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Unit Roots and the Estimation of
Interest Rate Dynamics

Abstract

This paper investigates the time series estimation of Cox, Ingersoll, and Ross’s square-
root, mean-reverting specification for interest rate dynamics. For a priori reasonable mean
reversion, the stochastic behavior of interest rates is sufficiently close to a non-stationary
process with a unit root so that least squares, the generalized method of moments, as well
as maximum likelihood estimation provide upward biased estimates of the model’s speed
of adjustment coefficient. Corresponding bond yields, as a result, exhibit excessive mean
reversion. In addition, estimates of the specification’s long-term mean interest rate are seen
to display erratic behavior when near a unit root. These conclusions are robust to assuming
multiple state variable specifications, such as Brennan and Schwartz’s two factor model of
interest rate dynamics. We also document conditions under which this unit root problem
can be alleviated when the cross-sectional restrictions of the Cox, Ingersoll, and Ross single

factor term structure model are imposed.



1 Introduction

Single factor models of the term structure of interest rates posit that default-free bond
prices depend upon the prevailing instantaneous riskless rate of interest. Resultant default-
free bond prices satisfy a second-order partial differential equation, the solution of which
varies with the specification of instantaneous riskless interest rate dynamics. Altering this

underlying interest rate process then alters the resultant term structure.

Characterizing the dynamics of the instantaneous riskless rate by a square-root, mean-
reverting diffusion process, Cox, Ingersoll, and Ross [1985] provide closed-form expressions
for default-free bond prices which are amenable to empirical testing. Tests of this model
include, among others, Brown and Dybvig [1986], Brown and Schaefer [1994], Chen and

Scott [1993], Gibbons and Ramaswamy [1993], and Pearson and Sun [1994].

This paper investigates the estimation of Cox, Ingersoll, and Ross’s square-root, mean-
reverting specification for interest rate dynamics. Their term structure model is often im-
plemented in practice by estimating the parameters of this process on the basis of a time
series of short-term interest rates and then using these estimates in the relevant closed-form
expressions for default-free bond prices. Unfortunately, this time series regression is subject
to a potentially serious unit root problem (Dickey and Fuller [1979, 1981}, Evans and Savin

[1981, 1984), and Phillips [1987)).

Intuitively, the instantaneous riskless rate of interest is mean reverting in the Cox, Inger-
soll and Ross specification, the degree of mean reversion governed by a speed of adjustment
coeflicient. The slower this speed of adjustment, the closer the interest rate’s stochastic

behavior is to a non-stationary process with an exact unit root. In particular, for a prior:



reasonable mean reversion, the stochastic behavior of interest rates is sufficiently close to
that of a unit root process so that the sampling distribution of the estimated speed of ad-
Jjustment coeflicient behaves much like its sampling distribution when there is an exact unit
root. As a result, we demonstrate that the speed of adjustment coefficient is estimated with
a significant upward bias which is not eliminated even in the large sample sizes typically
encountered in practice. This unit root problem will consequently impart a systematic bias
to single factor term structures: estimated yield curves will converge far too quickly to the

corresponding long-term interest rate.

This upward bias is consistent with the empirical results of Gibbons and Ramaswamy
[1993] and Pearson and Sun [1994] who find their estimated adjustment speeds to be too
quick given the historical behavior of bond prices. For example, using Treasury bill data
only, Gibbons and Ramaswamy estimate the speed of adjustment coefficient to be 12.43,
while Pearson and Sun’s estimate is 9.24. Both of these estimates imply a mean half-life
for the estimated interest rate process (that is, the expected time for the process to return

halfway to its long-term mean) of less than one month.

Using the generalized method of moments, as opposed to least squares, does not remedy
this unit root problem. Furthermore, the problem is not unique to single factor models of
the term structure. We confirm similar problems, as well as others, when using time series
techniques to estimate Brennan and Schwartz’s [1979, 1982] two factor specification for the

dynamics of the short and long rates of interest.

We also provide evidence of unstable behavior in the corresponding estimates of the long-
term mean interest rate of the Cox, Ingersoll and Ross specification when using shorter time

series as evidenced by occasional but substantial outliers. While these alternative estimation



procedures will provide consistent estimates of the long-term mean of a stationary interest
rate process, larger sample sizes are needed when near a unit root before their asymptotically

optimal properties become evident.

The Cox, Ingersoll, and Ross term structure formula imposes a cross-sectional restriction
across default-free bonds of different maturities. If we rely exclusively on these cross-sectional
properties, as in Brown and Dybvig [1986] or Brown and Schaefer [1994], the speed of
adjustment coefficient cannot be identified and, as such, cannot be estimated. But combining
this cross-sectional restriction with the model’s time series properties allows the speed of
adjustment coefficient to be estimated more efficiently since the shape of the term structure
provides potentially valuable information about this parameter. For example, Pearson and
Sun’s estimated adjustment speed falls when they include longer term bonds, while Chen
and Scott, who use both short term bills as well as longer term bonds, estimate the speed of
adjustment coefficient to be only 0.47, implying a mean half-life of approximately eighteen
months. In this paper, we cast this dynamic estimation strategy into a state space framework
and use the Kalman filter to obtain maximum likelihood estimates of the parameters of the
Cox, Ingersoll, and Ross term structure model. Our analysis indicates that the magnitude of
the unit root problem depends on the shape of the term structure and, as a consequence, on
whether long-term yields are included. By simply concentrating on the yield curve’s short
end, say, maturities of less than one year, the informativeness of the yield curve’s shape
cannot be taken advantage of, and once again the speed of adjustment coefficient will be
estimated with significant upward bias. We also find that the inclusion of bonds of varying
maturities allows the long-term mean of the Cox, Ingersoll and Ross interest rate process to

be estimated more efficiently.



The plan of this paper is as follows. Section 2 investigates the time series regression
corresponding to Cox, Ingersoll, and Ross’s square-root, mean reverting specification for
instantaneous riskless interest rates. We demonstrate the corresponding unit root problem
and assess its estimation effects in Section 3. Section 4 shows that these estimation problems
also arise if the generalized method of moments is used to estimate the parameters of the
square-root, mean-reverting specification. In Section 5 we document unit root problems in
the time series regressions corresponding to Brennan and Schwartz’s two factor specification
for short and long rates of interest. In section 6, we add the cross-sectional restrictions of
the Cox, Ingersoll, and Ross single factor term structure model and document the conditions
under which this unit root problem can be alleviated. Section 7 provides a summary and

conclusions.

2 Single Factor Models

Cox, Ingersoll, and Ross characterize the dynamics of the instantaneous riskless rate r by*:
dr = &(0—r)dt+ordz, (1)

where z is standard Brownian Motion. For x, 6 > 0, this specification corresponds to a
continuous-time first order autoregressive process with the stochastic interest rate r being
pulled towards its long-term mean 6 at a rate governed by the speed of adjustment coefficient

K.

