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ABSTRACT OF THE THESIS

Tuned Contrastive Learning

by

Chaitanya Animesh

Master of Science in Computer Science

University of California San Diego, 2023

Professor Manmohan Krishna Chandraker, Chair

In recent times, contrastive learning has become increasingly popular for visual self-

supervised representation learning owing to their state-of-the-art (SOTA) performance. Most

of the modern contrastive learning methods generalize only to one positive and multiple neg-

atives per anchor. A recent state-of-the-art, supervised contrastive (SupCon) loss, extends

self-supervised contrastive learning to supervised setting by generalizing to multiple positives

and negatives in a batch and improves upon the cross-entropy loss. In this thesis, we propose

a novel contrastive loss function – Tuned Contrastive Learning (TCL) loss, that generalizes

to multiple positives and negatives in a batch and offers parameters to tune and improve the

gradient responses from hard positives and hard negatives. We provide theoretical analysis of our

x



loss function’s gradient response and show mathematically how it is better than that of SupCon

loss. We empirically compare our loss function with SupCon loss and cross-entropy loss in a

supervised setting on multiple classification-task datasets to show its effectiveness. We also

show the stability of our loss function to a range of hyperparameter settings. Unlike SupCon

loss that is only applied to supervised setting, we show how to extend TCL to self-supervised

setting and empirically compare it with various SOTA self-supervised learning methods. Hence,

we show that TCL achieves performance on par with SOTA methods in both supervised and

self-supervised settings.
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Chapter 1

Introduction

Paucity of labeled data limits the application of supervised learning to various visual

learning tasks [36]. As a result, unsupervised [17, 19, 26] and self-supervised based learning

methods [6, 33, 18, 4] have garnered a lot of attention and popularity for their ability to learn

from vast unlabeled data. Such methods can be broadly classified into two categories: generative

methods and discriminative methods. Generative methods [17, 26] train deep neural networks

to generate in the input space i.e. the pixel space and hence, are computationally expensive

and not necessary for representation learning. On the other hand, discriminative approaches

[16, 13, 34, 30, 1, 6] train deep neural networks to learn representations for pretext tasks

using unlabeled data and an objective function. Out of these discriminative based approaches,

contrastive learning based methods [30, 1, 6] have performed significantly well and are an active

area of research.

The common principle of contrastive learning based methods in an unsupervised setting

is to create semantic preserving transformations of each sample which are called positives and

treat transformations of other samples in a training batch as negatives [2, 23]. The contrastive

loss objective considers every transformed sample as a reference sample, called an anchor, and

is then used to train the network architecture to pull the positives (for that anchor) closer to the

anchor and push the negatives away from the anchor in latent space [2, 23]. The positives are

often created using various data augmentation strategies. Supervised Contrastive Learning [23]

1



Figure 1.1. Figure illustrates intuitively how TCL loss differs from SupCon loss [23]. For the
SupCon loss per sample — Lsup

i (equation 3.2) to decrease, the anchor zi will pull the positive zp
but push away the other positives to some extent in the embedding space. TCL loss reduces this
effect.

extended contrastive learning to supervised setting by using the label information and treating

the other samples in the batch having the same label as that of the anchor also as positives in

addition to the ones produced through data augmentation strategies. It presents a new loss called

supervised contrastive loss (abbreviated as SupCon loss) that can be viewed as a loss generalizing

to multiple positives available in a batch.

In this work, we propose a novel contrastive learning loss objective, which we call Tuned

Contrastive Learning (TCL) Loss that can use multiple positives and multiple negatives present

in a batch. We show how it can be used in supervised as well as self-supervised settings. TCL

loss improves upon the limitations of the SupCon loss: 1. Implicit consideration of positives

as negatives and, 2. No provision for regulating hard negative gradient response. TCL loss

thus gives better gradient response to hard positives and hard negatives. This leads to small

(< 1% in terms of classification accuracy) but consistent improvements in performance over

SupCon loss and outperformance over cross-entropy loss. Since TCL generalizes to multiple

2



positives, we then present a novel idea of having and using positive triplets (and possibly more)

instead of being limited to positive pairs for self-supervised learning. We evaluate our loss

function in self-supervised settings without making use of any label information and show how

TCL outperforms SimCLR [6] and performs on par with various SOTA self-supervised learning

methods [18, 33, 36, 4, 20, 8, 15, 9, 3, 37]. The key highlights of the thesis are as follows:

1. We identify and analyse in detail two limitations of the supervised contrastive (SupCon)

loss.

2. We present a novel contrastive loss function called Tuned Contrastive Learning (TCL)

loss that generalizes to multiple positives and multiple negatives in a batch, overcomes

the described limitations of the SupCon loss and is applicable in both supervised and

self-supervised settings. We mathematically show with clear proofs how our loss’s gradient

response is better than that of SupCon loss.

3. We compare TCL loss with SupCon loss (as well as cross-entropy loss) in a supervised

setting on various classification-task datasets and show that TCL loss gives consistent

improvements in top-1 accuracy over SupCon loss. We empirically show the stability of

TCL loss over a range of hyperparameters: network architecture, batch size, projector size

and augmentation strategy.

4. At last, we present a novel idea of having positive triplets (and possibly more) instead

of positive pairs and show how TCL can be extended to self-supervised settings. We

empirically show that TCL outperforms SimCLR, and performs on par with various SOTA

self-supervised learning (SSL) methods.

