read and write the

guest copy of the registers; the VMM’s versions of the registers are untouched and

continue to control the second level translations from guest physical to system

physical addresses.

Compare 
coverage 

Locate coverage ∆ 

Amex regression + 

Repeat till ∆fcov=0 
Run longer 
regression  

Baseline 

RPG regression 

Figure 3.4: Flow used to improve the verification efficiency of Amex using RPG
as a baseline.

3.3 Identifying limitations of Amex

Fig. 3.4 describes at a high-level the flow used to compare the two in-house

exercisers, Amex and RPG. As discussed in Chapter 2, RPG is an older exerciser.

To identify if it provides any unique coverage to SVM nested paging verification,
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we use it is as a baseline. The first step is to determine all functionalities that RPG

is able to verify exclusively. In other words, we find coverpoints that are hit solely

by RPG. A coverpoint or cover variable is a design property or micro-architectural

event defined in the verification testplan as a necessary micro-architectural event

to be tested. In a simulation, the testbench records a coverpoint hit whenever the

property is satisfied. Two or more coverpoints can be combined to form a cross-

cover variable. All coverpoints and cross-coverpoints contain bins, which are all

the valid values for the coverpoint. A covergroup is a set of related coverpoints.

Constrained random tests are generated with analogous inputs using both ex-

ercisers and the functional coverage is measured by simulating these tests. In

addition to individual coverage values, we calculate the cumulative coverage from

running Amex over and above the baseline, RPG, for each regression, as shown

in Fig. 3.4. We compare Amex with this cumulative value instead of comparing

it with RPG directly. Such a comparison reveals if there is any coverage unique

to RPG. The design is simulated until the coverage number of RPG stabilizes.

At this point RPG has provided maximum possible coverage for the chosen de-

sign sub-space. Any additional coverage is a matter of chance and cannot be

guaranteed. All covergroups which RPG uniquely covers are inspected. The

coverpoint(s) responsible for the difference is added to a list H. These are the

coverage deficiencies of Amex as compared to RPG for the chosen feature Ti. If
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there are no such coverpoints (H is null), we can conclude that tests generated

by RPG is a subset of Amex for verifying the properties included in the current

verification plan.
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Figure 3.5: Comparison of the functional coverage of SVM nested paging coverage
variables using 100 (top) and 500 (bottom) randomly generated tests

3.3.1 Experimental results

Fig. 3.5 compares the functional coverage of Amex and RPG over 8 groups

containing only cover variables (no crosses). Each covergroup is a collection of
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related coverpoints. For example, one of the covergroups covers page faults oc-

curring during a nested page walk. This covergroup is made up of coverpoints

that consider all possible page faulting scenarios, such faults in the guest, faults

in the host, different kinds of page-faults (page not present, write permission,

user/supervisor, etc), page faults on the i-side, etc.

• In both the graphs, Amex performs at least as good as RPG in covergroups

CG1-CG7. This is indicated by the red (square) line being the same as or

below the blue (diamond) line.

• The only exception is CG8. CG8 has higher RPG coverage for both 100

tests and 500 tests.

• The cumulative coverage of Amex and RPG is indicated by the green line

(triangle). The difference between this and Amex is shown in purple (x).

There is a delta of 15% for CG8 and very marginal value for CG5 in the first

regression. In the second regression, however, the delta for CG5 disappears.

But the delta for CG8 increases.

The results of these two regressions is shown for the cross-coverage variables in

covergroups CG1 through CG5 in Fig. 3.6. The other three covergroups do not

contain any crosses. A cross is a combination of two or more coverpoints. For

example, by combining a page-fault coverpoint containing 5 bins with guest/host
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pages, we get 10 bins that give all possible combinations of page-faults over both

guest and host pages.

• There is a delta between Amex and the cumulative coverage values in all

but CG3.

• Between the first and second regression, the delta increases for CG1 and

CG4, but decreases for CG2 and CG5.
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Figure 3.6: Comparison of the functional coverage of SVM nested paging cross-
coverage variables using 100 (top) and 500 (bottom) randomly generated tests
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To observe the steady state condition, we run longer regressions until there

is no new coverage. The last useful test in a regression indicates how frequently

previously uncovered bins are hit. Table. 3.1 shows the last useful test from four

Amex (top) and four RPG (bottom) regressions across the eight SVM nested-

paging covergroups. The tests were ordered based on their time of completion.

The four rows in each table corresponds to regressions of 100, 500, 2000 and 5000

tests. The value 97 corresponding to CG1 and Amex 100, for example, indicates

that the last 3 (of 100) tests did not hit any new bins. The 97th test was the last

useful test with respect to CG1. For each regression, the last useful test overall is

indicated by a shaded red cell. For example, the 4726th test was the last useful

test in the 5000 test RPG regression. In other words, the last 274 tests did not

contribute to the verification of any of the features covered by the eight SVM

covergroups. The table shows us how the last useful test occurs farther away from

the end of a regression as its length increases. For example, in case of Amex, it

occurs 700 from the end (4300 of 5000) as opposed to 96 (1904 of 2000) as we

increase the regression length from 2000 to 5000. Similarly, it occurs 274 tests

prior to the regression end (4726 of 5000) as opposed to 12 tests (1988 of 2000)

in a 5000 tests regression as compared to a 2000 test regression. The fact that

close to 300 tests did not yield any new coverage gives us the confidence that 5000
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Table 3.1: Last useful test from Amex (above) and RPG (below) SVM regressions

CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8 

RPG 100 81 96 99 82 99 18 8 61 

RPG 500 215 468 469 293 486 12 7 57 

RPG 2000 1988 1721 180 41 397 7 24 76 

RPG 5000 4445 4726 1854 97 692 9 6 176 

CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8 

Amex 100 97 97 79 58 82 31 12 76 

Amex 500 261 495 271 325 478 63 46 211 

Amex 2000 783 1904 776 1695 1797 128 66 1649 

Amex 5000 1148 4300 1611 1635 3333 64 62 4228 

tests is a reasonably long regression to assume steady state behavior of both the

exercisers.

An interesting point to note is that there can be incidental coverage of non-

targeted features, but they are disregarded. For example, SVM behavior can

be triggered by a Streaming SIMD Extensions (SSE) regression (unless SVM is

explicitly prohibited). Such unintentional coverage is inconsistent and a matter

of chance. From a design verification standpoint any kind of coverage is useful

coverage. The intent of the regression triggering a behavior is immaterial as long
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as the test is valid for the processor configuration. But from an exerciser analysis

standpoint, we will ignore all such coverage as it is fortuitous and unreliable.

3.3.2 Analysis of results

Our experiment on SVM nested-paging shows that for three covergroups, the

RPG-specific coverage is more than Amex. In all other cases, RPG-specific cov-

erage is equal to less than that of Amex. The following three covergroups have to

be analyzed for low Amex coverage:

1. CG8 variable coverage

2. CG1 cross coverage

3. CG4 cross coverage

CG8 variable coverage

RPG specific coverage of CG8 drops to 5% at steady state, as seen in Fig.

3.7. CG8 consists of twelve coverpoints pertaining to the instruction cache (IC)

and i-side translation look-aside buffer (TLB). Of the twelve coverpoints, two

coverpoints are covered 100% by RPG but only get 37% and 25% coverage from

Amex tests. Both coverpoints have eight bins each. All other coverpoints in this

covergroup are covered identically by both exercisers. Each bin corresponds to
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the different ASID values of the linear address translated using the I-side TLB.

Since there are eight possible ASID values, there are eight bins in each coverpoint.

Refer back to Sec. 3.2.3 for details regarding ASID values. The i-side TLB has 4

ways. These two coverpoints refer to the highest two ways - way2 and way3. The

lack of Amex coverage is caused by its inability to produce linear address collisions

for the same TLB index; leaving the higher ways to the i-side TLB unused.

An interesting observation in Fig. 3.7 is that CG3, which previously did not

show any delta, has a 5% delta. This delta is caused by a single bin: page faults at

the PML4 level. As discussed in Sec. 2.6, Amex delegates page table creation and

other memory allocation tasks to an external program. This limits its flexibility

in creating page tables. For example, it can only request for page faults in a leaf-

level entry of the hierarchical page table. Since PML4 is never the leaf-level entry

(PDP is the leaf-level entry for 1G pages), Amex cannot directly set up the page

tables to fault at the PML4 level. RPG is not limited by any such restriction.

CG1 cross coverage

The cross-variable coverage results of regressing 5000 tests of Amex and RPG

are shown in Fig. 3.8. We can see that the difference in CG1 cross-variable

coverage has increased drastically from 10% to 40%.
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Figure 3.7: Functional coverage of SVM nested paging coverage variables using
5000 randomly generated tests
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Figure 3.8: Functional coverage of SVM nested paging cross-coverage variables
using 5000 randomly generated tests
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The higher coverage of CG1 is because of a single cross coverage term cp_LS_

Curr_ASID_X_utlb_lkup_asid. This term is a cross of two variables:

1. LS curr asid: Current Address Space ID(ASID)

2. utlb lkup asid: ASID of the virtual address being looked up in the i-side

TLB

Typically, these two values are identical as the linear address being translated

to a physical address belongs to the address space of the OS that is running. In

instances where the processor switches between the host and one or more guest

OSs, other combinations are also possible. The ASID of the host is 0 and that

of a guest is a value between 1 and 7. The different combinations of these two

variables is summarized in Table 3.2

Table 3.2: Possible combinations of current ASID and lookup ASID

Current ASID Lookup ASID Context
Zero Zero Host translating own LA
Zero Non-zero Host translating guest LA

Non-zero Zero Nested-paging guest linear translation
Non-zero Non-zero Page fault

When nested paging is enabled, every guest physical address has to be trans-

lated to a real (host) physical address to perform a memory read/write (refer

to Sec. 3.2.3 for details). Amex hits were confined to the first three combina-
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tions listed in Table. 3.2. Since accessing another guest’s address space causes a

page-fault, Amex does not attempt such translations.

Consider the first RPG regression of 100 tests (Fig. 3.6). The 3% addi-

tional coverage provided by RPG, comes from 2 unique hits of the fourth type:

asid[1] asid[5]] and asid[2] asid[5]. These are valid bins and such accesses should

trigger page faults because of an access violation. Of the 100 tests generated by

RPG that cover 37% of the cross-coverage variables in CG1, only one test was

responsible for both the atypical hits. Contrary to expectations, the test only ran

guest5 and did not run guest1 or guest2. The test also did not page-fault due to

an access violation, suggesting a case of false coverage recording.

invlpga:    
 
bt.mcf    [VM_INTERCEPT_VECTOR1],   tmp6,   em,   nodest 
… 
.. 
movsr    tmp2,   curr_asid    ;save the original asid 
= 
movsr    curr_asid,   ecx 
= 
.. 
.. 
movsr    curr_asid,   tmp2    ;restore the original asid 
.. 
.. 

Figure 3.9: Snippet of microcode of the INVLPGA instruction.

71



Chapter 3. Evaluating effectiveness of exercisers

The cause of this false coverage was traced to temporary changes of regis-

ter LS_Curr_ASID to values other than the ASID value of the current OS. This

switch was caused by the execution of a specific instruction called INVLPGA.

The INVLPGA instruction invalidates TLB mappings for a given virtual page

and ASID [4]. As can be seen in Fig. 3.9, the microcode temporarily changes the

register value from the current ASID to the ASID of the TLB entries to be flushed.

Because the coverage points was not well qualified, it recorded this change of value

as legitimate coverage. This hypothesis was confirmed by generating a second test

with an INVLPGA instruction that used an ASID value that did not occur in the

test.

CG4 cross coverage

There is one cross-coverage term cross_np_pg_guest_host_sizes defined in

CG4. x86 supports 4 page sizes: 4K, 2M, 4M and 1G. This cross-coverage term

covers all 16 possible combinations of guest and host page sizes.

From Table. 3.3, you can see that the 5000 Amex generated tests cover only

13 of the 16 valid bins. The RTL simulation resulted in a total of 170,061 hits

on this coverpoint. 3 bins were not hit by any of the 5000 tests viz. sz1g sz4k,

sz4k sz1g and sz4m sz1g. One way to remedy this is to rerun Amex with the

following modifications to its constraints:
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Run1 Increase likelihood of 1G host, 4K guest and 4M guest pages. Reduce

likelihood of all other page sizes

Run2 Increase likelihood of 1G guest and 4k host pages. Reduce likelihood of all

other page sizes

Table 3.3: Coverage summary of 5000 Amex generated tests for the guest-host
page size cross-coverage variable

Guest PgSize Host PgSize Hits (% of total) Tests (% of total) 

sz1g sz1g  1471 (1%)   190 (4%)  

sz1g sz2m  80 (0%)  17 (0%)  

sz1g sz4m  25 (0%)   7 (0%)  

sz2m sz1g  23 (0%)   6 (0%) 

sz2m sz2m  6719 (4%)   694 (14%)  

sz2m sz4k  1141 (1%)   299 (6%)  

sz2m sz4m  827 (0%)   156 (3%)  

sz4k sz2m  2663 (2%)   370 (7%)   

sz4k sz4k  153150 (90%)   2653 (53%)  

sz4k sz4m  1649 (1%)   232 (5%)  

sz4m sz2m  35 (0%)   3 (0%)  

sz4m sz4k  241 (0%)   49 (1%)  

sz4m sz4m  2037 (1%)   156(3%)  

But in Amex, the guest and host page sizes cannot be controlled separately.

This makes getting directed coverage for the remaining three bins difficult. The

same parameter has to be used to control both guest and host pages sizes. The

smaller page sizes (4K and 4M) are more likely to be picked in favor of 1G pages
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since they are more easily accommodated within the existing blocks. So sz4k sz4k

is more likely to occur than sz1g sz4k.

3.3.3 Re-constraining exercisers

We now fine-tune the exerciser constraints to generate directed tests targeted

specifically at the coverage holes. In instances where the targeted events are

complex and the relation of the test to the test constraints is non-obvious. It

can take several iterations to get the right combination. One way to speed-up

this process is to extract knowledge from the simulation data to guide the test

constraining process[18, 11, 29, 14]. The extracted knowledge can be then be

used for test template refinement to improve design coverage. As seen in the

case of CG4, it may not be possible to generate good constraints because of

exerciser limitations. To remedy this, we have to resort to test filters external

to the exerciser. Generating a large amount of tests and filtering out novel tests

that trigger a target behavior, prior to RTL simulation, has the same effect as

constraining the exerciser.