The resulting process is Markov with a computable transition density so that the joint

likelihood of a set of observations {r,} may be calculated. Unfortunately, the instantaneous

1Without loss of generality, throughout this paper we interpret interest rates as nominal rates of interest.
Sufficient conditions to ensure this are provided by Cox, Ingersoll, and Ross [1985].
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riskless rate is not directly observable. However, we assume that observable short rates

provide an adequate proxy. 2

The probability density of the short rate at some future time, s, conditional on its value

at the current time, ¢, is given by:
f(r(s), 8;7(t), ) = e N u/u) 2L, (2v/uv), ()

where

2k
o?(1 — e=~s-1))’
u = er(t)e™™),

v = cr(s),
2x0
¢ = —-L

and I,(.) is the modified Bessel function of the first kind of order ¢q. The conditional distri-
bution function of the short rate r(s) is a constant multiple times a non-central chi-squared
distribution. Specifically,

r(8) | 7(t) ~ x*(v, )/ (2c)
where v is the degrees of freedom %‘i and A is the non-centrality parameter 2u. Noting that
the mean and variance of a non-central chi-squared distribution are v + A and 2(v + 21),

respectively, Cox, Ingersoll, and Ross also show that:

Blr(s) | ()] = r(t)e™ +0(1 — &™),

Var[r(s) | 7(t)] r(t)(?/ n)(e"‘("‘) - e”"("‘)) + 8(a*/2x)(1 — e"‘("‘))z. /22

Diffusions represented by stochastic differential equations behave locally like Brownian

Motions. Therefore, for a small increment in time A, the conditional distribution of #(t + A)

3We relax this assumption later.



given r(t) will be approximately normal with computable moments. Adopting subscripts fo

indicate the corresponding discrete model, we have that

Elrega |r = (1 —5A)+6(sA) + 0(A?)

Var[rga |7 = oA+ O(A?).

Given a sequence of observations {r;}, the discrete-time model implies the following gener-

alized least squares regression:
reea = Pot+Pire + 0'6:\/5 (3)

with the {¢} assumed distributed independently normal with mean zero and variance pro-

portional to 7.

Alternatively,

’;}‘i‘ - ﬁT B+ (4)
2

where the error §; satisfies the standard regression assumptions with constant variance w?.

Estimation follows by least squares regression with & = (1 — £,)/A, 8 = fo/(1 — A,), and

% = &@*A. However, as we demonstrate next, for x near zero and, particularly, for small A,

there exists a unit root problem which may have significant effects on this estimation.

3 The Unit Root Problem

We review the unit root problem by considering the time series

X¢ = pX¢_1+€¢ t=1,2,...,

Xo=0,



where {e,} are assumed distributed independently normal with mean 0 and variance o*. The
corresponding sample first order autocorrelation coefficient j, is given by

n n
b = Y XenXe) 3 X!

=1 t=1

where 7 is the number of observations.®

Fuller [1976], Dickey and Fuller [1979, 1981} and others have examined the statistical
properties of this estimator in some detail. Briefly summarizing their results, for values of p
less than one, +/n(p — p) is distributed asymptotically normal with mean zero and variance
03 = (1—p?). For p =1, when the underlying process is no longer stationary, the estimator
converges more rapidly but its asymptotic normality breaks down. In fact, in the presence
of a unit root, n(p — p) has a nonnormal limiting distribution, tabulated, for example, in
Fuller [1976], page 371, which is markedly skewed to the left. Estimation of the process’s

mean also becomes problematical in this non-stationary case.

Furthermore, for values of p close to but less than one, the near-integrated case, Phillips
[1987] demonstrates that the sample first order autocorrelation coefficient behaves very much
as in the nonstationary case, p = 1.* Fuller’s [1976] simulation evidence also confirms that
for values of p close to but less than one, the sampling distribution of \/n(p — p) is far
from normal, even for large samples, being skewed to the left with the mean of the empirical

distribution reflecting the downward biasedness of 5. See also Evans and Savin [1981, 1984]°.

The discrete generalized least squares regression model outlined in Section 2 should have

3When there is no ambiguity, we will drop the n subscript on j,.

4Phillips [1988] develops asymptotics relying on functionals of the Ohrnstein-Uhlenbeck process. This
is to be contrasted with the standard Dickey-Fuller asymptotics for the exact unit root case which involve
functionals of Brownian Motion.

5Similar results are evident when a constant is included in the regression specification. We would expect
the long-term mean’s estimation to also be troublesome in the near unit root case.



similar problems. Assuming annualized interest rate data available on a monthly basis,
A = 1/12, we select the following plausible parameter values: § = 0.05, o = 0.0025, and

x = 1. Therefore,

Elrea | v = ree™™d 4 6(1 — e7™2) = 0.9200r, + 0.08006.

Under these assumptions, there is a reversion to the mean at 8% per month. Since 8, =
(1 — kA) = 0.92 ~ 1, we have a potential unit root problem. Least squares regression, as

well as other time series estimation procedures, will provide downward biased estimates of

pr*

We perform a simulation study to investigate the statistical properties of the generalized
least squares estimators. For these assumed parameter values, we generate five and twenty
year’s of monthly data, n = 60 and 240 observations, respectively.” Initial spot rates of
interest vary from .03 to .07, in increments of .01. We repeat each experiment 1,000 times

and summarize the sampling results in Tables 1a and 1b.

Notice that the sampling distribution of & is biased upwards throughout, with the bias
being most pronounced for initial spot rates close to 6. For example, using five years of
simulated monthly data and an initial spot rate of 0.05 (the assumed long-term mean), we
observe a 94.0% upward bias in &. However, all else equal, setting the initial spot rate at

0.07, the upward bias in & is reduced to 67.9%. Also, as the sample size increases, this bias

$The assumed & value lies between the estimates of Gibbons and Ramaswamy (12.43) and Pearson and
Sun (9.24), and that of Chen and Scott (0.47). All else equal, for « values smaller than one, holding A fixed,
it follows that B; = (1 —~ xA) is closer to one, thereby magnifying the unit root problem and increasing the
resultant percentage bias. A similar conclusion follows if, alternatively, & is held fixed but A is decreased to
reflect more frequent data sampling.

"Interest rate data are simulated using a first order discrete-time approximation to expression (1) assuming
360 time steps per year. We then sample once every 30 of the resultant observations to obtain our simulated
monthly data.
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diminishes. For example, twenty years of monthly data gives an upward bias of 16.6% in &

for an initial spot rate of 0.07.