3



Chapter 2

Related Work

In this chapter, we cover various popular and recent works in brief involving contrastive

learning.

Deep metric learning methods originated with the idea of contrastive losses and were

introduced with the goal of learning a distance metric between samples in a high-dimensional

space [2]. The goal in such methods is to learn a function that maps similar samples to nearby

points in this space, and dissimilar samples to distant points. There is often a margin parameter,

m, imposing the distance between examples from different classes to be larger than this value

[2]. The triplet loss [22] and the proposed improvements [7, 27] on it used this principle. These

methods rely heavily on sophisticated sampling techniques for choosing samples in every batch

for better training.

SimCLR [6], an Info-NCE loss [30] based framework, learns visual representations

by increasing the similarity between the embeddings of two augmented views of the input

image. Augmented views generally come from a series of transformations like random resizing,

cropping, color jittering, and random blurring. Although they make use of multiple negatives,

only one positive is available per anchor. They require large batch sizes in order to have more

hard negatives in the batch to learn from and boost the performance. SupCon loss [23] applies

contrastive learning in supervised setting by basically extending the SimCLR loss to generalize

to multiple positives available in a batch and improves upon the cross-entropy loss which lacks

4



robustness to noisy labels [35, 29] and has the possibility of poor margins [25, 14].

Unlike SimCLR or SupCon, many SOTA SSL approaches only work with positives

(don’t require negatives) or use different approaches altogether. BYOL [18] uses asymmetric

networks with one network using an additional predictor module while the other using exponential

moving average (EMA) to update its weights, in order to learn using positive pairs only and

prevent collapse. SimSiam [9] uses stop-gradient operation instead of EMA and asymmetric

networks to achieve the same goal. Barlow Twins [33] objective function on the other hand

computes the cross-correlation matrix between the embeddings of two identical networks fed

with augmentations of a batch of samples, and tries to make this matrix close to identity. SwAV

uses a clustering approach and enforces consistency between the cluster assignments of multiple

positives produced through multi-crop strategy [4].

5



Chapter 3

Supervised Contrastive Learning and its
Issues

The framework for Supervised Contrastive Learning consists of three components: a

data augmentation module that produces two augmentations for each sample in the batch, an

encoder network that maps the augmentations to their corresponding representation vectors and a

projection network that produces normalized embeddings for the representation vectors to be fed

to the loss function. The projection network is later discarded and the encoder network is used at

inference time by training a linear classifier (attached to the frozen encoder) with cross-entropy

loss. Section 3.1 of [23] contains more details on this. The SupCon loss is given by the following

two equations (refers to Lsup
out in [23]):

Lsup = ∑
i∈I

Lsup
i (3.1)

where

Lsup
i =

−1
|P(i)| ∑

p∈P(i)
log(

exp(zi.zp/τ)

∑p′∈P(i) exp(zi.zp′/τ)+∑n∈N(i) exp(zi.zn/τ)
) (3.2)

Here I denotes the batch of samples obtained after augmentation and so, will be twice

the size of the original input batch. i ∈ I denotes a sample (anchor) within it. zi denotes the

normalized projection network embedding of the sample i as given by the projector network.

P(i) is the set of all positives for the anchor i (except the anchor i itself) i.e. positive from the

6



augmentation module and positives with the same label as anchor i in the batch I. N(i) denotes

the set of negatives in the batch such that N(i)≡ I \ (P(i)∪{i}). As shown in Section 2 of the

supplementary material of [23], we have the following lemma:

Lemma 1. The gradient of the SupCon loss per sample — Lsup
i with respect to the normalized

projection network embedding zi is given by:

∂Lsup
i

∂ zi
=

1
τ
( ∑

p∈P(i)
zp(Ps

ip −Xip)︸ ︷︷ ︸
Gradient response from positives

+ ∑
n∈N(i)

znPs
in︸ ︷︷ ︸

Gradient response from negatives

) (3.3)

where

Xip =
1

|P(i)|
(3.4)

Ps
ip =

exp(zi.zp/τ)

∑a∈A(i) exp(zi.za/τ)
(3.5)

Ps
in =

exp(zi.zn/τ)

∑a∈A(i) exp(zi.za/τ)
(3.6)

Note that A(i)≡ P(i)∪N(i) here. The authors further show in Section 3 of the supple-

mentary [23] that the gradient from a positive while flowing back through the projector into

the encoder reduces to almost zero for easy positives and |Ps
ip −Xip| for a hard positive because

of the normalization consideration in the projection network. Similarly, the gradient from a

negative reduces to almost zero for easy negatives and Ps
in for a hard negative. We now present

and analyse the following two limitations of the SupCon loss:

1. Implicit consideration of positives as negatives: Having a closer look at the Lsup
i

(equation 3.2) loss term reveals that the numerator inside the log function considers

similarity with one positive p at a time while the denominator considers similarity of the

anchor i with all the positives in the batch — the set P(i), thereby implicitly considering all

the positives as negatives. A glance at the derivation of Lemma 1 in [23] clearly shows that

7



this leads to the magnitude of the gradient response from a hard positive getting reduced

to |Xip −Ps
ip| instead of simply |Xip|. The term Ps

ip consists of an exponential term in

the numerator and thus can reduce the magnitude of |Xip −Ps
ip| considerably, especially

because the temperature τ is generally chosen to be small. Note that the authors of [23]

approximate the numerator of Ps
ip to 1 while considering the magnitude of |Xip −Ps

ip| in

their supplementary by assuming zi.zp ≈ 0 for a hard positive which might not always be

true. Another way to look at this limitation analytically is to observe the log part in the

Lsup
i loss term. For the loss term to decrease and ideally converge to close to zero, the

numerator term inside the log function will encourage the anchor zi to pull the positive zp

towards it while the denominator term will encourage it to push away the other positives

present in P(i) by some extent, thereby treating the other positives as negatives implicitly.

