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ABSTRACT OF THE DISSERTATION 

 
Processing Stimuli over Time: Musical Modes and Audiovisual Binding 

 
By 

 
Daniel Mann 

 
Doctor of Philosophy in Psychology 

 
 University of California, Irvine, 2014 

 
Professor Charles Chubb, Chair 

 
 
 

This thesis covers three experiments related to processing rapid sequences of 

auditory and visual stimuli. Experiment 1 builds on the discovery that 70% (30%) of 

listeners perform near chance (perfectly) in classifying rapid sequences of tones (tone-

scrambles) as major vs minor. Experiment 1 investigated the relationships between 

performance in various musical tasks, including the major/minor tone-scramble task. Skill 

in (1) judging the direction of pitch-change between two successive tones and (2) detecting 

the presence of an out-of-scale note in a melody were necessary but not sufficient for skill 

in classifying major vs minor tone-scrambles. These results suggest that skill in classifying 

major vs minor tone-scrambles requires a cognitive asset beyond those required for the 

interval-direction and scale-violation tasks. Experiment 2 tested how rhythm and pitch 

interact to control perceived majorness vs minorness.  Participants classified three 

different types of tone-scrambles as major vs minor. All comprised 15 tones. In one 

condition, tone-scrambles had no rhythmic variation; in a second condition, every 5th tone 

was twice as long as the other 12 tones; in a third condition, every 5th tone was as long as a 

standard tone but was followed by a rest. Rhythmically accentuated tones influenced 
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judgments both more strongly and differently than unaccentuated tones.  Moreover, the 

final tone influenced judgments differently than either standard tones or other 

rhythmically accentuated tones. Strikingly, when its final tone was a tonic, a tone-scramble 

was substantially more likely to be judged as “major.” Experiment 3 explored how people 

can use top-down attention to bind information about brightness and loudness. 

Participants strove to classify rapid streams of disks varying in brightness presented 

simultaneously with noise-bursts varying in loudness in accordance with different 

attention instructions. Participants were able to attend to loudness only and ignore 

variations in brightness, but they had more trouble attending to brightness only and 

ignoring loudness. The various attention filters achieved by participants demonstrated that 

top-down attention can powerfully modulate the binding of loudness and brightness in 

dynamic displays. 
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CHAPTER 1: The ingredients for major/minor mode discrimination: 
pitch-height sensitivity, detecting a scale-violated melody, and more. 

Abstract 

Composers of Western music use major and minor modes to convey emotion 

assuming that nearly everyone is sensitive to the difference between modes. Chubb et. al 

2013 discovered approximately 70% of people cannot discriminate major/minor modes in 

rapid sequences of tones or tone-scrambles. The remaining 30% achieved near-perfect 

performance in the major/minor discrimination task. Years of musical training only 

moderately correlated with performance in this task. The present study investigated what 

auditory abilities are necessary and/or sufficient to be sensitive to the major/minor 

discrimination task. Four tasks were tested: the Chubb et. al (2013) major/minor task, a 

pitch-height-comparison task, a scale-violated melody detection task, and a pitch-memory 

task. Additional data was collected regarding native language, musical experience and start 

of musical training. Native speakers of tonal languages performed better at the pitch-height 

comparison task. Musical training was moderately correlated to major/minor task 

performance, but start of musical training did not correlate with any of our tasks.  The 

abilities to compare pitch-height and detect scale-violated melodies were necessary but not 

sufficient for major/minor task ability. These results provide part of the major/minor 

sensitivity puzzle, but there are certainly other features that separate the low- and high-

sensitivity major/minor task groups. 
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The difference between major and minor musical modes is fundamental to Western 

musical theory and practice. Major and minor musical modes are purposefully used in 

music to establish particular moods; major modes are considered “happy” sounding and 

minor modes are considered “sad” sounding. These perceived emotional qualities of the 

musical modes are mysterious because there is no evident reason why certain 

combinations of notes should connotate emotions without a clear reference to anything 

with emotional content. Contrary to the expectations of music theorists, most people 

cannot discriminate major/minor modes even amongst musicians (Halpern 1984, Halpern 

1998, Leaver & Halpern 2004). 

Chubb et al. (2013) used a new class of stimuli called tone scrambles to show that 

major versus minor musical modes are not as clearly distinct for many listeners as music 

theory presupposes. The tone scrambles were composed of a rapid, randomly ordered 

sequence of pure tones drawn from either a major or minor scale. The major (or minor) 

tone scramble is composed of equal numbers of the low tonic, the major (or minor) third, 

the dominant and the high tonic. The main result of the Chubb et al. paper was a strikingly 

bimodal distribution of task performance in which the modes centered around chance and 

perfect performance. This reflected the existence of a distinct high-performing group and 

low-performing group in this major/minor discrimination task. Interestingly, Chubb et al. 

found only a modest correlation between years of musical training and performance in 

classifying major vs minor tone scrambles. Interestingly, many of the listeners in the low-

performing group of the Chubb et al. study did express that music was important to them. 

Many participated in musical groups of various sorts and/or spent a great deal of time 

listening to music. It is unclear how and why these groups are separated. 
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It is possible that low-performers in the major/minor task are analogous to 

colorblind observers in that they lack a dimension of musical sensitivity that high-

performers possess. Under this scenario, high-performers would have a generally richer 

experience of music than low-performers, and the low-performers might have a deficit in 

their auditory processing that would limit their musical pursuits.  This is not the only 

possibility, however. Intervallic relationships and rhythmic structure establish much of the 

feel/emotional quality of music (e.g., Jackendoff & Lerdahl, 2006; Krumhansl, 2002; 

Lerdahl, 2009). By design, the tone scrambles used in the Chubb et al. study are devoid of 

all of the higher-order structural elements of actual music that enable listeners to extract 

its emotional meaning.  It is possible that high-performing listeners differ from low-

performing listeners in the major/minor task only in being able to extract musical meaning 

from such structurally impoverished musical stimuli. Under this scenario, participants who 

perform poorly at the tone-scramble classification task can experience the full emotional 

meaning of actual music without any issues. 

The Present Experiment 

This project investigates the relationship between major/minor mode sensitivity 

and various other sorts of pitch & musical abilities.  In addition to the major/minor task 

from Chubb et al, listeners will be tested in three other tasks. One will test pitch memory, 

another will test the ability to compare pitch height, and the third will test the ability to 

detect a scale-violated note in a melody.  

We will assess the dependencies between performance in the major/minor task 

with performance in the other three tasks. We say (1) task A is necessary for task B if any 

listener who performs poorly at task A also performs poorly at task B and (2) task A is 
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sufficient for task B if any listener who performs well at task A also performs well at task B. 

The primary questions of interest are: (1) Are any of the other three tasks necessary 

and/or sufficient for the major/minor task? And (2) Is the major/minor task necessary 

and/or sufficient for any of the other tasks?  

We shall also be alert for higher order dependencies.  For example, it may turn out 

that any listener who performs poorly at both the pitch-memory task and also the scale-

violated melody-comparison task will also perform poorly at the major/minor task.  Such a 

result would suggest that skill in at least one of the pitch-memory task or the scale-violated 

melody-comparison task is necessary for a listener to demonstrate skill in the major/minor 

task. By clarifying the conditional dependencies that hold between these four tasks, we 

hope to gain insight into the functional architecture of major/minor mode sensitivity. 

In addition, we will investigate the relationship between task performance and 

three other variables. We will ask participants to report (1) their years of musical training, 

(2) the age at which their musical training (if any) began, and (3) their native language. 

Years of musical training is an interesting factor to analyze since there were only moderate 

correlations with major/minor task performance in the Chubb 2013 paper. There is 

evidence that development of absolute pitch (AP) depends on receiving appropriate 

musical training during a critical acquisition period before about 9 years of age (Miyazaki & 

Ogawa, 2006; Russo et al. 2003; Sacks, 2007).   This raises the possibility that skill in the 

pitch comparison task may show some dependency on the age at which musical training 

began. 

Previous findings show that native speakers of tonal languages are more sensitive to 

pitch-height than native speakers of non-tonal languages (Bidelman, 2013; et al., 2006; 
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Giuliano et al., 2011). Due to these results, we expect that native speakers of tonal 

languages are likely to perform better in the pitch-height comparison task than speakers of 

non-tonal languages.  A key question is: Do native speakers of tonal languages tend to 

perform better in the major/minor task than speakers of non-tonal languages?  Such a 

finding would support the claim that skill in the major/minor task depends on exposure to 

the right sort of training early in life. 

We expect a bimodal distribution of performance in the major/minor task 

(replicating the results of Chubb et.al (2013)), with more than half of our participants 

performing near chance and the rest performing near perfectly. 

The major tone-scrambles differ from the minor ones in containing 8 B’s instead of 8 

B-flats.  If a listener were able to (1) remember the difference between a B and a B-flat and 

(2) determine whether a given tone-scramble contained B’s vs B-flats, then he/she would 

be able to perform the major/minor task successfully.  If such a strategy predominated in 

the major/minor task, then we might expect skill in the pitch memory task to be necessary 

for skill in the major/minor task.  However, this memory-based strategy does not seem to 

predominate among listeners skilled at the major/minor task.  The memory-based strategy 

hinges on detecting the slight difference in pitch-height between the B’s vs the B-flat’s. 

However, skilled listeners do not experience the qualitative difference between major vs. 

minor tone-scrambles as a subtle difference in average pitch height; rather, the difference 

they experience (which leads them to say that major tone-scrambles sound “happy” 

whereas minor ones sound “sad”) seems to be driven not by the B’s vs the B-flats in 

isolation but rather by the intervals formed between the tonic G’s, the dominant D’s and the 
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B’s vs the B-flat’s.   We therefore do not expect skill in the pitch memory task to be 

necessary for skill in the major/minor task. 

Next, we anticipate that skill in the pitch-height-comparison task ability will be 

necessary for the pitch-memory task. If a listener is unable to discern whether a tone Y 

played immediately after a given tone X is higher or lower than X, it seems unlikely that the 

listener will be able to adjust the second tone Y to match the remembered tone X. Also, if 

the pitch memory strategy were employed in the major/minor task, skill in pitch-height-

comparison would also be crucial to success in the major/minor task since the listener 

must be able to discern the difference between a B-flat and a B to use this strategy.  

The scale-violated melody-comparison task (borrowed from Peretz et al., 2003) is 

not really a test of memory.  Although the listener is asked to judge whether two successive 

melodies are identical or different, the first melody presented to the listener on a given trial 

always obeys the standard structural rules of western music, and whenever the second 

melody differs from the first, it differs in a single note that violates these rules by departing 

dramatically from the diatonic scale established by the melody.  Thus, the scale-violated 

melody-comparison task is not a test of memory so much as a test of the sensitivity of a 

listener to departures from the musical context (i.e., the mode) that has been established by 

the melody. 

With this said, it is important to recognize that the establishment of a musical 

context is itself a process that requires memory.  A sense of (1) the scale used by the 

melody and (2) the notes emphasized as centering the melody can only be accrued as the 

melody unfolds in time.  Does this process use the same mnemonic resources as the pitch-



7 
 

memory task?  If so, then we might expect skill in the pitch-memory task to be necessary 

for skill in the scale-violated melody-comparison task. 

We anticipate that a listener who cannot sense the mode of a melody will also have 

difficulty discriminating major from minor modes.  Therefore, we expect listeners who 

perform poorly in the scale-violated melody-comparison task to also perform poorly in the 

major/minor task.  On the other hand, there may exist listeners who (1) are able to sense 

the “clunker” notes that differentiate ill-formed melodies from their well-formed 

counterparts in the scale-violated melody-comparison task, yet who (2) cannot tell the 

difference between major vs minor ton-scrambles.  After all, the notes occurring a tone-

scramble—either a major one or a minor one—are all drawn from a single diatonic scale. 

Method 

Participants 

112 undergraduate students were recruited from the Social Science Human Subjects 

Pool at the University of California, Irvine. Participation in the experiment was awarded 

with extra credit applied to one of their courses. 

Apparatus 

Participants worked on one of three PCs running Windows 7. The stimulus 

presentation and data collection were managed by a MATLAB program. All of the auditory 

stimuli were presented over headphones adjusted for comfort by each listener individually. 

Conditions & Procedure 

Each listener was tested in four auditory tasks: (1) the Major/Minor classification 

Task used by Chubb et al., 2013, (2) a Pitch-Memory Task, (3) a Pitch-Height-

Comparison Task, and (4) a Scale-Violated Melody-Comparison Task. 
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Major/Minor Task: The stimuli in this task were created identically to the tone 

scrambles from Chubb et al (2013). The tone scrambles were each composed of 32 tones 

from the G5 to G6 octave. Each scramble contained 8 G5s, 8 Ds, 8 Bs for the major scrambles 

(or B-flats for the minor scrambles), and 8 G6s. In music theory terms, each stimulus 

contained 8 low tonics, 8 dominants, 8 major (or minor) thirds, and 8 high tonics. Each tone 

was 65ms long with a raised-cosine window to prevent the clicking sounds that would 

occur with abrupt onsets and offsets of each tone. The entire tone-scramble lasted 

approximately 2 seconds. 

Participants first heard 8 sample stimuli. The examples alternated between major 

and minor tone-scrambles. When each example played, it was labeled as either “happy 

(major)” or “sad (minor).” After hearing the examples, the participants were asked to 

classify each tone scramble they heard as either “happy (major)” or “sad (minor).” The 

participant entered his/her response by pressing either a “1” or “2” on the keyboard. Trial-

by-trial feedback (“correct” or “incorrect”) was provided to enable participants to optimize 

their classification strategy. Participants ran 4 blocks of 50 trials each. A message after each 

block displayed the percent correct achieved by the participant in that block.  

Pitch-Memory Task: Each stimulus was a 500 ms tone ranging from 300 – 2,000 Hz 

with the same raised-cosine window as the tones in the Major/Minor task. For each of 20 

trials, the stimulus tone was played followed by a 2 second pause before participants could 

respond. After the pause, participants adjusted a slider to match to the stimulus tone in 

pitch. Each time the slider was adjusted, a new 500ms tone (again ranging from 300- 2,000 

Hz) was played. Once the participant felt confident in their selection of the matching 

response tone, they clicked a button to advance to the next trial. Trial-by-trial feedback was 
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displayed as the percent-of-an-octave difference between the stimulus and response tones. 

In other words, an entire octave difference was 100% off from the stimulus tone. An 

example feedback statement was “You were 5% above (or below) the original tone.” This 

line of feedback was displayed for 2 seconds followed by a 1 second pause before the next 

stimulus was played. 

Pitch-Height-Comparison Task: In this task, participants were asked to judge 

whether the second of two tones was higher or lower in pitch than the first tone. Each tone 

had a duration 500ms long ranging from 300-2,000 Hz. There was a 2 second pause 

between the two tones. Before making any judgments, participants listened to 4 examples 

of tone-pairs. There were two examples in which the second tone was higher in pitch and 

two examples in which the second tone lower in pitch. After hearing the examples, 

participants began the actual experiment: on each trial, a pair of tones was played; then 

participants responded with a “1” if the first tone was higher in pitch than the second or a 

“2” if the second tone was higher in pitch than the first tone. Trial-by-trial feedback 

indicated whether or not the participant was correct or incorrect. 

This task used two interleaved “3-down, 1-up” staircases to adaptively adjust the 

difficulty of the pitch comparison by decreasing (increasing) the difference between the 

two tones to make the task harder (easier). Each participant ran 2 blocks of 50 trials for 

this task. 

Scale-Violated Melody-Comparison Task: This task was acquired with permission 

from the Montreal Battery of Evaluation of Amusia (MBEA) (Peretz et al., 2003). In Peretz 

et al (2003), this particular task was called the “scale-violated condition.” Performance in 

this task was highly correlated with all the melodic tasks in the MBEA. Participants were 
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asked to judge whether two melodies, melody1 and melody2 were the same or different.  All 

of the melody1’s used in these stimuli were well-formed melodies typical of western music 

as opposed to random sequences of tones. If melody2 differed from melody1, then melody2 

contained one note that was out of the scale established by melody1 and the remainder of 

the notes in melody2.  Each of melody1 and melody2 lasted approximately 5 seconds. 