3.3.4 Fairness of comparison

This experiment was repeated twice to confirm that the observed numbers and

trends were consistent. It is important to note that these comparisons were made
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by test numbers (and not simulation cycles or run-time) even though the tests

generated by the two exercisers are not necessarily of the same length. Because

we are doing a comparison based only on verification completeness in this paper,

test lengths have been ignored. Coverage numbers can be normalized by number

of simulation cycles if there are performance concerns, to give a better sense of

run-time utilization. Our experiments did not show any difference in the results

when comparisons were made based on simulation cycle count. Results have hence

not been provided.

3.4 Summary

In this chapter, we compare the verification effectiveness of Amex and RPG

using functional coverage as a metric. The comparison was based on their abil-

ity to verify the SVM nested-paging functionality at the core level, for a single

core simulation setup. We use RPG as a baseline to evaluate its contribution to

verifying this feature.

Regressions of 5000 tests each show that Amex provides higher coverage than

RPG across 8 covergroups containing 148 coverpoints, defined in the existing

verification plan. This confirms our understanding from Chapter 2 that Amex is

more efficient at test generation. There are three coverpoints hit only by RPG.
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One of this was falsely recorded coverage, caused by a poorly defined coverpoint.

The other two are caused by Amex’s design limitations. We propose to overcome

these limitations by using external test filters.
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ISA simulation based test
filtering

4.1 Introduction

Coverage closure requires multiple iterations of test generation. On each it-

eration, the test templates are modified to cover any remaining design space.

This is possible as long as there are parameters and/or constraints to control the

targeted behavior either directly or indirectly. For example, consider the cross-

coverage term of guest and host page sizes discussed in Sec. 3.3.2. There are 16

possible combinations of guest and host page sizes. From the results in Table 3.3,

we can see that this regression covers only 13 of the 16 valid bins. 3 bins were not

hit by any of the 5000 tests viz. sz1g sz4k, sz4k sz1g and sz4m sz1g.

Since Amex guest and host page sizes cannot be separately controlled, it makes

getting directed coverage for the remaining three bins difficult. The same param-
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eters have to be used to control the likelihood of both guest and host pages sizes.

The smaller page sizes (4K and 4M) are more likely to be picked in favor of 1G

pages since they are more easily accommodated. So sz4k sz4k is more likely to

occur than sz1g sz4k.

When an exerciser design doesn’t provide a method to accurately target a de-

sired behavior, the density of targeted tests remains low(<3% of generated tests).

Simulating thousands of tests to identify these novel tests is a waste of simulation

cycles. In practice, if one or more bins remain uncovered after a few attempts, ver-

ification engineer resort to writing directed tests manually. This however requires

significant effort and tests have to separately handwritten, directed at each bin.

Handwritten tests cannot be created in bulk and lack enough test randomization.

When desired constraints are not available, a test generator itself can be modi-

fied. We cannot, however, guarantee that the scope of the modified test generator

is a superset of the existing version. For a test generator, like Amex or RPG,

that lacks a constraint solver, the effect of added design constraints/modifications

cannot be evaluated. It is possible for a modification made to enhance its ability

to generate a particular type of test to negatively impact its ability to generate

some other kind of test. Instead of making modifications to an exerciser when

the desired constraints are not available, we build a test filter in the form a wrap-
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per. This guarantees that there is no unfavorable impact on test generatorŠs

performance.

4.1.1 Related work

Closing the gap between test generation and coverage closure has remained

the foremost challenge of simulation based verification. Test generation programs

work independent of design simulation, and they do not receive direct feedback on

the quality of generated tests. Converting coverage requirements into directives

for test generation requires considerable manual effort. Early attempts to solve

this issue involved describing the processor implementation control as a Finite

State Machine(FSM) to derive transition coverage [41, 28]. This approach does

not scale well with the complexity of modern microprocessors. Attempts have

since been made to automate constraint generation[11, 29, 23, 44]. [25] proposes

an approach for automatic extraction of word-level model constraints from the

behavioral verilog HDL description. The scenarios to be tested are also expressed

as constraints. The model and the scenario constraints are solved together using

an integer solver to arrive at the necessary functional test.

The extraction of testing knowledge from simulation data to guide the test

constraining process using machine learning algorithms such ILP[18], C4.5 decision

trees [32] and CN2-SD[14] has received a lot of attention lately. Fine, Freund,
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Jaeger et.al.[20] used machine learning to research the impact of design initial

state on test generation and coverage. A fully automated push-button solution

for automated test generation is a remote possibility. Other approaches include a

hybrid of formal and simulation based verification[9, 27, 16].

In our approach, we use testing knowledge to filter tests using a wrapper. The

novelty of our approach lies in imparting the testing knowledge to an external

filter; instead of using it directly to modify test generation through exerciser

directives. Tests generated with the existing setup are subjected to filtering based

on extracted rules that describe RTL behavior in terms of architectural values.

This gives us several advantages. First, we do not have to convert the extracted

rules into directives for test generation. This process is non-trivial since each

exerciser has its own format for specifying test inputs. Secondly, it gives us better

control over the selection of tests. Test inputs often do not deliver results as

expected because of constraint conflicts within an exerciser. Using the rules for

an external filter gives us a better understanding of how the constraints regulate

test generation since it is independent of the test generation process. This also

means that this approach can be used to filter tests from any exerciser without

any modification.
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4.2 Simulation time reduction

In such instances where user inputs do not adequately constrain tests, having

the ability to filter out unlikely candidates prior to RTL simulation lets us generate

directed tests with minimal use of simulation resources. Even an approximate

method that can filter out the most likely candidates can reduce the need to run

lengthy regressions or manually write directed tests.

X 

X 

X 
X 

X 

X 

X 

X 
X X 

X X 

X 
X 

X 
X 

X 
X 

X X 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

o 
o o 

o 

o 

o 

o o 
X 

X 

X 

X 

X 

Total # of tests = 5000 
# of useful tests = 12 
Simulation time = 5000 * 6 hours = 30,000 hours 
Total time = 30, 000 hours 

Total # of  filtered tests = 20 
# of useful tests = 5 
Filtering overhead= (60s * 5000)/3600 = 83 hours  
Simulation time = 20 * 6 hours = 120 hours 
Total time = 203 hours 

X – Not useful test 
o – Useful test 

Randomly 
generated 

tests 

Filtered tests 

Improvement in test density = 104x 
Reduction in simulation time = 99.23%  

Figure 4.1: An illustration of the benefits of pre-simulation test filtering

Suppose we rerun the exerciser with modified constraints and generated 5000

more tests, of which 12 tests hit the remaining 3 bins, as illustrated in Fig. 4.1.

Even if we identified only 5 of these 12 tests along with 15 other false positives, we
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would be increasing the test density by a factor of ( 5
20/

12
5000) = 104x by simulating

only the 20 tests (as opposed to all 5000 tests). A typical processor core-level

simulation takes roughly 6 hours to complete. If we can filter tests based on

ISA simulation traces, with less than a 30s overhead, it will take us at the most

60 seconds to analyze a test. This reduces the total simulation time (including

filtering overhead) down to 203
30000 = 0.67% of the original. This is a substantial

reduction in test redundancy and simulation time.

We shall now discuss one such method to approximate test behavior prior

to RTL simulation. All experiments have been performed on AMD’s latest x86

ISA based microprocessor which supports upto 4 cores per cluster. The processor

is capable of super-scalar and out of order execution. Each core has a 32KB

instruction cache and a 32KB data cache. A 2MB L2 cache is shared between

the cores. Experiments have been performed using a single core for the sake of

simplicity.

4.3 Instruction-set architecture (ISA) simulation

based test filtering

One way of estimating test behavior prior to RTL simulation is through ar-

chitectural simulation. Fig. 4.2 illustrates this idea. The conventional approach
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RTL 
Simulation 

Exerciser 

Target 
Coverpoint 

Exerciser 

Target 
Coverpoint 

Arch 
Simulation 

RTL 
Simulation 

Hit/Miss Filter tests 

Hit/Miss 

Figure 4.2: a) (Above) Conventional coverage closure flow b) (Below) Architecure
simulation based test filtering

(Fig. 4.2a) is to assess functional coverage after simulating tests. Alternatively, we

can learn microarchitectural behavioral rules from past regressions. This testing

knowledge is in the form of rules that relate microarchitectural events to known

values, such as architectural values as shown in Fig 4.2b. Only those tests that

contains patterns known to trigger the target behavior are simulated on RTL.

4.3.1 KOS

AMD’s x86 ISA simulator is called KOS. KOS serves as the golden reference

model for standalone simulations (architecture model only) and co-simulations

(architecture model vs RTL simulations). KOS also supports the use of extensions,
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that interact with its simulation flow. Test selection based on KOS simulations

can therefore be done in one of two ways.

1. KOS wrapper: An executable that includes standalone KOS, that gets con-

trol at the end of a KOS simulation.

2. KOS plug-in: A library that an existing KOS executable can load, that gets

control at the end of each KOS simulation-step.

Exercisers use KOS to validate tests after generation. Plug-ins intercept KOS

at every simulation step and compare the architecture state with expected values.

A wrapper uses KOS simulation trace after its completion. Either ways, KOS

based filtering allows us to seamlessly integrate test filtering into the test gener-

ation process. Let us now examine the use of KOS based test filtering for two

coverpoints, both of which are triggered by less than 1% of the SVM tests.

4.3.2 Example 1: Guest with cache disabled

In this example, we test guest memory-types where nested-paging is enabled.

(Refer to Sec. 3.2 for details of SVM and nested-paging). A memory-type is

an attribute that can be associated with a specific region of virtual or physical

memory. A memory-type designates caching and ordering behaviors for loads and

stores to addresses in that region. Most memory types are explicitly assigned,
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although some are inferred by the hardware from current processor state and

instruction context. For example, for a memory designated as uncacheable (UC),

reads and writes are not cacheable. Reads from UC memory cannot be speculative.

Write-combining to UC memory is not allowed. Reads from or writes to UC

memory cause the write buffers to be written to memory and be invalidated prior

to the access to UC memory.

Suppose we want to specifically generate tests that run a guest with its cache

disabled. To do this, a test should satisfy the following criteria:

1. SVM has to be enabled

2. Paging has to be enabled

3. Nested paging has to be enabled

4. Cache Disable (CD) bit in the guest CR0 control register must be set

5. Test should switch context to a guest at least once

All the above 5 properties are architecturally defined. Tests that comply with

these conditions can be filtered unambiguously by analyzing an architecture sim-

ulation trace. Guest settings are configured in the Virtual Machine Control

Block(VMCB). VMCB describes the virtual machine (guest) to be executed.

VMCB contains a list of instructions or events in the guest (e.g., write to CR3)
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to intercept, various control bits that specify the execution environment of the

guest or that indicate special actions to be taken before running guest code, and

guest processor state (such as control registers, etc.). The first 4 conditions can be

verified by examining the VMCB used to run a guest. The VMRUN instruction

marks the execution of a guest instruction stream, which is the last condition.

Identifying existing novel tests

The filter was first applied on simulated tests. Since the result is already

known from the coverage report of the simulated tests, the effectiveness of this

filtering mechanism can be evaluated. The results are shown in Table. 4.1. There

are no tests present in the first Amex regression. All tests present in the other

three regression are identified.

Table 4.1: Results of filtering tests (from a past regression) that run guests with
cache disabled

Regression Amex 100 Amex 500 Amex 2000 Amex 5000
Tests present 0 1 7 12

Tests identified 0 1 7 12
Escapes 0 0 0 0

Generating new novel tests

Additional tests are generated by applying the filter as a wrapper around the

test generator. The results of generating new tests are summarized in Table. 4.2.
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4 tests were identified from a pool of 1000 tests. All 4 tests were simulated on

RTL to confirm their behavior.

Table 4.2: Result of generating new tests that run guests with cache disabled

Generated tests Filtered tests Novel tests
1000 4 4

Because the target property can be defined as a combination of existing archi-

tectural properties, there are no escapes or false positives.

4.3.3 Example 2: Page-not-present fault in PDPE

The previous example illustrated how architectural properties can be accu-

rately identified using KOS. Let us consider yet another architectural property

- page-not-present page faults at the PDP level, as described in Fig. 4.3. We

use the same address translation mechanism, as defined in Sec. 3.2.2. This fault

happens when the page containing a virtual address is not present in memory

and has to be fetched from disk. The fault is indicated by the page table entry

P-bit being set to 0. This ends the table-walk. The page-directory and page-table

entries(shown by dashed lines) are not accessed.

This fault can be identified by scrutinizing the table-walks simulated by KOS.

In an instance of a page-fault, KOS indicates the source of the fault.
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Figure 4.3: Page-not-present fault occuring at the PDP level during a long mode
linear address translation

Identifying existing novel tests

Unlike the previous example, when this filtering mechanism is applied to known

tests, there are escapes. The results are shown in Table. 4.3. There are no tests

present in the first regression, while the other three regression contain 1, 17 and

39 novel tests, respectively. When the simulation traces of these tests are parsed,

only 2 tests from Amex 5000 were recognized. Most of the tests escape detection.

Table 4.3: Result of KOS-based filtering of tests (from a past regression) that
trigger a page-not-present fault at the PDP level

Regression Amex 100 Amex 500 Amex 2000 Amex 5000
Tests present 0 1 17 39

Tests identified 0 0 0 2
Escapes 0 1 17 37
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The large percentage of escapes is caused by speculative execution of code. By

design, pipelined processors begin executing instructions even before the preced-

ing instructions retire. They are executed out of order if they do not have any

resource dependencies. When it encounters a branching instruction, the branch

predictor determines the path to execute. Once the branch has been resolved, the

processor state is resolved. If a branch is predicted correctly, the speculatively

executed instructions are retained. In cases where a branch is mispredicted or an

exception is encountered, the (speculatively) executed instructions are discarded.