2. No provision for regulating Ps
in: The authors of [6, 23] mention that performance in

contrastive learning benefits from hard negatives and that gradient contribution from hard

negatives should be higher. It is easy to observe from equation 3.6 that the magnitude of

the gradient signal from a hard negative — Ps
in in the SupCon loss decreases with batch size

and the number of positives in the batch, and can become considerably small, especially

since the denominator consists of terms denoting the similarity between the anchor and all

the positives in the batch which are temperature scaled and exponentiated. This can limit

the gradient contribution from hard negatives.

8



Chapter 4

Tuned Contrastive Learning

In this chapter, we present our novel contrastive loss function — Tuned Contrastive

Learning (TCL) Loss. Note that our representation learning framework remains the same as that

of Supervised Contrastive Learning discussed before. The TCL loss is given by the following

equations:

Ltcl = ∑
i∈I

Ltcl
i (4.1)

Ltcl
i =

−1
|P(i)| ∑

p∈P(i)
log(

exp(zi.zp/τ)

D(zi)
) (4.2)

where

D(zi) = ∑
p′∈P(i)

exp(zi.zp′/τ)+ k1( ∑
p′∈P(i)

exp(−zi.zp′))+ k2( ∑
n∈N(i)

exp(zi.zn/τ)) (4.3)

k1,k2 ≥ 1 (4.4)

k1 and k2 are scalar parameters that are fixed before training. All other symbols have the

same meaning as discussed in the previous section. We now present the following lemma.

Lemma 2. The gradient of the TCL loss per sample — Ltcl
i with respect to the normalized

projection network embedding zi is given by:

9



∂Ltcl
i

∂ zi
=

1
τ
( ∑

p∈P(i)
zp(Pt

ip −Xip −Y t
ip)︸ ︷︷ ︸

Gradient response from positives

+ ∑
n∈N(i)

znPt
in︸ ︷︷ ︸

Gradient response from negatives

) (4.5)

where

Xip =
1

|P(i)|
(4.6)

Pt
ip =

exp(zi.zp/τ)

D(zi)
(4.7)

Y t
ip =

τk1exp(−zi.zp)

D(zi)
(4.8)

Pt
in =

k2exp(zi.zn/τ)

D(zi)
(4.9)

Proof.

Ltcl
i =

−1
|P(i)| ∑

p∈P(i)
log(

exp(zi.zp/τ)

D(zi)
) (4.10)

=⇒ Ltcl
i =

−1
|P(i)| ∑

p∈P(i)

(zi.zp

τ
− log(D(zi))

)
(4.11)

=⇒
∂Ltcl

i
∂ zi

=
−1

τ|P(i)| ∑
p∈P(i)

(
zp −

(∑p′∈P(i) zp′exp(zi.zp′/τ)

D(zi)

+
τk1(∑p′∈P(i) zp′exp(−zi.zp′))

D(zi)
−

k2(∑n∈N(i) znexp(zi.zn/τ))

D(zi)

) (4.12)

=⇒
∂Ltcl

i
∂ zi

=
−1

τ|P(i)|

[
∑

p∈P(i)
zp − ∑

p∈P(i)

(∑p′∈P(i) zp′exp(zi.zp′/τ))

D(zi)

+ ∑
p∈P(i)

τk1(∑p′∈P(i) zp′exp(−zi.zp′))

D(zi)
− ∑

p∈P(i)

k2(∑n∈N(i) znexp(zi.zn/τ))

D(zi)

] (4.13)
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=⇒
∂Ltcl

i
∂ zi

=
−1

τ|P(i)|

[
∑

p∈P(i)
zp − ∑

p′∈P(i)

(∑p∈P(i) zp′exp(zi.zp′/τ))

D(zi)

+ ∑
p′∈P(i)

τk1(∑p∈P(i) zp′exp(−zi.zp′))

D(zi)
− ∑

p∈P(i)

k2(∑n∈N(i) znexp(zi.zn/τ))

D(zi)

] (4.14)

=⇒
∂Ltcl

i
∂ zi

=
−1

τ|P(i)|

[
∑

p∈P(i)
zp − ∑

p′∈P(i)

(|P(i)|zp′exp(zi.zp′/τ))

D(zi)

+ ∑
p′∈P(i)

τk1(|P(i)|zp′exp(−zi.zp′))

D(zi)
−

|P(i)|k2(∑n∈N(i) znexp(zi.zn/τ))

D(zi)

] (4.15)

=⇒
∂Ltcl

i
∂ zi

=
−1

τ|P(i)|

[
∑

p∈P(i)
zp − ∑

p∈P(i)

(|P(i)|zpexp(zi.zp/τ))

D(zi)

+ ∑
p∈P(i)

τk1(|P(i)|zpexp(−zi.zp))

