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Source Characteristics Influence AI-Enabled
Orthopaedic Text Simplification

Recommendations for the Future

Saman Andalib, BS, Sean S. Solomon, BS, Bryce G. Picton, BS, Aidin C. Spina, BS, John A. Scolaro, MD, and Ariana M. Nelson, MD

Investigation performed at the University of California, Irvine, School of Medicine, Irvine, California

Background: This study assesses the effectiveness of large language models (LLMs) in simplifying complex language
within orthopaedic patient education materials (PEMs) and identifies predictive factors for successful text transformation.

Methods: We transformed 48 orthopaedic PEMs using GPT-4, GPT-3.5, Claude 2, and Llama 2. The readability, quan-
tified by the Flesch-Kincaid Reading Ease (FKRE) and Flesch-Kincaid Grade Level (FKGL) scores, wasmeasured before and
after transformation. Analysis included text characteristics such as syllable count, word length, and sentence length.
Statistical and machine learning methods evaluated the correlations and predictive capacity of these features for
transformation success.

Results: All LLMs improved FKRE and FKGL scores (p < 0.01). GPT-4 showed superior performance, transforming PEMs
to a seventh-grade reading level (mean FKGL, 6.72 ± 0.99), with higher FKRE and lower FKGL than other models. GPT-3.5,
Claude 2, and Llama 2 significantly shortened sentences and overall text length (p < 0.01). Importantly, correlation
analysis revealed that transformation success varied substantially with themodel used, depending on original text factors
such as word length and sentence complexity.

Conclusions: LLMs successfully simplify orthopaedic PEMs, with GPT-4 leading in readability improvement. This study
highlights the importance of initial text characteristics in determining the effectiveness of LLM transformations, offering
insights for optimizing orthopaedic health literacy initiatives using artificial intelligence (AI).

Clinical Relevance: This study provides critical insights into the ability of LLMs to simplify complex orthopaedic PEMs,
enhancing their readability without compromising informational integrity. By identifying predictive factors for successful
text transformation, this research supports the application of AI in improving health literacy, potentially leading to better
patient comprehension and outcomes in orthopaedic care.

S
ince the release of ChatGPT by OpenAI, an expanding
body of literature intending to assess the implementation
of large language models (LLMs) inmedicine has emerged.

Early iterations of work in this field shed light on the publicly
available models’medical knowledge and clinical utility1-7. Newer
work has transitioned to exploring how LLMs can combat low
health literacy8. In that exploration, the models have been sub-
jected to quantitative analyses examining their success as a text
transformer to restructure complex medical text to a format that
is more accessible to patient populations9-12. This application of

LLM technology has immense potential, given the well-
documented discrepancy between the readability of patient-
facing documents and the mean reading-comprehension level of
their intended populations13,14. The success of these transforma-
tions suggests a broad applicability of LLMs to transformmedical
text. The usage of LLMs for this purpose may have the potential
to enhance outcomes, as patient understanding of postoperative
directives has been shown to facilitate recovery15-19.

Research with regard to the implementation of LLMs in
orthopaedics has been expanding, with a focus on its potential
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as a text transformer to address health literacy5,20-22. For patient
education materials (PEMs) in the field of spinal surgery,
ChatGPTsuccessfully reduced text complexity21. Other authors
found similar success in transforming online orthopaedic PEMs
and have recommended the wide adoption of this technology for
this use case22. Leveraging this new application of LLMs could be
transformative, given the extensive use of PEMs for the ortho-
paedic surgical population and the relative lack of progress in
improving these tools23-25.

Despite the encouraging results of early analyses of LLM
usage in text simplification, further work is needed. The pace of
development of new LLMs is remarkably rapid, and previously
available models are continually being updated. Academia must
adapt quickly to examine these models, as they may present
differences in task-specific performance.

Additionally, no studies have examined the textual
factors that underlie and predict successful artificial intelli-
gence (AI)-driven text simplification, to our knowledge. An
examination of these factors can guide the future clinical
implementation of these tools for medical text sources, in-
cluding PEMs.