On every trial, the participant heard a warning beep, then melody1, then a two 

second pause, then melody2; the participant then responded with a “1” if the melodies 

sounded the same or a “2” if the melodies sounded different. Participants ran one block of 

31 trials in this task. The block contained equal numbers of trials in which melody2 was 

identical to vs different from melody1 plus one catch trial in which the melody2 consisted of 

random notes. If the participant missed this catch trial, then their data will not be 

considered (this procedure adheres to rule used in the original MBEA). 

Procedure. Each participant completed all four tasks in the order assigned by a 4x4 

Latin square for each computer. Participants were allowed to adjust the volume of the 

stimulus presentation to be comfortable. Participants were allowed to take breaks at any 

time, and they were asked to stay quiet with no humming (humming could have been used 

to cheat in the pitch-memory task). For each participant, the entire experiment took 

approximately 40 to 50 minutes. Prior to testing, each participant reported their native 

language, years of musical experience, and the age at which they began musical training (if 

any). 
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Results 

Dependent Variables 

Major/Minor & Scale-Violated Melody-Comparison Tasks. Instead of focusing on 

percent correct, we will calculate d’ from Signal Detection Theory (Green & Swets, 1966) 

for the Major/Minor and Scale-Violated Melody-Comparison Tasks. The d’ measure gives a 

purer estimate of stimulus discriminability than percent correct (which fails to take into 

account differences in the decision criteria used by different participants): 

 

𝑑′ = Φ−1 (
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠
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(1.1) 

 

where Φ−1 is the inverse of the cumulative Gaussian distribution.  

Pitch-Memory Task. The data for the Pitch-Memory Task is a distribution of 

differences between the stimulus tone and the response tone in which participants selected 

as their match for each trial. As mentioned above, these differences will be calculated as 

percent of an octave above or below the stimulus tone. We will observe the RMSD for (Root 

Mean Squared Deviation) of the response from the target response. The RMSD metric is 

described as: 
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(1.2) 

where t is the number of trials and dk is the percent of an octave difference between the 

stimulus and response tone on trial k. The first two trials were considered training trials, so 

18 trials were analyzed for each participant. 
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Pitch-Height-Comparison Task. The Pitch-Height-Comparison task analysis will 

require fitting psychometric functions for each participant. We will use a Weibull function 

fitting procedure to estimate the absolute value of the pitch difference for which the 

participant would achieve 82% correct in the pitch-height-comparison task. The 

cumulative distribution of the Weibull function is shown below: 

Ψ = 𝑚𝑖𝑛 +  (𝑚𝑎𝑥−𝑚𝑖𝑛 ) ∗ (1 − 𝑒−(
𝑥
𝐴
)
𝐵

) 
 

(1.3) 

where min is the minimum probability correct, max is the maximum probability correct, x 

is the absolute value of the difference between the two pitches presented on a given trial, A 

is the threshold parameter, and B is the shape parameter. In the current case, we take min 

= 0.5 (the probability of a correct response by guessing) and max = 0.98 (to cover the 

possibility of a finger error even when the participant knows the correct response).  The 

two free parameters of the Weibull function will be estimated using a Markov Chain Monte 

Carlo (MCMC) procedure in MATLAB. We will run 10000 samples of the MCMC procedure 

with 5000 trials of burn-in. 

Major/Minor Task Replication 

Performance in the Major/Minor Task replicated the bimodal result found in Chubb 

et. al (2013) (see Figure 1.1). 
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Figure 1.1 Major/Minor Task Replication. In the last 50 trials of the Major/Minor Task, 
performance is bimodal the proportion correct (left) figure. There is an artificial peak at 
d’=3.5 because d’ estimates above about 3.5 cannot be accurately estimated by our data. 
Thus, we imposed is a ceiling for d’ scores at 3.5. 

 

Major/Minor Groups 

The remainder of the results section will use the following abbreviations: MM = 

Major Minor Task, PHC = Pitch-Height-Comparison Task, SVMC = Scale-Violated Melody-

Comparison Task, PM = Pitch-Memory Task. 

For the following analyses of performance between tasks, we used the data from 

103 participants. 9 participants were removed from this dataset because they either were 

flagged on the catch trial in the SVMC (4 participants) or there was extremely poor 

performance that suggested they were not paying attention in at least one of the tasks (5 

participants). 

One of our main questions was if people in the low- versus high-sensitivity group of 

Major/Minor Task (MM) would differ in their performance in the other 3 tasks. 

Participants with  d’ < 2 were placed in the low-sensitivity group, and participants with d’ 
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>= 2 were placed in the high-sensitivity group. A d’ score of 2 translated to approximately 

84% correct. By this group assignment, 73 participants were in the low-sensitivity group 

and 30 participants were in the high-sensitivity group. Figure 1.2 shows the difference 

between low- and high-sensitivity MM groups. 

 

Figure 1.2 Task Performance Grouped by Major/Minor Sensitivity. This plot shows distinctly 
different 3-dimensional clouds for our data separated by low- and high- sensitivity to the 
Major/Minor Task (MM). For each axis, the red X indicates poor performance and the green 
check-mark indicates good performance. Each axis was natural-log transformed to make 
the distributions more normal. The Scale-Violated Melody-Comparison Task (SVMC) axis 
plots d’ scores. The Pitch-Memory Task (PM) axis plots the RMSD of the distribution of the 
differences between stimulus and response tones. The Pitch-Height-Comparison (PHC) 
Task axis plots the threshold of accurate pitch-height-comparisons. The two high-
sensitivity MM participants (blue dots) outside of the black circle are significant univariate 
and multivariate outliers.  
 

In Figure 1.2 we find that the high-sensitivity MM group performs well on the Scale-

Violated Melody-Comparison Task (SVMC) and the Pitch-Height-Comparison Task (PHC), 
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but this group has a wide variation of Pitch-Memory Task (PM) ability. The low-sensitivity 

MM group shows a wide range of ability for the other 3 tasks. 

A one-way multivariate analysis of variance (MANOVA) was run to determine the 

effect of major/minor sensitivity on performance in the other three tasks. Two groups of 

major/minor sensitivity were assessed: high-sensitivity and low-sensitivity. The three 

dependent variables were performance on the PHC, PM, and SVMC. 

Initially, our data failed some assumptions of the MANOVA. To begin with, the SVMC 

was normally distributed, as assessed by Shapiro-Wilk test (p > .05), but the data from the 

PHC and PM were not normal- Shapiro-Wilk test (p<.001). To make the PHC and PM 

datasets more normal, a natural-log transformation was performed. After this 

transformation, there were two outliers that were both univariate and multivariate, as 

assessed by boxplot and Mahalanobis distance (p < .001), respectively. These outliers were 

removed. There was no multicollinearity (PM/PHC r = .447, p < .001; SVMC/PHC r = -.328, 

p = .001; SVMC/PM r = -.189, p = .059). Our test violated the assumption of homogeneity of 

variance-covariance matrices, as assessed by Box's M test (p < .001). Even after 

normalizing the DVs with natural-log transformations and removing outliers, and the 

MANOVA revealed the same significant result as a MANOVA using original data set 

(untransformed, including outliers).  Since the MANOVA test is robust to violations of many 

of these assumptions, we report the results from the MANOVA using the original data set. 

The differences between the low- and high- MM sensitivity groups on the 

combined dependent variables was statistically significant, F(3, 99) = 5.476, p = .002; 

Pillai’s Trace = .142; partial η2 = .142. The Pillai's Trace test was used because it is more 
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robust and recommended for unequal sample sizes and a statistically significant Box's M 

result. 

Testing the violation of normality: An independent samples Mann-Whitney U test 

was performed on the untransformed data since it has weaker assumptions (e.g. no 

assumption of normality and outliers are okay) than t-tests; this tests the null hypothesis 

that the distributions are the same across the two groups. The Mann-Whitney U test gave 

the same basic results of the independent-samples t-tests listed below; thus, we report the 

results from the independent-samples t-tests. 

Data are mean ± standard deviation unless otherwise stated. Follow-up unequal 

variance t-tests showed that PHC thresholds were lower (better) for high-sensitivity 

MM participants (7.50 ± 23.51) than low-sensitivity MM participants (39.57 ± 57.66 ), a 

statistically significant difference of 32.07 percent of an octave (95% CI, 16.20 to 

47.94), t(101) = 2.941, p < .001. SVMC d’s were higher (better) for high-sensitivity MM 

participants (2.64 ± .48) than low-sensitivity MM participants (2.09 ± .84), a 

statistically significant difference of -.559 (95% CI, -.87 to -.22), t(90.258) = -3.339, p < .001. 

These two-tests assumed unequal variance because they failed to reject the null hypothesis 

of Levene’s test of equal variances (p < .05). The PM satisfied the equal variances 

assumption, and the t-test revealed that PM scores were not significantly different 

across MM sensitivity groups: t(101) = 1.053, p = .295. Hypothesis testing for these t-

tests were evaluated with a Bonferroni adjusted α = .0167. 

Dependencies Between Tasks. Although our tests reveal that there are statistically 

significant differences between the means (and distributions) of our 3 tasks grouped by 

major/minor sensitivity, there is an interesting overlap of groups in the black circle in 
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Figure 1.2. This overlap suggests dependencies rather than distinct linear relationships 

between our tasks. By plotting performance in task A as a function of performance in task 

B, we can see whether A is necessary for B (i.e., whether any listener who performs poorly 

in A also performs poorly in B) or whether A is sufficient for B (i.e., whether any listener 

who performs well in A also performs well in B). 

Our data suggest the following dependencies: 

1. Pitch-Height-Comparison Task ability and Scale-Violated Melody-Comparison Task 

ability are both necessary but not sufficient for Major/Minor Task sensitivity. 

2. Pitch-Memory Task ability is neither necessary nor sufficient for Major/Minor Task 

sensitivity. 

3. Pitch-Height-Comparison is necessary but not sufficient for Pitch-Memory Task 

ability. 

See Figure 1.3 for scatterplots illustrating dependency 1 and see Figure 1.4 for a 

scatterplot showing dependencies 3 & 4.  
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Figure 1.3 SVMC and PHC Performance Separated by MM Group. Results from the Scale-
Violated Melody-Comparison Task (SVMC) and the Pitch-Height-Comparison Task (PHC) 
and are plotted and separated by the low- and high-sensitivity Major/Minor Task (MM) 
groups. For each axis, the red X indicates poor performance and the green check-mark 
indicates good performance. The PHC axis plots the threshold of accurate pitch-height-
comparisons (natural-log transformed).  The SVMC axis plots d’ scores. The two high-
sensitivity MM participants (blue dots) outside of the black circle are significant outliers for 
the PHC. This plot demonstrates that good performance on the PHC and SVMC are 
necessary to be in the high-sensitivity MM group, but they are not sufficient because there 
are high performing participants in both tasks that are not sensitive to the MM (the red 
dots in the black circle).  
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Figure 1.4 PM and PHC Performance Separated by MM Group. Results from the Pitch-
Memory Task (PM) and Pitch-Height-Sensitivity Task (PHC) are plotted and separated by 
the low- and high-sensitivity Major/Minor groups. For each axis, the red X indicates poor 
performance and the green check-mark indicates good performance. Each axis was natural-
log transformed to make the distributions more normal. The PM Task axis plots the 
standard deviation of the distribution of the differences between stimulus and response 
tones. The PHC axis plots the threshold of accurate pitch-height-comparisons.  The two 
high-sensitivity MM participants (blue dots) outside of the black circle are significant 
outliers for the PHC. This plot demonstrates that good performance on the PM is neither 
necessary nor sufficient to be in the high-sensitivity MM group. Also, PHC ability is 
necessary but not sufficient for PM ability. There was a moderate correlation between PHC 
and PM for both log-transformed (r = .456) and original (r = .357) data. 

 

Summary. The high-sensitivity Major/Minor (MM) group achieved significantly 

better Pitch-Height-Comparison (PHC) and Scale-Violated Melody-Comparison (SVMC) 

scores versus the low-sensitivity MM group. The Pitch-Memory Task (PM) performance 

was not different between MM groups. The scatterplot results suggest the following 

dependencies: PHC and SVMC are necessary but not sufficient for MM; PM is neither 

necessary nor sufficient for MM; PHC is necessary but not sufficient for PM. 
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Native Speakers of Tonal Languages 

Our sample included 23 native tonal language speakers and 80 native speakers of 

non-tonal languages. The reported tonal languages were Chinese, Cantonese, Mandarin, 

Vietnamese, Thai, and Vietnamese. 

Assumption checking: The Tonal Language and Non-Tonal Language groups for the 

PHC, MM, and PM datasets failed the normality assumption as assessed by Shapiro-Wilk 

test (p < .05). Independent-samples Mann-Whitney U tests gave the same general results as 

independent-samples t-tests, and since t-tests are generally robust to violations of the 

normality and outlier assumptions, we report the t-test results below.  

Independent-samples t-tests were run to determine if there were differences in each 

of the MM, PHC, SVMC, and PM scores between native tone and non-tonal language 

speakers. Data are mean ± standard deviation unless otherwise stated. An unequal variance 

t-test showed that PHC thresholds were lower (better) for native speakers of a tonal 

language (8.88 ± 14.04) than speakers of non-tonal languages (36.36 ± 57.31), a 

statistically significant difference of 27.49 percent of an octave (95% CI, 13.51 to 

41.46), t(99.81) = 3.902, p < .001. The following three t-tests had homogeneity of variance, 

assessed by Levene’s test of equal variances (p>.05). There was no significant difference 

between SVMC d’s for native speakers of a tonal language (2.31 ± .77) and speakers of 

non-tonal languages (2.23 ± .81), t(101) = -.411, p = .682. There was no significant 

difference between MM d’s for native speakers of a tonal language (1.31 ± 1.22) and 

speakers of non-tonal languages (1.14 ± 1.41), t(101) = -.503, p = .616. There was no 

significant difference between PM scores for native speakers of a tonal language 

(10.13 ± 7.74) and speakers of non-tonal languages (10.97 ± 7.75), t(101) = .459, p = 
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.647.  Hypothesis testing for these t-tests were evaluated with a Bonferroni adjusted α = 

.0125. 

Figure 1.5 PM and PHC Performance Separated by Tonal Language. Results from the Pitch-
Memory Task (PM) and Pitch-Height-Sensitivity Task (PHC) are plotted and separated by 
the Tonal Language and Non-Tonal Language groups. For each axis, the red X indicates 
poor performance and the green check-mark indicates good performance. Each axis was 
natural-log-transformed to make the distributions more normal. The PM Task axis plots the 
standard deviation of the distribution of the differences between stimulus and response 
tones. The PHC axis plots the threshold of accurate pitch-height-comparisons.  The magenta 
asterisk is the mean score for native speakers of a tonal language and the black asterisk is 
the mean score for native speakers of a non-tonal language. There is a significant difference 
in the mean for the PHC dimension but not for the PM dimension. 
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Figure 1.6 MM and SVMC Performance Separated by Tonal Language. Results from the 
Major/Minor Task (MM) and Scale-Violated Melody-Comparison Task (SVMC) are plotted 
and separated by the Tonal Language and Non-Tonal Language groups. For each axis, the 
red X indicates poor performance and the green check-mark indicates good performance. 
Each axis plots d’ scores.  The magenta asterisk is the mean score for native speakers of a 
tonal language and the black asterisk is the mean score for native speakers of a non-tonal 
language. There is no significant difference between these means on either dimension. 

 

Summary. Native speakers of tonal languages on average had lower pitch-height 

discrimination thresholds than native speakers of non-tonal languages. There were no 

statistically significant differences between MM, PM, or SVMC scores for native speakers of 

tonal languages and native speakers of non-tonal languages. 

Musical Training  

Years of Musical Training. There was a moderate positive correlation between 

years of musical training and the MM, r = .469. There were small correlations between 
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years of musical training and: PHC: r = -.2301; SVMC: r = .196. There was no significant 

correlation between years of musical training and PM2. 

Start of Musical Training. There were no significant correlations between the start 

of musical training and any of our four tasks. 

Summary. Musical experience did not strongly correlate with performance in any of 

the 4 tasks. Musical experience moderately correlated with the Major/Minor Task 

sensitivity (replication of Chubb et. al 2013 result). Start of musical training did not 

correlate with any of our tasks. These results rejected our hypothesis that musical 

experience would correlate strongly with the Scale-Violated Melody-Comparison Task 

ability. 