Intuitively, we obtain more information on the speed of adjustment coefficient x when
interest rates are distant from their long-term mean, as well as when we have more observa-
tions. For the larger sample size, the other estimators are essentially unbiased and appear
to be well-behaved. However, for the smaller sample size we see significant instability in é,

particularly for low initial spot rates.®

To investigate the economic significance of this bias in &, Table 2 compares Cox, Ingersoll,
and Ross bond yields across a number of terms to maturity for the assumed value of Kk = 1
versus mean K, holding all else constant. We set the initial spot rate at 0.05 and use mean
estimated speed of adjustment coefficients assuming n = 60 as well as n = 240 months of
data. To complete the specification of the Cox, Ingersoll, and Ross term structure model, we
must additionally specify the market price of interest rate risk, u. We alternatively set g = 0,
and p = —.5, the latter a value consistent with that estimated by Brennan and Schwartz
[1982]. For u = 0 (Panel A) an approximately flat term structure obtains, while an upward
sloping term structure results for 4 = —.5 (Panel B). In both Panels we see minimal bias at
very short maturities as both the assumed and estimated term structures are near the initial
spot rate. Since the flat term structure is insensitive to the speed of adjustment coefficient,
there is also little, if any, bias evident in Panel A for longer maturities. However, in the
case of the upward sloping term structure, where yields are more sensitive to the speed of
adjustment coefficient, the resultant bias is pronounced at longer maturities. For example,

from Panel B, the percentage difference in ten-year yields is on the order of 25% for n = 60

8For example, for n=60 and an initial spot rate of.03, the minirmum value of 6 is -9.21, while its maximum
value is 38.93.
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months, while a percentage difference in ten-year yields of approximately 17% obtains for n

= 240 months.

The use of weekly (A = 1/52), rather than monthly (A = 1/12), data is explored in
Table 3. In particular, rather than using 5 years of monthly data (n = 60), we assume 5
years of weekly data (n = 260). As can be seen from Table 3, the sampling properties of
the estimators, especially the upward biasedness of &, are not dramatically altered. Also,
estimates of 6 are unstable. Intuitively, the benefits of using more data are offset by sampling

that data more frequently and thereby magnifying the unit root problem.

4 Method of Moments Estimation

In this section, we determine to what extent, if any, our previous results are due to least
squares estimation. To do so, we use the method of moments to estimate the parameters
of the Cox, Ingersoll, and Ross’s square-root, mean-reverting specification of interest rate
dynamics. Unlike maximum likelihood estimation, method of moments estimation relies on
only a few moments of the posited statistical distribution of interest rate changes. We also
investigate the generalized method of moments. This procedure requires that the distribution

of interest rates be stationary and ergodic and that the relevant moments exist.
4.1 Method of Moments

Cox, Ingersoll, and Ross’s specification for interest rate dynamics requires that N = 3
parameters be estimated, ¢ = (s, 0, 0?). Suppose that f;(¢) denotes a vector of 3 functionally

independent theoretical moments evaluated at time ¢, and that m, denotes the corresponding

12



set of sample moments, t =1,2,.--,n.

Letting
fo) =33 He) md  m=Pm,

t=1

the method of moments estimator is that ¢ which satisfies

f(g)=m
or equivalently
(f() = m)(f(¢) —m)=0. (5)

In general, there are a number of potential problems with method of moments estima-
tors. For example, while ¢ is a consistent estimator, it may not be asymptotically efficient.
Furthermore, depending upon the choice of moment conditions, the solution of (5) may not

be unique or may not lie in a feasible parameter region.

As an example, suppose that for our problem we choose the following 3 moment condi-

tions:
E(reqare) (v + Are)/2¢
fi(p) = | E(rinlre) | = ((v + Are)? + (2v + 427))/(2¢)? ;
E(r},|re) (8((m + 3Are) + 6(v + 22re)(v + Are) + (v + Are)®)/(2¢)?

mg =

T4l
r?
t+1

3
Tet1

where, without loss of generality, we assume A = 1.

Even though these moments are functionally independent, for practical parameter values,

the first moment is dominant. In particular, when we are near a unit root, that is, for small

13



k>0,

v~0, A/(2¢)~1, and A/(2¢)* ~0.
Substituting into the above moment conditions gives
E(ri,qlre) ~ 7 for all integers i.

In other words, for x very small but positive, all the sample moments can be approximately
matched by their population counterparts. For the sample sizes and the parameter values
previously considered, simulation evidence (not reported here) confirms that the method of
moments based on these moment conditions consistently provides x estimates indistinguish-

able from zero.

Of course, with the appropriate choice of moment conditions, the method of moments
reduces to generalized least squares. In particular, the following 3 moments:

[
fi(p) = | €erame

i — o’
where £1 = reqa/y/mi — (68A)//F: — (1 — KA)\/r; characterize generalized least squares.®
Under these conditions, the method of moments will exhibit the previously discussed effects
of the unit root problem. To see whether additional moment restrictions alleviate the unit

root problem, we next turn our attention to the generalized method of moments.
4.2 Generalized Method of Moments

The generalized method of moments allows the number of moment conditions to exceed

the number of parameters to be estimated. A test of the posited model’s goodness of fit is

9The first moment condition ensures the residuals sum to sero, the second gives the normal equation
for generalized least squares, while the third moment condition estimates the variance by using the sum of
squared standardized residuals.
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provided by these overidentifying restrictions.

We consider the following four moment conditions suggested by Chan, Karolyi, Longstaff,

and Sanders [1992] in their empirical analysis of short term interest rate dynamics

€41

_ | €&+17e
fi(p) = 5?+1 — o
(€41 — o?re)re
where, €41 = r¢41—(Bo+P17:). The corresponding generalized method of moments estimator,

@, is given by
argmin. (f(p) - m)Wa(f(¢) — m)
P

where W, is a symmetric nonsingular weighting matrix. We use the Newey-West [1987]
weighting matrix. Since the number of moments now exceeds the number of parameters to

be estimated, the minimum value of this objective function will not in general equal zero for

any .

Simulations are also carried out to assess the performance of these generalized method
of moments estimators. For comparison purposes, we select the same parameter values,
initial spot rates, sample sizes, and number of replications as used in our investigation of

generalized least squares. Summary statistics are reported in Tables 4a and 4b.

The two estimation procedures are in broad agreement with the resultant bias in & being
evident using either procedure. However, the bias appears to be more pronounced for the
generalized method of moments estimators and, furthermore, these estimators tend to have
larger standard deviations. As before, for the smaller sample size, the sampling distribution

of 0 is contaminated by a number of extreme values resulting in excessive skewness and

15



kurtosis.!® However, these effects are not evident in the larger sample size.!!