Even though instructions are executed out-of-order or speculatively, they are re-

ordered at the time of retirement. Therefore, at all times, the processor maintains

the correct architectural state irrespective of the performance optimizations used.

These optimizations are done transparent to the software. Since KOS only models

the architectural states, it is oblivious of speculative code execution. Therefore,

any properties of speculatively executed code cannot be tested using KOS. For

example, of the 39 tests in Amex 5000, two tests page-fault non-speculatively at

the PDP level (at least once). This allows us to detect these tests via KOS-based

filtering. The other 37 tests page-fault purely speculatively; thereby evading de-

tection by KOS.
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4.3.4 Conclusion

Since architectural values are visible to software, they can be easily con-

trolled. But the micro-architecture is transparent to software. This makes micro-

architectural properties harder to control and verify. The challenge of micropro-

cessor verification lies predominantly in testing micro-architectural features and

their interactions. Since ISA simulators are implementation agnostic, their traces

cannot be used to predict a wide majority of test behaviors without knowing the

underlying relation. For instance, since ISA simulation does not take microarchi-

tecture into account, they are unaware of cache hits, misses and cacheline fetches.

Similarly, ISA simulators are unaware of TLB insertions, pipeline states and spec-

ulative execution.

To filter microarchitectural events, we need to develop a better understanding

of how they can be controlled by known values i.e. architectural values. This

understanding of how software can be used to control RTL behavior is often

referred to as testing knowledge[1, 32]. Testing knowledge is highly design-specific.

It can even change during the same project due to RTL changes. Verification

engineers apply testing knowledge through test generator templates to guide the

test generation process. In the following sections, we extract testing knowledge

from ISA simulation traces. We will assess the limitations of imparting this testing

knowledge into KOS based filtering.
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4.4 Extracting testing knowledge

Testing knowledge can be gathered in multiple ways. One way to do this is to

use the information from a formal model of the processor. This is impractical since

formal models are a very low level description of the design. Another approach

is to parse implementation reference manuals. Since technical documentations

lack a defined structure, they are not machine readable. The most prevalent

approach to gathering testing knowledge has been through the use of machine

learning. Machine learning techniques are applied to simulation data represented

in a vector format to glean meaningful rules that explain design behavior.

Microarchitectural events can be treated as the result of a properly timed trig-

ger applied from a specific processor state. For example, a stack overflow is caused

by a push to a stack which is already full. An event can therefore be described

in terms of architectural states and the applied stimulus. This description can be

used to produce the right constraints for directed test generation. We organize all

the relevant information from a simulation trace into a two-dimensional dataset.

This data is then subjected to machine learning to identify rules to describe design

properties. In this section, we will discuss this process in three stages:

1. Extracting features from a simulation trace

2. Generating a dataset
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3. Rule extraction

4.4.1 Extracting features from a simulation trace

Suppose we want to understand what conditions cause the branch predictor

to mispredict. The first step is to extract all the information relevant to branch

prediction from a simulation trace. This trace is generated by simulating an

assembly program on an RTL, which in our case is a processor core. We use

randomly generated assembly programs containing roughly 10,000 instructions

each. RTL verification is done by co-simulating an RTL with its architectural

model. The output of an RTL simulation, therefore, includes a cycle accurate log

of all the architectural state changes. All state values measurements are done at

the time of instruction retirement.

Fig. 4.4 shows us how a KOS simulation trace looks like. All the information

regarding an instruction and the state changes caused by it are summarized in a

block. The first line of the block indicates the cycle in which the instruction is re-

tired. This is followed by several lines describing the various operations performed

as a result of executing the instruction. To identify the nature of the operation

being described, each line is assigned a key. For example, information about the

instruction itself is indicated by the key Ex. As shown in the figure, this line indi-

cates the core on which the instruction was executed, the instruction count in the
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RTL Cycle number 13121 
P000: 0000000116: Ex: 0000:F000:000000000000C1C3 (00000000FFFFC1C3) OP: MOV EAX,EDI 
 
P000:           -- Mode: Rl16 
P000:           -- Opcode Bytes: 66 89 F8 
P000:           -- prefix[66] opcode1[89] modrm[f8] 
P000:           -- RAX = 00000000000C0000/000000008000C000 
P000:           -- RIP = 000000000000C1C3/000000000000C1C6 
P000:           -- Written: RAX RIP 
 
RTL Cycle number 13122 
P000: 0000000117: Ex:0000:F000:000000000000C1C6 (00000000FFFFC1C6) OP: ADD EAX,0x01000218 
P000:           -- Mode: Rl16 
P000:           -- Opcode Bytes: 66 05 18 02 00 01 
P000:           -- prefix[66] opcode1[05] imm1[18 02 00 01] 
P000:           -- RAX = 000000008000C000/000000008100C218 
P000:           -- RFLAGS = 00000006/00000086 
P000:           -- RIP = 000000000000C1C6/000000000000C1CC 
P000:           -- Written: RAX RFLAGS RIP 

Time of  retirement 

Core:         Instruction #:            Key: TR Selector: CS Selector: Effective RIP                (Linear RIP)                        Instruction 

Register value changes 

Summary 

Figure 4.4: RTL simulation trace showing two instruction retirements

test, Task Register (TR) selector, Code Segment (CS) selector, effective address,

linear address and the instruction itself. In this case, the 116th instruction(OP:

MOV EAX, EDI) is executed on Core 0. It was retired on the 13121th cycle.

Table walks, code reads and memory reads are some other examples of processor

operations. In Fig. 4.4, there is only one keyed line each in the two blocks. This

is followed by a summary of the instruction. The first three lines indicate the user

mode, opcode bytes and instruction bytes description. The rest of summary has

all the register value changes and a final line that lists out all the registers which

were written to.
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Our goal here is to find the relationship between an event and the specific

instruction/instruction sequence responsible for triggering it. Because we treat

an event as a function of the state and the instruction triggering it, each data

sample should include information about the preceding instructions in addition to

itself. It allows us to uncover the correct sequence of instructions that can act as a

trigger. Since instruction execution is out of order, microarchitectural events can

also be influenced by instructions following a trigger. Even though they appear

after a triggering instruction, they can be executed before the trigger. Fig. 4.5

illustrates how a dataset is created from an instruction sequence.

.. 
(0000000026E87E3A) PUSH ECX 
(0000000026E87E3B) BT EAX,0x02 
(0000000026E87E3F) JB $+0x00000010 
(0000000026E87E45) MOV EBX,0x15B88022 
(0000000026E87E4F) MOV EDX,ECX 
.. 
.. 
(0000000026E87E84) XOR EAX,EAX 
(0000000026E87E86) MOV AL,[EDX + ECX] 
(0000000026E87E89) CMP EAX,0x00000020 
(0000000026E87E8E) JL $+0x00000055 
(0000000026E87EE3) SHL EBX,0x02 
(0000000026E87EE6) ADD [EBP + EBX + 0x04],EAX 
(0000000026E87EEA) MOV EAX,0xFFFEFFFF 
.. 

Sample n 

Sample n + 1 

Triggering 
instruction 

Triggering 
instruction 

 
 
 
True 
 
 
 
 
 
 
 
False 
 
 
 
.. 

Figure 4.5: Use of a moving window of size 5, to generate a dataset for modeling
branch mispredictions from a simulation trace. Annotation values are indicated
in red.
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To generate a data sample, we use a moving window that slides over the

instruction sequence beginning with the first instruction. The size of the moving

window is empirically set to an odd integer value w = 2p + 1 depending on the

event being modeled. In the illustration, a window size of w = 5 has been used. A

wider window takes the effect of more instructions into picture when describing an

event. A narrow window localizes the effect. The first and the last 2p instructions

in the test are ignored as they do not constitute a full window. If necessary, they

can be included by using NOP instructions as padding.

In the example described by Fig. 4.5, features are extracted from a window

only if the p+1th (triggering) instruction is predicted by the branch prediction unit

(BPU). This includes all conditional and unconditional branches, and jumps and

calls within the current code segment (near JMP and near CALL). Control transfer

instructions such as far JMP, far CALL and RET instructions are ignored as they

are not predicted. All other instructions that do not modify program control flow

are also ignored. Thus, features are extracted from instructions specific to the

target behavior. In cases where the target behavior is not instruction specific,

feature extraction is performed for all instances of the moving window.

Features collected from each instance of the moving window is used to create a

single data sample. For each instruction within the window, features that are rele-

vant to branch prediction are extracted. We use domain knowledge to extract the
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right features. For example, the type of a branch instruction is important (condi-

tional or unconditional) but the user mode at the time of execution is irrelevant.

Other features relevant to branch prediction are:

• Branch location

• Branch target

• Branch outcome - Taken or not taken

• Opcode of the branching instruction

Each moving window instance is also annotated with a binary value indicating

whether or not the modeled event was successfully excited by the triggering in-

struction, which is the (p+ 1)th instruction. In our example, a label ’1’ (boolean

True) indicates that the instruction was mispredicted. And a label ’0’ (boolean

False) implies that an instruction was correctly predicted by the branch predic-

tor. These annotation values are generated by tapping into the appropriate RTL

signals. Whenever the target event is triggered, the next retired instruction is

annotated with a value of ’1’. For example, if two branch instructions retire on

the 200th and 205th cycles respectively, and a branch is mispredicted on the 203rd

cycle, the second instruction is annotated with a value of ’1’.
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4.4.2 Generating a dataset

Data gathered from a trace is in the form of attributes. Table. 4.4 lists out the

attributes used for creating the branch misprediction dataset. Opcode, Op1type

and Op2type represent the opcode and the operand type of the first and second

instruction operand, respectively. Operands can be of type immediate, register or

displacement. IsBrnTaken is a binary value that is set to 1 if a branch is taken

and 0 otherwise. Since there can be non-branching instructions within a window,

a large integer value, denoted by the constant NA, is used. This distinguishes a

branch not being taken from the value not being applicable. For example, if a

window has four mov instructions, IsBranchTaken is assigned the value NA in

all four instances. For the trigger instruction, the appropriate boolean value is

used.

Branch location is used to track the history of each branch. Branch history in-

cludes each branch’s visit count, the branch outcome (taken or not taken) on each

of the last two visits (if any) and the branch target on the last visit. This is used

to generate attributes IsBrnTakenPrev1, IsBrnTakenPrev2 and BranchType.

IsBrnTakenPrev1 (IsBrnTakenPrev2) is set to 1 if a branch was taken

on its (second to) last visit. IsExcp indicates if a branch was taken due to an

exception. BranchType can take the following nominal values:
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Table 4.4: Illustration of attributes collected from a simulation trace

Attribute Value Type
Opcode Nominal
Op1type Nominal
Op2type Nominal

IsBrnTaken Ternary
IsBrnTakenPrev1 Ternary
IsBrnTakenPrev2 Ternary

BranchType Nominal
IsExcp Binary

• never taken: Never taken

• taken once: Taken exactly once

• static: Always taken and fixed branch target

• dynamic: Variable branch target

• not AT: Not always taken

Once generated, the attributes are arranged in the same order as the instruc-

tions that they are derived from, to form a data sample as shown in Fig. 4.6.

In this case, since the window size is 5, each data sample consists of processor

state information relevant to branch prediction corresponding to the five instruc-

tions within the moving window. If k attributes are generated for each instruction

within the moving window, for w = 5 each data sample has 5k attributes. Each
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Figure 4.6: Generating a data sample to model branch mispredictions using a
moving window of size 5.

attribute is also given a suffix between 0 (newest instruction) to w − 1 (oldest

instruction), to indicate the instruction that it was derived from. RTL annota-

tion value represents the label or class of the data sample. In this example, each

dataset has as many samples as there are predicted branch instructions in a test.

Samples can be combined from multiple tests, as long as no changes are made to

the configuration of the branch predictor.

99



Chapter 4. ISA simulation based test filtering

4.4.3 Rule extraction

Depending on the dataset, a number of machine learning algorithms can be

used to extract knowledge. We will be using decision-tree based rule learning as

an example.

Decision-tree based rule learning

The construction of decision tree classifiers does not require any domain knowl-

edge or sophisticated parameter setting, and therefore is appropriate for ex-

ploratory knowledge discovery. Decision trees can handle high dimensional data.

Their representation of acquired knowledge in tree form is intuitive and easy to

comprehend. The learning and classification steps of decision tree induction are

simple and fast. Decision trees can easily be converted to classification rules. A

decision-tree is a flowchart-like tree structure, where each internal node (non-leaf

node) denotes a test on an attribute, each branch represents an outcome of the

test and each leaf node (or terminal node) holds a class label. The topmost node

in a tree is referred to as the root node.

In 1984, L. Breiman, J. Friedman, R. Olshen, and C. Ston) published the

book Classification and Regression Trees (CART), which described the generation

of binary decision trees[12]. The ID3 (Iterative Dichotomiser 3) decision tree

algorithm was proposed in 1986 by J. Ross Quinlan, a researcher in machine
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learning[37]. He then went on to present C4.5 (a successor of ID3), which became a

benchmark to which newer supervised learning algorithms are often compared[38].

ID3 and CART follow a similar approach for learning decision trees from training

tuples. They adopt a greedy (i.e. non-backtracking) approach in which decision

trees are constructed in a top-down recursive divide-and-conquer manner. Most

algorithms for decision tree induction also follow such a top-down approach, which

starts with a training set of tuples and their associated class labels. The training

set is recursively partitioned into smaller subsets as the tree is being built[24].

Income of the applicant 

Years in present job 

Credit rating 
Loan 

No Loan 

No 
loan 

Loan 

Loan No loan 

< $35k < $35k – 70k 
>70k 

<1 
>5 

1-5 

Good Bad 

Figure 4.7: A simple decision-tree to represent a loan approval process.

A simplified decision-tree is shown in Fig. 4.7. It indicates the loan approval

process of a fictitious institution. The leaf-nodes are represented by ellipses and

they represent the decision of the loan approval process. The internal nodes are
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rectangles that indicate factors that influence the decision. To use the decision

tree, each applicant is first represented as a vector. The attributes of the vector

describe the loan applicant. The decision tree is traversed starting from the root

node. By tracing the decision-tree from the root to a leaf node based on the

applicant’s attributes, a decision is arrived at.