Predicting Major/Minor Group 

A logistic regression was performed to ascertain the effects of task performance 

(PM, PHC, and SVMC), tonal language, and years of musical training on the likelihood that 

participants are in the high-sensitivity Major/Minor Group3. The PHC and PM scores were 

log transformed to remove outliers. The logistic regression model was statistically 

significant, χ2(5) = 47.279, p < .0005. The model explained 52.5% (Nagelkerke R2) of the 

variance in major/minor group and correctly classified 82.5% of cases. Of the six predictor 

variables only three were statistically significant: PHC, SVMC and years of musical training 

(as shown in Table 1.1). These results provide converging evidence for the differences 

found in the previous statistical tests. 

 

 

                                                           
1 The correlation between years of musical training and the natural-log transformed PHC was moderate: r = -.381.  
2 Years of musical training and PM remained uncorrelated after a natural-log transformation of PM. 
3 Start of musical training was excluded from the logistic regression because there were many missing cases of 

people without any musical training. 
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 Wald df p-value 

 PVMC 3.947 1 .047* 

Music Training 4.409 1 .036* 

Log PHC 12.583 1 < . 001* 

Log PM .549 1 .459 

Tonal_Lang(1) .916 1 .338 

Constant 3.438 1 .064 

Table 1.1 Predictor Variables in Major/Minor Group Assignment. A logistic regression 
revealed that performance in the Pitch-Violated Melody-Comparison Task (PVMC), the 
Pitch-Height-Comparison Task (PHC), and years of musical training were statistically 
significant in predicting Major/Minor sensitivity group assignment.  

 

Discussion 

The present study replicated the Chubb et. al 2013 result in which the Major/Minor 

Task (MM) performance was bimodal with modes near chance (low-sensitivity) and perfect 

(high-sensitivity) performance. The high-sensitivity MM group had lower pitch-height-

comparison thresholds than low-sensitivity MM group. The high-sensitivity MM group was 

also better at the Scale-Violated Melody-Comparison Task than the low-sensitivity MM 

group. There were no significant differences in the Pitch-Memory Task for high- and low-

sensitivity MM groups. It is possible that the process of matching the pitch added enough 

difficulty to reduce the assessment of pitch-memory. 

Pitch-height sensitivity and scale-violated melody-comparison ability were 

necessary to be in the high-sensitivity MM group. These two qualifications make sense 

because first, in order to discriminate the major/minor tone-scrambles participants must 
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be able to discriminate major and minor 3rds (one semi-tone difference). Secondly, the 

Scale-Violated Melody-Comparison Task tested the ability to compare auditory sequences 

extended over a series of tones which is also crucial to make the major/minor judgments. 

Interestingly, those two abilities did not guarantee (were not sufficient for) 

Major/Minor Task sensitivity. There were participants that performed well on both the 

Pitch-Height-Comparison Task and the Scale-Violated Melody-Comparison Task who were 

not sensitive to the Major/Minor Task. Thus, another factor (that we did not test for) must 

contribute to Major/Minor sensitivity. 

Native speakers of tonal languages achieved significantly lower pitch-height-

comparison thresholds compared to native speakers of non-tonal languages. Native 

speakers of tonal languages were able to accurately discriminate pitch-heights that were 

closer together compared to native speakers of non-tonal languages.  This finding is in 

accordance with the existing literature on the relationship between speaking a tonal 

language and enhanced pitch discrimination (Bidelman, 2013; et al., 2006; Giuliano et al., 

2011). 

Music experience had a moderate relationship with Major/Minor Task performance 

as described by Chubb et. al 2013. There were small correlations with the pitch-height 

comparison thresholds and scale-violated melody-comparison task performance. Our 

logistic regression analysis demonstrated that years of musical training were a significant 

predictor for MM group assignment in our model. Start of training showed no significant 

correlations with performance in any of our tasks. 

Pitch-Height-Comparison Task ability was necessary but not sufficient for the Pitch-

Memory task. This result confirmed our simple hypothesis that in order to remember a 



26 
 

pitch accurately, a person would need to be able to discriminate pitches well. The 

necessary but not sufficient relationship is understandable because Pitch-Memory Task did 

certainly require other skills than Pitch-Height-Comparison ability. 

The Scale-Violated Melody-Comparison Task tapped into more than one cognitive 

ability. It was possible to do this task by either comparing the two sequences note-by-note 

in memory or listening for the out-of-scale note in the second melody. Of course 

participants may have been using some combination of these abilities to perform the task. 

This ambiguity is not of great concern because we can still assess whether major/minor 

discrimination ability is related to higher level musical abilities that require making 

judgments based on the relationships of groups of notes. 

By better understanding the relationship between performance in the major/minor 

task and other auditory tasks, we may be able to discover a training regimen that can be 

used to heighten sensitivity to major/minor modes.  In the Chubb 2013 paper, for the 

intermediate participants that scored an average of 60-90% across all 4 blocks, there was 

evidence of statistically significant improvement of performance between blocks 1 and 4. 

This fact demonstrates that, at least for some listeners, skill in the major/minor task is not 

fixed but rather may be acquired through training.  Chubb et al (2013) also observed a 

large number of listeners who performed near chance in the major/minor task across all 

four blocks, suggesting that there may exist listeners for whom this task may be 

unlearnable. Pitch-height- and scale-violated melody-comparison training may assist 

major/minor discrimination, but there is definitely some other cognitive component 

necessary to make the major/minor discrimination that was not revealed by this 
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experiment. Additional cognitive tasks must be tested to clarify the nature of the cognitive 

asset that is critical for classifying major vs minor tone-scrambles. 
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CHAPTER 2: End on a high note: Resolution changes the influence of 
pitch when discriminating major and minor modes 

 

Abstract 

Rhythm and pitch interact in their influence on the perceived emotional quality of 

short melodies (Schellenberg, et al., 2000). Major and minor tonalities are often associated 

with sounding “happy” and “sad” respectively. To investigate the role of rhythm in the 

major/minor mode discrimination, 3 participants classified major/minor sequences of 

tones with rhythmic manipulations. The sequences of tones or “tone scrambles” were 

composed of a random mixture of brief tones from a G major or minor mode (non-diatonic 

tones were also randomly included). Tone scrambles were rhythmically varied in three 

ways: the addition of (1) extended-notes, (2) rests, or (3) without rhythmic accents. Trial 

by trial feedback was provided to encourage participants to optimize their responses. A 

probit model was used to measure the impact of particular tone-types and their temporal 

positions on the major/minor discrimination. Rhythmic accents created by extended-notes 

created larger boosts of sensitivity to tones than the accents created by rests.  The final 

tone created an accent that was more powerful than the local rhythmic accents (extended-

notes and tones before rests) within a sequence of tones. The stability of the final note was 

related to its “major”/”minor” impact. Ending on the tonic made tone scrambles sound 

more “major,” and for some participants, ending on unstable notes made tone scrambles 

sound more “minor.” Rhythm did not simply amplify sensitivity; the unique impact of tones 

at the end of the sequence supported an inseparable model of rhythm and pitch 

interactions when discriminating major/minor sequences.  
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People produce periodic rhythms in many basic behaviors– infant sucking, rocking, 

walking, swimming, etc. These behaviors have periods between approximately 500ms to 1s 

(Fraise, 1982). Besides period behaviors, internal rhythm has been represented by 

spontaneous tempo, measured by the rate of moving a body-part (tapping a finger or palm, 

and swinging an arm or leg), and preferred tempo, measured by adjusting the rate of 

presentation of sounds. The average spontaneous tempo and preferred tempo is around 

600ms (Fraise, 1982). The similarity in periodicity across these behaviors and preferences 

suggest an internal pulse, but people are also sensitive to external pulses since we naturally 

synchronize movements to rhythmic sounds. This synchronization happens spontaneously 

in infants as young as 1 year old (Fraise, 1982). This sensitivity and physical connection to 

periodic patterns is the cognitive foundation for the use of rhythm in music. 

Musical rhythm is created by three types of accents- phenomenal, structural, and 

metrical (Lerdahl & Jackenoff, 1983). Of these three, phenomenal accents are the most 

physically concrete. A phenomenal accent is any physical feature of an instant of music that 

grabs the listener’s attention- features such as jumps in pitch, chord changes, extended 

notes, and dynamics (Lerdahl & Jackenoff, 1983). Structural accents are defined by the way 

particular tones & intervals move from one another in a given musical key (Dawe et. al 

1993, Lerdahl & Jackenoff 1983). Metrical accents are perceived through mental schemes 

that define “strong” and “weak” beats in a musical sequence (Dawe et. al 1993, Lerdahl & 

Jackenoff 1983). For example, in a 4/4 meter4, beats 1 & 3 are typically considered the 

“strong” beats and beats 2 & 4 are the “weak” beats. A basic form of metrical accenting is 

observed when people imitate equal sounds of a clock as “tick-tock-tick-tock…” with extra 

                                                           
4 Music with groupings, or bars, that consist of 4 quarter-note beats. 
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emphasis on the “ticks”. In this case, the “ticks” are the strong beats, and emphasis is often 

created by increasing the volume in comparison to the “tocks.” This volume increase 

demonstrates a metrical accent combined with a phenomenal accent, but this co-

occurrence is not necessary to perceive metrical accents (Dawe et. al, 1993). The present 

experiment focused on manipulations of phenomenal and metrical accents. 

Rhythm & Pitch 

Rhythm and pitch typically interact in various music perception tasks. For example, 

Boltz (1989) found an interaction between rhythm and pitch for “completeness” ratings. 

The stimuli were folk tunes in which the final two tones were manipulated to be different 

scale degrees. Some of these combinations (e.g. the leading tone to tonic) were rated as 

particularly complete and other combinations (e.g. the tonic to leading tone) were rated as 

incomplete. The rhythms of the tunes were also manipulated to end on time, too early, or 

too late according to the established metrical structure. When the tunes ended 

uncomfortably both melodically and rhythmically (too early or too late), the incomplete 

ratings were unexpected. When both joint expectancies for melody and rhythm were 

violated, the incomplete ratings were more extreme than the combined impact of the single 

violations of melody and rhythm. 

Many other experimental paradigms have demonstrated how variations in pitch 

affect rhythm perception and vice versa. In tasks where people compared two pitches 

within a sequence of tones, pitch was most accurately compared in rhythmically regular 

sequences versus rhythmically irregular sequences (Jones, Moynihan, MacKenzie, & Puente 

2002, Jones, Johnston & Puente, 2006). In other words, the timing of tones influenced pitch 

judgments. Various experiments have shown that people struggled with recognizing a 
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melody based on pitch when rhythmic variations were introduced (Jones & Ralston, 1991; 

Jones, Summerell, & Marshburn, 1987; Kidd, Boltz, & Jones, 1984). Variations in pitch can 

also affect the perception of tone duration (Boltz, 1992 as cited in Dawe 1995).  

Motivations for the present study. In 1982, Jones, Boltz & Kidd found that pitch 

changes, in relation to melodic structure, were easier to detect at metrically accented 

locations in a sequence of tones that followed a predictable temporal pattern. This finding 

in part led to their Dynamic Attending Theory for complex auditory sequences (Jones & 

Boltz, 1989, see Drake 2000 for a review). The theory describes a model in which 

attentional energy is periodic based on many relative internal rhythms, or oscillators. Jones 

and Boltz claim that these oscillators are distinct from a “biological clock” because 

attention operates on relative timing and not absolute time. 

This result raises the question of how periodic patterns can influence major versus 

minor mode discrimination. Since Jones & Boltz claimed that predictable temporal patterns 

can heighten sensitivity to melodic structure, the present study will investigate how 

musical rhythm influences tonal sensitivity in major/minor classifications. 

Schellenberg, Krysciak, and Campbell (2000) had participants rate the emotional 

quality (happy, sad, scary) of melodies in which pitch and rhythm were manipulated. 

Rhythmic manipulations only had a significant effect in emotional quality ratings when 

pitch was also manipulated. The details of this interaction varied depending on each 

melody or musical context. Since rhythm can affect the emotional experience of short 

melodies, rhythm may influence the perception of the common “happy”/”sad” association 

with major/minor modes. 
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The Present Study 

The previously discovered interactions of rhythm and pitch do not necessarily 

distinguish whether pitch and rhythm are separable or inseparable in various tasks. The 

present study will investigate the separability of rhythm and pitch in its influence on 

major/minor mode discrimination. The first possible model is the “separable model.” This 

model describes that all notes basically exert the same pattern of major/minor influence 

with or without rhythm, but the magnitude of influence is amplified or attenuated by the 

rhythmic class of the note (how salient the note is made by the rhythmic structure). Next, 

there is the “inseparable model” of rhythm and pitch for major/minor classification. This 

model describes that notes exert different patterns of influence depending on the rhythmic 

class of the note.  

The present study assessed major/minor mode discrimination using a variant of the 

major/minor task, developed by Chubb et. al (2013) (see Chapter 1 for details). The main 

research questions were the following: For people sensitive to the difference between 

major vs minor tone scrambles… 

- does rhythm simply amplify or attenuate the influence exerted by particular 

tones in their major/minor impact (separable model)?  Or is the pattern of 

influence intrinsically different for tones at particular rhythmic locations 

(inseparable model)?  

- do phenomenal and metrical accents have an equal influence on participant’s 

major/minor discrimination? 

- which tones have the most influence in the major/minor discrimination? 
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The present study manipulated rhythmic structures in the tone-scrambles by adding 

extended-notes (phenomenal accents), rests (metrical accents), and comparing the results 

to a non-rhythmic control condition. We hypothesized that rhythm would interact 

inseparably with pitch in the major/minor classifications. We expected that extended 

notes, phenomenal accents, would be more salient than the metrical accents created by 

rests because of the extra signal that an extended note provides. We expected that tones 

will be weighted according to the major/minor notes defined by music theory because 

participants would receive trial-by-trial feedback to encourage this particular tone 

weighting. 

This is the first study of rhythm and pitch to use linear process models estimated by 

Bayesian Markov Chain Monte Carlo sampling methods. Model comparisons will be 

evaluated with likelihood-ratio tests to determine the separability of rhythm and pitch in 

major/minor mode classification. 

Methods 

Participants 

Three individuals participated in this experiment (3 males). Two of the participants 

were the authors, and the other was an undergraduate research assistant. All had self-

reported normal hearing. Each participant gave informed written consent approved by the 

Institutional Review Board at the University of California, Irvine. All participants were 

highly sensitive (i.e. could achieve perfect performance) to the original major/minor task 

by Chubb et. al (2013). 
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Apparatus 

The experiment was run on MATLAB on various computers. Participants sat in quiet 

environments in front of a computer while they listened to the stimuli over headphones. 

Each participant set the volume to a comfortable level for themselves. 

Stimuli 

The stimuli, or tone scrambles, were composed of pure tones from an equally 

tempered scale between G5 and G6- the low and high tonics of the scale. Because we 

included both tonics, there were 13 possible tones. 

Each tone in a tone scramble was called a pip. 15 pips of 100ms duration each were 

presented in each tone scramble5. Each pip was presented at 50,000 samples per second. 

Each pip had a raised cosine window in which the onsets and offsets were ramped for 

22.5ms. This created smooth transitions between each pip without clicks and pops.  

The 15 pips in each tone scramble were defined by note-count vector. The note-

count vector indicated the number of times each of the thirteen possible tones occurred in 

a particular tone scramble. For example, the tone scramble from note-count vector V = (2, 

1, 0, 2, 0, 1, 1, 1, 0, 0, 2, 1, 4) would have 2 G5s, 1 G♯, 0 As, 2 A♯s, 0 Bs, 1 C, 1 C♯, 1 D, 0 D♯s, 0 

Es, 2 Fs, 1 F♯, and 4 G6s. The 15 tones in a note-count vector were presented in random 

order for each tone scramble. 

The difficulty was increased by modulating the note-count vectors to: 

1. include more distractor tones, tones irrelevant to the major/minor 

discrimination 

                                                           
5 The original tone-scramble experiment by Chubb et. al (2013) used stimuli that each had 32 tones, each with a 

duration of 65ms. The present study used 15 tones per stimulus, each with a duration of 100ms. The lengthened 

tones of the present stimuli created a more musical melody than the original, rapid tone scrambles. 
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2. have a less-clearly defined major/minor tonality. This was created by having 

nearly equal amounts of major and minor tones, so the entire scramble was 

just slightly major or minor. 