5 Two State Models

We have so far investigated estimation problems associated with a univariate specification
of interest rate dynamics. Many authors, including Brennan and Schwartz [1979, 1982],
have introduced multiple factor models of the term structure.!? In particular, Brennan
and Schwartz assume a bivariate specification of interest rate dynamics where, as before, r
represents the short rate of interest, [ now represents the rate of return on a long term consol

bond, with their dynamics given by
dr = Bi(r,Lt)dt +m(r,l,t)dz
d = ﬂz("‘, I t)dt + ’72("1 l t)dzz

where 2, and z; are standardized Brownian Motions such that E[dz;dz,] = pdt. This sec-
tion inquires into the effects of the unit root problem on the estimation of this bivariate

specification.

For estimation purposes, Brennan and Schwartz specialize their bivariate specification

to
dr = (a1 + bl(l - T))dt + rtrldzl
d = l(az + bz?‘ + Czl)dt + lcr,dz,
10For example, in Table 4a, for an initial spot rate of.05, the minimum value of 4 is -0.36 while its maximum

is 748.18. By contrast, for an initial spot rate of .06, the minimum value of 6 is -8.27 while its maximum
is 15.88. As a result, the standard deviation of the sampling distribution of 6 is significantly smaller in the
latter case.

1175 expected, the sampling properties of the resultant x? goodness-of-fit statistics, not reported here, do
not indicate excessive rejection of the posited model.

12 Alternative specifications of the state variables have also been put forward. For example, see Schaefer
and Schwartz [1984] and Longstaff and Schwarts [1992].
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and discretize it as follows

rera—7¢ = (a1 +bi(le —r))A + rio1y/ Ag

lsa — U = lfas + bare + cale)A + ltﬂ'z\/ Ae;

where ¢; and ¢, are assumed bivariate normal with zero means, unit variances, and correlation
p, and where A is again a small increment in time. Notice that now the short rate does not

revert towards a constant but rather towards the long rate which itself varies through time.

The above system represents two linear equations with contemporaneously correlated
error components and can be estimated in a variety of ways. One approach, maximum
likelihood estimation, optimizes the corresponding likelihood function using nonlinear meth-
ods. Alternatively, as pointed out by Brennan and Schwartz [1982], this linear system can
be estimated with less computational effort using generalized multivariate regression with
a consistent estimate of the error covariance obtained by applying ordinary least squares
equation by equation (Seemingly Unrelated Regression Estimation (SURE) as introduced
by Zellner {1962, 1963] and Zellner and Huang [1962]).

Rather than this two-stage procedure, we implement the following more efficient three-
stage procedure. In the first stage, we apply ordinary least squares to the two equations
separately and estimate p from the resultant residuals. In the second stage, using the es-
timated error covariance, we perform a generalized multivariate regression. The residuals
from this multivariate regression are used to update the estimated error covariance which
is then used in the third stage to perform a subsequent generalized multivariate regression.
We use this three-stage procedure since it gives estimation results in very close agreement

to maximum likelihood estimation, without the extensive computational effort.

17



To examine this bivariate specification as an extension of the previously investigated
univariate model, we set a; = a; = 0:

Ti4A — T = bl(lg - Tg)A + 1‘;0’1\/ Aé]_

lg[bzrg + Czlg]A + lgdzv AE;.

leya =1

This implies that for small o3 as well as small b, and c;, the short rate reverts to an essentially

constant long rate.!?

We calibrate our simulation experiments to allow us to compare and contrast the statis-
tical properties of this two factor specification relative to its one factor counterpart. To that
end, we choose b; = 1 since this parameter corresponds directly to the univariate model’s
speed of adjustment coefficient k. We also set o; = 0.2236 and initialize the term structure
with 7y = [y = 0.05, since, under these assumptions, the bivariate model’s short rate pro-
cess has approximately the same incremental variance as that previously assumed for Cox,
Ingersoll, and Ross’s square root specification. We parameterize o3, the volatility of the
long rate, to range from 0.001 to 0.01 to 0.05, allowing us to assess the estimation effects
of an increasingly important second factor. The correlation between increments in the short
rate and the long rate process is assumed to be p = .5.}* Finally, we simulate the posited
bivariate system with b; = ¢3 = 0, though we estimate these parameters and comment upon

their sampling properties below.

As in our univariate results, the simulations assume five and twenty year’s of monthly

data (n = 60 and 240 observations, respectively). We repeat the experiments 1000 times

13We stress, however, that the limiting one factor model does not correspond exactly to the square root
model studied earlier. In the present case, the infinitesimal volatility is proportional to the short rate rather
than its square root. As such, we would not expect to obtain identical estimation effects.

14We also ran these simulations assuming p = 0 with similar results.
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and summarize the sampling results in Tables 5a and 5b.

Notice that the sampling distribution of b, is biased upwards throughout, the bias being
more pronounced the shorter the sample period. For example, using five years of simulated
monthly data, we observe an upward bias of approximately 45% in b,. However, all else equal,
with twenty years of data, this upward bias is reduced to approximately 5%. Increasing o

has a minimal effect on the upward biasedness of by.

Recall that our simulations assume that b; = ¢; = 0. Nevertheless, it is interesting
to examine the sampling properties of b, and &. Especially for larger values of o3, these
estimators are extremely volatile and significantly negatively correlated with one another.
In fact, it appears that the estimators cancel each other’s effects, yet their actual values are,
on average, quite large. Based on these results, one might conclude, quite spuriously, that a
spread variable, 7, — [,, plays a statistically significant role in explaining long rate dynamics.
In fact, these exact effects are evident in the empirical results of Brennan and Schwartz
[1982]. Notwithstanding various economic reasons why the spread between short and long
rates may play an important role in a model of the term structure of interest rates (Schaefer
and Schwartz [1984]), our sampling results suggest that the unit root problem exaggerates

the spread’s statistical importance.

6 Imposing Cross-Sectional Term Structure Restric-
tions

Returning to the single factor model, we now extend our estimation efforts beyond simply
the time series properties of the square-root, mean-reverting specification for interest rate

dynamics. In this case, Cox, Ingersoll, and Ross’s closed-form term structure model imposes

19



a cross-sectional restriction on default-free bond prices prevailing at any point in time. Since
the shape of this term structure depends on the model’s speed of adjustment coefficient, we
investigate whether incorporating this cross-sectional restriction minimizes the previouslj

documented unit root problem.

However, unlike Brown and Dybvig [1986] and Brown and Schaefer [1994], we do not
rely exclusively on the term structure restrictions of the Cox, Ingersoil, and Ross model since
these cross-sectional estimation techniques exclude information on how the term structure
evolves over time and, as such, cannot separately identify and estimate the speed of ad-
justment coefficient. Rather, we follow, among others, Chen and Scott {1993], Gibbons and
Ramaswamy [1993], and Pearson and Sun [1994], who estimate the parameters of the Cox,
Ingersoll, and Ross term structure model by combining both the model’s time series and

cross-sectional properties.