D(zi)
−

|P(i)|k2(∑n∈N(i) znexp(zi.zn/τ))

D(zi)

] (4.16)

=⇒
∂Ltcl

i
∂ zi

=
−1
τ

[
∑

p∈P(i)

zp

|P(i)|
− ∑

p∈P(i)

(zpexp(zi.zp/τ))

D(zi)

+ ∑
p∈P(i)

τk1(zpexp(−zi.zp))

D(zi)
−

k2(∑n∈N(i) znexp(zi.zn/τ))

D(zi)

] (4.17)

=⇒
∂Ltcl

i
∂ zi

=
1
τ

[
∑

p∈P(i)
zp

(
exp(zi.zp/τ)

D(zi)
− 1

|P(i)|
−

τk1exp(−zi.zp)

D(zi)

)

+ ∑
n∈N(i)

zn
k2exp(zi.zn/τ)

D(zi)

] (4.18)

This completes the proof.

From Lemma 2, Theorem 1 and Theorem 2 follow in a straightforward fashion.

Theorem 1. For k1,k2 ≥ 1, the magnitude of the gradient from a hard positive for TCL loss is

11



strictly greater than the magnitude of the gradient from a hard positive for SupCon loss and

hence, the following result follows:

|Xip −Pt
ip +Y t

ip|︸ ︷︷ ︸
(TCL’s hard positive gradient)

> |Xip −Ps
ip|︸ ︷︷ ︸

(Supcon’s hard positive gradient)

(4.19)

Proof. As the authors of [23] show in Section 3 of their supplementary (we also mention the

same in Chapter 3) that the gradient from a positive while flowing back through the projector into

the encoder reduces to almost zero for easy positives and |Ps
ip −Xip| for a hard positive because

of the normalization consideration in the projection network combined with the assumption that

zi.zp ≈ 1 for easy positives and zi.zp ≈ 0 for hard positives. Proceeding in a similar manner, it

is straightforward to see that the gradient response from a hard positive in case of TCL loss is

|Pt
ip −Xip −Y t

ip|. We don’t prove this explicitly again since the derivation will be identical to

what authors [23] have already shown. One can refer section 3 of the supplementary of [23] for

details.

Now, because k1,k2 ≥ 1, it is easy to observe from equations 3.5 and 4.7 that,

Pt
ip < Ps

ip (4.20)

And from equation 4.8:

Y t
ip > 0 (4.21)

Hence, the result follows. This completes the proof.

Theorem 2. For fixed k1, the magnitude of the gradient response from a hard negative for TCL

loss — Pt
in strictly increases with k2.

Proof.

Pt
in =

k2exp(zi.zn/τ)

D(zi)
(4.22)
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=
k2exp(zi.zn/τ)

∑p′∈P(i) exp(zi.zp′/τ)+ k1(∑p′∈P(i) exp(−zi.zp′))+ k2(∑n∈N(i) exp(zi.zn/τ))
(4.23)

=
exp(zi.zn/τ)(

∑p′∈P(i) exp(zi.zp′/τ)+ k1(∑p′∈P(i) exp(−zi.zp′))
)
/k2 +(∑n∈N(i) exp(zi.zn/τ))

(4.24)

It is now easy to observe that for a fixed k1, Pt
in strictly increases with k2. This completes

the proof.

4.1 Effects of k1 and k2

The authors of SupCon loss show (in equation 18 in the supplementary of [23]) that the

magnitude of gradient response from a hard positive |Xip −Ps
ip| increases with the number of

positives and negatives in the batch. This is basically a result of reducing the value of Ps
ip, a term

that results from having terms denoting the similarity between the anchor and the positives in the

denominator of Lsup
i . But they approximate the numerator of Ps

ip to 1 by assuming zi.zp ≈ 0 for a

hard positive which might not always be true (especially since τ is typically chosen to be small

like 0.1). As evident from the proof of Theorem 1, we further push this idea and reduce the value

of Ps
ip in SupCon loss to Pt

ip in TCL loss by having an extra term in the denominator involving

k1 — k1(∑p′∈P(i) exp(−zi.zp′)) and choosing a large enough value for k1. Hence, it reduces the

effect of implicit consideration of positives as negatives, the first limitation of SupCon loss

discussed in chapter 3. Note that having the extra term to increase the gradient response from

hard positives is not the same as increasing the gradient response by amplifying the learning

rate. This is because for the same and fixed learning rate, TCL loss has higher hard positive

gradient magnitude as compared to SupCon loss which is achieved by changing the coefficient

of zp in equation 4.5. This in turn means changing the gradient direction as well. This leads to

13



consistently better performance as shown in the numerous experiments that we perform. Also, it

directly follows from Theorem 2 that k2 allows to regulate (increase) the gradient signal from a

hard negative and thus, TCL loss overcomes the second limitation of the SupCon loss.

4.2 Augmentation Strategy for Self-Supervised Setting

Since TCL loss can use multiple positives, we consider working with positive triplets

instead of positive pairs in self-supervised settings. Given a batch B with N samples, we produce

augmented batch I of size 3N by producing three augmented views (positives) for each sample

in B. This idea can further be extended in different ways to have more positives per anchor. For

example, one can think of combining different augmentation strategies to produce multiple views

per sample although we limit ourselves to positive triplets in this work.
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Chapter 5

Experiments

We evaluate TCL in three stages: 1. Supervised setting, 2. Hyperparameter stability and

3. Self-supervised setting. We then present empirical analysis on TCL loss’s parameters — k1

and k2 and show how we choose their values. All the relevant training details are mentioned in

the appendix.