In Fig. 4.7, the income of the applicant is used as the first splitting attribute.

Applicants with an income of under $35,000 are considered ineligible for a loan,

while those with an income of over $70,000 are eligible for a loan. Applicants

who fall between these two categories are subjected to further tests to evaluate

their eligibility. Those who have been on their current job for over 5 years can be

approved while those under a year are not. The rest of the applicants are eligible

only if they have a good credit history.

Constructing a decision-tree

Consider a dataset D. Vectors used for creating a decision-tree are referred

to as training vectors or training tuples. Each vector di consists of features (at-

tributes) x1, x2, x3, . . . , xt and an associated label yi that indicates the class of

the tuple. The training dataset is recursively partitioned using the most suitable

attribute. An internal node N is created denoting the attribute used to partition

the dataset in j subsets. Each of the outgoing branches represents the j different
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outcomes of the splitting attribute. If a resulting partition has samples belonging

to only one class, it is marked as a leaf node and marked with the class label. A

partition is also marked as a leaf node if it reaches the limit set for the minimum

number of samples. The class of the majority of the population is assigned to a

leaf node as its node label. This process is repeated until either all samples have

been classified into leaf nodes, or until all attributes have been used. In case of

the latter, the class of the majority population is assigned to all remaining nodes.

If an attribute is discrete-valued, the outcome of a test at an internal node

N corresponds directly to its known values. So a branch is created for each of

its known j values. For continuous valued attributes splitting points must be

determined to split the attributes into discrete ’buckets’. The entropy minimiza-

tion heuristic developed by Fayyad, U. and Irani, K.[19] can be employed for the

partitioning such that a small range of feature values with rare occurrence is con-

sidered important and identified as a separate bin. A large range of feature values

commonly-appearing in many samples are considered less important and grouped

into the same bin.

Heuristic methods that best separate a given data partition into individual

classes are used for selecting the best splitting attribute. If we were to split

dataset D into smaller partitions according to the outcomes of the splitting cri-

terion, ideally each partition would be pure (i.e., all of the tuples that fall into
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a given partition would belong to the same class). Conceptually, the best split-

ting criterion is the one that most closely results in such a scenario. Attribute

selection methods are also known as splitting rules because they determine how

the dataset at a given node is to be split. The rule provides a ranking for each

attribute describing the given training tuples. The highest ranked value is used as

the splitting attribute. Some of the most commonly used metrics are information

gain, gain ratio and gini index.

Consider the following decision-tree. This tree was created using 231 tuples

to identify branches that are mispredicted. Samples labeled true indicate mispre-

diction and samples marked false are not mispredicted by the branch predictor.
BranchType = dynamic
| |
| IsBrnTakenPrev1 = true
| | |
| | IsBrnTaken = true: false {false=2, true=1} => PREDICTED ... 1
| | IsBrnTaken = false: true {false=0, true=2} => MISPREDICTED .. 2
| IsBrnTakenPrev1 = false: false {false=2, true=0} => PREDICTED ... 3
BranchType = never_taken: false {false=120, true=0} => PREDICTED ... 4
BranchType = static: false {false=178, true=4} => PREDICTED ... 5
BranchType = taken_once: true {false=0, true=38} => MISPREDICTED .. 6

Six rules can be extracted from the decision-tree, corresponding to each of

the six leaf-level nodes. The node labels have been annotated on the right-hand

side for convenience. An interpretation of these rules, in the order in which they

appear, is as follows:
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Rule 1: Dynamic branch taken on the previous and current visit is NOT mispre-

dicted

Rule 2: Dynamic branch taken on the previous visit, but not taken on the current

visit is mispredicted

Rule 3: Dynamic branch not taken on the previous visit is NOT mispredicted

Rule 4: If never taken, branches are NOT mispredicted

Rule 5: Static branches are NOT mispredicted

Rule 6: Newly discovered branches (taken only once) are mispredicted

5 samples have been wrongly classified by this decision tree. This includes one

true sample under Rule 1 and four true samples under Rule 5. This is the training

error in the tree generation process. Similar errors can be made while using the

tree for classifying tuples of unknown class. This is the testing error.

4.5 Experimental Results

In this section, using four examples, we demonstrate how machine learning

can be used to realize the dependence of design behavior on architectural state

We use the term NOT mispredicted in place of predicted to make it clear that all braches
are predicted. But some are predicted incorrectly.
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and design stimulus. We generated two datasets from simulation traces of two

different tests using a moving window of size 5. Each sample’s label represents

the class assignment based on the RTL value for the trigger instruction, which is

the third instruction in the five-instruction window. Features of this instruction

have a 2 suffix. Instructions older to it have lower suffixes ( 0 and 1) and newer

instructions have higher suffixes ( 3 and 4). All results are based on decision-tree

based learning using gain ratio as the splitting criterion for its better performance

over gini index and information gain.

The two tests, T1 and T2, contain 4620 and 6595 instructions respectively. We

evaluate the accuracy of our learning algorithm using the holdout method[24]. As

shown in Fig. 4.8 the data is partitioned into two non-overlapping sets, a training

set and a validation set, by random sampling. The training set is larger than the

validation set to reduce training error. We have used a 60-40 split for training

and validation respectively. The training set is used to generate a decision-tree.

The accuracy of the model is evaluated using the validation set. The estimate is

pessimistic because only a portion of the initial data is used to derive the model.
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Figure 4.8: Estimating the accuracy of decision-tree based learning using the
holdout method

4.5.1 Example 1: Write to CR0

Objective

CR0 is a control register. It provides operating-mode controls and some

processor-feature controls. The objective of this experiment is to identify tests

that write to the CR0 register. The privileged instruction MOV CRn is used to

write the contents of a 32-bit or 64-bit general-purpose register to a control reg-

ister.
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Results

The decision tree, as shown in Fig. 4.9, is based on a single feature, IsCR0written_

2. The training results are given in Table. 4.5. The training set of the first test,

T1, contains 2770 samples, of which 6 contain the MOV CR0 instruction. These

samples are labeled as ’True’ and all other samples are marked as ’False’. All

6 positive samples are classified accurately by the decision-tree. Similarly, all 8

positive samples in T2 are also classified correctly.

IsCR0written_2 

True = 6 False= 2764 

Figure 4.9: Decision tree: Write to CR0

When the generated models were applied to the corresponding validation sets,

we get identically accurate results. Table. 4.6 shows the validation results. This

indicates that the behavior is completely defined by the trace data. In other

words, this coverpoint is pure architectural.
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Table 4.5: Write to CR0: Training results

T1 False True Class Precision
Predicted False 2764 0 100%
Predicted True 0 6 100%

Class Recall 100% 100%

T2 False True Class Precision
Predicted False 4002 0 100%
Predicted True 0 8 100%

Class Recall 100% 100%

Table 4.6: Write to CR0: Validation results

T1 False True Class Precision
Predicted False 1840 0 100%
Predicted True 0 7 100%

Class Recall 100% 100%

T2 False True Class Precision
Predicted False 2669 0 100%
Predicted True 0 5 100%

Class Recall 100% 100%

4.5.2 Example 2: TLB Flush

Objective

TLBs are on-die caches that hold the most-recently used virtual-to-physical

address translations. Each memory reference (instruction and data) is looked-up

in the TLB. If the translation is present in the TLB, it is immediately provided to
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the processor, thus avoiding external memory references for accessing page tables.

Depending on the implementation, separate TLBs may be implemented for data

and code.

TLBs can be flushed by hardware or by software. The CR3 control register

points to the base address of the highest-level page-translation table. The pro-

cessor invalidates the TLB whenever CR3 is loaded either explicitly or implicitly.

Frequently used or critical pages are therefore stored as global pages. Entries

marked as global are retained across CR3 context switches. This is an implicit

TLB invalidation. TLB entries marked as global may or may not be cleared,

depending on the type of TLB invalidation.

Software initiated TLB invalidations are referred to as explicit invalidations.

For example, the INVLPG instruction invalidates the TLB entry that would be

used for the 1-byte memory operand. This instruction invalidates the page, re-

gardless of whether it is marked as global or not. For more details, refer to the

AMD64 Architecture ProgrammerâĂŹs Manual, Vol. 2[4]. All TLB invalidation

conditions are detected by the ISA simulator.

Results

The decision tree, shown in Fig. 4.10, features a decision-tree based on only

a single variable IsTlbInvl 2. This variable indicates a TLB flush in the ISA
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simulation. Results indicate that, for test T1, all 11 instances of TLB flush in the

RTL were correctly identified. However, there was one instance of a flush in the

ISA simulation that did not occur in the RTL. A similar observation can be made

in the training model of the second test. 8 RTL flushes were correctly identified

and one flush did not occur as expected.

IsTlbInvl_2  

True = 11 
False = 1 

False= 2758 
True = 0 

Figure 4.10: Decision tree: TLB flush

This discrepancy arises due to an RTL optimization. Writes to control register

CR4 requires a TLB flush by hardware as this modifies properties of the page table.

However, in both instances, the hardware does not perform a TLB flush because

paging is not enabled. Though required by definition, this flush is unnecessary

since the TLB is only used when paging is used.

All 4 RTL flushes in the validation set of T1 are correctly predicted. An

RTL optimization, where the RTL avoids doing an RTL flush for a change made

to the IC configuration, shows up as a false positive. This example is a good
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Table 4.7: TLB flush: Training results

T1 False True Class Precision
Predicted False 2758 0 100%
Predicted True 1 11 91.67%

Class Recall 99.96% 100%

T2 False True Class Precision
Predicted False 4001 0 100%
Predicted True 1 8 88.89%

Class Recall 99.98% 100%

demonstration of how the RTL can do away with some architectural stipulations

for the sake of performance, as long as it does not alter software behavior. This

kind of behavioral modeling can be used to identify such differences.

Table 4.8: TLB flush: Validation results

T1 False True Class Precision
Predicted False 1842 0 100%
Predicted True 1 4 80%

Class Recall 99.95% 100%

T2 False True Class Precision
Predicted False 2666 0 100%
Predicted True 0 8 100%

Class Recall 100% 100%
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4.5.3 Example 3: Branch misprediction

Objective

The different branch types are shown in Fig. 4.11. Undiscovered branches

are not tracked by the branch predictor. All branches are categorized as static

when discovered. As long as they are taken on each subsequent iteration and

their target remains unchanged, they are classified as static. Static branches are

always predicted as taken. The outcome of some branches, such as conditional

branches, can change. Branches which use register values to denote their target

location can have differing target addresses. Heuristic techniques are used to

predict the behavior of non-static branches. The branch predictor uses a neural

network based algorithm to predict the behavior of such branches. A branch whose

target changes is classified as dynamic. Branches that are not always taken are

classified as not AT (not always taken). The BPU has to be trained before it can

start predicting the outcome and target of non-static branches accurately. As a

result, when a branch converts from static to dynamic/not AT it is not predicted

correctly for the first few iterations. Details of the interaction between the BPU

and the execution unit are given in Sec. 5.2.1.

In this experiment, we extract all branches that are predicted by the BPU.

Our objective is to identify mispredicted branches. Misprediction can be because
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Undiscovered Static 

Dynamic 

Taken once 

Not taken 

Taken (and) 
Target unchanged 

Not always 
taken 

Target change 

Target unchanged 

Taken 

Not taken 

Figure 4.11: State machine representing branch types

of an incorrectly predicted branch outcome (taken or not taken) or an incorrectly

predicted branch target. Unpredicted branches such as FAR jumps and FAR calls

are excluded from the dataset. Samples annotated as ’true’ are mispredicted and

samples annotated as ’false’ are predicted accurately by the BPU.

Results

The decision tree shown in Fig. 4.12 closely resembles our understanding of

the BPU. Ignoring the classification errors and exceptions, the rules generated by

the decision-tree can be summarized as follows::
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1. Branches that are taken for the first time (discovered) are mispredicted

2. Undiscovered branches (never taken) are NOT mispredicted

3. Static branches are NOT mispredicted

4. Branches which are not always taken are:

(a) NOT Mispredicted if they are currently taken

(b) Mispredicted if they are currently not taken

We cannot say anything conclusively about dynamic branches since there are

not enough samples in the decision-tree. Dynamic branches are predicted accu-

rately once the BPU is trained. This is evident from Table. 4.9. It shows the 5

instances of dynamic branches in test T1. Of the three instances that are included

in the training set, two are correctly predicted. Both these branches converted

from static to dynamic branches on their 18th visit. By the 34th visit, the BPU

was trained. Between these visits (19 through 33), both branches were of type

not AT. The two instances corresponding to the 18th visit are included in the vali-

dation set. The decision tree categorizes dynamic branches as predicted branches,

by majority vote (2 false out of 3). So the two samples in the validation set will

be wrongly classified as predicted.
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BranchType_2 

False= 2 

IsBranchTaken_2 Op1type_2 

Dynamic Never Taken Not_AT Static 

False= 149 

False = 37 
True = 1 

Zero 

Register 

False= 166 

True = 2 

Immediate 

One 

True = 1 
False = 1 

Displa cement 

True = 34 

Taken_once 

False = 2 
True = 1 

Figure 4.12: Decision tree: Branch misprediction (Based on test T1)

Branches of type not AT behave similar to dynamic branches and require BPU

training. There is one misclassified sample of this type. The decision tree, how-

ever, does not capture the real algorithm used to predict non-static branches. One

of the reasons for this is that the amount of data provided for training is substan-

tially low. One static branch has been misclassified. Contrary to expectation, this

branch was mispredicted. This was caused by the branch information not being

recorded on its first visit because of an internal queue overflow.
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Table 4.9: Dynamic branches in T1

Branch location Set Visit count Outcome
0xffffff7d142909e3 Training 2 Mispredicted
0x7368b520b107 Training 34 Predicted
0x7368b520b087 Training 34 Predicted
0x7368b520b107 Validation 18 Mispredicted
0x7368b520b087 Validation 18 Mispredicted

The five false negatives in the T2 training set include 4 static branches and one

non AT branch. The former was caused due to two reasons - loss of branch marker

information in the L2 and queue overflows when recording the branch information

at the time of discovery. The latter is an untrained branch prediction. These

errors perpetuated as 5 validation set classification errors.