Materials and Methods
Data Acquisition

PEMs published online by the American Association of Hip
and Knee Surgeons were compiled (n = 48). The Flesch-

Kincaid Grade Level (FKGL) and Flesch-Kincaid Reading Ease
(FKRE) scores, word count, sentence count, mean number of
syllables per word, and mean number of syllables per sentence
were obtained using the Textstat and NumPy Python pack-
ages26,27. PEMs were then manually transformed using a stan-
dardized prompt in GPT-3.5 (https://chat.openai.com/;
OpenAI), GPT-4 (https://chat.openai.com/; OpenAI), Claude
2 (https://claude.ai/; Anthropic), and Llama 2 (https://ai.meta.
com/llama/; Meta) between July 27, 2023, and August 1, 2023.
The standardized utilized prompt was, “Please rewrite this text
to be readable at a fifth-grade level. Do not include information
not contained in the original text, and do not exclude infor-
mation in the original text.” The same metrics were then cal-
culated with identical methods for the transformed text.

Descriptive and Inferential Statistics
Data trends were explored for descriptive and inferential sta-
tistics using SPSS (Version 29.0.2.0; IBM), GraphPad Prism
(Dotmatics), and Matplotlib (Python Software Foundation)
plotting libraries. Comparative analysis of quantifiable text
qualities was done using single-factor analysis of variance
(ANOVA) followed by Games-Howell post hoc analysis.

Transformation Assessment
Transformed PEMs were qualitatively reviewed for obvious
extraneous information by 3 authors (S.A., S.S.S., and J.A.S.).
For quantitative analyses, latent semantic analysis (LSA) values
were calculated using the nltk and sklearn Python packages28,29.
Preprocessing consisted of lemmatization and the removal of
stop-words. The maximum topic occurrence was set as 0.5, and

the minimum was set as 1 with 48 total components. The
maximum number of features was set to 1,000.

Feature Analysis
Feature analysis was manually performed using random-forest
regression, a supervised machine learning method, with n_
estimators, the parameter for the number of decision trees,
standardized at 100. This was accomplished with the Pandas,
NumPy, and sklearn Python packages26,28,30. The input features for
the analysis included the original FKGL, original FKRE, original
mean syllables per sentence, original mean syllables per word,
original number of sentences, and original number of words. The
analysis was conducted iteratively for 8 different outputs, rep-
resenting the post-transformation FKGL and FKRE changes for
each of the 4 language models. To ensure a robust assessment of
feature importance, we used fivefold cross-validation in each
iteration. This process entailed dividing the data into 5 subsets
and fitting the model 5 times, each with a different subset
reserved as the test set. The reported feature importance values
represent the calculated mean across the five folds.

Results
Improving Readability Scores

Theoriginal PEMs (n = 48) had amean FKRE (and standard
deviation) of 53.40 ± 8.00 corresponding to a tenth-grade

reading level (mean FKGL, 10.84 ± 1.49) (see Appendix Sup-
plemental Table 1). On average, GPT-4 increased the FKRE by
23.4 (p < 0.001) and reduced the FKGL by 4.08 (p < 0.001)
(Table I). GPT-3.5 increased the mean FKRE by 16.0 (p <
0.001) while reducing the FKGL by 3.15 (p < 0.001) (Table I).
Claude 2 increased the mean FKRE by 7.4 (p < 0.01) and
reduced the FKGL by 2.76 (p < 0.001). Llama 2 increased the
mean FKRE by 10.2 (p < 0.01) while reducing the FKGL by 2.11
(p < 0.001) (Table I). Comparative analysis (single-factor
ANOVA followed by Games-Howell post hoc testing) showed
that GPT-4 was best able to improve PEM readability, reaching
roughly a seventh-grade reading level on average (6.72 ± 0.99)
(see Appendix Supplemental Table 1). There were significant
differences in the FKGL change (p < 0.001) (Fig. 1-A) and the
FKRE change (p < 0.01) (Fig. 1-B) between GPT-4 and each of
the other LLMs. Comparisons across other text characteristics
are included in Figures 1-C through 1-F.