5.1 Supervised Setting

We start by evaluating TCL in supervised setting first. Since the authors of [23] men-

tion that SupCon loss performs significantly better than triplet loss [22] and N-pair loss [28],

we directly compare TCL loss with SupCon and cross-entropy losses on various classifica-

tion benchmarks including CIFAR-10, CIFAR-100 [24], Fashion MNIST (FMNIST) [31] and

ImageNet-100 [12]. The encoder network chosen is ResNet-50 [21] for CIFAR and FMNIST

datasets while Resnet-18 [21] for ImageNet dataset. The representation vector is the activation of

the final pooling layer of the encoder. ResNet-18 and ResNet-34 encoders give 512 dimensional

representation vectors while ResNet-50 and above produce 2048 dimensional vectors. The

projector network is a MLP (multi-layer perceptron) with one hidden layer of size 512 for

ResNet-18 and Resnet-34, and size 2048 for ResNet-50 and higher networks. The output layer

of the projector MLP is 128 dimensional for all the networks. We use the same cross-entropy

implementation as given by Supervised Contrastive Learning [23].
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Note that for fair comparison of TCL with Supervised Contrastive Learning, we keep the

architecture and all other possible hyperparameters except the learning rate exactly the same.

We also do hyperparameter tuning significantly more for Supervised Contrastive Learning than

for TCL. As a result, we found that our re-implementation of Supervised Contrastive Learning

gave better results than what is reported in the paper [23]. For example, on CIFAR-100 our

significantly tuned version of SupCon loss achieves 79.1% top-1 classification accuracy, 2.6%

more than what is reported in the SupCon loss paper. As the authors of SupCon loss [23]

mention that 200 epochs of contrastive training is sufficient for training a ResNet-50 on complete

ImageNet dataset, our observations for the supervised setting case on relatively smaller datasets

like CIFAR, FMNIST and ImageNet-100 are consistent with this finding. We train Resnet-50

(and ResNet-18) for a total of 150 epochs – 100 epochs of contrastive training for the encoder

and the projector followed by 50 epochs of cross-entropy training for the linear layer. Note

that 150 epochs of total training was sufficient for our re-implementation of SupCon loss to

achieve better results than reported in the paper (2.6% more on CIFAR-100 and 0.3% more on

CIFAR-10). We anyways provide results for 250 epochs of training in the appendix. As Table 5.1

shows, TCL loss consistently performs better than SupCon loss and outperforms cross-entropy

loss on all the datasets.

Table 5.1. Comparison of top-1 accuracies of TCL loss with SupCon loss and cross-entropy loss
in supervised setting on different datasets. The values in parenthesis for SupCon loss denote the
values presented in their paper [23].

Dataset Cross-Entropy SupCon TCL

CIFAR-10 95.0 96.3 (96.0) 96.4
CIFAR-100 75.3 79.1 (76.5) 79.8
FashionMNIST 94.5 95.5 95.7
ImageNet-100 84.2 85.9 86.7

16



5.2 Hyperparameter Stability

We now show the stability of TCL loss to a range of hyperparameters. We compare TCL

loss with SupCon loss on various hyperparameters — encoder architectures, batch sizes, projec-

tion network output embedding sizes and different augmentations. For all the hyperparameter

experiments we choose CIFAR-100 as the common dataset (unless stated otherwise), set total

training epochs to 150 (same as earlier section), temperature τ to 0.1 and use SGD optimizer

with momentum=0.9 and weight decay=1e−4.

5.2.1 Encoder Architecture

Figure 5.1. SupCon loss vs TCL loss for different encoder architectures.

We choose 4 encoder architectures of varying sizes- ResNet-18, ResNet-34, ResNet-50

and ResNet-101 [21]. For both TCL loss and SupCon loss, we choose batch size as 128 and

AutoAugment [10] data augmentation method. As evident from Fig. 5.1, TCL loss achieves

consistent improvements in top-1 test classification accuracy over SupCon loss on all the archi-
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tectures. We also tested TCL loss and SupCon loss on ImageNet-100 with ResNet-18 (batch size

of 256) and ResNet-34 (batch size of 128). Using ResNet-18, TCL loss achieved 86.7% top-1

accuracy while SupCon loss achieved 85.9% top-1 accuracy. By switching to ResNet-34, TCL

loss got 87.2% top-1 accuracy while SupCon loss got 86.5% top-1 accuracy.

5.2.2 Batch Size

Figure 5.2. SupCon loss vs TCL loss for different batch sizes.

For comparing TCL loss with SupCon loss on different batch sizes, we choose ResNet-50

as the encoder architecture and AutoAugment [10] data augmentation. As evident from Fig. 5.2,

we observe that TCL loss consistently performs better than SupCon loss on all batch sizes. All

the batch sizes mentioned are after performing augmentation. Note that the authors of SupCon

loss use an effective batch size of 256 (after augmentation) for CIFAR datasets in their released

code1. We select batch sizes equal to, smaller and greater than this value for comparison to

demonstrate the effectiveness of Tuned Contrastive Learning.

1https://github.com/HobbitLong/SupContrast
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5.2.3 Projection Network Embedding (zi) Size

Figure 5.3. SupCon loss vs TCL loss for different projector output sizes.