Table 4.10: Branch misprediction: Training results

T1 False True Class Precision
Predicted False 356 2 99.44%
Predicted True 1 37 97.37%

Class Recall 99.72% 94.87%

T2 False True Class Precision
Predicted False 302 5 98.37%
Predicted True 0 37 100%

Class Recall 100% 88.89%
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Table 4.11: Branch misprediction: Validation results

T1 False True Class Precision
Predicted False 229 4 98.28%
Predicted True 0 31 100%

Class Recall 100% 88.57%

T2 False True Class Precision
Predicted False 183 5 97.34%
Predicted True 0 43 100%

Class Recall 100% 89.58%

4.5.4 Example 4: IC Fetch

Objective

The instruction cache (IC) is maintained such that instructions can be filled

into the pipeline with minimum latency. Since the latency of the L2 cache is

roughly an order of magnitude higher than than of the L1 cache, instructions are

fetched preemptively. The branch predictor is tightly coupled with the IC and it

speculatively fetches cachelines from the L2 whenever required. On each request,

one cacheline worth of data is filled into the IC. In our current processor, the

cacheline is 64 bytes wide. All fetches are 64-byte aligned, i.e. for any request,

data is fetched beginning from the nearest 64-byte address boundary that contains

the instruction. The ISA simulator indicates whenever a 32-byte boundary is
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crossed, with a code-read. This can be used as an indicator for IC fetches in the

design.

In this example, we will extract the IC-fetch behavior based on an ISA simula-

tion trace. An IC fetch request is really a cache miss function. A fetch request is

issued to the L2 cache whenever an instruction required by the execution pipeline

is not present in the IC. For cacheable memories, this happens only the first time.

As long as the entry is still valid, it is not re-fetched on subsequent iterations.

Uncacheable memories are requested on each iteration. If an instruction fetch

request is recorded in RTL between the retirement times of instructions n and

n + 1, the latter is assigned a ’true’ class label. This indicates that instruction

n+ 1 is most likely to have triggered the fetch.

Results

Table 4.12: IC fetch: Training results for test T1 (first attempt)

T1 False True Class Precision
Predicted False 2669 99 96.42%
Predicted True 0 2 100%

Class Recall 100% 1.98%

The results shown in Table. 4.12 illustrate that no meaningful rules can be

extracted from the current dataset. Only 2 of the 101 fetches are identified. The

rest 99 are false negatives. Clearly, the ’code-read’ indicating 32-byte boundaries
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cannot be used to accurately define a cache-miss event. Lowering the threshold

used for by decision-tree algorithm for variable selection produces better results.

But this results in overfitting and the extracted rules are not meaningful. Since

the data samples are restricted to a window of just 5 instructions, the rules cannot

account for a previous fetch. The cache miss function is a function of an instruc-

tion’s fetch history. A revisited instruction does not trigger a fetch in RTL if it

is cacheable. However, since there is no feature in the dataset that reflects if an

instruction has been fetched before.

This can be resolved by tracking instruction fetch history and including a

binary value indicating whether or not an address has been fetched in the past,

whenever a ’code-read’ is detected. Since instructions are fetched one cacheline at

a time, the cacheline width has to be taken into account to generate this feature.

One method is to take a micro-architecture agnostic approach and use the trace

to deduce what the cacheline size is. We can assume different cacheline sizes and

see what best describes the observed behavior.

Fig. 4.13 shows effect of the newly generated feature WasFetched on the learn-

ing process for four different cacheline sizes assumptions: 16 bytes, 32 bytes, 64

bytes and 128 bytes. For an assumed cacheline width of 16 bytes, if an instruc-

tion within a 16 byte-aligned boundary of the current instruction has been visited

before, the value of attribute WasFetchedis set to 1. If not, it is set to 0 and so
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Figure 4.13: Training error for test T1 using four different cacheline sizes to track
code fetch hisotry

on. Starting with 99 false negatives, when this attribute is not included in the

dataset, we can see that the false negatives drop monotonically as the cacheline

size is increased. The change is more dramatic for the first two step, from 16

to 32 (reduction of 16) and then from 32 to 64 (reduction of 46). But there is

a difference of only 3 false negatives from 64 to 128. However, there is a sharp

increase in the number of false positives, from 21 to 43, for this step. Since the

cacheline size of 64 minimizes the overall training error, we can conclude that the

design utilizes a cacheline of width 64 bytes (For aliasing related problem, see

conclusion).

The decision tree generated from this modified dataset is shown in Fig. 4.14.

We can see that the newly added variable WasFetched 2 best partitions the data.
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Figure 4.14: Decision tree: IC fetch

Addresses not already fetched are most likely to be fetched. While those addresses

that are already fetched are most likely to be not fetched. If there is no ’code-

fetch’, an IC fetch is unlikely. As we can see from the decision tree, these rules

have their exceptions.

From the results shown in Table. 4.13, we can see that the percentage of

correctly identified IC fetches has gone up to 79%. There are 21 instances of IC

fetches that are not identified by the model. For example, 19 cacheable addresses

were re-fetched. This is caused by:

• Re-accessing a memory of memtype uncacheable
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• Change of memtype from an uncacheable memtype to a cacheable memtype

• Cache eviction

• Cache invalidation

Uncacheable memory is not retained in the instruction cache. So fetch requests

are issued every time they are accessed.

There are two instances that are not identified by a code-fetch. This is be-

cause of the presence of serializing instructions. Serializing instructions force the

processor to retire the serializing instruction and all previous instructions before

the next instruction is fetched. Instructions that change the processor configu-

ration such as MOV CRn and WRMSR are serializing[4]. Certain configuration

changes, such as change in memtypes forces the processor to re-fetch code or data

to maintain coherency.

Table 4.13: IC fetch: Training results for test T1 (second attempt)

T1 False True Class Precision
Predicted False 2659 21 99.22%
Predicted True 10 80 88.89%

Class Recall 99.63% 79.21%

The decision-tree also shows 7 instructions not triggering a fetch even though

they have not been previously fetched. While generating the dataset, to make

the associations between fetch requests in the RTL and triggers in the ISA simu-
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lation trace, a queue of 10 requests was used. So if a request came much earlier

than 10 requests, it is very likely that the instruction itself did not trigger the

fetch. The fetch request was issued due to some other speculative activity. So

these 7 instructions did not directly trigger a fetch because the code was fetched

preemptively.

The sub-tree that uses IsBranchTarget 3 as the splitting variable, shows a

good degree of correlation with the data with only 3 false positive classifications.

This is non-causal. In other words, though these features correlate with the data,

they are not related to the behavior in any meaningful way. We can prune the

decision tree and replace the sub-tree with a single leaf node labeled as ’True’

to correctly represent IC fetch behavior. The will result in a single leaf with 13

’True’ samples and 5 false positives. Again, these five false positives are caused

by fetch requests being issued much before the instruction execution.

These misclassifications can be rectified by adding additional variables to the

dataset. For example, we can track each linear address memtype and indicate if

its memtype has changed between two visits. Each newly added attributes that

describes the cache and memory architecture improves the training results.

The results for test T2, shown in Table. 4.15, are comparable to that of test

T1.
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Table 4.14: IC fetch: Validation results for test T1

T1 False True Class Precision
Predicted False 1770 14 99.22%
Predicted True 2 61 96.83%

Class Recall 99.89% 81.33%

Table 4.15: IC fetch: Training (top) and Validation (below) results for test T2

T2 False True Class Precision
Predicted False 3776 27 99.29%
Predicted True 19 188 90.82%

Class Recall 99.50% 87.44%

T2 False True Class Precision
Predicted False 2510 21 99.17%
Predicted True 15 128 89.51%

Class Recall 99.41% 85.91%

4.5.5 Conclusion

Our ability to extract testing knowledge depends on the type and complex-

ity of the function we are learning. As seen in the first example, architecturally

defined behavior are easy to learn. As the behavior becomes more implementa-

tion dependent, the complexity and size of data required to extract the mapping

function increases.

Consider the IC fetch example. Here, we are trying to learn the cache miss

function. Every time a cache-miss happens, a fetch request is sent to the L2 cache.
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Learning this function from the simulation trace is in essence tracing the cache

behavior; more specifically the following:

• Cache architecture: Width and number of entries

• Cache policies: Associativity and replacement policy

As was demonstrated, these parameters can be determined from simulation

data to accurately predict when a cache miss will occur. Suppose there are w and

e different values that the width and number of IC entries can take, respectively.

Also, let us suppose that there are a different types of cache associativities and r

different replacement policies. This gives us a total of w x e x a x r hypotheses.

Table. 4.16 lists out some of the most common cache configurations. This gives

us a total of 2 x 4 x 9 x 7 - 7 * 4 * 2 + 4 * 2 = 456 combinations (The adjustment

is because direct mapped caches do not need a replacement policy). We have to

generate sufficient data to rule out all but one hypothesis to learn the cache-miss

function of a given design.

While generating data we also have to account for aliasing. Consider access-

ing instructions from 4 different cachelines sequentially in the following order:

CL1 −→ CL2 −→ CL3 −→ CL1. Suppose all these three cachelines have the

same index and the cache was cleared prior to running this sequence. This would

cause an address collision at the index corresponding to these cachelines. If a
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Table 4.16: Table enumerating some of the possible IC configurations

Parameter Possible values Total 

Width 32 
2 

  64 

Entires 32 

4 
  64 

  128 

  256 
Associativity Direct mapped 

9 

  2-way set associative 
  3-way set associative 
  4-way set associative 

  5-way set associative 

  6-way set associative 

  7-way set associative 
  8-way set associative 

  Fully associative 

Replacement 
policy 

Least Recently Used 

7 

Most Recently Used  

  Pseudo-LRU 

  Random Replacement  

  Round Robin 
  Segmented LRU 
  Least-Frequently Used 

cache is 2-way set associative with LRU replacement policy, then CL3 would re-

place CL1 as CL2 was used last. This sequence would generate a cache-miss for

all four accesses. A direct mapped cache would also behave in the exact same

way. Since all three cachelines have the same index, each one would evict the pre-

vious, resulting in four consecutive cache-misses. So the amount of data required

to distinguish all the different combinations is significantly high. Tests should be

able to distinguish each parameter and configuration. The combinations listed
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in Table. 4.16 are only some of the most commonly used values. Since many

more combinations are possible in theory, a generic solution to this problem is

extremely tedious. Learning a function like cache-miss requires a large volume

of simulation data. The dataset must also include the entire set of features that

define the cache implementation.

4.6 Summary

Random test program generation has its limitations. Expressing target ma-

chine behavior in the form of user directives is not always adequate to constrain

test generators. We propose to use a filter external to test generators that is

independent of the test generator design. Our filter uses architectural values ex-

tracted from ISA simulation traces. Experiments show that this is inadequate to

filter all RTL events. To filter complex microarchitectural behavior, we have to

understand the relation between RTL events and architectural values.

We use decision-tree based rule learning to extract rules that explain the tar-

get behavior in terms of known architectural values. In cases where the target

behavior is closely dependent on the design microarchitecture, rule learning is

challenging. To accurately model complex properties requires large volumes of

data. The dataset also has to include all the features required to fully define the
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targeted behavior. The complexity of the feature generation process and necessity

to have large datasets makes this process impractical for industrial use.
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Chapter 5

Micro-architecture model based
test filtering

5.1 Introduction

Simulation based verification works on the principle that a design bug in a

processor feature can be detected provided that a sufficiently large percentage

of the input sequences are applied. This is used as a guiding principle by test

generation software[30]. For this reason some test program generators integrate

it into the stimulus generation process[2]. As seen in Chapter 4, without the use

of a micro-architectural model, test behavior cannot be constrained accurately. It

is impractical to extract a micro-architectural model from simulation data using

existing non-parametric machine learning algorithms. Instead, we propose to use

a manually constructed model using our knowledge of the design (RTL).
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Since our test generators are ISA model based, we can use an external mi-

croarchitectural model for targeted test generation. The process of generating

test directives based on simulation data requires manual effort. By using an ex-

ternal filter, we can bypass this. Secondly, it gives us better control over the

selection of tests. Test inputs do not always deliver results as expected because

of constraint conflicts within an exerciser. Using the rules for an external filter

gives us a better understanding of how the rules regulate test behavior since it

is independent of the test generation process. This also keeps the test filtering

process independent of the test generator.

This methodology is illustrated in Fig. 5.1. The flow is very similar to the

one shown in Fig. 4.2. ISA trace is used for filtering tests prior to RTL sim-

ulation. The only difference between the two flows is the introduction of the

micro-architectural model (MAM). Simulation traces are extrapolated using a

micro-architecture model to provide a closer approximation of real test behavior.

The results are then compared against the target property. Only those tests that

match the target behavior are simulated on RTL. The MAM used for filtering

depends on the target property.

We will now use two examples to demonstrate the use of MAMs. MAMs

provide enough complexity to mimic RTL behavior, but are simple enough to
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Exerciser 

Target 
Coverpoint 

Arch 
Simulation 

RTL 
Simulation 

Hit/Miss Filter tests 

u-arch 
model 

Figure 5.1: Architecure simulation based test filtering using a micro-architecure
model(MAM)

create and use without any significant overhead. Given their simplicity, they are

also easy to modify and reuse.

5.2 Dense branch re-fetches

5.2.1 Background

For pipelined microprocessors, the penalty of taking a branch is very high.

The pipeline has to be flushed of all the ’bad path’ instructions and reloaded

with instructions from the branch target. With deeper pipelining, the penalty of

flushing and reloading the entire pipeline has increased. The delays are higher

if the target instruction does not reside in the instruction cache (IC) and has to

be fetched from higher memory hierarchies. Modern processors therefore rely on

speculation to boost IPC. Instead of stalling execution on encountering a branch,
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they execute code speculatively. To avoid stalling the pipeline due to memory

access latencies, code and data are prefetched. Based on the Branch Prediction

Unit’s (BPU) path speculation, instructions not present in the IC are prefetched.