The informational integrity of the PEMs before and
after transformation was analyzed using pairwise LSA and was

TABLE I Changes in Readability After LLM Transformation*

Metric GPT-4 GPT-3.5 Claude 2 Llama 2

FKGL difference 24.08† 23.15† 22.76† 22.11†

FKRE difference 23.4† 16.0† 7.40‡ 10.2‡

*Mean differences in the FKGL and FKRE scores between the original
and LLM-transformed PEM. Negative FKGL and positive FKRE dif-
ferences indicate text simplification. †P < 0.001. ‡P < 0.01.
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reported as a cosine similarity score between 0 and 1. The
mean LSA cosine similarity values were 0.945 ± 0.0910 for
GPT-4, 0.968 ± 0.0401 for GPT-3.5, 0.961 ± 0.0316 for Claude
2, and 0.908 ± 0.124 for Llama 2 (Fig. 1-G; see also Appendix

Supplemental Table 1). Additionally, a qualitative review by
3 authors established that no extraneous information was
included in any of the 48 PEMs when transformed by each
LLM.

Fig. 1-A

Figs. 1-A through 1-G Comparison of pre-transformation metrics and metrics after transformation of patient education materials by each large language

model. *P < 0.05, **p < 0.01, ***p < 0.001. A box indicates the interquartile range (IQR), the line within the box indicates the median, whiskers indicate

points within 1.5 times the IQR width of the box, and circles represent outliers. Fig. 1-A FKGL score.
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Correlation Analysis for FKRE Scores
The relationship between original text factors and output FKRE
transformation was analyzed using linear regression. A negative
correlation was found between the FKGL of the original text and
the FKRE of the output text for GPT-4 (20.38), GPT-3.5 (20.33),
and Claude 2 (20.35) (Fig. 2-A). Positive correlations were

observed between the FKRE score of the original text and the
FKRE score of the output text for GPT-4 (10.42), GPT-3.5
(10.38), and Claude 2 (10.40) (Fig. 2-A). The mean syllables
per sentence were negatively correlated with the FKRE score of
the output text for GPT-4 (20.29), GPT-3.5 (20.25), and
Claude 2 (20.28) (Fig. 2-A). The mean syllables per word also

Fig. 1-B

FKRE score.
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showed negative correlations with the FKRE score of the output
text for GPT-4 (20.41), GPT-3.5 (20.35), andClaude 2 (20.49)
(Fig. 2-A). Correlations between the number of sentences and
output FKRE score were negative for GPT-4 (20.18) andGPT-3.5
(20.34) (Fig. 2-A), but positive for Claude 2 (10.29) (Fig. 2-A).
Similarly, negative correlations were found between the number
of words and the output FKRE score for GPT-4 (20.23) and
GPT-3.5 (20.38) (Fig. 2-A), whereas a positive correlation was

observed with Claude 2 (10.28) (Fig. 2-A). The Llama 2 model
did not exhibit any notable correlations between the original text
factors and the output FKRE score.

Correlation Analysis for FKGL Scores
The correlation between original text factors and the FKGL of
the transformed output was also assessed. The correlation
between the FKGL of the original text and the output text

Fig. 1-C

Syllables per sentence.
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yielded a positive correlation for GPT-4 (10.47), GPT-3.5
(10.40), and Claude 2 (10.31) (Fig. 2-B). Additionally, negative
correlations were observed between the FKRE score of the
original text and the FKGL score of the output text for GPT-4
(20.43), GPT-3.5 (20.38), and Claude 2 (20.31) (Fig. 2-B).
For the mean syllables per sentence, there were positive correla-

tions with the FKGL score of the output text for GPT-4 (10.44),
GPT-3.5 (10.36), and Claude 2 (10.30) (Fig. 2-B). Likewise,
positive correlations were observed between the mean syllables
per word and the FKGL score of the output text for GPT-4
(10.36), GPT-3.5 (10.31), and Claude 2 (10.35) (Fig. 2-B).
When text-length correlations with the output FKGL were