We cast this dynamic estimation strategy into a linear state-space framework, similar to
Pennacchi [1991], which recognizes that the underlying state variable, r(t), is unobserved.
However, bond prices, or equivalently, bond yields, which we assume are observed with error,
are linear functions of #(¢). By treating the state variable as an unobservable, we ensure that
our estimation results are not due to proxying r(t) by a particular short-term interest rate.
Measurement errors in the observed bond yields reflect noise arising from, for example, the

averaging of bid and ask quotes or possible quotation errors.

From Cox, Ingersoll and Ross, the state variable r(t) evolves according to a transition

equation which can be written in discrete-time form as

Tt+A = A + (1 - ICA)T; + Ufg‘\/—A—
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where the ¢; are independent normal with zero mean and variance proportional to r;. Unlike
Gibbons and Ramaswamy [1993], notice that we rely on the conditional density of the state

variable rather than its unconditional or steady-state density.

Suppose that at each date ¢ we observe the yields of discount bonds with M maturities,
71, T2 -+, 7. Bach observed yield, Yo, is given by the corresponding Cox, Ingersoll, and

Ross yield plus an independent normally distributed measurement error:

Yobu(7, Ti; t) = —InA(7;)/ i + (B(%:)/7:)r + error(r;,t) (6)

where

2yellwtutmIril/2 nb/o?

Am) = (v+ K5+ p)(em —1) + 2y ’
. 2(311'; - 1)

B() (Yy+u+p)em—-1)+27 "’

7= (P2,

1=12,.-- M, t =1,2,---,T. As before, p represents the market price of interest rate
risk. We assume that each measurement equation is perturbed by an error; that is, each
yield is observed with noise. This is distinct from Pearson and Sun [1994] who assume that
both the 13- and 26-week T-bill rates are observed without measurement errors or Chen and
Scott [1993] who assume that the 13-week T-bill rate is observed without error. By including
both the model’s time series and cross-sectional properties, and noting that bond yields are
assumed observed with error, all parameters of the Cox, Ingersoll, and Ross term structure

model now become individually identified.

Given these assumptions, the likelihood of the observed yields Yr = {yo,(r, 7, t),1 =
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1,2,---,M, t =1,2,+-+,T} can be written as'®

T
L(Yzr;9) = [] p(ve | Yerr),

t=1

where y; = {yo.(r, 7, t),t = 1,2,---, M}. Notice that p(y, | Y;—,) is the conditional density

of the t*h set of observations given all observations through ¢ — 1.

Our state-space framework assumes that the measurement errors error(7;,t) are normally
distributed and independent over time, that the measurement equation (6) is linear in the
state variable ~(¢), and that r(t) follows an autoregressive process with normal disturbances.
Under these conditions we may use the Kalman filter'® to optimally predict the underlying

unobservable state variable, 7(t), as well as to efficiently evaluate the likelihood function®”.

Employing the Kalman filter to evaluate the likelihood, numerical optimization of L over
¥ = (x,0,0%, ), generates the maximum likelihood estimator v of the parameters of the

Cox, Ingersoll, and Ross term structure model.

To assess the statistical properties of this maximum likelihood estimation procedure,
we conduct a number of sampling experiments. The cross-sectional restrictions of Cox,
Ingersoll, and Ross’s term structure model are incorporated by considering M = 3 yields,

each perturbed by independently normally distributed error terms with standard deviations

15We use y; to denote the t** set of observations while ¥; denotes the set of these observations through t.

16Gtrictly speaking, since we model the dynamics of the underlying state variable by a square-root process,
we are introducing heteroscedasticity and so we actually use the extended Kalman filter (see, Harvey [1989] for
an excellent description of the Kalman and extended Kalman filters) which nevertheless provides satisfactory
asymptotic results.

17In fact, even if the measurement errors are not normally distributed, the Kalman filter may still be used.
Provided we correctly specify the first two moments of the measurement error distribution, Harvey, Ruig,
and Shephard [1992] demonstrate that using the Kalman filter and assuming normal measurement errors
provides parameter estimators that are consistent and asymptotically normally distributed. Therefore, the
Kalman filter approach is quite general in its applicability to any term structure model which generates a
linear relationship between yields and underlying state variables when bond prices are observed with error.
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of 10 basis points. As before, we assume x = 1, § = 0.05, and o = 0.05. To investigate the
effects of the term structure’s shape, we assume g = -0.50 and, alternatively, 4 = 0. Since
we fix the initial rate, ro, at 0.05 throughout, upward sloping term structures are generated,
on average, by assuming g = -0.50, while flatter term structures, on average, obtain for p =
0. The informativeness of the term structure’s short end is examined by assuming that 7;
= 1/12 (or 1 month), 72 = 1/2 (or 6 months), and 73 = 1 (or 1 year), while the effects of
incorporating the term structure’s longer end are investigated by assuming that , = 1/12,
=1, and 73 = 5 (or 5 years). We restrict our attention to yields having a maximum maturity
of 5 years as this is the maximum maturity of default-free bonds in the CRSP (Center for
Research in Security Prices) bond file used by many researchers to empirically investigate

term structure models. Each sampling experiment is repeated 500 times.

Table 6a summarizes the results when n = 60 months of data are used, while the results
assuming n = 240 months of data are summarized in Table 6b. The sampling properties
and, in particular, the magnitude of the unit root problem, now depend on the shape of the
term structure and, as a consequence, on whether or not longer term yields are included
in the empirical analysis. In particular, incorporating cross-sectional information does not

necessarily alleviate the upward biasedness in estimating the speed of adjustment coefficient.