Branch prediction

A branch must be discovered for the BPU to start predicting it. The BPU

discovers branches the first time that they are retired as ’taken’. In other words,

to be discovered, a branch has to be taken at least once. A branch that is never

taken will be ignored by the BPU. Once a branch is discovered, a marker is

stored in a marker array to identify its location and properties. Stored branch

properties include the branch type, outcome and target. For all subsequent visits,

the BPU predicts the branch by the presence of its marker in the marker arrays

at fetch time. Both, the direction and target of discovered branches are predicted.

If a branch is predicted-taken, the Instruction Fetch (IF) unit is redirected to

the predicted target of the branch. This way the pipeline does not have to wait

till branch execution to know the path to execute. The BPU only predicts near

branches. Far branches are not predicted.

Consider the cacheline shown in Fig. 5.2. Let us assume that this section

of code has not been executed before. So no branch prediction information is

A far branch transfers control outside of the current code segment. A near branch transfers
control within the current code segment.

133



Chapter 5. Micro-architecture model based test filtering

available prior to decode. The decode unit decodes the branch instruction (jmp

label1) and all subsequent instructions (line 2 onwards). These instructions are

dispatched for execution. When the jmp label1 instruction is executed for the

very first time, the branch is discovered. The decode unit now gets redirected

to the branch target label1, indicated in the figure by path 1. The speculative

or bad-path is indicated by path 1’. This redirect (or pipeline flush) causes the

decode unit to restart the decode process starting from label1. If any of the

instructions have been executed out-of-order on the bad-path, their results are

discarded. The BPU registers the branch location, type and target. This is called

branch discovery.

On the following iterations, the BPU is aware of the jmp label1 instruction.

At the time of decode, it asks the decode unit to stop decoding after this instruc-

tion and resume decoding from label1. Thus branch prediction avoids expensive

pipeline flushes once a branch is discovered.

Sparse and dense branches

The first two branches within a cacheline are referred to as sparse branches.

These are predicted using faster and low power logic. Subsequent branches in

the same cache line (after the first two sparse-marked branches) are marked in

the dense marker arrays. These are referred to as dense branches. The order is
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                        jmp label1 
           label3:   mov ax, shell_data_sel 
                      mov es, ax 
                      mov edi, [es:pwd1_] 
                      mov ecx, 0xc0011024  
                      rdmsr 
                      jmp label2 
           label1:   and ax, 0xfc  
                      or ax, 0x02 
                     wrmsr 
                      jnz label3  
           label2:   mov eax, 0xe8e80251 
                      mov edx, 0x5bbf1340 
                       mov ecx, 0xc0011025  
                       wrmsr 

 mov eax, 0xe8e80251 
 mov edx, 0x5bbf1340 
 mov ecx, 0xc0011025 

btr     eax, 28 
btr     eax, 29 
bts     eax, 30 
 

1 

2 

3 

1 
2  
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

1’ 

Figure 5.2: Illustration of a cacheline with one dense branch and two sparse
branches

decided by the position of the branch and not the order of discovery. The latency

of predicting dense branches is higher. The objective of this experiment is to

identify tests that first evict and then re-fetch(from L2 cache to IC) at least one

cacheline containing dense branches.

Fig. 5.2 shows one cacheline worth of instructions (illustration only). The

first instruction is an unconditional jump to the 8th instruction. This is the first

discovered branch. This branch is marked as the first branch of the cacheline in

the sparse marker array. The next discovered branch in this cacheline is at line 11.

Since the result of the OR instruction is non-zero, the conditional jump will be
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taken. This branch is recorded as the second sparse branch. The jump at line 7 is

discovered third. This is an unconditional jump to the MOV instruction labeled

as label2. Since this jump is located before the conditional jump at line 11, it

replaces JNZ as the second sparse branch in the cache line. The conditional jump

JNZ gets promoted to a dense branch. Thus, by end of executing this cacheline,

the BPU would have recorded two sparse branches and one dense branch.

5.2.2 Objective

In this experiment, our intention is to generate tests that cause the re-fetch

of cachelines from the L2 cache that contain dense branches. This implies that a

cacheline on which dense branches are discovered has to be first evicted from the

IC. Subsequently, this cacheline should be fetched at least once by the IC. This

coverage property ensures that dense marker information is calculated correctly

for dense branches and the markers are not destroyed upon evictions to the L2.

5.2.3 Why ISA-based filtering does not suffice

To filter tests that cause dense branch re-fetches, we should be able to distin-

guish the following test properties:

1. Cacheline fetch (to IC) and write-back (to L2 cache)
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2. Occurrence of dense branches in a cacheline

3. Speculative code execution

The need for an MAM to select tests accurately is summarized by Table. 5.1.

Cache architecture is independent of the ISA. Therefore, an ISA simulator like

KOS does not model the IC structure or replacement policy. Consequently, it is

unaware of cacheline fetches, evictions and BPU behavior. Given how implemen-

tation dependent this property is, the target behavior cannot be learned from the

simulation trace. This was demonstrated in Sec. 4.5.4.

Table 5.1: Role of micro-architecture model in identifying dense branch re-fetches

RTL behavior Provided by ISA sim Provided by MAM

IC fetch

Instruction retirement IC specification
Time of retirement IC replacement policy

Opcode bytes
Instruction LA/PA

Memory type

IC evictions

All of the above IC specification
Cache invalidation IC replacement policy

Warm resets
Unexpected redirects

Branch prediction Branch history Branch discovery logic
Branch prediction logic
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5.2.4 Using an IC and BPU model

IC fetch and evictions

Using an IC model allow us to track the state of the IC throughout the course

of a test execution. For every cacheable instruction retired in the trace, the IC

model is looked up. On a miss, the cacheline containing the retired instruction is

added to the IC model at the appropriate index and way. On a hit, the IC model

is left unchanged. For example, let us assume that the processor contains a 2-way

set associative IC with 128 entries indexed by linear address bits [12:6]. Suppose

each entry holds a 64-byte aligned cacheline. The IC replicates this structure. For

each retired instruction, we identify the 64-byte-aligned cacheline that it belongs

to. If the cacheline is already present in the cache model, we proceed to the next

instruction. If not, we simulate a ’fetch’ from L2 i.e the cacheline is added to the

IC model. By tracking the instructions in an ISA simulation trace, we can track

the IC fetch and evictions as they would happen in RTL.
00000000F6E4C7F jrnp err_guest
00000000F6E4C84 btr eax, 3
00000000F6E4C88 inov cr0, eax
00000000F6E4C8B pop eax
00000000F6E4C8C iretd

In the piece of code shown above, the conditional jump located at 0xF6E4C7F

belongs to a cacheline whose index (LA[12:6]) is 31h. This 64-byte cacheline ex-

tends from linear address 0xF6E4C40 to 0xF6E4C7F. At the time of retirement
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of the jump instruction, this cacheline will be present in the i-cache. The next

cacheline, with index 32h, extends from 0xF6E4C80 to 0xF6E4CBF. This instruc-

tion will cause a prefetch of the next cacheline starting at 0xF6E4C80 (unless it

is already present in the IC). This happens irrespective of the branch outcome,

as the instruction itself spans into the next cacheline. If index 32h is vacant, the

cacheline will be added to way0. If way0 is occupied, it will be filled in way1.

If both the ways of index 32h are already occupied, the IC model follows the

way-replacement policy of the processor to ascertain which cacheline has to be

evicted. For example, if either of ways is occupied by an invalidated cacheline, it

is replaced. If not, if the processor follows a LRU-based replacement policy, the

least recently used cacheline is replaced.

Tracking dense branches

Knowing the cache architecture allows us to calculate the cacheline bound-

aries. We can also track branch discoveries and calculate if a discovered branch is

recorded as a sparse branch or a dense branch. Thus an IC model allows us to use

ISA simulation data to calculate if a test contains dense cacheline. It also allows

us to estimate if a cacheline containing one or more dense branches is evicted to

L2 or refetched to IC.
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Speculative IC evictions

CL0 

CL1 

CL2 

0x043FC300 

0x043FC340 0x04302340 

Index = 0Ch 

Index = 0Dh Index = 0Dh 

CL3 

0x043FC380 

Index = 0Eh 

Figure 5.3: Demonstration of how cache evictions can happen due to the specu-
lative nature of code execution

Fig. 5.3 illustrates the flow of control between three cachelines. Cacheline

CL1 (starting address 0x043FC300) contains a branch to CL0 (starting address

0x04302340) and has never been taken. Because the BPU has not discovered the

branch, the fetch unit does sequential prefetches of cachelines CL2 (starting at

address 0x43FC340) and CL3 (starting at 0x43FC380). Let us assume that CL0

already exists in the IC (since it belongs to a lower address range). CL0 contains

a branch to CL3 that is known to the BPU. Let us also assume that there is

140



Chapter 5. Micro-architecture model based test filtering

another valid cacheline CL5 (not shown) at index 0Dh of the IC, which has been

used most recently recently. CL2 has an index of 0Dh and there is no vacant

slot in the IC for insertion. Since both IC entries (CL0 and CL5) at index 0Dh

are valid, the least recently used entry is evicted. This means that CL0 will be

replaced by CL2. When the execution unit encounters the branch in CL1, it issues

a redirect to the branch target. The branch target lies in CL0, but the sequential

prefetch evicted CL0 from the IC. So CL0 has to be refetched from the L2 cache.

The branch target for the predicted branch in CL0 is in CL3, and the cacheline

CL3 exists in IC. So no additional prefetching is done. This example shows how

a cacheline can be evicted due to speculative execution. Even though CL2 was

never executed, it evicted CL0. If we followed the code execution without account

for speculative prefetching, we would fail to see the eviction and the subsequent

re-fetch of cacheline CL0. On the contrary, there would have been no such eviction

if the branch in CL1 was known to the BPU.

Estimating speculative path behavior

To account for speculative evictions, in addition to updating the IC model

based on code execution, we also ’prefetch code’. This is done whenever we en-

counter a branch instruction or redirect. Entries are added to the IC model to

account for microprocessor prefetches caused by speculation. Table 5.2 lists out
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possible causes of program flow change. Whenever we encounter a branching in-

Table 5.2: Sources of program flow change

Expected Unexpected
Static branch Branch discovery

Dynamic branch
JMP FAR/CALL FAR

RETs
Interrupt
Exception

struction or a change in program flow, we use the rules extracted in Sec. 4.5.4 to

predict the next k cachelines that the RTL is likely to prefetch. A static branch

is an example of an expected redirect. A static branch is a discovered branch

whose outcome and target remain unchanged. A static branch is always taken

and predicted as taken by the BPU. Since the branch behavior is known, there is

no bad-path overhead. When the BPU encounters a predicted branch, instruction

decode automatically restarts from the branch target. For unexpected redirects,

the processor is likely to have speculated incorrectly.

To determine the speculative path, we make use of code history. We use

branch history information to locate the targets of discovered branches. A recur-

sive prefetch is done along the speculative path until the next k cachelines are

determined. If there are no discovered branches on the speculative path, since the

prefetch is sequential in RTL, we simply follow the code flow to track IC activity.
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5.2.5 Pseudocode

The pseudocode for updating the IC model based on speculative execution is

given below.
main ()

..

..
CALL clr_IC

WHILE (next instruction != NULL)
// Speculative execution only happens if there are redirects
IF ((CurrInstr.IsABranchInstr or CurrInstr.IsBranchTaken) and

CurrInstr.Iscacheable ) THEN
CALL do_spec_load with CurrInstr

END

//Clear IC when required
IF (IC invalidation is detected) THEN

CALL clr_IC
END

END
..
..

END

// Does speculative loads to the IC model
SUB do_spec_load (CurrInstr)

SET TargetLinAd to zero
//Look if we have a history of the current branch
IF (CurrInstr.BrnHist != NULL) then

//If this was a predicted branch, then use
// its previous target if it was taken
IF (CurrInstr.BrnTknPrev1 and CurrInstr.IsBrnPred) THEN

SET TargetLinAd to CurrInstr.PrevBrnTgt
END

ELSE
// If it was not taken (even if it is dynamic/
// not always taken) assume it was not taken
// There will be no spec. execution if a
// predicted-taken branch is not taken
TargetLinAd = CALL calc_spec_exec_tgt with CurrLinAd

END
// Set spec. load bit of corresponding way if
// spec. execution induces a fetch
FOR i = 1 to depth_of_speculation

ReplWay = lookup_ic(TargetLinAd)
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// If cacheline exists in IC model, lookup_ic() returns -1
// Otherwise, it returns the way to be replaced
IF (ReplWay != -1) THEN

Mark speculative write to ReplWay at ic_index(TargetLinAd)
END
//Recalculate next target
TargetLinAd = CALL calc_spec_exec_tgt with TargetLinAd

END
END

// Checks if cacheline exists in IC or needs to be fetched from L2
// Returns -1 on cache hit. On cache miss, follows 2 step replacement
// policy to determine way to replace and returns way(0/1).
SUB lookup_ic (LinAd)

IF (ExistsInIC(LinAD)) THEN
Return -1

ELSE
IF (! is_val(0, ic_index(LinAd)) THEN

Return 0
ELSIF (! is_val(1, ic_index(LinAd)) THEN

Return 1
ELSE

RETURN lru_way(ic_index(LinAd))
END

END
END

The pseudo-code of sub calc spec exec tgt required to identify the specu-

lative path is given in Appendix A.1. We use a parameter k because the extent

of prefetching is dependent on the pipeline stage at fetch time. This value cannot

be calculated without an accurate model of the pipeline. We therefore use an em-

pirically established value. In addition to speculative and non-speculative fetches

and evictions, maintain an accurate cache model requires us to detect cache in-

validation conditions. For example, the INVD instruction invalidates all levels of

cache. Tests can include warm resets, which also require us to invalidate the IC.
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5.2.6 Results

Our experiment consists of two steps:

1. Identifying novel tests from past regressions

2. Generating new novel tests

Identifying novel tests from past regressions

To ensure that we are able to correctly identify novel tests, we first use our

setup to recognize tests that have already been simulated on RTL. This lets us

evaluate the effectiveness of our approach. Of the 5000 tests generated by Amex

that we used to run the SVM regression, 26 tests triggered dense branch re-fetches

in RTL simulations. The results are shown in Table. 5.3.