Fig. 1-D

Syllables per word.
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quantified, the number of sentences and the output FKRE
score had a positive correlation for GPT-3.5 (10.21) (Fig. 2-B).
In contrast, a negative correlation was observed between these
variables when using Claude 2 (20.31) (Fig. 2-B). Correlations
between the number of words and the output FKGL scores
yielded similar results, as a positive correlation existed between
these variables for GPT-3.5 (10.25) (Fig. 2-B), but a negative
correlation existed when using Claude 2 (20.29) (Fig. 2-B). No
significant correlationwas found between any of the original text
factors and the FKGL score of the output text when using the
Llama 2 model.

Feature Analysis
Feature analysis was performed to deduce the relative impor-
tance of pre-transformation features in determining a text’s post-
transformation FKGL and FKRE for each model. The feature
importance score means across fivefold cross-validation, based
on the differences in FKGL and FKRE resulting from transfor-
mation, are shown for each feature in Figures 3-A and 3-B. A
factor was defined as significant if it had an importance score of
>0.2. The feature importance score means are shown in Table II.

With regard to the post-transformation FKGL, 3 significant
feature importance score means were found for GPT-4: the

Fig. 1-E

Number of sentences.
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original FKGL (0.2982), original FKRE (0.3190), and original
mean syllables per sentence (0.2055) (Fig. 3-A). GPT-3.5 had
significant mean scores for only the mean syllables per sentence
(0.2765). Claude 2 had significant mean scores for the original
FKRE (0.2052) and the original mean syllables per word (0.2226).
For Llama 2, mean scores were significant for the original FKGL
(0.2137) and the original mean syllables per word (0.2137).

For the post-transformation FKRE, the only signifi-
cant mean feature importance score for GPT-4 was the
original FKRE (0.4566) (Fig. 3-B). GPT-3.5 had significant
mean scores for the original FKRE (0.2728) and the original
number of sentences (0.2462). Claude 2 had significant
mean scores for the original FKRE (0.2784) and original
mean syllables per word (0.2141). For Llama 2, the only

Fig. 1-F

Number of words.
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significant mean score was the original mean syllables per
word (0.3070).

Discussion
LLM Performance

All LLMs were successful in reducing the complexity of
orthopaedic PEMs. However, GPT-4 outperformed

other models in reducing PEM FKGL scores and increasing
PEM FKRE scores (low FKGL and high FKRE indicate sim-
pler text). GPT-4 also maintained the PEM sentence and
word length following transformation more consistently than
other models. Thus, although other LLMs can achieve rela-
tive success, GPT-4 is best able to reduce the complexity of
orthopaedic PEMs while maintaining other textual metrics
at a consistent level.

Although LLMs can simplify PEMs, post-transformation
readability that was at or below a sixth-grade level was not
achieved. Other publications have demonstrated the ability of
LLMs to transform PEMs to a sixth-grade reading level21,22. In
contrast to this manuscript, those previous publications did
not report the explicit prompts utilized or provide quantitative
assessments to ensure post-transformation content integrity.
Additionally, those publications did not compare the success of
readability transformations across models.

Our prompt’s inclusion of the clause “Do not include
information not contained in the original text, and do not exclude
information in the original text” may explain the observed limi-
tations in transformation success. This clause ensured that PEM
information was maintained and external information was not
added. LSA and qualitative reviewwere utilized tomeasure success

Fig. 1-G

LSA cosine similarity.
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inmaintaining information integrity31,32. LSA and related semantic
processing techniques have been previously utilized clinically to
assess textual similarity33,34. The similarity values of >0.9 for each
LLM in our study provide quantitative assurance that core PEM
text content was maintained. Thus, the differences in quantitative
transformation success may be explained by greater emphasis on
content integrity.