From Table 6a we see that when the term structure is, on average, upward sloping (p
= -0.5) and we include longer term yields (r, = 1/12, 73 =1, and 73 = 5), the bias in & is
minimal, 2.7%. Intuitively, in this case the shape of the term structure provides information
on the speed of adjustment coefficient and longer term yields allow us to use this information
to accurately estimate K. To emphasize this latter point, note from Table 6a that when we

only include yields from the short-end of the term structure (1, = 1/12, 7, = 1/2, and 73 =
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1), the bias in & is once again substantial, 19.0%, even though the term structure is upward
sloping (¢ = -0.5). Therefore, to minimize the effects of the unit root problem, dynamic
estimation strategies should not concentrate solely on the short-end of the term structure,
like Gibbons and Ramaswamy [1993]. However, if the term structure is, on average, flat
( = 0), then even incorporating information from its longer end will not alleviate the unit
root problem. Intuitively, a flat term structure provides little information on the speed of
adjustment coefficient and, as such, incorporating longer term yields will not eliminate the
upward bias in estimating x. For example, when g = 0 in Table 6a, the upward bias in &
is 22.7% for 1 = 1/12, 7, = 1/2, and 7y =1, yet is still 14.9% for 7, = 1/12, 1, =1, and
73 =5. Comparing Tables 6a and 6b, the sampling results are similar but we see that using
240 months of data (Table 6b), rather than 60 months (Table 6a), reduces the upward bias
in k. In both Tables 6a and 6b we see that 6 is estimated accurately, while o is estimated
with upward bias throughout. Since bond prices are affected significantly by the value of 6,
it is not surprising that the inclusion of cross-sectional information markedly stabilizes the
estimation of §. The market price of interest rate risk appears to be estimated unbiasedly,

though not precisely.

7 Summary and Conclusions

Models of interest rate dynamics typically incorporate mean reversion. For example, Cox,
Ingersoll, and Ross [1985] characterize interest rate dynamics by a square-root, mean re-
verting diffusion process and provide closed-form expressions for default-free bond prices.
However, the time series estimation of the corresponding speed of adjustment coefficient is

subject to a potentially serious unit root problem. As we demonstrate, both least squares
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and the generalized method of moments give significantly upward biased estimates of this
parameter, resulting in estimated yield curves which converge far too quickly. Observed
bond prices will not be consistent with such excessive mean reversion. Significant instability
in estimating the specification’s long-term mean interest rate may also be expected in the

near unit root case.

Incorporating the term structure model’s cross-sectional restricfion across bonds of dif-
ferent maturities can potentially alleviate this unit root problem. This follows since to the
extent that the yield curve is not flat, it provides valuable information about the speed of
adjustment coefficient. However, if the yield curve’s short end only is sampled, then this
information cannot be taken advantage of, and once again the speed of adjustment coefficient
will be estimated with an upward bias. Also, estimation of the long-term mean interest rate

is markedly improved when this cross-sectional information on bond prices is included.

Our conclusions are reminiscent of Merton’s [1980] observation that it is difficult to
precisely estimate expected returns from a time series of realized stock returns. This may
not be a significant consideration in pricing equity derivatives since the drift of the stock
price process is irrelevant and the variance of returns can be estimated far more accurately.
Unfortunately, this is not the case with interest rate derivatives where it is important to
accurately estimate the mean reversion inherent in the drift of the underlying interest rate

process.
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Table 1a

Sampling properties of &, 8, o using Generalized Least Squares and assuming

n = 60 months of data.

This table provides sample mean, standard deviation, skewness, and kurtosis of the estimated
parameters of the Cox, Ingersoll, and Ross mean-reverting, square-root specification for interest
rate dynamics. A sample size of n = 60 months of data is assumed. The experiment is based on

1,000 replications.

70 =0.03 | n =60 k= 1.00 6 =0.05 o?=0.0025
Statistic | Mean Std. Deviation Skew Kurtosis
K 1.5049 0.7033 0.7254 0.7589
6 % 10? 5.0858 1.6790 13.2000 265.7335
o2 %10° | 2.4952 0.4686 0.3551 -0.0464
To = 0.04
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.78323 0.8983 0.7188 0.4729
6%10% | 5.0370 1.1001 -0.6769  97.4124
o2 x10° | 2.4877 0.4679 0.3543 -0.0632
ro = 0.05
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.9397 1.0407 1.0019 1.3055
6%10% | 5.1147 1.2943 15.6818  317.1570
o2 %10% | 2.4808 0.4697 0.3560 -0.0810
ro = 0.06
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.8588 0.9819 1.0919 2.2738
6 » 10? 5.0856 0.5480 -0.6040 5.9130
0?%10° | 2.4814 0.4700 0.3673  -0.0688
To = 0.07
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.6789 0.8433 1.0201 1.6311
6 x 10? 5.0529 1.8897 -27.3917  822.6653
o2 +10° | 2.4850 0.4690 0.3868 -0.02675
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Table 1b

Sampling properties of &, é,atz using Generalized Least Squares and assuming

n = 240 months of data.

This table provides sample mean, standard deviation, skewness, and kurtosis of the estimated
parameters of the Cox, Ingersoll, and Ross mean-reverting, square-root specification for interest
rate dynamics. A sample size of n = 240 months of data is assumed. The experiment is based

on 1,000 replications.

7o = 0.03 | n = 240 x = 1.00 §=0.05 of=0.0025
Statistic Mean Std. Deviation Skew Kurtosis
® 1.1604 0.3345 0.7903 1.2640
6x10% | 5.0141 0.2489 0.1495 0.01221
o2 x10% | 2.5049 0.2309 0.2286 0.1466
To = 0.04
Statistic | Mean  Std. Deviation . Skew Kurtosis
P 1.1846  0.3642 0.8123 1.0835
6x10* | 5.0170 0.2469 0.1544 0.0217
o2 x10° | 2.5047 0.2307 0.2297 0.1457
To = 0.05
Statistic | Mean  Std. Deviation  Skew Kurtosis
® 1.1905 0.3725 0.8204 1.0698
6107 | 5.0206 0.2460 0.1567 0.0233
o2 x10° | 2.5047 0.2306 0.2325 0.1430
To = 0.06
Statistic | Mean Std. Dewiation Skew Kurtosis
P 1.1822 0.3640 0.7985 0.9535
6x10% | 5.0242 0.2462 0.1549 0.0183
o2 % 10% | 2.5047 0.2305 0.2354 0.1421
To = 0.07
Statistic | Mean Std. Deviation  Skew Kurtosis
& 1.1664 0.3463 0.7551 0.7278
6x10% | 5.0272 0.2470 0.1505 0.0119
o?x10° | 2.5047 0.2304 0.2377 0.1425
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Table 2

Yield Bias induced by Estimated k.

This table provides percentage differences in Cox, Ingersoll, and Ross zero-coupon yields
assuming k = mean(k) as opposed to x = 1 for alternative terms to maturity. The speed
of adjustment coefficient is estimated by generalized least squares assuming n = 60 as well as
n = 240 months of data. In Panel A, the market price of interest rate risk, u, equals 0, giving
an approximately flat term structure, while in Panel B, p equals —0.50, giving an upward sloping

term structure.