In this section we analyse empirically how SupCon and TCL losses perform on various

projection network output embedding sizes. This particular experiment was not explored as

stated by the authors of Supervised Contrastive Learning [23]. ResNet-50 is the common encoder

used with Auto-Augment [10] data augmentation. As evident from Fig. 5.3, we observe that

TCL loss achieves consistent improvements in top-1 test classification accuracy over SupCon

loss for various projector output sizes. We observe that size 64 performs the worst while sizes

128, 256, 512 and 1024 give similar results. Size 2048 performs the best for both with TCL loss

achieving 1.2% higher accuracy than SupCon loss on this size.

5.2.4 Augmentations

We choose two augmentation strategies — AutoAugment and SimAugment for com-

parisons. AutoAugment [10] is a two-stage augmentation policy trained with reinforcement

learning and gives stronger (aggressive and diverse) augmentations. SimAugment [6] is rela-
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Figure 5.4. SupCon loss vs TCL loss for different augmentation methods.

tively a weaker augmentation strategy used in SimCLR that applies simple transformations like

random flips, rotations, color jitters and gaussian blurring. We don’t use gaussian blur in our

implementation of SimAugment and train for 100 extra epochs i.e. 250 epochs while using

it. Fig. 5.4 shows that TCL loss performs better than SupCon loss with both augmentations

although, the gain is more with AutoAugment – the stronger augmentation strategy.

5.3 Self-Supervised Setting

In this section we evaluate TCL without any labels in self-supervised setting by making

use of positive triplets as described earlier. We compare TCL with various SOTA SSL methods

as shown in Table 5.2. The results for these methods are taken from the works of [36], [11]. The

datasets used for comparison are CIFAR 10, CIFAR-100 and ImageNet-100. ResNet-18 is the

common encoder used for every method. For CIFAR-10 and CIFAR-100 every method uses

1000 epochs of contrastive pre-training including TCL. For ImageNet-100, every method does

400 epochs of contrastive pre-training.
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Table 5.2 shows the top-1 accuracy achieved by various methods on the three datasets.

TCL performs consistently better than SimCLR [6] and performs on par with various other

methods. Note that methods like BYOL [18], VICReg [3], ARB [36] and Barlow-Twins [33]

use much larger projector sizes for output embedding and extra hidden layers in the projector

MLP to get better performance while MOCO V2 [8] uses a queue size of 32,768 to get better

results. Few of the methods like BYOL [18], SimSiam [9], MOCO V2 [20, 8] also maintain two

networks and hence, effectively use double the number of parameters.

We also add the results of supervised TCL that can make use of labels as it generalizes

to any number of positives. Supervised TCL achieves significantly better results than all other

SSL methods. SwAV does use a multi-crop strategy to create multiple augmentations but is not

extended to supervised setting to use the labels [4].

Table 5.2. Comparison of top-1 accuracies of TCL with various SSL methods on different
datasets. Values in bold show the best performing method for that dataset.

Method Projector Size CIFAR-10 CIFAR-100 ImageNet-100

BYOL[18] 4096 92.6 70.2 80.1
DINO[5] 256 89.2 66.4 74.8
SimSiam[9] 2048 90.5 65.9 77.0
MOCO V2[20, 8] 256 92.9 69.5 78.2
ReSSL[37] 256 90.6 65.8 76.6
VICReg[3] 2048 90.1 68.5 79.2
SwAV[4] 256 89.2 64.7 74.3
W-MSE[15] 256 88.2 61.3 69.1
ARB[36] 256 91.8 68.2 74.9
ARB[36] 2048 92.2 69.6 79.5
Barlow-Twins[33] 256 87.4 57.9 67.2
Barlow-Twins[33] 2048 89.6 69.2 78.6
SimCLR[6] 256 90.7 65.5 77.5
TCL (Self-Supervised) 256 91.8 67.2 78.4
TCL (Supervised) 128 95.8 77.5 86.7
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Figure 5.5. Analysis of k1 — plot of mean gradient magnitude from positives averaged across
the batch for SupCon loss and TCL loss (at various values of k1).

5.4 Analyzing and Choosing k1 and k2 for TCL

As we discussed earlier in chapter 4, k1 helps in increasing the magnitude of gradient

from positives while k2 helps in regulating (increasing) the gradient from negatives. We verify

our claims empirically and show how we go about choosing their values for training.

5.4.1 Analyzing effects of k1

We calculate the mean gradient magnitude from all positives (expressions from equation

4.19) per anchor averaged across the batch and plot the values for SupCon and TCL losses over

the course of training of ResNet-50 on CIFAR-100. As evident from Fig. 5.5, increasing the

value of k1 increases the magnitude of gradient response from positives. We also analyze how

this correlates with the top-1 accuracy in Fig. 5.6. As we see for small values of k1, the top-1

accuracy remains more or less the same as that of SupCon loss. As we increase it further, the

gradient from positives increase leading to gains in top-1 accuracy. The top-1 accuracy reaches a

peak and then starts to drop with further increase in k1. We hypothesize that this drop is because

very large values of k1 start affecting the gradient response from negatives (equations 4.9 and

4.3). We verify this hypothesis while analyzing k2.

22



Figure 5.6. Analysis of k1 — top-1 accuracy vs k1 on CIFAR-100 for TCL.