Correlations between the initial text characteristics and
transformed readability were noted and were variable across the
LLMs assessed. Interestingly, text length (as quantified by word
and sentence count) negatively correlated with the output FKGL
for Claude 2 and positively correlated with it for GPT-4 and
GPT-3.5. This trend was consistent between output readabil-
ity metrics, as text length was positively correlated with output

FKRE for Claude 2 and negatively correlated with output FKRE
for GPT-4 and GPT-3.5. This result is the first data point to
suggest that LLMs perform differently in simplifying PEMs as
inherent text qualities change. This is notable, as it suggests that
different LLMs may be utilized for medical text simplification
based on the original text’s writing style and length.

Although correlation analysis reveals the simple association
between input and output readability, feature analysis provides
insight into the relative weights of input features in determining
the output values. The importance of individual linguistic features
of PEMs in producing each LLM’s readability improvements
varied bymodel.We found that the original FKRE had the greatest
feature importance for GPT-4 across both readability measures.
The feature with the greatest importance for Llama 2 was the

Fig. 2-A

Figs. 2-A and 2-B Correlations of characteristics of the original patient education material with readability of the transformed

output. A box indicates the interquartile range (IQR), the line within the box indicates the median, whiskers indicate points

within 1.5 times the IQR width of the box, and circles represent outliers. Avg. = average, Syl. = syllable, Sent. = sentence,

and Num. = number. Fig. 2-A Correlations between original text characteristics and the FKGL of the output generated by each large

language model.
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original mean syllables per word. No feature was uniformly most
important across both readabilitymeasures for the other 2models.
These results suggest that the success of LLMs in text simplification

is not all-encompassing; instead, it is largely dependent on
inherent text qualities. This indicates that physicians may choose
to utilize different LLMs for simplifying different text sources.

Fig. 2-B

Correlations between original text characteristics and the FKRE of the output generated by each large language model.

TABLE II Mean Importance of Original Text Features in Improvement with Transformation by Each Model

FKGL FKRE Mean Syllables per Sentence Mean Syllables per Word No. of Sentences No. of Words

ChatGPT-4 FKGL 0.298 0.319 0.206 0.076 0.054 0.046

ChatGPT-4 FKRE 0.170 0.457 0.072 0.119 0.107 0.073

ChatGPT-3.5 FKGL 0.191 0.171 0.277 0.144 0.116 0.098

ChatGPT-3.5 FKRE 0.111 0.273 0.109 0.139 0.246 0.119

Claude 2 FKGL 0.184 0.205 0.170 0.223 0.118 0.098

Claude 2 FKRE 0.144 0.278 0.133 0.214 0.120 0.109

Llama 2 FKGL 0.214 0.142 0.190 0.214 0.128 0.111

Llama 2 FKRE 0.164 0.147 0.125 0.307 0.129 0.127
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Fig. 3-A

Fig. 3-B

Figs. 3-A and 3-B Importance of each pre-transformation textual feature for successful PEM simplification for LLMs assessed. A box indicates

the interquartile range (IQR), the line within the box indicates the median, whiskers indicate points within 1.5 times the IQR width of the box,

and circles represent outliers. Avg. = average. Fig. 3-A Feature importance scores relative to the difference between the pre-transformation

and post-transformation FKGL. Fig. 3-B Feature importance scores relative to the difference between the pre-transformation and post-transformation

FKRE.
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Context and Importance
Regulating the readability of orthopaedic PEMs is essential to
ensuring proper patient understanding of preoperative and
postoperative directives and has been previously shown to have
the potential to improve outcomes16-19,35-37. Our results highlight
key differences in how modern LLMs transform orthopaedic
PEMs to enhance readability. We demonstrated GPT-4’s su-
perior performance in maintaining content integrity while
sufficiently reducing text complexity. Although all LLMs
successfully improved readability metrics without losing
core information, only GPT-4 reached an approximately
seventh-grade reading level.

Our analysis provides the first evidence that inherent
qualities of the original text are differentially associated with
each LLM’s success. Although text length correlated negatively
with the readability of GPT-4 and GPT-3.5 output, positive
correlations were observed for Claude 2. Feature analysis en-
hanced these findings, revealing the relative importance of the
original FKRE, word syllables, and sentence length in deter-
mining output values.