Each level of difficulty had 24 possible note-count vectors (except for Difficulty 2 

with 12 possible note-count vectors). There were 4 levels of difficulty. Difficulty level 1 had 

note-count vectors that only included the low and high tonics, the 3rds, 5ths and 6ths. In 

other words, for Difficulty level 1, there were no distractor tones (the tonic and 5ths help 

establish the scale). The difficulty levels 2-4 included varying amounts of distractor tones 

depending on the particular note-count vector. Since each tone-scramble was a random 

ordering of one of these note-count vectors, there was a high amount of variation between 

different tone-scrambles (even if they happened to have identical note count vectors).  All 

the stimulus note-count vectors for each difficulty can be found in Appendix A. 

Conditions 

Three experimental conditions were distinguished by the rhythmic content of the 

stimuli. First, the Extended-Notes Condition used tone scrambles in which the 5th, 10th and 

15th pips were twice as long as the other pips; the extended-notes were phenomenal 

accents. This created a 6/8 meter with 4 eighth notes (100ms each) and one quarter note 

(200ms) for each of 3 measures. Next, the Rests Condition used tone scrambles with 5 

eighth notes (100ms) and one eighth note rest (100ms) for each of 3 measures. The accents 

were still on the 5th, 10th, and 15th notes in the rests condition, but these accents were 

metrical since they indicated phrase endings in the inferred meter. Lastly, the Non-

Rhythmic Condition played 15 (100ms) pips. See Figure 2.1 for rhythmic notations of each 

condition. 
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Figure 2.1 Rhythmic Notation for Conditions. These are the rhythmic notations for the 
Extended-Notes, Rests, and Non-Rhythmic Conditions. To focus on the rhythmic properties, 
this figure does not include sample note values of a tone-scramble. 

 

In all conditions and difficulty levels, the feedback was derived from the target 

function. The target function defined whether the sequence was “major” or “minor” based 

on the number of major and minor 3rds and 6ths in the scale. The target function designated 

each major 3rd and 6th as +1 and each minor 3rd and 6th as -1, and all the other 9 possible 

tones were valued at 0. The sum of all these target function weights for each pip in a tone 

scramble defined whether the scramble was major or minor for purposes of giving the 

participant trial-by-trial feedback. See Figure 2.2 for an example of how the target function 

was applied. If participants could weight each note exactly as the target function did, then 

they would get 100% correct on all trials. The trial-by-trial feedback encouraged 

participants to optimize their strategy based on the target function. 
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Figure 2.2 Target Function Example. The target function, TF, is shown above with a sample 
note-count vector. The note-count vector was randomly ordered to form the tone-
scramble, Stimulus. Then the target function, TF, was applied to the Stimulus and summed. 
Since this sum was positive, the tone-scramble was major. If the participant responded 
“Major” then they would get feedback on the screen that said “Correct.” This target function 
was used for all conditions and levels of difficulty. 

 

Procedure. 

This experiment was a within-subjects design with 3 conditions. In each condition, 

participants completed 60 separate blocks of 50 trials for a total of 3000 trials each. The 

conditions were completed in the same order: Extended-Notes, Rests, then Non-Rhythmic. 

Each trial began with hitting the “enter” key; then the tone scramble was presented 

over headphones. Then, the participants responded with either a “1” or “2” to indicate 

“Minor” or “Major” respectively, and feedback was always displayed on the screen 

(“Correct” or “Incorrect”) after each trial. 

In the Non-Rhythmic condition, participants responded from “1” to “4” where “1” 

meant “Very Minor” and “4” meant “Very Major.” Feedback in the non-rhythmic condition 

was still based on the same major/minor rule. For example, if the stimulus was minor, then 



38 
 

either a “1” or “2” response would be considered correct, and both the “3” and “4” 

responses would be incorrect. 

Upon completing all 50 trials of each block, percent correct was displayed for that 

particular block. If percent correct was at 90% or higher, participants were encouraged to 

try a higher level of difficulty on the following block. Our participants most commonly used 

difficulty levels 2 and 3. 

Modeling 

Basic Model 

We modeled the major/minor discrimination process with a probit model6. Before 

getting into the full model, we review the basic model logic. 

In any given trial, we assumed participants would respond “Major” (versus “Minor” 

otherwise) if 

 

where f is the tone-weighting function (constrained to sum to 0 and to have sum of squared 

values equal to 1), t is the temporal weighting function (constrained to be nonnegative), 

and k is the position of each tone in the stimulus. f weights the influence of each tone on the 

participant’s major/minor decision. t assigns weights to the relative impact of each 

particular temporal position of each tone. The Noise is a standard normal random variable, 

                                                           
6 Probit model is a general linear model with cumulative normal linking function. 

 

∑𝑓(𝑡𝑜𝑛𝑒𝑘) 

15

𝑘=1

∗ 𝑡(𝑘) + 𝑁𝑜𝑖𝑠𝑒 > 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

 

 
(2.1) 
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and Criterion is a parameter that models the criterion selected by the participant to 

optimize performance. 

Full Model 

Extended-Notes and Rests Conditions. The basic model was separable in tone and 

time, but we investigated interactions by expanding the model. The full model included 3 

tone-weighting functions- ffinal, faccented, fother. ffinal revealed the influence of each tone at the 

final pip in a stimulus (15), faccented gave the influence of each tone at the rhythmically 

accented pips within the stimulus (5, 10) and fother was the tone-weighting function for all 

the other pip positions. These 3 separate functions allowed us to evaluate the influence of 

tones at each of these special locations.  

With these added tone-weighting functions, in any given trial, we assumed 

participants would respond “Major” (versus “Minor” otherwise) if 

where 

𝑓𝑘(𝑡𝑜𝑛𝑒𝑘) = {

𝑓𝑓𝑖𝑛𝑎𝑙(𝑡𝑜𝑛𝑒𝑘), 𝑘 = 15

𝑓𝑎𝑐𝑐𝑒𝑛𝑡𝑒𝑑(𝑡𝑜𝑛𝑒𝑘), 𝑘 = {5, 10}

 𝑓𝑜𝑡ℎ𝑒𝑟(𝑡𝑜𝑛𝑒𝑘), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

 
(2.3) 

 
 

where k is the position of each tone in the stimulus. A graphic depiction of the model is 

shown in Figure 2.3. The constraints of the full model are listed in Table 2.1. 

 

∑𝑓𝑘(𝑡𝑜𝑛𝑒𝑘) 

15

𝑘=1

∗ 𝑡(𝑘) + 𝑁𝑜𝑖𝑠𝑒 > 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

 

 
(2.2) 
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Figure 2.3 Full Model Example. A. This is a sample tone-scramble with various notes for 
each of the 15 temporal positions. This diagram has gaps in the rows just to save space. B. 
The appropriate tone-weighting function is applied according to the temporal position: ffinal 
gives the tone-weight for the final pip; faccented gives the tone-weights at the 5th and 10th 
pips; fother gives the tone weights at all other positions. After the tone-weighting function is 
applied to the tone, the temporal-weighting function, t, gives the weight for each temporal 
position. We sum up all these products for the statistic θ. C. Our model has been simplified 
so that if θ + Noise is greater than the Criterion, then the participant says “Major.” If this 
sum is less than the Criterion, then they say “Minor.” 
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Parameter Constraints Degrees of Freedom 
Token-Weighting Functions- 
ffinal, faccented, fother 
(13 parameters per function) 

1. Mean = 0 
2. Sum of Squares = 1 

11 df (per function) 

Temporal-Weighting Function- t 
(15 parameters) 

       none 15 df 

Criterion Parameter 
(1 parameter) 

       none 1 df 

Table 2.1 Full Model Constraints and Degrees of Freedom for Extended-Notes and Rests 
Conditions. Separate analyses were run for each participant in each condition. In the 
Extended-Notes and Rests Conditions, the full model had a total of 55 parameters with 49 
df. 

 

Non-rhythmic Condition. For the Non-Rhythmic Condition analysis, the full model 

differed in two ways: 

1. There were only two token-weighting functions: ffinal and fother 

2. We introduced 3 Criterion parameters 

First, there were only two token-weighting functions because the Non-Rhythmic condition 

included no accented notes, so there was no purpose for the faccented function. ffinal operated 

exactly the same as before, but fother included all temporal positions (1:14) except for the 

final position (see Equation 2.4 & 2.5). Secondly, 3 Criterion parameters were used to 

manage the 4 possible responses in the Non-Rhythmic condition. Equations 2.6-2.9 

demonstrate how these criterion parameters mapped to different responses. 
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Let, 

θ = ∑𝑓𝑘(𝑡𝑜𝑛𝑒𝑘) 

15

𝑘=1

∗ 𝑡(𝑘) 

 

 
(2.4) 

where fk comprised two functions such that 

𝑓𝑘(𝑡𝑜𝑛𝑒𝑘) = {
𝑓𝑓𝑖𝑛𝑎𝑙(𝑡𝑜𝑛𝑒𝑘), 𝑘 = 15

𝑓𝑜𝑡ℎ𝑒𝑟(𝑡𝑜𝑛𝑒𝑘), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
(2.5) 

 
 

In any given trial of the Non-Rhythmic Condition, we assumed that if 

θ + 𝑁𝑜𝑖𝑠𝑒 < 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛1 
 

(2.6) 

participants would respond “Very Minor.” If 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛1 <  θ + 𝑁𝑜𝑖𝑠𝑒 < 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛2 
 

(2.7) 

participants would respond “Minor.” If 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛2 <  θ + 𝑁𝑜𝑖𝑠𝑒 < 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛3 
 

(2.8) 

participants would respond “Major.” If 

θ + 𝑁𝑜𝑖𝑠𝑒 > 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛3 
 

 
(2.9) 

participants would respond “Very Major.”  

The full model parameters and constraints for the Non-Rhythmic Condition are 

given in Table 2.2 below. 
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Parameter Constraints Degrees of Freedom 
Token-Weighting Functions- 
ffinal, fother 
(13 parameters per function) 

1. Mean = 0 
2. Sum of Squares = 1 

11 df (per function) 

Temporal-Weighting Function- t 
(15 parameters) 

       none 15 df 

Criterion Parameters 
(3 parameters) 

       none 3 df 

Table 2.2 Full Model Constraints and Degrees of Freedom for the Non-Rhythmic Condition. 
Separate analyses were run for each participant. In the Non-Rhythmic Condition, the full 
model had a total of 44 parameters with 40 df. 

 

Model Fitting 

The Full Model was fit with a separate Markov Chain Monte-Carlo (MCMC) sampling 

procedure for each participant in each condition. See Appendix B for details on the MCMC 

sampling procedure. 200,000 samples were collected for each model fit. All figures in the 

Results section display parameter means and 95% credible intervals from the last 90,000 

samples.  

Results 

Model Comparisons 

In order to assess the separability of pitch and rhythm, we compared various 

possible models using likelihood-ratio tests. The results are below in Table 2.3. 
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Extended-Notes Condition 

 
 Rests Condition 

 
 Non-Rhythmic Condition 

Table 2.3 Likelihood-Ratio Tests for Separability of Rhythm and Pitch. In each condition, 
restricted models (less tone-weighting functions depending on temporal position) were 
compared to the full model. In all conditions for all participants, the Full Model fit the data 
significantly better than the Separable Model which only had a single tone-weighting 
function irrespective of temporal position. Highlighted cells contain p-values less than .05, 
so we can reject the hypothesis that these models are equally likely for the data. 

 

 

  Participant 1 Participant 2 Participant 3 
Restricted Full Χ2, df, p-val Χ2, df, p-val Χ2, df, p-val 
Separable 

fother = faccented 

= ffinal 

Full 
fother , 

faccented , 
ffinal 

 
43.31, 22, .004 

 
80.41,  22, < .001 

 
68.42, 22,  < .001 

fother,  faccented = 
ffinal 

Full 22.65, 11, .020 19.67, 11, .050 15.98, 11, .142 

fother = faccented, 
ffinal 

Full 18.89, 11, .063 31.39, 11, .001 37.28, 11,   < .001 

fother = ffinal,  
faccented 

Full 25.94, 11, .007 62.51, 11, < .001 48.86, 11, < .001 

  Participant 1 Participant 2 Participant 3 
Restricted Full Χ2, df, p-val Χ2, df, p-val Χ2, df, p-val 
Separable 

fother = faccented 

= ffinal 

Full 
fother , 

faccented , 
ffinal 

 
38.91, 22, .015 

 
70.13, 22, < .001 

 
47.33, 22, .001 

fother,  faccented = 
ffinal 

Full 12.78, 11, .308 36.31, 11, < .001 15.44, 11, 0.16 

fother = faccented, 
ffinal 

Full 6.28, 11, .854 15.92, 11, .144 10.98, 11, .445 

fother = ffinal,  
faccented 

Full 35.19, 11, < .001 55.09, 11, < .001 37.65, 11, < .001 

  Participant 1 Participant 2 Participant 3 
Restricted Full Χ2, df, p-val Χ2, df, p-val Χ2, df, p-val 
Separable 
fother = ffinal 

Full 
fother, ffinal 

41.91, 11, < .001 86.68, 11, < .001 40.99, 11, < .001 
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Table 2.3 presents likelihood-ratio tests that reveal: 

1. In all conditions for all participants, the Full Model provided a significantly better 

fit to the data than the Separable Model, which only had a single tone-weighting 

function. 

2. In all conditions for all participants, the Full Model provided a significantly better 

fit to the data than the fother = ffinal Model. Having separate functions for fother and 

ffinal is always necessary for the best fit. 

3. In the Rests Condition, the fother = faccented Model was not significantly different 

from the Full Model. The accented pips did not create significantly different tone-

weights compared to the other pips in the Rests Condition. 

4. The remaining model comparisons varied across participants, but it is apparent 

that the Full Model was superior in more instances for the Extended-Notes 

Condition versus the Rests Condition. This suggests that rhythm and pitch 

interacted less separably in the Extended-Notes Condition. 

The following sections plot the results from the Full Model. 

 

Extended-Notes Condition 

Tone-Weighting Functions. The tone-weighting functions are plotted in Figure 

2.4. Participants were influenced to respond “major” by the tones with positive impacts, 

and they were influenced to respond “minor” by the tones with negative impacts. In Figure 

2.4, the Other Pips Function (fother in Equation 2.3) gives the relative impact of tones that 

were not at the special rhythmic locations of the accented and final tones. The Accented 

Pips Function (faccented in Equation 2.3) gives the relative impact of the extended notes in 

the sequence at temporal positions 5 & 10. The Final Pip function (ffinal in Equation 2.3) 
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gives the relative impact of tones at the final pip, this was also an extended note. Any 

significant differences between these three functions point to an interaction of rhythm and 

pitch. 
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A. 

B. 
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Figure 2.4 Extended-Notes Condition: Tone-Weighting Functions. All points are the means of 
MCMC samples which reflect a stable estimate of the posterior density. The error bars are 
95% credible intervals. Positive impacts reflect a “major” and negative impacts reflect a 
“minor” influence on the decision statistic.  The black line with squares shows the target 
function defined by the feedback rule. The major notes are labeled with the purple scale 
degrees and the minor notes are the orange scale degrees. The tone-weighting functions 
are plotted fother (blue), faccented (green), ffinal (red). Asterisks denote differences between the 
95% credible intervals between tone-weighting functions. Results from each participant 
are plotted as follows: A. Participant 1, B. Participant 2, C. Participant 3. 

 

Participant 1.  In Figure 2.4A, each tone-weighting function estimated that the 

tonics (1 & 1*) gave a major weight. This deviated significantly from the target function. 

This result was unexpected because the tonics should not influence a “major” or “minor” 

decision. In other words, the tonics should have a zero weight. Since the tonics establish the 

tonal center, it appears as though a stronger center makes a tone-scramble sound more 

“major” or happy. 

C. 
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For Participant 1, the majority of the minor weight was driven by the minor 6th. The 

minor 3rd, tritone (♯4) and the major 2nd, also influenced Participant 1 to decide that a tone-

scramble was “minor.” The influence of the tritone was interesting because it had been 

referred to as “the devil in music” during the Middle Ages (Crane, 1976), so understandably 

it can have the connotation of “minor” or “sad.” The tritone is also a particularly unstable 

note in the tonal hierarchy (Krumhansl & Cuddy, 2010). The influences of the major 2nd and 

tritone were unexpected because the feedback rule (target function) did not encourage a 

“minor” weighting of either of these tones. 

Participant 1 had only one difference (assessed by 95% credible interval 

differences) between the three tone-weighting functions. The Final Pip Function gave a 

more “major” weight to the high tonic (1*) than the Accented and Other Note Functions. 