5.4.2 Analyzing effects of k2
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Figure 5.7. Analysis of k2 — plot of mean gradient magnitude from negatives averaged across
the batch for SupCon loss and TCL loss (k1 = 50000 and k2 = 1).

We calculate the mean gradient magnitude from all negatives (expressions from equations

3.6 and 4.9) per anchor averaged across the batch for the same setting as above and plot the

values for SupCon and TCL losses. As we see in Fig. 5.7, TCL loss’s gradient lags behind

SupCon loss’s gradient by some margin for k1 = 50000 and k2 = 1. We have chosen a large
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Figure 5.8. Analysis of k2 — plot of mean gradient magnitude from negatives averaged across
the batch for SupCon loss and TCL loss (k1 = 50000 and k2 = 3.25).

value of k1 here to better show how k1 affects the gradient response from negatives and how k2

helps in regulating it. This value of k1 actually leads to a top-1 accuracy of 71.8%, a drop in

performance. When we start increasing the value of k2, the gradient response from negatives

increase for TCL loss. Fig. 5.8 shows that by increasing k2 to 3.25 while k1 is fixed at 50000,

the gap between gradient (from negatives) curves of TCL loss and SupCon loss vanishes. We

also observe that the top-1 accuracy increases back to 76.2%, the best possible accuracy that we

got for TCL loss in this setting.

5.4.3 Choosing k1 and k2

We observe that a value of k1 in the range of 103 to 104 works best with k1 = 4×103 or

5×103 almost always working on all datasets and configurations we experimented with. We

generally start with these two values or otherwise with 2×103 and increase it in steps of 2000

till 8×103. We also observed during our experiments that choosing any value less than 5×103

always gave improvements in performance over SupCon loss. For most of our experiments we

set k1 to 4×103 or 5×103 and get the desired performance boost in a single run. We found k2

to be useful to compensate for the reduction in the value of Pt
in caused by increasing k1 and in

self-supervised settings where hard negative gradient contribution is important. For setting k2,
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we fix k1 (which itself gives boost in performance) and increase k2 in steps of 0.1 or 0.2 to see

if we can get further improvement. We provide values for k1 and k2 for all our experiments in

the appendix. As we see, we generally keep k2 = 1 for supervised settings but we do sometimes

set it to a value slightly bigger than 1. We set k2 to a higher value in self-supervised settings

as compared to supervised settings to get higher gradient contribution from hard negatives.

Increasing k1 didn’t help much in boosting the performance in self-supervised setting (as we

only had two positives per anchor) and so we set it to 1. Increasing k2 also increases the gradient

response from positives to some extent by decreasing Pt
ip (equation 4.7) and so, we found it

sufficient to only increase k2 and set k1 to 1 in self-supervised setting.
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Chapter 6

Conclusion and Limitations

In this thesis, we have presented a novel contrastive loss function called Tuned Con-

trastive Learning (TCL) loss that generalizes to multiple positives and multiple negatives present

in a batch and is applicable to both supervised and self-supervised settings. We showed mathe-

matically how its gradient response to hard positives and hard negatives is better than that of

SupCon loss. We evaluated TCL loss in supervised and self-supervised settings and showed that

it performs on par with existing state-of-the-art supervised and self-supervised learning methods.

We also showed empirically the stability of TCL loss to a range of hyperparameter settings.

A limitation of our work is that the proposed loss objective introduces two extra param-

eters k1 and k2, for which the values need to be set heuristically. Future direction can include

works that come up with loss objectives that provide the properties of TCL loss out of the box

without introducing any extra parameters.
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Chapter 7

Broader Impact

We hope that the work presented in this thesis inspire people to consider contrastive

learning as an alternative to cross-entropy loss based learning which is commonly used in many

fields such as computer vision and natural language processing. Unlike cross-entropy loss,

contrastive learning can be used for unsupervised learning as well and allows to learn from

unlabelled data, that is often easily accessible, for downstream tasks. We will release our code

publicly for the benefit of the research community.
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This thesis, in its entirety, has been submitted for publication with the possibility of its

material being included in a conference in 2023, authored by Chaitanya Animesh and Manmohan

Chandraker. The thesis author was the primary investigator and the first author of this paper.
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Appendix A

Training Details

A.1 Supervised Setting

We first present the common training details used for each dataset experiment in the

supervised setting for Supervised Contrastive Learning [23] and TCL. Except for the contrastive

training learning rate, every other detail presented is common for SupCon loss and TCL loss.

As mentioned in chapter 5, we train for a total of 150 epochs which involves 100 epochs of

contrastive training for the encoder and the projector, and 50 epochs of cross-entropy training for

the linear layer for both the losses. AutoAugment [10] is the common data augmentation method

used except for FMNIST [31] for which we used a simple augmentation strategy consisting of

random cropping and horizontal flip. We use cosine annealing based learning rate scheduler and

SGD optimizer with momentum=0.9 and weight decay=1e−4 for both contrastive and linear

layer training. Temperature τ is set to 0.1. For linear layer training, the starting learning rate is

5e−1. ResNet-50 [21] is the common encoder architecture used.