Panel A p=0
Term to Maturity (yrs) | Yield Bias % (n=60) Yield Bias % (n=240)
1 -0.008 -0.002
2 -0.025 -0.009
3 -0.040 -0.015
5 -0.057 -0.023
10 -0.073 -0.030
20 -0.081 -0.034
30 -0.083 -0.036
Panel B = —0.50
Term to Maturity (yrs) | Yield Bias % (n=60) Yield Bias % (n=240)
1 3.806 1.920
2 9.196 4.949
3 13.611 7.812
L) 19.401 11.930
10 25.350 16.673
20 28.456 19.287
30 29.437 20.117
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Sampling properties of &, 5,&’ using Generalized Least Squares and assuming

This table provides sample mean, standard deviation, skewness, and kurtosis of the estimated
parameters of the Cox, Ingersoll, and Ross mean-reverting, square-root specification for interest

rate dynamics. A sample size of n = 260 weeks of data is assumed. The experiment is based on

1,000 replications.

Table 3

n = 260 weeks of data.

7o = 0.03 | n = 260 k=10 =005 of=0.0025
Statistic | Mean  Std. Deviation Skew Kurtosis
P 1.5922 0.8152 1.1642 1.7794
6x10% | 4.9808 0.6541 -1.0418  17.9331
o?x10° | 2.4903 0.2197 0.0759 -0.0613
Tg = 0.04
Statistic | Mean  Std. Deviation  Skew Kurtosis
3 1.8736 1.0203 1.4405 4.4161
6107 | 4.9943 0.5462 0.1250 3.4888
o2 %10° | 2.4889 0.2203 0.0726 -0.0678
To = 0.05
Statistic | Mean Std. Deviation Skew Kurtosis
& 1.9994 1.1111 1.4522 4.0001
6x10® | 5.0195 0.5748 -4.4314  74.0034
o?x10° | 2.4880 0.2205 0.0743 -0.0677
To = 006
Statistic | Mean  Std. Deviation  Skew Kurtosis
® 1.8989 1.0524 1.4468 3.9041
6x10% | 5.0612 0.5238 -0.5444 3.0684
o2 x10° | 2.4883 0.2198 0.0816 -0.0638
o = 0.07
Statistic | Mean Std. Deviation  Skew Kurtosis
& 1.6895 0.8607 1.0336 1.2446
6x10° | 51784 3.2093 20.8649  924.3690
02 %10° | 2.4896 0.2192 0.0862 -0.0571
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Table 4a

Sampling properties of &, §, o* using Generalized Method of Moments and

assuming n = 60 months of data.

This table provides sample mean, standard deviation, skewness, and kurtosis of the estimated
parameters of the Cox, Ingersoll, and Ross mean-reverting, square-root specification for interest
rate dynamics. A sample size of n = 60 months of data is assumed. The experiment is based on

1,000 replications.

r0 =0.03 | n =60 k=10 6 =0.05 o2 =0.0025
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.5624 0.7242 0.6691 0.6713
6102 | 6.1098 25.1463 27.1560 785.3395
o210 | 2.3536 0.4596 0.3499 -0.0262
ro = 0.04
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.8286 0.9257 0.6915 0.4638
610 | 6.0197 19.7535 21.9303 469.5128
o2 x 10° 2.3424 0.4571 0.3376 -0.0921
To = 0.05
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.9842 1.0702 0.9476 1.2331
6%10% | 6.9556 34.7982 18.9392 364.8025
o2+ 10% | 2.3304 0.4591 0.3438 -0.1087
To = 006
Statistic | Mean Std. Deviation  Skew Kurtosis
k| 1.8930 1.0220 1.0912 2.4978
6x10% | 5.0839 0.8646 -0.7876 94.8303
o2 x 10% | 2.3277 0.4609 0.3452 -0.0570
To = 0.07
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.6932 0.8786 0.9950 1.4981
6 % 102 4.6129 15.1467 -31.4901 991.4160
o2 % 10° | 2.3340 0.4596 0.3709 0.0589
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Table 4b

Sampling properties of &, é,;’ using Generalized Method of Moments and

assuming n = 240 months of data.

This table provides sample mean, standard deviation, skewness, and kurtosis of the estimated
parameters of the Cox, Ingersoll, and Ross mean-reverting, square-root specification for interest
rate dynamics. A sample size of n = 240 months of data is assumed. The experiment is based

on 1,000 replications.

ro =0.03 | n. = 240 k=10 6 =005 o*=0.0025
Statistic | Mean  Std. Deviation = Skew Kurtosis
K 1.1816 0.3476 0.7208 1.1048
6 %102 5.0077 0.2529 0.1746 -0.0245
o?x10% | 2.4510 0.2332 0.1958 0.1101
ro = 0.04
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.2043 0.3782 0.7605 0.9364
6 » 102 5.0013 0.2508 0.1784 -0.0208
o2 x 108 2.4502 0.2332 0.1951 0.1088
ro = 0.05
Statistic | Mean  Std. Deviation  Skew Kurtosis
K 1.2099 0.3877 0.7789 0.9168
6 %102 5.0156 0.2497 0.1760 -0.0298
o2 x 10° 2.4502 0.2332 0.1952 0.1064
ro = 0.06
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.1986 0.3785 0.7796 0.9589
6%10* | 5.0201 0.2495 0.1665  -0.0323
o2 %108 | 2.4509 0.2328 0.2019 0.0796
To — 0.07
Statistic | Mean Std. Deviation  Skew Kurtosis
K 1.1783 0.3785 0.7468 0.8058
6%10° | 5.0235 0.2498 0.1533  -0.0244
o2 x10° | 2.4521 0.2324 0.2157 0.0796
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Table 5a

Simulation of b, 83,63,&1, G2, and p using a three-stage Seemingly Unrelated

Regression Estimation (SURE) procedure assuming n = 60 months of data.

This table provides sample mean, standard deviation, skewness, and kurtosis of the estimated
parameters of the Brennan and Schwartz two factor specification of interest rate dynamics. A

sample size of n = 60 months of data is assumed. The experiment is based on 1, 000 replications.

b, =1.00 | b, = 0.00 c; = 0.00 o =0.2236 p=0.50
To = 0.05 lo =0.05 n =60 I
Statistic Mean  Std. Deviation Skew Kurtosis
by 1.4318 0.8898 1.2712 1.3925
b, -0.0428 0.0823 -0.2341  -0.0380
¢z 0.0410 0.0818 0.3309 -0.1002
&y % 10! 2.2043 0.1843 1.0102 -1.9728
(o2 = 0.0010) 55 % 103 | 0.9727 0.1083 1.0107 -1.9713
P 0.5008 0.1139 1.0630 -1.8384
Statistic Mean  Std. Deviation Skew Kurtosis
b, 1.4446 0.9211 1.3150 1.5441
by -0.4094 0.8431 -0.2240 0.0292
¢y 0.3914 0.8386 0.3278 -0.0447
oy * 101 2.2040 0.1835 1.0102 -1.9729
(02 = 0.010) &, * 10? 0.9730 0.0826 1.0107 -1.9712
p 0.5009 0.1139 - 1.0630 -1.8385
Statistic Mean  Std. Deviation Skew Kurtosis
by 1.4906 1.0263 1.2502 0.9380
by -1.4664 4.5245 -0.1183 0.2476
Cz 1.3657 4.5008 0.2405 0.0856
oy x 10! 2.2031 0.1823 1.0100 -1.973
(o2 = 0.050) &, * 102 4.8720 0.4163 1.0109 -1.9707
p 0.5015 0.1141 1.0631 -1.8383
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Table 5b

Simulation of 31, i)z,é,,&l, 3, and j using a three-stage Seemingly Unrelated

Regression Estimation (SURE) procedure assuming n = 240 months of data.