When the high tonic (1*) was the final tone in a tone-scramble, it had a more “major” 

impact compared to when the high tonic was at any other temporal position in the tone-

scramble. This is evidence for an interaction between the influence of temporal position 

and tone-type. Ending on a tonic provides the strongest completeness/resolution ratings 

(Boltz, 1989), so this result suggests that resolution can make a tone-scramble sound more 

“major”/happy. 

Participant 2. In Figure 2.4B, we see a similar pattern of a “major” influence for the 

low tonic (1) and the high tonic (1*). The “major” impact of the tonic is reliable for both the 

Accented and Final Pip Functions. Again, the majority of the “minor” influence came from 

the minor 6th. An unexpected deviation from the target function occurred at the perfect 4th 

(4). Participant 2 gave the perfect 4th a stronger minor impact than the minor 3rd. 
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For Participant 2, there were 4 differences between the tone-weighting functions. 

The first 3 differences were between the Final Pip Function and the Other Pips Function. 

These occurred at the major 7th, the minor 6th, and the minor 7th. The final difference was 

between the Final Pip Function and both the Accented Pips and the Other Pips Functions. 

This difference occurred at the minor 2nd. These differences were difficult to interpret 

except for the major 7th. Since the major 7th is the last chromatic tone before returning to 

the tonic, it is often called the “leading-tone,” and ending on the leading-tone gives a very 

poor sense of completeness or resolution (Boltz, 1989). This lack of resolution might create 

a stronger “minor”/”sad” influence if resolution has an important influence on 

major/minor discrimination. 

Participant 3. Again, we see in the Accented and Final Pip Functions, the tonics (1 & 

1*) are elevated above zero to have a “major” impact on the participant’s decisions. 

There were two differences between the tone-weighting functions. First, Participant 

3 weighted the perfect 5th (5) significantly more “major” when it was the final pip versus 

the “other” (non-accented) pips. This result aligns with the notion that resolution improves 

the “major”/”happy” sound of a tone-scramble because the perfect 5th (a.k.a. the dominant) 

is a very stable tone to end on. Like the tonic, it is shared in both major and minor modes, 

so the standard music theory would suggest that it should not reinforce the discrimination 

between major/minor. Next, Participant 3 weighted the tritone (♯4) more “minor” at the 

Accented and Final Pip temporal positions versus the Other Pip positions. In other words, 

whenever the tritone was an extended note, it made a more “minor” contribution to 

Participant 3’s decision statistic. The impact of this single note for this participant the only 

clear interaction between the non-final accented notes and pitch in our entire data set. 
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Summary. For all participants, there were some systematic deviations from the 

target function. This failure to match the target function reflects some processing 

limitations in attempting to match the feedback rule. For all participants, there were always 

positive weightings, or a “major” impact, for each of the tonics (1 & 1*) at the extended 

notes. Whenever the tonic was accented, the participant received some influence to 

respond “major.” Since the tonic is the tonal center, it seems like a more centered tone-

scramble sounds more “major”/happy. 

The interactions between temporal position and tone type were different for each 

participant. Most of these interactions were found only for the Final Pip function which 

reflected the impact of the note of resolution. This supports the likelihood-ratio test results 

because the Final Pip Tone-Weighting Function needed to be distinct from the Other Pip 

Function for the best fit to the data. In short, in the Extended-Notes Condition, rhythm and 

pitch were not separable in the way they interacted in major/minor classification. 

There was only one case, the tritone (♯4)  for Participant 3, in which all the extended 

tones, in both the Accented and Final Pip functions, had a different impact than the non-

accented tones. For this participant, the tritone gave a stronger “minor” impact when it was 

one of the special extended notes. This created the opposite effect of the tonic; the tritone is 

one of the least stable notes, and this instability appears to be related to the “minor” 

decision for Participant 3.  

Temporal-Weighting Function and Criterion. The temporal functions (t in 

Equation 2.3) in Figure 2.5 indicated large boosts of sensitivity to the accented pips at 

temporal positions 5, 10, and 15. All of these sensitivity increases reflect the separable 

manner in which extended notes amplify sensitivity to any particular tone at that temporal 
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position. The final pip, at temporal position 15, had the strongest impact, especially for 

Participant 2. For participant 3, the first tone of the sequence also had a higher impact than 

many of the other non-accented tones. The overall systematicness of the following the 

tone-weighting functions is reflected by the height of the temporal function. Our 

participants performed quite systematically. 

Figure 2.5 Extended Notes Condition: Temporal-Weighting Functions and Criterion 
Parameters. All points are the means of the MCMC sampling and error bars are 95% 
credible intervals. Top Panel. The extended notes at temporal position 5 & 10 are shown in 
green, and the extended note at the final position 15 is in red. For all participants, the 
estimated temporal-weighting function shows strong boosts at the extended notes (pips) in 
the stimulus. The final pip had equal or higher impact than the other accented notes. 
Bottom Panel. The criterion was unexpectedly positive for all participants. 
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For all three participants, the criterion parameter was positive, indicating a bias to 

respond “major.” This result was unexpected since all participants were highly sensitive to 

the major/minor task.  

Rests Condition 

Tone-Weighting Functions. The tone-weighting functions for the Rests condition 

are plotted in Figure 2.6. This figure uses the same plotting conventions as the Extended-

Notes results plotted in Figure 2.4. 
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A. 

B. 
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Figure 2.6 Rests Condition: Tone-Weighting Functions. All points are the means of MCMC 
samples which reflect a stable estimate of the posterior density. The error bars are 95% 
credible intervals. Positive impacts reflect a “major” and negative impacts reflect a “minor” 
influence on the decision statistic.  The black line with squares shows the target function 
defined by the feedback rule. The major notes are labeled with the purple scale degrees and 
the minor notes are the orange scale degrees. The tone-weighting functions are plotted fother 
(blue), faccented (green), ffinal (red). Asterisks denote differences between the 95% credible 
intervals between tone-weighting functions. Results from each participant are plotted as 
follows: A. Participant 1, B. Participant 2, C. Participant 3. 

 

Participant 1. In Figure 2.6A, Participant 1 was close in matching the target 

function for this condition. Similar to the Extended-Notes Condition, the final pip function 

had a positive weight for both tonics (1 & 1*). Again, the minor 6th had the strongest minor 

impact for this participant.  

There was a difference between the Final Pip function and the Other Pips Function 

at the high tonic (1*). When tone-scrambles ended on the high tonic, 1*, it had a stronger 

C. 
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“major” influence than when the high tonic was in non-accented temporal positions in the 

tone-scramble. This participant showed the same effect in the Extended-Notes condition. 

Participant 2. As in the Extended-Notes Condition, both tonics (1 & 1*) had a major 

contribution to Participant 2’s decision statistic for the Rests Condition (Figure 2.6B). 

Again, perfect 4th (4) had a strong minor influence for this participant. Even though the 4th 

is modernly considered a “perfect” interval, it has been called a dissonance by Fux’s 

fundamental book on counterpoint, Gradus Ad Parnassum (Mann, 1965). This fact may have 

created a context for Participant 2 to experience the 4th as a “minor” tone. In this condition, 

the tritone (♯4) also had a powerful impact on this participant’s decision to classify a tone-

scramble as “minor.” 

There were two differences between tone-weighting functions, and for both, the 

Final Pip Function tone weight was different from both the Other and Accented Pips 

Functions. These two differences were found at the major 7th and the minor 2nd. The major 

7th had a stronger “minor” impact and the minor 2nd had a stronger “major” impact when it 

was the final pip in a tone-scramble.  This participant had differences that followed a 

similar pattern at both of these tones in the Extended-Notes Condition. 

Participant 3. This participant achieved tone-weighting functions that more closely 

matched the target function compared to their results in the Extended-Notes Condition. 

The high tonic (1*) has a “major” impact and the perfect 4th (4) has a strong “minor” 

impact. The perfect 4th effect is similar to the one we observed in both conditions for 

Participant 2. 

There were two tone-types where the Final Pip Function weight was different from 

the Other Pips Function weight. First of all, the tritone (♯4) had the extra “minor” impact 
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when it was the final pip in a sequence. This matches this participant’s results in the 

Extended-Notes Condition. Secondly, the high tonic (1*) had an interesting interaction. 

When the final pip was the high tonic, the sequence was less “major” sounding than when 

the high tonic was at the Other Pip (unaccented) temporal positions. This was a peculiar 

result specific to only this participant in this condition. 

Summary. In the Rests Condition, the tonics (1 & 1*) did not always have a “major” 

impact on participant’s decisions. Participants 1 & 3 were closer to achieving the target 

function compared to their results in the Extended-Notes Condition. 

There were some differences between tone-weighting functions; these differences 

revealed interactions between tone-type and temporal position at the final pip. For each 

participant, these interactions were a subset of their interactions in the Extended-Notes 

Condition. Again, we observe that the Final Pip Tone-Weighting Function must be distinct 

from the Other Pip Function for the best fit to the data. In the Rests Condition, rhythm and 

pitch were not separable in the way they interacted in major/minor classification.  

Temporal-Weighting Function and Criterion. The metrical accents created by the 

rests did not give boosts of sensitivity as strong as the extended-notes did in the first 

condition (Figure 2.7). Participant 1 showed very few differences in their sensitivity to 

temporal positions of pips in a tone-scramble. Participant 2 had the strongest rhythmic 

pattern in their temporal-weighting function, and they were particularly sensitive to the 

final pip. Participant 3 showed a nearly linear pattern of sensitivity; the participant became 

more and more sensitive to tones as the scramble progressed. 
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Figure 2.7 Rests Condition: Temporal-Weighting Functions and Criterion Parameters. All 
points are the means of the MCMC sampling and error bars are 95% credible intervals. Top 
Panel. The metrical accents at temporal position 5 & 10 are shown in green, and the 
metrical accent at the final position 15 is in red. The temporal weighting functions show an 
overall weaker additive effect of rhythmic accents compared to the Extended-Notes 
Condition. Bottom Panel. As in the previous condition, the criterion was positive for all 
participants. 

 

In Figure 2.7, the criterion parameter was positive for all participants, and this 

provides evidence for the “major” bias again. 

Non-Rhythmic Condition 

Tone-Weighting Functions. In Figure 2.8, the Non-Rhythmic Condition shows two 

tone-weighting functions: the Final Pip Function and the Other Pips Function because there 

were no rhythmically accented tones (see Equation 2.5). 
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A. 

B. 



60 
 

 

Figure 2.8 Non-Rhythmic Condition: Tone-Weighting Functions. All points are the means of 
MCMC samples which reflect a stable estimate of the posterior density. The error bars are 
95% credible intervals. Positive impacts reflect a “major” and negative impacts reflect a 
“minor” influence on the decision statistic. The black line with squares shows the target 
function defined by the feedback rule. The major notes are labeled with the purple scale 
degrees and the minor notes are the orange scale degrees. The tone-weighting functions 
are plotted fother (blue) and ffinal (red). Asterisks denote differences between the 95% 
credible intervals between tone-weighting functions. Results from each participant are 
plotted as follows: A. Participant 1, B. Participant 2, C. Participant 3. 

 

Participant 1. Participant 1 showed a few similar effects found in the previous 

conditions. To begin with, there was always a “major” impact of the tonics (1 & 1*) when 

they were the final pip in a tone-scramble. Next, the minor 6th had the strongest impact on 

the participant’s decision to respond “minor.” Lastly, the high tonic was weighted more 

“major” when it was the final pip versus all other temporal positions. This interaction was 

found in all 3 conditions for Participant 1. 

C. 
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Participant 2. The tonics (1 & 1*) always had a “major” impact on Participant 2’s 

decision statistic. As in the other conditions, the perfect 4th (4) had a strong “minor” impact 

for Participant 2. The minor 6th and the tritone also had strong “minor” weights. 

There were 4 differences between the tone-weighting functions. Three of these 

differences demonstrated unexpected tone-weights at the final pip. The major 2nd and 

major 7th had more “minor” impacts, and the minor 6th had a less “minor” impact when they 

were at the final pip position compared to all other temporal positions. The major 7th had 

this final pip interaction in all conditions for Participant 2. The last difference was the low 

tonic (1) had a higher “major” impact when it was at the final pip compared to other pip 

positions. The low tonic resolution had the same effect as the high tonic resolution- ending 

on any tonic gave a particularly complete and resolved feeling that can relate to a “major” 

classification in our paradigm. 

Participant 3. Like Participant 2, the tonics (1 & 1*) always had a “major” impact on 

Participant 3’s major/minor discrimination. The minor 6th had the largest “minor” impact. 

The minor 7th had a surprisingly high “major” impact; this effect was true to a lesser extent 

the previous conditions. 

There was one interaction between pip position and tone-weight. Participant 3 

weighted the tritone (♯4) more “minor” when it occurred at the final pip position compared 

to the other pip positions in a tone-scramble. This participant demonstrated this 

interaction in all conditions. 

Summary. For all participants, the tonics (1 & 1*) had a “major” impact at the final 

temporal position. Each participant had at least one difference between tone-weighting 

functions even though the final pip was not structurally accented (e.g. in the Extended-
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Notes Condition) or metrically accented (e.g. in the Rests Condition). These differences 

represent interactions between tone-type and temporal position, and these interactions 

were different between participants but showed some consistency across conditions for 

each participant. Even without rhythmic information, the Full Model was crucial to 

distinguish the important differences of tone-impacts at the final pip position. 

Temporal-Weighting Function and Criterion. The temporal-weighting functions 

were relatively flat except for strong boosts of sensitivity at the final pip for Participants 2 

and 3 (Figure 2.9). These boosts at the end demonstrate that there was a natural 

importance to the final pip even when there were no rhythmic accents in the stimuli. The 

final note is crucial to the notion of musical resolution, so resolution seems to play an 

important role in our participants’ major/minor discrimination. 
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Figure 2.9 Non-Rhythmic Condition: Temporal-Weighting Functions and Criterion 
Parameters. All points are the means of the MCMC sampling and error bars are 95% 
credible intervals. Top Panel. The final pip at temporal position 15 is in red. There are 
significant boosts in sensitivity to the final pip for Participants 2 & 3. Bottom Panel. For all 
participants, the three Criterion parameters are evenly spaced with a positive (“major”) 
bias. 

 

The model for the Non-Rhythmic Condition (Equation 2.6-2.9) included 3 Criterion 

parameters. All participants show systematic 1.25 standard deviation intervals between 

each Criterion parameter.  

Discussion 

When making major/minor classifications, rhythmic accents amplified sensitivity to 

tones. The phenomenal accents in the Extended-Notes Condition created a stronger 
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sensitivity to accented tones than the metrical accents in the Rests Condition. This 

difference was not unusual because the extended tones were twice as long as the accented 

tones in the Rests Condition. 

The rhythmic manipulations (phenomenal and metrical accents) did not 

consistently have an interactive effect with pitch. However, at the final tone in a tone 

scramble, there were significant interactions between the temporal position and pitch in 

making the major/minor classification. This indicated that resolution had a unique effect on 

the impact of particular tones in the major/minor discrimination. These interactions 

occurred in all conditions, including the Non-Rhythmic Condition; thus, the internal 

rhythmic patterns in the Extended-Notes and Rests Condition were not necessary to create 

a special influence of the final pip. Since an entire stimulus could be considered a musical 

phrase, the final pip could have been interpreted as a global rhythmic accent even though 

this rhythm is less proper than the local phenomenal and metrical accents. These results, 

along with likelihood ratio tests, proved that we must reject the separable model of rhythm 

and pitch where rhythmic accentuation only amplifies sensitivity to pitch.  

Tonal stability based on tonal hierarchy (see Krumhansl, 2000 for a review) gave 

some explanations for the interactions that occurred at the final pip. There were individual 

differences in the final pip interactions, but each participant showed relatively consistent 

interactions across conditions. Participant 1 always weighted the final high tonic as extra 

“major.” The tonic is the most stable tone in the tonal hierarchy, and this stability in the 

resolution could sound more “major”/happy. Participant 2 always gave the major 7th a 

“minor” boost when it occurred on the final tone – the major 7th is quite unstable, so this 

poor resolution appears to be “minor”/sad sounding. Participant 3 always weighted the 
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final tritone, #4th, extra “minor” compared to tritones at other temporal positions. The 

extra “minor” impact from the tritone may also be related to stability of resolution since is 

one of the most unstable notes. Aside from these differences, a low or high tonic at the final 

pip always gave some influence for a participant to classify a scramble as “major.” This was 

the case in all conditions and participants except for Participant 3 in the Rests Condition, 

but the means of their tonic tone-weight estimates were both above zero. 