Together, these results provide a preliminary under-
standing of how medical texts may need to be prepared to
optimize simplification. Materials with higher baseline read-
ability ease and syntactic simplicity may undergo more suc-
cessful transformation by GPT-4 and GPT-3.5. In contrast,
Claude 2 may effectively transform longer, more complex
texts. As LLMs advance, these insights will allow providers to
select the appropriate model and to tailor materials for sim-
plified patient education. Additionally, our results suggest that
regulating certain inherent text qualities can optimize medical
text for simplification. Harmonizing publishing protocols
using these and future insights holds immense potential for
enhancing PEM accessibility, which is one of their existing
limitations38. Our work constitutes an important early step in
unraveling this complex process to pave the way for the wide-
spread implementation of LLMs for this purpose. At present,
surgeons should use data-validated prompting techniques as
they utilize LLMs to simplify PEMs and other medical text. It is
also critical to manually assess PEMs after transformation to
ensure fidelity of information and guard against the addition of
extraneous prose.

Limitations
This study, although focused, underscores the critical need for
further research. We employed FKRE and FKGL readability
scores, as they are widely utilized clinical readability metrics
that have previously been applied to analysis of PEMs39,40.
However, future studies could benefit from additional measures
for broader complexity analysis41. Patient-driven studies should
be designed to concurrently validate quantitative results and
explore the potential for real-world implementation. The as-
sessment of the success of LLMs in translating PEMs to other
languages should also be explored, given their established
potential in that context42.

Although LSA provided valuable data on text similar-
ity, a deeper exploration into the application of that and

other semantic analysis techniques is crucial for assessing
the reliability and validity of transformations in this bur-
geoning field43. For example, alternative metrics such as
explicit semantic analysis, in which textual concepts are
labeled rather than assumed as in LSA, may also be utilized
to assess transformation success44. Although potentially
more accurate, however, this approach cannot be auto-
mated. Our feature analysis was simplified by assuming
feature independence. Future work could explore the in-
terconnected nature of features in real-world data for im-
proved precision. Subsequent studies may also explore
restructured prompts or iterative techniques to gauge
whether these methods enhance text simplification success
and content integrity.

Conclusions
This study evaluates the utility of LLMs to enhance the
readability of complex medical texts. We demonstrate that
certain LLMs outperform others in simplifying PEMs while
maintaining informational integrity. Further, we reveal key
correlations between original text characteristics and output
reading level, and we conducted feature analysis to identify
the metrics that were the most predictive of simplification
success. As patients face copious challenges in comprehending
health information, this technology holds immense potential
to bridge knowledge gaps, with the goal of improving out-
comes. Our work unravels the nuances of this process and sets
the stage for widespread implementation to benefit patients
through enhanced comprehension of texts provided explicitly
for their information. Further research will inform the proper
utilization of LLMs for medical text simplification in the
future.

Appendix
Supporting material provided by the authors is posted
with the online version of this article as a data supplement

at jbjs.org (http://links.lww.com/JBJSOA/A730). n
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information provided to patients by ChatGPT about chronic diseases in Spanish
language. Digit Health. 2024 Jan 2;10:20552076231224603.
43. Suleman R, Korkontzelos I. Extending latent semantic analysis to manage its
syntactic blindness. Expert Systems with Applications. 2021;165:114130.
44. Woods DL, Wyma JM, Herron TJ, Yund EW. Computerized analysis of verbal
fluency: normative data and the effects of repeated testing, simulated malingering,
and traumatic brain injury. PLoS One. 2016 Dec 9;11(12):e0166439.

Source Characteristics Influence AI-Enabled Orthopaedic Text Simplification

JBJS Open Access d 2025:e24.00007. openaccess.jbjs.org 14

https://stars.library.ucf.edu/istlibrary/56/
https://stars.library.ucf.edu/istlibrary/56/