A.1.1 CIFAR-10

Images are resized to 32×32 in the data augmentation pipeline. We use a batch size of

128. For both SupCon and TCL losses we use a starting learning rate of 1e−1 for contrastive

training. We set k1 = 5000 and k2 = 1 for TCL.
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A.1.2 CIFAR-100

Images are resized to 32×32 in the data augmentation pipeline. We use a batch size of

256. For both SupCon and TCL losses we use a starting learning rate of 2e−1 for contrastive

training. We set k1 = 4000 and k2 = 1 for TCL.

A.1.3 FMNIST

Images are resized to 28×28 in the data augmentation pipeline. We use a batch size of

128. For both SupCon and TCL losses we use a starting learning rate of 9e−2 for contrastive

training. We set k1 = 5000 and k2 = 1 for TCL.

A.1.4 ImageNet-100

Images are resized to 224×224 in the data-augmentation pipeline and batch size of 256

is used. For SupCon loss we use a starting learning rate of 2e−1 for contrastive training while

3e−1 for TCL loss. We set k1 = 4000 and k2 = 1 for TCL loss.

A.1.5 More Experiments

Table A.1. Comparison of top-1 accuracies of TCL with Supervised Contrastive Learning in
supervised setting on different datasets for 250 epochs of training.

Dataset SupCon TCL

CIFAR-10 96.7 96.8
CIFAR-100 81.0 81.6
FashionMNIST 95.5 95.7
ImageNet-100 86.5 87.1

For CIFAR-100 dataset and batch size of 128, we also ran comparison experiment 30

times to get 95% confidence intervals for top-1 accuracies of SupCon and TCL losses. For

SupCon loss we got 74.79 ± 0.23% as the confidence interval while for TCL loss we got

75.72± 0.16% as the confidence interval. We also present results for 250 epochs of training

constituted by 200 epochs of contrastive training and 50 epochs of linear layer training in Table
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A.1. As we see, TCL loss performs consistently better than SupCon [23] loss. Note that we

didn’t see any performance improvement for FMNIST dataset for either SupCon loss or TCL

loss by training for 250 epochs.

A.2 Hyperparameter Stability

For the hyperparameter stability experiments we have presented most of the details in

chapter 5. We present the learning rates and values of k1 and k2 used for TCL. Remaining details

are the same as the supervised setting experiments.

A.2.1 Encoder Architecture

The starting learning rate for contrastive training is 1e− 1 for all the encoders except

ResNet-101 for which we used a value of 9e−2. k1 = 5000 and k2 = 1 are the common values

used for all the encoders.

A.2.2 Batch Size

For batch sizes=32, 64, 128, 256, 512 and 1024 we set the starting learning rates for

contrastive training to 8e−3, 9e−3, 1e−1, 2e−1, 5e−1 and 1 respectively. For batch size

of 32 we used k1 = 5000 and k2 = 1. For batch size of 64 we used k1 = 7500 and k2 = 1. For

batch size of 128 we used k1 = 5000 and k2 = 1. For batch sizes of 256, 512 and 1024 we used

k1 = 4000 and k2 = 1.

A.2.3 Projection Network Embedding (zi) Size

We used a common starting learning rate of 1e−1 with k1 = 5000 and k2 = 1 for all the

projector output sizes for contrastive training.
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A.2.4 Augmentations

For AutoAugment [10] method, we use a learning rate of 1e− 1 with k1 = 5000 and

k2 = 1 for contrastive training. For SimAugment [6], we use a learning rate of 1e− 1 with

k1 = 5000 and k2 = 1.2 for contrastive training.

A.3 Self-Supervised Setting

For the self-supervised setting, we reuse the code provided by [11] and we are thankful

to them for providing all the required details. The projector used for TCL is exactly the same as

SimCLR in [11], [36] for fair comparison and consists of one hidden layer of size 2048 (4096

for ImageNet-100) and output size of 256. ResNet-18 is the common encoder used for all the

methods. Label information is not used for contrastive pre-training. We use cosine annealing

based learning rate scheduler and SGD optimizer with momentum=0.9 wrapped with LARS

optimizer [32] and weight decay of 1e−4 for contrastive pre-training. Augmentation used is

SimAugment [6] and is done in the same manner as [11]. Gaussian blur is used in the data

augmentation pipeline for self-supervised setting. The linear layer is trained for evaluation using

the cross-entropy loss and the labels for 100 epochs with cosine annealing based learning rate

scheduler and starting learning rate of 5e−1 for all the datasets.

A.3.1 CIFAR-10

All methods do 1000 epochs of contrastive pre-training on CIFAR-10 [24] and images are

rescaled to 32×32 in the data augmentation pipeline. We set batch size=256, same as SimCLR.

For TCL, we use a starting learning rate of 5e−1 for contrastive pre-training with k1 = 1 and

k2 = 1.5.

A.3.2 CIFAR-100

All methods do 1000 epochs of contrastive pre-training on CIFAR-100 [24] and images

are rescaled to 32× 32 in the data augmentation pipeline. We set batch size=256, same as
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SimCLR. For TCL, we use a starting learning rate of 5e−1 for contrastive pre-training with

k1 = 1 and k2 = 1.5.

A.3.3 ImageNet-100

All methods do 400 epochs of contrastive pre-training on ImageNet-100 [12] and images

are rescaled to a size of 224×224. We set batch size=256, same as SimCLR. For TCL, we use a

starting learning rate of 5e−1 for contrastive pre-training with k1 = 1 and k2 = 1.5. We use the

same subset of 100 ImageNet classes as used by SimCLR [6] and all the other methods in [36].
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