Each tone-type, or scale degree, impacted participants in different ways. The major 

and minor 3rds and 6ths certainly played a significant role for all participants, but many 

other tones also gave significant contributions towards their decisions. There were always 

systematic departures from the target functions. Deviations from the target function 

pointed towards processing limitations. Even with trial by trial feedback, participants were 

not able to follow the feedback rule, nor did they comply with the music theory definitions 

major/minor tones in the scale. In an unpublished experiment from the Charles Chubb lab 

(related to Chubb, 2013), participants were able to follow the same target function much 

more accurately when tone scrambles were more brief, 65 ms, and included more tones, 26 

pips. These preliminary results suggest that the longer tones of the present experiment 

create more unexpected tone-weighting functions. 

The Criterion parameter was positive for all participants in all conditions. This 

suggests a “major” bias. In support of a “major” bias, an ERP study found that musicians 

assumed sequences of tones were major until they heard a minor note (Halpern, Martin, 

Reed, 2008).  There is another possible explanation for the positive Criterion estimates. All 

of the stimuli had more tonics relative to the other tones, and since they typically had a 
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major influence, participants needed to adjust their criterion to compensate. The positive 

criterion did not result in an uneven distribution of major/minor responses. 

An additional post-hoc analysis tested the effect of the last two notes being 

ascending or descending. Neither ascending nor descending patterns of the last two notes 

created a significant effect on the major/minor classification. 

One potential criticism would be that participants were not explicitly instructed to 

ignore rhythm. One recent experiment suggests that explicit instructions to ignore 

rhythmic variations in a pitch judgment did not aid participants in successfully ignoring 

rhythm (Jones, Johnston, Puente, 2006).  

What does this tell us about the “happy” and “sad” qualities of major and minor 

tonalities respectively? Our results may suggest that when music ends in a stable and 

centered manner (i.e. resolving to the tonic), it gets happier. Conversely, perceived sadness 

may come from unstable resolution. 

Conclusions 

When classifying brief sequences of tones as “major” or “minor”, rhythm amplified 

sensitivity to pitch except for interactive effects at the final tone (pip). These interactions 

supported an inseparable model of rhythm and pitch for major/minor discriminations. The 

final pip had its own special temporal importance of resolution. This global marker of 

rhythm was more powerful than the local rhythmic accents (extended-notes and tones 

before rests) within a sequence of tones. Phenomenal accents created stronger boosts of 

sensitivity than metrical accents. Tonics had an unexpected “major” impact on participants’ 

decisions and there were individual differences in the way different tones impacted their 
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major/minor distinction. The participants did not strictly follow the music theory nor the 

experimental feedback rule for weighting the impact of each tone-type. 
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CHAPTER 3: Binding brightness and loudness: the limits of attention and 
the temporal window 

Abstract 

In the present study, we explored the role of attention in binding brightness and 

loudness. Attentional binding of loudness and brightness can only be achieved for inter-

stimulus-intervals (ISIs) greater than a critical ISI called the temporal window of binding. 

The present study used new experimental and analytical techniques to investigate the 

limits of attention and the temporal window of binding brightness and loudness. On each 

trial, the observer viewed a quick stream of 18 gray disks, each accompanied by a 

simultaneous burst of auditory white noise. Three levels of disk brightness and of noise 

loudness created nine possible pairings or token-types. For each condition, participants 

attended to a particular feature of the stimulus stream: brightness-only, loudness-only, 

correlatedness of brightness and loudness, zero intensity (blank/silent) tokens, or 

maximum intensity tokens. Participants judged whether the attended feature was “high” vs. 

“low” for each stimulus stream. Using a linear process model, attention filters were derived 

based how much each token-type impacted the participants’ judgments. The model 

estimated the probability of binding non-simultaneous disks and noises to derive the 

temporal binding window. We found converging evidence for the previously discovered 

limit of the multimodal temporal binding window. A hierarchical Bayesian analysis 

established evidence for four dimensions of brightness and loudness sensitivity across 

participants. Participants were able to attend to loudness only and ignore variations in 

brightness, but they had more trouble attending to brightness only and ignoring loudness. 

The finding that participants achieved different attention filters in different conditions 
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demonstrates that top-down attention can powerfully modulate the binding of loudness 

and brightness in dynamic displays. 
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We are constantly perceiving light and sound, and we can segregate events and 

objects depending on the way these percepts combine. Sometimes we can focus our 

attention on just our vision or hearing, but we often require silence while we read and close 

our eyes while we focus on music. These attempts to block out one modality in order to 

focus on the other suggest that cross-modal information combines without complete 

attentional control. This begs the question, how effectively can we use our attention to 

control the way we perceive combinations of light and sound? This project focuses 

specifically on the attentional control we can exert in segregating/binding brightness and 

loudness information in dynamic displays. 

Multisensory Integration & Attention 

Some research has found that people tend to rate brightness more highly when a 

light is paired with a loud sound than a light without a sound, but the increased brightness 

ratings have been explained by response biases rather than low-level sensory interactions. 

For example, Stein et al. (1996) reported that uninformative auditory noise increased 

brightness ratings; however, Odgaard (2003) established that this enhancement resulted 

from a response bias by manipulating the proportion of trials in which noise was paired 

with brightness. Ben-Artzi & Marks (1995) also proposed a response bias model for this 

effect; the model described participants who would lower their criteria for classifying a 

light as “bright” if a loud tone was presented simultaneously. In an unspeeded sensory 

discrimination task by Marks et. al in 2003, combinations of correlated levels of brightness 

and loudness led to increased accuracy driven by response biases as well. These findings 

demonstrate that there is more than just low-level multisensory integration, but they do 

not quite explain how attention modulates brightness and loudness binding. 
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There are different explanations for how multisensory integration and multisensory 

attention interact. The ventriloquism effect, where visual biases affect sound localization, 

has been explained as multisensory integration that occurs independently of both 

endogenous and exogenous spatial attention (Vroomen, Bertelson, De Gelder, 2001). On the 

contrary, ERP studies by Talsma and Woldorff (2005 & 2007) show that multisensory 

attention can affect multisensory integration. The present study will investigate the 

interaction of multisensory integration and attention by on exploring the extent to which 

selective attention can mediate our perception of brightness and loudness. 

The Temporal Binding Window 

The present study introduced a task in which quick bursts of sounds and lights 

needed to be parsed and integrated over time. We must consider the temporal limit of 

processing for this parsing. For a brightness and loudness judgment, the temporal binding 

window (TBW) is the amount of time you need to process combined information from a 

sound and light. TBWs have often been characterized by the probability of multisensory 

illusions with various levels of stimulus onset asynchrony (Stevenson, 2012). For example, 

in the sound-induced flash illusion, two beeps are paired with one flash of light, but it gives 

an illusion of two flashes (Shams, Kamitani & Shimojo, 2000). In this case, the TBW can be 

measured by the temporal gap between the flashes and beeps under which the illusion is 

still perceived. If the illusion is perceived with shorter offsets, then this would reflect a 

narrower temporal binding window.  

Fujisaki and Nishida (2010) used different method of extracting a temporal binding 

window for multimodal stimuli. Fujisaki & Nishida argue for a central TBW that is 

insensitive to different peripheral sensory processing speeds from vision, hearing, and 
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touch. In one of their audiovisual binding experiments, a stimulus consisted of a visual 

patch that oscillated between two equiluminant colors, C1 and C2 of different hues, and a 

simultaneous sound that oscillated between two pitches, P1 and P2 of equal loudness. 

Participants judged whether C1 was aligned in time with the occurrences of P1 or P2. In 

other words, the participants judged whether the sequence was “in-phase” our “out-of-

phase.” The stimuli were presented at different rates of oscillation, and classification 

performance was measured.   For participants to achieve at least 75% performance, the 

stimuli could not oscillate faster than 2-3Hz. This 2-3Hz limit translates to a 167-250ms 

temporal binding window. These stimuli were carefully designed to be constant in 

brightness and loudness, so participants were forced to use top-down attention to achieve 

the color-to-pitch binding required for making the judgments. It should be noted, however, 

that Fujisaki & Nishida experimented with changing the auditory component from pitch to 

loudness and there was no effect on the 2-3Hz binding limit. 

The Present Study 

The present study explored whether or not this universal temporal binding window 

would hold with a different type of stimulus, task, and TBW calculation. Our stimuli were 

composed of a rapid stream of simultaneous disks of varying brightness and noise-bursts of 

varying loudness. Our stimuli differed from the Fujisaki and Nishida 2010 experiment 

because the Fujisaki and Nishida stimuli used only two levels of each of the visual and 

auditory features, conforming to a fixed, oscillating pattern of the phase-judgment stimuli. 

Our stimuli was composed of particular amounts of disk brightness and noise loudness, but 

these disks and noise-bursts were presented in random order. These random variations 

created temporally broadband frequency content in both brightness and in loudness. In 
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addition, the Fujisaki and Nishida experiment did not examine brightness and loudness 

binding, and since these features both mark the intensity of their respective sensory 

modalities, there may exist special processes available to bind them. Such processes might 

enable strategic binding options precluded by the stimuli of Fujisaki and Nishida (2010). 

Instead of a phase judgment task, our experiment required participants (in different, 

separately blocked conditions) to selectively attend to particular audiovisual aspects of 

each stimulus. The first two conditions asking participants to either judge mean brightness-

only or mean loudness-only in the stream of disks and noise-bursts. These conditions 

tested the degree to which participants could decouple brightness information from 

simultaneous loudness information and vice versa. Three more conditions tested binding 

abilities by asking subjects to judge relative amounts of particular combinations of 

brightness and loudness. The extent to which participants could attend to the features 

required in our experiment will reveal how multisensory integration and attention interact 

for brightness and loudness in temporally varying sequences. 

The current experiment extracted a new sort of temporal binding window. Our 

stimuli lasted approximately 1.5 seconds, and audiovisual tokens were attended to within a 

continuous stream, providing the chance for the fine structure of the stimulus to blur 

together. We characterized this blur by estimating a TBW from our data that was defined 

by the probability of binding non-simultaneous brightnesses and loudnesses. Participants 

would bind non-simultaneous brightnesses and loudnesses if their TBW subsumed 

multiple brightness-loudness tokens. We extracted this temporal binding window to test 

the limit established by Fujisaki & Nishida (2010).  
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In the present study, the data analyses used linear process models and, in doing so, 

deviated from the typical analysis methods in the multisensory binding literature. The 

model was fit using Bayesian Markov Chain Monte Carlo sampling methods. We also fit the 

data using a hierarchical Bayesian model to discover the limits of brightness/loudness 

binding across conditions and participants. 

Our selective attention tasks allowed us to explore the limits of attention on 

brightness and loudness binding. We expected to find a smaller TBW than the Fujisaki and 

Nishida limit because brightness and loudness are  both on the intensity dimension light 

and sound, and the random variations in the stimulus (as opposed to strict oscillations) 

may enhance temporal processing speeds. 

Method 

Participants 

Three individuals participated in this experiment (2 males and 1 female). Two of the 

participants were the authors, and the other was a paid undergraduate volunteer. Each 

participant had normal or corrected-to-normal vision and normal hearing. All participants 

gave informed written consent approved by the Institutional Review Board at the 

University of California, Irvine. 

Apparatus & Stimuli 

The experiment was run on MATLAB on an Apple iMac. The display screen had a 

resolution of 1920x1080 pixels, with a refresh rate of 60 Hz. Sounds were presented over 

Sennheiser HD 201 headphones.  
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For each trial, a quick 

stream of 18 gray disks (83 ms per 

disk) was presented in the center of 

the screen (see Figure 3.1). Each 

disk was 3.6cm in diameter with 

had a raised cosine envelope. The 

background was uniform grey. Each 

disk was paired with a 

simultaneous burst of auditory 

white noise of varying amplitudes. 

Each noise-burst had an amplitude 

rise and decay window of ~8 ms at 

the onset and offset to avoid clicks. 

Three levels of disk brightness and of noise loudness were used to produce 9 different 

token types of audiovisual pairings. The lowest brightness and loudness levels were 

completely blank (equivalent to the background grey) and silent (ambient room sound).  

Brightness and loudness levels were chosen so that the middle amplitude appeared 

approximately half as intense as the high amplitude. Luminance measurements were taken 

with a PR-670 SpectraScan Spectroradiometer: blank (background grey) level = 25.51 

cd/m2, medium brightness level = 53.15 cd/m2, high brightness level = 95.53 cd/m2. Sound 

pressure level measurements were done with Brüel and Kjær 2260 Investigator. We used 

the A-weighted broadband detector with the fast time weighting setting for the following 

Figure 3.1 Stimulus Presentation. A sample stimulus 
of 18 simultaneous circles and noise-bursts that vary 
in amplitude. 
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measurements: silent level = 33 dB SPL, medium loudness level = 69 dB SPL, high loudness 

level = 82 dB SPL. 

Design 

This experiment was a within-subjects design with 5 selective attention conditions. 

In the first two conditions, the participant was required to judge (1) mean brightness only 

and (2) mean loudness only of each stimulus stream. For example, in the brightness-only 

condition, the participant viewed and listened to a quick stream of audiovisual tokens and 

determined whether the mean brightness across all tokens was greater than a remembered 

standard established in previous trials. This judgment required the participant to ignore 

the irrelevant stimulus feature of loudness. The correlatedness condition (3) asked 

participants to determine whether the stimulus stream had more tokens that were 

correlated in their brightness/loudness intensity versus anti-correlated tokens. The last 

two conditions examined observers' abilities to selectively attend to relative values of just a 

single token type. The zero intensity condition (4) asked participants to make judgments 

based on the relative amount of only the zero intensity (blank/silent) tokens, and the 

maximum intensity condition (5) required participants to make judgments based on the 

relative amount of only the maximum intensity tokens (more precise definitions of each 

condition are to follow in Figure 3.3). 

For every trial, a histogram of the 9 token types defined the 18 tokens that would be 

presented. These 18 tokens were presented in a random order for each trial. Figure 3.2 

shows how the target filter was used to give trial by trial feedback in that particular 

condition. Feedback was derived by applying the target rule to all the tokens in a stimulus 

and then adding up the values. The sign of this sum determined the correct response; in 
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other words, if the sum was negative, the correct response would be “low” and if the sum 

was positive, the correct response would be “high.” 

 

Figure 3.2 Target Filter Example. The target filter dictated the way participants should 
weight each token depending on the condition. A. For the brightness-only condition, the 
target filter weighted the low brightness tokens (blue) negatively and the high brightness 
tokens (red) positively. B. This is a sample stimulus-histogram defining the distribution of 
the 18 total tokens in a particular stimulus. C. When the target filter is applied to the 
stimulus, the negative sum indicates it is a “low” stimulus. If the participant responds “low”, 
the feedback will display “Correct.” 

 

Figure 3.3 illustrates how each target filter precisely defined the task for each 

selective attention condition. Every target filter weighted some token-types positively and 

others negatively, and the weights in a target rule summed to zero.  
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Figure 3.3 Target Filters for Each Condition. These target filter matrices show the positive 
(red) and negative (blue) weighting of each token type depending on the attention 
condition. When the target filter was applied to each stimulus, the sign of the sum 
determined whether the stimulus was “high” or “low” and correctness feedback was given 
accordingly. 

 

In the brightness only and loudness only conditions, the stimulus-histograms were 

regulated by two, randomly interleaved 3-up-1-down staircases. One staircase controlled 

the histograms used in trials in which the correct response was “high” (i.e., trial in which 

the target function applied to the stimulus would yield a positive value); the other staircase 

controlled the histogram used in trials in which the correct response was “low.” The “high” 

histogram began with many high-intensity brightness tokens (brightness-only condition) 

or high-intensity loudness tokens (loudness-only condition). The “low” histogram began 

with many low-intensity tokens for either brightness or loudness depending on the 

condition. In a given one of these staircases, if the participant responded correctly to the 
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last three trials, then the stimulus-histogram would get more difficult (i.e., the histogram 

would be adjusted so that applying the target filter to the stimulus would yield a value 

closer to zero); otherwise, the stimulus-histogram would get easier. These adjustments 

included random variations across the various tokens that would adjust the mean 

brightness (brightness-only condition) or mean loudness (loudness-only condition). These 

3-up-1-down staircases lead to approximately 79% correct performance in these tasks.   