Of the 26 known tests, we were able to identify 11 tests. The identified tests

are shown in rows 1 through 11 of Table. 5.3. An analysis of 2 of the 15 escapes

revealed that some cachelines were being evicted by speculatively fetched code.

By tracking speculative code fetches, we were able to identify a total of 13 tests.

Test #3 had instances of both speculative and non-speculative IC events. Tests

#12 and #14 are purely speculative in nature.

The other 13 tests escaped detection due to various reasons. One of the main

reasons is testbench randomization. Every test starts the processor with its own
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Table 5.3: Result of using an MAM to identify known tests with dense branch
refetches

# Preloaded Irritator CacheDisable Way1 1way model 2way model 

1 NS NS 

2 NS NS 

3 NS BO 

4 NS NS 

5 NS NS 

6 NS NS 

7 NS NS 

8 NS NS 

9 NS NS 

10 NS NS 

11 NS NS 

12     Y SP SP 

13     Y NS   

14       NS SP 

15 Y     

16 Y     

17 Y     

18 Y     

19 Y     

20   Y       

21 Y     NS   

22     Y NS   

23 Y NS   

24 Y NS   

25 Y NS   

26     Y NS   

  20 13 

BO BO 

NS NS 

SP SP 

=  Both 

=  Speculative 

=  Non-speculative 

processor configuration. This includes configuration registers within the units

(decode unit, bus unit, IC, DC etc), debug registers and performance monitors.

This changes both the initial state of the processor and its behavior. For example,

one of the two IC ways can be disabled. This effectively changes the IC from a

2-way set associative cache to a direct mapped cache. It also reduces the cache

size to a half. Cache misses and evictions are twice as likely as a result. These

changes have to be made to the IC model used to track test behavior. Otherwise,

they will yield pessimistic results.
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The third column of Table. 5.3 indicates if a test disables way1 of the IC

in its initial setup. 7 tests were set up to run with only one way enabled. By

disabling one way of our IC model, we were able to identify all 7 of these tests.

This includes test #12 which has already been identified. Naturally, all of the 13

tests that we detected using the 2-way cache model test positive when we use a

1-way cache model. By accounting for speculative execution and way disabling,

we were able to identify 20 of the 26 tests. Test #21 tested positive even though

it did not disable way1. This is because of the added optimism that comes with

using a direct-mapped IC model. By estimating test behavior using a 2-way IC

model or a 1-way IC model whenever disabled by the test, 19
26 = 73% of novel

tests can be identified.

6 tests escaped detection. 5 of the 6 tests were IC pre-loaded. This means

that instead of starting with an empty cache, these tests pre-loaded the IC at

the beginning of the test. Pre-loading improves verification coverage by reducing

test length. Tests often require long instruction sequences to set up interesting

behavior, before it can be triggered. Pre-loading makes it easier to trigger such

events. In this case, the IC is pre-loaded with code and the marker-arrays are

populated with pre-calculated marker information at the start of the test. This

has the effect of having already executed some of the code. In other words, even if

a branch is visited for the first time, it can be predicted correctly. This is possible
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since its branch markers were a part of the pre-loaded information. Since our

IC model is not pre-loaded, it fails to have the same effect. These tests can be

identified by pre-loading the IC model.

Of the 6 escaped tests, one test (test #20) registered coverage because of

a randomly injected error. Testbenches often introduce random errors into the

memory and logic to asses the ability of the design to handle errors. This is done

to simulate real-world effects of chip-level soft errors. These errors occur when

the radioactive atoms in the chip’s material decay and release alpha particles into

the chip. Because an alpha particle contains a positive charge and kinetic energy,

the particle can hit a memory cell and cause the cell to change state to a different

value. The atomic reaction is so tiny that it does not damage the actual structure

of the chip[35].

Generating new novel tests

As we have already seen, 26 of the 5000 simulated tests were novel. Which

means 26
5000 = 0.52% of the tests were novel. We then applied our test filter to 5000

unsimulated tests. The results of this test filtering is shown in Table. 5.4. We

identified 33 tests as most likely to be novel. RTL simulations showed that 10 of

the 33 tests were novel. The percentage of novel tests was raised to 10
33 = 30.30%

by test filtering, increasing the density of novel tests by a factor of 0.52
30.30 = 58.28.
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Table 5.4: Results of instruction cache and branch prediction model based test
filtering of 5000 tests

Total tests  Useful test %age useful tests 

Without filtering 5000 26 0.52% 

With filtering 33 10 30.30% 

Improvement 58x 

The reasons for 70% of the tests being false positives:

1. Speculative execution

We use branch history to trace the speculative path. This assumes that the

branch behaviors do not change. If new branches are discovered or branch

types change(static branch to dynamic branch conversion) in the current

iteration, the actual speculative path can be different from the estimation.

2. Modeling inaccuracies

The branch predictor behavior is estimated using simple rules, there is a 5%

chance of error. This error arises from inaccuracy in predicting the BPU

output of non-static branches.

3. Difference in implementation of way replacement

Some RTL optimizations cause minor deviations from ideal behavior. The

way calculation can therefore differ from RTL behavior under some circum-

stances.
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4. Branch marker information loss in L2 cache

Branch markers are destroyed if a cacheline is evicted from the L2 cache and

written to main memory.

5.2.7 Conclusion

73% of tests that caused re-fetches of dense branches could be identified pre-

simulation. We can also generate new tests with 30% confidence with a net in-

crease in the test density by a factor of 58.

On one hand, behaviors such as branch discovery (generating markers) can

be modeled deterministically. The branch predictor is based on sophisticated

neural network based algorithm. Though this can also be modeled accurately,

as seen in Sec. 5.2.6 the outcome can be estimated for 95% of branches using

simple rules. The latter is therefore a pragmatic solution. On the other hand,

non-determinism arises from microarchitectural behaviors that cannot be modeled

with limited data. The instruction pipeline, for example, is a large state-machine

that is practically impossible to model. Therefore, state dependent values such

as speculation depth have to be set parametrically. These modeling errors are

responsible for test escapes and false positives in the filtered tests.
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5.3 Causing TLB address collisions

5.3.1 Background

Without any kind of address translation caching, every memory access for

paged virtual memory logically takes at least twice as long, with one memory

access to obtain the physical address and a second access to get the data. To

avoid this overhead, processors rely on the temporal locality of code execution;

just like memory accesses, the address translations for the accesses must also

have locality. By keeping these address translations in a special cache, a memory

access rarely requires a second access to translate the data. This special address

translation cache is referred to as a translation lookaside buffer (TLB)[26].

4-way set 
associative 

128 entries 

      Tag      Physical Addr.                  Protection bits 

way3 
way2 

way1 
way0 

47             19 18                          12 11                          0 

             Tag  Index       Offset 

TLB entry 

Linear address 

Figure 5.4: 4-way set associative TLB
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N-way set associative TLBs pose an interesting challenge to random testing -

generating tests such that all N indices (sets) of the cache are exercised. Fig. 5.4

describes a 4-way set associative cache. Each TLB entry is first mapped to one

of the 128 indices (sets) present in the TLB structure. The index is a function of

the linear address and is defined by bits LA[18:12]. The entry is then placed in

one of the 4 ways corresponding to that index. This is determined by the TLB

way replacement policy. A TLB entry is like a cache entry where the tag holds

portions of the virtual address and the data portion holds a physical page address

and a protection field. The operating system changes these bits by changing

the value in the page table and then invalidating the corresponding TLB entry.

When the entry is reloaded from the page table, the TLB gets an accurate copy

of the bits. Because the architecture is capable of supporting several guests in

addition to the host operating system, the protection field includes an address-

space identifier (ASID) value. This value specifies the operating system to which

the linear address belongs. This allows multiple guests to securely share the same

virtual address space.

5.3.2 Objective

The objective of this experiment is to insert entries into the uppermost way

of the i-side TLB, i.e. way3. This has to be done in such a way that entries of
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all ASIDs are inserted at least once in way3. Since the ASID value is represented

by a 3-bit value, there are eight possible ASIDs, 0 through 7. The host (VMM)

assumes the ASID value of 0. The other 7 values are used by guests. The eight hits

do not necessarily have to come from the same test. By doing this, we verify that

multiple pages which share the same index (that belong to the same or different

address space), can be correctly inserted and retrieved from the TLB.

An address collision is said to happen when two entries compete for the same

index. For example, since the index is specified by LA[18:12], linear addresses

0xF3A654 and 0x2BA000 have an index value of 3Ah. To trigger address collisions,

a random test generator must place code in pages that map to the same index

(set). To hit way3, there has to be at least four entries that belong to the same

set.

This property is one of the issues we identified in Amex in Sec. 3.3.2. While

RPG was able to hit way3 of the TLB consistently, only a few Amex tests were

capable to doing this.

5.3.3 Why ISA-based filtering does not suffice

To select tests pre-simulation that can cause TLB way3 insertions, we should

be able to do the following:

1. Track TLB insertions and replacements
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2. Recognize implicit and explicit TLB invalidations

While the latter can be done from simulation trace data, the former cannot.

Similar to what was discussed in Sec. 4.5.5, this cannot be learned from the data

generated by a few simulations. Unless we know the actual TLB structure and

replacement policy, there are way too many hypotheses that need to be ruled

out. So the sheer volume of data required to learn the TLB miss function and

TLB replacement functions is enormous. However, if the TLB structure and

replacement policy are already known, predicting TLB activity becomes trivial.

Table 5.5: Advantage of having a TLB model to generate TLB address collisions

RTL behavior Provided by ISA sim Provided by MAM
TLB lookup Lookup address -

TLB hit/miss Lookup address TLB structure
TLB invalidation TLB replacement policy

Guest mode VMRUN
ASID change

Table. 5.5 summarizes the benefit of using a TLB model to filter tests. To

know when TLB look-ups happen, we should know how the TLB is organized.

Is the same TLB used for both 4K and 2M pages? If yes, is it a single level

or a multi-level lookup? Any time a new page is accessed, we need to calculate

its physical address. But to know whether or not a previous translation is still

available, we need to know the TLB architecture. The current ASID and the

ASID of the translated linear address are available in a trace.
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5.3.4 Using a TLB model

The i-side TLB for 4K pages is 4-way set associative with 128 entries in each

way. The fourth way is only written to when the lower three ways are already full.

Our objective is to generate tests that use all four ways of the TLB, especially

with guest addresses. Host translations are more frequent and easy to target.

A TLB insertion happens whenever an address translation is not already

present in the TLB and it results in a page-walk. The translation is saved in

the TLB to avoid expensive page-walks when accessing the same linear address

again. An ISA simulator maintains a copy of the memory and it can read the

page-table to perform linear to physical address translations. Because it lacks the

actual TLB implementation details, it does not model TLB insertions or evictions.

As we are dealing with nested-paging enabled SVM tests, table walks are

also nested. This means that every table-walk yields a guest-physical address, as

opposed to a host-physical address. So there is an added task of converting the

guest-physical address to a host-physical address to access memory(For details

see 3.2). Luckily, nested page walks are executed in entirety by the table-walker;

which is implemented in hardware. As a result, nested page-walks are performed

transparent to the i-side. Every time a guest linear address is issued to the table-

walker, it directly returns the host physical address (and does not return any
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of the intermediate guest-physical addresses). The i-side TLB only stores the

guest-linear address to host-physical address translation.

Maintaining a TLB model entails four tasks:

1. Identifying when an address translation is required

An address translation is required whenever a new page is accessed. So

crossing a page-boundary triggers a TLB lookup. This can happen due to

sequential (un-branched) execution or from a control transfer event such as

a branch, interrupt or exception. At any point in the trace, if one of these

events are detected, a lookup of the TLB model is requested. In this case,

since we are only interested in 4K pages, other TLB lookups are ignored.

2. Looking up the TLB model

Whenever a lookup is requested, the index of the requesting linear address

is calculated. All four ways are then checked at the indexed location. If

the tag of a valid entry matches with that of the lookup address, a hit is

reported. Otherwise, a new entry has to be filled in the TLB.

3. Inserting a new TLB entry on TLB miss

If a translation is not present in the TLB, the translation is calculated by

doing a table-walk. The result is then inserted into the TLB. The new entry
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is inserted at the lowest vacant way. If all four ways are valid, the least

recently used entry is replaced.

4. Identifying implicit/explicit TLB invalidations

From time to time, the TLB is flushed by the hardware or by software. Soft-

ware initiated TLB invalidations are referred to as explicit invalidations. For

example, the INVLPG instruction invalidates the TLB entry of a single page.

TLB flushes can also happen implicity. Updates to the CR3 control register

cause the entire TLB to be invalidated, except for global pages. All these

conditions must be detected and the TLB model has to be appropriately

flushed.

5.3.5 Pseudocode

The pseudocode for maintaining the TLB model is given below:
main ()

..

..

CALL clear_tlb

WHILE (next instruction != NULL)
//Update page start and size if a linear
//translation is present
IF (IsLinearTran) THEN

IF (LinearTran.pgsize is 4k) THEN
CALL do_tlb_lookup with CurrInstr.LinAd

and CurrInstr.Asid
END

END

// Determine if a TLB look-up is required
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IF ((IsTblWalk || IsMemtypechange)
&& TblWalk.pgsize is 4k) THEN
CALL do_tlb_lookup with CurrInstr.LinAd

and CurrInstr.Asid
END

//Clear TLB when required
IF (TLB invalidation is detected) THEN

CALL clr_tlb with Asid and IsClrGlobal
END

END
..
..

END

sub do_tlb_lookup (LinAd, Asid)
set index to LinAd[18:12]
IF (exists LinAd at index with correct Asid) THEN

return
ELSE

FOR i = 0 to 3
IF (entry is not valid) THEN

insert_tlb_entry (LinAd, Asid, i)
return

END
END
insert_tlb_entry (LinAd, Asid, lru_way())
return

END
END

One interesting fact to note here is that the architecture simulator maintains a

history of all translations in a unified (instruction and data) TLB of ’infinite size’.