This table provides sample mean, standard deviation, skewness, and kurtosis of the estimated
parameters of the Brennan and Schwartz two factor specification of interest rate dynamics. A

sample size of n = 240 months of data is assumed. The experiment is based on 1,000 replications.

b, = 1.00 [5,=0.00 ¢, =000 oy =0.2236 p=0.50
7o=0.05 lo=0.05 n=240 |

Statistic Mean Std. Deviation Skew Kurtosis

b, 1.0382 0.3029 1.1476 2.7899

by -0.0106 0.0312 -0.5362 0.7995

&, 0.0106 0.0310 0.4796 0.6885

&y % 10 2.2310 0.0943 1.0027 -1.9929

(o2 = 0.0010) &, % 10® | 0.9926 0.0994 1.0037 -1.9901
p 0.4940 0.0486 1.0138 -1.9638
Statistic Mean Std. Deviation Skew Kurtosis

by 1.0394 0.3095 1.1540 2.8104

by -0.1003 0.3160 -0.5318 0.8383

& 0.0994 0.3143 0.4721 0.7214

&y % 10 2.2310 0.0944 1.0027 -1.9929

(o2 = 0.010) &, % 10% | 0.9927 0.0532 1.0037 -1.9901
p 0.4940 0.0486 1.0138 -1.9638
Statistic Mean Std. Deviation Skew Kurtosis

by 1.0468 0.3366 1.0296 2.0700

b, -0.3503 1.6669 -0.4903  1.3369

&, 0.3204 1.6565 0.4240 1.1769

&% 10 2.2307 0.0941 1.0027 -1.9929

(03 = 0.050) 62 % 10* | 4.9645 0.2538 1.0037 -1.9901
p 0.4940 0.0486 1.0138 -1.9637
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Table 6a

Sampling properties of &, 6, o:’,ﬁ using Maximum Likelihood Estimation and

assuming n = 60 months of data.

This table provides sample mean, standard deviation, skewness, and kurtosis of the estimated
parameters of the Cox, Ingersoll, and Ross term structure model. A variety of term to maturity
zero-coupon bonds are used. The market price of interest rate risk is g = 0 or g = —0.5. A

sample size of n = 60 months of data is assumed. The experiment is based on 500 replications.

k=10 6 =0.05 a? = 0.0025

n =60 n =1/12 =1 73=215
Statistic Mean Std. Deviation Skew Kurtosis

K 1.0274 0.1142 0.3169 0.5816

6 * 10 5.0157 0.5008 0.4295 0.4927

o? % 10° 3.3061 0.7030 0.2644 -0.1806

(#=—0.5) p*10 | -5.1514 1.0591 -0.3160 0.4683

n = 60 T1=1/12 Tz=1/2 Ts=1
Statistic Mean Std. Deviation Skew Kurtosis

K 1.1902 0.1501 0.2094 0.1366

6 % 10? 5.0162 0.4917 0.4170 0.4501

o2 % 10° 3.2886 0.6919 0.2265 -0.2097

(p = —0.5) =10 | -5.3337 1.1227 -0.2575 0.3055

n =60 n =1/12 =1 3=25
Statistic Mean Std. Deviation Skew Kurtosis

K 1.1489 0.1480 0.3081 -0.0110

b %102 5.0197 0.4959 0.4175 0.4905

o? * 10° 3.6506 0.8065 0.3214 -0.1375
(p=0.0) %10 | -0.0702 1.0993 -0.2765 0.3175
n = 60 T1=1/12 1'3=1/2 T3=1
Statistic Mean Std. Deviation Skew Kurtosis

K 1.2268 0.1725 0.5998 1.0478

6 » 10? 5.0208 0.4942 0.2446 -0.1254

o % 10° 3.4104 0.6823 0.2938 -0.0704
(p=0.0) 2 %10 | -0.0701 1.1294 -0.3239 -0.1840
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Table 6b

Sampling properties of &, 6, o:’,ﬁ using Maximum Likelihood Estimation and

assuming n = 240 months of data.

This table provides sample mean, standard deviation, skewness, and kurtosis of the estimated
parameters of the Cox, Ingersoll, and Ross term structure model. A variety of term to maturity
zero-coupon bonds are used. The market price of interest rate risk is g = 0 or p = —0.50. A

sample size of n = 240 months of data is assumed. The experiment is based on 500 replications.

k=10 g = 0.05 o? = 0.0025

n = 240 7 =1/12 =1 3=25
Statistic Mean Std. Deviation Skew Kurtosis

® 1.0242 0.0567 0.1042 0.1794

6 % 10? 5.0001 0.2533 0.2308 0.3180

o2 % 10° 3.3596 0.3259 0.3400 0.1594

(p = —0.5) i *10 | -5.1001 0.5331 -0.1194 0.1651
n = 240 7 =1/12 T2 =1/2 r3=1
Statistic Mean Std. Deviation Skew Kurtosis

& 1.1499 0.0738 0.1137 0.2765

6102 5.0000 0.2529 0.2287 0.3128

o2 % 10° 3.3103 0.3206 0.3598 0.1629
(p=—0.5) p*10 | -5.2374 0.5720 -0.1300 0.1851
n = 240 m=1/12 =1 Ts =5
Statistic Mean Std. Deviation Skew Kurtosis

B 1.1169 0.0703 0.3566 -0.2198

6+ 10 4.9954 0.2409 -0.0261  -0.2003

o2 % 10° 3.6516 0.3615 0.4224 0.5794

(g =0.0) A%10 | -0.0417 0.5341 -0.3051  -0.0245
n = 240 T1=1/12 T3=1/2 T3=1
Statistic Mean Std. Deviation Skew Kurtosis

) 1.1740 0.0788 0.4363 -0.0042

6 » 10? 4.9956 0.2398 -0.0259  -0.1983

o2 % 10° 3.4189 0.3278 0.4236 0.6519
(p=0.0) z%10 |-0.0419 0.5404 -0.3102 0.0208
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