For the correlatedness condition, there was no staircasing procedure. Instead, the 

number of target tokens, either the correlated or anti-correlated tokens, was set by the 

experimenter to yield approximately 80% correct for each block of trials. For participants 

to achieve approximately 80% correct, the number of target tokens was set to 10 out of the 

18 total tokens per stimulus. The remaining 8 tokens were chosen randomly. 

For the zero intensity and maximum intensity conditions, the stimuli were created 

by using their target filter in Figure 3.3 as orthogonal basis vectors to create positive and 

negative stimuli. In these conditions, the weights assigned to the non-emphasized tokens 

were intended to discourage strategies based on attending to brightness alone or loudness 

alone. The values in the maximum intensity target filter were further adjusted to better 

eliminate potential cues created by the unattended tokens. For each of these two 

conditions, 14 histograms were generated for each high and low stimulus type. Each trial 

randomly selected one of these histograms and then the tokens in that histogram were 

presented in random order. For the zero intensity condition, 2 medium brightness disks 

paired with medium loudness noise-bursts were presented at the start and end of each 

stimulus stream (22 total tokens). This was added to this condition so the participant could 

distinguish the zero intensity tokens from the start and end of the stimulus stream. 
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Procedure 

The participant sat approximately 46cm from the screen with the lights off in the 

room. After each trial of 18 simultaneous disks and noise-bursts was presented, the 

participant responded with either a left- or right-arrow key-press; these key-presses 

corresponded to either low or high amounts of the attended feature for that condition. 

After each trial, feedback ("Correct" or "Incorrect") was displayed on the screen. The 

feedback in each condition encouraged participants to optimize their strategy based on the 

target filter. 

Every participant ran the experiment in the following order of conditions: 

brightness-only, loudness-only, correlatedness, zero intensity, and maximum intensity. 

This order was maintained across participants to standardize training. After 100 trials of 

practice in each condition, testing was done in blocks of 100 trials. 1100 trials were 

analyzed for each participant in each condition. 

Modeling 

Basic Model 

For each participant in each condition, a probit model (Equation 3.1) was used to 

measure the impact exerted on the observer's judgments by each of the 9 token types. The 

attention filter, 𝐹⃗, achieved by the participant in a given condition was composed of 9 

parameters that reflected the relative weight exerted by each token-type on the internally 

computed statistic used by the participant to make his/her decision on each trial. The 

attention filter, 𝐹⃗ was constrained (1) to sum to zero and (2) to have a sum of squared 

values equal to 1.  Thus, the parameter C in Eq. (3.1) reflected the consistency (relative to 

internal noise) of the participant in using his/her attention filter. The Criterion parameter 
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reflected response bias, and the Noise in equation 3.1 was assumed to be a standard normal 

random variable.  See Table 3.1 for the full model constraints and degrees of freedom. 

In any given trial of a particular condition, we assumed that the subject responded 

"low" (vs "high" otherwise) if 

 

where tokenk was the loudness-brightness pair occurring in position k (from 1 to 18).  An 𝐹⃗ 

vector, C parameter, and Criterion parameter were estimated for each participant in each 

condition. 

Full Model 

Temporal Binding Parameters. The full model was developed with the addition of 

temporal binding parameters. These parameters revealed how much the simultaneous 

binding disks and noise-bursts contribute to the weighted sum reflecting the participant's 

decision. The addition of these parameters accounted for the possibility of “misbindings”: 

perceptual bindings of non-simultaneous brightnesses and loudnesses in the stimulus. See 

Figure 3.4 for the possible perceptual bindings considered by the Full Model. 

 

∑𝐹(𝑡𝑜𝑘𝑒𝑛𝑘) 

18

𝑘=1

∗ 𝐶 + 𝑁𝑜𝑖𝑠𝑒 < 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

 

 
(3.1) 
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Figure 3.4 Temporal Binding Parameters. This is a representation of the visual and 
auditory components of a stimulus. To explore the temporal binding window, we added 5 
parameters to the model in Equation 3.1, these parameters are w(-2) through w(2) shown 
in blue. These parameters reflect the relative strength in which participants weighted the 
bindings of non-simultaneous disks and noise-bursts. In addition to simultaneous pairings 
(w(0)), the model accommodates, misbindings in which the auditory component preceded 
the visual component (AV shown in green), and misbindings in which the visual component 
preceded the auditory component (VA shown in green). These weights reveal the temporal 
binding window underlying our participants’ decisions.  

 

The difference between a disk and noise-burst in time (separated by tokens) was 

represented by δ = {-2, -1, 0, 1, 2}. The perceptual influence of the simultaneous event was 

represented by w(δ) when δ = 0. If the disk was perceptually paired with the noise-burst 

that occurred two tokens earlier, this was represented by w(δ) when δ = -2. If a disk was 

perceptually paired with the noise-burst that occurred one token earlier, this was 

represented by w(δ) when δ = -1. If the disks were being perceptually paired with noise-

bursts that occurred later in time, these pairings were represented by w(δ) when δ = 1 and 

δ = 2. Each type of pairing was assumed to happen across the majority of the stimulus; the 
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pairings were more complex at the onset and offset of the stimulus stream (see Equations 

3.2 & 3.3).    

In the full model, we have replaced 𝐹(𝑡𝑜𝑘𝑒𝑛𝑘) from Equation 3.1 with 𝐺(𝑘) shown 

below. 

 

∑𝐺(𝑘) 

18

𝑘=1

∗ 𝐶 + 𝑁𝑜𝑖𝑠𝑒 < 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 
 

(3.2) 

 

where 

𝐺(𝑘) =

{
 
 
 
 

 
 
 
 ∑ 𝑤(𝛿) ∗ 𝐹(𝑉(𝑘), 𝐴(𝑘 + 𝛿))

2

𝛿=1−𝑘

, 𝑘 ≤ 2

∑ 𝑤(𝛿) ∗ 𝐹(𝑉(𝑘), 𝐴(𝑘 + 𝛿))

2

𝛿=1−𝑘

, 2 < 𝑘 < 17

 ∑ 𝑤(𝛿) ∗ 𝐹(𝑉(𝑘), 𝐴(𝑘 + 𝛿))

18−𝑘

𝛿=−2

, 𝑘 ≥ 17  

 

 
 
 
 

(3.3) 
 
 
 
 

where V(k) was the visual component (brightness) of the token at position k in a given 

stimulus, and A(k+δ) was the auditory component (loudness) of the token at position k+δ of 

the stimulus. 𝐹(𝑉(𝑘), 𝐴(𝑘 + 𝛿)) was the attention filter (for a given condition) applied to 

the token-type that was composed of the combination of 𝑉(𝑘) and 𝐴(𝑘 + 𝛿). Equation 3.3 

demonstrated that all possible visual and auditory bindings up to 2 frames apart were 

considered in the model. The parameters w(-2),w(-1),…, w(2) for a given participant were  

fixed across all attention conditions reflecting our assumption that each participant had a 

fixed temporal binding window that operated in each condition. 
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Parameter Constraints Degrees of Freedom 

Attention Filter- 𝐹⃗ 
(9 parameters per participant 
per condition) 

3. Mean = 0 
4. Sum of Squares = 1 

7 df (per participant 
per condition) 

Consistency Parameter- C 
(1 parameter per participant 
per condition) 

       none 1 df (per participant 
per condition) 

Criterion Parameter 
(1 parameter per participant 
per condition) 

       none 1 df (per participant 
per condition) 

Temporal Binding Parameters - 
𝑤(𝛿) from 𝛿 = −2: 2 
(5 parameters per participant) 

1. Sum of absolute values= 1 4 df (per participant) 

Table 3.1 Full Model Constraints and Degrees of Freedom. Separate analyses were run for 
each participant. The full model for each participant had a total of 60 parameters with 49 
df7. 

 

Hierarchical Analysis 

In order to evaluate the shared abilities across participants for all conditions, we 

developed a hierarchical model. This model included a basis of sensitivity functions shared 

across participants from which all other possible attention filters are derived as linear 

combinations. We fit this model to all of the data across participants and conditions.  

There were 4 basis functions8, 𝐵1⃗⃗⃗⃗⃗, 𝐵2⃗⃗⃗⃗⃗, 𝐵3⃗⃗⃗⃗⃗, and 𝐵4⃗⃗⃗⃗⃗, from which all possible attention 

filters are derived. These basis functions were shared across participants: 

 

𝐵𝑎𝑠𝑖𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 = [ 𝐵1⃗⃗⃗⃗⃗    𝐵2⃗⃗⃗⃗⃗    𝐵3⃗⃗⃗⃗⃗    𝐵4⃗⃗⃗⃗⃗] (3.6) 

 

                                                           
7 Except for participant 3 who could not perform the task for the maximum intensity condition. Parameters relevant 

to that condition were excluded, so the model for that participant had 49 parameters with 40 df. 
8 A model with 5 Basis Functions was also tested, but the 5th Basis Function contributed very little to participant’s 

judgments even though a likelihood-ratio test suggested this model was superior at fitting the data. In addition, the 

first 4 Basis Functions and α weights remained very stable in both analyses, so we report the 4 Basis Function 

model. 
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We assumed that each participant has a fixed strength of each of these functions in 

their processing system. For each participant, 4 α parameters weighted the strength of each 

of the 𝐵1⃗⃗⃗⃗⃗, 𝐵2⃗⃗⃗⃗⃗, 𝐵3⃗⃗⃗⃗⃗, and 𝐵4⃗⃗⃗⃗⃗, basis functions. The participant’s αs multiplied by the basis 

functions gives us a matrix P, or Participant-Specific Sensitivity Functions, for each 

participant: 

𝑃 = [𝛼1𝐵1⃗⃗⃗⃗⃗   𝛼2𝐵2⃗⃗⃗⃗⃗  𝛼3𝐵3⃗⃗⃗⃗⃗   𝛼4𝐵4⃗⃗⃗⃗⃗] (3.7) 

 

The model assumed that participants could optimally scale their Participant-Specific 

Sensitivity Functions, P, depending on the selective attention condition. Accordingly, for 

each participant in each condition, their P matrix was scaled by a set of 4 parameters, 𝛽. 𝛽 

was optimized for each condition, and the elements of 𝛽 were not free parameters, they 

were calculated below.  

𝛽 =
𝑃𝑇 𝑇⃗⃗

|(𝑃𝑇 𝑇⃗⃗)|
 

(3.8) 

 

where T was the target filter for a given condition. We assumed that participants could not 

use their Participant-Specific Sensitivity Functions negatively. Thus, if any optimal 𝛽 was 

negative, it was set to zero. Then, the positive the set of 𝛽s was forced to have a sum of 1. 

After the 𝛽 parameters were applied to the P matrix, we attained the attention filter, 𝐹⃗, for a 

particular participant in a particular condition. 

𝐹⃗  = 𝑃 ∗ 𝛽 (3.9) 

 

As in the full model, the attention filter, 𝐹⃗, was applied to each token of the stimulus 

considering non-simultaneous bindings represented by the Temporal Binding Parameters 
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(see Equation 3.3). The standard normal random Noise was added, and the total sum was 

compared to the Criterion parameter. The Temporal Binding Parameters in the Hierarchical 

Model were shared across participants to estimate the shared Temporal Binding Window. 

The Hierarchical Model excluded the C, or consistency, parameters because the α 

parameters represented the strength of each underlying component or basis function. 

Parameter Constraints Degrees of Freedom 
Basis Functions 

 𝐵1⃗⃗⃗⃗⃗, 𝐵2⃗⃗⃗⃗⃗, 𝐵3⃗⃗⃗⃗⃗, and 𝐵4⃗⃗⃗⃗⃗ 
(9 parameters in each 
function = 36 total) 

Each of  𝐵1⃗⃗⃗⃗⃗, 𝐵2⃗⃗⃗⃗⃗, 𝐵3⃗⃗⃗⃗⃗, and 𝐵4⃗⃗⃗⃗⃗ 
1. Mean = 0 
2. Sum of Squares = 1 

 

28 df 

α Parameter 
(4 parameters per participant = 
12 total) 

none 12 df 

Criterion Parameter 
(1 parameter per participant 
per condition = 14 total9) 

none 14 df 

Temporal Binding Parameters - 
𝑤(𝛿) from 𝛿 = −2: 2 
(5 parameters) 

Sum of absolute values= 1 4 df 

Table 3.2 Hierarchical Model Constraints and Degrees of Freedom. The Hierarchical model 
had a total of 67 parameters with 58 df. 

 

The set of Basis Functions was ordered such that: 

- 𝐵1⃗⃗⃗⃗⃗ correlated most with the Brightness-only target function 

- 𝐵2⃗⃗⃗⃗⃗ correlated most with the Loudness-only target function 

- 𝐵3⃗⃗⃗⃗⃗ correlated most with the Correlatedness target function. 

The remaining basis function 𝐵4⃗⃗⃗⃗⃗ had no requirements. 

 

 

                                                           
9 This is 14 and not 15 because we did not fit Participant 3’s data in the Maximum Intensity Condition. Participant 3 

had difficulty performing that particular task. 
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Model Fitting 

The Full Model was fit with a separate Markov Chain Monte-Carlo (MCMC) sampling 

procedure for each participant. See Appendix A for details on the MCMC sampling 

procedure. The Hierarchical Model fit the data for all participants in one MCMC sampling 

procedure. All figures display means and 95% credible intervals from the last 80,000 (out 

of 100,000 collected) samples.  

Results 

Full Model 

Attention Filters. Participants achieved attention filters that closely matched the 

loudness-only target filter, and their attention filters deviated more from brightness-only 

target filter (see Figure 3.5). In other words, it was more difficult for participants to attend 

to only brightness and ignore variations in loudness. We observed lower consistency 

parameter values in the brightness-only condition versus the loudness-only condition. This 

means that participants adhered to their attention filter more consistently in the loudness-

only condition than the brightness-only condition. 
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Figure 3.5 Full Model Results for Single-Modality Attention Conditions. These are the 
attention filters (blue) plotted over the target filters (red) for the brightness-only and 
loudness-only conditions. The attention filter circles are the mean of the posterior and the 
error bars are 95% credible intervals. The consistency parameter mean estimates are 
displayed in green. Participants were better at attending to loudness-only versus 
brightness-only. 

 

In Figure 3.6, we plot the attention filters obtained for the conditions that required 

binding brightness and loudness information. In the correlatatedness condition, the target 

function assigned equal weight to all three medium brightness tokens; note, however, that 

for Participants 1 and 3 (and slightly for Participant 2) sensitivity to medium brightness 

tokens increased with loudness. For the zero and maximum intensity conditions, we see 

minimal deviations from the target filter. The deviations we see are not surprising or 

particularly important because participants were able to follow instructions in weighting 

the particular token-type (either the zero intensity or maximum intensity token-type) 
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highly. Participant 3 had difficulty performing the maximum intensity task, so we did not fit 

their data for that task. 

 

Figure 3.6 Full Model Results for Binding Attention Conditions. These are the attention 
filters (blue) plotted over the target filters (red) for the conditions that required attention 
to combinations of brightness and loudness information. The attention filter circles are the 
mean of the posterior and the error bars are 95% credible intervals. The consistency 
parameter mean estimates are displayed in green. The bottom right plot is missing because 
participant 3 was unable to perform the maximum intensity task. 

 

Consistency parameters. For all participants, consistency estimates were highest 

for the Loudness-only and Maximum Intensity conditions. This means participants were 

most systematic in using their token-weighting filter for these two conditions. Participant 2 

had higher average consistency values than Participants 1 and 2. 
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Participant 1:   Condition 
                               Brightness-only 

Mean 
.44 

95% Credible Interval 
(.39, .49) 

                               Loudness-only .83 (.75, .94) 
                               Correlatedness .65 (.56, .74) 
                               Zero Intensity .70 (.62, .79) 
                               Maximum Intensity .61 (.54, .68) 
Participant 2: 
                               Brightness-only 

 
.89 

 
(.82, .96) 

                               Loudness-only 1.07 (1.00, 1.14) 
                               Correlatedness .76 (.69, .83) 
                               Zero Intensity 1.19 (1.10, 1.27) 
                               Maximum Intensity .83 (.74, .91) 
Participant 3: 
                               Brightness-only 

 
.58 

 
(.53, .64) 

                               Loudness-only .68 (.62, .74) 
                               Correlatedness .56 (.48, .65) 
                               Zero Intensity .71 (.61, 84) 

Table 3.3 Full Model Consistency Parameter Estimates. The mean and 95% credible 
intervals from the last 80,000 MCMC samples. 