It also tracks the current page boundary. It retrieves the physical address from

a past translation or by doing a table-walk. Both of these can be used as cues

to update the TLB. A table-walk in the trace indicates a guaranteed TLB-miss.

However, if a past translation is reused it is not necessarily present in the i-side
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TLB. This is because of the limited size of the TLB and the fact that the i-side

TLB is separate from the d-side TLB.

Since the actual physical address mapping is not relevant, we do not store

any physical addresses in the TLB model. Each entry only contains a tag, ASID

value, global bit and valid bit. This information is adequate to track the target

behavior.

5.3.6 Results

Identifying existing novel tests

We first applied our test selection process on 5000 Amex generated tests that

had been simulated, to identify known novel tests. The results are shown in Table.

5.6.

Table 5.6: Identifying known novel tests that i-side TLB way3 insertions

Test Without TLB CONTROL correction With TLB CONTROL correction
1 Y Y
2 Y Y
3 N Y

3 of the 5000 simulated tests are novel. On the first iteration, only two of

the three tests were identified. There were no false positives. There was one

false negative because of an RTL optimization in processing the TLB CONTROL

field. RTL behavior sometimes makes minor deviations from architectural behav-
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ior to improve performance, with no impact on software behavior. When this was

accounted for in the TLB model, all three tests were recognized.

Generating new novel tests

The second part of the experiment is generating new tests and identifying

novel tests before performing an RTL simulation. 18 tests were identified from

5000 tests. 12 of these were false positives. 8 false positives were caused by

an RTL optimization similar to that of handling the TLB CONTROL field of

the VMCB. There was one false positive resulting from TLB flushes induced by

testbench irritators (randomly inserted errors to simulate the effect of noise and

alpha radiation). Irritators also help increase TLB traffic by inducing errors and

forcing TLB flushes. Three false positives were traced to a filter bug.

Table 5.7: Results of TLB model based test filtering of 5000 tests

Total tests  Useful test %age useful tests 

Without filtering 5000 3 0.06% 

With filtering 11 6 54.54% 

Improvement 909x 

The result obtained from applying the corrected model and filter to 5000 tests

is shown in Fig. 5.7. Of the eleven detected tests, 6 tests are novel. So the

percentage of novel tests in the simulated test-set increased from 3
5000 = 0.06%

to 6
11 = 54.54%. This is an increase in the novel test density by a factor of 909.
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An interesting observation to be made here is that we did not have to make use

of speculative execution. This is because TLB translations operate at the page

level, as opposed to branch instructions which operate at the instruction level. So

the odds of a entering a new page due to bad-path execution is much lower than

forcing a new cacheline fetch. For 4K page, for a cacheline width of 64 bytes, we

are 4 ∗ 1024
64 = 64 times more likely to generate an IC fetch than to cause a TLB

insertion.

5.3.7 Conclusion

From a pool of 5000 tests, 100% of the novel tests were identified by using

a TLB model to track TLB transaction. Of the generated tests, 54.5% of the

selected tests were novel. We achieved a 909x increase in novel test density.

Since this behavior is more deterministic compared to the first example, we are

able to identify novel tests in past regressions with higher accuracy and generate

new tests with higher confidence.

5.4 Summary

In this chapter, we demonstrate a non-intrusive methodology of using microar-

chitectural models to filter tests. We use extrapolate ISA trace data using MAMs
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to closely approximate RTL behavior. We use two different coverage points defined

at the microprocessor core level to illustrate this idea. Both coverpoints have less

than 1% likelihood of being hit using the current random test generation setup.

The targeted events cannot be identified by applying any kind of ISA simulation

trace based rule learning methods because of their high learning complexity.

In the first case, using an IC model, simplified BPU model and a heuristic to

approximate the speculative nature of code execution, we were able to increase

novel test density by a factor of 60. The second example was chosen to demon-

strate that this approach can be used to address a limitation of Amex recognized

in Chapter 3. Using a TLB model, the highest way of the i-side TLB was pop-

ulated with guest translations. Our filtering methodology enables us to generate

tests using an existing Amex template and increase the density of novel tests by a

factor of over 900. Both experiments were conducted on AMD’s latest x86-based

microprocessor core.
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Conclusion and Future work

6.1 Conclusion

This dissertation evaluates the feasibility and effectiveness of developing prac-

tical data learning based solutions for functional verification, more specially, con-

strained random verification. Our proposed methodologies were developed based

on the verification environment of a commercial x86 microprocessor and can be

used as a complementary approach to existing verification flows without disrup-

tions. We suggest practical methodologies to achieve full design closure based

on existing verification plans. The suggested approaches include techniques that

verification engineers can use to understand the deficiencies in their existing setup.

In Chapter 2 and Chapter 3, we explore the test generation problem. We

study the design and use of two in-house random test program generators - Amex

and RPG. Based on our understanding of their design, we discuss the differences
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in their test generation capability. We then explore possibilities of reducing test

redundancy arising from the use of multiple exercisers based on microprocessor

core-level verification of SVM nested-paging. We propose a novel flow of compar-

ing two exercisers based on their functional coverage. We show experimentally,

some of the differences observed in the working of the two exercisers. We use RPG

as a baseline to identify relative deficiencies in Amex. Based on the functional

coverage of 148 coverpoints, we conclude that Amex is superior to RPG in test-

ing nested-paging behavior. It has better coverage than RPG across all but two

coverpoints. Amex cannot be constrained to hit these coverpoints reliably. We

explored the possibility of an external test filter to increase the density of these

novel (targeted) tests.

In Chapter 4 we propose a test filtering methodology to select novel tests prior

to RTL simulation based on ISA simulation traces. The filters are external to the

test generators and independent of their design. Experimental evidence indicates

that trace data is inadequate by itself to identify non-architectural behaviors such

as speculative code execution. We explored the use of machine learning to ex-

tract rules (testing knowledge) from existing tests to identify novel test behavior.

Experimental data shows us that this approach performs well, except when used

to target microarchitecture intensive properties. For complex microarchitectural
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properties, it is impractical to extract accurate models from simulation data using

machine learning algorithms.

In Chapter 5, we propose to use manually created microarchitectural models

to impart testing knowledge into test filters. We illustrate the use of microarchi-

tectural models to create tests filters describing complex design rules. We target

design behaviors that occur with a frequency of less than 1% despite using best

known test template configuration. We show experimentally that the density of

novel tests can be increased by 60x to 900x by applying this framework. This

includes a coverpoint that Amex could not be constrained for; proving that MAM

based filtering can be used to target behaviors that test generators cannot be

constrained accurately for.

6.2 Future work

6.2.1 Using performance models for test filtering

With the increasing size and complexity of SOCs, the interaction between the

hardware structures built from billions of transistors is getting harder to pre-

dict through simple simulation or analytical models. Performance models have,

therefore, become a critical tool in hardware design. They allow developers to

study design alternatives and predict the performance of processors and systems
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long before actually building them. Today, design performance teams work along-

side microprocessor RTL and verification to develop software models to accelerate

hardware development. These models, implemented in programming languages

or hardware description languages, can simulate programs to estimate design per-

formance and correctness with considerable accuracy.

The two most commonly used models for performance estimation are

• Trace driven simulation model (TDM)

• Execution driven simulation model (EDM)

Trace-driven simulation

In trace-driven simulation, a complete execution trace is collected from running

a performance benchmark. A real machine or functional simulator is used to

execute a benchmark program/software in the native ISA binary. This binary is

modified so that as each instruction is executed, information such as the control

path values, instruction op-code, register value changes, memory operations and

branch information is written out in a trace file. Traces are architecture agnostic;

they can be run on any machine. They can either be used directly, to evaluate

instruction set characteristics, or as input to a functional simulator to predict the

performance of different architectural variants. Trace-driven simulations are most

frequently used to study the behavior of memory architectures[33, 42].
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Since a trace driven simulator doesn’t actually execute code, it has a very low

runtime. The downside of this is that it is not cycle-accurate. Traces lack timing

information; they cannot model design behaviors like interrupts handling, probing,

and locks. A timing simulator is used to generate timing information based on

microarchitecure. Traces are also devoid of bad-path information. So the effects

of speculative execution cannot be gleaned from a trace-driven simulation.

Execution driven simulation

In contrast to TDMs, in execution-driven simulation, the execution of the pro-

gram and the simulation of the architecture are interleaved[17]. The simulator

contains a functional simulator that emulates the target ISA. Simulating the ar-

chitecture during the actual execution of a program permits us to determine the

effects of the architecture on the execution of the program with a high degree of

accuracy. Execution driven simulation provides timing information and bad-path

information. There is no dilation in the program execution time, as the workloads

are not modified for trace generation[42]. SimpleScalar[7] and GEMS[34] are some

of the popular execution driven simulators.

167



Chapter 6. Conclusion and Future work

Using EDMs for test selection

Execution driven simulators contain a great deal of implementation specific

details that ISA simulators lack. This, combined with its ability to run ran-

dom(exerciser generated) stimuli, makes it an excellent candidate for use in test

filtering. The result of this simulation is a very rich dataset that can be used for

test selection. Because the interaction of the stimulus with the microarchitecture

is captured, this provides a more accurate approximation of test behavior in com-

parison to ISA simulation. Further, execution-driven simulation has a very low

run-time. Simulation of 10,000 instruction on a single core takes approximately

120s(CPU time) on the EDM model, as opposed to approximately 20,000s for an

RTL simulation.

Though such a filtering mechanism is not 100% accurate, it increases the odds

of hitting the target behavior by two to three orders of magnitude. The ability

to estimate test behavior at a fraction of simulation time using an existing design

model can reduce coverage closure effort and time. Since performance models are

developed alongside RTL every project, this is a very pragmatic approach to test

selection. Preliminary experiments on this approach have shown very promising

results.
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6.2.2 Extending MAM based filtering

Microarchitectural model based filtering covers a wide gamut of design behav-

iors. This approach is, however, limited by our inability to do true speculative

execution. Currently, instructions on the bad-path are not decoded or executed.

Instead, we estimate bad-path behavior by using branch history. This restricts

us to estimating the behavior of code that has been previously executed. Code

which has not been executed before does not have a branch history, forcing us to

assume that there are no branches. What is required is the ability to decode and

execute instructions every time a branch is encountered. This entails manually

steering the ISA simulator. For example, when we encounter a conditional jump

for the first time, if it will be taken, we should be able to:

• Assume it will not be taken, save state and execute instructions down the

bad path

• Stop execution wherever required and retreat to the branching instruction

• Resume execution down correct path.

This gives us the exact state changes caused by bad patch execution. However,

architecture simulators do not support such customizations. Additionally, this

limits the use of our methodology to the i-side. Without the ability to decode and
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execute instructions at will, data-cache activity which is transparent to software

is hard to approximate.

6.2.3 Identifying temporal properties

Temporal properties refers to coverpoints that consist of two or more RTL

events with a specific timing dependency. The exact time of occurrence of RTL

events cannot be calculated, unless very complex MAMs are developed. This is

because our test selection approach is based on architecture simulations, which

are not cycle accurate simulations.

Despite this being a limitation, the MAM based approach is not completely

ineffective. Our approach allows us to verify that tests contain all the events that

comprise the targeted behavior. The occurrence of the target behavior can then

be bounded to a window between the retirement of two consecutive instructions.

For example, suppose we want to trigger a bus contention caused by requests

coming from two modules in the same cycle. We can ensure that both modules

generate a request within the same retirement window.
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Appendix A

Pseudocodes

A.1 Approximation of speculative code execu-
tion behavior

// This subroutine returns the target cacheline linear address of speculatively
// executing code from a given linear address. This is done by searching the
// branch history for branches after the starting address. The return address
// is guaranteed to be outside of the current cacheline. If a loop is found,
// it returns the next (sequential) cacheline

sub calc_spec_exec_tgt (CurrLinAd)
SET TargetLinAd to zero
// Find the closest 64-byte-aligned boundary
SET CurrCL = CL(CurrLinAd);

// Finds the first branch after the CurrLinAd
// in the current cacheline

FOR EACH (branch in current cacheline)
// Look for branches starting from CurrLinAd
IF (CurrBrn.LinAd< CurrLinAd) THEN

NEXT
// if a branch was taken previously,
// assume it will be taken again

IF (CurrBrn.Type !˜ "not_predicted"
and Prev1_IsBrnTkn) THEN

SET FirstBrnInCL = CurrBrn.LinAd
SET TgtLinAd = CurrBrn.Prev1Tgt
BREAK

// If there are no branches, target LA is the next cacheline
IF (TgtLinAd == 0) THEN

TgtLinAd = CurrCL+ 64
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// If we loop back to the same cacheline,
// find out if there are other branches

SET LastBranch to zero
IF (CL(TgtLinAd) == CurrCL) THEN

IF (TgtLinAd <= CurrLinAd) THEN //Ensure no infinite loops
FOR EACH (branch in current cacheline)

IF (CurrBrn.LinAd > FirstBrnInCL)
SET LastBranchInCL = CurrBr.LinAd
SET TgtLinAd = CurrBrn.Prev1Tgt

IF (LastBranch != 0) THEN
// A smaller fwd jmp within a bkwd
// jmp can cause an infinite loop
IF (TgtLinAd < FirstBrnInCLl) THEN

SET LastBranch to zero
ELSE

// There is a branch between the
// target and the source that
// hasn’t been discovered yet.
// So it appears like an infinite
// loop We assume naively that it
// will take us to the next cacheline

RETURN CurrCL + 64

// We did find a branch that takes us
// out of the cacheline
IF (CL(LastBr) != CurrCL) THEN

RETURN TgtLinAd
// If the branch keeps us in the current CL,
// ensure its not backward
ELSIF ( CL(TgtLinAd) == CurrCL && TgtLinAd

< LastBracnh) THEN
// Skip branch if it is backward
RETURN calc_spec_exec_tgt

(FirstBrInCL + 1)
ELSE
// Fwd jmp within cacheline. Find another
// way out

RETURN calc_spec_exec_tgt(TgtLinAd)
ELSE
// Fwd jmp within cl. Find another way out

RETURN calc_spec_exec_tgt(TgtLinAd)
ELSE // Target is some other cacheline

RETURN TgtLinAd

END
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