 

Temporal Binding Parameters. The estimates for the temporal binding 

parameters are in Figure 3.7. When δ=2 & δ=-2, w(δ) is very close to zero. This represents 

our temporal binding window. Note that w(1) + w(-1), the sum is approximately equal to 

w(0). In other words the net influence of loudnesses and brightnesses misbound across a 

single frame is approximately equal to the net influence of (correctly bound) simultaneous 

loudnesses and brightnesses. 
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Figure 3.7 Full Model Temporal Binding Parameters. For each temporal binding weight, the 
error bars show the 95% credible intervals, and the circle indicates the mean of the 
posterior distribution. The different values of δ represent 5 possible bindings across visual 
and auditory tokens. w(0) represents the weight of the simultaneous disk and noise-burst 
pairing. Negative values of delta correspond to the perceptual pairings in which the 
auditory token preceded the visual token (AV), and positive values of delta correspond to 
the pairings in which the visual token preceded the auditory token (VA). 

 

Each δ corresponds to a time of 83ms (length of each token display), and our 

temporal binding window is approximately 2 δ’s long. This gives us a 167 ms temporal 

binding window. 

Criterion. All criterion parameter estimates were either zero or extremely close to 

zero (<.5 SD of the standard normal noise).  

Hierarchical Model 

Basis Functions. The Basis Functions reflected the shared brightness/loudness 

sensitivity across participants from which all token-weighting filters were derived. The set 

of Basis Functions was ordered in a way that forced: 𝐵1⃗⃗⃗⃗⃗ to be most correlated with the 
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Brightness-only target filter, 𝐵2⃗⃗⃗⃗⃗ to be most correlated with the Loudness-only target filter, 

and 𝐵3⃗⃗⃗⃗⃗ to be most correlated with the Correlatedness target filter. 

Figure 3.8 shows the fits for the Basis Functions. 𝐵1⃗⃗⃗⃗⃗ showed an interaction with 

loudness for the high-brightness level tokens; this interaction was also present in the 

Brightness-only fits in the Full Model. Out of the 4 Basis Functions, 𝐵2⃗⃗⃗⃗⃗ most closely matched 

the target filter (Loudness-only) that it was forced to correlate most with. 𝐵4⃗⃗⃗⃗⃗ weighted the 

zero intensity (blank/silent) token highly and the maximum intensity token lowly. 

 

Figure 3.8 Hierarchical Model Basis Functions. These Basis functions reflected the shared 
brightness/loudness sensitivity across participants from which all attention filters were 
derived. Reference target filters are plotted for the three Basis Functions that were 
organized based on their correlation with a particular target function. 
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Alpha parameters. Each participant had 4 α parameters that represented the 

strength of the representation of each basis function in their processing system. All three 

participants showed a similar pattern of alpha values in which α2 and α4 had the largest 

influence. Thus, Basis Functions 𝐵2⃗⃗⃗⃗⃗ and 𝐵4⃗⃗⃗⃗⃗ (Loudness-only and Zero Intensity) were 

represented most strongly in their processing system (Figure 3.9).  This pattern aligns 

with the Consistency parameter estimates from the Full Model. 

 

Figure 3.9 Hierarchical Model Alpha Parameters. These parameters scaled the influence of 
the Basis Functions for each participant. The elevated α2 and α4 parameters indicate strong 

representations of 𝑩𝟐⃗⃗⃗⃗⃗⃗  and 𝑩𝟒⃗⃗⃗⃗⃗⃗  (Loudness-only and Zero-Intensity Functions). 

 

Attention Filters. The attention filters estimated by the Hierarchical Model were 

plotted over the attention filters from the Full Model (Figure 3.10). Each model provided 

very similar estimates of the attention filters. 
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Figure 3.10 Hierarchical Model Token-Weighting Functions. The token-weighting functions 
derived from the Hierarchical model are plotted against with the full model token-
weighting functions. There were few deviations between the two model estimates. 

 

Temporal Binding Parameters. These were shared across all participants and 

conditions in this model. The results (Figure 3.11) are very similar to the full model and 

reflect a confirmation of the temporal limit of binding proposed by Fujisaki and Nishida 

(2010). 
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Criterion. As in the full model, all criterion parameter estimates were either zero or 

extremely close to zero (<.5 SD of the standard normal noise).  

Hierarchical Versus Full Model Comparison. The Hierarchical Model accounted 

for 94.04% of the variance in the trial-by-trial Z-scores predicted by the Full Model. 

Discussion 

The Limits of Attention on Binding Brightness and Loudness 

Participants were able to selectively attend to particular combinations of brightness 

and loudness- achieve many attention filters. The limits of attention were exposed in each 

case when the attention filters did not match the target filters. There were constraints on 

the selective attention process that were not allowing the participant to optimize his/her 

filter to match the feedback rule. 

Figure 3.11 Hierarchical Model Temporal Binding Parameters. In the Hierarchical Model, 
this temporal binding window was shared across all participants in all conditions. We find 
the same result as the full model. This confirms the temporal limit established by Fujisaki 
& Nishida (2010). 
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The full model analysis demonstrated that attending to brightness-only was more 

difficult than attending to loudness-only. This suggests an asymmetric interaction between 

loudness and brightness: it was more difficult to decouple variations in brightness from 

concurrent variations in loudness than it was to decouple variations in loudness from 

concurrent variations in brightness. Attention to brightness-only was not enough to 

suppress the multisensory integration between brightness and loudness. It is possible that 

sound dominates vision when competing for attentional resources.   This view is supported 

by the results of Koelewijn & Theeuwes (2009) who found that auditory attentional 

capture in a visual stimulus could not be suppressed by top-down attentional control. 

In our Hierarchical Analysis, the basis functions shared across participants suggest 

that there are 4 dimensions of binding brightness & loudness attention. Unsurprisingly, 

there was a basis function for each brightness-only and loudness only. The third basis 

function showed attention to correlatedness of brightness and loudness levels. The fourth 

basis function was a zero intensity (or blank/silent) detector. In other words, we have a 

mechanism for identifying the absence of brightness and loudness. This final mechanism 

was represented the strongest for all participants. 

 Participants were most systematic in the Loudness-only and Zero-Intensity 

conditions. This was reflected by highest Consistency parameter values in the Full Model 

and the largest α weights in the Hierarchical Model.  

Our results contribute to the new exploration of auditory perceptual averaging in a 

multimodal context. Even in unimodal experiments, auditory perceptual averaging has 

hardly been explored even though many visual perceptual averaging experiments have 

been done with size, orientation, location, speed, motion direction, facial identity and 
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emotion (reviewed in Stevenson, 2012). Visual perceptual averaging has also been 

demonstrated in temporally varying stimuli such as with disc size (Albrecht & Scholl, 

2010). Only one recent study by Albrecht (2012) has observed auditory perceptual 

averaging at all, and it did so in both unimodal and multimodal contexts. In this study, there 

were temporally varying displays of multiple disc sizes and/or pitches, and participants 

made magnitude estimations of the average disc size or pitch. The pitch averaging was 

actually more accurate than disc size, perhaps reflecting the inherent auditory advantage of 

temporal displays. The present study was the first to investigate loudness averaging in a 

temporally varying multimodal stimulus, and the robustness of our loudness-only attention 

filters demonstrate that participants are quite good at loudness averaging. 

The Temporal Limit of Binding Brightness and Loudness 

Both our Full Model and Hierarchical Model analyses confirmed the Fujisaki & 

Nishida temporal limit of multimodal binding (2010). This temporal limit translates to a 

temporal binding window of 167 – 250ms. The present study found a temporal binding 

window of approximately 167 ms – 332ms; thus, we found converging evidence for this 

temporal limit of binding.  Brightness and loudness are bound with same temporal window 

for both randomly varying sequences (present study) and oscillating sequences (Fujisaki). 

Closing Remarks 

We found converging evidence for the previously discovered limit of the multimodal 

temporal binding window. Participants were able to attend to loudness only and ignore 

variations in brightness, but they had more trouble attending to brightness only and 

ignoring loudness. Participants were also able to bind brightness and loudness information 

in various ways; specifically, our analysis suggests that participants can recruit attentional 
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channels selective for (1) the correlation of brightness and loudness and also for (2) the 

simultaneous absence of energy in the visual and auditory streams. 
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APPENDIX A: Chapter 2 Stimuli: Note-Count Vectors 
 

These are the possible note-count vectors for the different difficulties in the 

experiment of Chapter 2. 

Note-count vectors when Difficulty = 1 
 

    G5   G♯   A    A♯   B     C    C♯   D    D♯   E     F     F♯   G6 
     3     0     0     0     4     0     0     2     0     4     0     0     2 
     3     0     0     0     3     0     0     2     1     4     0     0     2 
     3     0     0     0     4     0     0     2     1     3     0     0     2 
     3     0     0     1     3     0     0     2     0     4     0     0     2 
     3     0     0     1     4     0     0     2     0     3     0     0     2 
     3     0     0     1     3     0     0     2     1     3     0     0     2 
     2     0     0     0     4     0     0     2     0     4     0     0     3 
     2     0     0     0     3     0     0     2     1     4     0     0     3 
     2     0     0     0     4     0     0     2     1     3     0     0     3 
     2     0     0     1     3     0     0     2     0     4     0     0     3 
     2     0     0     1     4     0     0     2     0     3     0     0     3 
     2     0     0     1     3     0     0     2     1     3     0     0     3 
     3     0     0     4     0     0     0     2     4     0     0     0     2 
     3     0     0     4     1     0     0     2     3     0     0     0     2 
     3     0     0     4     0     0     0     2     3     1     0     0     2 
     3     0     0     3     1     0     0     2     4     0     0     0     2 
     3     0     0     3     0     0     0     2     4     1     0     0     2 
     3     0     0     3     1     0     0     2     3     1     0     0     2 
     2     0     0     4     0     0     0     2     4     0     0     0     3 
     2     0     0     4     1     0     0     2     3     0     0     0     3 
     2     0     0     4     0     0     0     2     3     1     0     0     3 
     2     0     0     3     1     0     0     2     4     0     0     0     3 
     2     0     0     3     0     0     0     2     4     1     0     0     3 
     2     0     0     3     1     0     0     2     3     1     0     0     3 
 
      
Note-count vectors when Difficulty = 2 

 

    G5   G♯   A    A♯   B     C    C♯   D    D♯   E     F     F♯   G6 
     2     2     0     0     2     0     0     2     0     2     2     2     1 
     3     1     0     0     2     0     0     2     0     2     2     2     1 
     3     0     1     0     2     0     0     2     0     2     2     2     1 
     3     0     0     0     2     0     0     2     0     2     1     2     3 
     3     0     0     0     2     0     0     2     0     2     2     1     3 
     3     0     0     0     2     0     0     2     0     2     2     2     2 
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     2     0     2     2     0     2     2     0     2     0     0     0     3 
     1     1     2     2     0     2     2     0     2     0     0     0     3 
     1     2     1     2     0     2     2     0     2     0     0     0     3 
     1     2     2     2     0     2     2     0     2     0     1     0     1 
     1     2     2     2     0     2     2     0     2     0     0     1     1 
     1     2     2     2     0     2     2     0     2     0     0     0     2 
 
 
Note-count vectors when Difficulty = 3 

 

    G5   G♯   A    A♯   B     C    C♯   D    D♯   E     F     F♯   G6 
     2     2     0     0     2     0     0     2     0     2     2     2     1 
     3     1     0     0     2     0     0     2     0     2     2     2     1 
     3     0     1     0     2     0     0     2     0     2     2     2     1 
     3     0     0     1     2     0     0     2     0     2     2     2     1 
     3     0     2     1     2     2     0     0     0     2     0     0     3 
     3     2     0     0     1     0     2     0     0     2     0     2     3 
     3     2     0     0     2     0     2     2     1     2     0     0     1 
     3     0     2     0     2     2     2     0     0     1     0     2     1 
     3     0     0     0     2     0     0     2     0     1     2     2     3 
     3     0     0     0     2     0     0     2     0     2     1     2     3 
     3     0     0     0     2     0     0     2     0     2     2     1     3 
     3     0     0     0     2     0     0     2     0     2     2     2     2 
     2     0     2     2     0     2     2     0     2     0     0     0     3 
     1     1     2     2     0     2     2     0     2     0     0     0     3 
     1     2     1     2     0     2     2     0     2     0     0     0     3 
     1     2     2     1     0     2     2     0     2     0     0     0     3 
     1     2     0     1     0     0     2     2     2     0     2     2     1 
     1     0     2     2     1     2     0     2     2     0     2     0     1 
     1     0     2     2     0     2     0     0     1     0     2     2     3 
     1     2     0     2     0     0     0     2     2     1     2     0     3 
     1     2     2     2     0     2     2     0     2     1     0     0     1 
     1     2     2     2     0     2     2     0     2     0     1     0     1 
     1     2     2     2     0     2     2     0     2     0     0     1     1 
     1     2     2     2     0     2     2     0     2     0     0     0     2 

 
Note-count vectors when Difficulty = 4 

 

    G5   G♯   A    A♯   B     C    C♯   D    D♯   E     F     F♯   G6 
     3     0     2     0     2     2     2     0     0     0     1     2     1 
     3     0     0     0     2     0     0     2     0     2     1     2     3 
     3     2     2     0     0     0     2     0     0     2     1     0     3 
     3     2     0     2     2     2     0     0     0     2     1     0     1 
     3     0     2     0     2     2     2     0     0     0     2     1     1 
     3     0     0     0     2     0     0     2     0     2     2     1     3 
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     3     2     2     0     0     0     2     0     0     2     0     1     3 
     3     2     0     2     2     2     0     0     0     2     0     1     1 
     3     0     2     0     2     2     2     0     0     0     2     0     2 
     3     0     0     0     2     0     0     2     0     2     2     2     2 
     3     2     2     0     0     0     2     0     0     2     0     2     2 
     3     2     0     2     2     2     0     0     0     2     0     0     2 
     2     0     2     2     0     2     2     0     2     0     0     0     3 
     2     0     0     2     2     2     0     2     2     0     2     0     1 
     2     0     2     0     0     0     2     2     2     0     2     2     1 
     2     0     0     2     0     0     0     2     2     2     0     2     3 
     1     1     2     2     0     2     2     0     2     0     0     0     3 
     1     1     0     2     2     2     0     2     2     0     2     0     1 
     1     1     2     0     0     0     2     2     2     0     2     2     1 
     1     1     0     2     0     0     0     2     2     2     0     2     3 
     1     2     1     2     0     2     2     0     2     0     0     0     3 
     1     0     1     2     2     2     0     2     2     0     2     0     1 
     1     2     1     0     0     0     2     2     2     0     2     2     1 
     1     0     1     2     0     0     0     2     2     2     0     2     3 
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APPENDIX B: Markov Chain Monte Carlo Sampling Procedure 
 

For the Bayesian modeling procedures in CH 2 & 3, a Markov Chain Monte Carlo 

(MCMC) simulation was used to estimate the joint posterior density of the parameter-

vector used to fit the data. This MCMC estimation method involved picking a random point 

in the multi-dimensional parameter space (with large uninformative priors), and 

computing the log-likelihood of that point. Then a Gaussian jump was made to the next 

candidate sample and the log-likelihood was computed of that candidate. If the candidate 

log-likelihood was larger than the previous candidate sample, then we added the new 

candidate to the list with probability of the likelihood ratio of candidate/previous. 

Otherwise, a copy of the previous element was added to the posterior. After each 1,000 

samples, a singular value decomposition adjusted the parameter vector to an appropriate 

direction in the multidimensional parameter space. 100,000 samples were collected, and 

the last 80,000 samples reflected a stable estimate of the posterior density (unless 

otherwise noted in each analysis). All the parameter means and 95% credible intervals 

were pulled from the last 80,000 samples. See Appendix 4 in "A method for analyzing the 

dimensions of preattentive visual sensitivity" by Chubb, Scofield, Chaio & Sperling (2012)10 

for more details on this analysis technique. 

 

 

                                                           
10 Chubb, C., Scofield, I., Chiao, C.-C., & Sperling, G. (2012). A method for analyzing the dimensions of 

preattentive visual sensitivity. Journal of Mathematical Psychology, 56(6), 427–443. 




